THE INFLUENCE OF ACADEMIC SELF-CONFIDENCE ON MATHEMATICS ACHIEVEMENT

ERIKA VAN DER BERGH

13126679

Dissertation submitted in fulfilment of the requirements for the degree Master of Education in Learner Support at the Vaal Triangle Campus of the North-West University

SUPERVISOR: DR MIRNA NEL
Acknowledgements

First and foremost I would like to thank my Heavenly Father for all the strengths and opportunities He has bestowed upon me over the years that enabled me to be successful in all my life endeavours.

To my supervisor Dr M Nel for continued critique which allowed me to become the best researcher I could be, for the unconditional support, motivation, ‘pep talks’ and belief in my work I can only show my deepest gratitude. Without her the success of this dissertation would not have been possible. In addition I would also like to take the opportunity to thank Dr M Grösser, Prof K Lombard and Ms M Kloppers for the valuable feedback during the years.

I will forever be thankful to my Principal, Ms Westerberg, as well as the Gauteng Department of Education for allowing me to do research as part of the fulfilment of my Master’s degree.

Last but not least, my greatest appreciation goes to my family; without their absolute and continued love, support and encouragement this would have proven to be a nearly impossible task. A very special thank you to my mom, Hannatjie, and dad, Gerhard Schafer, you blessed me with so much, and I am grateful for all the sacrifices you have made to give me the education most people can only dream of. To my husband, Mannetjie van der Bergh; you picked me up when I felt down and defeated. When nothing was going my way, you gave one motivational speech after the other, and therefore I am truly thankful. To my children, Warnu, Chanèl and our little angel on the way, Marjolé, for the understanding that sometimes mommy had to work instead of play.
I would like to dedicate this dissertation to a very special person, who was taken away, much too soon, who without knowing it was the inspiration behind it all. You once said that I should never give up on my dreams and that I should aim for the highest degree I could get. Well my angel, I am almost there. Thank you for believing in me so strongly, that after all these years I could still feel your presence pushing me towards greatness. Your memory will live on within me forever. This one is for you:

Heinrich Coetzer

20.02.83 – 16.06.04
Abstract

It seems as if there is a continued problem with mathematical performances nationally. The rate, at which FET (Further Education and Training) phase learners discontinue Mathematics as a result of poor mathematical performances, is of great concern. This research study determined how academic self-confidence could have an influence on learners' abilities to perform in Mathematics. The literature review confirmed that there could be a link between academic self-confidence and mathematical performance. Consequently, the researcher wanted to establish if the same could be found at a school where the emphasis is very much on mathematical achievement. The school is based in Northern Johannesburg (D10) in Gauteng, South Africa. By applying an explanatory mixed method approach (quantitative, followed by qualitative methods), the researcher identified a clear link between this school's learners' abilities to perform in Mathematics and their academic self-confidence. Amongst others, positive links were also identified between the learners' comprehension of Mathematics, their problem-solving skills as well as educator assistance, which in turn influence their academic self-confidence and consequently also their performances. A cycle of mathematical influences was identified that demonstrated that the influence is not only working one way, but that a cycle forms; academic self-confidence influences the learner's ability to perform in mathematics and mathematical performances also influence academic self-confidence, causing a continuous cycle of influence.

Keywords:
Opsomming

Dit wil voorkom of daar in voortgesette probleem met die swak nasionale wiskunde-uitslae in die VOO (Verdere Onderwys en Opleiding) fase bestaan. Die tempo waarteen leerders Wiskunde staak as gevolg van die swak uitslae, is rede tot groot kommer. Hierdie navorsingstudie het bepaal wat die moontlike invloed van akademiese selfvertroue is op 'n leerder se vermoë om in wiskunde te presteer. Die literatuuroorsig dui daarop dat daar wel 'n verband tussen akademiese selfvertroue en wiskunde prestasies kan wees. Gevolglik, wou die navorser bepaal of dieselfde verband gevind kan word in 'n skool waar klem gelê word op wiskunde vaardighede en prestasie. Die skool is geleë in Johannesburg-Noord (D10) in Gauteng, Suid-Afrika. Deur die toepassing van 'n verklarende gemengde benadering (kwantitatiewe, gevolg deur kwalitatiewe metodes) kon die navorser 'n duidelike positiewe verband identifiseer tussen akademiese selfvertroue en hierdie skool se leerders se vermoë om in wiskunde te presteer. Ondermeer is daar ook verbande geïdentifiseer tussen leerders se begrip van wiskunde, hul vermoë om probleme op te los asook onderwyser-ondersteuning, wat op hul beurt hul akademiese selfvertroue beïnvloed en gevolglik ook hul prestasies. 'n Siklus van invloede op wiskunde is geïdentifiseer wat bewys dat die invloed nie in een rigting alleen werk nie, maar dat dit 'n siklus vorm; akademiese selfvertroue beïnvloed die leerder se vermoë om in wiskunde te presteer, en wiskundige prestasie beïnvloed weer die leerder se akademiese selfvertroue wat 'n voortgesette siklus van invloede veroorsaak.

Sleuteltermé:

akademiese selfvertroue, wiskundige prestasies, wiskundige vermoëns, siklus van invloede op wiskunde, wiskundige begrip, probleemoplossing, en onderwyser-ondersteuning.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT
OPSOMMING

1. CHAPTER 1
INTRODUCTION

1.1. Introduction and Rationale
1.2. Problem Statement
1.3. Aim of the Research
1.4. Literature Review and Concept Clarification
1.4.1. Mathematics
1.4.1.1. Mastering mathematical learning
1.4.1.2. Preconditions for successful mathematical learning
1.4.1.3. Development of mathematical learning
1.4.1.4. Factors influencing mathematical learning
1.4.1.5. Resilience during mathematical learning
1.4.2. Self-confidence
1.4.2.1. Academic self-confidence
1.4.2.2. Self-confidence and successful learning
1.5. Research Methodology
1.5.1. Research paradigm
1.5.2. Literature review
1.5.3. Research design
1.5.3.1. Strategies of inquiry
1.5.3.1.1. Correlation research study
1.5.3.1.2. Phenomenological research study
3.3. What is Mathematical Self-Confidence? 50

3.4. Mastering Mathematical Learning 50

3.5. Preconditions for Successful Mathematical Learning 51
3.5.1. Content level 51
3.5.2. Educational level 51
3.5.3. Development level 51
3.5.4. Emotional level 52
3.5.5. Contextual level 52

3.6. Development of Mathematical Learning 52
3.6.1. Two key elements for basic Mathematics skills 52
3.6.1.1. Primary preverbal number knowledge 53
3.6.1.2. Secondary verbal or symbolic number knowledge 53
3.6.2. Four stages to grasp Mathematics 53

3.7. Gender Differences in Mathematics 54

3.8. Motivation and Mathematical Learning 55

3.9. Resilience During Mathematical Learning 56

3.10. Difficulties in Learning Mathematics 58
3.10.1. Internal factors 58
3.10.1.1. Learning problems 59
3.10.1.2. Lack of self-confidence 59
3.10.1.3. Mathematics anxiety 60
3.10.1.4. Negative attitudes towards Mathematics 61
3.10.1.5. Passivity 61
3.10.1.6. Attention deficit disorders 61
3.10.2. External factors 62
3.10.2.1. Absenteeism and illness 62
3.10.2.2. Educators and poor teaching 62
4.2.3. Literature review 72
4.2.4. Research design 73
4.2.4.1. Mixed method approach 73
4.2.4.2. Explanatory design 74
4.2.4.3. Quantitative phase 75
4.2.4.3.1. Correlation research 75
4.2.4.3.2. Validity and reliability 78
4.2.4.4. Qualitative phase 79
4.2.4.4.1. Phenomenological research 79
4.2.4.4.2. Case study 81
4.2.4.4.3. Trustworthiness, validity and reliability 82
4.2.5. Researcher's role 84
4.2.6. Psychologist's role 85
4.2.7. Population and sampling 86
4.2.8. Data collection procedure 88
4.2.9. Ethics 91

4.3. Conclusion 91

5. CHAPTER 5 92
DATA ANALYSIS AND INTERPRETATION

5.1. Introduction 92

5.2. Quantitative Analysis 92
5.2.1. Factor analysis 92
5.2.2. Statistical correlations 95
5.2.2.1. Relationships between the themes and performance 95
5.2.2.1.1. Theme 1: Attitudes towards own mathematical ability 95
5.2.2.1.2. Theme 2: Comprehension and application of mathematical concepts 99
5.2.2.1.3. Theme 3: Solving mathematical problems 102
5.2.2.1.4. Theme 4: Educator assistance 107
ADDENDUMS

Addendum A: Researcher Declaration 157
Addendum B: Participant Information 158
Addendum C: Ethics Letter of Approval 159
Addendum D: Permission to Conduct Research by the School 160
Addendum E: Permission to Conduct Research by the GDE 161
Addendum F: Consent Form for Participants 162
Addendum G: Consent Form for Parents 163
Addendum H: Academic Self-Confidence in Mathematics Questionnaire 164
Addendum I: Pilot Study – Participant Feedback 167
Addendum J: Sample Selection for Interviews 169
Addendum K: Coded Transcripts for Interviews 171
Addendum L: Proof of Language Editing 187

LIST OF DIAGRAMS

Diagram 2.1: Meta-cognition and the three types of knowledge used to ensure successful learning with confidence 36
Diagram 4.1: Explanatory Research Design 75
Diagram 4.2: Research Procedure 90
Diagram 5.1: Mathematical Cycle of Influence 131
Diagram 6.1: Positive Mathematical Cycle of Influence 138
Diagram 6.2: Negative Mathematical Cycle of Influence 139

LIST OF TABLES

Table 2.1: Identifying aspects between being self-confident and having low levels of self-confidence. 33
Table 5.1: Eigenvalues for the quantitative data 93
Table 5.2: Common factor analysis 94
Table 5.3: Questions that form factor 1
Table 5.4: Correlation coefficients between CASS, exam, promotion marks and Theme 1 (Factor 1)
Table 5.5: Questions that form factor 2 and 4
Table 5.6: Correlation coefficients between factors 2, 4 and Theme 2
Table 5.7: Correlation coefficients between CASS, exam, promotion marks and Theme 2
Table 5.8: Questions that form factor 3 and 5
Table 5.9: Correlation coefficients between factors 3, 5 and Theme 3
Table 5.10: Correlation coefficients between CASS, exam, promotion marks and Theme 3
Table 5.11: Questions that form factor 6
Table 5.12: Correlation coefficients between CASS, exam, promotion marks and Theme 4
Table 5.13: Correlations between the different themes
Table 5.14: Subthemes for Theme 1
Table 5.15: Subthemes for Theme 2
Table 5.16: Subthemes for Theme 3
Table 5.17: Subthemes for Theme 4