Adaptive binarization of legacy ionization chamber cosmic ray recordings

Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Computer Science at the Potchefstroom Campus of the North-West University

Andre Steyn
20535341

Supervisor:
G.R. Drevin

October 2012
Acknowledgments

I would never have been able to finish this dissertation without the support and guidance of some truly remarkable people.

Firstly, I would like to thank my parents, Maartin and Igna Steyn, for providing me with the opportunity to obtain a masters degree and for supporting me financially throughout my years of study.

I would like to thank my supervisor, Prof. Gunther Drevin, for allowing me the freedom to follow my own methods while ensuring that I do not stray from my final objective and also for being an abundant source of advice.

I would like to thank Prof. Magda Huisman, who has taught me all I know about how to conduct research and how to cope with the pressure of writing a dissertation.

I would also like to thank Kobie Fourie, who always has a willing shoulder and is invaluable when administrative challenges present themselves.

Finally, I would like to thank my girlfriend, Anli van den Berg, for all her support and motivation. She was always willing to listen to problems and ideas and played a big role in the initial language editing of this dissertation.
Abstract

In the 1930s, the Carnegie Institute in Washington DC initiated the construction of cosmic ray observation centres around the world. Cosmic ray activity was recorded using the model C cosmic ray ionization chamber which uses a Lindemmann electrometer. Seven of these chambers were constructed at seven stations around the world.

These chambers recorded cosmic ray data by projecting the shadow of the electrometer needle onto a continuously moving strip of 60 mm photographic paper. Hour markers were recorded by dimming the lamp for three minutes at the start of each hour, while also grounding the ionization chamber. By grounding the ionization chamber the electrometer needle was returned to the zero position. The photographic paper moved about 25 mm an hour. Approximately 114 station-years of data was recorded between 1935 and 1960 (Hardy, 2006).

It is important to digitize these recordings in order to preserve the data for further study of cosmic rays from this time period. This digitization process consists of binarizing digital images of the photographic strip to extract the cosmic ray data. By binarizing these images the data is recorded in an easily usable format for future research.

This study focuses on extraction of the cosmic ray data using an adaptive binarization method that is able to cope with a wide variety of images, ranging from images that are almost too bright to distinguish the data lines from the background, to images that are too dark to distinguish the data lines at all.

This study starts off with a brief explanation of cosmic rays, how these were recorded before the 1950s and how the rays are recorded today.
Two research methodologies were used to create a method to adaptively binarize and extract data from the historic cosmic ray recordings. A literature study of image processing techniques was conducted, focusing specifically on popular adaptive document binarization methods. During the experimental phase of this study, these methods or parts thereof were applied to the data to determine which techniques would give the most accurate results. Experimentation is the primary research methodology.

The iterative experimental phase is discussed in detail as an algorithm is formed to successfully binarize and extract the historic cosmic ray data as well as the temperature of the electrometer while recording. The study concludes with an interpretation of the results obtained in the experimental phase. The success of the algorithm is measured by comparing the resulting data graph to the original.

The conclusion of this study is that an adaptive method can be applied to historical recordings of cosmic ray activity to extract numerical data from a wide variety of images without any additional user input.
Keywords

• Adaptive Binarization;
• Image Processing;
• Cosmic Rays;
• Digitization;
Contents

Acknowledgments ii
Abstract iii
Keywords v
Table of Contents vi
List of Figures xi

1. Introduction 1
 1.1. Background ... 1
 1.1.1. Cosmic Rays ... 1
 1.1.2. GLEs .. 3
 1.1.3. Historical Cosmic Ray Data 3
 1.2. Problem definition ... 5
 1.3. Research goals .. 7
 1.4. Research methodology 8
 1.4.1. Description ... 8
 1.4.2. Literature study 8
 1.4.3. Experimentation 8
 1.5. Scope of study .. 9

2. Literature Study 10
 2.1. Introduction ... 10
 2.2. Image capture ... 12
 2.2.1. Preparation of the document 13
 2.2.2. Balance between quality and resolution 13
Contents

2.3. Image improvement .. 14
 2.3.1. Spatial domain .. 15
 2.3.1.1. Intensity transformation functions 16
 2.3.1.2. Spatial Filtering ... 19
 2.3.1.2.1. Smoothing spatial filters 21
 2.3.1.2.2. Order-statistic filters 22
 2.3.1.2.3. Sharpening filters 23
 2.3.1.2.4. Unsharp masking and highboost filtering .. 25
 2.3.2. Morphological image processing 26
 2.3.2.1. Set Theory ... 27
 2.3.2.2. Erosion .. 29
 2.3.2.3. Dilation ... 30
 2.3.2.4. Boundary Extraction 31
 2.3.2.5. Extraction of connected components 32
 2.3.2.6. Segmentation using morphological watersheds ... 33
 2.3.3. Frequency Domain .. 35
 2.3.3.1. Lowpass Filters 38
 2.3.3.2. Highpass filters 40
 2.3.3.3. Laplacian Filter 41
 2.3.3.4. Homomorphic filtering 42
 2.4. Interpretation ... 42
 2.4.1. Pattern recognition 43
 2.4.2. Digitization .. 43
 2.5. Adaptive image binarization 43
 2.5.1. Otsu’s method ... 44
 2.5.2. Niblack’s method 44
 2.5.3. Sauvola and Pietkäinen’s method 45
 2.5.3.1. Background binarization 45
 2.5.3.2. Foreground Binarization 46
 2.5.4. Gatos and colleagues’ method 46
 2.5.4.1. Preprocessing 46
 2.5.4.2. Rough foreground estimation 47
 2.5.4.3. Background estimation 47
 2.5.4.4. Final thresholding 48
 2.5.4.5. Post-processing 49
2.5.5. Adaptive water flow binarization .. 49
 2.5.5.1. Region of interest extraction 51
 2.5.5.2. Stroke width measurement 51
 2.5.5.3. Stopping threshold for rainfall process 51
 2.5.5.4. Setting the rate of rainfall 52
 2.5.5.5. Fast algorithm for finding local minima 53
 2.5.5.6. Blob extraction .. 54
 2.5.5.7. Blob classification and final binarization 55
2.6. Digitization of cosmic ray recordings in the frequency domain 57
 2.6.1. Drebin’s method .. 57
2.7. Concluding remarks ... 59

3. Experimental process .. 60
 3.1. Introduction .. 60
 3.2. Test data .. 60
 3.3. Design Process ... 65
 3.4. Success ... 68
 3.5. Technology/Software .. 69

4. Process description .. 70
 4.1. Introduction .. 70
 4.2. Pre-processing ... 72
 4.3. Rough data identification .. 74
 4.4. Rough data extraction .. 80
 4.5. Rough data binarization ... 81
 4.6. Accurate data identification 86
 4.7. Accurate data extraction and binarization 87
 4.8. Post-processing ... 88
 4.9. Process results ... 89

5. Conclusion ... 93
 5.1. Achieved research goals .. 93
 5.2. Additional study and possible improvements 93
 5.2.1. Improved accuracy ... 93
 5.2.2. Improved speed .. 97
 5.2.3. Adaptive variables ... 97
Contents

5.2.4. Skew detection .. 97
5.2.5. Complete binarization 97
5.3. Concluding remarks .. 98

References .. 99

A. Method description ... 103
 A.1. Crop ... 103
 A.2. Line ... 104
 A.3. Fill .. 105
 A.4. Blur ... 106
 A.5. Scan ... 106
 A.6. Remove ... 107
 A.7. Mark ... 108
 A.8. Erase ... 108
 A.9. Clean .. 109
 A.10. Target .. 110
 A.11. Connect ... 111
 A.12. Scrub ... 111
 A.13. Identify ... 112
 A.13.1. Identify1 .. 113
 A.13.2. Identify2 .. 113
 A.13.3. Identify3 .. 113
 A.14. Bind .. 114
 A.15. Extract .. 115
 A.16. Purify .. 115
 A.17. Designate ... 116
 A.18. Define .. 116
 A.19. Plot ... 118
 A.20. Paste .. 119
 A.21. Insert ... 120

B. Visual summary of the binarization process 121
 B.1. Pre-processing ... 122
 B.2. Rough data identification: Iteration 1 123
 B.3. Rough data identification: Iteration 2 124
Contents

B.4. Rough data identification: Iteration 3 ... 125
B.5. Rough data identification: Iteration 4 ... 126
B.6. Rough data identification: Iteration 5 ... 127
B.7. Rough data identification: Iteration 6 ... 128
B.8. Rough data identification output .. 129
B.9. Rough data extraction ... 130
B.10. Rough data binarization .. 132
B.11. Accurate data identification .. 135
B.12. Accurate data extraction .. 137
B.13. Accurate data binarization .. 138
B.14. Post-processing ... 140

C. Letter from the editor .. 141
List of Figures

1.1. NWU Space Research Unit neutron monitor recordings 2
1.2. Arthur Holly Compton with a model C cosmic ray ionization chamber 4
1.3. Lindemann electrometer .. 5
1.4. Photographic data of cosmic ray activity 5

2.1. An image (left) and its negative version (right) 16
2.2. Application of the log transform to an image 17
2.3. Possible transformation curves of the Gamma transformation 17
2.4. Application of Gamma transformations 18
2.5. Application of a filter mask to an image 20
2.6. An example of a 3 x 3 smoothing filter 21
2.7. Application of a 15 x 15 smoothing filter 21
2.8. Example of a weighted 3 x 3 smoothing filter 22
2.9. Difference between median filtering and mean filtering................. 23
2.10. Sobel filters .. 23
2.11. Prewitt filters ... 24
2.12. Roberts filters ... 24
2.13. Laplacian filter ... 24
2.15. Application of a sharpening mask using Laplacian operators 25
2.16. Results of unsharp masking ... 26
2.17. Highboost Filter .. 26
2.18. Set theory operators .. 28
2.19. Translation and reflection ... 29
2.20. The process of morphological erosion 30
2.21. Dilation of text to improve visibility 31
2.22. Boundary extraction .. 32
2.23. Extraction and labeling of connected components 33
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.24</td>
<td>A labeled set of connected components representing cosmic ray data</td>
<td>33</td>
</tr>
<tr>
<td>2.25</td>
<td>Three-dimensional representation of a cosmic ray data line segment</td>
<td>34</td>
</tr>
<tr>
<td>2.26</td>
<td>Watershed segmentation process</td>
<td>36</td>
</tr>
<tr>
<td>2.27</td>
<td>Symmetry of a Fourier spectrum</td>
<td>37</td>
</tr>
<tr>
<td>2.28</td>
<td>Conversion of a spatial image to a Fourier spectrum</td>
<td>38</td>
</tr>
<tr>
<td>2.29</td>
<td>Ideal lowpass filter with decreasing values of D_0</td>
<td>39</td>
</tr>
<tr>
<td>2.30</td>
<td>Ringing in a filtered image</td>
<td>39</td>
</tr>
<tr>
<td>2.31</td>
<td>Gaussian filter result with zero ringing</td>
<td>40</td>
</tr>
<tr>
<td>2.32</td>
<td>Ideal highpass filter results</td>
<td>41</td>
</tr>
<tr>
<td>2.33</td>
<td>Gatos et al. foreground estimation</td>
<td>47</td>
</tr>
<tr>
<td>2.34</td>
<td>Gatos et al. background estimation</td>
<td>48</td>
</tr>
<tr>
<td>2.35</td>
<td>Binarization of a typed document image</td>
<td>50</td>
</tr>
<tr>
<td>2.36</td>
<td>Neighborhood for contrast measurement</td>
<td>52</td>
</tr>
<tr>
<td>2.37</td>
<td>The process of finding local minima</td>
<td>53</td>
</tr>
<tr>
<td>2.38</td>
<td>Phases of adaptive water flow binarization</td>
<td>56</td>
</tr>
<tr>
<td>3.1</td>
<td>The original image A</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>The original image B</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>The original image C</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>The original image D</td>
<td>63</td>
</tr>
<tr>
<td>3.5</td>
<td>The original image F</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>The original image F</td>
<td>64</td>
</tr>
<tr>
<td>3.7</td>
<td>Results of applying existing binarization methods to cosmic ray data</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Difference between scanning a blurred image and an unblurred image</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Results of pre-processing</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>Results of Scan method at different tolerances</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>The effect of a single iteration of the Scan, Remove, Mark, Erase methods</td>
<td>78</td>
</tr>
<tr>
<td>4.5</td>
<td>Results of six Scan, Remove, Mark and Erase iterations</td>
<td>79</td>
</tr>
<tr>
<td>4.6</td>
<td>Final output of the rough data identification phase</td>
<td>80</td>
</tr>
<tr>
<td>4.7</td>
<td>Rough data extraction</td>
<td>82</td>
</tr>
<tr>
<td>4.8</td>
<td>Thickening effect of the Purify method</td>
<td>83</td>
</tr>
<tr>
<td>4.9</td>
<td>Results of 4 Scan, Remove, Purify and Designate iterations</td>
<td>84</td>
</tr>
<tr>
<td>4.10</td>
<td>Result of applying Scan method to output from Figure 4.9</td>
<td>85</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of the Define method</td>
<td>86</td>
</tr>
<tr>
<td>4.12</td>
<td>The effect of the Plot method on a set of disconnected data line segments</td>
<td>88</td>
</tr>
</tbody>
</table>
List of Figures

4.13. Difference between applying the binarization process once and twice . . 89
4.14. The data extracted from image A . 90
4.15. The data extracted from image B . 90
4.16. The data extracted from image C . 91
4.17. The data extracted from image D . 91
4.18. The data extracted from image E . 92
4.19. The data extracted from image F . 92

5.1. Results fitted over original image A . 94
5.2. Results fitted over original image B . 94
5.3. Results fitted over original image C . 95
5.4. Results fitted over original image D . 95
5.5. Results fitted over original image E . 96
5.6. Results fitted over original image F . 96