Misconceptions regarding direct-current resistive theory in an engineering course for N2 students at a Northern Cape FET college

Christiaan Beukes
Student Number: 11160454
Misconceptions regarding direct-current resistive theory in an engineering course for N2 students at a Northern Cape FET college

Christiaan Beukes
Student Number: 11160454

Dissertation submitted for the degree Magister Educationis in Curriculum Studies at the Potchefstroom Campus of the North-West University
Student Number: 11105976

Supervisor: Prof Dr A Seugnet Blignaut
Assistant Supervisor: Mrs Dorothy Laubscher

November 2013
Acknowledgements

Several people contributed to accomplishing my goals during the compilation of this dissertation. These people guided and encouraged me throughout the various stages of my study:

- My gratitude and appreciation is expressed to Prof Seugnet Blignaut for supervising me during this study, and for providing assistance, criticism, and opinion based on her treasured experience. I am particularly grateful of your patience and support, all of which were vital to the completion of this project. Your guidance saved me from many disasters.
- My thanks to Dr Janette Kruger for her general support.
- The Statistical Consultation Services, North-West University, Potchefstroom Campus for assistance with the compilation of surveys and statistical analysis of the quantitative data.
- Mrs Dorothy Laubscher for support regarding the identifying of misconceptions.
- Ms Verona Leendertz for assistance with interpretation of the statistical analysis.
- Mrs Hettie Sieberhagen for language editing.
- Prof Spamer of the Unit of Open Distance Learning, NWU, Potchefstroom campus for initiating the support of Masters’ students in the rural areas of the Northern Cape Province.
- The NRF for partial funding of this research.
- I also want to extend my gratitude to several others counting the Campus head and other staff members at the Kathu Campus who aided me in several ways.
- My appreciation to the students who opted to voluntarily take part in this study. None of this work would have ever been possible without their participation.
Abstract

The aim of this study is to ascertain what misconceptions N2 students have about DC resistive circuits and how screencasts could effect on the rectification of these misconceptions. This study was conducted at the Kathu Campus of the Northern Cape Rural Further Education and Training College in the town Kathu in the arid Northern Cape. The empirical part of this study was conducted during the first six months of 2013. A design-based research (DBR) method consisting of four phases was used. DBR function is to design and develop interventions such as a procedure, new teaching-learning strategies, and in the case of this study a technology-enhanced learning (TEL) tool (screencast) with the purpose of solving a versatile didactic problem and to acquire information about the interventions of the TEL tool (screencast) on the learning of a student. In the first and second phase of DBR quantitative data for this research were gathered with the Determining and Interpreting Resistive Electric circuits Concepts Test (DIRECT) in order to determine the four most common misconceptions. The DIRECT test was conducted in the first trimester to find the misconceptions; the test was conducted in the second trimester also to confirm the misconceptions. Further quantitative data were collected from a demographic questionnaire. The qualitative data were collected by individual interviews in the fourth phase of the research project. Phase three of this study was the development of screencasts in the four most prominent misconceptions in DC resistive circuits of the students. The respondents of this study were non-randomly chosen and comprised of two groups, one in the first trimester of the year and one in the second trimester of the year, which enrolled for the N2 Electrical or Millwright courses. The respondents were predominant male and representing the three main cultural groups in the Northern Cape namely: Black, Coloured and White. The four misconceptions on DC resistive circuits that were identified were: (i) understanding of concepts, (ii) understanding of short circuit, (iii) battery as a constant current source, and (iv) rule application error. Screencasts clarifying the four misconceptions were developed and distributed to the respondents. On the foundation of the results of this research, it can be concluded that the students have several misconceptions around direct current resistive direct current circuits and that the use of TEL like screencasts can be used to solve some of these misconceptions. Screencasts could supplement education when they were incorporated into the tutoring and learning for supporting student understanding. The results of this research could lead to the further development and refinement of screencasts on DC resistive circuits and also useable guidelines in creating innovative screencasts on DC resistive circuits.

Keywords: Industrial Electronics; DIRECT test; misconceptions; screencasts; design-based research; direct current resistive circuits; FET College; conceptual-theoretical framework; coaching; and scaffolding.
Opsomming

Die doel van hierdie studie was om te bepaal watter wanopvattings N2 studente het met betrekking gelykstroom resistiewe stroombane en of “screencasts” diesulke wanopvatting effektief kan aanspreek. Hierdie studie het plaasgevind op die Kathu-kampus van die Noord-Kaap Plattelandse Verdere Onderwys en Opleiding Kollege, in die dorp Kathu in die dorre Noord-Kaap. Die empiriese gedeelte van die studie is gedurende die eerste ses maande van 2013 uitgevoer. ’n Ontwerpgebaseerde navorsings (OGN) metode bestaande uit vier fases het die studie ondersteun. OGN het betrekking op prosedure, nuwe onderrig- en leerprodukte (screencast) tot gevolg gehad met die doel om ’n kompleksie probleem op te los en inligting oor die ingrypings te bekom en ’n produk (screencast) te ontwerp, ontwikkels die gebruik te evalueer ten aansien van leerstrategieë van studente. In die eerste en tweede fases van die OGN het gebruik gemaak van die kwantitatiewe data ingesamel volgens die Determining and Interpreting Resistive Electric Circuits Concepts Test (DIRECT) om die vier mees algemene wanopvatting met betrekking tot gelykstroom resistiewe stroombanes te bepaal. Die DIRECT toets is tydens die eerste trimester uitgevoer om studente wanopvattinge te bepaal en is gedurende die tweede trimester herhaal om die diesulke wanopvattinge te bevestig. Addisionele kwantitatiewe data is deur middel van ’n demografiese vraelys ingesamel. Die kwalitatiewe aspekte van die navorsing het langs die kwantitatiewe aspekte plaasgevind betrekking op data-analise wat tydens individuele onderhoude ingesamel is tydens die tweede en vierde fases van die projek.

Tydens fase drie van hierdie studie het die ontwikkeling van die screencasts plaasgevind. Hulle het die vier mees opmerklike wanopvattinge van studente met betrekking tot gelykstroom resistiewe stroombanes van die studente aangespreek. Die gerieflikheidsteekproef van respondente van hierdie studie het bestaan uit twee groepe: een gedurende die eerste trimester van die jaar en een in die tweede trimester van die jaar. Die respondentes was ingeskreif is vir die N2 Elektriese of Millwright kursusse en was oorwegend manlike en het bestaan uit die drie mees prominente kultuurgroepie in die Noord-Kaap: Swart, Bruin en Wit. Die vier belangrikste wanopvattinge wat met betrekking tot gelykstroom resistiewe stroombanes geïdentifiseer was, is: (i) begrip van konsepte, (ii) begrip van kortsluitings, (iii) batterye as ’n konstante stroom bron, en (iv) reël-toepassings foute. Screencasts ter verdiepings van die vier wanopvattinge is ontwikkel en aan die respondentes beskikbaar gestel. Op gronde van die resultate van die evaluering van studente se persepsies en ervarings met betrekking tot die screencasts kon bevestig word dat die studente wanopvattinge met betrekking tot gelykstroom resistiewe stroombanes het en dat die gebruik van tegnologiese hulpmiddels soos screencasts bygedra het om sommige van die wanopvattinge op te hef. Screencasts kan onderrig aanvul en kan in die onderrigstasie inkorporeer word en ter ondersteuning (scaffolding) van leerinhoud met betrekking tot gelykstroom resistiewe stroombanes aan studente. Die resultate van hierdie navorsing het ontwerpbeinsels bepaal wat gebruik kan word in die verdere ontwikkeling en verfyning van screencasts vir gelykstroom resistiewe stroombane. Die navorsingverslag bied ook riglyne aan vir die skep van innoverende screencasts van gelykstroom resistiewe stroombane.
Sleutel woorden: Industriële Elektronika; DIRECT toets; wanopvattings; screencasts; ontwerp-gebaseerde navorsing; resistieve stroombane; VOO Kollege; konseptuele-teoretiese raamwerk; pedagogiese ondersteuning; tegnologie-ondersteunde leer.
Solemn Declaration
CERTIFICATE ISSUED ON 24 NOVEMBER 2013

I hereby declare that I have linguistically edited the dissertation submitted by Mr Christiaan Beukes for the MEd degree:

Misconceptions regarding direct-current resistive theory in an engineering course for N2 students at a Northern Cape FET college

H C Sieberhagen
SATI number: 1001489
ID: 4504190077088
Telephone: 0182994554
Ethics Approval
Table of Contents

Acknowledgements .. i
Abstract .. ii
Opsomming ... iii
Solemn Declaration .. v
Certificate of Proofreading .. vi
Ethics Approval ... vii
Table of Contents ... viii
List of Tables ... xii
List of Figures ... xiii
List of Addenda .. xiv
List of Acronyms ... xv

Chapter One Introduction to the cyclical implementation of design-based research for the improvement of teaching-learning in an Industrial Engineering course

1.1 Introduction ... 1
1.2 Review of relevant literature ... 1
1.2.1 Misconceptions in Electronics ... 2
1.2.2 Screencasts .. 2
1.3 Purpose of the research and research questions ... 3
1.4 Research design and methodology .. 3
1.4.1 Research design ... 3
1.5 Preliminary structure and chapter division .. 4

Chapter Two Review of literature relating to the conceptual theoretical framework

2.1 Introduction .. 5
2.2 Conceptual-theoretical framework .. 5
2.2.1 Student .. 6
2.2.2 Technology .. 11
2.2.2.1 Screencasts .. 11
2.2.2.2 Application of screencasts ... 12
2.2.2.3 Advantages of screencasts ... 13
2.2.3 Pedagogy ... 14
2.2.3.1 Pedagogy of Industrial Electronics ... 15
2.2.4 Content ... 16
2.2.4.1 Misconceptions ... 18
2.2.4.2 Misconceptions in Industrial Electronics relating to direct current resistive circuits .. 18
2.3 Coaching and scaffolding ... 21
Chapter Three Planning design-based research design and methodology

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Research design and methodology</td>
<td>27</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Research paradigm</td>
<td>27</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Design-based research</td>
<td>28</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Research functions</td>
<td>31</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Quantitative component</td>
<td>31</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Qualitative component</td>
<td>32</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Research process</td>
<td>33</td>
</tr>
<tr>
<td>3.2.4.1</td>
<td>Iterative procedures</td>
<td>34</td>
</tr>
<tr>
<td>3.2.4.2</td>
<td>Designing of technology</td>
<td>35</td>
</tr>
<tr>
<td>3.2.4.3</td>
<td>Extract original educational knowledge</td>
<td>35</td>
</tr>
<tr>
<td>3.2.4.4</td>
<td>Reliability</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>Population</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Sampling</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>Data collection</td>
<td>38</td>
</tr>
<tr>
<td>3.6</td>
<td>Data analysis</td>
<td>39</td>
</tr>
<tr>
<td>3.7</td>
<td>Ethical clearance</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Chapter summary</td>
<td>40</td>
</tr>
</tbody>
</table>

Chapter Four Analyses and presentation of the integrated data of Phase I design-based research

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Descriptive statistics of biographical information</td>
<td>41</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Age</td>
<td>42</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Gender</td>
<td>42</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Cultural background</td>
<td>42</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Home language</td>
<td>43</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Language of instruction</td>
<td>43</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Province of birth</td>
<td>43</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Residing province</td>
<td>43</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Mining apprenticeship</td>
<td>43</td>
</tr>
<tr>
<td>4.2.9</td>
<td>Level of education</td>
<td>44</td>
</tr>
<tr>
<td>4.2.10</td>
<td>Access to devices</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Identification of misconceptions</td>
<td>44</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Misconception 1: Understanding of concepts</td>
<td>47</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Misconception 2: Understanding short circuit theory</td>
<td>51</td>
</tr>
</tbody>
</table>
Chapter Five
Development, implementation and evaluation of screencasts according to phase 1 design principles for an N2 Industrial Electronics course

5.1 Introduction ...61
5.2 Creating screencasts ...61
5.2.1 Planning ...61
5.2.2 Preparation ...61
5.2.3 Recording ..62
5.2.4 Editing ..62
5.2.5 Distributing ...62
5.3 Implementation of screencasts ...63
5.4 Evaluation of screencasts ...63
5.5 Challenges ...65
5.6 Design principles relating to phases 2 and 3 ...65
5.7 Chapter summary ..66

Chapter Six
Synthesis, conclusion and reflections on the use of design-based research for developing a technology tool for N2 Industrial Electronics

6.1 Introduction ...83
6.2 Summary of chapters relating to the research journey ...83
6.2.1 Chapter One: Introduction to the cyclical implementation of design-based research for the improvement of teaching-learning in an Industrial Engineering course84
6.2.2 Chapter Two: Reviewing of literature relating to the conceptual theoretical framework ...84
6.2.3 Chapter Three: Planning design-based research design and methodology86
6.2.4 Chapter Four: Analyses and presentation of the integrated data of Phase I design-based research ...88
6.2.5 Chapter Five: Development, implementation and evaluation of a screencasts according to phase 1 design principles for an Industrial Electronics N2 course89
6.3 Addressing the research questions relating to this design-based research study89
6.3.1 Research question 1: Determine the nature of misconceptions in the prior knowledge of students registered for Industrial Electronics N2 especially in direct current resistive circuits ..89
6.3.2 Research question 2: Explore students’ perceptions regarding the usefulness of screencasts as cognitive learning tools ...90
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.3</td>
<td>Research question 3: Compile guidelines for screencasts of direct current resistive circuits to enhance students’ conceptual knowledge</td>
<td>90</td>
</tr>
<tr>
<td>6.4</td>
<td>Recommendations relating to design principles</td>
<td>90</td>
</tr>
<tr>
<td>6.5</td>
<td>Future research</td>
<td>91</td>
</tr>
<tr>
<td>6.6</td>
<td>The value of the research</td>
<td>91</td>
</tr>
<tr>
<td>6.7</td>
<td>Limitations of the study</td>
<td>91</td>
</tr>
<tr>
<td>6.8</td>
<td>Reflection on my personal research journey</td>
<td>92</td>
</tr>
</tbody>
</table>
List of Tables

Table 2.1: Advantages of screencasts for students ... 13
Table 2.2: Advantages of screencasts for lecturers .. 13
Table 3.1: Features of design-based research ... 29
Table 3.2 Advantages and disadvantages of multiple-choice questionnaires 32
Table 4.1: Frequencies and percentages of the biographical information (N=81) 42
Table 4.2: Four misconceptions in direct current resistive circuits 45
Table 4.3: Summary of themes and code density of qualitative analysis of interview responses .. 45
Table 4.4: Frequencies and percentages of Understanding Concepts 47
Table 4.5: Cross tabulations between Gender, and Understanding Concepts 48
Table 4.6: Cross tabulations between Culture, and Understanding Concepts 49
Table 4.7: Frequencies and percentages relating to question 28 49
Table 4.8: Frequencies and percentages relating to question 10 ... 52
Table 4.9: Cross tabulations between Gender, and Understanding Short Circuit Theory 52
Table 4.10: Cross tabulations between Culture, and Understanding Short Circuit Theory 53
Table 4.11: Frequencies and percentages relating to question 2 ... 55
Table 4.12: Cross tabulations between Gender, and Battery as Constant Current Source ... 55
Table 4.13: Cross tabulations between Culture, and Battery as Constant Current Source 56
Table 4.14: Frequencies and percentages relating to question 2 ... 56
Table 4.15: Cross tabulations between Gender, and Rule Application 57
Table 4.16: Cross tabulations between Culture, and Rule Application 58
Table 4.17: Frequencies and percentages relating to question 23 59
Table 4.18: Cross tabulations between Gender, and Rule Application 58
Table 5.1: Quantitative questions and data relating to the evaluation questionnaire on screencasts .. 64
List of Figures

Figure 2.1: An adapted conceptual-theoretical framework for implementing technology-enhanced learning ... 6
Figure 2.2: Map of South Africa showing the Northern Cape Province ... 7
Figure 2.3: Percentage distribution of FET Colleges per province ... 8
Figure 2.4: Map of the Northern Cape Province indicating the major towns relating to this study ... 9
Figure 2.5: Percentage distribution of ethnic groups at Kathu Campus 2013 ... 9
Figure 2.6: Percentage distribution of ethnic groups at Kathu Campus trimester 1 2013 ... 10
Figure 2.7: Percentage distribution of ethnic groups at Kathu Campus trimester 2 2013 ... 10
Figure 2.8: Adapted conceptual structure of the electric circuits in a universal approach ... 17
Figure 2.9: Adapted conceptual model of scaffolding ... 23
Figure 2.10: Summary of literature review in terms of misconceptions in direct current resistive circuits ... 26
Figure 3.1: Four paradigms for the analysis of social theory ... 28
Figure 3.2: Adopted version of the four stages of design-based research ... 30
Figure 3.3: Typical cyclical progress of a design-based study ... 31
Figure 3.4: Research design and methodology followed during this study ... 34
Figure 3.5: Adapted seven-step process to become an artisan ... 36
Figure 4.1: Four prominent misconceptions in electric circuits ... 46
Figure 4.2: Question 1 of the DIRECT concept test ... 47
Figure 4.3: Question 28 of the DIRECT concept test ... 48
Figure 4.4: Misconceptions relating to term confusion ... 49
Figure 4.5: Question 10 of the DIRECT concept test ... 51
Figure 4.6: Codes relating to the misconceptions relating to short circuits ... 53
Figure 4.7: Question 2 of the DIRECT concept test ... 55
Figure 4.8: Misconceptions relating to batteries as constant current source ... 56
Figure 4.9: Question 23 of the DIRECT concept test ... 58
Figure 4.10: Misconceptions relating to application of rules ... 59
Figure 5.1: Screen dump of a screencast developed during this study ... 63
List of Addenda

Addendum 3.1: DIRECT concepts test
Addendum 3.2: Interview questions used during phase 1 analysis
Addendum 3.3: Descriptive statistics of biographical information relating to frequencies and percentages
Addendum 3.4: Descriptive statistics of misconceptions relating to frequencies and percentages
Addendum 3.5: Descriptive statistics relating to cross-tabulations with Cramer’s V of biographical information and misconceptions
Addendum 3.6: Integrated Atlas.ti™ dataset comprising coding structure interviews, analysis, and networks
Addendum 3.7: Ethics clearance for executing the study
Addendum 3.8: Permission from Campus Manager of Kathu Campus, NCR FET College
Addendum 3.9: Informed consent from respondents
Addendum 3.10: Turnitin™ report of similarities relating to the use of literature
Addendum 5.1: Example of screencast prepared for N2 Industrial Electronics
Addendum 5.2: Questionnaire to respondents during phase 3 evaluation
Addendum 5.3: Dataset of questionnaire to respondents during phase 3 evaluation

The addenda are available on the DVD at the back of the dissertation.
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBR</td>
<td>Design based research</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DE</td>
<td>Distance education</td>
</tr>
<tr>
<td>DIRECT</td>
<td>Determining and Interpreting Resistive Electric Circuits Concepts Test</td>
</tr>
<tr>
<td>HSRC</td>
<td>Human Sciences Research Council</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>NCRFET College</td>
<td>Northern Cape Rural Further Education and Training College</td>
</tr>
<tr>
<td>N</td>
<td>Nated</td>
</tr>
<tr>
<td>SIP’s</td>
<td>Strategic Infrastructure Projects</td>
</tr>
<tr>
<td>TEL</td>
<td>Technology-enhanced learning</td>
</tr>
<tr>
<td>TTB</td>
<td>Technical Test Battery</td>
</tr>
</tbody>
</table>