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Abstract 

The finite volume method is widely used for the numerical simulation of fluid flow because of its 

rigorous local conservation properties and its compatibility with arbitrary unstructured meshes 

for meshing complex domains. Interpolation plays an integral role in the finite volume method. 

Variables are located at cell centres but are also required at other positions such as cell faces. 

Variable values at these positions must be interpolated from cell values. In this thesis volume 

weighted interpolation is introduced as an alternative method of interpolation for the finite 

volume method. The main advantage of volume weighted interpolation is that variables can be 

interpolated conservatively between overlapping meshes. The accurate evaluation of convective 

fluxes on complex meshes remains a central issue in the finite volume method. While existing 

convection schemes perform well on structured orthogonal meshes, the use of orthogonal 

meshes is limited to simple domains. The application of volume weighted interpolation for 

convection modelling is investigated in this thesis in order to improve solutions on skew and 

non-orthogonal meshes. The method involves the construction of three-point interpolation 

stencils orthogonal to cell faces. A conservative interpolation is performed between the original 

mesh and the orthogonal stencil cells. The stencil is then used for the interpolation of face 

values of variables. Test cases are presented to test the interpolation stencil by using high- 

resolution convection schemes. Promising results are obtained with the stencil on unstructured 

meshes. Volume weighted interpolation also finds application as a pre- and post-processing tool 

for the finite volume method. Examples are presented to demonstrate how volume fraction fields 

can be initialised for two-phase flow simulations. Volume weighted interpolation can be used as 

a post-processing tool to map results from one mesh onto another as well as to calculate mass 

flows through surfaces. The applications described and examples presented in this thesis 

establish the potential of volume weighted interpolation as a valuable tool for the finite volume 

method. 



Uittreksel 

Die eindige volume metode word algemeen gebruik vir die simulasie van vloei. Die rede 

hiewoor is dat die metode konserwatief op selvlak is en saam met komplekse roosters gebruik 

kan word. lnterpolasie vewul 'n integrale rol in die eindige volume metode. Veranderlikes word 

gestoor en opgelos by die middelpunte van selle, maar ook benodig by ander posisies soos 

byvoorbeeld gesigsmiddelpunte van selle. Hierdie waardes word vanaf die beskikbare 

selwaardes verkry deur middel van interpolasie. In hierdie proefskrif word volume geweegde 

interpolasie as 'n altematiewe vorm van interpolasie vir die eindige volume metode bekend 

gestel. Een van die belangnkste voordele van volume geweegde interpolasie is dat 

veranderlikes konserwatief tussen oowleulende roosters geynterpoleer kan word. Die akkurate 

berekening van konvektiewe vloede oor selgesigte vorm 'n belangrike aspek van die eindige 

volume metode. Konveksie skemas wat goed werk op ortogonale roosters kan nie sonder 

probleme op komplekse roosters toegepas word nie. Die gebruik van volume geweegde 

interpolasie om oplossings op komplekse roosters te verbeter word in hierdie proefskrif 

ondersoek. Die metode behels die konstruksie van ortogonale roosters op selgesigte. Die 

waardes van die rooster selle word deur middel van 'n konserwatiewe interpolasie vanaf die 

basis rooster bereken. Gesigwaardes word vanaf die ortogonale rooster sel waardes bereken. 

Toetsgevalle waar die volume geweegde interpolasie tegniek saam met hoe resolusie 

konveksie skemas gebruik word, toon dat die tegniek effektief gebruik kan word om oplossings 

op komplekse roosters te verbeter. Volume geweegde interpolasie kan ook tydens voor en 

naverwerking gebruik word. Voorbeelde word gegee van hoe die tegniek gebruik kan word om 

aanvangswaardes vir twee-fase vloei simulasies te bereken. Tydens naverwerking kan volume 

geweegde interpolasie effektief gebruik word om veranderlikes na ander roosters te interpoleer 

asook om die massavloed deur 0ppe~k3ktes te bereken. Die verskillende toepassings en 

toetsgevalle wat in die proefskrif bespreek word vestig die metode van volume geweegde 

interpolasie as 'n belangrike gereedskapstuk vir die eindige volume metode. 
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7.  Introduction 
"To look is one thing. To see what you look at is another. To understand what you see is 

another. To learn from what you understand is something else. 

But to act on what you learn is all that really matters. " 

1. 7 Background 
The motion of fluids plays an integral role in the world we l~ve in, from the thundering oceans to 

the air we breathe, it controls, conveys and powers. Computational fluid dynamics (CFD) is a 

computational technology that is used to predict fluid flow, heat transfer and related phenomena 

through computer simulation. Computational fluid dynamics is based on the solution of the 

equations for mass, momentum and energy conservation by means of numerical solution 

methods. These conservation or transport equations are mathematical models describing the 

physics of fluid dynamics, in the form of coupled and oflen non-linear partial differential 

equations, (Bird eta/., 2002). 

The finite element (Reddy, 1993), finite difference (Anderson, 1995) and finite volume methods 

(Versteeg and Malalasekera, 1995) are examples of numerical methods used in simulations. 

The finite volume method (FVM) is well established and widely used for fluid flow simulations 

with many commercial CFD codes based on this methodology, for example Star-CD'. CFX and 

Fluent? The finite volume method is used extensively for simulation purposes because of its 

inherent suitability to model fluid flow in that it uses a control volume methodology that is locally 

conservative. The finite volume method therefore ensures conservation of mass, momentum 

and energy on a control volume basis, thereby automatically ensuring conservation for the 

whole domain. 

When solving a problem using the finite volume method, the geometry of interest is divided into 

a finite number of non-overlapping and contiguous control volumes or cells. The transport 

equations are integrated over each control volume by approximating the variation of flow 

properties between cell centres with piecewise profiles which are constructed to support 

physical transport mechanisms for example convection and diffusion (Ubbink, 1997). The 



construction of these piecewise profiles is based on interpolation and forms a critical part of the 

overall modelling process. By applying the piecewise profiles to the integrated transport 

equations, an algebraic equation is obtained for each cell, expressing the value of the 

dependent variable at the centre of the cell. (,, , in terms of the neighbouring cells as well as any 

source terms that are applicable for that cell. Eq. (1.1) is the general form of the discretised 

transport equation for a dependent variable( . 

In Eq. (1.1), ( is the dependent variable that is solved during the simulation, a the coefficient of 

4 and S, the source term. The subscript P denotes the central cell and nb the neighbour 

cells, together forming a computational molecule around the central cell P . 

The discretised conservation equation for each cell in the mesh is assembled together to form a 

system of linear equations which can be solved with a direct or iterative matrix solver. The result 

is a field of numerical values for the dependent variable at discrete locations across the domain, 

namely the centres of each control volume. As a result of the non-linear and coupled nature of 

the equations, it is often necessary to update the coefficient matrix and source terms with the 

latest available information and iterate the solution until convergence is reached. 

Figure 1.1 shows a control volume with a fixed position in the three-dimensional Cartesian 

coordinate system. Fluid flows through the control surface around the control volume as 

indicated by the streamlines crossing it. The conservation equation for a general flow quantity 

inside such a control volume is described in words as 

Rate of change Convection out of 

inside CV ) +[ CV across CS 

where CV and CS represent the control volume and control surface respectively. The first 

term on the left hand side of Eq. (1.2) is the rate of change term of the flow quantity inside the 

control volume, also known as the transient term. For transient simulations any imbalance in the 

remaining terms will result in an increase or a decrease of the flow quantity inside the control 

volume. The second and third terms in Eq. (1.2) are the convection and diffusion terms, which 

represent the net efflux across the control surface. Convective and diffusive fluxes are 

calculated across the control surface of each control volume. Sources are represented by the 

term on the right hand side of Eq.(1.2). Source terms account for the creation or destruction of 

the conserved flow quantity inside the control volume. 



The value of a flowquantity for a control volume can only change if it is fluxed into or out of the

control volume or if it is created or destroyed by sources or sinks. Eq. (1.2) establishes a

balance between fluxes entering or leaving the control volume across the control surface and

sources inside the control volume. The cell average value of a dependent variable is stored

centrally for each cell in the finite volume method.

Streamline

Control surface

Control volume

Figure 1.1: Arbitrary control volume

The earliest finite volume CFD codes were based on structured orthogonal meshes (Caretto et

al., 1972), (Patankar and Spalding, 1972).While these meshes are simple to construct and cells

are referenced using straight forward indices, the application of orthogonal meshes are limited

to simple geometries, limiting their usefulness. This shortcoming of the structured orthogonal

mesh was addressed by extending the finite volume method for the inclusion of non-orthogonal

structured meshes, (Peric, 1985). Modelling flows on non-orthogonal meshes increases the

complexity of the various discretised conservation equations, however this development

contributed to the usefulness of finite volume based CFD codes since the flow through complex

geometries could now be solved, (Coelho and Peraira, 1993), (Choi et al., 1993).

The next major milestone in the development of the finite volume method was the development

of solution algorithms for arbitrary unstructured meshes Peric (1985). This allows the creation of

meshes with arbitrary cell location and topology, providing the necessary flexibility to create the

complex meshes required for most problems of engineering interest. For this reason algorithms

based on arbitrary unstructured meshes became the method of choice for commercial CFD

codes. Algorithms based on arbitrary unstructured meshes, uses lists to establish the

connectivity between cells instead of the simple index systems used in codes for structured
meshes.

3
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Face addressing, is a programming methodology which is well suited for the implementation of

the finite volume method on arbitrary unstructured meshes, (Ferziger and Peric, 1999). Face

addressing considers the face between two cells as the primary mesh element. Fluxes are

calculated across faces by expressing the face values of variables in the discretised transport

equations in terms of the values of the variables at the centres of the cells bracketing the faces.

By applying this methodology meshes can be constructed from arbitrary polyhedral cells as

shown in Figure 1.2, where the control surface of a cell consists of a closed surface of faces,

(Chow et al., 1996). Polyhedral meshing for the finite volume method forms part of the latest

advancements in commercial CFD codes (Peric, 2002).

Figure 1.2: Polyhedral control volume

This thesis is based on the very general framework of the finite volume method where face

addressing is used in conjunction with arbitrary unstructured meshes. While providing the

flexibility to mesh complex domains, this approach does have its drawbacks as it allows the

creation of meshes with poor characteristics. Some examples are non-orthogonal and skew

meshes as well as warped control volume faces, which affects the accuracy and stability of the
solution.

With face addressing, very limited information is available for each face where gradients and

face values are required to model diffusion and convection respectively. Apart from geometrical

information such as face area vectors, face node coordinates, etc. a face only has access to the

values of the dependent variables at the centres of the cells bracketing that face. These values

are required for interpolation purposes, i.e. for constructing the piecewise profiles required

during discretisation to approximate the variation of variables between cell centres. Since

interpolation plays a significant role in the finite volume method, the limited information available

at cell faces remains a problem that needs to be addressed. Higher-order face value
4
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interpolation for example, becomes a major issue when using face addressing algorithms on

arbitrary unstructured meshes.

The general rule for mesh generation is to construct meshes that are as close to orthogonal as

possible while keeping the skewness (conjunctional) error as small as possible, (Croft, 1998).

When the line connecting the centres of two cells is parallel to the face area vector of the face

located between the cells, the mesh is orthogonal. When this line lies at an angle in relation to

the face area vector, the mesh is non-orthogonal. Figure 1.3 shows an example of an

orthogonal and non-orthogonal mesh.

Figure 1.3: Orthogonal and non-orthogonal mesh

Additional terms are introduced into the discretised equations when using non-orthogonal

meshes. The extra terms originate from the calculation of the gradient of a dependent variable

across a control volume face, which is used in the discretised diffusion term modelled by means

of Fick's law of diffusion (Bird et al., 2002).The gradient cannot be calculated only in terms of

the variable values at the cell centres of cells P and N, and requires the values of the

neighbour cells of P and N to be taken into consideration as well. The contributions of these

skew neighbour cells to the gradient are usually treated in an explicit manner while the

contributions of cells P and N are treated implicitly (Jasak, 1996). This concept of utilising the

information from additional cells in the calculation of face fluxes is important for the present work

where the idea is extended to the modelling of convective transport.

P f AI N
o 0 . 0

Conjunctional Non-conjunctional

Figure 1.4: Conjunctional and non-conjunctional mesh
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When the line connecting the centres of two cells passes through the centre of the face located

between the cells, the mesh is conjunctional with a zero skewness error (Croft, 1998). When

this line does not pass through the centre of the face located between the cells, the mesh is

non-conjunctional. Figure 1.4 shows an example of a conjunctional mesh with zero skewness

error and a non-conjunctional mesh.

Meshes that are both non-orthogonal and non-conjunctional are commonly found where

complex domains are meshed. Figure 1.5 shows an example of a mesh that is both non-

orthogonal and non-conjunctional. The degree of orthogonality, as well as the degree of

skewness, can be used to gauge the general quality of a mesh. A mesh may have orthogonal

and conjunctional regions as well as regions consisting of highly deformed cells.

Figure 1.5: Non-orthogonal and non-conjunctional mesh

The choice of interpolation method plays an important role within the finite volume method and

influences the outcome of simulations. Linear interpolation seems like a logical choice but

cannot be used indiscriminately, (Versteeg and Malalasekera, 1995). Higher-order interpolation

schemes are required for accurate solutions in many applications, for example when modelling

segregated multiphase flows, (Ubbink, 1997).Volume weighted interpolation (VWI) is introduced

in this thesis as an alternative interpolation methodology for the finite volume method. Its

implementation is described and its uses investigated.

The most important advantage of volume weighted interpolation is that the interpolation of

variables between overlapping meshes is conservative. Volume weighted interpolation is based

on the concept that the value of a cell overlapping other cells in a mesh can be expressed in

terms of the values associated with the cells that are overlapped, based on the volume fractions

of the overlaps between the different cells. Figure 1.6 shows a cell overlapping cells in a mesh.

The volume weighted cell value is calculated from the values of the base cells overlapped by

the cell as well as the volume fractions of the overlaps between the cells. To perform volume
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weighted interpolation the common volume between overlapping cells is required. An algorithm

to perform these volume overlapping calculations is presented in this thesis.

Figure 1.6: Volume weighted interpolation

Base mesh cells

Overlapping cell

Values
contributing to
volume weighted
value of the
overlapping cell

The accurate evaluation of convective fluxes on complex meshes remains a challenge for CFD

in general and the finite volume method in particular. Many different interpolation schemes or

differencing schemes have been developed for the purpose of modelling convective transport

with the finite volume method, yet the modelling of convective transport has been termed

"embarrassingly difficult", "... computational dynamics' ultimate embarrassment..." (Leonard,

1991). The intricacies of convection modelling are often overlooked in favour of the use of

differencing schemes that are stable but diffusive and which at least guarantees a solution,

regardless of its accuracy. Accuracy, stability and boundedness of numerical simulations are

essential and these characteristics are largely determined by the choice of convection

differencing scheme. While an improvement in mesh quality will always improve the results of a

simulation, mesh improvements are not always practical or possible. Volume weighted

interpolation makes it possible to apply high-resolution differencing schemes, that perform very

well on structured orthogonal meshes, to arbitrary unstructured meshes, thereby retaining the

advantages of these schemes on complex meshes.

Additional applications of volume weighted interpolation within the finite volume method are also

described in this thesis. One such application area is post-processing results from a simulation.

Volume weighted interpolation can be utilised effectively in this area to analyse the results from

7
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simulations and to calculate mass flows across arbitrary surfaces. During preprocessing, 

volume weighted interpolation is a useful tool for initialising complex fields of variables on 

structured or unstructured meshes. 

1.2 Present contribution 
There is a need for an improved face value interpolation method for arbitrary unstructured 

meshes in the finite volume method. The prediction of face values for convective transport has 

long been a contentious issue in the simulation of fluid flow. Interpolation stencils that work 

extremely well on orthogonal meshes are not available for arbitrary unstructured meshes. The 

need for more accurate face value interpolation methods for non-orthogonal and skew meshes 

is described in this thesis. 

A novel convective flux calculation stencil, OPlS (Orthogonal Projection Interpolation Stencil), 

based on volume weighted interpolation, is presented for the finite volume method. OPlS 

involves the construction of meshes orthogonal to cell faces where an interpolated value is 

required. Volume weighted interpolation is used to interpolate variables conservatively from the 

base mesh to the constructed cells of the stencil. The constructed orthogonal meshes provide 

the required three-point stencils for higher-order flux calculations on arbitrary unstructured 

meshes. Results of scalar convection problems using high-resolution schemes are presented to 

demonstrate the capabilities of OPlS for simulations of convective transport. OPlS provides a 

natural extension of the finite volume method for the calculation of upwind cell values for three- 

point stencils that is required for higher-order interpolation of face values. The benefits derived 

from using stencils based on volume weighted interpolation for arbitrary unstructured meshes, is 

investigated and evaluated in this thesis. Interpolated face values are used in the evaluation of 

surface integrals while cell values are used in the evaluation of volume integrals. In an effort to 

integrate the transport equations as accurately as possible using numerical integration, the 

evaluation of volume and surface integrals should be as accurate as possible. 

An additional benefit of volume weighted interpolation is that the techniques developed in this 

thesis can be used for both pre- and post-processing tasks. Performing post-processing tasks 

on unstructured meshes is complicated by the data structures used as well as the location of 

cell values in arbitrary locations. It is therefore cumbersome to create graphs of results along 

straight lines or curves across a mesh. Volume weighted interpolation provides a solution for 

these problems through the conservative mapping of results to meshes that are more suitable 

for the creation of graphs during post-processing. It is often required to calculate the mass flux 

across surfaces during post-processing. Volume weighted interpolation can be used effectively 

for this task by creating surface meshes that overlaps the computational mesh in the areas 

where mass flow results are sought. Momentum is interpolated conservatively from the original 
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mesh to the surface mesh. The velocities for the surface cells are calculated from the 

interpolated momentum values. Mass flows through the surfaces are then calculated from the 

interpolated velocities of the surface cells. Volume weighted interpolation can also be used to 

map initial variable distributions onto structured or unstructured meshes. These applications of 

volume weighted interpolation for pre- and post-processing are explained and demonstrated in 

detail in this thesis. Volume weighted interpolation is established in this thesis as a valuable tool 

for the finite volume method. 

1.3 Outline of thesis 
Chapter two presents the basis for volume weighted interpolation. This includes a description of 

the algorithm used to calculate the overlapping volume between cells and the data structures 

used to store all the relevant information required to perform volume weighted interpolation. 

Examples are presented to show how variables are interpolated conservatively between 

overlapping meshes. Chapter three describes the application of volume weighted interpolation 

to model convective transport and demonstrates the capabilities of the Orthogonal Projection 

Interpolation Stencil, by applying the stencil in scalar convection simulations on arbitrary 

unstructured meshes. The pre- and post-processing capabilities of volume weighted 

interpolation with examples to demonstrate its uses are presented in Chapter four. Chapter five 

summarises the research with conclusions as well as suggestions for future research 

opportunities in this field. 



2. Volume weighted interpolation 
2.1 Introduction 
The concept of volume weighted interpolation (VWI) is introduced in this chapter. Examples are 

presented to illustrate how volume weighted interpolation works. A very important requirement 

for the application of volume weighted interpolation to any problem is the ability to calculate the 

common volume of two overlapping cells. The algorithm that is used for volume overlapping 

calculations is presented in this chapter. Furthermore, to apply volume weighted interpolation it 

is necessary to store the relevant volume overlapping information in appropriate data structures 

for easy access by the solver. These data structures are briefly described in this chapter. Also 

included in this chapter is a section on FTK (Finite volume toolkit), the object oriented research 

code that was used for all the simulation work in this thesis. 

2.2 Volume Weighted Interpolation 
2.2.1 Background and terminology 
The terminology relating to volume weighted interpolation is explained by means of the following 

definitions: 

Base cell A base cell is a cell with a known value that is used to interpolate the 

value of a mapped cell overlapping the base cell. 

Base mesh 

Mapped cell 

A base mesh is a mesh with known cell values. Base mesh values are 

used for the interpolation of mapped cell values. 

A mapped cell overlaps one or more base cells in a base mesh. The 

mapped cell value is interpolated from the base cell values through 

volume weighted interpolation. 

Mapped mesh A mapped mesh consists of a number of mapped cells. The values of all 

the mapped cells in the mapped mesh are computed through volume 

weighted interpolation. 

Common volume When two cells overlap in three-dimensional space, the volume shared by 

both cells is referred to as the common volume of the two cells. 

Volume ovedap When a mapped cell and a base cell overlaps, the volume overlap equals 

the common volume shared by the cells. 
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Volume fraction Volume fraction equals the volume overlap of a mapped cell and a base 

cell, divided by the total volume of the mapped cell. When a mapped cell 

is completely overlapped by base cells, the sum of the volume fractions of 

the mapped cell must be equal to one in order to satisfy volume 

conservation requirements. 

Volume weighted interpolation is based on the principle that the volume fractions between 

overlapping cells can be used to interpolate or map variables conservatively between 

overlapping meshes. The volume overlap between cells is used to determine the contribution of 

a base cell to the mapped cell that is overlapping the base mesh. The interpolated value for the 

mapped cell is calculated by means of Eq. (2.1). 

In Eq.(2.1) # is the conserved quantity to be interpolated, for example mass or momentum, a 

the volume fraction for base cell n and N the total number of base cells overlapping the 

mapped cell. When this calculation is repeated for every cell in a mapped mesh, the 

interpolated cell values of the mapped mesh is obtained. 

The following three examples demonstrate the conservative interpolation of variables between 

overlapping meshes using volume weighted interpolation. 

2.2.2 Volume weighted interpolation: Example 1 
Figure 2.1 shows a mesh consisting of two similar base cells. Five cases are shown, each with 

a shaded region representing a mapped cell which overlaps the base mesh. The volume 

fractions with which the base cells overlap the mapped cell are also indicated in each case. The 

sum of the volume fractions equals one in all five cases. This is required when the mapped cell 

is located inside the bounding surface of the base mesh, therefore no boundary overlapping 

o m r s .  

In this example, base cell values of 50 and 100 were selected for cell one and two respectively. 

The calculated value for the mapped cell is a function of the volume overlapped by each base 

cell and the base cell values. The greater the volume of a mapped cell overlapped by a base 

cell, the greater the contribution of that base cell will be to the value of the mapped cell and vice 

versa. The mapped cell value is therefore a weighting between base cell values. 



Figure 2.1: VWI example 1

The interpolated value of the mapped cell is calculated from the base cell values and volume

fractions using Eq. (2.1):

tPmappedcell = aliA + a2tP2

Case 1: = 1.0(50)+0.0(100)
=50.0

tPmappedcell = aliA + a2tP2

Case 2: =0.75(50)+0.25(100)
=62.5

tPmappedcell = aliA + a2tP2

Case 3: = 0.5(50)+0.5(100)
=75.0

tPmappedcell = aliA +a2tP2

Case 4: = 0.25(50)+0.75(100)
=87.5

Case 5:
tPmapped cell =aliA + a2tP2

= 0.0(50)+ 1.0(100)
=100.0
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2.2.3 Volume weighted interpolation:Example 2
Figure 2.2 shows four base cells and a mapped cell overlapping the base cells. The volume

fractions of the four base cells are also indicated, adding to one as required for volume

conservation.

at =0.26 a2 =0.25

a4 =0.27 a3 =0.22

Figure2.2: VWIexample 2

When the base cell values are all equal, the interpolated mapped cell value should be equal to

the base cell values. This is demonstrated by the followingexample.

~~~~=~~+~~+~~+~~

=0.26( ~basecell )+ 0.25( ~basecell)+ 0.22(~basecell) +0.27(~basecell)

= (0.26 + 0.25 + 0.22 + 0.27)(~basecell)

The interpolated value for the mapped cell equals the values of the base cells as required. In

the followingexample differentvalues are used for each of the four base cells.

~~d~=~~+~~+~~+~~

= 0.26(50)+0.25(70)+0.22(90)+0.27(60)
=66.5
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The value of 66.5 is therefore the volume weighted value of the mapped cell for the given

volume fractions and base cell values. The interpolated value is bounded between the base cell

values as required.

2.2.4 Volume weighted interpolation:Example 3
Two meshes with common boundaries and different cells are shown in Figure 2.3. For the

purpose of this example the volume of each of the four orthogonal base cells is 0.2. The v.alues

of the base cells were assigned as follows:

The base cells do not have to be orthogonal and may be of any shape and orientation as long

as the two meshes share the same boundaries.

01 02 \

03 04 .d

.c

Basemesh

Overlapping meshes

0.8144

b
~-4 =0.200 Va = 0.1670

~ =0.1595
~ =0.2120

Vd =0.1130

r: = 0.1485

0.4493 0.6053 Cell volumes

.c

0.1856 10.066510.083 0.3947

.e
0.30571 0.6943

1.00
.d

Figure 2.3: VWI example 3

The figure also shows the volume fractions for the base cells overlapping the cells of the

mapped mesh. The sum of the volume fractions of each mapped cell equals one as required for

volume conservation. The total quantity of the base mesh equals the sum of the base cell
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values multiplied by the cell volume of each base cell. Given that the volume of each base cell 

equals 0.2, the total value for the mesh is calculated as: 

The total quantity of (u contained in the base mesh where 4 is expressed as the base cell 

value per unit volume and yl = (V . is therefore 34. In this example where the boundaries of the 

two meshes coincides, the value of (u may not change as a result of the interpolation. Any 

change in the value of (u will indicate that the interpolation was not performed conservatively 

and that there was an increase or decrease in the conserved quantity after the interpolation was 

performed. This example is therefore a useful and reliable test for conservative interpolation 

between overlapping meshes. 

The values of the mapped cells a to e are calculated by means of Eq. (2.1) using the volume 

fractions indicated in Figure 2.3. 

The volume of mapped cell d falls within the volume of base cell three. The volume fraction is 

therefore exactly one and the interpolated value of cell d equal to the value of base cell three. 

To determine if the interpolation was conservative, the total value for the mapped mesh is 

calculated by adding together the interpolated mapped cell values multiplied to the mapped cell 

volumes. 



The total mapped mesh value is 34, equal to the total base mesh value; therefore a 

conservative mapping between the two meshes was performed. The same results will be 

obtained by mapping from the non-orthogonal mesh to the orthogonal mesh. With volume 

weighted interpolation a conservative mapping can be performed between any two meshes 

regardless of whether the meshes are orthogonal or non-orthogonal. The following section 

describes the algorithm that is used to calculate the volume fractions required for volume 

weighted interpolation. 

2.3 Volume overlapping calculation 
This section describes an algorithm for volume overlapping calculations between different cells. 

The algorithm follows a systematic approach to volume overlapping calculation which is 

accurate and can readily be implemented as a subroutine (du Toit, 2005). The algorithm is 

based on the notion that any polyhedral cell can be divided into a number of non-overlapping 

tetrahedrons. The tetahedron forms the basic element for volume calculations. 

The volume of a tetrahedron equals the surface area of a face multiplied by a third of the 

distance to the node opposite the face as shown in Figure 2.4. To facilitate volume calculation 

for tetrahedrons in the Carlesian coordinate system, the volume is expressed in vector notation. 

The surface area of the face, A ,  is obtained by calculating the vector cross product of the two 



vectors forming the edges of the triangular surface. The absolute value of this cross product is 

divided by two to obtain the surface area, Eq. (2.2). 
- A = + ~ ; ~ ~ B I  (2.2) 

The cross product produces a vector normal to the surface and oriented in a direction which 

satisfies the right hand rule. The height, h ,  perpendicular to the surface A is obtained by 

calculating the scalar product between this vector and the vector C shown in Figure 2.4. 

Since a third of the height h multiplied by the surface area A equals the volume of the 

tetrahedron, the volume equals a sixth of the scalar triple product, Eq.(2.4). 

v = ~ ( ~ X B ) . C  6 (2.4) 

vectors2 . B and in Figure 2.4 are written in terms of the node coordinates as: 

The volume of the tetrahedron is therefore written in coordinate form as: 

The cross product is written as: 

Wah the volume calculation of a single tetrahedron available, the volume overlap between any 

two tetrahedrons can be calculated using a systematic calculation procedure. An example of 

two overlapping tetrahedrons is shown in Figure 2.5. The figure also shows the common volume 

shared by the tetrahedrons. It is this common volume that must be calculated in order to 

perform volume weighted interpolation. 

A X E =  
I I 

A, A~ 

4 Bv B 

(Y,  - Y ~ ) ( z ,  - z 3 ) - ( z l  - ~ 3 ) ( ~ 2  - Y , )  

= ( Z ~ - Z ~ ) ( X ~ - X , ) - ( X ~ - X ~ ) ( Z ~ - Z ~ )  r ( x ,  - x ~ ) ( Y ,  - Y , ) - ( Y ,  - Y , ) ( x ~ - x ~ )  



Overlapped volume

Figure 2.5: Volume overlap between tetrahedrons

The algorithm is based on a clipping principle starting off with two tetrahedrons A and B. The

nodes of the tetrahedrons are numbered in such a way that when looking from node four

towards the plane containing nodes one to three, the nodes are numbered in an anticlockwise

direction.

4 Tetrahedron A

Face 1: Node 1-2-4

Face 2: Node 2 - 3 - 4

Face3: Node3 -1 -4

Face 4: Node 1 - 3 - 2

Figure 2.6: Face definition of tetrahedron

Tetrahedron A is considered fixed while tetrahedron B can be subdivided into new tetrahedrons

in accordance with the requirements of the algorithm. The algorithm loops once through each of

the four faces of tetrahedron A. The face numbers are defined in terms of node numbers as

shown in Figure 2.6 and are numbered anticlockwise when viewing the face from outside the
tetrahedron.
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For each face of tetrahedron A the volume formed by the three nodes defining the face and the

four nodes of tetrahedron B or a sub tetrahedron of tetrahedron B is calculated. The volumes

are calculated by using the method described above, but by defining the two vectors describing

the face in such a way that A x B points outwards in relation to tetrahedron A. An example is

shown in Figure 2.7 for face number one of tetrahedron A. There are three possibilities for the

location of each of the nodes of tetrahedron B in relation to the face of tetrahedron A, namely:

1. The node is located on the surface formed by the face, but not necessarily inside the

perimeter formed by the face edges. In this case the calculated volume will be zero.

2. The node is located in front of the plane that is formed by the face of tetrahedron A. In

front implies that the node is positioned on the side of the plane formed by the face in

the direction in which the vector A x B points, Figure 2.7. In this case the calculated

volume will be positive.

3. The node is located behind the plane described in 2, Figure 2.7. In this case the

calculated volume will be negative.

4 In front of face 1
Behind face 1

2 Face 1: Node 1 - 2 - 4

. Node of tetrahedron B
or sub tetrahedron of B

1

Figure 2.7: Volume calculation

For face one of tetrahedron A, the algorithm calculates the volume formed by the three nodes of

the face and each of the four nodes of tetrahedron B, given that tetrahedron B is the only

tetrahedron in the queue for processing at this point. A total of four volumes are calculated. The

following five possibilities are based on the four calculated volumes:

Case 1: Number of positive and zero volumes equals four

This result indicates that tetrahedron B lies completely on the outside of tetrahedron A with zero

overlapping. Some nodes of tetrahedron B may be located on the plane that is formed by the
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face of tetrahedron A but this does not contribute to the overlapped volume. In this case the

tetrahedron is deactivated and willnot be processed further.

Case 2: Number of negative and zero volumes equals four

This result indicates that tetrahedron B lies completely behind the plane that is formed by the

face. In this case tetrahedron B remains in queue for processing with the remaining faces of

tetrahedron A and therefore remains active.

4 In front offace 1

Behind face 1

Intersection of edge
and surface: (x Y Z, ,

voI1-2-4-b (positive)
voI1-2-4-a (negative)

1

ratio= (voI1-2-4-b) I «voI1-2-4-b) - (voI1-2-4-a»

x =xa x ratio+xb x (I-ratio)

Coordinates of intersection: y = YaX ratio + Ybx (I- ratio)

Z = zax ratio + Zbx (I-ratio)

Figure 2.8: Intersection of line and surface

Case 3: Number of negative volumes equals one

This result indicates that one node of tetrahedron B lies behind the face. A new tetrahedron is

formed by the face of tetrahedron A dividing tetrahedron B into two sections. The node

coordinates of this new tetrahedron are computed and stored as a modification of the original

tetrahedron B. Tetrahedron B is therefore clipped by the face, removing the section that falls in

front of the face. The newly formed sub tetrahedron remains active and in queue for further

processing. Figure 2.10 shows an example of the new tetrahedron that is formed by the clipping

process. The intersection of the edge and surface is calculated using the ratios of the volumes

that were already calculated. This procedure is illustrated in Figure 2.8. The volumes can be

used to determine ratios since V = t hA applies and the area is shared by both tetrahedrons.

Even when the line connecting nodes a and b is not normal to the surface the normal
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component given by the height h is directly related to the length of the line segment through a

trigonometric relationship and therefore still applicable.

Case 4: Number of negative volumes equals two

This result indicates that two nodes of tetrahedron B are located behind the face. In this case

the tetrahedron is deactivated and clipped by the face, while the remaining section behind the

face is divided into three new tetrahedrons. The new tetrahedrons are activated and queued for

further processing. Figure 2.9 shows how the clipped polyhedron is divided into three new

tetrahedrons. In this example the section to the right of the plane is divided into three new

tetrahedrons.

Figure 2.9: Splitting a tetrahedron into sub tetrahedrons - 2 points

Case 5: Number of negative volumes equals three

This result indicates that three nodes of tetrahedron B are located behind the face. In this case

the tetrahedron is deactivated and clipped by the face, while the remaining section behind the

face is divided into three new tetrahedrons. The new tetrahedrons are activated and queued for

further processing. Figure 2.10 shows an example of how the remaining part is divided into

three tetrahedrons which together, occupies the same space as the truncated tetrahedron.

This process is repeated for the remaining faces of tetrahedron A with the sub tetrahedrons of

tetrahedron B being processed and in turn being subdivided into smaller tetrahedrons. When
21
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the process is completed an array of sub tetrahedrons of tetrahedron B remains which are all

located within the geometrical space of tetrahedron A. The volumes of these active sub

tetrahedrons are calculated using Eq. (2.4) and added together to provide the overall volume

overlapped between tetrahedron A and B. The function tetmap (du Toit, 2005) accepts the node

coordinates of tetrahedron A and B (in the correct order according to the numbering convention)

and returns the common volume between the tetrahedrons.

Cutting plane

Figure 2. 10: Splitting a tetrahedron into sub tetrahedrons - 3 points

Any polyhedral cell can be divided into a set of non-overlapping tetrahedrons so that the

tetrahedrons occupy the same space as the polyhedral cell. Since meshes consisting of

hexahedral cells are used in this study, the routine hexmap (du Toit, 2005) is used to compute

the common volume between any two hexahedral cells A and B. This routine uses tetmap to

compute the overlapped volume between tetrahedrons.

Each hexahedral cell is divided into six non-overlapping tetrahedral cells. The overlapped

volume of each tetrahedron in hexahedron A is calculated with each tetrahedron in hexahedron

B and added together to obtain the total overlapped volume between the two hexahedral cells.

An example of two overlapping hexahedrons is shown in Figure 2.11. To ensure that the

overlapping volume is calculated correctly, it is essential that the hexahedron is surrounded by

planar faces, Le. the four nodes defining a face must lie on the same plane. Warped faces will

result in inaccurate volume calculations.
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The procedure described in this section can be extended to calculate the common volume

between any two multi-faced polyhedral cells. The only modification required is to divide the

polyhedral cell into tetrahedrons, a process that can readily be automated. There are three

possibilities for volume overlapping of any two cells located in three-dimensional space.

Zero overlapping

Zero overlapping simply implies that the two cells are far enough apart so that there is no

overlapping between them, in other words, there is no common volume.

Partial overlapping

Partial overlapping occurs when the cells are in close proximity to one another so that a

common volume is shared by both the cells. The overlapping algorithm described in this section

is used to calculate the common volume.

Complete overlapping

Complete overlapping can imply one of two possible conditions. Firstly, it can imply that the two

cells have exactly the same geometry and orientation so that the overlapping volume equals the

volumes of each of the two cells. Secondly, it can imply that one of the cells is completely

enclosed within the volume of the larger cell with no vertices or edges protruding the surface of

the larger cell. In this case the overlapping volume equals the volume of the smaller cell.

Overlapped volume

Figure 2.11: Hexahedron overlapping
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2.4 Data structures
To perform volume weighted interpolation in a finite volume CFD code, the volume overlapping

data must be easily accessible to the internal data structures of the code. In this work the route

of object-oriented programming (OOP) and dynamic memory allocation using the programming

language C++ was followed to achieve effective data storage and access (Stroustrup, 1997).

1. Construct mapped cell
Node numbers and node coordinates

stored in user defined array object.

2. Dynamic memory allocation
Define container object to store

overlapping data for mapped cell. The
object stores the number of the base cell
overlapping the mapped cell as well as

the volume overlapped using a pair
object. The container is automatically

resized as required.

3. Base mesh

The base mesh is divided automatically
into buckets based on the base cell sizes

and the base mesh extremes. The
buckets form a regular structured mesh

completely covering the base mesh.
Base cells are subsequently sorted into

the buckets based on the base cell node
coordinates.

4. Bucket ranges
Based on the mapped cell node

coordinates the algorithm establishes
bucket ranges. Base cells contained in
the buckets in these bucket ranges will

be used to check for possible
overlapping with the mapped cell.

5. Volumeoverlapping calculation
The hexmap subroutine is used to

calculate the overlap for each base cell
in the bucket range with the mapped cell.

If a base cell overlaps the mapped cell
the number and volume overlap is stored

in the container class.

6. Access and storage
The contents of the container can be

accessed by the solver as required to
calculate the volume weighted value of
the mapped cell. Volume overlapping

data is also written to file for later access.

Figure 2. 12: Calculating volume overlapping data for VWI

Classes were created for user defined types to facilitate the storage of all the required

information in dynamic memory structures. The volume overlapping data is calculated before

the start of the simulation and stored for access by the solver when required. The data can also

be written to file for later access to prevent re-calculation when a simulation is restarted. The

use of dynamic memory is an absolute requirement in this work as it is not known before a

simulation how many base cells will be overlapped by a mapped cell. The specific data

structures used for volume weighted interpolation applied to convective transport is described in

more detail in Chapter 3.
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A bucket search algorithm is used to improve the efficiency of volume overlapping calculations.

The base mesh is automatically divided into a number of buckets containing base cells. For any

mapped cell, the buckets that should be searched for overlapping cells, is identified by the

algorithm and only the cells within those buckets are processed. This prevents the algorithm

from using all the cells in the base mesh in order to calculate the overlapped volume for a single

mapped cell. Figure 2.12 summarizes the process followed to calculate the volume overlapping

data of a single mapped cell overlapping a base mesh. In cases where more than one mapped

cell is present, the process is extended to accommodate all the mapped cells. This is achieved

by using multidimensional dynamic array elements from the C++ standard template library.

2.5 Finite volume toolkit
In recent years the object oriented approach to modelling transport processes with the finite

volume method has become popular since the finite volume method lends itself effectively to an

object oriented implementation, Weller et al. (1998) and Gooch (2002). The Finite volume toolkit

(FTK) is an object oriented finite volume platform for unstructured computational meshes,

employing the collocated variable arrangement, finite volume discretisation and segregated

pressure-based solution algorithms for pressure velocity coupling.

Convection term:

Diffusion term:

Source term:

Operator

DDT()

DIV()

LAPLACE()

SC()

Transient term:

Scalar transport equation definition in FTK

CFinite VolumeEquation variableEquation
(

FVM::DDT(density, variable, timestep, temporal scheme)
+ FVM::DIV(massflux, variable, convection scheme, blending factor)
+ FVM::LAPLACE(viscosity, variable)
+ FVM::SC(volume source for variable)

);

variableEquation. Solve();
variable. UpdateBoundaries();

Figure 2. 13: Extract from FTK source code
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FTK was developed to fulfil in the basic requirements of a general purpose simulation platform 

based on the finite volume method (Kruger, 2005). Object oriented programming techniques 

were applied to create the required data types, while operator overloading allows for normal 

mathemat~cal symbols to be used for the basic mathematical operations applicable to user 

defined types. It is generally recognised that object oriented programming enables the creatlon 

of a code that is easier to validate and maintain than procedural based codes (Weller et a/.. 

1998). 

In FTK a computational mesh consists of cell volumes, inner faces and boundary faces. Classes 

were developed for each of these mesh elements. Boundary faces are located on the outside of 

the computational mesh while inner faces are located inside the mesh with cells on either side 

of the face. FTK contains classes that allow all the aspects of the numerical modelling process 

to be controlled. This includes the specification of boundary conditions, solution parameters. 

solution algorithms, iterative matrix solvers, etc. Dynamic scalar and vector storage arrays are 

used to store scalar and vector field variables. FTK provides a range of implicit and explicit 

differential field operators for the solution of partial differential equations. 

The general transport equation for a scalar dependent variable described in Chapter 1, consists 

of a transient, convection, diffusion and source t e n .  Figure 2.13 shows an extract from the FTK 

source code. Transport equations are const~cted using the four operators as shown. Each 

operator accepts parameters that indicate the scalar variable field to be solved, the temporal 

integration scheme to be used, the convection scheme, etc. Any term that does not fit into the 

standard forms of the convection and diffusion tens ,  forms part of the source term, for example 

boundary fluxes and non-orthogonal contributions to the diffusion term. 

FTK uses internal lists to establish the connectivity between cells, faces and boundaries for 

arbitrary unstructured meshes, and provides internal data structures for variable storage and 

manipulation. Vector variables such as velocity, are handled on a component basis and 

pressure velocity coupling established using segregated solution algorithms such as SIMPLE 

(Patankar, 1980) and PIS0 (lssa,1986). FTK utilises the collocated variable arrangement, 

where all dependent variables are solved for and stored at cell centres. To prevent pressure- 

velocity decoupling, the interpolation method developed by Rhie and Chow (1983) is applied to 

interpolate velocities to control volume faces when solving the Navier-Stokes equations for fluid 

flow. 



2.6 Closure 
In this chapter the concept of volume weighted interpolation was introduced. Three examples 

demonstrated how conservative interpolation between meshes is performed using the method 

of volume weighted interpolation. The conservative interpolation of variables between meshes is 

an essential requirement in the finite volume method. When interpolation is not performed 

conservatively, the inherent conservation property of the finite volume method is violated. 

The algorithm used for volume overlapping calculations was described in this chapter. It is 

based on the calculation of the common volume between any two tetrahedrons and extended 

for the calculation of the common volume between hexahedral cells. The dynamic data 

structures used to store and access volume overlapping data was briefly described. FTK. the 

object oriented research code that was used for all numerical work in this thesis, was also 

introduced. The use of volume weighted interpolation for modelling convective transport on 

arbitrary unstructured meshes is considered in Chapter 3. 



3. Volume weighted interpolation for 
convective transpot? 

3.7 Introduction 
Chapter 2 introduced the concept of volume weighted interpolation (VWI). In this chapter this 

technique is applied to the modelling of convective transport within the framework of the finite 

volume method. The chapter starts off with the finite volume discretisation of the general 

transport equation for a scalar dependent variable. The need for face value interpolation follows 

directly from this disaetisation. The chapter provides background information on convection 

schemes that are used to calculate face values. This includes high-resolution convection 

schemes that are based on the normalised variable diagram. The results from several test 

cases show how well these schemes perform when applied to orthogonal meshes. An 

orthogonal projedion interpolation stencil based on volume weighted interpolation is then 

introduced. This stencil allows high-resolution schemes to be implemented on arbitrary 

unstructured meshes. A comparison between the results obtained for orthogonal and arbitrary 

unstructured meshes for similar test cases, is presented to test the proposed interpolation 

stencil. 

3.2 Finite volume discretisation 
3.2.1 The general transport equation 
FinRe volume discretisation involves the transformation of transport equations into algebraic 

equations. This process consists of two parts, namely spatial discretisation and equation 

discretisation (Hirsch, 1988). Spatial discretisation involves the ueation of a mesh across the 

Row domain while equation discretisation refers to the transformation of a partial differential 

equation into an algebraic equation that is compatible with the computational mesh and 

consistent with the partial differential equation. 

Eq. (3.1) is the partial differential form of the general transport equation for a scalar variable 4 

In Eq. (3.1) p is the fluid density, ii the veloclty vector, r is the diffusion coefficient and S, the 

source term. v . represents the divergence operator 



To discretise Eq. (3.1), each term of the equation is integrated over a control volume which 

forms part of the computational mesh. This spatial integration of Eq. (3.1) over an arbitrary 

control volume, results in the integral form of the general transport equation given by Eq. (3.2). 

For transient simulations, each term in Eq. (3.1) must also be integrated over a time interval 61 

Convective and diffusive fluxes are calculated across control volume faces in the finite volume 

method. These fluxes are formulated as surface integrals. The divergence theorem of Gauss is 

applied to the convection and diffusion terms in Eq. (3.2) to transform the volume integrals into 

surface integrals (Anton. 1995). For a vector function F over a domain V with an outward 

oriented surface, aV, the volume integral of the divergence of P can be written as a surface 

integral, 

provided that the vector function has continuous first partial derivatives across the domain. In 

Eq. (3.3) & is an outward oriented dtfferential surface area vector and i3V the closed s u ~ a c e  

surrounding the volume V . With the application of Eq. (3.3) to the convection and diffusion 

terms in Eq. (3.2), the following integral form of the transport equation is obtained: 

The surface integrals in Eq. (3.4) represent the net efflux through the control surface due to 

convection and diffusion respectively. For the purpose of this work diffusive flux is eliminated 

from the transport equation and only convective transport considered. Any diffusion that may be 

present within a solution therefore originated from numerical diffusion and not physical diffusion. 

Eq. (3.4) is transformed into a convective transport equation by eliminating the diffusion term 

from the equation. 



Eq. (3.5) is discretised on a term by term basis in the following sections, beginning with the 

spatial integration of each term. 

3.2.2 The time derivative term 
The time derivative term in Eq. (3.5) is a volume integral. In the finite volume method volume 

integrals are evaluated by multiplying the integrand with the cell volume. Since the integrand is 

evaluated at the cell centre, volume integrals are easily calculated and no interpolation is 

required when using the collocated variable arrangement. 

The volume integral is approximated by the product of the integrand as defined at the cell centre 

and the volume of the cell, V,. 

3.2.3 The convection term 
The convection term in Eq. (3.5) is a surface integral. In the finite volume method surface 

integrals are evaluated by calculating the scalar product of the integrand at the face centre and 

the face area vector. Since the face value of the integrand is not available it must be determined 

in terms of the cell values surrounding the face through interpolation. There are two levels of 

approximation present when surface integrals are evaluated. Firstly the face centre value is 

used to approximate the face value and secondly the approximation of the face value in terms 

of cell values through interpolation. The accurate calculation of surface integrals is one of the 

most important aspects in the finite volume method. During discretisation the surface integral for 

the control surface is split into separate surface integrals for the faces surrounding a cell. 



In Eq. (3.7)G, is the mass flow through the cell face. The mass flow calculation requires the 

interpolated values of the velocity vector and the fluid density at the face. The face value of the 

dependent variable (, must be interpolated using a suitable convection differencing scheme. 

G,(, represents the convective flux of the flow quantity across face f . 

The convection term has the physical characteristic of boundedness that dictates that the 

bounds of ( given by its initial distribution may not be violated. If ( represents a scalar quantity 

that varies between zero and one, for example, a solution with values greater than one and 

smaller than zero violates the boundedness characteristic of the convection term. The 

discretised form of the convection term must preserve the boundedness characteristic, (Jasak 

and Weller, 1995). 

3.2.4 The source term 
The source term in Eq. (3.5) is also a volume integral and therefore discretised in the same way 

as the time derivative term. Source terms include all terms that cannot be expressed in the 

standard form of the convection and diffusion terms. It indudes sources or smks of the flow 

quantity within a cell as well as sources originating from fluxes across boundary faces. 

The general approach with regard to source terms is to linearize the term into a constant part 

S, and a part that is a function of the value of the dependent variable, S,(p 

SF,(/, can be treated implicitly or explicitly or any combination thereof, but it is essential that the 

coefficient S, is negative for an implicit calculation to preserve the diagonal dominance of the 

coefficient matrix. Volume integration of Eq. (3.8) produces the following form of the source 

term. 

Patankar (1980) presents various linearisation methods for common source terms. In general an 

explicit treatment of the source term will slow convergence since the source term is evaluated 

using a lagged value of the dependent variable. 



3.3 Temporal integration 
For transient simulations each term in Eq. (3.5) is integrated over a time increment 6r 

The temporal integration of the time derivative term follows directly. 

In a stationary mesh, the cell geometry remains constant throughout the simulation. The volume 

can therefore be moved outside of the time integral term. 

The variation of the remaining integrands with time is not known. The integration is therefore 

performed in terms of a weighting factor r]  weighing the integration between the new and old 

time level values of the integrand. The general formulation for the time integration of an 

integrand f is written as: 

r+6i 

f d t  = [ ( l - q )  f l + ( q )  f ' t ' i ' ]dt  

Three choices for the weighting factor r]  in Eq. (3.12) are explicit ( q  = 0 ) ,  implicit (17 = 1)  and 

Crank Nicolson ( r ]  .- 0.5). In this work the Crank Nicolson scheme is used for all transient 

simulations. The solution of transient problems is obtained by a time marching process, starting 

off with the initial values of the field variables at time t and solving the equations for the 

prescribed time interval with either a fixed time step St or a variable time step. This process is 

repeated until the required time interval for the simulation has elapsed. 

3.4 Convection differencing schemes 
The logical choice for 4, in (3.7) would be the value obtained by linear interpolation from the 

cell values bracketing the face. This differencing scheme is known as central differencing (CD). 

Although central differencing seems to be the obvious method to calculate $,, this scheme is 



only successful for modelling diffusion dominated flows and leads to unbounded results for 

flows where convection dominates. 

For flows where the Peclet number > 2, the central differencing scheme can cause unphysical 

oscillations in the solution due to negative coefficients in the coefficient matrix of the discretised 

transport equation (Versteeg and Malalasekera, 1995). To overcome the negative coefficient 

problem caused by the central differencing scheme, Courant, lsaacson and Rees (1952) 

developed the upwind differencing (UD) scheme. As the name implies, the upwind differencing 

scheme approximates the value of 4, by the value of the donor cell of face f . The upwind cell 

is determined by the flow direction across the face. 

While eliminating unphysical oscillations from the solution by guaranteeing positive coefficients 

in the coefficient matrix of the discretised equation, the upwind differencing scheme can 

introduce unacceptable levels of numerical diffusion into the solution. 

The third order QUlCK scheme (Leonard. 1979), approximates 4, by fitting a parabolic profile 

through the donor, acceptor and upwind cells. Although accurate, the QUICK scheme does not 

guarantee bounded solutions. On an orthogonal mesh with equally spaced control volumes, the 

face value is calculated as: 

In Eq. (3.14) $,, represents the value of the upwind cell to the donor cell of face f ,  4,, the 

donor cell value and 4~4 the acceptor cell value. The selection of the upwind, donor and 

acceptor cells are determined by the flow direction through the face. The cells form a three-point 

stencil around the face .f' 

Figure 3.1 shows how the face value 4, is calculated using the UD, CD and QUICK schemes 

respectively. The UD and QUlCK schemes require the flow direction to calculate the face value, 

therefore including transportiveness into the formulation. (Versteeg and Malalasekera, 1995). In 

addition the QUICK scheme requires a three-point stencil to calculate the face value. 



three-point stencils are commonly used in convection schemes but cannot be applied directly

with face addressed algorithms where only the values of the cells bracketing a face are

available for interpolation purposes.

rflu

QUICK UD CD

Qf

Upwind cell Donor cell
.

Acceptor cell

Figure 3.1: VO, CO & QUICK schemes

The following example demonstrates how the UD, CD and QUICK schemes perform when

modelling the transient convection of a complex block wave profile.
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Figure 3.2: One-dimensional convection: VO, CD & QUICK
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An equally spaced mesh is used with a uniform velocity of 1 mls to the right. Convection without 

any diffusion is modelled. The results obtained with the UD, CD and QUICK schemes are 

shown together with the analytical solution in Figure 3.2. The Courant number for this example 

is 0.001. The simulation was terminated after three seconds corresponding to 120000 time 

steps of 2.5e-5 seconds each. 

The central differencing scheme produces a solution that is unbounded with peaks and troughs 

around the analytical solution. One applicat~on where boundedness is essential is the volume of 

fluid (VOF) method where volume fractions are used to identify different fluids or fluid phases, 

(Ubbink. 1997). The upwind differencing scheme produces a solution that is bounded but 

severely diffusive. Note how the 0.75 peak of the block wave is smoothed out by the upwind 

differencing scheme. The QUICK scheme, although also unbounded in regions, produces a 

substantial improvement over the solution obtained with the central differencing scheme. This 

example clearly shows the significant influence of different face value interpolation schemes on 

a solution. 

In the presence of steep gradients, the central differencing scheme falls to produce a bounded 

solution; the reason being that the face value calculated is either too low or too high causing the 

solution to overshoot or undershoot. A steep, positive gradient will predict a too high a face 

value which could result in the donor cell donating more than it has to offer. A steep negative 

gradient will cause the donor cell to donate more than the acceptor cell is able to accept. 

thereby causing positive unboundedness. The unboundedness caused by a differencing 

scheme is also referred to as numerical dispersion. To improve the accuracy of the upwind 

differencing scheme, several other convection schemes were developed over the years. Among 

these are the upwind biased low order schemes, for example the hybrid and power-law 

schemes, that produce only marginally improved results compared to upwind differencing 

(Leonard and Mokhtari, 1990). 

The calculation of 4, for the convection term remains a contentious issue and an area of active 

research and development in the finite volume method. To improve the boundedness and 

accuracy characteristics of convection schemes, blended differencing (80) schemes were 

developed which blends lower and higher-order differencing schemes to suppress numerical 

dispersion while limiting numerical diffusion (Ferziger and Peric. 1999). The amount of blending 

required to produce bounded solutions is unfortunately not known before a simulation, resulting 

in a trail and error approach towards selecting appropriate blending factors. The ideal 

convection scheme should produce bounded solutions while limiting numerical diffusion. These 

requirements have led to the development of high-resolution (HR) schemes (Jasak ef a / ,  1999). 

High-resolution schemes are composite higher-order schemes, which produce bounded 
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solutions by including flux-limiters into the formulation. The following section describes high- 

resolution convection schemes. 

3.5 High-resolution convection schemes 
3.5.1 The normalised variable diagram 
The concept behind high-resolution schemes is introduced by referring to the normalised 

variable diagram (NVD) (Leonard. 1991) Schemes based on the normalised variable diagram 

are implemented using three-point stencils similar to the QUICK scheme. The derivation of a 

differencing scheme based on the normalised variable diagram is performed for one- 

dimensional flow calculations and implemented on a face by face basis for simulations of multi- 

dimensional flows. In the finite volume method the scheme definition is the interpolation rule for 

the face value which can be expressed in terms of a three-point stencil for most schemes, (Tao 

et a/. , 2004). 

When using a three-point stencil, a face value is determined by using at most two upstream 

nodes and a single downstream node. The face value can therefore be interpolated to at most 

third order accuracy. (Leonard, 1991). The term monotonic describes boundedness with regard 

to numerical methods Three-point schemes are monotonic increasing or decreasing when the 

following conditions apply: 

monotonic increasing: @A <+,, <d,  
monotonic decreasing: @(. > b1, > (, 

When (3.16) is satisfied for the entire domain, the solution will be free of unphysical oscillations. 

Leonard and Mokhtari (1990) defined two conditions that must be satisfied to ensure bounded 

solutions. The first condition requires the calculated face value to be bounded between the 

values of the cells bracketing the face. This condition includes the situation where 4, = @,, . The 

second condition requires that if =@! , the face value must be set equal to this value. To 

simpllfy the analysis of bounded convection schemes, Leonard (1991) defined the normalised 

variable as 



Eq. (3.17) can be used to obtain expressions for the normalised donor cell and face values 

The normalised upwind and acceptor cell values reduces to zero and one respectively 

The solution in the stencil is monotone whenever the normalised donor cell value lies between 

zero and one. Higher-order approximations of the face value may then be performed 

The purpose of the normalised variable diagram is to express the normalised face value as a 

functional relationship of the normalised donor cell value, in other words the normalised variable 

diagram plots the normalised face value as a function of the normalised donor cell value. 

Gaskell and Lau (1988) defined the convection boundedness critenon (CBC) for implicit 

calculations. This criterion indicates in which reglons of the normalised variable diagram a 

convection differencing scheme will produce bounded solutions. For implicit calculations the 

convection boundedness criterion is defined by the following parameters: 

For explicit flow calculations the convection boundedness criterion is adjusted to include the 

Courant number, effectively reducing the area within the norrnalised variable diagram where 

bounded solutions will be obtained as the Courant number increases from zero to one, Leonard 

(1991). The normalised face value for explicit calculations is calculated as a function of the 

normalised donor cell value as well as the face Courant number. 

In Eq. (3.21) 4; is the normalised face value for implicit flow calculations and c, the Courant 

number for face f , defined as 



The eBe for explicit flow calculations is defined as

for

for
(3.23)

The convection boundedness criterion for implicit and explicit flow calculations is shown

graphically as the shaded regions in the normalised variable diagram, Figure 3.3. The

convection boundedness criterion includes the line representing the upwind differencing

scheme, where tPf = tPD' The upwind differencing scheme is the only scheme that is

unconditionally bounded.

eBe for implicit flow calculations

~f

DO Unbounded region

1

Bounded region

UD

1

eBe for explicit flow calculations

tPf,
UD - Upwind differencing
DO - Downwind differencing

Figure 3.3: cec for implicit and explicit flow calculations

For the definition of a bounded differencing scheme the normalised face value is expressed as

a non-linear function of the normalised donor cell value, in such a way that the functional

relationship is contained within the eBe region of the normalised variable diagram, Eq. (3.24).

(3.24)

Once the normalised donor cell value is available, the normalised face value can be calculated

from the functional relationship (3.24), which is non-linear by necessity, except for the first order

upwind differencing scheme.

--
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The closer a scheme is located towards the upwind differencing line on the norrnalised variable 

diagram the more stable and diffusive the scheme will be. The contrary is true for schemes that 

are located closer to the downwind differencing (DD) line, Figure 3.3. These schemes will be 

more compressive at the cost of stability (Ubbink, 1997). Schemes based on the normalised 

variable diagram switch locally between different convection schemes based on the norrnalised 

donor cell value. In regions where the donor cell value is bounded between the upwind and 

acceptor cell values, i.e when 0 <$,, <1 higher-order face value interpolat~ons are applied. 

When the donor cell value is unbounded, the first order upwind differencing scheme is applied 

for the face value calculation to restore boundedness. 

3.5.2 Examples of high-resolution schemes 
Examples of htgh-resolution schemes include Gamma (Jasak et a/., 1999), SOUCUP (Zhu and 

Rodi. 1991), SMART (Gaskell and Lau. 1988). ULTIMATE-QUICKEST (Leonard. 1991), COPLA 

(Zhu and  rod^, 1991), MUSCL (van Leer, 1997) and OSHER (Chakravarthy and Osher, 1983). 

Figure 3.4: Normalised variable diagram for Gamma scheme 

High-resolution schemes have also been developed specifically for interface capturing 

applications. These schemes are bounded and highly compressive in order to minirn~se 

numerical diffusion. Compressive schemes are in general not suitable for applications other 

than where steep gradients in the dependent variable are present as these schemes tend to 
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change any finite gradient into a step profile (Ubbink, 1997). Examples of high-resolution 

interface capturing schemes include CICSAM (Ubbink and lssa, 1999). HRlC (Muzaferija and 

Peric, 1998) and Inter-Gamma (Jasak and Weller, 1995). 

The Gamma and InterGamma schemes are used extensively in this thesis. These schemes are 

discussed in more detail in the following sections. 

3.5.2.1 Gamma 
The Gamma scheme (Jasak ef a/., 1999) uses a local blend between central differencing and 

upwind differencing with an adaptive filter to maintain monotonic solutions of the dependent 

variable. The value of the normalised donor cell indicates whether the solution is bounded or not 

within the discretisation stencil. If unbounded, upwind differencing is used for the face value 

calculation; if bounded, either central differencing is used or a blend between central 

differencing and upwind differencing based on the value of the normalised donor cell value. A 

factor Prn ranging between 0.1 and 0.5 is specified to control the blending characteristics of the 

Gamma differencing scheme. 

The normalised variable diagram for the Gamma scheme is shown in Figure 3.4. The Gamma 

scheme is not a fundion of the Courant number. The scheme is therefore efficient for transient 

simulations of steady state flow since large time step sizes are allowed. For transient flow 

however. caution should be exercised when applying explicit time integration since unbounded 

solutions could result from violating the Courant limit of one. When using the Crank Nicolson 

time integration scheme which is second order accurate, the time step limit is only slightly less 

restrictive than for explicit time integration. The functional relationship of the Gamma scheme is 

summarised as follows: 

The Gamma scheme is a bounded version of the central differencing scheme. 



3.5.2.2 Inter-Gamma 
The Inter-Gamma scheme (Jasak and Weller, 1995) was specifically developed for interface 

tracking applications. The Inter-Gamma scheme has the necessary compressive characteristics 

that are required for interface tracking. The normalised variable diagram for the Inter-Gamma 

scheme is shown in Figure 3.5 

Figure 3.5: Normalised variable diagram for Inter-Gamma scheme 

The scheme is divided into three regions on the normalised variable diagram, namely: 

1 J1, s 0 or J1, > 1 , (6, = &, The upwmd d~fferenclng scheme IS used in th~s reglon 

2. 0.5 < &, < 1 , 4, = 1 . The downwind differencing scheme is used in this region to provide 

the compressive behaviour of the scheme. 

3. 0 c &, < 0.5 . 8, = -24: +3&, . This functional relationship creates a smooth transition 

from upwind to downwind differencing over this range of normalised donor cell values. 

The Inter-Gamma scheme is expected to preserve boundedness while maintaining a sharp 

resolution of the interface, (Jasak and Weller, 1995). Numerical diffusion is introduced to 

preserve boundedness while downwind differencing is applied to reconstruct the sharp 



interface. Jasak and Weller (1995) recommend that a Courant number of less than 1/3 be used

for multidimensional interface tracking simulations and less than 1/2 for one-dimensional

simulations.

The one-dimensional convection example described in section 3.4 was repeated using the

Gamma and Inter-Gamma schemes with all other variables remaining unchanged. In this

example the Gamma scheme was used with the recommended blending factor of Pm= 0.5 ,

(Jasak et al., 1999). The results are shown on the graph in Figure 3.6, including the results for

the upwind differencing scheme for comparison purposes.
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Figure 3.6: One-dimensiona/ convection: VD, Gamma & Inter-Gamma

Both the Gamma and Inter-Gamma schemes produce bounded results. The Gamma scheme

solution follows the block wave profile reasonably well while the Inter-Gamma scheme produces

a solution that closely resembles the analytical solution. This example clearly demonstrates the

capabilities of high-resolution schemes for volume tracking applications.

3.5.3 Implementation of high-resolution schemes
3.5.3.1 Deferred correction method

High-resolution schemes are incorporated into existing low order codes using the method of

deferred correction (DC). Higher-order schemes apply extended stencils, consisting of the cells

bracketing the face as well as additional cells to allow for a higher-order interpolation of the face

value. The direct implementation of such schemes is complex and scheme dependent. Deferred

42

-- --- - -



correction, introduced by Khosla and Rubin (1974) facilitate the implementation of higher-order 

flux approximations without the disadvantage of increased computational molecules. This is 

achieved by calculating the higher-order flux approximations explicitly, while the coefficient 

matrix is assembled using the t int order upwind differencing scheme which guarantees a 

positive coefficient matrix. The higher-order contribution to the face flux is incorporated into the 

source term of the algebraic equation. The price to be paid for this convenience is a reduced 

rate of convergence due to the explicit implementation (Danvish and Moukalled, 1996). 

When using the method of deferred correction, the higher-order flux approximation is combined 

with an implicit lower order approximation that requires only the coefficients of the cells 

bracketing the face across which the flux is calculated (Ferziger and Peric, 1999). 

In Eq. (3.26). F, is the convective flux approximation, Fl is the flux calculated with the lower 

order scheme, for example upwind differencing and F y  the higher-order flux approx~mation. 

The superscript old indicates that the term in brackets is evaluated using the results from the 

previous iteration. Upon convergence the lower order flux approximations of the current and 

previous iterations are equal. 

The lower order flux approximations therefore sums to zero, leaving only the higher-order flux 

approximation, Eq. (3.28). 

The partially discretised form of the general convective transport equation for time-dependent 

flow calculations is written as: 

The convective flux term in Eq. (3.29) is written in the following form, incorporating deferred 

correction into the formulation: 



The explicit contribution in (3.30) is calculated for every face of the control volume and then 

transferred to the source term of the equation. Each control volume face therefore contributes to 

the source term of the discretised equation of that control volume. 

The convective flux on the left hand side of Eq. (3.31) is modelled using the upwind differencing 

scheme. 

A blending factor PI,. can be added to the flux expression (3.26) to blend the higher-order flux 

approximation with the first order upwind differencing flux approximation. 

Any higher-order scheme can be implemented using the method of deferred correction without 

any fundamental changes to the internal structure of the code. The explicit treatment of higher- 

order flux terms weakens the linkage between individual equations, thereby affecting the 

convergence rate (Darwish and Moukalled. 1996). This is because individual equations are 

linked together through the convective and diffusive flux terms. 

3.5.3.2 Downwind weighting factor method 
An alternative implementation of high-resolution schemes is through the use of the downwind 

weighting factor (DWF) method, developed by Leonard and Mokhtari (1990), whereby a 

weighting factor P, is calculated to produce a face value 4, based on a weighting between the 

donor and acceptor cells bracketing the face under consideration. 



The downwind weighting factorp, for the upwind and central differencing schemes is not a 

function of the solution, but it is for schemes based on the normalised variable diagram: 

The weighting factor is a function of the norrnalised donor and normalised face value 

The weighting factor can also be expressed in equivalent un-normalised form as: 

As an example the first order upwind differencing scheme which requires that 4, = $,, may be 

considered. Substituting this condition into (3.36), yields a downwind weighting factor of zero 

which, when substituted into Eq. (3.34), produces a face value equal to the donor cell value as 

required. 

The downwind weighting factor P, is a blending factor which blends the first order upwind and 

first order downwind differencing schemes. The downwind component of the face value 

approximation can also be implemented by using deferred correction, while the upwind 

component is treated implicitly. The value of P, indicates whether the calculated face value lies 

within the bounding values of the cells bracketing the face. If P, < 0 or PI > 1 the calculated 

face value is unbounded and may be bounded by adjusting the weighting factor to the nearest 

bounded value, either one if 4, >1 or zero if a, < O .  The method of deferred correction is 

obtained by substituting the weighting factor definition (3.37) into (3.34). 



, in (3.39) is the higher-order interpolated face value. By calculatmg the term in brackets in 

(3.39) explicitly, the standard deferred correction formulation is obtained from the downwind 

weighting factor formulation. 

4,  in (3.40) represents the upwind differencing scheme, which is treated implicitly in the 

deferred correction formulation. 

The downwind weighting factor method allows for a "pseudo implicit" implementation with an 

explicit component due to the fact that the downwind weighting factor is calculated explicitly 

from the solution of the previous iteration. This implementation 1s unfortunately highly unstable 

and requires a small under-relaxation factor to improve stability. Negative coefficients in the 

coefficient matrix leads to unbounded results similar to the oscillations caused by the central 

differencing scheme for convection dominated flows (Darwish and Moukalled, 1996). 

Unbounded results can therefore be obtained regardless of the fact that the downwind 

weighting factor is calculated to conform to the convection boundedness criterion of Gaskell and 

Lau (1 988). 

Alternative implementations to the deferred correction and downwind weighting factor methods 

have been developed for the application of high-resolution schemes in CFD codes (Daiwish and 

Moukalled, 1996). These implementations are however not considered in this thesis. 

Both the method of deferred correction as well as the downwind weighting factor method 

requires the face value of the dependent variable 4, interpolated from cell values using higher- 

order interpolation schemes. High-resolution schemes which is based on the normalised 

variable diagram can be used to determine +, , but requires the calculation of the normalised 

donor cell value J,, , Eq. (3.18). For this calculation a three-point stencil is required. Three-point 

stencils are naturally available on structured orthogonal meshes. Norrnalised donor cell values 

can therefore be calculated without any problems. The availability of three-point stencils 

becomes an issue when using arbitrary unstructured meshes for simulations. The following 

section describes the implementation of high-resolution schemes for these meshes. 



3.5.4 High-resolutionschemes forarbitraryunstructured
meshes

Three-point stencils are required for the application of high-resolution schemes, providing

upstream infonnationfor face value calculations. The selection of an upwindcell for a face is not

a trivial matter. The problem is further complicated for meshes with highly defonned control

volumes i.e. large degrees of non-orthogonality.

Face

Acceptor cell

Donorcell

Figure 3.7: Upwind cell selection for three-point stencil

Figure 3.7 shows a section of a typical arbitrary unstructured mesh. The figure shows that the

donor and acceptor cells are detennined by the direction of flow through the face. The problem

is that of selecting an appropriate upwind cell value, of which a few possible candidates are

shown. Jasak et a/. (1999) addressed this problem by adopting a method for calculating the

nonnalised donor cell value directly by making use of the gradient of the dependent variable
over the donor cell.

By eliminating the upwind cell from the fonnulation, this method overcomes the problem of

selecting an appropriate upwind cell. This method is equivalent to Eq. (3.18) for an orthogonal
mesh.

(3.41 )
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In Eq. (3.41) d is the vector connecting the centres of the donor and acceptor cells. Ubbink

(1997) proposed an alternative formulation to Eq. (3.41) by calculating a projected upwind cell

value from the gradient of the dependent variable over the donor cell.

(3.42)

The normalised donor cell value is then calculated using the standard formulation, Eq.(3.18).

Figure 3.8 shows the upwind cell approximations for both flow directions across a face.

....

/

Figure 3.8: Upwind cell value approximation

In both Eq. (3.41) and (3.42) the gradient of tP over the donor cell is calculated using Eq. (3.43)

which is derived from the theorem of Gauss.

(3.43)

The face value tPf in Eq. (3.43) is calculated using linear interpolation from the cell values

bracketing the face. Vp is the volume of the donor cell.

An important issue arises from using these two methods to obtain the normalised donor cell

value. Neither of the two formulations guarantees a bounded upwind cell value (Ubbink, 1997).

Although the method of Jasak et al. (1999) does not explicitlycalculate an upwind value, the

normalised donor cell value calculated using this technique, does not guarantee a bounded
solution.

Ubbink (1997) elaborates on this issue with reference to the specific application of volume

capturing schemes for multiphase flow simulations. A solution to the unboundedness that may
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occur when using Eq. (3.42) to project an upwind value is to bound the projected value explicitly

between the known bounds of the solution when the value is unbounded.

~ = 9upperbound if

9;= ~owecbound if
~ > 9upper bound.
~ < ~OWfJ( bound

(3.44)

For multiphase flow applications where volume fractions are convected across the mesh, the

physical bounds on the solution are zero and one. These known physical bounds of the solution

(3.44) is used to bound the upstream value if it is unbounded before the normalised donor cell

value is computed.

....

Figure 3.9: Prismatic / tetrahedral mesh

The problem with general simulations is that the bounds of the solution are seldom known. The

general transport equation contains source terms which results in a solution that may well be

unbounded when considering the boundary conditions applied to a problem. One example is

flow through a nozzle. The velocity in the throat area of the nozzle will be higher than the inlet or

outlet velocities due to continuity. Although unbounded with regard to boundary conditions due

to the presence of source terms, the solution should always be monotonic, therefore free from

non-physical oscillations.

Figure 3.9 shows a section of a mesh consisting of triangular prism cells. The method proposed

by Jasak et al. (1999), Eq. (3.41), may fail to accurately predict an upwind cell value. Calculating

the gradient over the donor cell using Eq. (3.43) involves the donor cell value as well as its

neighbour cells. These cell values are used to calculate the face values tPI in Eq. (3.43). In
49

---- --------



Figure3.9 the cell in which t/J~ resides,is not evenaccountedfor in the gradientcalculationof

the donor cell. The same problem may be encountered when using tetrahedral meshes which is

widely used for automatic mesh generation. The issue of obtaining three-point stencils for high-

resolution schemes on arbitrary unstructured meshes is addressed in the following section

through a method that is fundamentally based on volume weighted interpolation.

3.6 Orthogonal projection interpolation stencil
3.6.1 Introduction
Figure 3.10 shows two control volumes that form part of an arbitrary unstructured mesh. One of

the cells is labelled as the owner cell and the other the neighbour cell of face f. These cell

identities are assigned during mesh generation and determine the orientation of the face area

vector which points from the owner cell in the direction of the neighbour cell. A velocity vector

interpolated to the face is also shown in the figure.

Figure 3.10: Section of an unstructured mesh

The concept behind the Orthogonal Projection Interpolation Stencil (OPIS) is to include

additional cells in the face value interpolation and not only the cells bracketing a face, which on

an arbitrary unstructured mesh, are the only information that is available to the face. One way to

include additional cells in convective flux calculations involves the construction of a regular

orthogonal mesh on the face between the two cells. Figure 3.11 shows a schematic

representation of the regular mesh constructed orthogonal to face f.
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Original cells Neighbour cell

Owner cell

Acceptor cell

Donor cell

Upwind cell

Figure 3.11: Orthogonal Projection Interpolation Stencil (OPIS)

In this thesis the terms regular mesh and regular cell(s) refer to cells constructed to facilitate

face value interpolations. The regular mesh consists of four cells, which are always numbered

as shown in the figure in relation to the orientation of the face area vector. In the finite volume

method cell values represent the average value of a flow quantity inside a control volume. For

the Orthogonal Projection Interpolation Stencil the field values ,p of the original mesh are used

to calculate values for the regular cells constructed normal to the face. In this process original

mesh cells overlapped by regular cells contribute to the calculation of face values.

Higher-order interpolation requires the availability of a donor, acceptor and upwind cell, which is

determined by the flow direction through the face on which the regular mesh is constructed,

Figure 3.11. The four cells allow the stencil to be used for both flow directions. OPIS also

addresses the issue of mesh skewness, since the regular cells are constructed normal to a face

and in terms of the regular cells; the face centre is located centrally. Figure 3.12 shows the

triangular prismatic mesh with the outlines of a few additional mesh cells also shown.
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Regular cells

Regular upwind cell

Figure 3.12: VWI for prismatic / tetrahedral mesh

Instead of involving only the donor and its neighbour cells in the upwind cell calculation, the

weighted upwind cell value includes contributions from several cells numbered one to six in the

figure. The contribution of each cell to the regular cell is determined by the fraction of volume

overlapped between the cell and the regular cell. The concept of volume weighted interpolation

for modelling convective transport is further explored in the remainder of this chapter.

Figure 3.13 shows a section of an unstructured mesh consisting of hexahedral cells, shown as

quadrilateral cells in this simplified two-dimensional diagram. Indicated on this figure is an

internal face f with a set of four regular cells constructed orthogonal to the face, as well as the

original owner and neighbour cells bracketing the face. Only three of the four regular cells are

shaded. This selection is determined by the flow direction across the face during run-time. The

shaded cells are used in the calculation of the face value of the dependent variable and

represent the donor, acceptor and upwind cells as indicated in the figure. OPIS calculates a

representative cell value for each regular cell based on a conservative volume weighted

interpolation from the original mesh. The face value is calculated from these regular cell values

using an appropriate high-resolution convection scheme.
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Upwind Donor Acceptor

Figure 3.13: OPIS implementation

Cell contributing to
face value

Regular cells

Neighbour cell

Owner cell

Cell not contributing
to face value

OPIS addresses the problem of obtaining a bounded upwind cell value required for high-

resolution schemes on arbitrary unstructured meshes where upwind cells are not readily

available or accessible. OPtS can also be used for extrapolation to boundary faces by

constructing orthogonal cells to the interior of the mesh and mapping the solution to these cells

where after the regular cell data is used for extrapolation purposes.

3.6.2 Constructionof regular cells
Meshes consisting of four regular cells are constructed for each inner face of the computational

mesh. Alternatively mesh quality tests can be implemented and OPIS applied only at the faces

where required, i.e. in regions consisting of highly deformed cells. This will improve the overall

performance by applying volume weighted interpolation only where required.

The four regular cells are constructed orthogonal to the face by projecting new comer vertices

from the original face vertices in the direction of the face area vector. The volumes of the

projected cells determine the region of influence in the face value calculation and may be

adjusted by the user. There are several possibilities to calculate the regular cell volumes. The

method used in this thesis is shown in Figure 3.14. On an orthogonal mesh with equally spaced

cells this method produces a regular cell volume that is equal to the cell volumes of the mesh.
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Regular cell volume calculation:
-- --- --............
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Figure 3.14: Regular cell volume calculation

Although not strictly required, the regular mesh is constructed of cells with equal volume. Using

cells with equal volume and therefore equal dimensions, simplifies the interpolation of face

values. With the volume of the regular cells available, the orthogonal projection length dpi' is

determined as follows:

(3.45)

In Eq. (3.45), VR is the volume of the regular cell. The four regular cells are constructed by

projecting new comer nodes from the original face using dpr in the direction of the face area

vector AI.

The flow direction through a face is determined at run-time from the sign of the mass flow

across the face which is based on the orientation of the face area vector used in the

construction of the regular mesh. For each face the upwind, donor and acceptor cells are

assigned with a regular cell number.

U =Cell 4

J

D=CeIl2

A = Cell 1

(3.46)
U =cell3

J

D=Celll

A = Cell 2
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The flow direction through the face is checked after each iteration to account for possible flow

reversals.

3.6.3 Data structures for regular cell storage
For each inner face of the original mesh, a list is constructed consisting of the four regular cells

and their calculated comer vertices, as shown in Figure 3.15.

Regular cell list

This list is constructed once before the start of a simulation for a stationary mesh. The scheme

therefore suffers little in terms of computational overhead. For each of the cells one to four, a list

of cells is created, identifying the cells in the original mesh that overlap the regular cell. The

number of entries in this list is determined by the mesh structure and will differ from cell to cell

and from face to face. The number of cells overlapping a regular cell depends on the degree of
unstructuredness of the mesh.

A bucket search algorithm is used to search for cells overlapping each regular cell in the mesh.

When a cell is found that overlaps a regular cell, it is added to the overlapping list and the

overlapped volume for that cell is stored. The search is continued until no further overlapping

cells are found for that regular cell. The result of this search is a set of volume overlapping data

for the mesh as shown in Figure 3.16.
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Volume overlapping list architecture

Figure 3.16: Volume overlapping data

This dynamic data structure can easily be accessed by the solver to calculate the volume

weighted values of the regular cells for each face. The application of volume weighted

interpolation to simulations on dynamic meshes will impose a severe penalty in terms of

simulation time since the volume overlapping data will have to be recalculated after each

change in the computational mesh, instead of only once before the start of a simulation.

3.6.4 Face value interpolation
Once the regular cell values of the dependent variable have been determined from the

conservative interpolation, the face value is calculated. In principle, any appropriate

interpolation scheme can be used, for example upwind differencing, central differencing or

QUICK, but the stencil is best suited for differencing schemes based on the normalised variable

diagram to take advantage of the boundedness characteristics of these schemes. Instead of

using all three regular cells per face, it is also possible to use only the predicted upwind cell

value to calculate the normalised donor cell value. This technique is required for highly

compressive schemes where overfilling or over emptying of the cells bracketing a face is

possible due to the large gradients present in the solution. One example is interface tracking for

two-phase flow simulations.
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The OPlS scheme is implemented using the method of deferred correction combined with the 

downwind weighting factor method where the face value is expressed as a weighting between 

the values of the donor and acceptor cells of the face. 

In the following section test cases are presented to demonstrate the capabilities of OPlS for 

modelling convection on arbitrary unstructured meshes. 

3.7 Test cases 
Introduction 

In this section test cases are presented in which the Orthogonal Projection lnterpolation Stencil 

is applied to the modelling of convection on arbitrary unstructured meshes. The equation to be 

solved in each case is Eq. (3.1) without any physical diffusion and source terms and with the 

volume fraction u as the de~endent variable. 

The test cases are simple with known analytical solutions. No attempt is made to couple the 

solution of Eq. (3.48) to the solution of the momentum equations. Analytic velocity fields are 

used in all the test cases. This allows a comparison of the characteristics of convection 

differencing schemes to be made 

Each test case is performed using two different meshes. A structured orthogonal mesh is used 

to perform a reference simulation. The simulation is repeated on an arbitrary unstructured mesh 

consisting of non-orthogonal cells. The two meshes are created to consist of approximately the 

same number of cells. The ideal case is when the simulation is performed on the orthogonal 

mesh where a three-point stencil is available for the application of high-resolution schemes Two 

sets of simulations are performed on the unstructured mesh. The first uses Eq. (3.41) to 

determine the normalised donor cell value in the absence of a three-point stenc~l. The 

simulatlon on the unstructured mesh is then repeated using the Orthogonal Projection 

Interpolation Stencil. The results from the three simulations are then compared to determine 

how the convection schemes perform in each case. 



3.7.2 Case 1: Rotational flow
In this test case the convection of a scalar block wave in a rotational velocity field is modelled.

Figure 3.17 shows a schematic representation of the domain and configuration for this test

case.
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Figure 3. 17: Test case 1 - Rotational flow

The block wave is defined using a fixed value boundary condition and convected into the

domain by the rotational velocity field. Zero gradient boundary conditions are applied at all the

remaining boundary surfaces. The initial condition is zero volume fraction values for all the cells

in the mesh. An anticlockwise rotational velocity field with a magnitude of 1 radls is defined with

the origin located at the centre of the domain.

The analytical solution for this test case is shown after the block profile was convected through

225°. While this test case may seem trivial, it presents several modelling challenges. Firstly, the

solution should be bounded with cell volume fractions between zero and one throughout the

domain. Secondly, the block wave profile should be convected without diffusing the interface

which is defined by cell values between zero and one. Thirdly, the solution should closely
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resemble the analytical solution shown in Figure 3.17 after the required number of time steps in

a transient simulation. The solution should therefore be time accurate. At the given rotational

speed of 1 radls after a given time interval, the front should be at the same position where the

analytical solution would be at that time. The spatial and temporal integration of the convection

equation must therefore be accurate. In this test case different convection schemes are used to

show the characteristics of these schemes while the temporal integration is performed using the

Crank Nicolson scheme. The time step size is determined from the specified Courant number,

the velocity and the mesh characteristics.

Structured orthogonal (2700 cells) Unstructured hexahedral (2712 cells)

Figure 3.18: Test case 1- Computational meshes

Figure 3.18 shows the two computational meshes that are used in this test case. The

orthogonal mesh consists of 2700 cells while the arbitrary unstructured mesh consists of 2712

cells. The volume of each cell in the orthogonal mesh is 1.11e-4 m3.The volume of the smallest

and largest cells in the unstructured mesh is 4.27e-5 m3 and 1.73e-4 m3 respectively. The

average cell value for the mesh is 1.106e-4 m3. Figure 3.19 shows a histogram of the cell

volume distribution of the unstructured mesh in ten equal volume increments between the

minimum and maximum cell volumes.

The velocities for each cell in the two meshes are initialised by calculating the velocity

components from the rotational velocity. The time required to complete 2250 of rotation at a

rotational speed of 1 rad/s, is 3.927 seconds. The Courant number for all the simulations for this

test case is 0.2. For the orthogonal mesh the time step size for this Courant number equals

0.00344828 seconds, therefore requiring 1139 time steps to complete 2250 rotation. For the

unstructured mesh the time step size equals 0.0011392 seconds, requiring 3447 time steps to

-- -- -- -------
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complete 2250 rotation. The smaller time step required for the unstructured mesh is due to the

smaller cell sizes compared to the orthogonal mesh.

Figure 3.19: Cell volume distribution for unstructured mesh

The analytical solutions for the two meshes are shown in Figure 3.20.

Structured orthogonal mesh Unstructured hexahedral mesh

TIME 1.000e+000

GHAX1. 000...000
GHIN 0 000...000

,., 1.000...000
9.286e-00l
8.571e-00l
7.857_001
7.143_001
6.429_001
5.714_001

I
' 5. OOOe-OOl

4.286_001
3.571_001
2.857e-00l
2.143_001
1.429_001
7.143_002
0.000...000

TIllE 1.000...000

GHAX 1.000...000
GHIN 0.000...000

,...
1.000...000
9.286_001
8.571e-001
7.857_001
7.143_001
6.429_001
5.714_001

1
5.000e-001

'W.' 4.286_001
3.571_001
2.857e-001
2.143_001
1. 429_001
7.143_002
0.000...000

Figure 3.20: Test case 1 - Analytical solutions

The solutions shown in Figure 3.20 were obtained by mapping the final block wave position

after 2250 rotation onto the two meshes using the techniques described in Chapter 4. Cells with

volume fraction values between zero and one indicate that the analytical solution passes

through the cell. The volume fraction values of the analytical solution are plotted on the figure.
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Structured orthogonal mesh Unstructured hexahedral mesh

Figure 3.21: Test case 1- Analytical flow distribution

Figure 3.21 shows the analytical block wave distribution after 2250 rotation represented by a

cylindrical mesh overlapping the computational mesh. The analytical solutions allow error norms

to be used to gauge the accuracy of the simulations. The solution error is defined as

all cells

L Ila;V; - a;V; II
iE= all cells

'" aaV
L..J I I

i

(3.49)

where an is the solution after n time steps and aa the analytical solution. V; is the volume of

cell i. The pertect convection scheme will result in a zero error computed with Eq. (3.49).

In the first part of this test case the upwind differencing, central differencing, QUICK, Gamma

and Inter-Gamma schemes were used to model the block wave convection on the structured

mesh to compare the characteristics of the different schemes and to compare the results with

the analytical solution shown in Figure 3.20. The following figures show the results after 2250

rotation. The error calculated for each simulation using Eq. (3.49) and comments on the results

produced by each convection scheme are also shown. A blending control factor Pm= 0.1 is

used for the Gamma scheme in Eq. (3.25).
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Upwind differencing (UD)

Central differencing (CD)

QUICK

-- ---

ITER 1139

TIJ!E 3 928e+000

GHU 1 000e+000
Gl!IN O. 000e+000

~. m~gg~
8.571_001
7.857_001
7.143..-001
&.429..-001
5.714..-001

I
". 5.000_001

4.28&..-001
3 571_001
2.857..-001
2.143_001
1.429_001
7.143e-002
0.000e+000

ITER 1139

TIllE 3. 928e+000

GliAl 1.419e+000
GIIIN-4.105e-001_ 1.419e+000
II'""'"! 1.288e+000

1.157e+000
1.027e+000
8. %le-001
7. &55e-001
& 348..-001

I
', 5.041_001

3.735e-001
2.428_001
1.122..-001

-1.851e-002
-1.492e-001
-2 798e-001
-4 105_001

ITER 1139

TIJ!E 3. 928e+000

GHU 1 172e+000
Gl!IN-1 . 78&e-001

_ 1.172e+000
J"""'"1 1 075e+000

9 788_001
8.823_001
7 859_001
&.894_001
5.930_001

I
" 4. %5..-001

4.001..-001
3.03&_001
2.072..-001
1.107..-001
1.429..-002

-8.21&_002
-1.78&..-001
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Solution error: 0.436

Although the solution is bounded
between zero and one, significant
levels of numerical diffusion are
present. The block wave profile is
diffused over several mesh cells,
causing artificial mixing between
the two fluids.

Solution error: 0.334

The solution error is smaller than
that of the UD scheme with

improved accuracy and less
numerical diffusion. The solution is
however unbounded with maximum
and minimum values of 1.419 and
-0.410 respectively. The numerical
dispersion in the solution is clearly
visible.

Solution error: O.124

The solution error is smaller than
that of the CD scheme with
improved accuracy and less
numerical dispersion. The solution
is still unbounded but a significant
improvement over that of the UD
and CD schemes.
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Gamma

Inter-Gamma

ITER 1139

TIllE 3. 928e+000

GIIll 1.000e+000
GIIIN-7.292..-016

_ 1 000e+000
~ 9 286..-001

8.571..-001
7.857..-001
7.143e-00l
6. (29e-00l
5.714 001

1
5 000..-001
( 286..-001
3 571..-001
2.857..-001
2.143 001
1 (29 001
7.143e-002

-7.292 016

ITER 1139

TIllE 3. 928e+000

GI!ll 1.000e+000
GIIIN-2.637 005

_ 1 000e+000
, 9 286 0018.571..-001

7 857 001
7 143..-001
6. (28e-00l
5.714..-001

_
5 000 001

.. (.286..-001
3.571..-001
2.857..-001
2 143..-001
1. (28e-00l
7 140..-002

-2.637..-005

Solution error: 0.109

The solution is bounded between
zero and one with a solution error
that is slightly lower than that of the
QUICK scheme. Boundedness is
ensured through the local blending
between the CD and UD schemes.
From an accuracy point of view the
Gamma scheme is an
improvement on the QUICK
scheme.

Solution error: 0.024

The solution is bounded between

zero and one and highly accurate
compared to the analytical solution.
The compressive characteristics of
the Inter-Gamma scheme maintain a
sharp interface without significant
levels of numerical diffusion.

Figure 3.22: Results: Orthogonalmesh

Figure 3.22 shows the results obtained on the orthogonal mesh with the upwind differencing,

central differencing, QUICK, Gamma and Inter-Gamma schemes. The results demonstrate the

significant influence of the face value calculation for the convective term on the overall solution.

The first order upwind differencing scheme (Courant et al.,1952) remains a popular choice in

commercial CFD codes in spite of its highly diffusive characteristics. This is due to its stability

and guaranteed boundedness. The upwind differencing scheme is usually the default selection

in commercial CFD codes and therefore easily used without too much thought of the

consequences by the inexperienced analyst. Although unconditionally bounded and stable, the

upwind differencing scheme should be used with caution, and cannot be considered appropriate

for any simulation.
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The solution obtained with the central differencing scheme is clearly less diffusive than the 

solution with the upwind differencing scheme; however the unboundedness of the solution is 

evident from the peaks and troughs. The maximum and minimum cell values of the solution are 

1.419 and -0.410 respectively. This unboundedness is unacceptable for two-phase flow 

simulations since volume fraction values larger than one and smaller than zero, is meaningless. 

The volume fraction indicates the portion of a cell filled with fluid one or two respectively. The 

results for the upwind, central and QUICK differencing schemes are in good agreement with the 

results of the one dimensional convection of a block wave shown in Figure 3.2 

The Gamma and Inter-Gamma schemes which are based on the normalised variable diagram, 

produces bounded solutions through the localised blending of different schemes. Eq. (3.41) is 

used to calculate the normalised donor cell value. It is evident that Eq. (3.41) works well for 

orthogonal meshes and maintains the boundedness of the solution. This can be explained by 

examining Eq. (3.41) in more detail. The calculation of the donor cell gradient directly involves 

the upwind cell value, which is bounded. The calculated upwind value will therefore not produce 

an unbounded value, thereby ensuring the boundedness of the solution. The Inter-Gamma 

scheme IS highly compressive through the incorporation of downwind differencing into the face 

value calculation. The Gamma scheme is less compressive using a blend between the central 

and upwind differencing schemes. The results of this test case clearly demonstrate the 

advantages of using high-resolution schemes to maintain the boundedness and accuracy of the 

solution. 

In the second part of this test case the Gamma and Inter-Gamma schemes are used to model 

the convection of the block wave on the arbitrary ~ n s t ~ c t ~ r e d  mesh. The results obtained when 

using Eq. (3.41) to calculate the normalised donor cell value are compared to the results 

obtained when using OPlS to construct three-point interpolation stencils. 

Figure 3.23 shows the solutions obtained with the Gamma and OPIS-Gamma schemes on the 

unstructured mesh. The solution obtained with the Gamma scheme is unbounded whereas the 

solution obtained with OPIS, is bounded. OPlS ensures a bounded solution by calculating a 

bounded upwind cell value for the three-point stencil. The OPlS Gamma solution compares well 

with the bounded solution obtained on the orthogonal mesh with the Gamma scheme. 



Gamma

OPIS Gamma

ITER 3447

TIllE 3. 927e+000

GKil 1 117e+000
GIIIN-3.326e-003_ 1 117e+0001 037e+000

9.566e-001
8.766e-001
7.966..-001
7 166..-001
6.366e-001

I
". . 5. 566e-001

.,,, 4. 766e-001
3 966e-001
3 166e-001
2.367e-001
1.567e-001
7.667 002

-3. 326e-003

ITER 3447

TIllE 3 927e+000

GKil 1 000e+000
GIIIN O. 000e+000

_ 1 000e+000_ 9 286e-001
8.571 001
7 857..-001
7.143 001
6.429 001
5.714e-001

1
5.000 001
4.286e-001
3 571e-001
2.857 001
2.143e-001
1.429..-001
7.143 002
0.000e+000

Solution effor: 0.128

Unlikethe bounded solution
obtained on the orthogonal mesh
withthe Gamma scheme the
solution on the non-orthogonal
mesh is unbounded with a
maximum value of 1.117. The
solution error is also slightlymore
than that obtained withthe
orthogonal mesh.

Solution error: 0.131

The solution obtained withthe
OPIS Gamma implementation is
bounded between zero and one.
This is achieved by OPIS through
ensuring that a bounded upwind
cell value is used in the three-point
stencil.

Figure 3.23: Results: Unstructuredmesh (Gamma &OPIS Gamma)

Figure 3.24 shows the solutions obtained with the Inter-Gamma and OPIS Inter-Gamma

schemes respectively. The solution obtained with the OPIS Inter-Gamma scheme is bounded.

For the OPIS calculations the weighted upwind value and the original donor and acceptor

values of the face were used in the calculation of the normalised donor cell value. OPIS ensures

an exact upper bound of one for the convected profile with lower bounds consistently

outperforming the orthogonal mesh results.

The results obtained with both the OPIS Gamma and OPIS Inter-Gamma schemes are

promising; proving that volume weighted interpolation can effectively be used to construct the

three-point stencils required for the implementation of high-resolution schemes.
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Inter-Gamma

OPIS Inter-Gamma

ITER 3447

TIllE 3 927e+000

GI!ll 1.136e+000
GlIIN-7 435..-002

,..
1 136e+000
1 049e+000
9.627..-001
8 763..-001
7.899..-001
7.035..-001
6.170..-001

1
5 306..-001

.. 4 442..-001
3 578..-001
2 713..-001
1.849..-001
9 850..-002
1 208e-002

-7 435..-002

ITER 3447

TIllE 3 927e+000

GI!ll 1. 000e+000
GlIIN-3.599..-007_ 1 000e+000, 9 286..-0018.571..-001

7.857..-001
7. 143e-001
6.429..-001
5.714..-001

1
5.000..-001
4.286..-001
3 571..-001
2 857..-001
2.143..-001
1 429..-001
7 143..-002

-3.599 007

Solution error: 0.036

The solution obtained with the
Inter-Gamma scheme on the
unstructured mesh is unbounded
with positive overshoots in the
vicinity of the interface. The
maximum solution value is 1.136.

Solution error: 0.028

The OPIS implementation of the
Inter-Gamma scheme produces a
bounded solution with a solution
error that is comparable with that
obtained with the Inter-Gamma
scheme on the orthogonal mesh.

Figure 3.24: Results: Unstructured mesh (Inter-Gamma & OPIS Inter-Gamma)

3.7.3 Case 2: Shear flow
The shear flow test case was developed by Rider and Kothe (1995) to address the incomplete

assessment of the integrity of volume tracking methods that can be made from simple

translation and rotation tests as a result of the lack of topology change in the solution. In test

case one the velocity field does not change the shape of the block wave profile during its

movement across the mesh. In realistic problems the situation is more complicated, involving

the stretching, shearing, break-up and merging of fluid regions (Rudman, 1997), yet even with

restrictive constraints on the velocity field the accurate convection of step functions on an

Eulerian mesh remains a difficult task. In this test case the presence of fluid shear is introduced

into the velocity field.
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A structured orthogonal and arbitrary unstructured mesh is used for the shear flow calculation.

The structured mesh is identical to the mesh used by Rudman (1997). Both meshes have

dimensions x, ZE[0, 1f]. The initial fluid distributions on both meshes is a circular shape with

radius 0.21f and origin at (0.51f,1f-O.2(l+1f)).

The structured mesh is divided into 100 x 100 cells in the x and z coordinate directions

respectively giving a total cell count of 10000. The arbitrary unstructured mesh consists of

10143 cells with minimum, maximum and average cell sizes of 2.843e-5 m3, 2.014e-4 m3and

9.730e-5 m3respectively. The two meshes together with the initial fluid distributions are shown

in Figure 3.25 where the volume fraction field values are set to one inside and zero outside the

circle.

Structured orthogonal (10000 cells) Unstructured hexahedral (10143 cells)

Figure 3.25: Test case 2 - Computational meshes

The cell volume distribution between the minimum and maximum cell volumes of the

unstructured mesh are shown in Figure 3.26.

The velocity field for this test case is specified as:

u =-sin(x)cos(z)
v =0

w=cos(x)sin(z)

(3.50)

The simulation is performed for a number of time steps, N, where after the velocity field is

reversed for the same number of time steps to return the fluid distribution to its original position

as shown in Figure 3.25. Four cases are considered namely N =250,N =500,N =1000 and
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N =2000. The results are compared with that of Rudman (1997). To ensure that the solution is

at the correct position after a specified number of time steps, the structured mesh was used to

calculate a time step size corresponding to a Courant number of 0.25. This time step size is

0.007855 seconds. The same time step size was used for the simulations on the unstructured

mesh resulting in a higher maximum Courant number on this mesh.

Figure 3.26: Cell volume distribution for unstructured mesh

The solution error is defined as:

all cells

L Ila;V;- a;V; II
iE= all cells" a°V,

L..J I I
i

(3.51)

where an is the solution after n time steps, aa the analytical solution and aO the original

condition. V; is the volume of cell i. The perfect convection scheme will result in a zero error

computed with Eq. (3.51) as the fluid distribution returns to its original position after reversal of

the velocity field.

The following figures show the results obtained with the Inter-Gamma scheme on the structured

orthogonal and arbitrary unstructured mesh after 2000 time steps with a flow reversal after 1000

time steps. The initial fluid distribution, the distribution before the flow reversal and the final

distribution are shown in each figure.
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Orthogonal mesh: Inter-Gamma

Initial N =1000 N =2000

Non-orthogonal mesh: Inter-Gamma

Initial N =1000 N =2000

Non-orthogonal mesh: OPIS Inter-Gamma

Initial N = 2000N = 1000

Figure 3.27: Shear flow results: N=1000

ITER 2000

TIKI: 1.571...001

GlllXl.001...0DD
G81IN-S.83'-004. 1.0018+000

'.2'~OOl
8.57'-001
7.86._001
7.14.8&-001
6.'33_001

I
U:;::;3gt
..287_001
3.571.-001
2.856-<101
2.14.08-001
1.42Se-DOl
7.0''-002

-5.839_004.

ITER 2000

TIME 1.5718+001

GU.I 1.3838+000
GKIII-1.5',_001

,.,
1.3838+000
1.2738+000
1 . 1638+000
1.0SJtH.OOO
9. 42Se-001
8. 32)e-OOl
7. 221e-001

_
',1190-001

. 5.017_001
3.U4-o01
2. 81Z-001
1.7108-001
6.082_002
..93, 002

-1.5''--001

ITER 2000

TIllE 1.571-001

GJI1J 1.0018+000
GIIIII-6.63'-OO"

JIll
1.001...000
'.2938-001
8.57&-001
7.862_001
1.1&7_001
6.432-001
5.7168-001

1
,..5.001_001

..28ie-001
3.570&-001
2.8SSe-OOl
2.13,...001
1.414_001
7.087_002

-6.6368-004

The following figures show the results obtained with the Inter-Gamma scheme on the structured

orthogonal and arbitrary unstructured mesh after 4000 time steps with a flow reversal after 2000

time steps.
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Orthogonal mesh: Inter-Gamma

Initial N = 2000 N = 4000

ITER 4000

no: 3.142...001

GHAI 1 _0018+000
aIM-I. 22ge-003. 1.0018+000

9.297_001
8.581-001
7.8658-001
7. 14ge-OOl
6. t33e-OOl
5.717_001

I
s.001...001
..2848-001
3.SU 00l
2.852_001
2. 1368-001
1.4208-001
7.038_002

-1.22""003

Non-orthogonal mesh: Inter-Gamma

Initial N = 2000 N = 4000

Non-orthogonal mesh: OPIS Inter-Gamma

Initial N = 2000 N = 4000

ITER 4000

TIKI 3.142_001

GKU 1.0028+000
GIIIK-l.278_003

..,
1.0028+000
'.JO~ODl
8.586_001'1..".-001
'1.1S3e-QOl
6 _U6e-QOl

I
. U!~gl

".287_001
J,5708-001
2.85:»-001
2.137-001
1.4208-001
7.0Je-tl02

-1.278e-QD3

Figure3.28: Shear flow results: N=2000

Figure 3.29 and Figure 3.30 show the results obtained by Rudman (1997) for the SLlC, Hirt-

Nichols, FCT-VOF and Youngs schemes for N = 1000 and N = 2000 respectively. All the

simulations by Rudman were performed on a 100 x 100 orthogonal mesh.
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SLlC Hirt-Nichols FCT-VOF Youngs 

Figure 3.29: Shear flow results: N= I000 (Rudrnan, 1997) 

SLlC Hirt-Nichols FCT-VOF Youngs 

Figure 3.30: Shear flow results: N=2000 (Rudrnan, 1997) 

Table 3.1 lists the solution errors obtained for the test runs performed with the Inter-Gamma and 

OPlS Inter-Gamma schemes as well as the errors obtained by Rudman (1997) on the structured 

mesh for the SLIC, Hirt-Nichols. FCT-VOF and Youngs schemes. 



-- 
Scheme N = 250 1 1=500 N=1000 N = 2000 

I 

Inter-Gamma 

(unstructured) 

(unstructured) 
2.78 x 10.~ 

2.72 x 10.' 3.30 x 10.~ 4.59 x 9.02 x 10 .~  

Hirt-Nichols 

FCT-VOF 

2.61 x 5.12 x l o 3  Youngs 8.60 x 1 0 ~ ~  3.85 x 10.~ 

Table 3.1: Solution errors for shear flow calculation 

The Simple Line Interface Calculation (SLIC) method of Noh and Woodward (1976) and the 

method of Youngs (1982) form part of the family of line techniques (Ubbink, 1997). These 

methods were developed for multi-fluid flow simulations. The SLIC method approximates the 

interface in each cell with a line parallel to one of the coordinate axis and assumes different fluid 

distributions for movement in the different coordinate directions. The fluid distribution in a cell is 

determined using the volume fraction distribution of the neighbouring cells. The method of 

Youngs (1982) is a refinement of the SLIC method and uses oblique lines to approximate the 

interface in each cell. Both methods are therefore based on the principle of geometric 

reconstruction, using the local flow velocities to move the reconstructed fluid distribution in each 

cell in a Lagrangian manner (Ubbink. 1997). These methods are implemented on meshes 

consisting of orthogonal cells and the geometric reconstruction of the fluid distributions in each 

cell is a complex exercise. Extending these methods for arbitrary unstructured meshes will be a 

daunting task with major computational overheads. 

The donor-acceptor method of Hirt and Nichols (1981) uses the acceptor cell volume fraction 

value to predict the volume fraction transported through the face between the donor and 

acceptor cells. Downwind differencing compresses the interface as seen from earlier examples 

using the Inter-Gamma scheme which has a downwind differencing component. Without careful 

control this approach will lead to unbounded volume fraction values. Boundedness is 

maintained by including information on the availability of fluid in the donor cell into the 

formulation. The method of Hirt and Nichols (1981) uses a nine cell stencil to calculate an 
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approximate interface normal vector. The interface is then approximated by a hor~zontal or 

vertical line based on the largest component of the interface normal Fluxes in a direction 

parallel to the interface is calculated using the upwind differencing scheme while fluxes in a 

direction perpendicular to the interface is calculated using the donor-acceptor method. The 

FCT-VOF method (Rudman. 1997) is an improved version of the donor-acceptor method that 

applies a combination of the upwind- and downwind differencing schemes to eliminate the 

diffusiveness of the upwind differencing scheme as well as the instability of the downwind 

differencing scheme. All the simulations performed by Rudman (1997) apply structured 

orthogonal meshes with no indication that these schemes can be used on arbitrary unstructured 

meshes. 

The solution errors of the Inter-Gamma scheme on the structured orthogonal mesh compares 

well with the other schemes listed in Table 3.1 except for the Youngs scheme which produces 

errors that are significantly smaller than the other schemes. While the solution errors for the 

Inter-Gamma scheme on the unstructured mesh differ significantly from the orthogonal mesh, 

there is a marked ~mprovement in the solution when using the OPlS implementation of the lnter- 

Gamma scheme. The solution errors of the orthogonal mesh and the OPlS implementation on 

the unstructured mesh are in good agreement except for the h' = 2000 case where the OPlS 

simulation breaks down. Even for this extreme case on the unstructured mesh, the OPE 

implementation produces a solution error that is less than half that of the standard Inter-Gamma 

implementation using Eq. (3.41). 

The improvement brought about by using OPlS is clearly seen from the results shown in 

Figure 3.27 and Figure 3.28. In Figure 3.28 the solution from the standard implementation of the 

Inter-Gamma scheme display sections where the tail breaks up into separate sections. In the 

OPlS Inter-Gamma simulation the tail stays intact and the solution compares well with that 

obtained on the structured orthogonal mesh. The OPlS Inter-Gamma solution is a significant 

improvement over the solutions obtained with the SLIC, Hirt-Nichols and FCT-VOF schemes on 

the orthogonal mesh. This is noticeable when comparing Figure 3.27 and Figure 3.28 with the 

results from Rudman (1997) shown in Figure 3.29 and Figure 3.30. The results from the SLIC. 

Hirt-Nichols and FCT-VOF show unacceptable levels of flotsam with severe distortion of the 

final fluid distributions. The OPlS Inter-Gamma solutions are free from any flotsam. Visually the 

results for the Inter-Gamma scheme on the structured mesh compares well with the results from 

the Youngs scheme. 



3.8 Closure 
The finite volume discretisation of the general transport equation for a scalar variable was 

presented in this chapter. The requirement for face value interpolation follows directly from the 

discretisation of the convection term of the transport equation. Since variables are stored and 

solved for at cell centres during a simulation, face values that are required in the discretised 

transport equations must be interpolated from cell values. Convection schemes are used for this 

purpose to approximate the variation of flow propert~es between cell centres in such a way that 

convection is accurately modelled. 

Examples were presented to show the significant influence of different convection schemes on 

the convection of a complex block wave profile in one dimensional flow. It was shown that 

schemes such as upwind differencing produces bounded results but at the cost of accuracy. 

introducing severe levels of numerical diffusion into the solution. Other schemes such as central 

differencing generate results with improved accuracy, but causes numerical dispersion resulting 

in unphysical oscillations in the solution. The use of three-point stencils for convection modelling 

was described and applied to the QUICK scheme which produces more accurate results than 

central and upwind differencing. 

The implementation of high-resolution schemes based on the normalised variable diagram was 

described and the issues involved in implementing these schemes on arbitrary unstructured 

meshes investigated. The concept of volume weighted interpolation was introduced as an 

alternative method to implement schemes based on the normalised variable diagram on 

arbitrary unstructured meshes. Volume weighted interpolation allows the use of convection 

schemes well suited for orthogonal meshes on arbitrary unstructured meshes. The OPlS 

interpolation stencil can be used with any convection scheme that requires a three-point stencil. 

The advantages of volume weighted interpolation for arbitrary unstructured meshes were 

demonstrated by means of test cases involving rotational and shear flow. The volume weighted 

interpolation methodology is fully three-dimensional despite the fact that all the example 

calculations were performed on two dimensional meshes. In the following chapter the uses of 

volume weighted interpolation within the finite volume method is extended to include pre- and 

post-processing tasks. 



4. Volume weighted interpolationfor
pre- and post-processing

4.1 Introduction
The use of volume weighted interpolation for the modelling of convective transport was

described in Chapter 3. In this chapter additional uses of volume weighted interpolation are

considered. Not only does volume weighted interpolation present a means to construct

interpolation stencils for convection schemes, it is also a useful tool for pre- and post-

processing. Some of the techniques described in this chapter were used in the case studies

presented in Chapter 3. In some of the examples in this chapter, the dependent variable is the

volume fraction used in two phase flow simulations to identify different fluids or fluid phases

(Ubbink, 1997).

4.2 Pre-processing
The initialisation of scalar volume fraction fields is a problem that is often encountered during

two-phase flow simulations.

Known initial
distribution of
fluid 2

a=O

a=l

Known initial
distribution of
fluid 1

Figure 4.1: Initial fluid distribution

The initial location of the two fluids must be accurately specified, for example the location of a

horizontal liquid gas interface or the location of a liquid droplet within a gas. This process

requires the user to initialise a scalar volume fraction value for each cell in the mesh. When

using orthogonal meshes and simple horizontal interfaces, this task is trivial, however the mesh

is often complex and unstructured with complex fluid distributions. In order to initialise a fluid

distribution on a mesh, the volume fractions of the cells that are partially filled, Le. those cells
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located at the interface between the two fluids or fluid phases must be accurately specified.

Figure 4.1 shows an example of a circular fluid distribution on an orthogonal mesh which

represents the initial location of one of the fluid phases, in this case fluid one.

One method to approximate the volume fraction field is to consider the locations of the cell

centres in relation to the circular fluid distribution shown in Figure 4.1. When the cell centre is

located within the circular distribution region of fluid one, its value is set equal to one, otherwise

the value is set to zero. The result is a field of ones and zeros as shown in Figure 4.2. This

initialisation is not conservative. The initialised field will therefore not necessarily contain the

same volume of fluid one as the initial analytical fluid distribution.

O<a<l

a=O

a=l

Approximated distribution of fluid 1 Volume fraction distribution

Figure 4.2: Approximated fluid distributions

A more appropriate initialisation method is to calculate the volume fractions of the cells located

in the vicinity of the interface between the two fluids or fluid phases using the available

geometric information of the computational mesh and the initial fluid distribution. In doing so the

correct volume fractions are calculated for cells containing a mixture of fluid one and two.

Figure 4.2 shows how the interface between fluid one and two is approximated in accordance

with the volume fractions values of fluid one in cells containing both fluids. This method of

initialisation is considered to be the most appropriate since it is both conservative, i.e. no loss of

fluid and consistent with the finite volume method where the cell value represents the average

value of the variable for that cell. A problem with this approach is the difficulties associated with

the calculation of the volume fractions in the vicinity of the interface.

Volume weighted interpolation addresses this problem effectively. Apart from the computational

mesh generated for the flow solution, a second mesh is created which represents the shape of
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the initial fluid distribution. The boundaries of this second mesh, referred to as mesh A therefore

coincides with the boundaries of the fluid distribution of fluid one. A conservative volumetric

mapping is performed from mesh A to the mesh used for the flow simulation, referred to as

mesh B. The interpolated cell values of mesh B then equals the overlapped volumes of mesh A

onto mesh B; therefore, if a cell in mesh B is not overlapped by mesh A, the cell value will be

zero. When a cell in mesh B is completely overlapped by mesh A, the cell value will be one. A

partial overlap of a cell in mesh B with mesh A results in a cell value between zero and one,

consistent with the volume fraction overlapped between the cell and mesh A.

Mesh B

Combined mesh

Mesh A

+

GJW: 1. 000e+000
GJlIN O. 000e+000

fill'
1. 000e+000
9.286e-001
8.571e-001
7.857e-001
7.U3e-001
6.429e-001
5 . 7Ue-00l

I
. 5.000 001

.. 4.296 001
3.571e-001
2.957 001
2.U3e-001
1.429e-001
7 . 143e-002
O.OOOe+OOO

Figure 4.3: Combined mesh with volume overlapping calculation

Volume weighted initialisation

As an example a circular droplet is mapped onto an unstructured hexahedral mesh. The

geometry of the droplet is defined by creating mesh A in the shape of the droplet. Mesh A may

have an arbitrary shape to accommodate the initial distribution of fluid one. The result of the

volume overlapping calculation is the field of volume fraction values shown in Figure 4.3. A

calibrated colour scale indicating the volume fraction values between zero and one is also

shown in the figure.

--
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The properties of convection schemes are often tested using scalar convection test cases

(Rider and Kothe, 1998), (Rudman, 1998). In many of these cases the analytic solution is

known because of the simple nature of the problem. Volume weighted interpolation is therefore

an ideal method to map known analytical fluid distributions onto computational meshes in order

to compare simulation results with analytical solutions. Figure 4.4 and Figure 4.5 show

additional examples of volume fraction initialisations on structured orthogonal and unstructured

meshes. In each example mesh A is superimposed on to mesh S, showing the overlapping

regions.

Figure 4.4: Initialisation examples - Annulus
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GIIAX 1. 000e+000
GMIH O. 000e+000

_ 1. 000e+000
r-'! 9. 286e-001

8.571e-001
7.857e-001
7.143e-001
6.429e-001
S.714e-OD1

1
5, 000_001
".296e-001
3.571e-001
2.857&-001
2.143e-001
1. 429e-OOI
7.143e-002
O,OOOe+OOO

GXAX 1. oaQe+ooo
CHIN O. 000e+000_ 1.000e+000';. 286e-001

8.571e-001
7.857e-001
7.143e-OOI
6.429e-001
5.7He-OOI

1
5.000-001
".286e-001
3.571e-OOI
2.967e-001
2.143e-001
1. 429e-001
7 . 143e-002
O.OOOe+OOO

GKAX 1.000e+000
GMIN O.OODe+OOO

_ 1. 000e+000
~ 9. 286e-OOl

8.571e-001
7.857&-001
7.143e-001
6.429_001
5.714e-001

1
5.000_001
.. .286e-001
3.571e-OOI
2.957&-001
2.143e-001
1.429e-001
7.143e-002
O.OOOe+OOO
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Figure 4.5: Initialisation examples - Rectangle

GIL\I 1. 000e+000
GKIH O. 000e+000_ 1.000...000

9. 286e-001
8.571e-001
7.951e-001
7.1&3e-001
6.429e-001
5.714e-001

1
5.000_001
,( . 296e-001
3.571e-OOl
2.857e-001
2.143e-001
1.429e-001
7.143_002
o . 000...000

GlIAl 1.000e+000

GIIIH O. 000e+000_ 1. 000...000
=r 9.286e-001

8.571e-001
7.857e-001
7.143e-001
6.429e-001
S.714e-001

1
5.000_001
4.286_001
3 571e-001
2.857&-001
2.143e-001
1.429e-001
7. U3e-002
0.000...000

GKll 1.000e+000
GlIIN 0.000...000

... ~m::~~~
8,571e-001
7.857e-001
7.143e-001
6.429e-001
5.714e-001

1
5.000_001
".286e-001
3.571e-001
2.857_001
2.143e-001
1. 429_001
7.143e-002
0.000...000

Any shape constructed using mesh A can be mapped onto mesh a, thereby greatly simplifying

the initialisation of complex volume fraction fields for structured and unstructured meshes.

Although the examples shown are volume fraction initialisations, other variables, for example

momentum, can also be mapped conservatively from one mesh to another through volume

weighted interpolation. Volume weighted interpolation to a great extent simplifies the process of

mapping variables onto complex meshes.
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4.3 Post-processing
4.3.1 Mapping solutions onto different meshes
Volume weighted interpolation can also be utilised as a post-processing tool. It is often required

to produce graphs of simulation results along straight lines across a mesh. It is a simple task to

create graphs of results along mesh lines when modelling problems on structured orthogonal

meshes where cell centres are evenly spaced. This task becomes more challenging when

unstructured meshes are used since the cell centres are not generally located in straight lines or

evenly spaced. Volume weighted interpolation can be used for the post-processing of results on

structured and unstructured meshes. With a solution available on a structured or unstructured

mesh, a conservative mapping onto another mesh, which is more suitable for post-processing

purposes, can be performed.

There are no requirements for the mesh onto which the results are mapped with regard to the

cell size and location, but as a rule of thumb it is recommended that this mesh consist of cells of

approximately the same size as the cells of the mesh that was used in the calculation. The use

of cells that are too large will cause the mapped solution to smear across the mesh while cells

that are too small will result in stepped mapping results. The volume weighted interpolation

algorithm is robust and guarantees a conservative mapping between the meshes. Two

examples are presented to illustrate this concept for post-processing.

Numerical values Scaled colour map

7 I 8

GI!U 1. 000...002
GIIIK 0.000...000

n 1.000...002

::~~t:::g81
7.857...001
?.U30+001
6.429...001
5.714...001

_

5.000...001
4.286...001
3.571...001
2.857...001
2.143...001
1. 429...001
7.143"'000
0.000...000

6

3

Figure 4.6: Example 1- Solution

Figure 4.6 shows a mesh consisting of nine cells. The cell values are initialised with the

numerical values as shown. These values could for example represent a temperature

distribution. The numerical values represent the cell values per unit volume. The representative

value for the mesh, If/, is calculated by multiplying the cell value with the cell volume and

adding together the values for all the cells. For this example the cell volume equals 1/9 with the
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total mesh volume equal to one. The representative value for the mesh is 50 as shown in the

following calculation.

0+25+25+50+50+50+75+75+100
~= 9 (4.1)

=50

The results were mapped onto a 2 x 2 and 4 x 4 mesh using volume weighted interpolation. The

results are shown in Figure 4.7 with variable values coloured according to the calibrated colour

scale for each mesh.

2x2 4x4

GIUI: 8. 333e+-001
GIIIK 1. 667_001

n 8.333_001
7.857_001
7.3810+001
'.905e+OOI
6.429_001
5.952_001
5.476_001

_
5.000_001
4.524e+001
oI.DUe+OOl
3.571_001
3.095_001
2.619_001
2.143_001
1. 667_001

13 14 15

8

GIIU 1. 000_002
GIIIK 0.000_000

n1.000_002
9.286_001
8.571e+OOl
7.857_001
7. U3e+OOl
6.429_001
5.714_001

_
5.000..001
4.286e+OOl
3.571..001
2.857..001
2.143_001
1.429..001
7.143..000
0.000..000

12
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Figure 4.7: Example 1 - Mapped results

The interpolated results for the 2 x 2 mesh are as follows:

Table 4.1: Example 1- 2 x 2 mesh

From Table 4.1 the representative mesh value can be calculated using Eq. (4.1). The cell

volume equals 1/4.

16.66666 + 49.99999 + 49.99999 + 83.33333
~= 4 (4.2)

=50
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Cell nr Mapped value
1 16.66666

2 49.99999

3 49.99999

4 83.33333



It should be noted that conservation is satisfied; however, since the 2 x 2 mesh used in the 

mapping is coarser than the original 3 x 3 mesh, the available information is smeared across the 

mesh. The results for the 4 x 4 mesh are as follows: 

Again the representative mesh value is 50. Conservation is therefore satisfied. In this example 

the boundaries of the original and mapped meshes coincides. This is however not a 

requirement. Any two overlapping meshes may be used. It is therefore possible to create 

meshes in regions where results are required for post-processing purposes and interpolate to 

those meshes. 

The second example considers the scalar convection test case that was described in Chapter 3. 

A block wave profile is convected in a rotational velocity field using a time dependent scalar 

convection equation without any physical diffusion. Convection is modelled using the Gamma 

differencing scheme. An arbitrary unstructured computational mesh was used in the calculation. 

In the first part of this example the solution is interpolated from the hexahedral mesh onto 

progressively fmer orthogonal meshes Figure 4.8 shows the flow solution obtained on the 

unstructured hexahedral mesh as well as the interpolated results for the three orthogonal 

meshes. Map A consists of three blocks of 10 x 10 cells. Map B consists of three blocks of 

20 x 20 cells and map C consists of three blocks of 40 x 40 cells. In all three examples the 

interpolation is conservative. One example of an application where this type of interpolation IS 

useful is in the construction of three-dimensional contour maps of results using applications 

suitable for structured data sets The results are interpolated from the mesh used in the 

simulation to the mesh or meshes suitable for post-processing purposes. 



Flow solution

ITER 3500
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Figure 4.8: Example 2 - Orthogonal mesh mapping

In the second part of this example graphs are created along several radial stations across the

mesh. This is achieved by constructing orthogonal meshes consisting of rows of orthogonal

cells in the locations where the results should be graphed.

Flow solution

ITER 3500

GlIAl 1. 000...000
GUN 0,000...000_ 1.000e+0009.286e-OOI

8,511e-00l
7.857e-001
7,143e-00l
6. (29e-001
5.71(e-001

1
5,oooe-00l
(.296e-001
3.571e-001
2 857e-001
2.143e-001
1.429e-001
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Radial map

R1
7

R6

R5

/~4R2 R3

Figure 4.9: Example 2 - Radial map with 37 cell stencils
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Figure 4.9 and Figure 4.10 show how these cell blocks are created along the radial directions.

The results of the flow solution are interpolated to this radial mesh and the interpolated results

used to construct graphs of the solution along the radial lines. For reference purposes the radial

mesh blocks are numbered from R1 to R6. The mesh in Figure 4.9 consists of 37 cells along

each radial cell block, while the mesh in Figure 4.10 consists of 19 cells along each radial cell

block.

Flow solution

ITER 3500

GJL\.X 1.000e+000
CHIN O. 000e+000_ I. OOOe+OOO, , I). 286e-001

8.571e-OOl
7.857e-OOl
7.143&-001

UH::881 IR1

1
5.oooe-ooI
".286e-001
3.571e-001
2.857e-001
2.143e-001
1.429e-001
7. U3e-002
O.OOOe+OOO

Radial map

Figure 4.10: Example 2 -Radial map with 19 cell stencils

Figure 4.11 shows the graphs generated from the mapped results along the radial mesh lines.

Graphs such as these effectively show trends in solutions along any chosen line or curve. Note

how the radial mesh, consisting of 19 cells per radial cell block, smoothes the solution in

comparison with the 37 cells per radial cell block, that consists of smaller cells.

Volume weighted interpolation for post-processing addresses both the problems of unevenly

spaced data points and cell centres that are not located in straight lines. Volume weighted
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Figure 4.11: Example 2 - Graphs of mapped results



interpolation can also be used on Cartesian meshes when results are required along lines that

are not aligned with the main coordinate directions, for example oblique lines.

I
i

-0 0 . 0 ~~ ~ ~ J -CJ~..: . .. ~~~: ~. .~.. ~
I I I I .

~ B t::::$ C

Figure 4.12: Influence of cell size on mapped results

Figure 4.12 demonstrate how the size of a mapped cell influences the result of a volume

weighted interpolation. Three cells are shown with a linear variable distribution. Also shown are

horizontal lines indicating the average value of each cell. Five examples are shown in the figure

where different mapped cell sizes were used to map results from the base mesh, each with an

increased size as indicated. In each of these examples the interpolated mapped cell value is

shown as obtained when sliding the mapped cell in the direction indicated and at each location

plotting the interpolated mapped cell value superimposed over the original solution. The

mapping remains conservative regardless of the chosen mapped cell size, however, the profile

of the mapped solution changes. In example D and E, the mapped solution coincides with the

original distribution. In the other examples the mapped solution consists of partly the average

cell value of the original base cell as well as a mixed value consisting of a combination of the

neighbouring base cell values.

The example illustrates the importance of selecting an appropriate mapped cell size when using

volume weighted interpolation for post-processing purposes. To achieve this, the sizes of the
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base mesh cells in the vicinity of the point where the weighted value is sought, should be used

in the construction of the mapped cell. This process can be automated to relieve the user from

having to construct appropriate mapped cells for post-processing purposes.

As a final example of volume weighted interpolation for post-processing purposes, the solution

on the hexahedral mesh is mapped onto a cylindrical mesh. The result is shown in Figure 4.13.

Flow solution Cylindrical map

ITER 3500

GKll 1 OOOe+OOO
GIIIN O. 000e+000

_ 1. OOOe+OOO9.286 001
8.671e-001
1.857e-OOl
7.143e-001
6.429e-001
5.714e-001

I
. 5.000 001

... 4. 286e-001
3.571e-OOI
2.857e-001
2.143e-001
1.42ge-OOl
7. U3e-002
O.QUOe+ODO

Figure 4. 13: Example 2 - Cylindrical map

The examples presented in this section demonstrate the versatility of volume weighted

interpolation as a tool for pre- and post-processing in the finite volume method.

4.3.2 Calculationof mass fluxacross surfaces
It is often required to calculate mass flux through a surface as part of the post-processing that is

performed on the results of a simulation. With the collocated variable arrangement, all the

dependent variables including velocity vectors are calculated at cell centres while mass flux is

calculated across the control volume faces in order to ensure the local conservation of a flow

quantity on a control volume basis.

To be able to use control volume faces for mass flux calculations during post-processing, the

CFD code must provide access to this information and the control volume faces must be located

at the positions in the mesh where mass flux results are required. When using orthogonal

meshes the control volume faces are aligned to form surfaces through the mesh that are ideal

for mass flux calculations. On complex non-orthogonal meshes, surfaces for mass flux

calculations are not generally available.

Volume weighted interpolation can be used for accurate approximations of mass flux through

surfaces. Surface cells are created which represents the surfaces where mass flux must be
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calculated. Surface cells are thin three-dimensional cells representing two dimensional surfaces 

that overlap the computational mesh. 

During post-processmg the velocity vectors at the centres of the surface cells are calculated 

through a process of conservative momentum mapping. The flow areas of the surface cells 

together with the velocity vectors at the centres of the cells, are then used to calculate an 

approximate mass flow through the surfaces by means of Eq. (4.3). 

Mass flow calculations based on cell centre velocities are only approximate since conservative 

fluxes are computed across control volume faces in the finite volume method. When thin surface 

cells are used the error in calculation will be small and the accuracy acceptable. 

After a simulation has been completed on a given computational mesh, surface cells are 

created for the purpose of mass flow calculations The momentum from the solution on the 

original mesh is mapped to the surface cells by means of conservative volume weighted 

interpolation. The velocities at the centres of the surface cells are calculated from the 

interpolated momentum values. Momentum is interpolated on a component basis using the 

three Cartesian velocity components, u , r and M: from the solution. 

In Eq.(4.4) 4, 1: and P", are the volume weighted momentum values of the surface cell 

computed using the u , v and HI velocity components respectively n IS the ratio of volume 

overlapping between the base mesh cell 17 and the surface cell V is the total number of cells 

overlapped by the surface cell. V is the volume of the base mesh cell n 

A volume weighted density must also be computed for flows with variable density in order to 

calculate the velocity components from the volume weighted momentum components. 



The velocity components of the surface cells are obtained by dividing the momentum

component for that velocity component by the surface cell volume and density.

u_~ =(;~)_~

v_w, =(;v)_06'

w_w, =(;v)_w,

(4.6)

Once the velocities are available the mass flux can be calculated using Eq.(4.3). The concept is

demonstrated in the following examples:

Figure 4.14 shows a section of a pipe that is divided into two base cells. The velocity, density

and volume are shown for each cell. The velocity for cell number two was calculated so that the

mass flow through the pipe is constant. The momentum for each cell is calculated by multiplying

the cell mass with the cell velocity.

P=mu

=(pV)u
(4.7)

Cell number three overlaps cell one and two with volume fractions of 0.2 and 0.8 respectively.

These volume fractions are used in Eq. (4.4) to calculate the volume weighted momentum of

cell three.
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Figure 4.14: Mass flow calculation -Pipe section



Eq. (4.5) is used to calculate the volume weighted density of cell three 

The volume of cell three can either be calculated in the same way as the density or will be 

known beforehand from the dimensions that were used to create the cell. 

V, = a i y + a 2 V ,  

= 2.86m' 

The velocity for cell three is calculated using Eq. (4.6). 

As a check, the velocity of cell three is used to calculate the mass flow by means of Eq. (4.3) 

The calculated mass flow satisfies mass conservation 

Incompressible flow through a nozzle is considered in the following example. Figure 4.15 shows 

a section of a convergent divergent nozzle, meshed with an arbitrary unstructured mesh 

consisting of hexahedral cells. The inflow and oufflow areas of the nozzle are 0.8 m x 0.1 m and 

the throat area 0.4 m x 0.1 m. Since the flow is symmetrical around the centreline of the nozzle, 

only the bottom half of the nozzle is used in the simulation with the centreline represented by a 

symmetry boundary condition. 

Water enters the domain at a speed of 1.3 rnls and a mass flow of 52 kgls (bottom half of 

nozzle). The water density is a constant 1000 kg/m3. The boundary conditions as well as a 

contour plot of the velocity magnitude calculated during the simulation are shown in Figure 4.15. 

The solution converged after 107 iterations with a specified convergence level of 0.0001. 
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Figure 4. 15: Mass flow calculation - Nozzle
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Three surface cells are created in the flow domain to demonstrate the mass flow calculation

procedure. Surface cell one is located in the throat area of the nozzle while cell two and three

are located in the outlet area, together covering the entire cross sectional area of the outlet as

shown in Figure 4.16. Each surface cell is created with a thickness of 0.0001 m.

From inspection the mass flow through surface cell one must be 52 kg/s. The sum of the mass

flows through cell two and three must also equal 52 kg/s. The mass flow through the three

surface cells is obtained by multiplying the cross sectional area of the cells with the velocity

calculated from the interpolated momentum values of each surface cell.

Figure 4.16 shows the results obtained for each surface cell. From these results it is evident that

the mass flow calculation procedure, based on volume weighted interpolation, is accurate. The

method is not limited to single surface cells. Surface cells can be created to form any surface

across a domain. The mass flow through the surface is obtained by summing the mass flows

through the surface cells defining the surface. In the following example a closed surface is used

for mass flow calculations. In this example the surface area vector for each surface cell is

directed outwards. In the absence of mass sources within the closed surface the net mass flux

across such a closed surface should be zero.
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Surface cells

Cells:
Area for mass flow calculation
Thickness of cells in flow direction

Results:

u\ =2.599m / s

u2 = 1.677m/ s

u3 =O.927m/ s

3

: 0.2m x 0.1m
: 0.0001m

~ =51.996kg / s

m2 = 33.540kg / s

~ =18.540kg / s

m2 + m3 = 52.08kg / s

Figure 4.16: Results of nozzle mass flow calculations

Table 4.3 lists the 24 surface cells forming the closed annular surface shown in Figure 4.17.

Also listed in the table are the velocity components of the surface cells, calculated by means of

a conservative momentum interpolation from the solution mesh to the surface cells. The

components of the area vectors of each surface cell are also shown.

~-6 @ x

';"-18e zl
~9-24 @ !

Figure 4.17: Closed curve surface mesh
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The mass flow through each surface cell is calculated using Eq. (4.3) and added together to 

give the net mass flow through the closed surface. The mass flows shaded in grey in the table 

for cells 7 to 18 is negative, indicating an inflow through the surface, while the positive mass 

flows of the remaining cells indicates an outflow across the surface. The sign of the calculated 

mass flows originates from the outward oriented surface area vectors for the closed surface. 

The sum of the mass flows through the surface cells is approximately zero as required for mass 

conservation. 

4.4 Closure 
In this chapter the versatility of volume weighted interpolation for pre- and post-processing were 

demonstrated. As a pre-processing tool volume weighted interpolation greatly simplifies the 

initialisation of variable fields onto complex meshes and as a post-processing tool, volume 

weighted interpolation allows data to be interpolated from complex meshes onto simplified 

meshes for the purpose of data analysis. Volume weighted interpolation for mass flow 

calculation was described as well as examples presented to demonstrate how this tool can be 

utilised to enhance the capabilities of the finite volume method. The research is summarised 

and concluded in Chapter 5. 

92 



5. Conclusions 

5.7 Summary 
The work presented in this thesis describes a novel interpolation technique, applying the finite 

volume discretisation method and volume weighted interpolation. This technique allows the 

numerical simulation of convective transport using high-resolution convection schemes on 

arbitrary unstructured meshes. The need for and importance of interpolation methods for the 

finite volume method was explained in Chapter 1. The need for interpolation originates from the 

fact that variables are located at discrete locations throughout the computational domain. While 

variables are located and solved at cell centres, the discretised transport equations require the 

availability of variable values at other locations for example cell faces for the evaluation of flux 

terms. 

The concept of volume weighted interpolation was introduced in Chapter 2 as an alternative 

method of interpolation for the finite volume method. The most notable advantage of using 

volume weighted interpolation is that the interpolation is conservative and therefore consistent 

with the finite volume method where conservation is maintained at a control volume level. In 

order to perform volume weighted interpolation, the calculation of the common volume between 

two polyhedral cells is required. An algorithm to perform this calculation was described in 

Chapter 2. It was demonstrated by means of examples how variables can be interpolated 

conservatively between various types of overlapping meshes. 

In Chapter 3 the application of volume weighted interpolation was extended to the modelling of 

convective transport on arbitrary unstructured meshes. High-resolution convection schemes 

were implemented using the Orthogonal Projection Interpolation Stencil (OPIS). Test cases 

were presented to demonstrate the capabilities of OPIS where three-point stencils were 

constructed to implement high-resolution convection schemes on arbitrary unstructured 

meshes. OPIS provides a natural means to calculate bounded upwind cell values required for 

three-point stencils. 

In Chapter 4 the focus was on the application of volume weighted interpolation for pre- and 

post-processing tasks on complex meshes. Complex field initialisations can be performed by 

mapping variables from one mesh onto another. Volume weighted interpolation can also be 

applied effectively to calculate mass flows across surfaces during post-processing. 

Volume weighted interpolation is a powerful, versatde and robust tool with extensive application 

capabilities within the finite volume method. 

93 



5.2 Opportunities for future research 
The application of volume weighted interpolation for the finite volume method should be 

explored further to investigate and harness all the benefits that it has to offer. The following 

areas were identified for future research opportunities in this field. 

In principle volume weighted interpolation can be used to calculate values at any position within 

a mesh. This is achieved by creating a mapped cell around the point where the value is 

required. The shape of the mapped cell can for example be a sphere in a three-dimensional 

mesh. The solution is then interpolated to the mapped cell by means of volume weighted 

interpolation. The challenge is to automate the process of creating an optimum sized mapped 

cell around the point where the value is sought, in order to perform an optimum weighting from 

the underlying base mesh cells. The algorithm should be able to calculate the optimum mapped 

cell size from the underlying base cell sizes to produce an accurate interpolated value at that 

specific location in the mesh. With a tool like this the value of a variable at any point in the 

domain can then easily be calculated during post-processing by simply specifying the location 

where the variable value is required. 

In the calculations presented in Chapter 3, the OPE scheme was applied to all the inner faces 

in the mesh. To improve the computational efficiency, it is possible to develop an algorithm that 

can check the mesh construction so that volume weighted interpolation is applied only in those 

regions where it is required, i.e. in those regions of a mesh that is non-orthogonal or where the 

skewness error creates a problem due to the presence of highly deformed cells. 

The OPlS scheme constructs regular cells orthogonal to a face, yet other possibilities exist and 

should be investigated. It is for example possible to construct regular meshes that are aligned 

with velocity vectors to allow interpolation along streamlines to be performed. The main issue 

with this method is the re-meshing required with changes in the velocity field during a 

simulation 

OPlS should be implemented and tested on tetrahedral meshes. The concept of using volume 

weighted interpolation to construct three-point stencils on these meshes should work well by 
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involving additional cells for face value interpolations. As described in Chapter 3 the method of 

projecting an upwind cell by using the gradient of the dependent variable of the donor cell of a 

face does not work well for this type of mesh. The reason for this is the calculation of the donor 

cell gradient which involves only the information from the direct neighbour cells of the donor cell. 

By taking the values of additional cells into consideration through volume weighted interpolation, 

improved three-point stencils can be constructed for modelling convection. 

Volume weighted interpolation can also be applied to other areas of the finite volume method. 

for example, in gradient calculations. The different application areas should be thoroughly 

investigated and tested to ensure that the full benefit of the technique is harnessed. 

5.3 Conclusions 
From the work presented in this thesis it is evident that volume weighted interpolation has a very 

important role to play in the finite volume method. The ability to interpolate variables 

conservatively between meshes provides many possibilities, for example, the coupling of finite 

volume codes with other software packages that requires variable values at locations other than 

where they are available in the finite volume code. The advantage of the finite volume method 

over other methods, such as the finite element method, is that the finite volume method is 

conservative on a control volume level. Volume weighted interpolation is consistent with this 

conservative characteristic when it is applied to interpolate variables between overlapping 

meshes. The volume weighted interpolation methodology therefore fits well within the 

framework of the finite volume method. The tests cases and examples presented in this thesis is 

confirmation that volume weighted interpolation is a valuable tool for the finite volume method 

that should be added to the knowledge pool, further developed and utilised for the benefit of 

computational fluid dynamics. 
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