Educational software for understanding integrated blood glucose effects

Tarina van Zyl

20545320

Dissertation submitted in fulfilment of the requirements for the degree Master of Engineering in Chemical Engineering at the Potchefstroom campus of the North-West University.

Supervisor: Prof. Leon Liebenberg

November 2011
Summary

The World Health Organisation considers diabetes mellitus as a fast-growing epidemic. The number of documented cases increase each year; together with the number of patients hospitalised due to complications associated with the disease. These long- and short-term complications can include blindness, kidney failure, circulatory diseases, neuropathy, to name a few.

The management of diabetes is a lifelong procedure that can become very expensive. Often patients lapse in their efforts. The education of diabetics, family members and care providers is therefore essential to ensure that lifelong accurate, continuous blood glucose control is achieved. This can decrease the occurrence or severity of complications.

Simulation models describing the human blood glucose system became more popular as the twenty-first century approached and computers became part of everyday life. These models are often used to educate diabetics rather than using conventional educating methods. Several such models exist, however, none offers an integrated approach to incorporate all the external and internal influences on the blood glucose system. These models were developed to simulate blood glucose response to several of these influences, but not in an integrated manner.

To fill this gap, an integrated simulation model was developed that incorporates the equivalent teaspoons sugar (ets) concept. ets is a newly developed generic energy unit used to determine the energy value of food, beverages, exercise, stress as well as the regulation and counterregulation hormones. This simplifies the mathematical model of the blood glucose system and is also easy for diabetics to implement in their everyday lives.

This led to the development of the educational simulation model, Edutool diabetes simulator, that incorporates the ets concept. The Edutool is an educational program for people with diabetes, non-diabetic people, care providers and medical professionals. The mathematical model behind the simulator has been experimentally validated. Due to the many simulation models that currently exist, it is essential to validate the model to determine its user-friendliness and educational value.
This experimental validation and evaluation of the Edutool was questionnaire-based and the results statistically analysed. The validation of the questionnaire was done by three experts in the field of diabetes and endocrinology. Three questionnaires were developed to evaluate the educational value of the Edutool, assess its ease-of-use and compare it to another educational diabetes simulator (AIDA).

A quick-start guide presentation was also developed to assist the user in understanding the basic diabetes and blood glucose concepts as well as show the user how the Edutool works. This presentation was developed so that a primary school child would understand the concepts being explained. The next step was to set up the trials.

The trials took place at Curro Hazeldean Primary and Curro College Hazeldean, both situated in Pretoria. A trial protocol was set up to explain the exact order of events in the trial. Information release forms were also required for all minors participating in the trials. These were signed by parents or guardians of the participants and returned prior to the start of the trial.

In the primary school trial, the increase in total test results was 40% after watching the quick-start guide presentation and working on the Edutool. After working on the AIDA simulator, all participants preferred the Edutool. The secondary school trial was also very successful. The results showed a 35% increase in the total test score. In this group all the participants also preferred the Edutool to the AIDA program. For both trials the p-value was smaller than 0.001, which indicates that the increase in total test scores for the trials are statistically significant.

From these results it can be concluded that the Edutool, together with the quick-start guide presentation, has improved the knowledge of the participants in both trials significantly. This validates the educational value of the Edutool. The ease-of-use of the program was also validated by the results of the open-ended questions, and therefore the Edutool can be regarded as a validated educational software program.
Acknowledgements

I thank TEMM International (Pty) Ltd and MCI (Pty) Ltd who sponsored my studies.

It is a pleasure to have the opportunity to thank those who made this thesis possible. I owe my deepest gratitude to Prof. Leon Liebenberg for his guidance, patience, expertise, encouragement and time. This thesis would never have realised if it was not for Prof. Liebenberg. I would also like to thank the CRCED Pretoria for the opportunity to complete my Masters degree under their guidance, especially Prof. Edward H Mathews who made everything possible.

I owe a great deal of gratitude to several people for their technical assistance prior to the trials, during the trials and throughout the year. Dr Ruaan Pelzer: thank you for your patience and time in explaining everything that I did not understand, helping me with the questionnaires, and also all your work on the Edutool and the quick start presentation. Chapter 4 is based on work by Prof. Mathews and Dr Pelzer.

Oswald van Ginkel also did a great deal of work on the Edutool and the quick-start guide presentation. Thank you, Oswald, for your patience while I delegated the necessary improvements for the Edutool and all the help with the video clips and voice recordings for the presentation. I greatly appreciate everything you did. I would also like to thank Rentia Pieters for doing the voice recordings for the presentation. Thank you for all the time you spent helping us and your patience during this time.

I would like to thank the Mr Roux Viljoen of Curro Hazeldean Primary School for facilitating the trials and organising the children, the classroom and the time for the trial.

There were also several people involved in helping make the secondary school trial a success. Mrs Louise Werner and Mr Wayne van Zyl from Curro College Hazeldean. Thank you for helping with the organisation of the trial, the classroom, time and the children. I would also like to thank Mr Patrick Sefoka for his technical assistance during the trials. Thank you all for your assistance and lending your expertise, it has contributed a great deal to the success of this project.
I owe a great deal of gratitude to several experts in the field of diabetes and endocrinology. Firstly I would like to thank Mr Michael Brown from the CDE in Johannesburg for his time, efforts and expertise in validating the pilot questionnaires. Dr Jacomien de Villiers: thank you very much for helping me on such short notice and also validating the questionnaires for the trials.

I owe thanks to Dr. Cor Botha; Chapter 3 is based on his doctoral thesis. Thank you for the data from your PhD thesis on the validation and verification of the mathematical model behind the Edutool. Your work is the basis for this study and therefore it would not have been possible without you.

I am in great debt to Dr Suria Ellis form the School of Computer, Statistical and Mathematical Sciences of the North-West University, Potchefstroom campus. I would like to thank her for the help with my statistical analysis of the data on such short notice.

Finally I would like to thank my husband, Izak van Zyl, for his patience and encouragement during this year. Thank you also to my friends and family for the support you have given me my entire life and especially during this project.
Table of contents

SUMMARY ... I

ACKNOWLEDGEMENTS .. III

TABLE OF CONTENTS ... V

LIST OF SYMBOLS .. VII

GLOSSARY .. IX

ABBREVIATIONS ... XIV

LIST OF FIGURES .. XVI

LIST OF TABLES .. XIX

CHAPTER 1 INTRODUCTION ... 1

1.1 INTRODUCTION... 2
1.2 PURPOSE OF THE STUDY ... 2
1.3 SCOPE OF THE STUDY .. 3
1.4 REFERENCES .. 4

CHAPTER 2 LITERATURE SURVEY .. 5

2.1 INTRODUCTION... 6
2.2 HUMAN ENERGY SYSTEM .. 6
2.3 DIABETES MELLITUS ... 8
2.4 INFORMATION TECHNOLOGY AND DIABETES ... 10
2.5 SIMULATION MODELS ... 15
2.6 CONCLUSION ... 20
2.7 REFERENCES ... 21

CHAPTER 3 INTEGRATED SIMULATION OF THE HUMAN ENERGY SYSTEM 26

3.1 INTRODUCTION... 27
3.2 RESEARCH DESIGN AND METHODS ... 27
3.3 RESULTS .. 40
3.4 CONCLUSION .. 43
3.5 REFERENCES .. 44

CHAPTER 4 EDUTOOL DIABETES SIMULATOR ... 49
List of symbols

\[\Delta BG_{\text{meal}} \] Blood glucose increase after consuming a meal (mmol/L)

\[\Delta BG_{\text{insulin}} \] Measured blood glucose decrease after a given amount of bolus insulin

\[\text{ets} \] Equivalent teaspoons sugar

\[\text{ets}_{\text{meal}} \] The amount of \text{ets} in a meal (ets)

\[\text{ets}_{\text{absorbed}} \] Amount of \text{ets} absorbed into the blood as a result of digestion of a meal containing \text{ets}_{\text{meal}} (ets)

\[\text{ets}_{\text{effective}} \] Effective amount of \text{ets} consumed in a meal (ets)

\[f_{\text{CHO}} \] Specific person’s CHO absorption efficiency

\[f_{BG/\text{ets}} \text{ food} \] Person-specific \text{ets} sensitivity factor

\[f_{BG/\text{insulin}} \] Specific person’s insulin sensitivity factor

\[\dot{G} \] Glucose energy flow (mmol/L.min)

\[\dot{G}_{\text{basal}} \] Glucose energy required for everyday living (mmol/L.min)

\[G_{\text{blood}} \] Blood glucose concentration (mmol/L)

\[G_{\text{Blood}} (t) \] Blood glucose concentration at a specific time interval (mmol/L)

\[G_{\text{Blood}} (t-1) \] Blood glucose concentration at the previous time interval (mmol/L)

\[\dot{G}_{\text{Digest}} \] Glucose energy flow from the digestion system to the bloodstream (mmol/L.min)

\[\dot{G}_{\text{Exercise}} \] Glucose energy flow from the bloodstream to the energy expenditure (mmol/L.min)

\[\dot{G}_{\text{Exercise-Min}} \] Minimum value of \dot{G}_{\text{Exercise}} (mmol/L.min)

\[\dot{G}_{\text{Storage}} \] Glucose energy flow between the primary storage and secondary storage (mmol/L.min)
\(G_{\text{Storage}}(t) \) Glucose energy storage flow at a specific time interval (mmol/L)

\(G_{\text{Storage}}(t-1) \) Glucose energy storage flow at the previous time interval (mmol/L)

\(\dot{G}_{\text{Store-IN}} \) Glucose energy flow from the bloodstream to the primary storage (mmol/L.min)

\(\dot{G}_{\text{Store-OUT}} \) Glucose energy flow from the primary storage to the bloodstream (mmol/L.min)

\(I_{\text{Basal}} \) Basal insulin level (U)

\(I_{\text{Bolus}} \) Amount of bolus insulin administered (U)

\(I_{\text{Control}} \) Amount of regulation hormone in the system (U)

\(\dot{i}_{\text{Control}} \) Change in the amount of regulation hormone in the system (U/min)

\(I_{\text{Control}}(t) \) Amount of regulation hormone in the system at a specific time interval (U)

\(I_{\text{Control}}(t-1) \) Amount of regulation hormone in the system at the previous time interval (U)

\(\dot{i}_{\text{Exercise}} \) Insulin consumed from the blood when exercising (U/min)

\(I_{\text{Injected}} \) Short-acting insulin requirement (U)

\(k_{BG/ets\ food} \) Person-specific equivalence factor

\(\eta_{\text{CHO}} \) Metabolic efficiency of the specific CHO

\(t_{\text{Digest}} \) Total digestion time of the specific meal (min)

\(t_{\text{Elapsed}} \) Time elapsed up to current time (min)

\(T_{\text{Meal}} \) Time of day a meal is taken

\(t_{\text{Total}} \) Duration of the release function (min)
Glossary

α-cells: The cells situated in the islets of Langerhans in the pancreas that produce the hormone glucagon.

β-cells: Cells situated in the islets of Langerhans in the pancreas. They produce the hormone insulin.

Basal insulin: Slow-releasing insulin used to control the blood glucose for longer periods, such as during the night and between meals.

Blood glucose (BG): Glucose is the main energy source of the body. It is also often referred to as blood sugar.

Blood glucose level (BGL): This is the amount of glucose in the blood, measured in mmol/L or mg/dL.

Bolus insulin: “An extra amount of insulin taken to cover an expected rise in blood glucose, often related to a meal or snack”.

Carbohydrate (CHO): Carbohydrates are chemical substances synthesised from carbon dioxide and water. They play a significant role in the metabolism of animals and plants. The most important CHO is glucose, which is a major metabolic fuel. CHOs are classified into four types, namely, monosaccharides, disaccharides, oligosaccharides and polysaccharides.

Circadian profile: A graph that displays a 24-hour timeline on the x-axis, with the y-axis displaying the desired variable as it changes during this time period.

![Graph showing circadian profile of blood glucose and insulin concentrations.](image)

Figure 1: Circadian profiles of blood glucose and insulin concentrations.

Continuous glucose monitor (CGM): The continuous glucose monitor consists of a sensor to measure BG in the fluid under the skin on a continuous basis; a monitor to display the measurements and alert the patient in case of low or high BG; and a transmitter that connects to the sensor inserted in the body. The transmitter sends the collected data to the monitor. The BG data, which is stored, can be downloaded to a computer and analysed.

Counterregulation hormones: These hormones work against the actions of insulin to raise the BGL when it gets too low. The main counterregulation hormones include glucagon, epinephrine (adrenaline), growth hormone and cortisol.

Counterregulatory neuroendocrine response: The regulation of glucose by hormonal and neural regulatory mechanisms to raise the BGL if it gets below the lower limit of the normal human BG range, i.e. 3.9 mmol/L. Both the pancreas and hypothalamus/vagus are involved in this process.

Endogenous insulin: The hormone, insulin, produced within the human body by the β-cells of the islets of Langerhans in the pancreas. When a rise in BG is sensed, the response is the release of insulin.

Euglycaemia/normoglycaemia: The normal range in which a healthy person’s BG concentration varies throughout the day is defined as 3.9 – 6.6 mmol/L.

Exogenous insulin: Exogenous is defined as “originating outside the system concerned”. Therefore, exogenous insulin is insulin injected into the body.

Glucagon: A hormone that counters the action of insulin on the BGL, i.e. glucagon inhibits the production of glycogen and activates the breakdown process of glycogen (glycogenolysis) to produce glucose and the release of plasma glucose by liver cells. Glucagon is produced in the α-cells of the islets of Langerhans in the pancreas.

Glucose absorption curve: An example of a glucose absorption curve is depicted in Figure 2:

![Glucose absorption curve](image)

Glucose/insulin metabolism: When the plasma glucose concentration level becomes low, the β-cells stop releasing insulin. Instead, the α-cells, also contained in Langerhans islets, start to release glucagon. Glucagon exerts control over pivotal metabolic pathways in the liver and leads the liver to break down the glycogen (glycogenolysis) stores and dispense

glucose. As opposed to the fact that glucagon secretion triggers the liver to dispense glucose, insulin secretion inhibits glucose production by the liver. 10

Glycogen: The main storage of glucose within liver cells and skeletal muscle. 3

Glycaemic index (GI): “On a ‘glycaemic’ scale of 0 to 100, the GI compares carbohydrates weight for weight in individual foods, providing a physiologic rather than structural basis for ranking glycaemic potential (Table 1). A food with a lower GI contains starches and sugars that are more slowly digested and absorbed, or less glycaemic by nature (e.g. fructose).” 11

HbA1c: “Haemoglobin (Hb) is the part of a red blood cell that carries oxygen to the cells and sometimes joins with the glucose in the bloodstream. Also called haemoglobin A1C or glycosylated haemoglobin, if tested, shows a person's average blood glucose level over the past 2 to 3 months. The test shows the amount of glucose that [attaches] to the red blood cell, which is proportional to the amount of glucose in the blood”. 4

Insulin: The hormone produced by the β-cells of the islets of Langerhans in the pancreas that controls the glucose uptake of muscles and adipose tissue and inhibits the breakdown of glycogen in the liver. 3

Insulin action profiles: The insulin action profiles for the different types of short-, intermediate- and long-acting insulin available.

Insulin protocol: Is defined by Bellazzi et al. (1994) as the timing, type and total amount of insulin administered to a specific diabetes patient. This protocol is usually based on different factors affecting the patient in everyday life, such as meal planning, physical activity and BG levels.

Insulin pump: “An insulin-delivering device about the size of a deck of cards that can be worn on a belt or kept in a pocket. An insulin pump connects to narrow, flexible plastic tubing that ends with a needle inserted just under the skin. Users set the pump to give a steady trickle of insulin or basal amount of insulin continuously throughout the day. Pumps release bolus doses of insulin (several units at a time) at meals and at times when blood glucose is too high, based on programming done by the user”.

PDA: PDA is an acronym for Personal Digital Assistant. It is a small, hand-held computer that is used as a data manager.

Postprandial: Occurring after a meal.

Preprandial: Occurring before a meal.

Subcutaneous: Putting a fluid into the tissue under the skin.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFIS</td>
<td>Adaptive Neuro-fuzzy Inference System</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Networks</td>
</tr>
<tr>
<td>BG</td>
<td>Blood Glucose</td>
</tr>
<tr>
<td>BGL</td>
<td>Blood Glucose Level</td>
</tr>
<tr>
<td>BI</td>
<td>Blood Insulin</td>
</tr>
<tr>
<td>CBR</td>
<td>Case-based Reasoning</td>
</tr>
<tr>
<td>CDE</td>
<td>Centre for Diabetes and Endocrinology</td>
</tr>
<tr>
<td>CGM</td>
<td>Continuous Glucose Monitor</td>
</tr>
<tr>
<td>CHO</td>
<td>Carbohydrate</td>
</tr>
<tr>
<td>CM</td>
<td>Compartmental Model</td>
</tr>
<tr>
<td>CRH</td>
<td>Counterregulation Hormone</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td>DEMS</td>
<td>Diabetes Electronic Management System</td>
</tr>
<tr>
<td>ENCDOR</td>
<td>Edgar National Centre for Diabetes and Obesity Research</td>
</tr>
<tr>
<td>FR</td>
<td>Free-run</td>
</tr>
<tr>
<td>FSIGTT</td>
<td>Frequently Sampled Intravenous Glucose Tolerance Test</td>
</tr>
<tr>
<td>GI</td>
<td>Glycaemic Index</td>
</tr>
<tr>
<td>HCI</td>
<td>Human-centred Informatics</td>
</tr>
<tr>
<td>HLM</td>
<td>High-level Module</td>
</tr>
<tr>
<td>IDDM</td>
<td>Insulin-dependent Diabetes Mellitus</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>IVGTT</td>
<td>Intravenous Glucose Tolerance Test</td>
</tr>
<tr>
<td>LLM</td>
<td>Low-level Module</td>
</tr>
<tr>
<td>MBR</td>
<td>Model-based Reasoning</td>
</tr>
<tr>
<td>MIA</td>
<td>Modal Interval Analysis</td>
</tr>
<tr>
<td>MMR</td>
<td>Multi-modal Reasoning</td>
</tr>
<tr>
<td>OGTT</td>
<td>Oral Glucose Tolerance Test</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal Digital Assistant</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional-integral-derivative</td>
</tr>
<tr>
<td>RH</td>
<td>Regulation Hormone</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>RNN</td>
<td>Recurrent Neural Networks</td>
</tr>
<tr>
<td>RTRL</td>
<td>Real-time Recurrent Learning</td>
</tr>
<tr>
<td>SC</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>TF</td>
<td>Teacher-forming</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
List of figures

FIGURE 1: Circadian profiles of blood glucose and insulin concentrations. X
FIGURE 2: Glucose absorption curve. .. XI
FIGURE 3: Insulin action profiles for the different types of insulin available. XIII
FIGURE 4: Schematic presentation of the regulatory and counterregulatory effects in the BG subsystem (Hambly, 2011). ... 8
FIGURE 5: Block diagram of the closed-loop control strategy with subcutaneous (SC) glucose measurement and insulin delivery (Belazzi et al., 2001). 10
FIGURE 6: Block diagram of a PID controller (Webb and Reis, 2006). 12
FIGURE 7: PID controller response to an input change (Webb and Reis, 2006). 12
FIGURE 8: Block diagram of a cascade controller (The ECOSSE IGDS Control Hyper Course, 2011). ... 13
FIGURE 9: Comparison between response of a single PID controller and a cascade control loop (MathWorks, 2011). .. 13
FIGURE 10: Schematic layout of the integrated human energy simulation model for glucose flow and controller compartments (adapted from Botha, 2002). 29
FIGURE 11: Blood glucose rate of appearance after meal ingestion (Dalla Man et al., 2007). ... 33
FIGURE 12: Schematic representation of glucose-insulin subsystem with control system.. 34
FIGURE 13: BG response to three separate meals, all containing CHOis (adapted from Holtschlag et al., 1998). .. 36
FIGURE 14: BG response to three separate meals, all containing CHOis (Nærum, 2010) .36
FIGURE 15: A schematic representation of the simplified BG regulatory system (Liu and Tang, 2009). ... 38
FIGURE 16: Step control strategy for the storage system controller compartment (adapted from Botha, 2002) .. 39
FIGURE 17: Comparison between measured and simulated data for the whole-day simulations... 41
FIGURE 18: Comparison between measured and simulated data for the isolated food simulations (Botha, 2002). .. 41
FIGURE 19: Comparison between measured and simulated data for the isolated exercise simulations (Botha, 2002). .. 42
FIGURE 45: RESULTS OF THEORY-BASED QUESTIONS IN THE PRE-TRIAL QUESTIONNAIRE IN THE SECONDARY SCHOOL TRIAL. .. 104

FIGURE 46: PERCENTAGE OF PARTICIPANTS IN THE SECONDARY SCHOOL TRIAL RATING THE EASE-OF-USE OF EDUTOOL .. 106

FIGURE 47: EASE-OF-USE OF (A) THE DATABASES WITHIN THE EDUTOOL AND (B) DRAGGING THE ARROWS ON THE MAIN USER INTERFACE OF THE EDUTOOL .. 107

FIGURE 48: RESULTS OF THE EASE-OF-USE OF THE AIDA SIMULATOR IN THE SECONDARY SCHOOL TRIAL... 110

FIGURE 49: COMPARISON BETWEEN RESULTS FOR INDIVIDUAL QUESTIONS IN DIABETES QUESTIONNAIRE 1 AND 2 FOR THE SECONDARY SCHOOL TRIAL. ... 111
List of tables

TABLE 1: Simulation models currently available to assist people with type 1 diabetes. 15

TABLE 2: Comparison of existing diabetes simulation models and the Edutool diabetes simulator. .. 69

TABLE 3: Comments associated with simulation models in Table 2. .. 71

TABLE 4: Summary of open-ended questions in questionnaire 1 for primary school trial. .. 89

TABLE 5: Computer use question. ... 90

TABLE 6: ‘Everyday’ users: difficulty of task question. ... 90

TABLE 7: ‘A few times a week’ users: difficulty of task question. .. 90

TABLE 8: Results of theory-based questions in the pre-trial questionnaire in the primary school trial. .. 91

TABLE 9: Total test scores for primary school trial participants for the pre-trial questionnaire. .. 93

TABLE 10: Open-ended questions regarding Edutool in the primary school trial. 94

TABLE 11: Results of theory-based questions in the post-trial questionnaire in the primary school trial. .. 96

TABLE 12: Total test scores for each post-trial questionnaire participant in the primary school trial. .. 97

TABLE 13: Open-ended questions regarding the AIDA software in the primary school trial. .. 98

TABLE 14: Comparison between average total test scores in the primary school trial. 99

TABLE 15: Summary of open-ended questions in diabetes Edutool questionnaire 1 for secondary school trial. .. 101

TABLE 16: Computer use question. ... 101

TABLE 17: ‘Everyday’ users: difficulty of task question. ... 102

TABLE 18: ‘A few times a week’ users: difficulty of task question. ... 102

TABLE 19: ‘Once a month’ users: difficulty of task question. ... 102

TABLE 20: Results of theory-based questions in the pre-trial questionnaire in the secondary school trial. .. 103

TABLE 21: Total test scores for each participant for the pre-trial questionnaire in the secondary school trial. .. 105

TABLE 22: Open-ended questions regarding Edutool in the secondary school trial. 106
Table 23: Results of theory-based questions in the post-trial questionnaire in the secondary school trial. ...108

Table 24: Total test scores for each post-trial questionnaire participant in the secondary school trial. ..109

Table 25: Comparison between average total test scores in the secondary school trial. ...112

Table 26: The p-value calculation for the primary school trial (Ellis, 2011).156

Table 27: The p-value calculation for the secondary school trial (Ellis, 2011).159