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1 Introduction

1.1 History of differential equations

Many problems that arise naturally from physics and other sciences can be described by

differential equations. The importance of differential equations may be realized from

their ability to mathematically describe, or model, real-life situations. The differential

equations come from the diverse disciplines of architecture, chemical kinetics, civil engi-

neering, demography, ecology, economics, electrical engineering, mechanical engineering,

meteorology, and physics

Differential equations form part of calculus. The invention of the calculus was one of the

great intellectual achievements of the 1600s. The historian Carl Boyer called the calculus

“the most effective instrument for scientific investigation that mathematics has ever pro-

duced” [1]. The invention of calculus is normally ascribed to two brilliant contemporaries,

the Englishman Isaac Newton (1642-1727) and the German Gottfried Wilhelm Leibniz

(1646-1716). Both men published their researches in the 1680s, Liebniz in 1684 in the

recently founded journal Acta Eruditorum and Newton in 1687 in his great treatise, the

Principia. However, a lot of contribution was also made by Cavalieri, Torricelli, Barrow,

Descartes, Fermat and Wallis to the subject [2].

Coming back to Differential Equations, there is no doubt that the Swiss mathematician

and physicist, Leonhard Euler (1707-1783), is most responsible for the methods of solution

to differential equations, used today in first-year calculus courses. Also, even many of

the problems appearing in current calculus textbooks can be traced back to the great

treatises Euler wrote on the calculus −Institutiones Calculi Differentialis (Petersburg,

1755) and Institutiones Calculi Integralis (Petersburg, 1768 1770, 3 vols.). Euler also

contributed to the use of integrating factors and the systematic methods of solving linear

differential equations of higher order with constant coefficients. He also distinguished

between the linear homogeneous and nonhomogeneous differential equations and between

the particular and general solutions of differential equations.

During this time solving ordinary differential equations had become one of the most

important problems in applied mathematics.
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Daniel Bernoulli (1700-1782), for example, solved the second-order ordinary differential

equation

y′′ +Ky = f(x)

independently of Euler and about the same time in 1739-1740, Jean d’Alembert (1717-

1783), as well as Euler, had general methods for solving completely the linear differential

equations.

However, most differential equations cannot easily be reduced to simple quadratures, and

would require ingenious substitutions or algorithms for their solution. One of the inter-

esting differential equations of the eighteenth century was the so-called Riccati equation

y′ = p(x)y2 + q(x)y + r(x).

It was Euler who first noted that if a particular solution v = ϕ(x) is known, then the

substitution y = v+1/z converts the Riccati equation into a linear differential equation in

z, so that a general solution can be found. Today, in the literature, the linear differential

equation with variable coefficients

xny(n) + a1x
n−1y(n−1) + · · ·+ any

(0) = f(x)

bears Euler’s name (where exponents included within parentheses indicate orders of dif-

ferentiation). It can easily be transformed to a linear equation having constant coefficients

by the substitution x = et. Euler also made contribution to partial differential equations

by giving the wave equation

utt = a2uxx

the solution

u = f(x+ at) + g(x− at).

Euler produced four volumes of Institutiones that contained by far the most exhaustive

treatment of the calculus up to that time. A theorem known as “Euler’s theorem on

homogeneous functions”, namely, if f(x, y) is a homogeneous function of order n, then

xfx + yfy = nf , is taught in the calculus courses even today.
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1.2 Basics concepts of differential equations

Definition 1. A differential equation (DE) is an equation involving unknown functions

and their derivatives.

If the functions are real functions of one real variable, the derivatives occurring are or-

dinary derivatives, and the equation is called an ordinary DE. If the functions are real

functions of more than one real variable, the derivatives occurring are partial derivatives,

and the equation is called a partial DE.

Definition 2. An ordinary DE is said to be linear if and only if it can be written in the

form

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · ·+ an−1(x)

dy

dx
+ an(x)y = f(x)

where f and the coefficients a0, a1, · · ·, an are continuous functions of x.

All other DEs are called nonlinear equations. Thus a linear DE is linear in y and its

derivatives.

Definition 3. The order of a DE is the order of the highest derivative appearing in the

equation.

Definition 4. By a solution of the DE we mean a function y = ϕ(x) which satisfies the

given equation.

Remark. Some DEs have infinitely many solutions while others have no solution.

Definition 5. By a general solution of an nth-order DE, we mean a solution containing

n essential arbitrary constants.

Remark. The general solution of the first-order ODE

dy

dx
= f(x)

is given by

y =

∫
f(x)dx+ C,

where C is an arbitrary constant and we say that the ODE is integrable by quadrature.

Definition 6. A particular solution of a DE is any one solution.

It is usually obtained by assigning specific values to the constants in the general solution.

A particular solution can be represented as a curve in the xy−plane called an integral curve.

The general solution is the set of all integral curves, or the family of all integral curves.

Definition 7. A solution of the DE that cannot be obtained from a general solution by
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assigning particular values to the arbitrary constants is called a singular solution.

The solution of a second-order DE generally involves two arbitrary constants. By spec-

ifying two subsidiary conditions one can determine the values of these constants to ob-

tain a unique solution. The conditions may be given at the same value of x, such as

y(a) = k1, y
′(a) = k2. Such conditions are called initial conditions (IC).

Definition 8. A DE together with IC’s is called an initial-value problem (IVP).

If the conditions are given at two different values of x, such as y(a) = k1, y(b) = k2, they

are called boundary conditions (BC).

Definition 9. A boundary-value problem (BVP) is a DE together with BCs.

These definitions can be extended to DEs of any order.

Remark. The IVP generally possess a unique solution. However, on the other hand a

BVP does not always possess a solution and even if a solution exits, it may not be unique.

BVPs are intrinsically more difficult than IVPs, although they have equal importance in

applications. The theory of IVPs is much more complete than that of the BVPs. Only

for linear DEs has the BVP been thoroughly investigated.

1.3 Examples of Ordinary Differential Equations

(1) The first-order ODE

dN

dt
= ρN (1.1)

models various phenomena such as radioactive decay, population growth and future

balances of investments earning interest at rates compounded continuously.

(2) Newton’s second law of motion can be stated in terms of an object’s acceleration,

namely

F = ma = m
d2x

dt2
, (1.2)

where F is the net force applied, m is the mass of the body, and a is the body’s

acceleration.

(3) The damped harmonic oscillators satisfy the second-order differential equation

d2x

dt2
+ 2ζω0

dx

dt
+ ω2

0x = 0, (1.3)
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where ω0 is the undamped angular frequency of the oscillator and ζ is a constant

called the damping ratio.

(4) For a particle of massm under a potential V (x), the one-dimensional, time-independent

Schrödinger equation is given by

− ~2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x), (1.4)

where ψ(x) is the wave function, in general complex, and ~ is the Planck constant

h divided by 2/π.

(5) In the study of stellar structure the Lane-Emden equation

d2y

dx2
+

2

x

dy

dx
+ yr = 0, (1.5)

where r is a constant, models the thermal behaviour of a spherical cloud of gas

acting under the mutual attraction of its molecules and subject to the classical laws

of thermodynamics.

(6) The modelling of several physical phenomena such as pattern formation, population

evolution, chemical reactions, and so on, gives rise to the systems of Lane-Emden

equations

d2u

dt2
+
n

t

du

dt
+ f(v) = 0, (1.6)

d2v

dt2
+
n

t

dv

dt
+ g(u) = 0, (1.7)

where n is real constant and f(v) and g(u) are arbitrary functions of v and u,

respectively.

1.4 Examples of Partial Differential Equations

(1) The Burgers equation

ut + uux = νuxx, (1.8)

where u is the velocity and ν is the viscosity coefficient, occurs in various areas of

applied mathematics, such as modeling of gas dynamics and traffic flow.
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(2) The well-known Korteweg-de Vries (KdV) equation

ut + 6uux + uxxx = 0 (1.9)

governs the dynamics of solitary waves. Firstly it was derived to describe shallow

water waves of long wavelength and small amplitude. It is a crucial equation in the

theory of integrable systems because it has infinite number of conservation laws and

gives multiple-soliton solutions.

(3) An essential extension of the KdV equation is the Kadomtsev-Petviashvili (KP)

equation given by

(ut + 6uux + uxxx)x + uyy = 0. (1.10)

This equation models shallow long waves in the x−direction with some mild dis-

persion in the y−direction. The inverse scattering transform method can be used

to prove the complete integrability of this equation. This equation gives multiple-

soliton solutions.

(4) The dimensionless form of the nonlinear Schrödinger equation is given by

iqt + aqxx + b|q|2q = 0, (1.11)

where the dependent variable q represents the vibrational coordinate of the amide-

I vibrations. The second term is a dispersion term representing the dipole-dipole

coupling and arises from the effective mass of the exciton while the third term is

nonlinear term representing coupling to hydrogen bonds.

(5) A two-dimensional integrable generalization of the Kaup-Kupershmidt (KK) equa-

tion is given by

ut + uxxxxx +
25

2
uxuxx + 5uuxxx + 5u2ux + 5uxxy − 5∂−1

x uyy + 5uuy

+5ux∂
−1
x uy = 0 (1.12)

and arises in various problems in many areas of theoretical physics.

(6) The generalized coupled variable-coefficient modified Korteweg-de Vries (CVCmKdV)

system

ut − α(t)
(
uxxx + 6(u2 − v2)ux − 12uvvx

)
− 4β(t)ux = 0, (1.13a)

vt − α(t)
(
vxxx + 6(u2 − v2)vx + 12uvux

)
− 4β(t)vx = 0 (1.13b)
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models a two-layer fluid and is applied to investigate the atmospheric and oceanic

phenomena such as the atmospheric blockings, interactions between the atmosphere

and ocean, oceanic circulations and hurricanes or typhoons.

(7) A coupled KdV system which is formulated in the KP sense is given by(
ut + uxxx + 3uux + 3wwx

)
x

+ uyy = 0, (1.14a)(
vt + vxxx + 3vvx + 3wwx

)
x

+ vyy = 0, (1.14b)(
wt + wxxx +

3

2
(uw)x +

3

2
(vw)x

)
x

+ wyy = 0. (1.14c)

2 Symmetries of Differential Equations

About 200 years after Leibniz and Newton had introduced the concept of the derivative

and the integral of a function, solving ordinary differential equations had become one of

the most important problems in applied mathematics. It was then that Sophus Lie (1842-

1899), a Norwegian mathematician, got interested in this problem. He got inspiration

from Galois (1811-1832) theory for solving algebraic equations that had become widely

known around 1850 mainly due to the efforts of Liouville. Lie showed that the majority

of the known methods of integration of ordinary differential equations, which until then

had seemed artificial, could be derived in a unified manner using his theory of continuous

transformation groups. This method is known today as Lie group analysis and is indeed

the most powerful tool to find the general solution of differential equations. In the last six

decades there have been considerable developments in Lie group methods for differential

equations as can be seen by the number of research papers [3–12], books [13–16] and new

symbolic softwares [17–23] devoted to the subject.

A Lie point symmetry of a differential equation is an invertible transformation of the

dependent and independent variables that leaves the equation unchanged. Determining

all the symmetries of a differential equation is a formidable task. However, Sophus Lie

realized that if we restrict ourself to symmetries that depend continuously on a small

parameter and that form a group (continuous one-parameter group of transformations),
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one can linearize the symmetry conditions and end up with an algorithm for calculating

continuous symmetries.

Many differential equations of physical interest involve parameters, arbitrary elements

or functions, which need to be determined. Usually, these arbitrary parameters are de-

termined experimentally. However, the Lie symmetry approach through the method of

group classification has proven to be a versatile tool in specifying the forms of these pa-

rameters systematically [3–8, 16]. The problem of group classification was first carried

out by Lie [14] in 1881 for a linear second-order partial differential equation with two in-

dependent variables. Later, various people including Ovsiannikov applied Lie’s methods

to a wide range of physically important problems. The problem of group classification of

a differential equation involving an arbitrary element, say H, consists of finding the Lie

point symmetries of the differential equation with arbitrary H, and then determining all

possible forms of H for which the principal Lie algebra can be extended.

3 Conservation laws

The notion of conservation laws plays an important role in the solution process and reduc-

tion of differential equations. Conservation laws are mathematical expressions of the phys-

ical laws, such as conservation of energy, mass, momentum and so on. In the literature,

conservation laws have been extensively used in studying the existence, uniqueness and

stability of solutions of nonlinear partial differential equations (see for example, [24–26]).

Conservation laws have also been applied in the development and use of numerical meth-

ods (see for example, [27,28]). Recently, conserved vectors associated with Lie point sym-

metries have been used to find exact solutions (by exploiting a double reduction method)

of some classical partial differential equations [29–31]. Thus, it is important to derive all

the conservation laws for a given differential equation.

For variational problems the celebrated Noether (1882-1935) theorem [32] provides an

elegant way to construct conservation laws. Infact, it gives an explicit formula for de-

termining a conservation law once a Noether symmetry associated with a Lagrangian is

known for an Euler-Lagrange equation. Thus, the knowledge of a Lagrangian is essential

in this case. However, there are differential equations, such as scalar evolution differential
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equations, which do not have a Lagrangian. In such cases, several methods [15,33–43] have

been developed by researchers about the construction of conserved quantities. Compari-

son of several different methods for computing conservation laws can be found in [37,43].

4 My research in differential equations

4.1 Research Topics

(1) Existence and uniqueness of solutions of certain hyperbolic partial differential equa-

tions

(with Everitt)

(2) Symmetries and First Integrals

(with Mahomed, Muatjetjeja, Ntsime)

(3) Symmetries and conservation laws

(with Mahomed, Kara, Johnpillai, Muatjetjeja, Baikov, Pai, AR Adem, KR Adem,

Moleleki, Magalakwe, Mogorosi, Nkwanazana, Matjila)

(4) Approximate symmetries and conservation laws of differential equations

(with Gazizov, Ünal, Wafo, Diatta)

(5) Contact symmetries of scalar ordinary differential equations

(with Ibragimov, Mahomed)

(6) Application of symmetries to problems in Fluid Mechanics

(with Hayat, Asghar, Pakdemirli, Aksoy, Hanif, Matebese, AR Adem, Najama)

(7) Application of symmetries to problems in Mathematical Finance

(with Molati, Motsepa, Lekalalaka)

(8) Application of symmetries to problems in Astrophysics

(with Muatjetjeja, Mahomed, Molati, Ntsime)

(9) Fractional differential equations

(with Jafari, Baleanu, Chun, Yousefi, Firoozjaee, Momanic)
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(10) Stochastic differential equations

(with Ünal, Iyigunler, Turkeri)

(11) Soliton solutions

(with Biswas, AR Adem, KR Adem, Moleleki)

(12) Industrial Mathematics Problems

(with Ockendon, Stacey, Please, Mason, Anthonyrajah, Mureithi, Ngnotchouye,

Hutchinson, van der Merwe, Yilmaz, Fanucchi, Foy, Oliphant)

(13) Exact solutions of partial differential equations using various techniques

(with AR Adem, KR Adem, Moleleki, Magalakwe, Mogorosi, Nkwanazana, Mh-

langa, Mothibi, Matjila)

5 Lane-Emden-Flower type equations

5.1 Introduction

In the study of stellar structure the Lane-Emden equation [44,45]

d2y

dx2
+

2

x

dy

dx
+ yr = 0, (5.1)

where r is a constant, models the thermal behaviour of a spherical cloud of gas acting under

the mutual attraction of its molecules and subject to the classical laws of thermodynamics.

This equation was proposed by Lane [44] (see also [46]) and studied in detail by Emden

[45]. Fowler [47,48] considered a generalization of Eq. (5.1), called Emden-Fowler equation

[49], where the last term is replaced by xν−1yr.

The Lane-Emden equation (5.1) also models the equilibria of nonrotating fluids in which

internal pressure balances self-gravity. When spherically symmetric solutions of Eq. (5.1)

appeared in [50], they got the attention of astrophysicists. In the latter half of the twenti-

eth century, some interesting applications of the isothermal solution (singular isothermal

sphere) and its nonsingular modifications were used in the structures of collisionless sys-

tems such as globular clusters and early-type galaxies [51, 52].
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The work of Emden [45] also got the attention of physicists outside the field of astrophysics

who investigated the generalized polytropic forms of the Lane-Emden equation (5.1) for

specific polytropic indices r. Some singular solutions for r = 3 were produced by Fowler

[47,48] and the Emden-Fowler equation in the literature was established, while the works

of Thomas [53] and Fermi [54] resulted in the Thomas-Fermi equation, used in atomic

theory. Both of these equations, even today, are being investigated by physicists and

mathematicians. Other applications of Eq. (5.1) can be found in the works of Meerson

et al [55], Gnutzmann and Ritschel [56], and Bahcall [57, 58].

Many methods, including numerical and perturbation, have been used to solve Eq. (5.1).

The reader is referred to the works of Horedt [59, 60], Bender [61] and Lema [62, 63],

Roxbough and Stocken [64], Adomian et al [65], Shawagfeh [66], Burt [67], Wazwaz [68]

and Liao [69] for a sample. Exact solutions of Eq. (5.1) for r = 0, 1 and 5 have been

obtained (see for example Chandrasekhar [50], Davis [70], Datta [71] and Wrubel [72]).

Usually, for r = 5, only a one-parameter family of solutions is presented. A more general

form of (5.1), in which the coefficient of y′ is considered an arbitrary function of x, was

investigated for first integrals by Leach [73].

Many problems in mathematical physics and astrophysics can be formulated by the gen-

eralized Lane-Emden equation

d2y

dx2
+
n

x

dy

dx
+ f(y) = 0, (5.2)

where n is a real constant and f(y) is an arbitrary function of y. For n = 2 the approximate

analytical solutions to the Eq. (5.2) were studied by Wazwaz [68] and Dehghan and

Shakeri [74].

One form of f(y) is given by

f(y) = (y2 − C)3/2. (5.3)

Inserting (5.3) into Eq. (5.1) gives us the “white-dwarf” equation introduced by Chan-

drasekhar [50] in his study of the gravitational potential of degenerate white-dwarf stars.

In fact, when C = 0 this equation reduces to Lane-Emden equation with index r = 3.

Another nonlinear form of f(y) is the exponential function

f(y) = ey. (5.4)
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Substituting (5.4) into Eq. (5.1) results in a model that describes isothermal gas spheres

where the temperature remains constant.

Equation (5.1) with

f(y) = e−y

gives a model that appears in the theory of thermionic currents when one seeks to deter-

mine the density and electric force of an electron gas in the neighbourhood of a hot body

in thermal equilibrium was thoroughly investigated by Richardson [75].

Furthermore, the Eq. (5.1) appears in eight additional cases for the function f(y). The

interested reader is referred to Davis [70] for more detail.

The equation

d2y

dx2
+

2

x

dy

dx
+ eβy = 0, (5.5)

where β is a constant, has also been studied by Emden [45]. In a recent work [76] an

approximate implicit solution has been obtained for Eq. (5.5) with β = 1.

Furthermore, more general Emden-type equations were considered in the works [77–81].

See also the review paper by Wong [82], which contains more than 140 references on the

topic.

The so-called generalized Lane-Emden equation of the first kind

x
d2y

dx2
+ α

dy

dx
+ βxνyn = 0, (5.6)

and generalized Lane-Emden equation of the second kind

x
d2y

dx2
+ α

dy

dx
+ βxνeny = 0, (5.7)

where α, β, ν and n are constants, have been recently studied in [83,84]. In Goenner [84],

the author uncovered symmetries of Eq. (5.6) to explain integrability of (5.6) for certain

values of the parameters considered in Goenner and Havas [83]. Recently, the integrability

of the generalized Lane-Emden equations of the first and second kinds has been discussed

in Muatjetjeja and Khalique [85].
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Here, firstly, a generalized Lane-Emden-Fowler type equation

x
d2y

dx2
+ n

dy

dx
+ xνf(y) = 0, (5.8)

where n and ν are real constants and f(y) is an arbitrary function of y will be studied.

We perform the Noether symmetry analysis of this problem. It should be noted that

Eq. (5.8) for the power function F (y) = yr is related to the Emden-Fowler equation

y′′ + p(X)yr = 0 by means of the transformation on the independent variable X = x1−n,

n ̸= 1 and X = ln x, n = 1.

Secondly, we consider a generalized coupled Lane-Emden system, which occurs in the

modelling of several physical phenomena such as pattern formation, population evolution

and chemical reactions. We perform Noether symmetry classification of this system and

compute the Noether operators corresponding to the standard Lagrangian. In addition

the first integrals for the Lane-Emden system will be constructed with respect to Noether

operators.

5.2 Noether classification and integration of (5.8) for different

fs

In this section we perform a Nother point symmetry classification of Eq. (5.8) with respect

to the standard Lagrangian. We then obtain first integrals of the various cases, which

admit Noether point symmetries and reduce the corresponding equations to quadratures.

It can easily be verified that a Lagrangian of Eq. (5.8) is given by

L =
1

2
xny′2 − xn+ν−1

∫
f(y)dy. (5.9)

The determining equation (see [86]) for the Noether point symmetries corresponding to

L in (5.9) is

X [1](L) + LD(ξ) = D(B), (5.10)

where X given by

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
(5.11)
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is the generator of Noether symmetry and B(x, y) is the gauge term and D is the total

differentiation operator defined by [87]

D =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · · . (5.12)

After some calculations the solution of Eq. (5.10) results in

ξ = a(x),

η =
1

2
[a′ − nx−1a]y + b(x), (5.13)

B =
1

4
xn

[
a′′ − n

(
a

x

)′]
y2 + b′xny + c(x), (5.14)

[−(n+ ν − 1)xn+ν−2a− a′xn+ν−1]

∫
f(y)dy + [−1

2
xn+ν−1a′y

+
1

2
nxn+ν−2ay − xn+ν−1b]f(y) =

1

4
a′′′xny2 +

1

2
nxn−2a′y2

−1

2
nxn−3ay2 − 1

4
n2xn−1

(
a

x

)′

y2 + b′′xny + b′nxn−1y + c′(x). (5.15)

The analysis of Eq. (5.15) leads to the following eight cases:

Case 1. n ̸= 1− ν

2
, f(y) arbitrary but not of the form contained in cases 3, 4, 5 and 6.

We find that ξ = 0, η = 0, B = constant and we conclude that there is no Noether point

symmetry.

Noether point symmetries exist in the following cases.

Case 2. n =
1− ν

2
, f(y) arbitrary.

We obtain ξ = x
1−ν
2 , η = 0 and B = constant. Therefore we have a single Noether

symmetry generator X = x
1−ν
2 ∂/∂x. For this case the integration is trivial even without

a Noether symmetry. The Noetherian first integral [86] is

I =
1

2
x1−ν y′2 +

∫
f(y)dy
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from which, setting I = C, one gets quadrature.

Case 3. f(y) is linear in y.

We have five Noether point symmetries associated with the standard Lagrangian for the

corresponding differential equation (5.8) and sl(3,ℜ) symmetry algebra. This case is

well-known, see, e.g., [88].

Case 4. f = αy2 + βy + γ, α ̸= 0

There are four subcases. They are as follows:

4.1. If n = 2ν +3, β = 0 and γ = 0, we obtain ξ = x, η = −(ν +1)y and B = constant.

This is contained in Case 5.1 below.

4.2. If n = 2ν + 3, ν ̸= −1, β2 = 4α γ, we get ξ = x, η = −(ν + 1)(y + β/2α) and

B =
βγ

6α
x3ν+3. We have

X = x
∂

∂x
− (ν + 1)(y + β/2α)

∂

∂y
.

In this case the Noetherian first integral [86] is

I = −1

2
x2ν+4y′2 − 1

3
αx3ν+3y3 − 1

2
βx3ν+3y2 − γx3ν+3y − (ν + 1)x2ν+3yy′

−(ν + 1)
β

2α
x2ν+3y′ − βγ

6α
x3ν+3.

Thus the reduced equation is

1

2
x2ν+4y′2 +

1

3
αx3ν+3y3 +

1

2
βx3ν+3y2 + γx3ν+3y + (ν + 1)x2ν+3yy′

+(ν + 1)
β

2α
x2ν+3y′ +

βγ

6α
x3ν+3 = C, (5.16)

where C is an arbitrary constant. We now solve Eq. (5.16). For this purpose we use an

invariant of X (see [89]) as the new dependent variable. This invariant is obtained by

solving the Lagrange’s system associated with X, viz.,

dx

x
=

dy

−(ν + 1)(y + β/2α)
,
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and is

u = xν+1y +
β

2α
xν+1.

In terms of u Eq. (5.16) becomes

C =
1

2
(ν + 1)2u2 − 1

2
x2u′2 − 1

3
αu3,

which is a first-order variables separable ordinary differential equation. Separating the

variables we obtain
du

±
√

(ν + 1)2u2 − (2/3)αu3 − 2C
=
dx

x
.

Hence we have quadrature or double reduction of our Eq. (5.8) for the given f .

4.3. If n = (ν + 4)/3, n ̸= (1 − ν)/2,−1, β = 0 and γ = 0, we find ξ = x(2−ν)/3,

η = − ν + 1

3
x−(ν+1)/3y and B =

(ν + 1)2

18
y2 + k, k a constant. This is subsumed in Case

5.2 below.

4.4. If n = (1 − ν)/2, n ̸= (ν + 4)/3, β and γ are arbitrary, we obtain ξ = x
1−ν
2 , η = 0.

This reduces to Case 2.

Case 5. f = αyr, α ̸= 0, r ̸= 0, 1.

Here we have two subcases.

5.1. If n =
r + 2ν + 1

r − 1
, we obtain ξ = x, η =

ν + 1

1− r
y and B = constant. The solution of

Eq. (5.8) for the above n and f is given by

y = ux
ν+1
1−r , (5.17)

where u satisfies∫
du

±
√

(ν + 1)2(1− r)−2u2 − 2α(1 + r)−1u1+r − 2C1

= ln xC2, (5.18)

in which, C1 and C2 are arbitrary constants of integration.

We note that when r = 5 and ν = 1, we get n = 2. This gives us the Lane-Emden

equation y′′ + (2/x)y′ + y5 = 0. Its general solution is given by Eq. (5.18) and we recover

the solution given in [90]. Only a one-parameter family of solutions is known in the other

18



literature, namely, y = [3a/(x2 + 3a2)]1/2, a = constant (see, e.g., [70] or [91]). Here we

have determined a two-parameter family of solutions. Another almost unknown exact

solution of y′′ + (2/x)y′ + y5 = 0, which is worth mentioning here, is given by

xy2 =

[
1 + 3 cot2

(
1

2
ln
x

c

)]−1

, (5.19)

where c is an arbitrary constant.

5.2. If n =
r + ν + 2

r + 1
, with r ̸= −1, we have ξ = x

r−ν
r+1 , η = −

(
ν + 1

r + 1

)
x−

ν+1
r+1 y and

B =
(ν + 1)2

2(r + 1)2
y2 + k, where k is a constant.

In this case the solution of the corresponding Eq. (5.8) is

y = ux−
ν+1
r+1 , (5.20)

where u is given by∫
du

±
√
C1 − 2α(r + 1)−1ur+1

=

(
r + 1

ν + 1

)
x

ν+1
r+1 + C2, (5.21)

in which, C1 and C2 are arbitrary constants.

5.3. If n =
1− ν

2
, we obtain ξ = x

1−ν
2 , η = 0 and B = constant. This reduces to Case 2.

Case 6. f = α exp(βy) + γy + δ, α ̸= 0, β ̸= 0.

Here again we have two subcases.

6.1. If n =
1− ν

2
, we obtain ξ = x

1−ν
2 , η = 0 and B = k, k a constant. This reduces to

Case 2.

6.2. If n = 1, ν ̸= −1, γ = 0 and δ = 0, we deduce that ξ = x, η = −(ν + 1)/β and

B = k, k a constant.

The solution of the corresponding Eq. (5.8) for this case to be

y =
ν + 1

β
ln

(
u

x

)
, (5.22)
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where u is defined by∫
du

±u
√

1− 2αβ(ν + 1)−2uν+1 + 2C1β2(ν + 1)−2
= ln xC2, (5.23)

in which, C1 and C2 are integration constants.

Case 7. f = α ln y + γy + δ, α ̸= 0.

If n =
1− ν

2
, we obtain ξ = x

1−ν
2 , η = 0 and B = k, k a constant. This reduces to Case

2.

Case 8. f = αy ln y + γy + δ, α ̸= 0.

If n =
1− ν

2
, we obtain ξ = x

1−ν
2 , η = 0 and B = k, k a constant. This reduces to Case

2.

5.3 Systems of Lane-Emden-Fowler equations

The modelling of several physical phenomena such as pattern formation, population evo-

lution, chemical reactions, and so on (see, for example [92]), gives rise to the systems

of Lane-Emden equations, and have attracted much attention in recent years. Several

authors have proved existence and uniqueness results for the Lane-Emden systems [93,94]

and other related systems (see, for example [95–97] and references therein). Here we

consider the following generalized coupled Lane-Emden system [98]

d2u

dt2
+
n

t

du

dt
+ f(v) = 0, (5.24)

d2v

dt2
+
n

t

dv

dt
+ g(u) = 0, (5.25)

where n is real constant and f(v) and g(u) are arbitrary functions of v and u, respectively.

Note that system (5.24)-(5.25) is a natural extension of the well-known Lane-Emden

equation. We will classify the Noether operators and construct first integrals for this

coupled Lane-Emden system.

It can readily be verified that a Lagrangian of the system (5.24)-(5.25) is

L = tnu̇v̇ − tn
∫
f(v)dv − tn

∫
g(u)du. (5.26)
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The determining equation (see [98]) for the Noether point symmetries corresponding to

L in (5.26) is

X [1](L) + LD(τ) = D(B), (5.27)

where X is given by

X = τ(t, u, v)
∂

∂t
+ ξ(t, u, v)

∂

∂u
+ η(t, u, v)

∂

∂v
, (5.28)

with first extension [99]

X [1] = X + (ξ̇ − u̇τ̇)
∂

∂u̇
+ (η̇ − v̇τ̇)

∂

∂v̇
, (5.29)

where τ̇ , ξ̇ and η̇ denote total time derivatives of τ, ξ and η respectively. Proceeding as in

Section 5.2, (see details of computations in [98]) we obtain the following seven cases:

Case 1. n ̸= 0, f(u) and g(v) arbitrary but not of the form contained in cases 3, 4, 5

and 6.

We find that τ = 0, ξ = 0, η = 0, B = constant and we conclude that there is no Noether

point symmetry.

Noether point symmetries exist in the following cases.

Case 2. n = 0, f(u) and g(v) arbitrary.

We obtain τ = 1, ξ = 0, η = 0 and B = constant. Therefore we have a single Noether

symmetry generator

X1 =
∂

∂t
(5.30)

with the Noetherian integral given by

I = u̇v̇ +

∫
f(u)du+

∫
g(v)dv.

Case 3. f(v) and g(u) constants. We have eight Noether point symmetries associated

with the standard Lagrangian for the corresponding system (5.24)-(5.25) and this case is

well-known.
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Case 4. f = αv + β, g = γu + λ, where α, β, γ and λ are constants, with α ̸= 0 and

γ ̸= 0.

There are three subcases, namely

4.1. For all values of n ̸= 0, 2, we obtain τ = 0, ξ = a(t), η = l(t) and B = tnl̇u+ tnȧv −
λ

∫
tna dt−β

∫
tnldt+C1, C1 a constant. Therefore we obtain Noether point symmetry

X1 = a(t)
∂

∂u
+ l(t)

∂

∂v
, (5.31)

where a(t) and l(t) satisfy the second-order coupled Lane-Emden system

l̈ +
n

t
l̇ + γa = 0, ä+

n

t
ȧ+ αl = 0. (5.32)

The first integral in this case is given by

I1 = tnl̇u+ tnȧv − λ

∫
tna dt− β

∫
tnldt− atnv̇ − ltnu̇.

4.2. n = 2. In this subcase the Noether symmetries are X1 given by the operator (5.31)

and

X2 =
∂

∂t
− ut−1 ∂

∂u
− vt−1 ∂

∂v
. (5.33)

The value of B for the operator X2 is given by B = uv.

The associated first integral for X2 is given by

I2 = uv +
α

2
t2v2 +

γ

2
t2u2 + utv̇ + vtu̇+ t2u̇v̇.

In this subcase, we note that the first integral corresponding to X1 is subsumed in Case

4.1 above with β, λ = 0.
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4.3. n = 0. Here the Noether operators are X1 given by the operator (5.31) and

X2 =
∂

∂t
, with B = C2, C2 a constant. (5.34)

This reduces to Case 2.

We note also that the first integral associated with X1 is contained in Case 4.1 above

where a(t) and l(t) satisfy the coupled system

l̈ + γa = 0, ä+ αl = 0. (5.35)

Case 5. f = αvr, g = βum, m ̸= −1 and r ̸= −1 where α, β are constants, with α ̸= 0

and β ̸= 0.

There are three subcases,viz.,

5.1. If n =
2m+ 2r +mr + 3

rm− 1
, rm ̸= 1,m ̸= −1,m ̸= 1and r ̸= −1, we obtain τ = t,

ξ = −(1 + n)

m+ 1
u, η = −(1 + n)

r + 1
v and B = constant.

Thus we obtain a single Noether point symmetry

X = t
∂

∂t
− (1 + n)

m+ 1
u
∂

∂u
− (1 + n)

r + 1
v
∂

∂v
(5.36)

with the associated first integral

I = βtn+1 u
m+1

m+ 1
+ αtn+1 v

r+1

r + 1
+

(n+ 1)

m+ 1
tnuv̇ +

(n+ 1)

r + 1
tnvu̇+ tn+1u̇v̇.

We now consider the case when m = −1 and r = −1, in Case 5. Here we have two

subcases

Case 5.2. n = 0, (m = −1, r = −1).

This case provides us with two Noether symmetries namely,

X1 = u
∂

∂u
− v

∂

∂v
and X2 =

∂

∂t
with B = 0 for both cases. (5.37)
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We obtain the Noetherian first integrals corresponding to X1 and X2 as

I1 = u̇v − uv̇, I2 = u̇v̇ + lnu+ ln v,

respectively.

Case 5.3. n = −1 (m = −1, r = −1).

Here we obtain two Noether symmetry operators, viz.,

X1 = u
∂

∂u
− v

∂

∂v
with B = 0 and X2 = t

∂

∂t
+ 2u

∂

∂u
with B = −2 ln t (5.38)

and first integrals associated with X1 and X2 are given by

I1 = u̇vt−1 − uv̇t−1, I2 = −2 ln t+ lnu+ ln v − 2uv̇t−1 + u̇v̇,

respectively.

Case 6. f = α exp(βv) + λ, g = δ exp(γu) + σ, α, β, λ, γ, δ, and σ are constants, with

α ̸= 0, β ̸= 0, δ ̸= 0, γ ̸= 0.

There are two subcases. They are

6.1. If n = 1, λ = 0 and σ = 0, we obtain τ = t, ξ = −2

γ
, η = − 2

β
and B = C3, C3 a

constant. Therefore we have a single Noether point symmetry

X1 = t
∂

∂t
− 2

γ

∂

∂u
− 2

β

∂

∂v
(5.39)

and this results in the first integral

I = t2u̇v̇ +
αt2

β
exp(βv) +

δt2

γ
exp(γu) +

2

γ
tv̇ +

2

β
tu̇.

6.2. If n = 0, λ = 0 and σ = 0, we deduce that τ = 1, ξ = 0, η = 0 and B = C4, C4 a

constant. The Noether operator is given by

X1 =
∂

∂t
. (5.40)
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This reduces to Case 2.

Case 7. f = α ln v + β, g = γ lnu + λ, where α, β, γ and λ are constants with α ̸= 0,

γ ̸= 0.

If n = 0, we obtain τ = 1, ξ = 0, η = 0 and B = C5, C5 a constant. This reduces to Case

2.

6 Soil Water Redistribution and Extraction FlowMod-

els: Conservation Laws

6.1 Introduction

A mathematical model with three arbitrary elements was proposed by [100] (see also [101])

to simulate soil water infiltration, redistribution, and extraction in a bedded soil profile

overlaying a shallow water table and irrigated by a line source drip irrigation system. The

partial differential equation that models this system is given by [100,101]

C(ψ)ψt = (K(ψ)ψx)x + (K(ψ)(ψz − 1))z − S(ψ), (6.41)

where ψ is soil moisture pressure head, C(ψ) is specific water capacity, K(ψ) is unsatu-

rated hydraulic conductivity, S(ψ) is a sink or source term, t is time, x is the horizontal

and z is the vertical axis which is considered positive downward.

The equation (6.41) has attracted a fair amount of attention from various quarters. The

symmetry group classification of equation (6.41) with respect to admissible point trans-

formation groups was done by [102] (see, e.g. references [13] and [87] for an account

on symmetry methods). This paper also contains some exact solutions, viz., invariant

solutions for particular functions in (6.41). Further work on invariant and asymptotic

invariant solutions, inspired by [102], was obtained by [103] for certain two-dimensional

subalgebras of the symmetry algebra of (6.41).

Special cases of (6.41) were considered for conservation laws in [104].
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Here we find all the nontrivial conservation laws for equation (6.41). In the general case,

that is for arbitrary elements, equation (6.41) has trivial conservation laws. We also

provide all the classes of equations (6.41) that admit point symmetry algebras and for

which nontrivial conservation laws exist.

6.2 Conservation laws

We find conservation laws for equation (6.41). The conservation law relation

DtT
1 +DxT

2 +DzT
3 = 0 (6.42)

which holds on the solutions of (6.41) is invoked. Note that one cannot use Noether’s

theorem [32] here as there is no Lagrangian for (6.41) as it is a scalar evolution equation.

The solution of (6.42) after some amount of work yields the conserved vector components

T 1 = −a(t, x, z)ψx + b(t, x, z)ψz + A(t, x, z)

∫
C(ψ)dψ +B(t, x, z),

T 2 = a(t, x, z)ψt −K(ψ)ψxA(t, x, z)− c(t, x, z, ψ)ψz + d(t, x, z, ψ),

T 3 = −b(t, x, z)ψt −K(ψ)ψzA(t, x, z) + c(t, x, z, ψ)ψx

+e(t, x, z, ψ), (6.43)

where the functions a to B satisfy

∂a

∂x
− ∂b

∂z
= 0,

∂a

∂t
+K(ψ)

∂A

∂x
− ∂d

∂ψ
− ∂c

∂z
= 0,

∂b

∂t
−K ′(ψ)A− ∂c

∂x
−K(ψ)

∂A

∂z
+
∂e

∂ψ
= 0,

∂A

∂t

∫
C(ψ)dψ +

∂B

∂t
− S(ψ)A+

∂d

∂x
+
∂e

∂z
= 0. (6.44)

The equations (6.44) imply the classifying relation

K(ψ)

(
∂2A

∂x2
+
∂2A

∂z2

)
+K ′(ψ)

∂A

∂z
− S ′(ψ)A+ C(ψ)

∂A

∂t
= 0. (6.45)
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The invocation of (6.45) helps us to classify all conserved vectors for equation (6.41).

It is clear that for arbitrary C(ψ), K(ψ) and S(ψ) we obtain trivial conservation laws

since A = 0. Now since K(ψ) ̸= 0, we divide equation (6.45) by K(ψ) and differentiate

the resultant equation with respect to ψ. This gives rise to two cases, viz., K ′(ψ)/K(ψ)

constant and K ′(ψ)/K(ψ) not a constant. Each of these two cases further results into

three subcases. The calculations are straight forward and are summarized below:

1. For arbitrary C(ψ), K(ψ) and S(ψ) we obtain trivial conservation laws since A = 0.

Nontrivial conservation laws are found in the following cases:

2. C(ψ) = c0 exp(αψ), K(ψ) = k0 exp(αψ), S(ψ) = s0 + s1ψ if α = 0 or S(ψ) =

(s1/α) exp(αψ) + s0 if α ̸= 0, where α, c0 ̸= 0, k0 ̸= 0, s0 and s1 are arbitrary constants.

The function A satisfies

(Axx + Azz)k0 + k0αAz − s1A+ c0At = 0

together with the system (6.44) being satisfied.

3. C(ψ) arbitrary,K(ψ) = k0 exp(αψ), S(ψ) = s0+s1ψ if α = 0 or S(ψ) = (s1/α) exp(αψ)+

s0 if α ̸= 0, where α, k0 ̸= 0, s0 and s1 are arbitrary constants. The function A satisfies

(Axx + Azz)k0 + k0αAz − s1A = 0, At = 0

together with the system (6.44).

4. S(ψ) arbitrary, K(ψ) = k0 exp(αψ), C(ψ) = c0S
′(ψ) + c1 exp(αψ), where k0, c0 ̸= 0,

α and c1 are arbitrary constants and

A = exp(t/c0)f(x, z),

where f solves (fxx + fzz)k0c0 + αk0c0fz + c1f = 0. The system (6.44) must also hold.

5. K(ψ) arbitrary with K(ψ) ̸= k0 exp(αψ), C(ψ) = c0K
′(ψ) + c1K(ψ), S(ψ) = s0 +

s1K(ψ) + s2
∫
K(ψ)dψ, where α, k0, c0, c1, s0, s1 and s2 are arbitrary constants and

A = exp(s1z)g(t− c0z, x),
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where g solves gxx+ c
2
0gττ +(c1−2c0s1)gτ +(s21− s2)g = 0, τ = t− c0z. The system (6.44)

needs to be satisfied as well.

6. K(ψ) arbitrary with K(ψ) ̸= k0 exp(αψ), C(ψ) ̸= c0K
′(ψ) + c1K(ψ), S(ψ) = s0 +

s1K(ψ) + s2
∫
K(ψ)dψ, where α, k0, c0, c1, s0, s1 and s2 are arbitrary constants and

A = exp(s1z)f(x),

where f solves f ′′ + (s21 − s2)f = 0. In addition A must satisfy system (6.44).

7. K(ψ) arbitrary with K(ψ) ̸= k0 exp(αψ), C(ψ) = c0S
′(ψ)+c1K

′(ψ)+c2K(ψ), S(ψ) ̸=
s0 + s1K(ψ) + s2

∫
K(ψ)dψ, where α, k0, c0, c1, s0, s1 and s2 are arbitrary constants and

A = g(x) exp((t− c1z)/c0),

where g solves g′′ +
c21 + c0c2

c20
g = 0. The system (6.44) needs to hold as well.

In the above, only the Cases 6 and 7 give rise to two nontrivial conservation laws each.

The other cases each result in an infinite number of nontrivial conservation laws. We now

present details for each case.

For Case 2 with α = 0, the solution of the system (6.44) with the choices of the functions

a = b = c = B = 0 gives

T 1 = c0ψA(t, x, z),

T 2 = −k0ψxA+ k0ψAx,

T 3 = −k0ψzA+ k0ψAz + s0

∫
Adz

where A satisfies the second-order PDE (Axx +Azz)k0 − s1A+ c0At = 0. Thus we obtain

an infinite number of conservation laws for this case.

When α ̸= 0, the solution of the system (6.44) with the same choices of the functions

a, b, c and B as above, yields

T 1 =
c0
α
A(t, x, z) exp(αψ),

T 2 = −k0ψxA exp(αψ) +
k0
α
Ax exp(αψ) + s0

∫
Adx,

T 3 = −k0ψzA exp(αψ) +
k0
α
Az exp(αψ) + k0A exp(αψ)
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where A solves (Axx + Azz)k0 + k0αAz − s1A + c0At = 0 and this results in an infinite

number of conservation laws.

Similarly for Case 3 with α = 0, the solution of the system (6.44) with the choices

a = b = c = B = 0 gives

T 1 = A(x, z)

∫
C(ψ)dψ,

T 2 = −k0ψxA+ k0ψAx,

T 3 = −k0ψzA+ k0ψAz + s0

∫
Adz

where A is a solution of (Axx +Azz)k0 − s1A(x, z) = 0 and we have an infinite number of

conservation laws for this case.

However, when α ̸= 0, the solution of the system (6.44) with the previous choices of the

functions a, b, c and B, yields

T 1 = A(x, z)

∫
C(ψ)dψ,

T 2 = −k0ψxA exp(αψ) +
k0
α
Ax exp(αψ) + s0

∫
A(x, z)dx,

T 3 = −k0ψzA exp(αψ) +
k0
α
Az exp(αψ) + k0A exp(αψ)

where A satisfies (Axx + Azz)k0 + k0αAz − s1A = 0, At = 0 and this again results in an

infinite number of conservation laws.

Now for Case 4 with the selection a = b = c = B = 0, the solution of the system (6.44),

yields

T 1 =

[
c0S(ψ) +

c1
α
exp(αψ)

]
exp(t/c0)f(x, z),

T 2 = k0

[
1

α
fx − f(x, z)

]
exp(αψ + t/c0),

T 3 = k0

[
1

α
fz + f(x, z)− fψz

]
exp(αψ + t/c0)

where f is a solution of (fxx + fzz)k0c0 + k0c0αfz + c1f = 0. This results in an infinite

number of conservation laws.
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For Case 5 we choose the functions a = b = c = B = 0 and the solution of the system

(6.44) gives

T 1 =

[
c0K(ψ) + c1

∫
K(ψ)dψ

]
g(x, τ) exp(s1z),

T 2 =

[
−K(ψ)ψxg + gx

∫
K(ψ)dψ + s0

∫
gdx

]
exp(s1z),

T 3 =

[
−K(ψ)ψz +K(ψ) + s1

∫
K(ψ)dψ

]
g exp(s1z)

where g solves gxx + c20gττ + (c1 − 2c0s1)gτ + (s21 − s2)g = 0, τ = t− c0z, which results in

an infinite number of conservation laws.

For Case 6 with the selection a = b = c = B = 0, the solution of the system (6.44), yields

T 1 =

[ ∫
C(ψ)dψ

]
f(x) exp(s1z),

T 2 =

[
−K(ψ)ψxf + f ′(x)

∫
K(ψ)dψ + s0

∫
f(x)dx

]
exp(s1z),

T 3 =

[
−K(ψ)ψz +K(ψ) + s1

∫
K(ψ)dψ

]
f(x) exp(s1z)

where f satisfies f ′′+(s21−s2)f = 0. Thus these components yield two conserved vectors.

For Case 7 we choose a = b = c = B = 0 and the solution of the system (6.44) yields

T 1 =

[
c0S(ψ) + c1K(ψ) + c2

∫
K(ψ)dψ

]
g(x) exp

(
t− c1z

c0

)
,

T 2 =

[
−K(ψ)ψxg(x) + g′(x)

∫
K(ψ)dψ

]
exp

(
t− c1z

c0

)
,

T 3 =

[
−K(ψ)ψz +K(ψ)− c1

c0

∫
K(ψ)dψ

]
g(x) exp

(
t− c1z

c0

)
where g satisfies g′′ +

c21 + c2c0
c20

g = 0 and so we obtain two nontrivial conservation laws

for this case.

The equations in the group classification of the soil water equations (6.41) which possess

nontrivial conservation laws are (the notation utilized in the following corresponds to that

used in [102])
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I. K(ψ) = 1.

1. C(ψ) arbitrary, S(ψ) = 0.

2. C(ψ) = ψσ, (i) S(ψ) = Bψ, B = 0 constant, (ii) (a) S(ψ) = Bψσ+1 + Dψ, B ̸= 0,

D ̸= 0, σ ̸= −1 constants, (ii) (b) S(ψ) = Bψσ+1, B ̸= 0, σ ̸= −1 constants, (iii)

S(ψ) = 0.

3. C(ψ) = exp(ψ), (ii) S(ψ) = B exp(ψ)+D, B,D ̸= 0 constants, (iii) S(ψ) = B exp(ψ),

B constant.

4. C(ψ) = 1, (iv) S(ψ) = −δψ, δ = 0,±1, (v) S(ψ) = ±1.

II. K(ψ) = C(ψ).

1. C(ψ) = sinh−2 ψ, (ii) S(ψ) = B cothψ, B ̸= 0 constant, (iii) S(ψ) = B, B constant.

2. C(ψ) = cosh−2 ψ, (ii) S(ψ) = −B tanhψ, B ̸= 0 constant, (iii) S(ψ) = −B, B

constant.

3. C(ψ) =M − Au(lnu− 1), A ̸= 0, M constants and ψ =
∫
du/[M − Au(lnu− 1)], (i)

S(ψ) = −u(B lnu+D), B,D constants.

III.K(ψ) = exp(−ψ), C(ψ) = exp(−ψ)(M−exp(−ψ))σ, S(ψ) = −D(M−exp(−ψ))σ+1+

B(exp(−ψ)−M) for B, D, M , σ ̸= −1 constants.

IV. K(ψ) = M − A exp(u), C(ψ) = M exp(−u) − A, S(ψ) = B expu, A ̸= 0, B, M

constants, and ψ =
∫ expu

u0
(M − Aw)−1dw.

VI. K(ψ) = M − Auµ+1, C(ψ) = (M − Auµ+1)u−σ, S(ψ) = −Bu1+2µ−σ, A ̸= 0, B,

M , σ ̸= 0,−1, µ ̸= −1 constants and for σ = µ or σ = 2µ, where ψ = 1
σ+1

∫ uσ+1

u0
(M −

Aw(µ+1)/(σ+1))−1dw.
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7 Solutions and conservation laws of a coupled Kadomtsev-

Petviashvili system

7.1 Introduction

Nonlinear partial differential equations (NLPDEs) describe a variety of physical phenom-

ena in the fields such as physics, chemistry, biology, fluid dynamics, etc. Thus finding

solutions of such NLPDEs is inevitable. However, determining solutions of NLPDEs is

a very difficult task and only in certain cases one can obtain exact solutions. In recent

years a number of methods have been proposed for obtaining exact solutions of NLPDEs.

Some of the most important methods found in the literature include the inverse scat-

tering transform method, Hirota’s bilinear method, the homogeneous balance method,

the Bäcklund transformation, the Darboux transformation method, the Fan sub-equation

method, the new test function method, the (G′/G)-expansion method, Lie symmetry

method, etc. [14–16,105–113].

The celebrated Korteweg-de Vries (KdV) equation [114]

ut + 6uux + uxxx = 0,

governs the dynamics of solitary waves. It was derived to describe shallow water waves

of long wavelength and small amplitude. It is an important equation from the view point

of integrable systems because it has infinite number of conservation laws, gives multiple-

soliton solutions, has bi-Hamiltonian structures, a Lax pair, and has many other physical

properties [115].

The Kadomtsev-Petviashvili (KP) equation [116] extends the KdV equation and is given

by (
ut + 6uux + uxxx

)
x

+ uyy = 0.

The KP equation is a model for shallow long waves in the x-direction with some mild dis-

persion in the y-direction. It is completely integrable by the inverse scattering transform

method and gives multiple-soliton solutions.
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In [117] a new coupled KdV system

ut + uxxx + 3uux + 3wwx = 0, (7.46a)

vt + vxxx + 3vvx + 3wwx = 0, (7.46b)

wt + wxxx +
3

2
(uw)x +

3

2
(vw)x = 0 (7.46c)

was formally derived and examined by using the generalized bi-Hamiltonian structures

with the aid of the trace identity. Here we consider the coupled KdV system (7.46)

formulated in the KP sense, which is given by [118](
ut + uxxx + 3uux + 3wwx

)
x

+ uyy = 0, (7.47a)(
vt + vxxx + 3vvx + 3wwx

)
x

+ vyy = 0, (7.47b)(
wt + wxxx +

3

2
(uw)x +

3

2
(vw)x

)
x

+ wyy = 0 (7.47c)

and obtain exact solutions of the system. We also derive conservation laws for (7.47).

7.2 Symmetries and exact solutions of (7.47)

The symmetry group of the coupled KdV system (7.47) will be generated by the vector

field of the form

X = ξ1(t, x, y, u, v, w)
∂

∂t
+ ξ2(t, x, y, u, v, w)

∂

∂x
+ ξ3(t, x, y, u, v, w)

∂

∂y

+η1(t, x, y, u, v, w)
∂

∂u
+ η2(t, x, y, u, v, w)

∂

∂v
+ η3(t, x, y, u, v, w)

∂

∂w
.

By applying the fourth prolongation pr(4)X [15] to (7.47), we obtain an overdetermined

system of linear partial differential equations (PDEs). The general solution of the overde-
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termined system of linear PDEs is given by

ξ1(t, x, y, u, v, w) = 18F1(t),

ξ2(t, x, y, u, v, w) = −3y2F ′′
1 (t) + 3F3(t)− 3yF ′

2(t) + 6xF ′
1(t),

ξ3(t, x, y, u, v, w) = 12yF ′
1(t) + 6F2(t),

η1(t, x, y, u, v, w) = −2C1w − y2F ′′′
1 (t) + F3(t)− yF ′′

2 (t)− 12uF ′
1(t) + 2xF ′′

1 (t),

η2(t, x, y, u, v, w) = −y2F ′′′
1 (t) + F ′

3(t)− yF ′′
2 (t) + 2wC1 − 12vF ′

1(t) + 2xF ′′
1 (t),

η3(t, x, y, u, v, w) = (u− v)C1 − 12wF ′
1(t),

where C1 is an arbitrary constant and F1, F2 and F3 are arbitrary functions of t. For

simplicity we restrict these arbitrary functions to arbitrary constants C2, C3 and C4

respectively. As a result we obtain the 4-dimensional Lie algebra spanned by the following

linearly independent operators:

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 =

∂

∂y
, Γ4 = −2w

∂

∂u
+ 2w

∂

∂v
+ (u− v)

∂

∂w
.

7.3 Symmetry reduction of (7.47)

We now make use of the symmetry Γ = Γ1 +Γ2 +Γ3 and reduce (7.47) to a system of

nonlinear PDEs in two independent variables. The symmetry Γ yields the following five

invariants:

f = t− y, g = x− y, ϕ = u, ψ = v, θ = w. (7.48)

Treating ϕ, ψ, θ as the new dependent variables and f , g as new independent variables,

(7.47) transforms to

3ϕfg + ϕgggg + 3ϕg
2 + ϕgg + 3θggθ + ϕff + 3ϕggϕ+ 3θg

2 = 0,

3ψfg + ψgggg + 3ψg
2 + ψgg + 3θggθ + ψff + 3ψggψ + 3θg

2 = 0,

3θfg + θgggg + 3ψgθg +
3

2
ϕggθ + θff + 3ϕgθg +

3

2
ψggθ

+
3

2
θggϕ+

3

2
θggψ + θgg = 0,
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which is a system of nonlinear PDEs in two independent variables f and g. The above

system has two translation symmetries, viz.,

Υ1 =
∂

∂g
, Υ2 =

∂

∂f
.

By taking a linear combination Υ1 + ρΥ2 (ρ is a constant) of the above symmetries, we

see that it yields the four invariants

z = f − ρg, ϕ = E, ψ = F, θ = H.

Now treating E,F ,H as new dependent variables and z as the new independent variable

the above system transforms to the following system of nonlinear coupled ODEs:

ρ4E
′′′′
(z) + 3ρ2E(z)E ′′(z) + ρ2E ′′(z)− 3ρE ′′(z) + E ′′(z)

+3ρ2E ′(z)2 + 3ρ2H(z)H ′′(z) + 3ρ2H ′(z)2 = 0, (7.49a)

ρ4F
′′′′
(z) + 3ρ2F (z)F ′′(z) + ρ2F ′′(z)− 3ρF ′′(z)

+F ′′(z) + 3ρ2F ′(z)2 + 3ρ2H(z)H ′′(z) + 3ρ2H ′(z)2 = 0, (7.49b)

ρ4H
′′′′
(z) +

3

2
ρ2H(z)E ′′(z) + 3ρ2E ′(z)H ′(z) +

3

2
ρ2E(z)H ′′(z)

+
3

2
ρ2H(z)F ′′(z) + 3ρ2F ′(z)H ′(z) +

3

2
ρ2F (z)H ′′(z) + ρ2H ′′(z)

−3ρH ′′(z) +H ′′(z) = 0. (7.49c)

In the next two subsections we shall solve the above system of ODEs.

7.4 Solution of (7.47) using (G′/G)-expansion method

In this subsection we use the (G′/G)−expansion method [119] and obtain some exact

solutions of the system of ODEs (7.49). This will result in the exact solutions of the

coupled KP system (7.47).

Let us consider the solution of (7.49) in the form

E(z) =
M∑
i=0

Ai

(
G′(z)

G(z)

)i

, F (z) =
M∑
i=0

Bi

(
G′(z)

G(z)

)i

, H(z) =
M∑
i=0

Ci
(
G′(z)

G(z)

)i

, (7.50)
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where G(z) satisfies the linear second-order ODE with constant coefficients, viz.,

G′′ + λG′ + µG = 0, (7.51)

where λ and µ are constants. The positive integer M will be determined by the homoge-

neous balance method between the highest order derivative and highest order nonlinear

term appearing in (7.49). A0, · · · ,AM , B0, · · · ,BM and C0, · · · , CM , are parameters to be

determined.

Application of the balancing procedure to the system of ODEs, yields M = 2, so the

solutions of (7.49) are of the form

E(z) = A0 +A1

(
G′(z)

G(z)

)
+A2

(
G′(z)

G(z)

)2

, (7.52a)

F (z) = B0 + B1

(
G′(z)

G(z)

)
+ B2

(
G′(z)

G(z)

)2

, (7.52b)

H(z) = C0 + C1
(
G′(z)

G(z)

)
+ C2

(
G′(z)

G(z)

)2

. (7.52c)

Substituting (7.52) into (7.49) and making use of (7.51) leads to an overdetermined sys-

tem of algebraic equations. Solving this system of algebraic equations, with the aid of

Mathematica, we obtain

A1 = −2λρ2,

A2 = −2ρ2,

B0 = A0,

B1 = −2λρ2,

B2 = −2ρ2,

C0 =
3A0ρ

2 + λ2ρ4 + 8µρ4 + ρ2 − 3ρ+ 1

3ρ2
,

C1 =
2 (3A0λρ

2 + λ3ρ4 + 8λµρ4 + λρ2 − 3λρ+ λ)

3C0
,

C2 =
C1
λ
.

Now using the general solution of (7.51) in (7.52), we have the following three types of

travelling wave solutions of the coupled KP equation (7.47):
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When λ2 − 4µ > 0, we obtain the hyperbolic function solutions

u1(t, x, y) = A0 +A1

(
− λ

2
+ δ1

C1 sinh (δ1z) + C2 cosh (δ1z)

C1 cosh (δ1z) + C2 sinh (δ1z)

)
+A2

(
− λ

2
+ δ1

C1 sinh (δ1z) + C2 cosh (δ1z)

C1 cosh (δ1z) + C2 sinh (δ1z)

)2

, (7.53a)

v1(t, x, y) = B0 + B1

(
− λ

2
+ δ1

C1 sinh (δ1z) + C2 cosh (δ1z)

C1 cosh (δ1z) + C2 sinh (δ1z)

)
+B2

(
− λ

2
+ δ1

C1 sinh (δ1z) + C2 cosh (δ1z)

C1 cosh (δ1z) + C2 sinh (δ1z)

)2

, (7.53b)

w1(t, x, y) = B0 + B1

(
− λ

2
+ δ1

C1 sinh (δ1z) + C2 cosh (δ1z)

C1 cosh (δ1z) + C2 sinh (δ1z)

)
+B2

(
− λ

2
+ δ1

C1 sinh (δ1z) + C2 cosh (δ1z)

C1 cosh (δ1z) + C2 sinh (δ1z)

)2

, (7.53c)

where z = t− ρx+ (ρ− 1)y, δ1 =
1
2

√
λ2 − 4µ, C1 and C2 are arbitrary constants.

When λ2 − 4µ < 0, we obtain the trigonometric function solutions

u2(t, x, y) = A0 +A1

(
− λ

2
+ δ2

−C1 sin (δ2z) + C2 cos (δ2z)

C1 cos (δ2z) + C2 sin (δ2z)

)
+A2

(
− λ

2
+ δ2

−C1 sin (δ2z) + C2 cos (δ2z)

C1 cos (δ2z) + C2 sin (δ2z)

)2

,

v2(t, x, y) = B0 + B1

(
− λ

2
+ δ2

−C1 sin (δ2z) + C2 cos (δ2z)

C1 cos (δ2z) + C2 sin (δ2z)

)
+B2

(
− λ

2
+ δ2

−C1 sin (δ2z) + C2 cos (δ2z)

C1 cos (δ2z) + C2 sin (δ2z)

)2

,

w2(t, x, y) = B0 + B1

(
− λ

2
+ δ2

−C1 sin (δ2z) + C2 cos (δ2z)

C1 cos (δ2z) + C2 sin (δ2z)

)
+B2

(
− λ

2
+ δ2

−C1 sin (δ2z) + C2 cos (δ2z)

C1 cos (δ2z) + C2 sin (δ2z)

)2

,

where z = t− ρx+ (ρ− 1)y, δ2 =
1
2

√
4µ− λ2, C1 and C2 are arbitrary constants.
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When λ2 − 4µ = 0, we obtain the rational function solutions

u3(t, x, y) = A0 +A1

(
− λ

2
+

C2

C1 + C2z

)
+A2

(
− λ

2
+

C2

C1 + C2z

)2

,

v3(t, x, y) = B0 + B1

(
− λ

2
+

C2

C1 + C2z

)
+ B2

(
− λ

2
+

C2

C1 + C2z

)2

,

w3(t, x, y) = B0 + B1

(
− λ

2
+

C2

C1 + C2z

)
+ B2

(
− λ

2
+

C2

C1 + C2z

)2

,

where z = t− ρx+ (ρ− 1)y, C1 and C2 are arbitrary constants.

A profile of the solution (7.53) is given in Figures 1-3.

Figure 1: Evolution of travelling wave solution (7.53) with parameters

C1 = 0, C2 = 1, λ = 3, µ = 1, ρ = 2, y = 0, A0 = 0.

Figure 2: Evolution of travelling wave solution (7.53) with parameters

C1 = 0, C2 = 1, λ = 3, µ = 1, ρ = 2, y = 0, A0 = 0.

38



Figure 3: Evolution of travelling wave solution (7.53) with parameters

C1 = 0, C2 = 1, λ = 3, µ = 1, ρ = 2, y = 0, A0 = 0.

7.5 Conservation laws of (7.47)

In this section we construct conservation laws for (7.47) using the multiplier method [120].

Consider a kth-order system of PDEs of n independent variables x = (x1, x2, . . . , xn) and

m dependent variables u = (u1, u2, . . . , um), viz.,

Eα(x, u, u(1), . . . , u(k)) = 0, α = 1, . . . ,m, (7.54)

where u(1), u(2), . . . , u(k) denote the collections of all first, second, . . ., kth-order partial

derivatives, that is, uαi = Di(u
α), uαij = DjDi(u

α), . . . respectively, with the total derivative

operator with respect to xi given by

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ . . . , i = 1, . . . , n, (7.55)

with the summation convention used whenever appropriate [16].

The Euler-Lagrange operator, for each α, is given by

δ

δuα
=

∂

∂uα
+
∑
s≥1

(−1)sDi1 . . . Dis

∂

∂uαi1i2...is
, α = 1, . . . ,m. (7.56)
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The n-tuple vector T = (T 1, T 2, . . . , T n), T j ∈ A, j = 1, . . . , n, (A is the space of

differential functions) is a conserved vector of (7.54) if T i satisfies

DiT
i|(7.54) = 0. (7.57)

A multiplier Λα(x, u, u(1), . . .) has the property that [15]

ΛαEα = DiT
i (7.58)

holds identically. Here we will consider multipliers of the zeroth order, i.e., Λα will depend

only on t, x, y, u, v, w. The determining equation for the multiplier Λα is [15]

δ(ΛαEα)

δuα
= 0. (7.59)

Once the multipliers are obtained, the conserved vectors are calculated via a homotopy

formula [15,120].

For the coupled KP system (7.47), we see that the three zeroth-order multipliers, namely

Λ1 = Λ1(t, x, y, u, v, w), Λ2 = Λ2(t, x, y, u, v, w) and Λ3 = Λ3(t, x, y, u, v, w) are given

by

Λ1 = xyf1(t) + xf2(t)−
1

6
y3f ′

1(t)−
1

2
y2f ′

2(t) + yf7(t) + f8(t),

Λ2 = xyf3(t) + xf4(t)−
1

6
y3f ′

3(t)−
1

2
y2f ′

4(t) + yf11(t) + f12(t),

Λ3 = xyf5(t) + xf6(t)−
1

6
y3f ′

5(t)−
1

2
y2f ′

6(t) + yf9(t) + f10(t),

where fi, i = 1, · · · , 12 are arbitrary functions of t.

Therefore, corresponding to the above multipliers we have the following twelve conserved
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vectors of (7.47):

T t
1 =

1

12

{
− 6yf1(t)u+ 6xyf1(t)ux + y3 (−f ′

1(t))ux

}
,

T x
1 =

1

12

{
− 6y3f ′

1(t)uxu+ 36xyf1(t)uxu− 6y3f ′
1(t)wxw + 36xyf1(t)wxw + y3f1

′′(t)u

−6xyf ′
1(t)u− 18yf1(t)u

2 − 18yf1(t)w
2 − 12yf1(t)uxx + 12xyf1(t)uxxx + 6xyf1(t)ut

−y3f ′
1(t)ut − 2y3f ′

1(t)uxxx

}
,

T y
1 =

1

6

{
3y2f ′

1(t)u− 6xf1(t)u+ 6xyf1(t)uy + y3 (−f ′
1(t))uy

}
;

T t
2 =

1

4

{
− 2f2(t)u+ 2xf2(t)ux + y2 (−f ′

2(t))ux

}
,

T x
2 =

1

4

{
− 6y2f ′

2(t)uxu+ 12xf2(t)uxu− 6y2f ′
2(t)wxw + 12xf2(t)wxw

+y2f2
′′(t)u− 2xf ′

2(t)u− 6f2(t)u
2 − 6f2(t)w

2 − 4f2(t)uxx + 4xf2(t)uxxx

+2xf2(t)ut − y2f ′
2(t)ut − 2y2f ′

2(t)uxxx

}
,

T y
2 =

1

2

{
2yf ′

2(t)u+ 2xf2(t)uy + y2 (−f ′
2(t))uy

}
;

T t
3 =

1

12

{
− 6yf3(t)v + 6xyf3(t)vx + y3 (−f ′

3(t)) vx

}
,

T x
3 =

1

12

{
− 6y3f ′

3(t)vxv + 36xyf3(t)vxv − 6y3f ′
3(t)wxw + 36xyf3(t)wxw

+y3f3
′′(t)v − 6xyf ′

3(t)v − 18yf3(t)v
2 − 18yf3(t)w

2 − 12yf3(t)vxx

+12xyf3(t)vxxx + 6xyf3(t)vt − y3f ′
3(t)vt − 2y3f ′

3(t)vxxx

}
,

T y
3 =

1

6

{
3y2f ′

3(t)v − 6xf3(t)v + 6xyf3(t)vy + y3 (−f ′
3(t)) vy

}
;
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T t
4 =

1

4

{
− 2f4(t)v + 2xf4(t)vx + y2 (−f ′

4(t)) vx

}
,

T x
4 =

1

4

{
− 6y2f ′

4(t)vxv + 12xf4(t)vxv − 6y2f ′
4(t)wxw + 12xf4(t)wxw

+y2f4
′′(t)v − 2xf ′

4(t)v − 6f4(t)v
2 − 6f4(t)w

2 − 4f4(t)vxx + 4xf4(t)vxxx

+2xf4(t)vt − y2f ′
4(t)vt − 2y2f ′

4(t)vxxx

}
,

T y
4 =

1

2

{
2yf ′

4(t)v + 2xf4(t)vy + y2 (−f ′
4(t)) vy

}
;

T t
5 =

1

12

{
− 6yf5(t)w + 6xyf5(t)wx + y3 (−f ′

5(t))wx

}
,

T x
5 =

1

12

{
− 3y3f ′

5(t)uxw − 3y3f ′
5(t)wxu+ 18xyf5(t)uxw + 18xyf5(t)wxu

−3y3f ′
5(t)vxw − 3y3f ′

5(t)wxv + 18xyf5(t)vxw + 18xyf5(t)wxv − 18yf5(t)uw

−18yf5(t)vw + y3f5
′′(t)w − 6xyf ′

5(t)w − 12yf5(t)wxx + 12xyf5(t)wxxx

+6xyf5(t)wt − y3f ′
5(t)wt − 2y3f ′

5(t)wxxx

}
,

T y
5 =

1

6

{
3y2f ′

5(t)w − 6xf5(t)w + 6xyf5(t)wy + y3 (−f ′
5(t))wy

}
;

T t
6 =

1

4

{
− 2f6(t)w + 2xf6(t)wx + y2 (−f ′

6(t))wx

}
,

T x
6 =

1

4

{
− 3y2f ′

6(t)uxw − 3y2f ′
6(t)wxu+ 6xf6(t)uxw + 6xf6(t)wxu

−3y2f ′
6(t)vxw − 3y2f ′

6(t)wxv + 6xf6(t)vxw + 6xf6(t)wxv − 6f6(t)uw

−6f6(t)vw + y2f6
′′w − 2xf ′

6(t)w − 4f6(t)wxx + 4xf6(t)wxxx + 2xf6(t)wt

−y2f ′
6(t)wt − 2y2f ′

6(t)wxxx

}
,

T y
6 =

1

2

{
2yf ′

6(t)w + 2xf6(t)wy + y2 (−f ′
6(t))wy

}
;
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T t
7 =

1

2
yf7(t)ux,

T x
7 =

1

2

{
6yf7(t)uxu+ 6yf7(t)wxw − yf ′

7(t)u+ 2yf7(t)uxxx + yf7(t)ut

}
,

T y
7 = yf7(t)uy − f7(t)u;

T t
8 =

1

2
f8(t)ux,

T x
8 =

1

2

{
6f8(t)uxu+ 6f8(t)wxw − f ′

8(t)u+ 2f8(t)uxxx + f8(t)ut

}
,

T y
8 = f8(t)uy;

T t
9 =

1

2
yf9(t)wx,

T x
9 =

1

2

{
3yf9(t)uxw + 3yf9(t)wxu+ 3yf9(t)vxw + 3yf9(t)wxv − yf ′

9(t)w

+2yf9(t)wxxx + yf9(t)wt

}
,

T y
9 = yf9(t)wy − f9(t)w;

T t
10 =

1

2
f10(t)wx,

T x
10 =

1

2

{
3f10(t)uxw + 3f10(t)wxu+ 3f10(t)vxw + 3f10(t)wxv − f ′

10(t)w

+2f10(t)wxxx + f10(t)wt

}
,

T y
10 = f10(t)wy;

T t
11 =

1

2
yf11(t)vx,

T x
11 =

1

2

{
6yf11(t)vxv + 6yf11(t)wxw − yf ′

11(t)v + 2yf11(t)vxxx + yf11(t)vt

}
,

T y
11 = yf11(t)vy − f11(t)v;

T t
12 =

1

2
f12(t)vx,

T x
12 =

1

2

{
6f12(t)vxv + 6f12(t)wxw − f ′

12(t)v + 2f12(t)vxxx + f12(t)vt

}
,

T y
12 = f12(t)vy.
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Remark Due to the presence of the arbitrary functions, fi, i = 1, · · · , 12, in the multi-

pliers, one can obtain an infinitely many conservation laws for the coupled KP system.
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versity, University of Tübingen, Quaid-i-Azam University, Yeditepe University, Universiti

Putra Malaysia, Zhejiang Sci-Tech University, Zhejiang Dianzi University.

He is a member of Mathematics in Industry Study Group, South Africa since 2004 and

has contributed to published research articles relating to Mathematical model of a road

block, Wrinkling of paper labels on beer bottles, Modelling air blasts in a long tunnel

with surface roughness.

He is a Fellow of the Institute of Mathematics and its Applications, UK, and a Member of

American Mathematical Society, USA, London Mathematical Society, UK, South African

Mathematical Society, RSA, and Society for Industrial and Applied Mathematics, USA.

54


