The intake and quality of breakfast consumption among adolescents attending public secondary schools in Potchefstroom

LM Tee
23974125

Mini-Dissertation submitted in partial fulfillment of the requirements for the degree Magister Scientiae in Nutrition Education at the Potchefstroom Campus of the North-West University

Supervisor: Dr CR Botha
Co-Supervisor: Prof JC Jerling

May 2014
Acknowledgement
I would like to extend my sincere thanks to my study leader, Dr Chrisna Botha. It was with your patience, guidance and support that we reached this point and I am so grateful for the time and effort you invested into me and this project.

I would also like to thank the following people:

- My co-supervisor, Prof Johann Jerling. Thank you for challenging me and encouraging me to strive for the best possible product.
- Lianri Swanepoel, for your support and running-around during data collection. I sincerely appreciate you going the extra mile to help me.
- Ria Laubscher, for helping me to understand and interpret my results.
- Professor Edelweiss Wentzel-Viljoen for your guidance in the interpretation of results.
- Kellogg Company of South Africa, for providing this opportunity and financial support.
- My manager, Linda Drummond, for helping to motivate for this research and supporting me through the process.
- The Quality-Assurance Department of the North-West Provincial Department of Education for granting me permission to do this study.
- The Principals, teachers and facilitators of the schools involved in data collection. We would not have been able to collect this data without your permission and support.
- The students who took part in the study. Thank you for allowing us some of your time, and for sharing your personal information with us to help influence science and research.
- The team of fieldworkers who helped me during data collection.
- Ronel Benson and Henriëtte Claasen, thank you for all the behind-the-scenes work you did. It was a very big help and did not go unnoticed.
- To my family, you are the tall shoulders that I stand on to reach greater heights.

I would also like to express a very special thanks to my favourite, Jason Kiezer. You are my best friend, the rock I lean for support and the love of my life. Without you, this dissertation would not have been possible.

A very sincere thank you to you all!
Abstract

Regular breakfast consumption among adolescents has been linked to decreased risk of obesity and chronic diseases, improved cognition and improved nutrient intake in adolescents. Despite this, research has indicated that adolescent breakfast consumption is declining globally. Adolescents are at particularly high-risk for health compromising behaviours such as increased fast food consumption, increased sedentary levels and frequent breakfast skipping. Research shows that lifestyle and behaviour habits which are entrenched during adolescence are likely to remain throughout adulthood.

The reported prevalence of breakfast skipping among different adolescent population groups in South Africa ranges from 13 to 36%. However, little is known about breakfast behaviour among adolescents in the South African context.

Studying breakfast behaviour and the mechanism by which breakfast influences positive health outcomes creates an understanding of the magnitude of the problem to be addressed and guides effective recommendations for public health guidelines.

The aim of the present study was to determine the proportion and quality of breakfast intake among adolescents attending public secondary schools in Potchefstroom and its surrounding areas in the Northwest Province, and to determine the effect of breakfast intake and quality on overall diet quality and other lifestyle behaviours.

A cross sectional quantitative study design was used. Adolescents in grades nine to eleven (n = 254) were randomly selected from seven public secondary schools across quintiles in Potchefstroom and its surrounding areas in the Northwest Province of South Africa. A basic self-administered demographic questionnaire was used. A single 24-hour recall using the four-stage multiple pass method was conducted to obtain information on breakfast and dietary intake for the day. A self-administered questionnaire was used to select the type of breakfast usually consumed by the adolescents. Height and weight were measured by a level one anthropomotrist. Dietary data was analysed using the Medical Research Council Food Composition Tables. Breakfast quality was measured through the allocation of a breakfast quality score and the Diet Quality Index Revised (DQI-R) was used to assess the quality of the
overall diet. Associations between breakfast intake and categorical characteristics were assessed by either the Chi-squared Test or Fisher’s Exact Test. Spearman correlations were used to assess the associations between breakfast quality score and continuous variables. The threshold for statistical significance was set at 0.05. The Goldberg cut-off was applied to exclude over- and under-reporters.

Information was collected for 244 adolescents with a mean age of 17.5 years (± 2.3). The proportion of breakfast intake and skipping was 81% and 19% respectively. The mean breakfast quality score was 3.1 out of a possible score of 5, indicating moderate breakfast quality which incorporates one of the Australian Guide to Healthy Eating (AGHE) food groups. Breakfast intake was influenced by race, and breakfast quality was influenced by participation in physical activity. Breakfast eaters and skippers showed no significant difference in diet quality score. Breakfast quality score was marginally associated with calcium intake (p<0.0001; r=0.418), phosphorous intake (p<0.0001; r=0.378) and total diversity score (p<0.0001; r=0.369). The foods most frequently consumed at breakfast were bread, milk, ready-to-eat cereal (RTEC) and maize porridge.

In conclusion, breakfast skipping proportion was consistent with published South African data. The quality of the breakfast consumed among adolescents in the present study was moderate. Cultural and socio-environmental factors may influence breakfast intake and breakfast quality among adolescents. Breakfast intake did not influence diet quality, but the intake of certain foods at breakfast improved the mean scores for components of the DQI-R and improved the intake of key nutrients. It is recommended that the governmental departments responsible for the Integrated School Health Policy (ISHP) incorporate breakfast messaging into the nutrition education component of the ISHP. Facilitators involved in implementing the ISHP, such as School-based support teams, teachers and healthcare professionals are encouraged to continue the promotion of breakfast intake among adolescents.

Key words: Adolescent; Breakfast; Breakfast quality; Diet Quality; Adolescence
Opsomming

Gereelde ontbyt inname onder adolescente is verwant aan ’n afname in die risiko vir obesiteit en chroniese siekte toestande, verbeterde kognitiewe ontwikkeling en verbeterde nutrient inname. Ten spyte hiervan is daar duidelike bewyse in die literatuur dat die ontbyt inname van adolescente wereldwyd afneem. Adolescente is veral ’n hoe risiko groep as dit kom by gewoontes wat gesondheid bedreig. Dit sluit in ’n toename in kitskos, verhoogde sedentere aktiwiteitsvlakke en gereelde ontbyt oorslaan patrone. Navorsing wys dat leefstyl en gedragsgewoontes wat in adolessensie begin meestal voortgesit word in die volwasse lewe.

Die gerapporteerde ontbyt inname onder adolescente van Suid-Afrika wissel van 13 – 36%. Daar is egter nog min inligting rakende ontbyt gewoontes van Suid-Afrikaanse adolescente.

Deur die ontbyt gewoontes en die mekanisme van hoe ontbyt positiewe gesondheid uitkomste beïnvloed te bestudeer, ontwikkel daar ’n duidelike begrip van die grootte van die probleem wat aangespreek moet word en so kan effektiewe aanbevelings vir publieke gesondheid gemaak word.

Die doel van die studie is om die voorkoms en die kwaliteit van ontbyt inname onder adolescente, in publieke skole in der Noordwes Provinsie, te bepaal. Verder word die effek van ontbyt inname en die kwaliteit van algehele diet-kwaliteit en ander lewenstyl-faktore ondersoek.

Hier word gebruik gemaak van ’n dwarsdeursnit kwantitatiewe ontwerp. Adolescente van graad nege tot elf van sewe publieke sekondêre skole regdeur alle groepe in die Noordwes Provinsie van Suid-Afrika is ewekansig gekies en ingesluit in die studie (n = 254). Die studie maak gebruik van herroep opname van ’n demografiese vraelys wat deur die leerder self ingevul is. ’n Enkele 24-uur herroep is gedoen deur gebruik te maak van die vier stap herhaalde metode om informasie rakende ontbyt en diet-inname vir die dag te bepaal. ’n Vraelys oor die tipe ontbyt wat die leerder gewoonlik eet, is ook ingevul. Lengte en massa is deur ’n vlak een antropometris gemeet. Dieet-data is geanaliseer deur gebruik te maak van die Mediese Navorsingsraad van Suid-Afrika se voedsel-samestelling-tabelle. Ontbyt kwaliteit is gemeet
deur die allokasie van ’n ontbyt kwaliteit telling. Die dieet kwaliteit index (DQI-R) is gebruik om die oorhoofse dieet kwaliteit te bepaal. Assosiasies tussen ontbyt-inname en kategoriese veranderlikes is deur die Chi-kwadraat toets of Fisher se eksakte toets gedoen. Spearman korrelasies is gebruik om die assosiasies tussen ontbyt kwaliteit telling en ander deurlopende veranderlikes te toets. Die drumpel vir statistiese betekenisvolheid is gestel op 0.05. Die Goldberg afsny-tegniek is gebruik om oor- en onderrapporteerders uit te skakel uit die dataset.

Inligting vir 244 adolessente met ’n gemiddelde ouderdom van 17.5 jaar (± 2.3) is verkry. Die voorkoms van ontbyt inname en nie-ontbyt inname was onderskeidelik 81% en 19%. Die gemiddelde kwaliteit telling was 3.1 (van 5) wat ’n gemiddelde ontbyt-kwaliteit verteenwoordig wat ten minste een van die Australiese gids tot gesonde eet (AGHE) voedsel-groepe insluit. Ontbyt-inname is deur ras beïnvloed en ontbyt-kwaliteit deur fisiese aktiwiteit. Ontbyt-eters en nie-eters het nie statistiese betekenisvolle verskille getoon in terme van dieet kwaliteit telling nie. Ontbyt kwaliteit telling was gering geassosieer met kalsium inname, fosfor inname, vleis diversiteit en totale diversiteits telling (P<0.001; $r>0.369$). Die voedsel wat meer gereeld tydens ontbyt geëet is, was brood, melk en ontbytgraan sowel as mieliepap.

Die voorkoms van ontbyt-inname was in ooreenstemming met gepubliseerde Suid-Afrikaanse data. Die gehalte van die ontbyt verbruik onder tiener in die huidige studie was matig. Kulturele en sosio-omgewingsfaktores mag ontbyt-inname en ontbyt gehalte onder tiener beïnvloed. Ontbyt-inname het nie diet-gehalte beïnvloed nie, maar die inname van sekere voedselsoorte vir ontbyt verbeter die gemiddelde tellings vir komponente van die groep Goedkeur & Kwaliteitsverbetering-R en die verbetering van die inname van die belangrikste voedingstowwe. Professionele gesondheidsorg werkers word aangemoedig om met die bevordering van ontbyt inname onder tiener voort te gaan.

Sleutel woorde: Adolescent; Ontbyt, Ontbyt-gehalte; Dieet-Kwaliteit
Table of contents

Acknowledgement ... ii
Abstract ... iii
Opsomming ... v
Table of contents ... vii
List of tables .. x
List of figures .. xii
Addendum ... xiii
Acronyms and abbreviations xiv

CHAPTER 1 – Introduction 1

1.1 Problem statement and motivation 2
1.2 Research aim, objectives and hypotheses 6
 1.2.1 Aim .. 6
 1.2.2 Objectives .. 6
 1.2.3 Hypotheses .. 6
1.3 Structure of dissertation 7
1.4 Contributions of the authors 7
1.5 Solemn declaration 8
1.6 References .. 8

CHAPTER 2 – Literature review 14

2.1 Introduction ... 15
2.2 The definition of “breakfast” 16
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>The importance of breakfast intake among adolescents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.1 The relationship between breakfast consumption and obesity</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>in adolescents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.2 The relationship between breakfast consumption and chronic</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>disease risk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.3 Breakfast and cognition in adolescents and children</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Behavioural and psychological importance of breakfast</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.3.5 Breakfast, diet quality and nutrient intake</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Measuring breakfast and diet quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4.1 Measuring diet quality</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Measuring breakfast quality</td>
<td>39</td>
</tr>
<tr>
<td>2.5</td>
<td>Trends in breakfast intake among adolescents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1 The prevalence of breakfast intake among adolescents globally</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>2.5.2 Breakfast intake among South African adolescents</td>
<td>45</td>
</tr>
<tr>
<td>2.6</td>
<td>Factors influencing breakfast intake among adolescents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6.1 Conceptual framework of factors influencing breakfast behaviour</td>
<td>48</td>
</tr>
<tr>
<td>2.7</td>
<td>Conclusion</td>
<td>61</td>
</tr>
<tr>
<td>2.8</td>
<td>References</td>
<td>62</td>
</tr>
</tbody>
</table>

CHAPTER 3 – Article

Abstract

Introduction

Methods

 Research design

 Study participants and sampling
List of tables

TABLES FOR CHAPTER 1

Table 1 Contributions and roles of research team members 7

TABLES FOR CHAPTER 2

Table 1 Various definitions for breakfast 18
Table 2 Components of DQI-R 37
Table 3 Elements of the dietary diversity score 38
Table 4 Elements of diet moderation score 38
Table 5 Scoring system used to assess breakfast quality 40
Table 6 Summary of breakfast intake prevalence among adolescents globally 42

TABLES FOR CHAPTER 3

Table 1 Demographic and anthropometric characteristics of adolescents 92
Table 2a Breakfast intake by demographic characteristics (Chi-Square tests) 94
Table 2b Breakfast intake by demographic characteristics (Chi-Square tests) 95
Table 3 Components of the breakfast quality score 97
Table 4 Components of the DQI-R by breakfast intake and skipping 99
Table 5 Relationship between breakfast quality score, components of the DQI-R and nutrient intake measured by Spearman Correlations 102
Table 6 Nutrient compositions of foods commonly consumed at breakfast 104
List of figures

FIGURES FOR CHAPTER 1

Figure 1 Summary of the problem statement and motivation for research 5

FIGURES FOR CHAPTER 2

Figure 1 Considerations for how breakfast is defined 17
Figure 2 The prevalence of obesity among South African adolescents by gender 21
Figure 3 Theoretical model explaining the role of breakfast frequency and quality in reducing the risk of obesity and chronic diseases 26
Figure 4 Prevalence of breakfast intake and skipping by province 47
Figure 5 Reasons for breakfast skipping by locality 48
Figure 6 Factors influencing breakfast behaviour 49

FIGURES FOR CHAPTER 3

Figure 1 Frequency of intake for different foods at breakfast among adolescents 103
Addenda

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Ethical approval from the NWU</td>
<td>126</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Demographic questionnaire</td>
<td>127</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Usual breakfast intake questionnaire</td>
<td>130</td>
</tr>
<tr>
<td>Appendix D</td>
<td>24-hour recall form</td>
<td>131</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Anthropometric measurements form</td>
<td>133</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Author guidelines for the Journal of Adolescence</td>
<td>134</td>
</tr>
</tbody>
</table>
Acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGHE</td>
<td>Australian Guide to Healthy Eating</td>
</tr>
<tr>
<td>AI</td>
<td>Adequate Intake</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BMR</td>
<td>Basal Metabolic Rate</td>
</tr>
<tr>
<td>CCK</td>
<td>Cholecystokinin</td>
</tr>
<tr>
<td>DQI</td>
<td>Diet Quality Index</td>
</tr>
<tr>
<td>DQI-R</td>
<td>Diet Quality Index Revised</td>
</tr>
<tr>
<td>EAT</td>
<td>Eating Among Teens</td>
</tr>
<tr>
<td>EI</td>
<td>Energy Intake</td>
</tr>
<tr>
<td>et al</td>
<td>and others</td>
</tr>
<tr>
<td>FBDG</td>
<td>Food Based Dietary Guideline</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GI</td>
<td>Glycaemic Index</td>
</tr>
<tr>
<td>HDI</td>
<td>Healthy Diet Indicator</td>
</tr>
<tr>
<td>HDL-C</td>
<td>High Density Lipoprotein Cholesterol</td>
</tr>
<tr>
<td>HEI</td>
<td>Healthy Eating Index</td>
</tr>
<tr>
<td>ISAK</td>
<td>The International Society for the Advancement of Kinanthropometry</td>
</tr>
<tr>
<td>ISHP</td>
<td>Integrated School Health Policy</td>
</tr>
<tr>
<td>kcal</td>
<td>Calorie</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>MDS</td>
<td>Mediterranean Diet Scale</td>
</tr>
<tr>
<td>m²</td>
<td>Squared meters</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>Non-RTEC</td>
<td>Non-ready-to-eat cereals</td>
</tr>
<tr>
<td>NSNP</td>
<td>National School Nutrition Programme</td>
</tr>
<tr>
<td>NWU</td>
<td>Northwest University</td>
</tr>
<tr>
<td>PAL</td>
<td>Physical Activity Level</td>
</tr>
<tr>
<td>RDA</td>
<td>Recommended Dietary Allowance</td>
</tr>
<tr>
<td>RTEC</td>
<td>Ready-to-eat cereal</td>
</tr>
<tr>
<td>SANHANES</td>
<td>South African National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SES</td>
<td>Socio-economic status</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>TPB</td>
<td>Theory of Planned Behaviour</td>
</tr>
</tbody>
</table>
Chapter 1 – Introduction

The photograph above has been used with permission and shows a fieldworker in the process of conducting a 24-hour recall at quintile 5 school.
1.1 Problem statement and motivation

Adolescence is a period of marked rapid growth and development, and individuals going through this life stage are considered to be nutritionally vulnerable (Spear, 2002). Adolescence is a unique time of physiologic, psychosocial and cognitive development causing energy and nutrient requirements to be higher (Heald & Gong, 1999). In addition to this, adolescents are strongly influenced by macro- and micro-environmental characteristics, such as family, peers, social eating culture and mass media, influencing their eating habits and behaviour (Moreno et al., 2010; Story et al., 2002). Eating behaviours developed in adolescence often manifest into adulthood and can affect long-term health outcomes including risk for osteoporosis, cardiovascular diseases and cancer (Centres for Disease Control and Prevention, 1996; Lytle, 2003; Mikkila et al., 2005). Adolescent eating behaviour has been associated with more frequent snacking, eating food away from home, increased consumption of ready-to-eat foods or foods of poor nutritional quality, increased engagement in unhealthy weight loss practices and meal skipping, especially breakfast skipping (Frech, 2012; Niemeier et al., 2006; Story et al., 2002). Little research has been conducted to assess the dietary intake of adolescents in developing countries, such as South Africa (Temple et al., 2006; Walker et al., 1982).

It has been suggested that not only the intake of breakfast, but also the quality of the breakfast consumed, may influence the rest of the day's intake thereby further improving overall diet quality (Nicklas et al., 1998). Stephens and Summar (2008) suggested that the quality or types of foods consumed at breakfast may have an effect on diet quality and food choices for the rest of the day. For example, consumption of wholegrain foods, fruit and low-fat dairy products as well as inclusion of high fibre foods contributes to satiety and an overall healthful diet (Stephens & Summar, 2008). There is a need to understand the role of breakfast intake and breakfast quality in influencing overall diet quality, as this information will guide public health recommendations for adequate breakfast intake. In South Africa, Kruger et al. (2002) conducted a review to assess the importance of breakfast in helping South African children to meet their nutritional requirements. The review found that breakfast intake was important in helping schoolchildren to meet their nutritional requirements and that the quality of the diet can be improved with regular breakfast consumption. No studies measuring the impact of breakfast quality on overall diet quality among South Africans have been published to date to the knowledge of the author.

Several mechanisms explaining the role of breakfast intake in influencing beneficial health outcomes have been suggested. Breakfast skipping may influence the remainder of the day's intake through increased risk for skipping meals, increased consumption of snacks or consumption of larger meal portions throughout the day (Dejong et al., 2009; Levin & Kirby, 2012). In this way, breakfast intake may be protective against poor dietary behaviours which
follow in the day, helping to prevent individuals from engaging in dietary behaviour linked to obesity and chronic disease risk. In other words, breakfast intake may improve overall diet quality, in turn predisposing an individual to positive health outcomes.

The individual and environmental influences to which adolescents are exposed during the critical phase of transition from childhood to adulthood can affect food choices and dietary behaviour (Pearson et al., 2009). By understanding the factors underlying breakfast skipping behaviour, more effective and relevant strategies to improve the behaviour can be implemented (de Moraes et al., 2012; Story et al., 2002). In South Africa, little research has been conducted to understand the drivers of breakfast skipping behaviour. It has been suggested that race, age and gender may be predictors of breakfast intake among South African adolescents, but these characteristics have not had a consistent impact across the studies published (Feeley et al., 2012; Shisana et al., 2013; Walker et al., 1982). Reasons for breakfast skipping have been reported, including not having enough time to eat in the morning and families not eating together in the mornings (Stupar et al., 2012; Walker et al., 1982). Further research is required to understand the predictors and drivers of breakfast behaviour among adolescents in the South African context.

In adolescents, breakfast intake has been linked to decreased risk for obesity and cardiovascular disease, improved cognition, improved nutrient intake and has been shown to have behavioural and psychological importance (Deshmukh-Taskar et al., 2010; Giovannini et al., 2010; Jaaskelainen et al., 2012; Nicklas et al., 1993; O'Dea & Mugridge, 2012; Ortega et al., 1998a; Sandercock et al., 2010; Smith et al., 2010; Timlin & Pereira, 2007). Adolescents who skip breakfast are essentially missing an opportunity for improved wellbeing, and it is recommended that health practitioners promote healthy breakfast consumption among this particular target group (Rampersaud, 2008).

Despite this, breakfast intake among adolescents is declining (Cho et al., 2003; Rampersaud et al., 2005; Seiga-Riz et al., 2000). In South Africa, research reporting breakfast behaviour among adolescents is limited, although the South African National Health and Nutrition Examination Survey (SANHANES) published in 2013 indicated that 19% of children aged 10 to 14 years do not eat breakfast before going to school (Shisana et al., 2013). Temple et al. (2006) reported that 22% of adolescents attending secondary schools in Cape Town skipped breakfast, and similarly, Feeley et al. (2012) showed the prevalence of breakfast skipping in Gauteng to be 24%, 36% and 35% for adolescents aged 13, 15 and 17 years respectively. To the author's knowledge, research on the prevalence of breakfast intake among adolescents in other provinces of South Africa has not been published. For this reason, there is a need to
investigate the prevalence of breakfast intake among different adolescent population groups in South Africa, including adolescents in the Northwest Province.

By understanding the prevalence of breakfast skipping and quality of breakfast consumed within a particular target group, research is able to create an understanding of the magnitude of the problem to be addressed. An understanding of how breakfast intake and quality influences diet quality and health outcomes will help to guide effective recommendations for breakfast intake which can be used in public health guidelines and intervention programmes (Ortega et al., 1998b). Figure 1 below summarises the problem statement and motivation for the present research.
Figure 1 Summary of the problem statement and motivation for research
1.2 Research aim, objectives and hypotheses

1.2.1 Aim
The main aim of this study was to investigate the proportion and quality of breakfast intake, and to understand the effect of breakfast intake and quality on overall diet quality among adolescents attending public secondary schools in Potchefstroom and its surrounding areas in the Northwest Province.

1.2.2 Objectives
The primary objectives of this research were:

- To determine the proportion of adolescents who consumed breakfast.
- To assess the quality of the breakfast consumed.
- To determine the effect of breakfast intake and quality on overall diet quality for the day.

Secondary objectives of this research were:

- To determine socio-demographic factors associated with breakfast intake and quality.
- To determine the effective of breakfast intake and quality on the adolescents’ BMI.

1.2.3 Hypotheses
The research hypotheses were as follows:

- The prevalence of breakfast skipping among adolescents attending public secondary schools in Potchefstroom and its surrounding areas would be approximately 20%.
- The mean breakfast quality score for the study population would reflect a poor quality breakfast.
- Breakfast intake and a higher breakfast quality score would result in a higher diet quality score for adolescents for the day.
- Age, gender, race, tobacco use, alcohol use and participation in physical activity would be associated with breakfast intake and quality.
- Adolescents with higher breakfast intake and quality scores would have more favourable BMI.
1.3 Structure of the dissertation
This dissertation is written in article format and is made up of four chapters. This first chapter is an introductory chapter which provides context to the research question to be answered. It consists of the problem statement, aims, objectives, a description of the dissertation’s structure and the authors’ contributions to the research. The second chapter is a review of available literature on the topic, explaining the importance of breakfast intake among adolescents and describing proposed mechanisms for the observed benefits. The literature review describes the process of measuring breakfast and diet quality, summarises the trends in breakfast intake among adolescents globally, and proposes a conceptual framework summarising the factors influencing breakfast intake among adolescents globally based on a review of previous studies. The third chapter is the article entitled “The intake and quality of breakfast consumption among adolescents attending public secondary schools in the Northwest Province, South Africa.” This article has been written according to the guidelines stipulated by the Journal of Adolescence and will be submitted for publication. The fourth chapter is a conclusion chapter, which will summarise the main findings of the dissertation, and make recommendations for future research. A reference list is provided at the end of each chapter. All references are written in Harvard Style as per the requirements of the North-West University, except for the reference list in chapter 3, which are written according to the requirements of the Journal of Adolescence (Appendix F).

1.4 Contribution of the authors
A team of researchers contributed to this research, and the various contributions of the researchers are summarised in Table 1 below.

Table 1 Contributions and roles of research team members

<table>
<thead>
<tr>
<th>Researcher name and qualification</th>
<th>Contribution to the research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Chrisna Botha</td>
<td>Project supervisor; provided guidance and supervision of the project planning, implementation and analysis of results.</td>
</tr>
<tr>
<td>Prof Johann Jerling</td>
<td>Project co-supervisor; provided guidance and supervision of the project.</td>
</tr>
<tr>
<td>Ria Laubscher</td>
<td>Project statistician; assisted with analysing and interpreting the results.</td>
</tr>
<tr>
<td>Researcher name and qualification</td>
<td>Contribution to the research</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Leanne Tee</td>
<td>Primary researcher in the project, responsible for conducting the study, including the planning and collecting of data, writing the literature review, data-analysis and interpretation and writing up of the research results.</td>
</tr>
</tbody>
</table>

1.5 **Solemn declaration**

I declare that my above-mentioned role in the study is representative of my actual contribution and I hereby give my consent that it be published as part of the M.Sc. dissertation of Leanne Tee.

1.6 **References**

Centres for Disease Control and Prevention. 1996. *Guidelines for school health programs to promote lifelong healthy eating*.

Deshmukh-Taskar, P.R., Nicklas, T.A., O'Neil, C.E., Keast, D.R., Radcliffe, J.D. & Cho, S. 2010. The Relationship of Breakfast Skipping and Type of Breakfast Consumption with Nutrient Intake

Chapter 2 – Literature review

The photograph above has been used with permission and shows the team of fieldworkers who assisted with data collection for this project.
2.1 Introduction

Globally it is well accepted that regular breakfast consumption is an important indicator of a healthy lifestyle (Rampersaud et al., 2005). In fact, the seminal “Alameda 7” study conducted by Belloc and Breslow (1972) identified breakfast as one of the seven healthy habits which contribute to long term health. Regular breakfast intake has been associated with improved diet quality (Kruger et al., 2002; Nicklas et al., 2000), healthier body weight (Horikawa et al., 2011; Panagiotakos et al., 2008) and decreased risk for chronic diseases (Di Guiseppe et al., 2012) when compared with breakfast skipping in both adults and children. Breakfast consumption is consistent with healthful lifestyle habits and overall improvements in healthy lifestyle indicators.

Despite the proven benefits of breakfast, research shows that the frequency of breakfast consumption is declining (Haines et al., 1999). This trend is being observed among adolescents and young adults globally (Cho et al., 2003; Rampersaud et al., 2005; Seiga-Riz et al., 2000). Given the importance of breakfast and the evident prevalence of skipping among adolescents, interventions are required to encourage more frequent breakfast intake within this target group (Breuning et al., 2011; Kothe et al., 2011).

Over time, the quality and types of foods typically eaten for breakfast have changed (Moshfegh et al., 2002). These changes could be attributed to urbanisation, Westernisation and globalisation in different countries which influences the food supply made available to the public, thus in turn affects food choices (Steyn et al., 2006). Research has indicated that the type of breakfast consumed may influence diet quality, food choices throughout the rest of the day and overall health outcomes (Deshmukh-Taskar et al., 2010; Leidy, 2012). For this reason, it is not only the prevalence of breakfast consumption or skipping, but also the quality of the breakfast consumed that should be taken into account when advising recommendations for breakfast intake.

By understanding the prevalence of breakfast skipping and quality of breakfast consumed within a particular target group, research is able to create an understanding of the magnitude of the problem to be addressed. An understanding of how breakfast intake and quality influences healthy lifestyle behaviours and outcomes will help to guide effective recommendations for breakfast intake which can be used in public health guidelines and intervention programmes (Ortega et al., 1998b). And lastly, an understanding of factors associated with breakfast consumption will help to formulate recommendations which are relevant to the target group (Breuning et al., 2011).
The purpose of this literature review is to review the evidence highlighting the importance of breakfast among adolescents, assess the prevalence of breakfast intake globally, to understand the literature explaining the possible link between breakfast skipping and quality and overall diet quality, determine the factors associated with breakfast intake and to understand breakfast intake behaviour among adolescents in South Africa.

2.2 The definition of “breakfast”

The term “breakfast” is an English noun which originated in the 15th century. It was the contraction of the phrase “to break (verb) (the) fast (noun)” indicating that overnight while one slept, one was not able to eat, and that shortly after awakening one would need to break the fast with a meal (Anon, 2013).

Since there is no universal definition for the term “breakfast”, individual studies have developed their own definitions depending on their study objectives. According to Rampersaud (2008), there are three key considerations for defining the breakfast eating occasion, namely the type of food consumed, the amount of food consumed and the time of day when the food is consumed. These considerations are outlined in Figure 1 below.
Differing definitions for breakfast across studies makes it difficult to compare results and research findings. Table 1 below summarises the definitions of breakfast used in a handful of studies assessing breakfast intake. The table clearly shows the variety in the types of definitions which can exist across studies.
Table 1 Various definitions for breakfast

<table>
<thead>
<tr>
<th>Reference</th>
<th>Definition for breakfast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deshmukh-Taskar et al. (2010)</td>
<td>Consumption of any food or beverage at a meal occasion named by the respondent as “breakfast”</td>
</tr>
<tr>
<td>Smith et al. (2010)</td>
<td>Eating a snack, small meal or large meal between 6 am and 0900</td>
</tr>
<tr>
<td>Alexander et al. (2009)</td>
<td>Any food or beverage consumed between 05:00 and 10:00 hours with a combined total energy \geq100 kcal</td>
</tr>
<tr>
<td>Albertson et al. (2007)</td>
<td>Any eating that occurred between 5:00 and 10:00 am on weekdays or between 5:00 and 11:00 am during weekends</td>
</tr>
<tr>
<td>Matthys et al. (2007)</td>
<td>The first eating occasion involving a solid food or a beverage that occurred after waking</td>
</tr>
<tr>
<td>Affenito et al. (2005)</td>
<td>Any eating that occurred between 5 am and 10 am on weekdays or between 5 am and 11 am during weekends</td>
</tr>
<tr>
<td>Aranceta et al. (2001)</td>
<td>Any intake of food or beverage between 6 am and 10 am during weekdays and between 6 am and 11 am for the weekends and holidays</td>
</tr>
<tr>
<td>Nicklas et al. (2000)</td>
<td>An eating occasion which the student considered to be his or her breakfast</td>
</tr>
<tr>
<td>Siega-Riz et al. (1998)</td>
<td>The consumption of a food, beverage, or both between 5 am and 10 am</td>
</tr>
<tr>
<td>Haines et al. (1996)</td>
<td>Any food or beverage consumed between 5 am and 10 am for children and between 5 am to 9 am for adults</td>
</tr>
<tr>
<td>Ruxton et al. (1996)</td>
<td>A solid item of food taken before attending school or before 11 am at weekends</td>
</tr>
<tr>
<td>Gleason (1995)</td>
<td>All foods eaten from the time a student got up in the morning until 45 minutes after the start of school, provided that the total food energy intake from these foods exceeded 50 kcal. If a student's food energy intake over this period was $<$50 kcal, he or she was considered to have skipped breakfast.</td>
</tr>
<tr>
<td>Dickie and Bender (1982)</td>
<td>Any solid food taken in the morning before arriving at school</td>
</tr>
</tbody>
</table>

The definitions used most often were “what the study participant perceived to be their breakfast” and “consumption between 5 am and 11 am in the morning”. Some studies
distinguished between whether a solid, beverage or both constituted breakfast, and others allowed slightly different definitions for breakfast intake between weekdays and weekends. Certain studies also included a minimum energy requirement from the breakfast meal in order to be classified as a breakfast. It is also seen that some studies do not take time into account time of consumption at all, but defined breakfast as the first meal consumed after waking. Given that no universal definition for breakfast exists, researchers would need to create their own definition depending on the objectives of their research.

2.3 The importance of breakfast intake among adolescents

The anecdotal term, “breakfast is the most important meal of the day” is often used to encourage breakfast intake among adults and children alike. A wealth of research has documented the association between breakfast and a healthy body weight, protection against cardiovascular diseases, improved diet quality and cognitive performance in children and adolescents (Sandercock et al., 2010). Breakfast is one element of a healthy lifestyle which has been linked to improved health and wellbeing in the long- and short-term. Adolescents who are skipping breakfast are essentially missing an opportunity for improved wellbeing, and it is recommended that health practitioners promote healthy breakfast consumption among this particular target group (Rampersaud, 2008).

Research shows that lifestyle and behaviour habits which are entrenched during adolescence are likely to remain throughout adulthood (Merten et al., 2009). The transition period between adolescence and adulthood appears to be particularly high-risk for weight gain (Frech, 2012; Niemeier et al., 2006). Health-compromising behaviours commonly observed during adolescence include increased fast food consumption, increased sedentary levels and frequent breakfast skipping (Frech, 2012; Niemeier et al., 2006). Broadly speaking, healthy behaviour such as adequate exercise and sleep, maintaining healthy weight, not smoking or binge drinking and eating breakfast regularly decline dramatically during the transition to young adulthood (Frech, 2012). Psychosocial characteristics, social support from schools, peers and caregivers, and family characteristics are all factors to which adolescents are exposed, and play a role in determining the degree to which adolescents engage in health compromising behaviour (Frech, 2012).

Adolescents who skip breakfast or have a breakfast of poor quality, place themselves at risk for poor outcomes of long-term health (Dejong et al., 2009). Given the beneficial outcomes associated with consumption of breakfast, breakfast should form an important part of
adolescents’ daily routines (Merten et al., 2009). Below the various benefits of breakfast are discussed, highlighting the need for this important meal among adolescents globally.

2.3.1 The relationship between breakfast consumption and obesity in adolescents

It has been shown that obese adolescents are likely to remain obese adults (Gordon-Larsen et al., 2004) and that lifestyle and behaviour habits which are entrenched during adolescence are likely to remain throughout adulthood (Merten et al., 2009). The transition period between adolescence and adulthood appears to be particularly high-risk for weight gain, as a result of changing lifestyle factors (Frech, 2012; Niemeier et al., 2006).

Research has shown a positive relationship between breakfast intake and healthy body weight; however causality for this relationship has not been established. By understanding the link between breakfast intake and body weight, effective recommendations can be developed to promote healthy breakfast behaviour and lessen the risk for obesity among adolescents.

2.3.1.1 The prevalence of obesity

Adolescent overweight and obesity rates are globally on the rise (Dejong et al., 2009) and this trend is also being observed in South Africa. According to the South African Demographic and Health survey conducted in 2003, 8% of adolescent girls were obese, as were 1% of adolescent boys (Department of Health, 2007). The previously recorded prevalence of obesity among adolescents was 6% and 2% for girls and boys respectively (Department of Health, 2004). According to the South African National Health and Nutrition Examination Survey (SANHANES), 7.5% of boys aged 10 to 14 years were overweight and 2.7% were obese (Shisana et al., 2013). For girls aged 10 to 14 years, 16.7% were overweight and 5.6% were obese. In this age group, girls are significantly more likely to be overweight or obese. For adolescents aged 15 to 17 years, too few cases were recorded to confirm reliably, although this information can be used to indicate a trend in the prevalence of overweight and obesity. For males aged 15 to 17 years, 7.3% and 1.5% were overweight and obese respectively, and for females, 19.3% and 8% were overweight and obese respectively (Shisana et al., 2013). This indicates that the prevalence of obesity among adolescents in South Africa has increased over the last decade for females only, as shown in Figure 2 below.
Figure 2 The prevalence of obesity among South African adolescents by gender − adapted from Department of Health (2004), Department of Health (2007) and Shisana et al. (2013)

2.3.1.2 Evidence for the relationship between breakfast and obesity

Many studies have sought to determine the cross-sectional link between regular breakfast intake and Body Mass Index (BMI). There is a wealth of evidence to support the link between breakfast consumption and healthier BMI among adolescents globally, as found by studies conducted in Iran, Wales, Finland, the US, Greece and England (Deshmukh-Taskar et al., 2010; Elgar et al., 2005; Fiore et al., 2006; Jaaskelainen et al., 2012; Kontogianni et al., 2010; Maddah, 2008; Roseman et al., 2007; Sandercock et al., 2010). Some studies have reported a beneficial effect of breakfast consumption on BMI for males, but not females (Gomez-Martinez et al., 2012; Kent & Worsley, 2010; Veltsista et al., 2010).

In December 2007, the New Expert Committee released recommendations for the assessment, treatment and prevention of childhood and adolescent obesity (Barlow, 2007). The key recommendation for the prevention of obesity among adolescents was identified as regular consumption of breakfast. An analysis of the Third National Health and Nutrition Examination Survey conducted between 1988 and 1994 among adolescents in the US, sought to identify lifestyle factors which were potentially protective against obesity (Fiore et
al., 2006). This analysis found that even among adolescents with two obese parents, eating breakfast some days or every day was significantly protective against becoming overweight. Regular breakfast consumption was shown to be the strongest protective factor within the group of adolescents studied.

Roseman et al. (2007) assessed breakfast intake among adolescents aged 10 to 14 years in Kentucky, US (n = 4049). The study found that weight status was inversely associated with breakfast frequency and adolescents of normal weight ate breakfast more often than adolescents who were overweight. Fiore et al. (2006) analysed US data from the US National Health and Nutrition Examination Survey III (1988-1994), and focussed specifically on adolescents aged 12 to 16 years (n = 1890). Interestingly, no association between breakfast intake and body weight was found among adolescents whose parents were normal weight, but for adolescents with at least 1 obese parent, eating breakfast was associated with a healthier body weight.

Deshmukh-Taskar et al. (2010) found that children and adolescents classified as “breakfast skippers” had a higher mean waist circumference than study participants who ate ready-to-eat cereals and other breakfasts regularly. Gomez-Martinez et al. (2012) assessed the eating habits and abdominal fat of adolescents in Spain. The study found that among males adolescents, breakfast consumption had a positive influence on skinfold measure and waist circumference (Gomez-Martinez et al., 2012).

Stockman et al. (2005) observed breakfast intake and health outcomes among adolescent boys aged 14 to 18 years in Canada. Breakfast intake was measured as a frequency of consuming breakfast over 3 days (breakfast eaten on none (0), 1, 2 or all 3 days). Adolescents who ate breakfast on all the 3 days had a lower BMI than adolescents skipping at least one day.

Project Eating Among Teens (EAT) was a longitudinal US based study (Haines et al., 2007). Breakfast intake was measured by frequency of intake for the previous week. Baseline data was collected from 1998 to 1999, and follow up data was collected in 2003 to 2004. Increased frequency of breakfast consumption at baseline was negatively associated with overweight at follow-up. Improved breakfast frequency at follow up when compared to baseline breakfast frequency was associated with lower odds of overweight at follow up.

A study of 6599 adolescents aged 11 to 13 years was conducted in schools in the United Kingdom (Harding et al., 2008). Breakfast skipping was assessed by frequency per week
(everyday, sometimes or hardly ever). Skipping breakfast sometimes or everyday was associated with increased likelihood for overweight and obesity in boys and girls.

Miller et al. (2013) examined the association between breakfast choice and the physiological status of 6729 children aged 2 to 17 years. The study participants were separated into four groups depending on their breakfast habits. These were pre-sweetened cereal eaters, non-sweetened cereal eaters, breakfast skippers and other breakfast eaters (people who ate food other than breakfast cereals for breakfast). The population was analysed in smaller subsets namely young children (aged two to five years), older children (aged six to 11 years) and adolescents (aged 12 – 17 years). Compared to the breakfast skippers and those eating ‘other breakfasts’, adolescents who ate pre-sweetened breakfast cereals had lower body weight, BMI, BMI percentile, percentage overweight or obesity, waist circumference and subscapular and triceps skinfolds (p<0.05). There were no differences found between the pre-sweetened and non-pre-sweetened groups for any anthropometrics in adolescents aged 12 to 17 years. Fasting serum total cholesterol was lower in adolescents both in the pre-sweetened cereals and non-pre-sweetened cereals groups when compared to the breakfast skipping group but was not different to the ‘other breakfasts’ group. No differences in fasting serum samples were observed for HDL-C or triglycerides between any of the groups. Again, for blood lipid values, there were no significant differences between the pre-sweetened and non-pre-sweetened cereal groups. The risk of abdominal obesity and being overweight were greater in both the breakfast skipping and ‘other breakfast’ groups when compared to the pre-sweetened cereals group. Again, no difference was found between the two cereal groups (pre-sweetened and non-pre-sweetened). The study concluded that a positive association exists between breakfast cereal consumption and healthier body weights compared with adolescents who are skipping or eating a non-cereal breakfast (Miller et al., 2013).

Overall, the research indicates a link between breakfast intake and decreased obesity risk, but also suggests that the type of breakfast being consumed may be of importance.

2.3.1.3 The effect of the breakfast type or quality on BMI and obesity risk

The information above raises the question as to whether the link between breakfast intake and decreased obesity risk exists solely because of food consumption at breakfast time, or whether the type of foods consumed at breakfast play a role. It is likely that differences in energy and nutrient content of different types of breakfasts may influence the degree of effectiveness in preventing overweight or obesity (de la Hunty et al., 2013; Rampersaud,
In other words, the quality of the breakfast consumed may also affect health outcomes (Leidy, 2012).

Most published studies which have reported on breakfast intake have focussed on ready-to-eat cereals (RTEC) and little data exists for other types of breakfast foods or formats. This is largely driven by the fact that many breakfast studies have been published in Australia, the United Kingdom and the United States, reflecting the Westernised behaviour of consuming RTEC. According to Deshmukh-Taskar et al. (2010), people who eat breakfast cereals tend to consume more micronutrients and dietary fibre, while consuming less dietary fat and cholesterol. Groups of people who do not typically eat breakfast cereals may choose breakfasts which are higher in fat and added sugars, affecting the relationship between breakfast intake and obesity risk (Deshmukh-Taskar et al., 2010; Leidy, 2012). The category of ‘other breakfasts’ is not limited to wholesome foods and may represent an increasing proportion of foods which are low in nutrient density, such as fizzy drinks, salty snacks and sugary sweets (Miller et al., 2013). Similarly, increasing evidence supports the role of the Glycaemic Index (GI) and protein content when selecting a healthy breakfast. The interest in low GI meals stems from the findings that a low GI breakfast may decrease perceived hunger, improve glucose control and decrease energy intake at the next meal (Pereira et al., 2011). Results regarding the impact of GI on health outcomes are conflicting, and further research is required to establish its role in the diet (Brindal et al., 2012). There is growing interest in the role of protein in the breakfast meal as research suggests that increased protein intake may cause sustained feelings of satiety throughout the morning (Leidy et al., 2009).

The role of breakfast quality in predicting health outcomes should be clearly understood to guide effective public health recommendations and guidelines for breakfast intake. Further research is required in this field.

2.3.1.4 Proposed mechanism of action

The co-occurrence of the rising global obesity epidemic and subsequent decline in breakfast consumption is raising interest in the causal link between breakfast intake and decreased risk for obesity and chronic diseases (Giovannini et al., 2010). Despite the findings of many cross-sectional studies which have demonstrated the link between breakfast intake and reduced risk for obesity, research has not yet confirmed causality between these two variables, although some plausible mechanisms have been suggested.
2.3.1.4.1 Glucose control

Few studies have investigated the effect of breakfast intake on glucose and insulin metabolism. One conducted by Farshchi et al. (2005) assessed fasting LDL, cholesterol and insulin sensitivity among women split into 2 groups; the first group was asked to skip breakfast while the second ate a breakfast of 500 calories for 14 days. At the end of the intervention period it was found that breakfast skippers had higher fasting LDL and reduced insulin sensitivity when compared to breakfast eaters. Jovanovic et al. (2009) showed similar findings among a group of type 2 diabetic adults. Skipping breakfast lead to compromised glucose control at the next meal when compared to those who ate a breakfast of 650 calories.

The composition of the breakfast consumed may also contribute to the metabolic modifications observed. For example, fibre-rich breakfast foods curb glycaemic and insulin responses after eating, thereby improving insulin sensitivity (Liljeberg et al., 2001; Nestler et al., 1988). The metabolic effects related to glycaemic and insulin response may contribute to satiety among regular breakfast eaters (Liljeberg et al., 2001).

2.3.1.4.2 Appetite control and satiety

Clinical studies in humans have consistently found that increased meal frequency may improve chronic disease risk factors and reduce appetite and intake of energy (Gwinup et al., 1964; Jenkins et al., 1989; Timlin & Pereira, 2007). Research has suggested that breakfast skipping influences the remainder of the day’s intake through increased risk for skipping meals or consumption of larger meal portions throughout the day (Dejong et al., 2009; Levin & Kirby, 2012). In other words, breakfast skipping may be the precursor for unfavourable dietary behaviour, such as eating fewer, larger meals as opposed to more frequent smaller meals. Research conducted by Pereira et al. (2011) suggests that breakfast may influence satiety thereby controlling appetite and dietary intake. It has been found that consumption of a 500 calorie breakfast leads to significant reductions in perceived appetite after the breakfast was consumed, as well as increasing in the satiety hormone peptide YY (Brindal et al., 2012; Pereira et al., 2011). Breakfast intake was significantly associated with reduced energy intake at lunch. This indicates that breakfast may play a role in satiety, resulting in fewer total calories being consumed overall throughout the day, and thereby contributing to a healthy body weight. Alternatively, complex carbohydrate-containing foods, such as whole grains typically consumed at breakfast, may affect the release and activity of gut hormones, such as cholecystokinin (CCK), which in turn influence satiety (Pereira & Ludwig, 2001). There may also be a role for the production of short chain fatty acids in the gut after the consumption of a high-fibre breakfast, affecting satiety. Short-
chain fatty acids enter the portal circulation, reduce the output of hepatic glucose and free fatty acid serum concentration, and in this way, stimulate glucagon peptide-1 secretion. This may alter insulin sensitivity and secretion patterns, in turn influencing satiety (Flint et al., 2001). This highlights the importance of including fibre-rich foods as part of the breakfast meal to ensure that breakfast elicits its beneficial effects.

The time of day when food is consumed may also affect appetite and satiety. A study conducted by de Castro (2004) sought to understand the relationship between the time of day that food was consumed and the total energy intake for that day. The proportion of food consumed in the morning was negatively correlated with overall intake while the proportion of food consumed later in the day was positively correlated with energy intake. This indicated that more food being consumed in the latter portion of the day may increase the risk for excess energy intake, weight gain and chronic diseases.

It is possible that individuals, who eat breakfast regularly, especially a breakfast which includes cereals and complex carbohydrates, may benefit from a number of interacting physiological mechanisms which reduce appetite and in turn reduce risk for obesity and chronic disease. Both breakfast frequency and quality may influence the physiological changes and health outcomes as shown in Figure 3 below.

![Figure 3](image-url)
Figure 3 Theoretical model explaining the role of breakfast frequency and quality in reducing the risk of obesity and chronic diseases ~ adapted from Timlin and Pereira (2007)
That said, research has also shown that in many cases, the total energy intake of individuals who eat breakfast may be higher than those who skip breakfast (Rampersaud, 2008). Similarly, studies which found an inverse association between breakfast consumption and adiposity showed that this correlation remains, even after adjusting for energy intakes (de la Hunty et al., 2013). This implies that the effect may be attributed to mediated changes in energy expenditure through increased physical activity or metabolic rate (de la Hunty et al., 2013).

2.3.1.4.3 Physical activity and energy expenditure

In a descriptive survey carried out by Tin et al. (2011) to determine the lifestyle and socioeconomic correlates of breakfast skipping among primary school children, the results showed a clear trend towards breakfast skippers participating in less extra-curricular physical activity. Keski-Rahkonen et al. (2003) carried out a similar survey to investigate breakfast skipping and health compromising behaviours of adolescents and adults. Infrequent exercise was significantly associated with breakfast skipping in both adolescents and adults. The study further found that adults and adolescents who ate breakfast regularly were more likely to exercise than their breakfast skipping counterparts.

Sandercock et al. (2010) investigated the association between habitual breakfast consumption and physical activity among schoolchildren in England. The study found that boys who never ate breakfast were more likely to have lower physical activity odds ratio, and girls were more likely to have low physical activity if they sometimes or never ate breakfast. The study showed a positive association between habitual breakfast consumption and higher physical activity levels in schoolchildren. Similarly, Schembre et al. (2013) found that less frequent breakfast consumption was associated with 30% less moderate-to-vigorous intensity physical activity.

In contrast, a cross-sectional survey conducted by Corder et al. (2011) among 877 adolescents in Britain found that for boys, there was no significant association between breakfast frequency and physical activity whereas for girls, less frequent breakfast consumption was associated with lower levels of physical activity in the morning. Similarly, a 2-week randomised cross-over trial conducted by Halsey et al. (2011) which asked participants to eat breakfast every day for one week and then fast until midday every day in the second week, found no difference in daily energy expenditure between the two experimental conditions.

There is conflicting evidence for the role of breakfast in influencing physical activity level, and further investigation is required to understand the link between these variables.
2.3.2 The relationship between breakfast consumption and chronic disease risk

Similar to the relationship between breakfast intake and lower risk for obesity, research suggests that breakfast consumption also decreases risk for chronic diseases. The research investigating this link is discussed below.

2.3.2.1 Evidence for the relationship

Much of the research regarding breakfast intake and risk for chronic diseases has been conducted among adults. This may be due to the manifestation of chronic disease mostly occurring later in life rather than in childhood. However, behaviours which develop in childhood become precursors for health outcomes in adulthood. Smith et al. (2010) analysed data from the Childhood Determinants of Adult Health Study which was conducted in Australia in 1985 among 9 to 15-year old children. At the time, the study assessed frequency of breakfast intake among the children before going to school. In 2004 to 2006, a follow up to the study was conducted, where 2184 adults aged 26 to 36 years were asked to complete a meal frequency chart for the previous day. The purpose of the study was to examine longitudinal associations of breakfast skipping from childhood to adulthood, with specific focus on cardio-metabolic risk factors in adulthood. It was found that participants who skipped breakfast both in childhood and adulthood had a larger mean waist circumference and higher fasting insulin, total cholesterol and LDL cholesterol than those who ate breakfast at both stages of the study. The study concluded that breakfast skipping over the long-term may increase cardio-metabolic health risk (Smith et al., 2010).

Jaaskelainen et al. (2012) analysed data collected as part of the Northern Finland Birth Cohort Study which began in 1986. The analysis focused on a sample of 6247 16-year old boys and girls and sought to determine the association between meal frequency and metabolic syndrome traits in these adolescents. The study found that adolescents, who ate five meals per day, including breakfast, were at lower risk for obesity, abdominal obesity and hypertriglyceridaemia (in boys only). The study concluded that the five-a-day meal pattern, including breakfast, was associated with reduced risk of abdominal obesity in boys (Jaaskelainen et al., 2012).

In the Alameda Country Study conducted by Kaplan et al. (1987) seven risk factors, including breakfast consumption were assessed to determine their impact on mortality in elderly men. The Alameda County Study found that eating breakfast regularly was one lifestyle factor which protected against mortality and death related to cardiovascular disease.
The Physician’s Health Study was conducted among normal weight adults in 2003 and assessed breakfast cereal intake and mortality. The study found that regular intake of breakfast cereal, including whole grains, had an inverse relationship with total mortality, mortality due to cardiovascular disease and myocardial infarction (Lui et al., 2003).

The findings reported by the studies cited above support the hypothesis that regular breakfast consumption may reduce chronic disease risk over time, however more definitive, longer and larger randomised trials are required to clarify the role of breakfast frequency and quality in decreasing risk for chronic disease. Plausible mechanisms of effect support this hypothesis (Timlin & Pereira, 2007).

2.3.2.2 Proposed mechanism of action
Research has suggested that increased frequency of meal consumption has resulted in lower day-long insulin concentrations (Farshchi et al., 2005). This in turn results in lower concentrations of total cholesterol and LDL cholesterol. Reduced serum insulin concentration may also inhibit cholesterol production by the liver through the inhibition of 3-hydroxy-3-methyl-glutaryl-CoA reductase. Frequent meals also promote prolonged suspension of free fatty acids in the serum, gastric inhibitory peptide and growth hormone.

These findings indicate that frequent meal intake, including the regular intake of breakfast, may reduce the risk of developing chronic diseases linked to lipid concentrations such as cardiovascular disease and diabetes. Taking this evidence into account, Timlin and Pereira (2007) suggest that frequent meals, including breakfast, are associated with improved glycaemia, insulinaemia and lipidaemia.

2.3.3 Breakfast and cognition in adolescents and children
Breakfast is widely promoted for its role in improving cognitive function and academic performance and a wealth of research has investigated the importance of eating breakfast in supporting this outcome.

2.3.3.1 Evidence for the relationship
In a cross-sectional survey of 824 children in grades three to seven in Australia, O’Dea and Mugridge (2012) investigated the relationship between breakfast quality and literacy and numeracy scores in these children. The study showed that breakfast quality had a positive relationship with literacy scores as measured by mandatory government tests using the standardised National Assessment Program for Literacy and Numeracy (O’Dea & Mugridge, 2012). The study did mention that it may be more difficult to see the effect of breakfast
quality on literacy or numeracy scores among children who were well nourished, and the
degree of association may be greater among children with nutrient deficiencies (O'Dea &
Mugridge, 2012).

Maffeis et al. (2012) compared the effect of eating breakfast vs. fasting on metabolic and
cognitive consequences among a group of pre-pubertal obese children in Italy. Half of the
children were given only water on the morning of assessment, and half were given a
breakfast of whole milk, toasted bread and marmalade. The study showed that mental
performance was reduced in children who skipped breakfast as shown by reduced attentive
and verbal memory performance. This finding was associated with reduced carbohydrate
oxidation among participants who fasted (Maffeis et al., 2012).

In 2009, a systematic review of the available literature was conducted to determine the effect
of breakfast on cognitive performance of children and adolescents (Hoyland et al., 2009). The
review included a total of 45 studies, 28 of which measured the acute effects of
breakfast intake on cognitive performance, and 13 of which examined the long term effects
of school breakfast programs. The remaining four studies examined the effect of habitual
breakfast intake on cognitive performance. Only 10 of the 45 studies focussed on
adolescents over the age of 13-years. Among the studies of the acute effects of breakfast
intake conducted among well-nourished children, the majority demonstrated positive effects
of breakfast when compared to no breakfast. The positive effects were most evident on
measures of memory and attention tasks. The strongest effects of breakfast intake were
found in the late morning. When comparing the acute effects of breakfast among children
with differing nutritional status, some studies reported that cognitive performance was better
after breakfast intake among the under-nourished group vs. the well-nourished group,
indicating that under-nourished children may benefit more than nourished children would. Of
the long-term studies reviewed, none considered the effect of breakfast intake on cognition
in adolescents. However, when viewed together, the long-term studies showed a positive
effect of breakfast on mathematics and arithmetic scores, probably due to increased school
attendance and decreased absenteeism. The review concluded that overall, breakfast
consumption may have positive effects on cognitive performance when compared to
breakfast skipping, as shown in both acute and longer-term studies. However, the available
research did not provide sufficient information to formulate a recommendation for optimal
breakfast to support cognition. Furthermore, the studies tended to focus on memory and
attention performance where other domains of cognitive performance, such as problem
solving of psychomotor skills are less researched (Hoyland et al., 2009).
2.3.3.2 The effect of breakfast quality on cognitive function

The role of breakfast type and quality in determining the influence of breakfast on academic performance is an important factor to consider.

In 2003, the effect of breakfast quality on scholastic aptitude (verbal reasoning and calculation ability) was measured among 180 children aged 9 to 13 years in Spain (López-Sobaler et al., 2003). The study defined two categories of breakfast quality. The first was “adequate” (more than 20% of the daily energy requirements) and the second, “inadequate” (less than 20% of the daily energy requirement). The quality or adequacy of breakfast in this case was based solely on contrition of energy to total energy requirements and did not take any other nutrients or factors into account. The study found that “adequate” breakfast quality was associated with better performance. For children with low scholastics aptitude scores, 66% had inadequate breakfast intake (López-Sobaler et al., 2003).

In 2006, a study of 141 children aged 12 to 13 years was undertaken in Spain to determine the relationship between scholastic performance and breakfast quality. Breakfast quality was assessed as good (at least one dairy, cereal and fruit), improvable (lacks one food group), insufficient (lacks two food groups) and no breakfast. The study measured scholastic performance against different quality groups of habitual breakfast intake and found that higher end-of-year marks were associated with increased breakfast quality (Herrero & Fillat, 2006).

A third study was conducted among Spanish school children aged 12 to 17 years in 2008. Scholastic performance was compared to quality of habitual breakfast intake. The breakfast quality groups were defined as optimal (25% of daily energy requirements, dairy, cereals, fruits and fats), good (dairy, cereals, fruits and fats), adequate (one food group missing), inadequate (two food groups missing) and no breakfast. The study found that better breakfast quality was associated with better mean scholastic performance score (Morales et al., 2008).

In the research conducted by O’Dea and Mugridge (2012), one of the objectives was to determine the impact of the nutritional quality of breakfast in predicting literacy and numeracy scores for 824 children in grades three to seven. A breakfast quality score of 1 to 10 was allocated depending on the breakfast consumed on the day of data collection. A score of zero indicated the lowest possible score if the student had nothing to eat or drink for breakfast, and the highest possible score of 10 was allocated if a student’s breakfast contained all 5 of the major food groups, as well as a source of vitamin C, calcium and low
fat milk. The study found that the quality of the breakfast had an independent and positive impact on literacy scores.

These findings emphasise the need to define the optimal breakfast when making public recommendations for breakfast intake, as breakfasts of a higher quality score are associated with improved scholastic performance.

2.3.3.3 Proposed mechanism of action

Studies have suggested that glucose ingestion facilitates cognitive performance (Maffeis et al., 2012). This is due to brain activity using glucose as its main source of fuel (Chugani, 1998). However, the degree of glucose utilisation varies depending on the age of the person being assessed. Brain metabolic requirements for young children are much higher than for adults (Scholey et al., 2009). The metabolic processes of adolescents’ brains begin to resemble those of adults during puberty and gradually change to reflect adult utilisation profiles until the age of 16 to 18 years. Other than providing a direct fuel source to the brain, glucose ingestion affects acetylcholine, insulin, serotonin, glutamate and cortisol; hormones which may affect cognitive function (Gibson, 2007). It may be a number of central and peripheral changes induced by eating breakfast that influence cognitive function.

2.3.4 Behavioural and psychological importance of breakfast

Aside from the frequency and composition of breakfast intake which influences obesity and disease risk, there are other factors surrounding breakfast intake which could play an influential role. Examples are environmental factors such as the time at which breakfast is eaten, the amount of time taken to consume the breakfast, and the social circumstances under which an individual eats breakfast (Giovannini et al., 2010). It has been suggested that family meals eaten together provide an opportunity for parents to set an example among their children. In this way, parents can influence food choices and behaviour at this meal occasion entrenching behaviours for their children. This further highlights the importance of breakfast among adolescents for both behavioural and physiological reasons (Giovannini et al., 2010; Timlin & Pereira, 2007).

2.3.5 Breakfast, diet quality and nutrient intake

2.3.5.1 Evidence for the relationship

Several international researchers agree that if key nutrients are skipped at breakfast, it was unlikely that individuals will be able to make up those nutrients throughout the rest of the day (Nicklas et al., 1993; Ortega et al., 1998a; Preziosi et al., 1999). This means that the overall quality of the diet can be improved with regular breakfast consumption (Barton et al., 2005;
From this it could be derived that the role of breakfast in improving overall diet quality is through the provision of favourable nutrients in a regular morning meal compared to breakfast skippers who would miss this opportunity.

Research has suggested that breakfast skipping influences the remainder of the day’s intake through increased risk for skipping meals, increased consumption of snacks or consumption of larger meal portions throughout the day (Dejong et al., 2009; Levin & Kirby, 2012; Nicklas et al., 2000). According to Tin et al. (2011), primary school children who skip breakfast are more likely to eat junk foods, consume less fruits and vegetables and drink less milk. This study further showed, that children who skipped breakfast were also more likely to skip lunch (Tin et al., 2011).

A study was conducted among 711 ninth-grade school students in the United States to determine the relationship between breakfast intake and overall diet quality (Nicklas et al., 2000). The study showed that among children who skipped breakfast, the percentage of total daily energy intake was higher from fats and lower from carbohydrates when compared to children who ate breakfast regularly.

Grieger and Cobiac (2012) assessed dietary intakes according to breakfast choice among adolescent Australian boys aged 12 to 16 years. Breakfast was categorised into 3 categories: ready-to-eat cereals (RTEC), non-ready-to-eat cereal (non-RTEC) consumers and breakfast skippers. The study found that boys who consumed RTEC had a higher intake of total sugars, and a lower intake of fat and sodium when compared to non-RTEC consumers, and RTEC consumers had higher intakes of B-vitamins, calcium, iron and magnesium than both non-RTEC consumers and breakfast skippers. According to Affenito et al. (2005), research conducted among African-American girls aged 9 to 10 years found that days when breakfast was eaten were associated with higher calcium and fibre intake.

Because a different relationship can be seen between different categories or type of breakfast meals consumed, for example, RTEC vs. non-RTEC, a question is raised as to the effect of different breakfast compositions on overall dietary intake and quality.

2.3.5.2 The effect of breakfast quality on diet quality and nutrient intake
It has been suggested that not only the intake of breakfast, but also the quality of the breakfast consumed, may influence the rest of the day’s intake thereby further improving overall diet quality (Nicklas et al., 1998). Aside from the sheer nutrients provided by a breakfast meal, it is plausible to suggest that nutrients consumed at breakfast may affect foods choices and behaviour which follows throughout the rest of the day, predisposing
breakfast eaters to healthier, more nutritious choices when compared to breakfast skippers, who are more likely to display poorer eating habits for the remainder of the day, as measured by a diet quality score (Nicklas et al., 1998).

Stephens and Summar (2008) suggested that the quality or types of foods consumed at breakfast may have an effect on diet quality and food choices for the rest of the day. For example, consumption of wholegrain foods, fruit and low-fat dairy products as well as inclusion of high fibre foods contributes to satiety and an overall healthful diet (Stephens & Summar, 2008). According to Stephens and Summar (2008), eating breakfast which includes these elements may help to reduce total fat intake and limit unfavourable snacking throughout the rest of the day.

Pereira et al. (2011) shared the finding of Stephens and Summar (2008). Pereira et al. (2011) reviewed two experimental pilot studies which investigated the effects of breakfast frequency and composition on appetite and blood sugar in adults and children. The review concluded that both breakfast frequency and quality may be linked to blood glucose and appetite control. The breakfast composition factors cited as influential were fibre and nutrient rich whole grains and the inclusion of fruit and dairy.

Ortega et al. (1998b) conducted a study among 110 Spanish school children to determine the relationship between breakfast consumption and the energy and macronutrient profile of dietary intake for the remainder of the day. The researchers found that among children who consumed breakfasts providing more than 20% of their daily requirements for energy, total daily intakes of energy, proteins, fats and cholesterol were lower than for children consuming breakfasts providing less than 20% of the daily requirement for energy. The study concluded that the quality of breakfast consumed may influence the conditions under which foods choices are made for the remainder of the day. This suggests that energy contribution from breakfast may affect food choices and diet quality.

Several studies have compared the effects of different breakfast categories on diet quality. RTEC is usually a category of its own as this format of breakfast is so commonly consumed as part of Westernised diets worldwide. Breakfast intake, regardless of the type of meal consumed, has been shown to be beneficial for health. RTEC in particular seems to have additional beneficial properties when compared to other breakfast formats. One example of this is in the research conducted by Gibson and Gunn (2011), where RTEC consumers where compared to non-RTEC consumers and breakfast skippers to determine the impact of breakfast intake on diet quality. In general, eating breakfast, regardless of the type, was associated with a lower fat and higher carbohydrate intake over 24 hours when compared
with breakfast skipping. However, RTEC breakfast showed significantly higher intake of micronutrients when compared to non-RTEC and breakfast skippers. This indicates that the properties or composition of an RTEC breakfast may lead to improved intake of certain nutrients, improving overall diet quality. This study showed that an RTEC breakfast had better macronutrient composition in terms of fats, saturates, sugars, carbohydrates and protein when compared to the macronutrient composition of non-RTEC breakfasts (Gibson & Gunn, 2011).

Little research exists on the optimal nutrient profile of breakfast, and further studies and clinical trials are required to develop sounds recommendations for implementation in the public health setting (Pereira et al., 2011). Mechanisms for various nutrient profiles of breakfast lending to improved diet quality have been suggested, and these are briefly discussed below.

2.3.5.3 Mechanism of action
Regular breakfast consumption and the quality of breakfast consumed influences diet quality in three ways. The first is through the provision of nutrients at breakfast which would otherwise be missed, and the second is the plausible idea that the quality of breakfast intake may influence food choices and diet quality for the remainder of the day. The third is the idea that individuals who consume a breakfast of high quality will also have good eating habits generally.

Similarly, increasing evidence supports the role of the Glycaemic Index (GI) and protein content when selecting a healthy breakfast, as these factors influence satiety and blood glucose control (Brindal et al., 2012). The carbohydrate, glycaemic index and fibre content of breakfast meals may influence metabolic modifications and physiological changes affecting habitual food choices for the remainder of the day (Giovannini et al., 2010).

The information above suggests that not only the intake of a food or beverage in the morning, but also the composition or quality of the food or beverage consumed, may influence the health benefits associated with regular breakfast intake. Further research is required to better understand the models available for assessing breakfast quality, as well as the effect of different breakfast formats and compositions on subsequent daily intake.

2.4 Measuring breakfast and diet quality

2.4.1 Measuring diet quality
Diet quality is measured using diet quality indices based on food-based dietary guidelines (Gibson, 2005). Reported dietary intake is compared to a number of indices based on
recommendations for consumption of food groups and nutrients (Gibson, 2005; Kourlaba & Panagiotakos, 2009; Patterson et al., 1994). The degree to which the reported intake meets each index recommendation determines the score allocated for each index. The total scores for a number of different indices give an indication of the overall quality of the diet (Gibson, 2005; Kourlaba & Panagiotakos, 2009).

Given the number of interacting variables which play a role in contributing to diet quality, diet quality indices categorise different dimensions of diet quality and provide a means to interpret the variables in one composite, measurable summary (Kourlaba & Panagiotakos, 2009). Kourlaba and Panagiotakos (2009) conducted a review comparing different diet quality indices. The Healthy Eating Index (HEI), Diet Quality Index (DQI), Healthy Diet Indicator (HDI), Mediterranean Diet Scale (MDS) and the Mediterranean Diet Score were among the dietary quality indices reviewed. The diet quality indices reviewed differed in the types of indices included; where some diet quality indices included the use of foods or food groups, others only made reference to intake of individual nutrients (Kourlaba & Panagiotakos, 2009). Only two of the diet quality indices reviewed had adopted a three-pronged approach for measuring diet quality, including markers for dietary pattern in the form of “variety”, as well as for nutrients and food groups. These index measures were the HEI and Diet Quality Index Revised (DQI-R). The DQI was originally developed by Patterson et al. (1994) based on US dietary recommendations for nutrients and food groups only. Haines et al. (1999) revised and updated the DQI to incorporate current dietary guidance as well as measures for dietary variety and moderation. The updated version of the DQI was called the DQI-R (Kourlaba & Panagiotakos, 2009). According to Kourlaba and Panagiotakos (2009) and Wirt and Collins (2009), the DQI is one of the approaches suggested to quantify dietary patterns and predict disease risk in populations.

The DQI-R consists of 10 components, each with a potential score between 0 and 10. The total score of the DQI-R therefore ranges from 0 to 100 where lower scores reflect poor compliance with dietary guidelines (Kourlaba & Panagiotakos, 2009). The first three components represent macronutrient distribution for total fat, saturated fat and dietary cholesterol. The next three indicators reflect consumption of servings from different food groups: fruits, vegetables and grains. The recommended number of servings is dependent on total energy requirements for a particular population, and the scoring is calculated in accordance with serving recommendations for different ranges of energy requirements. The two indicators which follow reflect adequacy of calcium and iron intake, while the final two components measure dietary variety and moderation (Haines et al., 1999). The 10 nutritional quality indicators and their scoring criteria are summarised by Table 2 below.
Table 2 Components of DQI-R

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Scoring criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fat ≤30% energy intake</td>
<td>0-10 points</td>
<td>≤30% = 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>30, ≤40% = 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>40% = 0</td>
</tr>
<tr>
<td>Saturated fat ≤10% energy intake</td>
<td>0-10 points</td>
<td>≤10% = 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10, ≤13% = 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>13% = 0</td>
</tr>
<tr>
<td>Dietary cholesterol < 300 mg per day</td>
<td>0-10 points</td>
<td>≤300 = 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>300, ≤400 = 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>400 = 0</td>
</tr>
<tr>
<td>2-4 servings fruit per day, bc % recommended servings</td>
<td>0-10 points</td>
<td>≥100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99-50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td><50%</td>
</tr>
<tr>
<td>3-5 servings vegetables per day, bc % recommended servings</td>
<td>0-10 points</td>
<td>≥100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99-50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td><50%</td>
</tr>
<tr>
<td>6-11 servings grains per day, bc % recommended servings</td>
<td>0-10 points</td>
<td>≥100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99-50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td><50%</td>
</tr>
<tr>
<td>Calcium intake as a % AI for age, % recommended servings</td>
<td>0-10 points</td>
<td>≥100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99-50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td><50%</td>
</tr>
<tr>
<td>Iron intake as a percentage 1989 RDA* for age</td>
<td>0-10 points</td>
<td>≥100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99-50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td><50%</td>
</tr>
<tr>
<td>Dietary diversity score</td>
<td>0-10 points</td>
<td>≥6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥3, <6</td>
</tr>
<tr>
<td></td>
<td></td>
<td><3</td>
</tr>
<tr>
<td>Dietary moderation score</td>
<td>0-10 points</td>
<td>≥7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4, <7</td>
</tr>
<tr>
<td></td>
<td></td>
<td><4</td>
</tr>
</tbody>
</table>

* Based on 1600, 2200 or 2800 kcal diet

* Used as a continuous variable

* AI = adequate intake value

* RDA = recommended dietary allowance

A dietary diversity score is measured by assessing the number of food group categories reflected in a day’s consumption. Twenty-three food group categories were selected to represent dietary diversity including seven categories of grains, seven categories of vegetables, two categories of fruits and seven groups of animal based products like meat, fish or dairy products (Haines et al., 1999). Table 3 shows the elements of the dietary diversity score.
Table 3 Elements of the dietary diversity score

<table>
<thead>
<tr>
<th>Food group</th>
<th>Food subgroup</th>
<th>Representative foods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-whole grain breads</td>
<td>White bread, plain bagels</td>
<td></td>
</tr>
<tr>
<td>Quick breads</td>
<td>Muffins, corn bread, biscuits, pancakes</td>
<td></td>
</tr>
<tr>
<td>Pasta</td>
<td>All pasta dishes</td>
<td></td>
</tr>
<tr>
<td>Whole grain breads</td>
<td>Breads, rolls, crackers, pita breads, bagels, tortillas, pizza</td>
<td></td>
</tr>
<tr>
<td>Whole grain cereals</td>
<td>Cooked and ready to eat cereals</td>
<td></td>
</tr>
<tr>
<td>Rice</td>
<td>All rice dishes</td>
<td></td>
</tr>
<tr>
<td>Non-whole grain cereals</td>
<td>Cooked and ready to eat cereals</td>
<td></td>
</tr>
<tr>
<td>Vegetable components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other vegetables</td>
<td>Raw and cooked, salads, green beans</td>
<td></td>
</tr>
<tr>
<td>White potatoes</td>
<td>Mashed and fried potatoes, French fries</td>
<td></td>
</tr>
<tr>
<td>Tomato products</td>
<td>Fresh, sauces, juice</td>
<td></td>
</tr>
<tr>
<td>Other starchy vegetables</td>
<td>Lima beans, corn</td>
<td></td>
</tr>
<tr>
<td>Dry peas and beans</td>
<td>Lentils, kidney beans, soy products</td>
<td></td>
</tr>
<tr>
<td>Deep yellow and Orange vegetables</td>
<td>Winter squash, carrots, sweet potatoes</td>
<td></td>
</tr>
<tr>
<td>Dark green and leafy vegetables</td>
<td>Spinach, broccoli</td>
<td></td>
</tr>
<tr>
<td>Fruit components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All other fruit</td>
<td>Apples, bananas, grapes, raisins</td>
<td></td>
</tr>
<tr>
<td>Citrus fruit, melons, berries</td>
<td>Oranges, citrus juices</td>
<td></td>
</tr>
<tr>
<td>Meat components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef, pork, organ meats, lunch meats</td>
<td>Ground beef, ham</td>
<td></td>
</tr>
<tr>
<td>Milk</td>
<td>Milk, buttermilk</td>
<td></td>
</tr>
<tr>
<td>Poultry</td>
<td>Chicken, turkey</td>
<td></td>
</tr>
<tr>
<td>Cheese</td>
<td>Natural and processed cheese</td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td>Egg dishes, sandwiches, soups</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>Canned tuna, shellfish, finfish</td>
<td></td>
</tr>
<tr>
<td>Yoghurt</td>
<td>Refrigerated and frozen yoghurt</td>
<td></td>
</tr>
</tbody>
</table>

The dietary moderation score is based on consumption of added sugars, discretionary fat, and sodium and alcohol intake (Haines et al., 1999). These elements, as well as their applicable score criteria, are summarised in Table 4 below.

Table 4 Elements of diet moderation score

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Scoring criteria</th>
</tr>
</thead>
</table>
| Teaspoons added sugara | 0-2.5 points | 100% or less of maximum = 2.5 points
| | | 100%, ≤150% = 1.5 points |
| | | 150%, ≤200% = 1.0 point |
| | | >200% = 0 points |
| Discretionary fat (g) | 0-2.5 points | ≤25 g/day = 2.5 points |
| | | >25, ≤50 = 1.5 points |
| | | >50, ≤75 = 1.0 point |
| | | >75 = 0 points |
| Sodium intake (mg) | 0-2.5 points | ≤2400 mg = 2.5 points |

38
<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Scoring criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol intake<sup>c</sup></td>
<td>0-2.5 points</td>
<td>100% or less = 2.5 points</td>
</tr>
</tbody>
</table>

^a Based on 1600, 2200 or 2800 kcal diet

^b Recommendation for alcohol intake = 1 drink per day for women and 2 drinks per day for men

Using the indices and score criteria summarised above, the DQI-R captures overall diet quality in terms of food groups, nutrients and dietary behaviour patterns in the form of dietary diversity and moderation.

2.4.2 Measuring breakfast quality

Poor breakfast quality has been defined as lower consumption of core food groups at breakfast time (Lytle <i>et al.</i>, 2000), although to date, no universal criteria have been developed to measure breakfast quality. Studies measuring breakfast quality in the past developed criteria on an individual basis specific to the objectives of the research (O'Sullivan <i>et al.</i>, 2009; van den Boom <i>et al.</i>, 2006). Developing a universal breakfast quality scoring tool would be useful for the comparison of breakfast quality in different population groups and different countries. Such a tool would also help to shape guidelines for recommendations for how to build a high quality breakfast. However, diet quality indices for breakfast and the overall diet should be consistent with the national food-based dietary guidelines for each country, and developing one set of guidelines to satisfy the requirements of different countries may not be feasible.

Radcliffe <i>et al.</i> (2004) described breakfast quality by allocating a breakfast quality score. The scoring system was based on the five core food groups as defined by the Australian Guide to Healthy Eating (AGHE) listed as:

- breads and cereals (including breakfast cereals, bread and rice);
- vegetables;
- fruit;
- dairy products (including soya milk products);
- meat and meat alternatives (including eggs, vegetarian meat alternatives and nuts).
This model allocated an additional group called “extras” for all foods and beverages not classified into one of the core food groups outlined above. This was based on the assumption that although “extra” foods may contain some nutrients, they may not be considered good sources of the essential nutrients. “Extra” foods include items high in sugar and/or saturated fat such as soft drinks, biscuits, cake, pancakes and chocolate bars, as well as high-fat savoury goods such as pastries and sausage rolls. Table 5 below outlines the breakfast quality score allocation as described by Radcliffe et al. (2004).

Table 5
<table>
<thead>
<tr>
<th>Score</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No food or beverage (other than water); breakfast skipping</td>
</tr>
<tr>
<td>2</td>
<td>A food or beverage from “extra” foods only</td>
</tr>
<tr>
<td>3</td>
<td>A food or beverage from one AGHE group</td>
</tr>
<tr>
<td>4</td>
<td>A food or beverage from two AGHE groups</td>
</tr>
<tr>
<td>5</td>
<td>A food or beverage from three or more AGHE groups</td>
</tr>
</tbody>
</table>

AGHE: Australian Guide to Healthy Eating

Where an “extra” food is consumed in addition to one or more foods or beverages from an AGHE group, “extras” will not contribute to the final breakfast quality score.

By applying this model, the breakfast quality score ranges from 1 to 5 points depending on the breakfast consumed.

The South African Food-Based Dietary Guidelines (FBDGs) have identified core food groups recommended for intake in South Africa as (Vorster et al., 2013):

- starchy foods
- vegetables and fruit
- dry beans, split peas, lentils and soya
- milk, maas or yoghurt
- fish, chicken, lean meat or eggs

Although named slightly differently, the core food groups as described by the AGHE and the South African FBDGs incorporate the same types of foods. For this reason, the breakfast...
quality score as applied by Radcliffe et al. (2004) would also be of relevance in the South African context.

2.5 Trends in breakfast intake among adolescents

2.5.1 The prevalence of breakfast intake among adolescents globally
Research conducted among adolescents globally has provided an indication of the prevalence of breakfast intake and skipping in a number of countries. Table 6 below provides a summary of breakfast intake prevalence data for different countries as reported by 25 different studies.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Sample group</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeley et al. (2012)</td>
<td>South Africa</td>
<td>1451 students aged 13, 15 and 17 years</td>
<td>The prevalence of breakfast skipping for each age group was 24%, 36% and 35% respectively</td>
</tr>
<tr>
<td>Temple et al. (2006)</td>
<td>South Africa</td>
<td>476 students in grades 7 to 10</td>
<td>22% of students did not have breakfast before going to school</td>
</tr>
<tr>
<td>Kruger et al. (2002)</td>
<td>South Africa</td>
<td>Review of 4 studies assessing breakfast intake among South African children (total of 1557 children aged 6 to 14 years)</td>
<td>14 to 19% of children went to school without eating breakfast</td>
</tr>
<tr>
<td>Walker et al. (1982)</td>
<td>South Africa</td>
<td>4717 rural Black, urban Black, Indian, African-Malay and White pupils aged 16 to 18 years</td>
<td>21% of rural Black, 19% of urban Black, 13% of Indian, 13% of African-Malay and 14% of White adolescents skipped breakfast</td>
</tr>
<tr>
<td>Jaaskelainen et al. (2012)</td>
<td>Finland (Europe)</td>
<td>6247 adolescents aged 16 years</td>
<td>16% of the boys and 24% of the girls reported regular breakfast skipping</td>
</tr>
<tr>
<td>Veltsista et al. (2010)</td>
<td>Finland and Greece (Europe)</td>
<td>3452 Greek adolescents aged 17 to 18 years; 7128 Finnish adolescents average age of 16</td>
<td>74.7% of Finnish boys, 61.6% of Finnish girls, 48.8% of Greek boys and 44.1% of Greek girls reported eating breakfast daily</td>
</tr>
<tr>
<td>Dialektakou and Vranas (2008)</td>
<td>Greece (Europe)</td>
<td>811 adolescents aged 15 to 21 years (mean age 16.62)</td>
<td>74.7% of the participants reported eating breakfast at most, 6 times per week, and 3.6% never ate breakfast</td>
</tr>
<tr>
<td>Gomez-Martinez et al. (2012)</td>
<td>Spain (Europe)</td>
<td>2859 adolescents from 5 Spanish cities aged 13 to 18.5 years</td>
<td>11% of participants reported they had not had breakfast on the day of the survey</td>
</tr>
<tr>
<td>Reference</td>
<td>Country</td>
<td>Sample group</td>
<td>Result</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Hallstrom et al. (2011)</td>
<td>10 European cities</td>
<td>3000 adolescents aged 13 to 17 years</td>
<td>54% of the adolescents were regular breakfast consumers; 38% of adolescents agreed that they often skipped breakfast</td>
</tr>
<tr>
<td>de Moraes et al. (2012)</td>
<td>Brazil</td>
<td>991 students from high schools</td>
<td>37.8% of males and 34.6% of females skipped breakfast on the day of the survey</td>
</tr>
<tr>
<td>Estima et al. (2009)</td>
<td>Brazil</td>
<td>528 adolescents aged 12 to 18 years</td>
<td>Omission of breakfast was observed in 4.5% of the boys and 12.4% of the girls</td>
</tr>
<tr>
<td>Deshmukh-Taskar et al. (2010)</td>
<td>US</td>
<td>5339 adolescents, age 14 to 18</td>
<td>31.5% of adolescents were breakfast skippers</td>
</tr>
<tr>
<td>Merten et al. (2009)</td>
<td>US</td>
<td>7788 adolescents aged 11 to 16 years</td>
<td>41.3% of adolescents reported irregular breakfast consumption (less than 4 days per week)</td>
</tr>
<tr>
<td>Roseman et al. (2007)</td>
<td>Kentucky (US)</td>
<td>4049 middle school students</td>
<td>35% of the participants reported regular breakfast skipping (consuming breakfast for 0 to 3 days over the previous week)</td>
</tr>
<tr>
<td>Delva et al. (2006)</td>
<td>US</td>
<td>35107 12th grade students</td>
<td>66.2% of White, 79.7% of Black and 77.7% of Hispanic students reported eating breakfast infrequently</td>
</tr>
<tr>
<td>Niemeier et al. (2006)</td>
<td>US</td>
<td>14738 adolescents aged 11 to 21 years</td>
<td>On average, breakfast was consumed on 4.34 days per week</td>
</tr>
<tr>
<td>Affenito et al. (2005)</td>
<td>US</td>
<td>2379 African-American and White girls aged 9 to 19 years</td>
<td>At age 13, 53% of White girls and 35% of African-American girls had eaten breakfast on all three days of data collection. At age 19, 32% of White girls and 22% of African-American girls had eaten breakfast on all three days of data collection</td>
</tr>
<tr>
<td>Nicklas et al. (2000)</td>
<td>US</td>
<td>711 15-year old ninth-grade</td>
<td>19% breakfast skipping prevalence for 15-year old school</td>
</tr>
<tr>
<td>Reference</td>
<td>Country</td>
<td>Sample group</td>
<td>Result</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Woodruff et al. (2008)</td>
<td>Canada</td>
<td>1826 adolescents in grades 9 and 10</td>
<td>27% of participants reported breakfast skipping</td>
</tr>
<tr>
<td>Stockman et al. (2005)</td>
<td>Canada</td>
<td>180 adolescent males aged 14 to 18 years</td>
<td>26% of participants were classified as inconsistent breakfast consumers</td>
</tr>
<tr>
<td>Sandercock et al. (2010)</td>
<td>UK</td>
<td>4326 school children aged 10-16 years</td>
<td>25% sometimes skipped breakfast; 7% always skipped breakfast</td>
</tr>
<tr>
<td>Lattimore and Halford (2003)</td>
<td>UK</td>
<td>1019 school children aged 11-16 attending secondary schools</td>
<td>19% of children skipped breakfast on the day of the survey</td>
</tr>
<tr>
<td>Yeung (2010)</td>
<td>Hong Kong</td>
<td>836 adolescents, age 11 to 18</td>
<td>54% of the participants did not eat breakfast every day</td>
</tr>
<tr>
<td>Maddah (2008)</td>
<td>Iran</td>
<td>2090 Iranian high schools girls from urban and rural areas</td>
<td>Breakfast skipping was reported by 53% of normal weight urban girls, 63.7% of overweight urban girls, 47.9% of normal weight rural girls and 65.7% of overweight rural girls</td>
</tr>
<tr>
<td>Shaw (1998)</td>
<td>Australia</td>
<td>699 13 year old adolescents</td>
<td>12% of the sample skipped breakfast</td>
</tr>
</tbody>
</table>
The prevalence of infrequent breakfast intake and breakfast skipping ranges from as high as 79.7% among Black students in the US as reported by Delva et al. (2006) to 7% of adolescents always skipping breakfast in the UK as reported by Sandercock et al. (2010).

2.5.2 Breakfast intake among South African adolescents
Little research has been conducted to assess the dietary intake of adolescents in developing countries, such as South Africa (Temple et al., 2006; Walker et al., 1982). In South Africa, research reporting breakfast behaviour among adolescents is also limited. A literature search spanning from 1982 to 2013 on Science Direct, Pubmed and Ebscohost databases yielded only five studies and one review article which address breakfast intake among adolescents and children in South Africa. The first study assessed the breakfast habits of adolescents in four South African populations and was carried out by Walker et al. (1982). The study found the prevalence of breakfast skipping to be 21% among rural Black, 19% in urban Black, 13% in Indian, 13% in African-Malay and 14% in White pupils aged 16 to 18 years. The main reason cited for breakfast skipping, was lack of time to eat breakfast before school. This study found no significant impact of breakfast behaviour on weight, height, classroom behaviour or frequency of absence from school. The study concluded that the relationship between nutrition, breakfast, health and academic performance required more research in the form of prospective studies.

Following this, a review article assessing the importance of breakfast in meeting the nutritional requirements of South African children was published by Kruger et al. (2002). The review summarised the findings of four studies which were conducted in South Africa, as well as several other studies conducted around the world. The research conducted by Walker et al. (1982) was one of the four South African studies reviewed. The remaining three studies, were conducted among children aged 6 to 14 years, and were not reflective of an adolescent population. However, trends in breakfast intake observed in South African children pre-adolescence may still provide some context to the breakfast-intake environment among South Africans still attending school. The review found that 14 to 19% of children in South Africa went to school without eating breakfast. The review article concluded that breakfast intake is important in helping schoolchildren to meet their nutritional requirements and that breakfast omission has been associated with adverse nutritional consequences.

The second study conducted by Temple et al. (2006), sought to investigate the food consumption patterns of adolescents attending 14 secondary schools in Cape Town. A total of 476 students were included in the study. It was found that 22% of the study participants
did not have breakfast before going to school. The study highlighted the need for adequate and effective school nutrition programmes, given that a large number of students were not eating breakfast at home, further highlighting the importance of a nutritious meal at school. The authors concluded by recommending national policies to improve the quality and types of foods made available for purchase in secondary schools, as well as highlighting the need to educate parents on nutrition and dietary requirements for their children.

The third study conducted by Stupar et al. (2012) was qualitative in nature. Through several focus groups with 25 female learners aged 14 to 16 years in grade 10, the study sought to understand how the nutrition transition and other factors influence the food choices of adolescents in South Africa. The study participants reported that although they understood the importance of breakfast in sustaining and health and energy in young people, lack of time in the morning caused them to skip breakfast frequently. The girls also acknowledged that if their families sat together to eat breakfast in the mornings, they would be less likely to skip this meal.

Feeley et al. (2012) published breakfast intake data from the Birth to Twenty cohort study conducted among adolescents living in urban South Africa to assess their dietary habits and eating practices. The study compared dietary behaviour between 1451 adolescents aged 13, 15 and 17 years. The study found that regular breakfast intake of at least three times per week only occurred in 76% of 13 year olds, 64% of 15 year olds and 65% of 17 year olds. This indicated the prevalence of breakfast skipping for each age group to be 24%, 36% and 35% respectively. Furthermore, the study found that 15 year olds and 17 year olds were significantly more likely to skip breakfast than adolescents aged 13 years. This indicates that regular breakfast intake decreased with age. Male participants were shown to consume breakfast more frequently than female participants, and while regular weekend breakfast consumption was higher than breakfast consumption on weekdays, weekend breakfast consumption was still seen to decline with age. The study concluded that dietary patterns were well established by 13 years of age.

Lastly, the most recently published study which included interest in the breakfast habits of children aged 10 to 14 years was the South African National Health and Nutrition Examination Survey (SANHANES) (Shisana et al., 2013). The SANHANES reported that more than two-thirds (68.4%) of children aged 10 to 14 years indicated that they eat breakfast before going to school, while 19% had indicated that they did not eat breakfast before going to school. The remainder was not discussed in the report. The study further showed that the majority of children believed that it was important to eat breakfast before
going to school because it helped them to concentrate better (86.1%) and gave them energy for the day (89.3%) (Shisana et al., 2013). Given that nutritional knowledge with regards to the benefits of breakfast is in place among South African children, the need to investigate the reason for the high prevalence of breakfast skipping is paramount.

By province, children in the Western and Eastern Cape were significantly more likely to eat breakfast than children in the Northwest, Gauteng and Limpopo provinces. The prevalence of reported breakfast intake by province is shown in Figure 4 below.

Figure 4 Prevalence of breakfast intake and skipping by province adapted from (Shisana et al., 2013)

Children in the Northwest and Limpopo were significantly less likely to believe that breakfast helped them to concentrate when compared to children in the Eastern Cape. Children in Gauteng and the Northwest were least likely to believe that breakfast helped to provide energy for the day when compared to children in the Eastern Cape. There were no significant differences by sex or locality (urban/rural, informal/formal settings). There were no significant racial differences between the prevalence of breakfast intake for different racial groups, however among white children, there were too few observations to record reliably (Shisana et al., 2013).

The SANHANES further reported on the reasons indicated for skipping breakfast. The first was “not being hungry in the morning” (39.2%) followed by “not having enough food in the house” (33.9%), then “people at home do not have breakfast” (33%), “cannot get up early
enough” (19.2%) and “cannot make your own breakfast” (15.3%) (Shisana et al., 2013). Aside from ‘not having enough food in the house’ indicating a food security issue, most of the reason cited for breakfast skipping are environmental or behavioural issues. The most frequent reasons reported for breakfast skipping by locality are shown in Figure 5 below.

Figure 5 Reasons for breakfast skipping by locality ~ adapted from Shisana et al. (2013)

There was a significant difference between urban informal children and urban formal children regarding ‘no food in the house to eat for breakfast’. There is an increased likelihood for food insecurity in the urban informal setting, affecting breakfast intake among these children.

Understanding the factors which influence breakfast behaviour will help the development of effective and relevant strategies and guidelines for improving breakfast intake among adolescents.

2.6 Factors influencing breakfast intake among adolescents

2.6.1 Conceptual framework of factors influencing breakfast behaviour

The individual and environmental influences which adolescents are exposed to during the critical phase of transition from childhood to adulthood can affect food choices and dietary behaviour (Pearson et al., 2009). By understanding the factors underlying breakfast
skipping behaviour, more effective and relevant strategies to improve the behaviour can be implemented (de Moraes et al., 2012; Story et al., 2002). However, there are many dynamic and interlinked factors which influences adolescents eating behaviour, and none can be seen as predictive of behaviour in insolation (Stevenson et al., 2007).

Story and co-workers endeavoured to create a conceptual framework describing the various factors influencing breakfast behaviour (Story et al., 2002). Conceptual models are commonly used for understanding and explaining the dynamics of health behaviour (Glanz & Rimer, 1995). Two models were considered in the development of this framework. The first was Social Cognitive Theory which focusses on the role of personal, environmental and behavioural factors in guiding health behaviour (Baranowski et al., 1997). The second was an ecological model, which focuses on interactions between people and their environments (McLeroy et al., 1988). Taking these two models into account, Story et al. (2002) noted that the factors influencing breakfast behaviour can be summarised into four broad categories: individual or intrapersonal influences, social-environmental or interpersonal influences, physical environmental or community settings and lastly, macro-system or societal influences. Figure 6 below shows the matrix of interacting factors which influence breakfast behaviour.

Figure 6 Factors influencing breakfast behaviour – adapted from Story et al. (2002)
2.6.1.1 Individual or intrapersonal factors

Individual influences are individual characteristics which influence eating behaviour. Examples include age, gender, food preferences, attitudes and beliefs towards foods, knowledge regarding nutrition and foods, as well as biological factors such as hunger. Meal frequency, snacking habits and perceived barriers to healthy eating (such as time available, convenience and cost) are also individual influences (Story et al., 2002).

2.6.1.1.1 Age

Frequency of breakfast intake has been seen to decline with age during adolescence (Affenito et al., 2005; Delva et al., 2006). Delva et al. (2006) and his team investigated ethnic and sociodemographic differences in overweight adolescents to determine the relationship between the variables and predicting health-related behaviours among American students. Delva et al. (2006) observed that substantially fewer White, Black and Hispanic youth had frequent breakfast intake in grade twelve when compared to the frequency of breakfast intake among students in grade eight.

Affenito et al. (2005) conducted a study to measure breakfast consumption among African-American and White adolescent girls in the US. To determine frequency of breakfast consumption, dietary intake over three days was assessed, and intake was considered frequent if the participants consumed breakfast on all three days of assessment. Among study participants aged 9 years, 77% of White girls and 57% of African-American girls ate breakfast frequently. Among study participants aged 19 years, only 32% and 22% of White and African-American girls reported frequent breakfast consumption. The study concluded that the number of days breakfast was eaten tended to decrease with increasing age, and this finding was significant (P<0.0001).

Levin and Kirby (2012) used data from the Scottish Health behaviour in School-aged Children surveys conducted in 2002, 2006 and 2010 to determine which factors within the family environment influenced irregular breakfast consumption. Regardless of family structure, being of older age or of higher grade was significantly associated with irregular breakfast consumption for adolescents.

According to research conducted by Hallstrom et al. (2011), younger adolescents are more likely to be influenced by their parents’ food choices and breakfast behaviour. This trend tends to decrease as the adolescent’s age increases. This may be as a result of older adolescents expressing their independence and autonomy, and choosing not to follow their parents’ example (Hallstrom et al., 2011).
2.6.1.1.2 Gender
Hallstrom et al. (2011) assessed the factors affecting food choices and breakfast habits among European adolescents, it was found that overall, girls were less likely to be regular breakfast consumers when compared to boys (p < 0.05). These findings were supported in the research conducted by (Merten et al., 2009), which also concluded that females were less likely than males to eat breakfast during adolescence. An Australian based study investigating adolescent breakfast skipping identified gender to be the only statistically significant demographic variable predicting breakfast skipping behaviour (p < 0.00001) (Shaw, 1998).

These findings contradict understanding of female dietary behaviour as females typically make more healthy food choices and have a greater concern for health than males (Hallstrom et al., 2011; Lattimore & Halford, 2003). A possible explanation for this observation is that because females are typically more health conscious and are more likely to adopt energy-restrictive dieting techniques, they are significantly more likely to skip breakfast (Lattimore & Halford, 2003).

Yeung (2010) conducted a study among adolescents age 11 to 18 years in Hong Kong to understand different gender perspectives on adolescent eating behaviours. While the study found no significant difference in the likelihood of breakfast intake between male and female students, it did find that females were more likely to be weight conscious, in line with the findings of Lattimore and Halford (2003).

2.6.1.1.3 Food preferences, taste and hunger
Self-reported food preferences have been found to be one of the strongest predictors of food choices, especially among adolescents. Food preferences are formed through a series of interactions throughout an individual’s life, such as exposure, experience associated with certain foods and individual genetic palate, ultimately conditioning individuals to their food preferences (Story et al., 2002).

According to the research conducted by Hallstrom et al. (2011), the personal factors of ‘hunger’ and ‘taste’ were some of the most important influences of food choice at breakfast among adolescents. Similar findings were reported by Yeung (2010), indicating that ‘flavour’ was a key factor in driving food choice. Yeung (2010) also reported that cost was a main concern when making food choices, but nutritive value and hygiene were less important influences among these adolescents.
In 12 focus group discussions conducted by Stevenson et al. (2007) among adolescents based in the UK, it was found that food aesthetics, such as taste, texture, appearance and smell were the most powerful reinforcers of food choice. As a result, foods which were less healthy, but offered good taste were viewed as rewarding because of the foods physical properties, where healthier foods (notably green vegetables) were noted to be bland or unpleasant.

Berg et al. (2003) conducted a study among Swedish adolescents aged 11 to 15 years to determine the reasons for choosing different fat and fibre-containing foods at breakfast. While students were aware of which cereal products were higher in fibre, and aware of the associated health benefits of fibre, the study participants were less likely to choose these foods for usual breakfast consumption. The reason for this was that in general, the students perceived foods higher in fibre to be less palatable. In this example, the taste of the food was the key factor in determining which food would be consumed at breakfast regardless of the nutrition credentials of the food (Berg et al., 2003).

Because the ‘tastiest’ foods are often those higher in fats, sugars and energy, allowing ‘taste’ to be the key driving factor for food choices may compromise nutrition intake. French et al. (1999) assessed motivational forces for selecting different foods from a vending machine among adolescents. Adolescents who rated ‘taste’ as the most important factor in snack choice had a significantly lower intention to choose lower fat snack options from the vending machine (French et al. (1999) cited by Story et al. (2002)).

Addressing attitude and food beliefs may be more important than knowledge in altering food-related health behaviour (Nowak & Buttner, 2003).

2.6.1.1.4 Attitudes, beliefs and nutritional knowledge
MacNicol et al. (2003) assessed the relationship between attitudes and dietary behaviour among Scottish adolescents aged 11 to 15 years. The study found that children who were better-informed or had a higher level of knowledge with regard to food, nutrients and diet had better dietary habits, and a more positive attitude to foods (MacNicol et al., 2003). However, it has been noted that knowledge about nutrition and food risks often does not translate into more healthy eating behaviour (Stevenson et al., 2007). When assessing the knowledge of adolescents with regard to healthy eating, in general adolescents understand the theoretical guidelines and messages, however despite this, adolescents find it difficult to practically apply theoretical healthy eating guidelines (Stevenson et al., 2007; Yeung, 2010). This is likely as nutritional knowledge may not be the central motivation for food choice among
adolescents. In South Africa, there is little published data on the nutrition knowledge of adolescents, and their impact on food-related behaviour (Steyn, 2010).

The Theory of Planned Behaviour (TPB) is a widely used theoretical model which predicts behaviour, based on an individual’s intention (Ajzen, 1991). Intention is driven by three key factors: attitude, subjective norm and perceived behavioural control. One weakness of this model is that although it may be effective in predicting individual intention, it cannot predict whether that intention will actually translate into behaviour (Ajzen, 1991). Nonetheless, the TPB has been used to explain behaviour and trends with regard to smoking, exercise, fruit and vegetable consumption and soft drink consumption. It has also been suggested that the TPB provides a better model of breakfast consumption than other models which exist (Kothe et al., 2011; Mullan et al., 2013).

Dejong et al. (2009) sought to identify the cognitive and environmental correlates of breakfast consumption among adolescents in the Netherlands. Individual cognitions defined by the TPB namely intention to perform a behaviour, attitude towards a behaviour, perceived control over the behaviour and social norms surrounding the behaviour were assessed. The study found that individual factors attitude, intention and decision for self were associated with daily breakfast consumption.

The SANHANES reported that children in the Northwest Province are less likely to believe in the benefits of breakfast, namely ‘helping you to concentrate’ and ‘provides you with energy for the day’ when compared to children in the Eastern Cape (Shisana et al., 2013). Because these children are less likely to perceive breakfast intake to be beneficial, they are also less likely to prioritise regular breakfast intake. This could be one of the factors driving the observation that 81.9% of children in the Eastern Cape reported eating breakfast every day, compared to only 55.1% in the Northwest Province.

2.6.1.2 Social-environmental or interpersonal factors
Social environmental influences, such as family, friends, peer networks and demographic characteristics, can influence food behaviour, especially among adolescents (Story et al., 2002). These factors highlight the mechanisms of modelling, reinforcement, social support and perceived norms in guiding eating behaviour.

2.6.1.2.1 Socio-economic status
The Health-Related Behaviours among American students: National Trends Report conducted in the US sought to establish long term trends in race and socio-economic status (SES) relating to students who are overweight and engaging in health behaviours associated
with weight loss (Delva et al., 2006). The study showed a consistent positive association between SES and regular breakfast consumption. Students of high SES were significantly more likely to consume breakfast than students of low SES.

Breuning et al. (2011) found similar results; in a study aiming to identify the predictors of breakfast consumption among adolescents in the US, based on the findings of the Project ‘Eating Among Teens’ (EAT). One finding of this study was that study participants from higher SES were more likely to report regular breakfast consumption. Breuning et al. (2011) noted that interventions promoting breakfast consumption in lower income schools are required.

Merten et al. (2009) analysed data from the National Longitudinal Study of Adolescent Health in the US to understand the interaction between breakfast, obesity and community and family influences. According to (Merten et al., 2009), higher levels of community disadvantage and family poverty decreased the likelihood of adolescent breakfast consumption.

A number of factors linked to lower SES could influence decreased breakfast consumption, such as limited access to food outlets, limited shared family time, strained financial resources, food insecurity and lack of nutrition and health knowledge (Gable & Lutz, 2000).

Contrary to these findings, (Hallstrom et al., 2011) found that adolescent males who perceived their family to be “not well off” were more likely to consume breakfast regularly when compared to adolescent males who perceived their family to be “well off”.

Pearson et al. (2009) conducted a systematic review of correlates of breakfast consumption among adolescents. Of the 13 studies included which investigated adolescent breakfast consumption, seven found that socio-economic status was positively associated with breakfast consumption. The remaining six study samples reviewed found no association between these variables. While studies have shown the inverse relationship between SES and breakfast consumption among adolescents, others have argued that the influence of peers, schools and the environment outweigh the influence of SES on breakfast intake (Pearson et al., 2009).

2.6.1.2.2 Influence of friends and peers
The influence of peers and conformity to acceptable norms within a peer group is typical of adolescent behaviour (Story et al., 2002). Adolescents spend a significant amount of time with their friends, and eating is a form of socialisation and recreation. Adolescent peers help to create the norms concerning acceptable behaviour, including dietary behaviour.
Dejong et al. (2009) identified ‘modelling by friends’ as an environmental correlate of adolescent breakfast consumption. Study participants were asked to rate the question, “How often do your friends eat breakfast” as always (+2) or never (-2). Participants who reported a higher score for “How often your friends eat breakfast” were more likely to eat breakfast regularly themselves. This indicates that behaviour which is deemed acceptable among a peer group, in this case eating breakfast, will influence individuals within that group to conform to this behaviour.

Breuning et al. (2012) examined the associations of healthy eating between adolescents and their friends looking specifically at breakfast, fruit, vegetable, wholegrain and dairy intake. Data for the study was drawn from Project EAT. The study found significant positive associations between adolescents and their friends for breakfast eating, wholegrain intake and dairy intake. The study findings suggested that adolescent friends exhibit similarities in dietary intake (Breuning et al., 2012).

Research regarding the role of peer influence on dietary behaviour is sparse. One reason for this may be that social influences are difficult to measure (Feunekes et al., 1998; Story et al., 2002). In the case of adolescents who are becoming independent and expressing their autonomy, admitting their behaviour is influenced by their peers is unlikely. Furthermore, adolescents may not be aware of the impact of social eating norms on their behaviours. Further research is required on this topic to understand the role of peer pressure on dietary behaviour, particularly breakfast behaviour.

2.6.1.2.3 Parental modelling and family structure
Families mediate dietary behaviours for adolescents in two ways: first is the provision of certain foods affecting availability and accessibility of foods to the adolescent, and second is the role of the family and parents in particular in influencing food preferences, values, attitudes and habits (Story et al., 2002).

While parents have little influence on adolescent food choices outside of the home, they can influence which foods are available within the home. Ensuring that nutritious healthy foods are available and visible guides the adolescent’s food choices (Story et al., 2002).

Levin and Kirby (2012) investigated irregular breakfast consumption by family structure, and breakfast intake was shown to vary depending on the family dynamics present. Difficult parent-child relationships or poor communication and irregular personal and family routines were associated with irregular breakfast intake regardless of the number of parents in a household. In households where both parents were present, living with siblings, being
treated unfairly and having older siblings was associated with irregular breakfast consumption. Being close to at least one parent was associated with reduced likelihood of irregular breakfast consumption in single mother households, and in single mother homes, adolescents with mothers who worked away from home also had higher likelihood for irregular breakfast intake (Levin & Kirby, 2012). Similarly, Merten et al. (2009) found that adolescents who had at least one parent present in the morning were more likely to eat breakfast than adolescents who had no parents present in the morning.

Family routines are important to facilitate communication and connections between family members, as well as to promote family identity and organisation. Opportunities for connecting with family members allows parents to socialise with young people, share values and experiences, and influence their children’s habits and activities. Family organisation and routine have been linked to adolescent psychological health, body weight status and dietary intake. Routines and socialisation in turn impact parent-child relationships (Levin & Kirby, 2012).

Hallstrom et al. (2011) highlighted the role of parents in encouraging healthy eating behaviour among adolescents. In this study, boys from single-parent/divorced families were less likely to eat breakfast regularly when compared to boys from traditional families. Boys whose parents gave little or no encouragement to eat breakfast or follow a healthy diet tended to be less likely to eat breakfast regularly. Where parents of boys practised healthy eating behaviours themselves, their sons were more likely to eat breakfast regularly when compared to boys whose parents did not practise healthy eating behaviours.

From the information above, it appears that parents have a key role to play in guiding food behaviours among their children. By setting a positive example of dietary intake behaviours themselves, they create a standard of acceptable dietary behaviour, which their children are more likely to comply with. It has been suggested that increased frequency of meal eaten together as a family is an effective way of influencing adolescent’s breakfast habits and to create an environment that encourages general health conscious behaviour (Hallstrom et al., 2011; Levin & Kirby, 2012).

2.6.1.3 Physical environmental or community setting

The physical environment in which a community exists affects accessibility and availability of different foods (Story et al., 2002).

As young adolescents become young adults, their likelihood for eating more meals out of the home increases. It has been reported that a third of adolescent eating occasions take place
outside of the home, and is comprised of meals at school, fast food restaurants, vending machines and other locations (Anon, 1998). For this reason, the physical environment to which an adolescent is exposed significantly impacts the type of foods made available to them, thus influencing dietary intake, meal frequency and patterns.

2.6.1.3.1 School
The school food environment may have a key influence on adolescents' dietary behaviour and food choices because a large portion of adolescents total daily energy intake is consumed at school (Burghardt \textit{et al.}, 1993).

Temple \textit{et al.} (2006) investigated foods items consumed by students attending different schools in Cape Town. While 22\% of the study participants skipped breakfast before going to school, 80\% did eat a meal at school, which in the majority of the cases was purchased from the school. Three quarters of the food purchased at the school came from a tuck shop and was generally regarded as less-healthy food. One quarter of the students who bought food from school purchased from local vendors. In this case, the types of food to which children are exposed at school influence their dietary choices and as a result, have a less healthy diet. By influencing the types of food made available, it would be possible to improve the overall diet among these children (Temple \textit{et al.}, 2006).

In 1994, the Department of Health implemented the Primary School Nutrition Programme (PSNP) which aimed to improve the health and nutritional status of South African primary school children, improve levels of school attendance and improve the learning capacity of children by providing a nutritious meal to learners in lower income primary schools. In 2004, the programme was reallocated to the Department of Basic Education and was renamed the National School Nutrition Programme which allowed the programme to focus on secondary schools as well as primary schools (Department of Basic Education, 2012). The meal provided to learners as part of the programme includes a food item from each of the following food groups: Protein (including soya, fish, eggs, milk, beans or lentils), carbohydrate or starch (rice, bread or maize), fats, oils and salt (added for taste) and fruit or vegetable (should be served daily where possible). The meal should be served to the learners by 10:00 am, and where breakfast is served before school starts, the main meal may be served later in the day (Department of Basic Education, 2012). The provision of a meal through the NSNP provides a significant contribution to food intake among South African adolescents from lower socio-economic background. Given that 19\% of children in South Africa do not eat breakfast before going to school, the provision of a meal by 10:00
am by the NSNP helps to provide key nutrients which might have otherwise been missed (Department of Basic Education, 2012; Shisana et al., 2013).

In 2010, the president of South Africa committed to reinstating health programmes in public schools in South Africa (Department of Health & Department of Basic Education, 2012). In 2012, the South African government became signatory to the United Nations Convention on the Rights of the Child and accorded children in the Bill of Rights in the South African Constitution. The purpose of this was to ensure children’s rights were upheld, which is particularly difficult in the South African context as a result of poverty, underdevelopment and barriers to optimal health. In order to address this need, the Integrated School Health Programme (IHSP) was implemented in South Africa in 2012. According to the World Health organisation (WHO) a school health programme is a combination of services aiming to ensure physical, mental and social wellbeing of learners so that they are better able to learn and reach their full potential. Because children spend around 13 years in the classroom environment, this provides an ideal opportunity for health education and intervention, which in turn can be shared by the children with their families and communities (Department of Health & Department of Basic Education, 2012).

The ISHP is South Africa has the following objectives:

- To provide preventive and promotive services that address the health needs of children;
- To support learning by identifying and addressing health barriers to learning;
- To facilitate access to health service where required and
- Support the community to create and environment suitable for teaching and learning.

These objectives are to be achieved through the collaboration of governmental departments and various role players and stakeholders by up-weighting existing health promotive programmes in schools. Nutrition has been highlighted as a key focus area in the ISHP and nutrition status and education of learners is being addressed by the ISNP in the following ways:

- Nutrition and exercise education is included as part of the Life Orientation subject curriculum;
- Anthropometric measures for each learners are being assessed to determine the risk for nutrition-related illnesses. Where nutrition illnesses are detected, effective intervention plans are implemented accordingly;
• Nutrition was identified as a key focus area in the Care and Support for Teaching and Learning Programme which focusses on delivery and expanding appropriate care to schools;
• Up-weighting of the Integrated Nutrition Program (INP) focussing on house-hold food security, health monitoring and promotion, control of micronutrient deficiencies, nutrition education and disease specific nutrition support and
• The NSNP providing nutrition meals to learners in need.

Through the implementation of the ISHP, children are exposed to nutrition education and interventions which improve their nutrition status overall (Department of Health & Department of Basic Education, 2012).

2.6.1.3.2 Fast food facilities
Fast food outlets hold significant appeal for the adolescent population. This is largely because the foods provided by these outlets are tasty, convenient and generally low cost. In the US, fast food outlets provide a third of away-from-home meals to adolescents (Lin et al., 1996)

In South Africa, exposure to fast foods is much greater as a result of increasing informal food vendors and formal commercial vendors as part of urbanisation (Feeley et al., 2012). Research conducted by Feeley et al. (2012) reported that the five most popular fast foods among South African adolescents were fried chips, “vetkoek”, fried fish, pies and “boerewors” which accounts for 74% of the total fast foods consumed in the population group. Informal vendors in South Africa make fast foods more affordable and accessible to people with lower incomes and the availability of confectionary and is widespread in schools and the community.

Because of the readily-available, cost effective nature of fast foods around schools and the community, the need or priority to eat breakfast at home before coming to school may be lessened. As a result, the nutritional quality of the foods typically consumed for breakfast among this population is compromised.

2.6.1.4 Macro-system or societal influences
Macro-system factors have an indirect role in influencing food behaviours, and examples include mass media and advertising, food production and distribution systems, national laws and policies guiding food supply issues, as well as social and cultural norms with regard to food (Story et al., 2002). These influences have a much broader effect which guides trends and the environment of whole communities and countries.
South Africa is a third world country undergoing a unique nutrition transition, and as a result of this, environmental and dietary exposures vary greatly from those experienced in developed countries (Feeley et al., 2012; Stupar et al., 2012). The nutrition transition is driven by several aspects of economic globalisation such as urbanisation, changes in income, Westernisation of readily available foods, industry and marketing behaviour (Steyn et al., 2006; Stupar et al., 2012).

Cultural behaviours and stigmatization as a result of South Africa’s history and the nutrition transition transforming the landscape of foods available to the public are influencing food and dietary choices among adolescents. According to (Stupar et al., 2012), given the disadvantaged background of the majority of South Africans, there is a desire to display a successful image by choosing foods which are related to wealth and status. Alternatively, parents may wish to give their children foods to which they themselves were not exposed when they were young. Unfortunately, the manifestation of this behavior is a switch from traditional staple grains to Westernized energy-dense processed foods as part of the nutrition transition (Steyn et al., 2006).

One way of influencing cultural beliefs and stigmatizations is by ensuring that the advertising food and beverages to children and adolescents is appropriate and promotes consistent health messages. By allowing food advertisements for unhealthy foods to be displayed to communities, confusing messages are reinforced among the public, creating a need for foods which are associated with success rather than health (Stupar et al., 2012).

In the case of breakfast, fast food manufacturers are increasingly promoting consumption of fast foods as a convenient, quick breakfast. Given that adolescents are susceptible to the media and this type of advertising, the impact of these advertisements will cause switching from traditional breakfast meals to refined high fat alternatives, decreasing overall diet quality for adolescents.

There is a strong need to explore contextual factors affecting breakfast behaviour among adolescents (Merten et al., 2009). Identifying important changeable determinants is critical to the development and implementation of relevant and effective interventions within the target group (Dejong et al., 2009; Hallstrom et al., 2011).
2.7 Conclusion

Although regular breakfast consumption has been identified as an important indicator of a healthy lifestyle by several groups of international researchers (Rampersaud et al., 2005), global trends have shown that the prevalence of regular breakfast consumption is declining (Haines et al., 1999). This trend has also been observed in the adolescent population globally (Seiga-Riz et al., 2000). Adolescents are at particular risk for poor lifestyle behaviours (Frech, 2012). Research has shown that lifestyle and behaviour habits which are entrenched during adolescence are likely to remain throughout adulthood (Merten et al., 2009). In order to address breakfast skipping behaviour among adolescents, the prevalence of breakfast skipping, the factors associated with breakfast skipping and the mechanisms explaining the effectiveness of breakfast in improving health outcomes must be understood (Breuning et al., 2011; Kothe et al., 2011; Ortega et al., 1998b).

Regular breakfast intake is associated with decreased risk for obesity, decreased risk for chronic diseases, improved cognitive performance, behavioural and psychological importance, and improved nutrient intake and diet quality. However, the quality and nutrient composition of the optimal breakfast to illicit these beneficial effects are largely under review. While mechanisms for various nutrient properties, meal frequency and time of consumption lending to the observed benefits of breakfast have been proposed, further research is required to guide recommendations for the optimal breakfast composition.

Reported inconsistencies regarding the relationship between breakfast intake and level of physical activity indicates that this is not a conclusive mechanism for the observed benefits of breakfast intake in protecting against increased BMI and obesity. Further investigation is required to determine whether a causal relationship exists between these observations.

It has been suggested that intake of breakfast, and the quality of the breakfast consumed, may influence the rest of the day’s intake affecting overall diet quality (Nicklas et al., 1998). Foods and nutrients consumed at breakfast may affect food choices and behaviour which follow throughout the rest of the day, predisposing breakfast eaters to healthier, more nutritious choices when compared to breakfast skippers (Nicklas et al., 1998). Further research to better understand the effect of different breakfast formats and compositions on subsequent daily intake is required.

It has been theorised that breakfast behaviour is influenced by a number of interlinked factors, broadly categorised as intrapersonal, interpersonal, physical-environmental or macro-system. While no one factor can be truly predictive of an adolescent’s eating
behaviour, a matrix of interacting factors may guide understanding cultural, environmental, relationship and personal factors affecting breakfast intake (Story et al., 2002).

Intrapersonal factors which have been reported to affect adolescent food choices include the taste and flavours of different foods, the cost and accessibility of foods, age, gender and personal attitudes and beliefs (Yeung, 2010). Addressing attitude and food beliefs may be more important than knowledge in altering food-related health behaviour (Nowak & Buttner, 2003). Interpersonal influences include family, peers and SES (Story et al., 2002). Physical environmental influences are the surrounds to which adolescents are exposed, guiding food availability. Marco-systems refer to broader influential systems such as mass media, political environment and population culture.

Identifying the changeable determinants of adolescent breakfast behaviour, and understanding the mechanism by which different nutrients in a breakfast meal illicit beneficial health outcomes, are key to developing effective public health guidelines and interventions.

2.8 References

Cho, S., Dietrich, M., Brown, C., Clark, C. & Block, G. 2003. The effect of breakfast type on total daily energy intake and body mass index: results from the Third National Health and

Department of Basic Education. 2012. *National school nutrition programme (NSNP)* annual report.

Department of Health & Department of Basic Education. 2012. *Integrated School Health Policy*.

Scholey, A., Sunram-Lea, S., Greer, J., Elliott, J. & Kennedy, D. 2009. Glucose administration prior to a divided attention task improves tracking performance but not word

Chapter 3 – Article

The photographs above have been used with permission and show fieldworkers conducting 24-hour recall questionnaires in various schools.
The intake and quality of breakfast consumption among adolescents attending public secondary schools in the Northwest Province, South Africa.

Leanne Teea, Chrisna Bothaa*, Ria Laubscherb, Johann Jerlinga

aCentre of Excellence for Nutrition: North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa

bBiostatistics Unit, Medical Research Council, PO Box 19070, Tygerberg, 7505, South Africa

*Corresponding author.1

CR Botha

E-mail address: chrisna.botha@nwu.ac.za

Telephone: +27 18 299 2461

Postal address: Centre of Excellence for Nutrition: North-West University, Private Bag X6001, Box 594, Potchefstroom, 2520, South Africa

1 Abbreviations

Abstract

Objective
To determine the proportion and quality of breakfast consumption, and the effect of breakfast intake and quality on diet quality among adolescents in Potchefstroom, South Africa.

Method
Demographic information and dietary intake information were collected for 244 adolescents (mean age 17.5 ± 2.3). Breakfast and diet quality scores were applied. Spearman correlations were used to assess associations between continuous variables. The Chi-square or Fisher’s Exact Test was used to assess the associations between categorical variables. A p-value < 0.05 indicated statistical significance.

Results
The proportion of breakfast intake and skipping was 81% and 19% respectively. The mean breakfast quality score was 3.1 indicating moderate quality. Breakfast eaters and skippers showed no significant difference in diet quality score. Breakfast quality score was marginally associated with calcium intake (p<0.0001; r=0.418), phosphorous intake (p<0.0001; r=0.378) and total diversity score (p<0.0001; r=0.369).

Conclusion
The proportion of breakfast skipping shown highlights the need for breakfast education and intervention as part of the Integrated School Health Policy.

Keywords:
Adolescent; Breakfast; Breakfast quality; Diet Quality; Adolescence
Introduction

Regular breakfast consumption among adolescents has been linked to decreased risk of obesity and chronic diseases, improved cognition and improved nutrient intake (Barton, et al., 2005; Deshmukh-Taskar, et al., 2010; Hoyland, Dye, & Lawton, 2009; Kruger, Dhansay, Labadarios, Kotiah, & Kullman, 2002; Smith, et al., 2010). Despite this, research has indicated that adolescent breakfast consumption is declining globally (Cho, Dietrich, Brown, Clark, & Block, 2003; Rampersaud, Pereira, Girard, Adams, & Metzl, 2005; Seiga-Riz, Popkin, & Carson, 2000). The reported prevalence of breakfast skipping among different adolescent population groups in South Africa ranges from 13 to 36% (Feeley, Musenge, Pettifor, & Norris, 2012; N. J. Temple, Steyn, Myburgh, & Nel, 2006; Walker, Walker, Jones, & Ncongwane, 1982).

Adolescents are at particularly high-risk for health compromising behaviours such as increased fast food consumption, increased sedentary levels and frequent breakfast skipping (Frech, 2012; Niemeier, Raynor, Lloyd-Richardson, Rogers, & Wing, 2006). Adequate exercise and sleep, maintaining healthy weight, not smoking or binge drinking and eating breakfast regularly have declined dramatically during the transition to young adulthood (Frech, 2012; Niemeier, et al., 2006). Research shows that lifestyle and behaviour habits which are entrenched during adolescence are likely to remain throughout adulthood (Merten, Williams, & Shriver, 2009).

By studying the prevalence of breakfast skipping and the quality of breakfast consumed within a particular target group, research is able to create an understanding of the magnitude of the problem to be addressed. Understanding how breakfast intake and quality influences health outcomes guides effective recommendations for breakfast intake which can be used in public health guidelines and intervention programs (Breuning, Larson, Story, Neumark-Sztainer, & Hannan, 2011; Ortega, et al., 1998).
The aim of this study was to determine the proportion of adolescents eating breakfast, and the quality of breakfast consumed among adolescents attending public secondary schools in Potchefstroom and its surrounding areas in the Northwest Province of South Africa, and to determine the effect of breakfast intake and quality on overall diet quality and other lifestyle behaviours.

Methods

Research design

The study used a cross sectional quantitative design.

Study participants and sampling

The study focussed on randomly selected adolescents, both boys and girls, attending seven public secondary schools in grades nine to eleven residing in urban and peri-urban areas of Potchefstroom and its surrounding areas in the Northwest Province of South Africa. All secondary schools were entered into the eligibility pool for selection (n = 19). The schools were stratified for quintile (1 to 5) and then one school from each quintile was randomly selected using a randomiser tool. South African schools are divided into five categories or “quintiles” based on their poverty ranking (Hall & Giese, 2009). Quintile 1 represents the poorest schools and quintile 5 represents the least poor schools (Hall & Giese, 2009). This classification is determined through the implementation of a national poverty table which determines the poverty ranking of areas based on information from the national census and the catchment area of the school (Hall & Giese, 2009). Schools from all the quintiles were included in the study to ensure that a distribution of children attending different kinds of schools was represented, and that the research was not biased to one group of adolescents. It was determined that data from 50 students from each quintile would be required to determine accurate means, standard deviation and to be able to compare quintiles with
each other. This was not proportional or representative of the total population in Potchefstroom and its surrounding areas. A list of students in grades 9 to 11 was obtained from each school, and students were randomly selected to take part in the study using a randomiser tool. Too few participants were available on the day of data collection from the schools in quintiles 4 and 5 due to unreturned consent forms, and therefore a second school representing each of these quintiles was selected, resulting in a total of seven schools being included in the study. A total of 254 adolescents were recruited.

Data collection

A self-administered demographic questionnaire was used to obtain information on gender, age, study year, basic health questions, participation in physical activity and other socio-demographic information.

To obtain information on breakfast and dietary intake for the day, a single 24-hour recall using the four-stage multiple pass method was conducted using food models and picture books to determine portion size. The dietary data was analysed using the Medical Research Council Food Composition Tables and was coded accordingly (Langenhoven, Conradie, Wolmarans, & Faber, 2002; Wolmarans, Danster, Dalton, Rossouw, & Schonfeldt, 2010). A self-administered questionnaire was used to select the type of breakfast usually consumed by the adolescents. For the purposes of this research, ‘breakfast’ was defined as any food or beverage consumed between 5 am and 10 am. A ‘meal’ was defined as an eating occasion and was categorised as breakfast (5 am – 10 am), morning snack (10 am – 12 pm), lunch (12 pm – 2 pm), afternoon snack (2 pm – 6 pm), dinner (6 pm – 8 pm) and evening snack (8 pm – 10 pm).
Breakfast quality was measured through the allocation of a breakfast quality score as described by Radcliffe and co-workers (Radcliffe, Ogden, Coyne, & Craig, 2004). The scoring system was based on the five core food groups as defined by the Australian Guide to Healthy Eating (AGHE) listed as:

- breads and cereals (including breakfast cereals, bread and rice);
- vegetables;
- fruit;
- dairy products (including soya milk products);
- meat and meat alternatives (including eggs, vegetarian meat alternatives and nuts).

The Diet Quality Index Revised (DQI-R) was used to assess the quality of the overall diet, and was applied to all meals of the day, including breakfast. The DQI-R utilises a 100-point scale for a number of different indices or components of both food and nutrient measures of diet quality (Haines, Siega-Riz, & Popkin, 1999).

Height and weight was measured by a level one anthropomotrist using the International Society for the Advancement of Kinanthropometry (ISAK) standards.

Statistical analysis

A standardized coding system was applied to each variable. SPSS® statistical software package was used to analyse the data. Associations between breakfast intake and other categorical characteristics were assessed by either the Chi-square Test or Fisher’s Exact Test. Spearman correlations were used to assess the associations between breakfast quality score and continuous variables. A p-value < 0.05 was indicative of statistical significance.

The Goldberg cut-off is an equation used to validate reported energy intake in individuals and populations (Black, 2000). It operates on the assumption that if a study
participant maintains a certain body weight, then Energy Intake (EI) must equal energy expended for that participant. The equation uses the Basal Metabolic Rate (BMR) and Physical Activity Level (PAL) relevant to the group being analysed to create acceptable variances for the ratio EI: BMR. If this ratio fell above or below calculated cut-off points, then that study participant was considered to be an under- or over-reporter and was removed from the data set to ensure data validity. The Goldberg cut-off was applied to exclude over- and under-reporters in this study (where EI: BMR < 0.6 or > 4.91). Appendix A shows the calculations for determining the Goldberg cut off points as defined by Black (2000).

Ethical considerations

The research proposal was approved by The Research Ethics Committee of the North-West University (NWU-00031-13-A1). The study protocol was compliant to guidelines outlined by the Medical Research Council general principles, and to the international guidelines listed as The Helsinki Declaration, The Belmont Report and The Nuremberg Code. In addition, the research protocol was approved by the Department of Education in Northwest Province, and permission to conduct this study was granted. Both written consent and assent were obtained from parents or guardians as well as adolescents before commencement of the study. Participants could withdraw from the study at any point.

Results

Data was collected for a total of 254 adolescents. Ten of the adolescents were found to be over- or under-reporters, and these adolescents were excluded from the final data set in order to avoid skewed data. The final data set consisted of data for 244 adolescents.
The mean age of the adolescents in the analysis sample was 17.5 years (± 2.3). Of the 244 study participants, 20 (8%) were aged 21 years or older. Although these participants are not classified as adolescents, they were not excluded from the study as the factors and behaviours to which these individuals are exposed are the same as for the adolescents included in the study sample. Of the analysis sample, 54% (n = 131) were girls and 46% (n = 113) were boys. Table 1 provides a summary of the demographic and anthropometric data for the adolescents participating in the study.
Table 1
Demographic and anthropometric characteristics of adolescents

<table>
<thead>
<tr>
<th></th>
<th>Total (n = 244)</th>
<th>Boys (n = 113)</th>
<th>Girls (n = 131)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Median</td>
</tr>
<tr>
<td>Age (years)</td>
<td>17.5</td>
<td>2.3</td>
<td>17</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21.7</td>
<td>4.2</td>
<td>20.5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>58.8</td>
<td>13.0</td>
<td>56.3</td>
</tr>
<tr>
<td>Body Fat %</td>
<td>21.4</td>
<td>10.9</td>
<td>19.5</td>
</tr>
<tr>
<td>Total energy intake (kcal)</td>
<td>2340</td>
<td>933</td>
<td>2170</td>
</tr>
<tr>
<td>Diet Quality Score</td>
<td>58.2</td>
<td>9.9</td>
<td>57.8</td>
</tr>
<tr>
<td>Breakfast Quality Score</td>
<td>3.1</td>
<td>1.2</td>
<td>3</td>
</tr>
</tbody>
</table>
Anthropometric data was collected for 243 adolescents. Of the girls aged 14 to 20 years, 21% had a BMI-for-age below the 25th percentile, 34% had a BMI-for-age above the 75th percentile, and 45% had a BMI-for-age between the 25th and 75th percentiles. Of the boys aged 14 to 20 years, 47% had a BMI-for-age which fell below the 25th percentile, 18% had a BMI-for-age which fell above the 75th percentile, and 35% had a BMI-for-age which fell between the 75th and 25th percentiles. Of the study participants aged 21 to 26 years, 21% were underweight and 16% were overweight.

The prevalence of breakfast intake

Of the total group, 81% of the adolescents had eaten breakfast the day before data collection and 19% had skipped breakfast as shown by the 24-hour recall. The demographic factors associated with frequency of breakfast intake and skipping were analysed using Chi-Square tests and the results of this analysis are summarised in Tables 2a and 2b. Of the girls surveyed (n=131), 19.1% had skipped breakfast the day before data collection, compared to 18.6% of the boys surveyed (n=113). Of the girls surveyed, 80.9% had eaten breakfast the day before data collection, compared to 81.4% of boys who had eaten breakfast. There was no significant difference between the frequency of breakfast intake or skipping between genders (p = 0.921).
Table 2a

Breakfast intake by demographic characteristics (Chi-Square tests)

<table>
<thead>
<tr>
<th></th>
<th>Gender</th>
<th>Grade</th>
<th>Self-reported race</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Female (n=131)</td>
<td>Male (n=113)</td>
<td>P-value</td>
</tr>
<tr>
<td>Skipped breakfast (%)</td>
<td>19.1</td>
<td>18.6</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.921</td>
</tr>
<tr>
<td>Consumed breakfast (%)</td>
<td>80.9</td>
<td>81.4</td>
<td>82.4</td>
</tr>
</tbody>
</table>

^a‘Other’ self-reported races were White, Indian, Coloured and Other.
Table 2b

Breakfast intake by demographic characteristics (Chi-Square tests)

<table>
<thead>
<tr>
<th></th>
<th>Tobacco use<sup>a</sup></th>
<th>Alcohol use<sup>b</sup></th>
<th>Participation in physical activity<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes (n=211)</td>
<td>No (n=30)</td>
<td>P-value</td>
</tr>
<tr>
<td>Skip breakfast (%)</td>
<td>18.5</td>
<td>23.3</td>
<td>0.527</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.1</td>
<td>50.0</td>
<td>0.271</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.3</td>
<td>21.9</td>
<td>0.394</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>81.5</td>
<td>76.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>82.9</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>82.7</td>
<td>78.1</td>
<td></td>
</tr>
</tbody>
</table>

^aTwo breakfast eating cases did not indicate smoking status.

^bOne breakfast eating case did not indicate alcohol consumption.

^cTwo breakfast eating cases and one breakfast skipping case did not indicate participation in physical activity.
Breakfast quality score

The mean breakfast quality score for the study group was 3.1 (± 1.27), with a maximum possible score of 5 and a minimum possible score of 1. The breakfast quality score is based on the inclusion of food groups as defined by the AGHE. A higher score indicates foods from more AGHE groups were included at breakfast and indicates a better breakfast quality. Table 3 shows breakfast quality score for the study population. Breakfast quality scores of 4 and 3 were the most frequent, indicating a moderate breakfast quality (a food or beverage from one to two groups from the AGHE: breads and cereals, vegetables, fruit, dairy or meat and meat alternatives were eaten at breakfast).
Table 3

Components of the breakfast quality score

<table>
<thead>
<tr>
<th>Breakfast Quality Score component</th>
<th>Scoring criteria</th>
<th>% study population</th>
<th>Total (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No food or beverage (other than water); breakfast skipping</td>
<td>1</td>
<td>20.1</td>
<td>49</td>
</tr>
<tr>
<td>A food or beverage from “extra” foods only<sup>a</sup></td>
<td>2</td>
<td>7.0</td>
<td>17</td>
</tr>
<tr>
<td>A food or beverage from one AGHE group<sup>b</sup></td>
<td>3</td>
<td>25.0</td>
<td>61</td>
</tr>
<tr>
<td>A food or beverage from two AGHE groups<sup>b</sup></td>
<td>4</td>
<td>39.3</td>
<td>96</td>
</tr>
<tr>
<td>A food or beverage from three or more AGHE groups<sup>c</sup></td>
<td>5</td>
<td>8.6</td>
<td>21</td>
</tr>
</tbody>
</table>

^aConsidered to be a breakfast of low quality.

^bConsidered to be a breakfast of moderate quality.

^cConsidered to be of good breakfast quality.
The effect of breakfast intake and breakfast quality score on diet quality score and lifestyle behaviours

The mean diet quality score for the study group was 58.3 (± 9.85) out of a total possible score of 100. Table 4 shows the breakdown of DQI-R components for adolescents who consumed and skipped breakfast on the day of data collection. The maximum possible score for each of the DQI-R components was 10. The components of the DQI-R which showed the lowest mean scores for the study sample were percentage of recommended servings of fruits per day (mean score 1.6), dietary diversity (mean score 2.5), percentage of adequate intake for calcium (mean score 3.2) and percentage of recommended servings of vegetables per day (mean score 3.5). The components which showed the highest mean scores were percentage of recommended servings for grains per day (mean score 9.5) and percentage of recommended daily allowance for iron (mean score 8.7).
Table 4

Components of the DQI-R by breakfast intake and skipping

<table>
<thead>
<tr>
<th>DQI Component</th>
<th>Scoring criteria</th>
<th>Scoring %</th>
<th>Total group mean score (SD)</th>
<th>Mean diet quality score among adolescents who consumed breakfast</th>
<th>Mean diet quality score among adolescents who skipped breakfast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fat ≤30% energy intake</td>
<td>≤30% = 10</td>
<td>48.0%</td>
<td>7.4 (±2.5)</td>
<td>7.4</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>>30, ≤40% = 5</td>
<td>52.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>40% = 0</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤10% = 10</td>
<td>63.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated fat ≤10% energy intake</td>
<td>>10, ≤13% = 5</td>
<td>23.4%</td>
<td>7.5 (±3.6)</td>
<td>7.6</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>>13% = 0</td>
<td>13.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤300 = 10</td>
<td>73.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietary cholesterol < 300 mg per day</td>
<td>>300, ≤400 = 5</td>
<td>9.0%</td>
<td>7.7 (±3.9)</td>
<td>7.6</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>>400 = 0</td>
<td>18.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4 servings fruit per day, bc % recommended servings</td>
<td>≥100%</td>
<td>4.9%</td>
<td>1.6 (±0.7)</td>
<td>1.7</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>99-50%</td>
<td>14.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><50%</td>
<td>80.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-5 servings vegetables per day, bc % recommended servings</td>
<td>≥100%</td>
<td>5.3%</td>
<td>3.5 (±0.3)</td>
<td>3.3</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>99-50%</td>
<td>24.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><50%</td>
<td>70.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-11 servings grains per day, bc % recommended servings</td>
<td>≥100%</td>
<td>87.3%</td>
<td>9.5 (±1.4)</td>
<td>9.5</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>99-50%</td>
<td>11.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><50%</td>
<td>1.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium intake as a % AI for age c</td>
<td>≥100%</td>
<td>2.9%</td>
<td>3.2 (±2.5)</td>
<td>3.4</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>99-50%</td>
<td>18.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><50%</td>
<td>78.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DQI Component</td>
<td>Scoring criteria</td>
<td>Scoring %</td>
<td>Total group mean score (SD)</td>
<td>Mean diet quality score among adolescents who consumed breakfast</td>
<td>Mean diet quality score among adolescents who skipped breakfast</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Iron intake as a percentage 1989 RDA<sup>a</sup> for age</td>
<td>≥100%</td>
<td>59.0%</td>
<td>8.7 (±1.9)</td>
<td>8.9</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>99-50%</td>
<td>34.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><50%</td>
<td>6.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥6</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietary diversity score</td>
<td>≥3, <6</td>
<td>26.2%</td>
<td>2.5 (±1.0)</td>
<td>2.6</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td><3</td>
<td>73.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥7</td>
<td>42.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietary moderation score</td>
<td>≥4, <7</td>
<td>52.9%</td>
<td>6.6 (±1.6)</td>
<td>6.4</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td><4</td>
<td>4.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Diet Quality Score<sup>e</sup></td>
<td></td>
<td>58.3 (±9.9)</td>
<td>59.0</td>
<td>57.0</td>
<td></td>
</tr>
</tbody>
</table>

^bBased on 1600, 2200 or 2800 kcal diet.

^cUsed as a continuous variable.

^dAI = adequate intake value.

^aRDA = recommended dietary allowance.

^eMaximum possible score = 100.
In this study, adolescents of Black race were seen to have lower breakfast intake (p=0.013) and lower breakfast quality score (p=0.0001) when compared to other races. Race was grouped as ‘Black’ or ‘other’ because there were too few adolescents from Coloured, Indian, White and other race groups. Adolescents participating in physical activity were significantly more likely to have a higher breakfast quality score (p=0.007). Breakfast intake and quality was not associated with age, grade, alcohol use, tobacco use, BMI or body fat percentage.

There was no significant difference in diet quality score between adolescents who consumed and skipped breakfast. No correlation between breakfast quality score and diet quality score was found. It was however observed that certain components of the DQI-R increased with an increase in breakfast quality score, although the strength of the correlations indicated a trend rather than a proportionate relationship (Table 5). The components of the DQI-R influenced by breakfast quality score were the percentage of adequate intake for calcium (r=0.418; p<0.0001), total diversity score (r=0.369; p<0.0001) and meat diversity score (r=0.503; p<0.001). Increased breakfast quality score also showed a trend for increased intake of certain nutrients, namely calcium (r=0.418; p<0.0001) and phosphorous (r=0.378; p<0.0001).
Table 5

Relationship between breakfast quality score, components of the DQI-R and nutrient intake measured by Spearman Correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total group mean (SD)</th>
<th>P-value</th>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium intake as a % Al(^\text{d}) for age(^\text{c})</td>
<td>3.2 (±2.5)</td>
<td><0.0001</td>
<td>0.418</td>
</tr>
<tr>
<td>Dietary diversity score</td>
<td>2.5 (±1.0)</td>
<td><0.0001</td>
<td>0.369</td>
</tr>
<tr>
<td>Meat diversity score</td>
<td>0.8 (±0.4)</td>
<td><0.0001</td>
<td>0.503</td>
</tr>
<tr>
<td>Total Diet Quality Score(^\text{a})</td>
<td>58.3 (±9.9)</td>
<td>0.5334</td>
<td>0.040</td>
</tr>
<tr>
<td>Calcium intake (mg)</td>
<td>447 (±442)</td>
<td><0.0001</td>
<td>0.418</td>
</tr>
<tr>
<td>Phosphorous intake (mg)</td>
<td>1159 (±590)</td>
<td><0.0001</td>
<td>0.378</td>
</tr>
</tbody>
</table>

\(^\text{c}\)Used as a continuous variable.

\(^\text{d}\) Al = adequate intake value.

\(^\text{a}\)Maximum possible score = 100.

Foods most frequently consumed for breakfast

In order to explain the trends observed in the diet quality score we investigated the most frequently consumed foods at breakfast. Bread, milk, ready-to-eat cereals (RTEC) and maize porridge were the most frequently consumed foods at breakfast as shown by Figure 1.
Only included for servings of 100 ml or more.

RTEC: Ready-to-eat cereal.

Made up of cooked Maltabella (sorghum porridge) and cooked oats.

Figure 1
Frequency of intake for different foods at breakfast among adolescents

Added sugar was consumed by 140 of the adolescents at breakfast, and was consumed in an average serving size of 19 g. According to N. Temple and Steyn (2013), 10% of total energy is the upper limit for added sugar intake. It has been suggested that breakfast should contribute 25% of the day’s energy and nutrient requirements (Gougeon, Henry, Ramdath, & Whiting, 2011; Institute of Medicine, 2006). The mean energy intake for the study population was 2340 kcal, indicating a maximum recommended added sugar intake of 57.5 g per day. Twenty-five percent of this guideline translates to 14.4 g of added sugar at breakfast. The mean sugar intake of 19 g among the adolescents at breakfast exceeds the added sugar allowance for this meal. Margarine was consumed by 42 of the adolescents at breakfast at an
average serving size of 14 g. It has been recommended that energy intake from fat should not exceed 30% of total energy intake for the day (Smuts & Wolmarans, 2013). For the present study population, 30% of the mean total energy consumed is equal to 77.2 g of fat. Twenty-five percent of this amount equals 19.3 g. The average serving of 14 g of margarine at breakfast falls within the acceptable fat intake range at breakfast. The beverages most frequently consumed at breakfast were tea (n = 74), water (n = 45) and coffee (n = 32).

The nutrient compositions of bread, milk, RTEC and maize are provided in Table 6 (Langenhoven, et al., 2002; Wolmarans, et al., 2010). Notably, the most frequent breakfast formats usually consumed as reported by self-administered questionnaires among the study group were “porridge only with a drink” (81%) followed by “bread, toast, roll or crisp bread with a drink” (77%).

Table 6

Nutrient compositions of foods commonly consumed at breakfast

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Brown bread (fortified) (60 g serving)</th>
<th>Low fat milk (125 g serving)</th>
<th>RTEC(^a) (Corn Flakes(^b)) (40 g serving)</th>
<th>Maize meal (fortified, soft cooked) (250 g serving)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>649 kJ</td>
<td>266 kJ</td>
<td>642 kJ</td>
<td>585 kJ</td>
</tr>
<tr>
<td>Protein</td>
<td>5.2 g</td>
<td>4.1 g</td>
<td>3.1 g</td>
<td>3.0 g</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>26.5 g</td>
<td>6.1 g</td>
<td>33.1 g</td>
<td>28.5 g</td>
</tr>
<tr>
<td>Sugar</td>
<td>0.0 g</td>
<td>6.1 g</td>
<td>2.5 g</td>
<td>0.0 g</td>
</tr>
<tr>
<td>Fat</td>
<td>1.2 g</td>
<td>2.5 g</td>
<td>0.1 g</td>
<td>0.8 g</td>
</tr>
<tr>
<td>Saturated fat</td>
<td>0.2 g</td>
<td>1.6 g</td>
<td>0.0 g</td>
<td>0.3 g</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0.0 mg</td>
<td>8.8 mg</td>
<td>0.0 mg</td>
<td>0.0 mg</td>
</tr>
<tr>
<td>Dietary fibre</td>
<td>4.0 g</td>
<td>0.0 g</td>
<td>1.3 g</td>
<td>1.3 g</td>
</tr>
<tr>
<td>Sodium</td>
<td>271 mg</td>
<td>58 mg</td>
<td>484 mg</td>
<td>0 mg</td>
</tr>
<tr>
<td>Thiamine</td>
<td>0.1 mg</td>
<td>0.0 mg</td>
<td>0.5 mg</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>Nutrient</td>
<td>Brown bread (fortified) (60 g serving)</td>
<td>Low fat milk (125 g serving)</td>
<td>RTEC<sup>a</sup> (Corn Flakes<sup>b</sup>) (40 g serving)</td>
<td>Maize meal (fortified, soft cooked) (250 g serving)</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>0.0 mg</td>
<td>0.2 mg</td>
<td>0.6 mg</td>
<td>0.0 mg</td>
</tr>
<tr>
<td>Niacin</td>
<td>1.6 mg</td>
<td>0.1 mg</td>
<td>7.1 mg</td>
<td>0.3 mg</td>
</tr>
<tr>
<td>Folic acid</td>
<td>25.2 ug</td>
<td>6.3 ug</td>
<td>100.0 ug</td>
<td>5.0 ug</td>
</tr>
<tr>
<td>Calcium</td>
<td>33.0 mg</td>
<td>152.5 mg</td>
<td>4.4 mg</td>
<td>0.0 mg</td>
</tr>
<tr>
<td>Iron</td>
<td>0.9 mg</td>
<td>0.1 mg</td>
<td>4.8 mg</td>
<td>0.3 mg</td>
</tr>
<tr>
<td>Phosphorous</td>
<td>104.4 mg</td>
<td>111.3 mg</td>
<td>20.4 mg</td>
<td>60.0 mg</td>
</tr>
</tbody>
</table>

^aRTEC: Ready-to-eat cereal.

^bCorn Flakes was the most frequently consumed ready-to-eat cereal among the study group.

Discussion

The main findings of this study were as follows: (1) 19% of adolescents skipped breakfast, (2) breakfast intake and quality did not significantly affect overall diet quality; and (3) intake of certain foods at breakfast may contribute valuable nutrients to the diet.

The present study found that 81% of adolescents ate breakfast and 19% skipped breakfast. When comparing this figure to international data, the prevalence of breakfast skipping appears to be moderate. International data indicates that breakfast skipping behaviour is as high as 79.7% among black adolescents in the US as reported by Delva, O'Malley, and Johnston (2006) to as low as 7% of adolescents in the UK as reported by Sandercock, Voss, and Dye (2010).

Research reporting breakfast behaviour among adolescents in South Africa is limited, although the South African National Health and Nutrition Examination Survey
(SANHANES) published in 2013 also indicated that 19% of children aged 10 to 14 years did not eat breakfast before going to school (Shisana, et al., 2013). Examined by province, the SANHANES reported that 22.9% of children in the Northwest province did not eat breakfast before school, and that children in the Western and Eastern Cape were significantly more likely to eat breakfast when compared to children in the Northwest, Gauteng and Limpopo provinces (Shisana, et al., 2013). N. J. Temple, et al. (2006) showed that 22% of adolescents attending secondary schools in Cape Town skipped breakfast, and similarly, Feeley, et al. (2012) showed the prevalence of breakfast skipping in Soweto, Gauteng to be 24%, 36% and 35% for adolescents aged 13, 15 and 17 years respectively. This suggests that the prevalence of breakfast intake among adolescents in South Africa differs by province, and possibly the environment to which adolescents are exposed. South Africa is undergoing a period of unique nutrition transition driven by aspects of economic globalisation such as urbanisation, changes in income and economic uplift, Westernisation of readily available foods, industry and marketing behaviour (K. Steyn, Fourie, & Temple, 2006; Stupar, et al., 2012). The nutrition transition is transforming the landscape of foods available to the public and may be influencing food and dietary choices among adolescents. According to Feeley, et al. (2012), breakfast skipping as well as other poor lifestyle habits, may be reflective of the context in which South African adolescents live. It has been noted that the observed behaviours may be as a result of complex interactions within demographics, the environment and economics (Feeley, et al., 2012; Popkin & Gordon-Larsen, 2004). It would be valuable to understand the drivers for breakfast skipping behaviour within different adolescent population groups in South Africa.

The mean breakfast quality score for this study group was 3.1, indicating a moderate breakfast quality, which includes food from only one of the AGHE food groups. It was hypothesised that prevalence of breakfast intake and breakfast quality score would
decrease with age in this study population. This research showed no relationship between age and breakfast intake or breakfast quality score.

The Integrated School Health Policy (ISHP) of South Africa is the first joint policy between the Department of Health and Basic Education, and focusses on identifying and managing health barriers to learning among children in state schools in South Africa (Department of Health & Department of Basic Education, 2012). The ISHP seeks to up-weight existing health programmes in state schools, and build a comprehensive and holistic health-promoting programme through cross-collaboration of governmental departments and key stakeholders within the teaching environment (Department of Health & Department of Basic Education, 2012). Nutrition has been highlighted as a key focus area within the ISHP and is being addressed in the following ways:

- Nutrition and exercise education has been included as part of the Life Orientation subject curriculum;

- Anthropometric measures for learners are being assessed to determine the risk for nutrition-related illnesses. Where nutrition illnesses are detected, effective intervention plans are implemented accordingly;

- Nutrition was identified as a key focus area in the Care and Support for Teaching and Learning Programme which focusses on delivery and expanding appropriate care to schools;

- Up-weighting of the Integrated Nutrition Program (INP) focussing on house-hold food security, health monitoring and promotion, control of micronutrient deficiencies, nutrition education and disease specific nutrition support and
• Up-weighting the National School Nutrition Programme (NSNP) which provides nutritious meals to learners in need.

The findings of the present study provide some insights into the implementation of the ISHP in the Northwest Province.

The South African Department of Basic Education has implemented the NSNP among lower income primary and secondary schools (Department of Basic Education, 2012). According to the policy, a nutritious meal should be served to learners by 10:00 am (Department of Basic Education, 2012). The schools in quintiles 1 to 4 included in this research all benefitted from the NSNP, where schools in quintile 5 did not. On further investigation, it was found that the NSNP meal was actually being served at 11 am, and was thus classified as a “morning snack” rather than “breakfast” for purposes of this research. Receiving this meal before 10 am would have improved the breakfast quality score among these adolescents, but since it was only received at 11 am, the NSNP meal only affected the diet quality score in these groups. Given the identified benefits of breakfast, and the prevalence of breakfast skipping among adolescents in the Northwest province, provision of a breakfast meal is important among this target group. There is therefore an opportunity to improve the NSNP meal delivery in these schools to ensure the meal is served before 10 am as per the policy requirements.

In this study, adolescents of black race had lower breakfast intake prevalence and a lower breakfast quality score when compared to other races. Similar findings have been observed in international research. Breuning, et al. (2011) summarised the predictors of breakfast consumption among adolescents in the US, and found that non-white groups were less likely to consume breakfast when compared to White groups. Delva, et al. (2006) reported that Black and Hispanic youth were less likely to consume breakfast regularly when compared to White youth in adolescents in the US. While
self-reported race alone cannot explain the differences observed in breakfast intake and quality, it is possible that cultural exposures within different race groups may influence breakfast eating behaviour. Further research is required to understand cultural attitudes and perceptions towards breakfast intake, potentially explaining the differences observed between different race groups.

Participation in physical activity was associated with improved breakfast quality. To our knowledge, no study has reported on the relationship between breakfast quality and physical activity, although a positive relationship for breakfast intake and increased physical activity has been observed (Keski-Rahkonen, Kaprio, Rissanen, Virkkunen, & Rose, 2003; Sandercock, et al., 2010; Schembre, et al., 2013; Tin, Ho, Mak, Wan, & Lam, 2011). In the present study, participation in physical activity did not differ between adolescents who consumed or skipped breakfast. This highlights the need to investigate the role of breakfast quality, as well as breakfast intake, in influencing subsequent activity levels for the day.

It has been suggested that breakfast skipping, along with lack of physical activity, alcohol consumption, smoking, and poor sleep behaviour, form a bundle of health compromising behaviours which predispose adolescents to poor health outcomes in the long term (Huang, Hu, Fan, Liao, & Tsai, 2010). Individuals who skip breakfast may be less concerned with their health than those who always eat breakfast (Keski-Rahkonen, et al., 2003). The present study found no relationship between alcohol use, smoking and breakfast intake. Until causality between breakfast intake and these health risk behaviours is established, it is recommended that health care professionals address each of these individual behaviours through a multidisciplinary approach, and continue to promote and protect breakfast intake among the adolescent population (Rampersaud, 2008).
It was hypothesised that breakfast intake and a higher breakfast quality score would result in a higher diet quality score for adolescents for the day. The present study found no significant difference in diet quality score between adolescents who consumed and skipped breakfast. No correlation between breakfast quality score and diet quality score was found. Breakfast quality score and components of the DQI-R were marginally associated, indicating a trend for improved calcium intake, dietary diversity score and meat diversity score. When comparing mean scores for components of the DQI-R (Table 6) between adolescents who ate and skipped breakfast, breakfast skippers had a lower (less favourable) mean score for calcium and iron intake, and a higher (more favourable) mean score for cholesterol intake.

When examining the foods most frequently consumed for breakfast, bread, milk and RTEC were the most prevalent foods. Nutrition analyses of these foods show that they are valuable contributors of certain nutrients to be diet (Langenhoven, et al., 2002; Wolmarans, et al., 2010). Milk is a significant contributor of calcium to the diet (Dairy Council, 2011). The present study showed that adolescents who consumed breakfast were more likely to consume milk, thus explaining the trend observed for increased calcium intake among the breakfast eating group. The DQI-R component “meat diversity score”, classified milk as a “meat”, which meant that adolescents who ate breakfast and were more likely to have milk and in turn also have a slightly higher mean meat diversity score. The meat diversity score was one of the major contributors to the total diversity score. The consumption of milk among breakfast eaters therefore explains the trend between increased breakfast quality score, increased calcium intake, increased meat diversity score and total diversity score respectively. Of the most frequently consumed foods at breakfast, milk was the only contributor of cholesterol. Again, the consumption of milk among breakfast eaters may explain the tendency for higher cholesterol intake among breakfast eaters when compared to breakfast
skippers. In South Africa, it is mandatory to fortify all white and brown bread flour and maize meal with vitamin A, thiamine, riboflavin, niacin, folic acid, pyridoxine, iron and zinc (Department of Health, 2002). Consumption of these foods helps to increase intake of these nutrients which are lacking in the diets of many South Africans (N. Steyn, Wolmarans, Nel, & Bourne, 2008). Given that bread and maize were two of the most frequently consumed foods at breakfast, the iron content of these foods as part of the national fortification mandate may explain the tendency for higher iron intake among breakfast eaters when compared to breakfast skippers. RTEC is typically fortified with iron as well as other nutrients (McNulty, et al., 1996), and may also have contributed to the iron intake of the breakfast eating group. Brown bread, milk and maize meal also contain phosphorous, helping to explain the trend for increased phosphorous intake in the breakfast eating group (Wolmarans, et al., 2010).

The strength of this study was that the total number of participants included created adequate power to draw valid conclusions from the results of this research including determining accurate means and standard deviation and to be able to compare quintiles with each other. However, limitations should also be taken into account when interpreting these results. The cross-sectional study design allowed for understanding relationships and associations around breakfast intake and quality, but does not establish causality between these variables. The study participants were randomly selected from seven preselected schools representing five different quintile backgrounds. It is possible that the behaviour observed by quintile may be attributed to socio-environmental factors, including school culture and environment. While the present study observed some trends in breakfast behaviour among different adolescent groups, including more schools from each quintile would provide a better representation of socio-economic background. More specific questions including a qualitative assessment could also be used to address attitudes, behaviour, socio-
economic status and food security. Lastly, the breakfast intake behaviour was determined from one 24-hour recall and does not reflect usual breakfast intake.

Conclusion and implications for research and practise

The role of breakfast in improving nutrient intake and diet quality, as well as decreasing risk for obesity and chronic diseases in adolescents has been well documented in international research. This study shows that 19% of adolescents did not eat breakfast on the day of data collection, meaning these adolescents have missed an opportunity to improve their health outcomes.

The quality of the breakfast consumed among adolescents in the present study was moderate, highlighting an opportunity for intervention to improve breakfast intake and quality among this target group.

The findings of the current study suggest that cultural and socio-environmental factors may influence breakfast intake and breakfast quality, and further research is required to understand how different cultural and environmental factors, as well as individual attitudes and perceptions towards breakfast, influence breakfast behaviour among South African adolescents.

While breakfast intake did not influence diet quality among the adolescents, it was shown that the intake for certain foods at breakfast helps to improve the mean scores for components of the DQI-R and helps to improve the intake of key nutrients.

It is recommended that the governmental departments responsible for the ISHP incorporate breakfast messaging into the nutrition education component of the ISHP. Facilitators involved in implementing the ISHP, such as School-based support teams, teachers and healthcare professionals are encouraged to continue the promotion of
breakfast intake among adolescents, in order to entrench breakfast intake behaviour which will be continued into adulthood, improving health outcomes in the long-term.

Acknowledgements

This research was sponsored by Kellogg Company of South Africa and the North-West University. Kellogg Company did not influence the study design or data collection, analysis or interpretation of data, the writing of the report or the decision to submit the article for publication. The authors wish to acknowledge Lianri Swanepoel for providing support during data collection and Professor Edelweiss Wentzel-Viljoen for guidance in the interpretation of results.

References

116

Chapter 4 – Conclusion and recommendations

The photograph above has been used with permission and shows the North-West University transport vehicle used during the data collection period.
4.1 Introduction
The primary objectives of the present study were 1) to determine the proportion of breakfast intake among adolescents attending public secondary schools in Potchefstroom and surrounding areas in the Northwest Province, 2) to assess the quality of the breakfast consumed, and 3) to determine the effect of breakfast intake and quality on overall diet quality for the day.

The secondary objectives for this research were 1) to determine socio-demographic factors associated with breakfast intake and quality and 2) to determine the effective of breakfast intake and quality on the adolescents' BMI.

By understanding the proportion of breakfast skipping and quality of breakfast consumed within a particular target group, research is able to create an understanding of the magnitude of the problem to be addressed. An understanding of how breakfast intake and quality influences diet quality and health outcomes will help to guide effective recommendations for breakfast intake which can be used in public health guidelines and intervention programs (Ortega et al., 1998).

The purpose of this chapter is to summarise the conclusions of this research in light of the research hypotheses, and to provide recommendations for future studies investigating breakfast intake among adolescents in South Africa.

4.2 Main findings
It was hypothesised that the prevalence of breakfast skipping among adolescents attending public secondary schools in Potchefstroom and its surrounding areas would be approximately 20% based on the findings of the SANHANES and the review of breakfast intake data among children and adolescents in South Africa conducted by Kruger and co-workers (Kruger et al., 2002; Shisana et al., 2013). The present study found that 81% of adolescents consumed breakfast, and 19% skipped breakfast. The hypothesis for the prevalence of breakfast skipping was thus accepted.

The mean breakfast quality score of the study population was 3.1, indicating that one food from the AGHE core food groups was consumed at breakfast, providing a moderate breakfast quality. It was hypothesised that the mean breakfast quality score for the study population would reflect a poor quality breakfast. The hypothesis was therefore rejected. Foods most frequently consumed for breakfast were bread, milk, RTEC and maize porridge, all of which are components of one of the AGHE core food groups.
The present study found no significant difference in diet quality score between adolescents who consumed and skipped breakfast. No correlation between breakfast quality score and diet quality score was found. The hypothesis was thus rejected as it was hypothesised that breakfast intake and a higher breakfast quality score would result in a higher diet quality score for adolescents for the day.

Literature has shown various factors to influence breakfast intake among adolescents, including age, gender and race (Affenito et al., 2005; Breuning et al., 2011; Delva et al., 2006; Hallstrom et al., 2011). Age, gender, race, tobacco use, alcohol use and participation in physical activity were hypothesised to influence breakfast intake and quality. Adolescents of Black race were more likely to skip breakfast and have a lower diet quality score when compared to adolescents of other races. While self-reported race alone cannot explain the differences observed in breakfast intake and quality, it is possible that cultural exposures within different race groups may influence breakfast eating behaviour.

Physical activity participation was associated with a higher breakfast quality score. It has been suggested that breakfast skipping, along with lack of physical activity, alcohol consumption, smoking, and poor sleep behaviour, form a bundle of health compromising behaviours which predispose adolescents to poor health outcomes in the long term (Huang et al., 2010). Individuals who skip breakfast may be less concerned with their health than those who always eat breakfast (Keski-Rahkonen et al., 2003). Age, gender, tobacco use and alcohol use did not influence breakfast intake or quality. This hypothesis was thus partially accepted.

Breakfast quality score and components of the DQI-R were marginally associated, indicating a trend for improved calcium intake, phosphorous intake, dietary diversity score and meat diversity score. This finding was driven by the foods most frequently consumed at breakfast (bread, milk, RTEC, maize) being sources of calcium and phosphorous, and milk being classified as a “meat” increasing the meat diversity and dietary diversity scores.

It was hypothesised that Adolescents with higher breakfast intake and quality scores would have more favourable BMI. The findings of the present study showed no impact of breakfast intake or quality on BMI. The hypothesis was thus rejected.

Based on the findings of the present research, the following hypotheses were rejected:

- The mean breakfast quality score for the study population would reflect a poor quality breakfast and

- Breakfast intake and a higher breakfast quality score would result in a higher diet quality score for adolescents for the day.
• Adolescents with higher breakfast intake and quality scores would have more favourable BMI.

The following hypothesis was accepted:

• The prevalence of breakfast skipping among adolescents attending public secondary schools in the Kenneth Kaunda District would be approximately 20%.

Lastly, the following hypothesis was partially accepted:

• Age, gender, race, tobacco use, alcohol use and participation in physical activity were hypothesised to influence breakfast intake and quality.

4.3 Conclusions and recommendations
The role of breakfast in improving nutrient intake and diet quality, as well as decreasing risk for obesity and chronic diseases in adolescents has been well documented in international research. The present research indicated that breakfast skipping is prevalent among 19% of adolescents meaning these adolescents have missed an opportunity to improve their health outcomes. Breakfast intake and quality did not affect the diet quality score, but breakfast quality was marginally associated with components of the DQI-R.

The present study shared findings published by international research. Race was shown to influence breakfast intake as observed by Breuning et al. (2011) and Delva et al. (2006), and likelihood for participation in physical activity was seen to improve with improved breakfast intake (Keski-Rahkonen et al., 2003; Sandercock et al., 2010). However, the findings of the present study were not always consistent with international research. Breakfast intake and quality were not associated with diet quality, as found by (Grieger & Cobiac, 2012; Nicklas et al., 2002; Tin et al., 2011).

In view of the findings of the present study, and in line with evidence from previously published research, the following recommendations for future research are suggested, to better understand the intake of breakfast among adolescents in the South African context:

• Further research is required to understand how different cultural and environmental factors influence breakfast behaviour among South African adolescents. Having a tangible understanding of the cultural and environmental drivers for breakfast skipping will assist with the development of relevant and effective public intervention programs to improve breakfast intake among adolescents from different population groups in South Africa.
• Clinical intervention trials are required to determine causality between breakfast intake, improved diet quality and participation in physical activity, where breakfast intake would be the intervention.

• Further research is required to determine what the optimal breakfast type or quality entails, as it appears that breakfast quality does influence the beneficial outcomes observed with breakfast intake.

While research continues to seek clarity on the questions highlighted above, it is recommended that the governmental departments responsible for the ISHP incorporate breakfast messaging into the nutrition education component of the ISHP. Facilitators involved in implementing the ISHP, such as School-based support teams, teachers and healthcare professionals healthcare professionals are encouraged to continue the promotion of breakfast intake among adolescents, in order to entrench breakfast intake behaviour which will be continued into adulthood, improving health outcomes in the long-term.

4.4 My reflection of the research experience
Conducting this research project has helped to improve my understanding of the various factors influencing dietary behaviour. A complex matrix of interlinked and dynamic personal, environmental and macro-system factors ultimately guide dietary choices, and influencing these choices involves intervention at a very broad public health level.

During the process of this research, certain areas of invention to improve dietary intake of adolescents became apparent to me. These areas have been broadly discussed below, and may form the focus of future research projects or interventions.

• The 24-hour dietary recall data showed that many children from all quintile backgrounds were given some money to take to school for the purchase of foods at street vendors or tuck shops. The tuck shop purchases mainly included crisps and sugared popcorn. By influencing which types of foods are made available for purchase school tuck shops, one will be able to influence the nutrients contributed from tuck shop foods in the diets of these adolescents.

• Foods typically consumed from street vendors were “vetkoek”, “bunny chow” containing fried chips, viennas and egg or mince, and sometimes fresh whole fruits. Aside from the fruits which could be purchased from these vendors, the foods available were high energy and nutrient poor. Investigating ways of influencing the foods available for
purchase from these street vendors will help to minimise intake of empty calories among adolescents.

- On several occasions it was found that school teachers and coaches were giving nutrition advice to the adolescents, and this advice was not always sound. As key influencers during adolescence, teachers and coaches may be candidates for nutrition education programs which will help to ensure that accurate nutrition messages are communicated to adolescents.

- Poor nutrition knowledge among parents influences the dietary choices and foods made available to adolescents. By influencing parents’ understanding of nutrition, the adolescents’ exposure to different foods and behaviours may also be influenced.

I sincerely appreciate the opportunity I received with conducting this research which has given me a far more in-depth understanding of the constraints surrounding public health guidelines and recommendations.

4.5 References

Addenda

Appendix A

Ethical approval from the NWU

The North-West University Ethics Committee (NWU-EC) hereby approves your project as indicated below. This implies that the NWU-EC grants its permission that, provided the special conditions specified below are met and pending any other authorisation that may be necessary, the project may be initiated, using the ethics number below.

Project Title: The intake and quality of breakfast consumption among adolescents attending public secondary schools in the North-West Province

Project Leader: Dr C Botha

Ethics number: NWU - 003113-A1

Approval date: 2013/06/10
Expiry date: 2018/06/09

Special conditions of the approval (if any): None

General conditions:

While this ethics approval is subject to all declarations, undertakings and agreements incorporated and signed in the application form, please note the following:

- The project leader (principal investigator) must report in the prescribed format to the NWU-EC:
 - annually (or as otherwise requested) on the progress of the project;
 - without any delay in case of any adverse event (or any matter that interrupts sound ethical principles) during the course of the project.
- The approval applies strictly to the protocol as stipulated in the application form. Would any changes to the protocol be deemed necessary during the course of the project, the project leader must apply for approval of such changes at the NWU-EC. Would there be deviation from the project protocol without the necessary approval of such changes, the ethics approval is immediately and automatically forfeited.
- The date of approval indicates the first date that the project may be started. Would the project have to continue after the expiry date, a new application must be made to the NWU-EC and new approval received before on the expiry date.
- In the interest of ethical responsibility the NWU-EC retains the right to:
 - withdraw or postpone approval if:
 - any unethical principles or practices of the project are revealed or suspected;
 - it becomes apparent that any relevant information was withheld from the NWU-EC or that information has been false or misrepresented;
 - the required annual report and reporting of adverse events was not done timely and accurately;
 - new institutional rules, national legislation or international conventions deem it necessary.

The Ethics Committee would like to remain at your service as scientist and researcher, and wishes you well with your project. Please do not hesitate to contact the Ethics Committee for any further enquiries or requests for assistance.

Yours sincerely,

Prof Amanda Lourens
(Chair NWU Ethics Committee)
Appendix B

Demographic questionnaire

The intake and quality of breakfast consumption among adolescents attending public secondary schools in Potchefstroom

Dear participant,

Please note: We kindly ask that you complete this form as thoroughly as possible. You are welcome to take your time to complete the form. Your honest feedback in this questionnaire is of utmost importance. Please be assured that all details provided in this questionnaire will remain completely confidential and will not be linked to you as and individual at any stage of the research project.

Demographic Information

<table>
<thead>
<tr>
<th>Participant Number:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study year (check one):</td>
<td></td>
</tr>
<tr>
<td>□ Grade 9 □ Grade 10 □ Grade 11</td>
<td></td>
</tr>
<tr>
<td>Race (check one):</td>
<td></td>
</tr>
<tr>
<td>□ Black □ Coloured □ Indian □ White</td>
<td></td>
</tr>
<tr>
<td>□ Other, please specify __________________________</td>
<td></td>
</tr>
<tr>
<td>Where do you live?</td>
<td></td>
</tr>
<tr>
<td>□ Flat □ House</td>
<td></td>
</tr>
<tr>
<td>□ Town house □ Student house</td>
<td></td>
</tr>
<tr>
<td>□ Hostel □ Informal housing</td>
<td></td>
</tr>
<tr>
<td>□ Other, please specify __________________________</td>
<td></td>
</tr>
<tr>
<td>How many people live with you? If you are in a hostel with how many people do you share a room?</td>
<td></td>
</tr>
<tr>
<td>□ I live alone</td>
<td></td>
</tr>
<tr>
<td>□ Give number of people ________</td>
<td></td>
</tr>
</tbody>
</table>

Lifestyle information

Do you currently smoke or use tobacco?

- □ Yes
- □ No

If yes, please give more information:

a) For how long have you been smoking/using tobacco? ________________

b) How many cigarettes did you smoke per day? ________________

c) How many times a day did you use tobacco (excluding cigarettes)? ________________

Have you smoked in the past?

- □ Yes
- □ No

How long has it been since you’ve quit smoking? ________________

Do you use alcohol?

- □ Yes
- □ No
- □ Sometimes
If yes / sometimes, please give more information regarding alcohol use:
How often do you use alcohol?
☐ Daily ☐ Weekly ☐ Monthly ☐ Yearly ☐ post event/game
What do you drink?______________________________
How much do you drink at a time?__________________________

CURRENT Sports and Physical Activity Participation
Are you currently physically active/ participating in any sport? ☐ YES ☐ NO

PHYSICAL ACTIVITY QUESTIONNAIRE
Activity at work/campus
1. Does your work involve vigorous-intensity activity that causes large increases in breathing or heart rate like (carrying heavy loads, digging or construction work) for at least 10 minutes continuously?
 □ YES □ NO (if no go to Q4)
2. In a typical week on how many days do you do vigorous intensity activities as part of your work/campus?
 Number of days ___________
3. How much time do you spend doing vigorous-intensity activities at work/campus on a typical day?
 Hours: Minutes - ________________ eg. 3 hrs 20 min
4. Does your work involve moderate-intensity activity that causes small increases in breathing or heart rate such as brisk walking (or carrying light loads) for at least 10 minutes continuously?
 □ YES □ NO (if no go to Q7)
5. In a typical week, on how many days do you moderate intensity activities as part of your work?
 Number of days ___________
6. How much time do you spend doing moderate-intensity activities at work on a typical day?
 Hours: Mins - ________________ eg. 3 hrs 20 min
Travel to and from places
7. Do you walk or use a bicycle for at least 10 minutes continuously to get to and from places?
 □ YES □ NO (if no go to Q10)
8. In a typical week, on how many days do you walk or bicycle for at least 10 minutes continuously to get to and from places?
 Number of days ___________
9. How much time do you spend walking or bicycling for travel on a typical day?
 Hours:Minutes - ________________
Recreational Activities
10. Do you do any vigorous-intensity sports, fitness or recreational activities that cause large increases in breathing or heart rate like (running or football) for at least 10 minutes continuously?
 □ YES □ NO (if no go to Q13)
11. In a typical week, on how many days do you do vigorous intensity sports, fitness or recreational...
12. How much time do you spend doing vigorous-intensity sports, fitness or recreational activities on a typical day?
 Hours: Minutes - ________________ eg. 3hrs 20min

13. Do you do any moderate-intensity sports, fitness or recreational activities that causes a small increase in breathing or heart rate such as brisk walking (cycling, swimming, volleyball) for at least 10 min continuously?
 □ YES □ NO (if no go to Q16)

14. In a typical week, on how many days do you do moderate-intensity sports, fitness or recreational (leisure) activities?
 Number of days __________

15. How much time do you spend doing moderate-intensity sports, fitness or recreational (leisure) activities on a typical day?
 Hours: Minutes - ________________ eg. 3hrs 20min

Sedentary behaviour
16. How much time do you usually spend sitting or reclining on a typical day?
 Hours: Minutes - ________________ eg. 3hrs 20min

THANK YOU VERY MUCH FOR TAKING THE TIME TO FILL OUT THIS QUESTIONNAIRE
Please take a moment to fill in any questions you may have skipped.
Appendix C

Usual breakfast intake questionnaire

Breakfast intake of adolescents in Potchefstroom

Number: ________________

Please give a description of your usual Breakfast intake:

1. Porridge only with a drink (Tea, coffee, etc)
2. Porridge plus other cooked breakfast with drink
3. Packet cereals only with drink
4. Packet cereals plus other cooked breakfast with drink
5. Cooked breakfast only with drink
6. Only bread, toast, roll, crisp bread, etc., with drink
7. Only fruit with or without drink
8. NO breakfast – drink only
Appendix D

24-hour recall form

The intake and quality of breakfast consumption among adolescents attending public secondary schools in Potchefstroom

24-HOUR RECALL

Subject number: __________ Interviewer: __________

Tick what the day was yesterday:

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
</table>

Would you describe the food that you ate yesterday as typical of your habitual food intake?

Yes | 1 |
No | 2 |

I want to find out about everything you ate or drank yesterday, including water or food you pick from the vending machines. Please tell me everything you ate from the time you woke up to the time you went to sleep. I will also ask you where you ate the food and how much you ate.

<table>
<thead>
<tr>
<th>Time (approximately)</th>
<th>Place (Home, school, etc)</th>
<th>Description of food and preparation method</th>
<th>Amount</th>
<th>Amount in g (office use only)</th>
<th>Code (office use only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From waking up to going to school, or starting day’s activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During the morning at school or at home</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time (approximately)</td>
<td>Place (Home, school, etc)</td>
<td>Description of food and preparation method</td>
<td>Amount</td>
<td>Amount in g (office use only)</td>
<td>Code (office use only)</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>---</td>
<td>--------</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Middle of the day (Lunch time)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During the afternoon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At night (dinner time)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After dinner, before going to sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do you take any vitamins (tablets or syrup)? Yes 1 No 2

Give the brand name and dose of the vitamin/tonic:
Appendix E

Anthropometric measurements form

Anthropometric Measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Measurement 1</th>
<th>Measurement 2</th>
<th>Measurement 3</th>
<th>Fieldworker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triceps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-scapular</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date:
Number:

NORTH-WEST UNIVERSITY
YUNIBESITI YA BOKONE-BOPHIRIMA
NOORDWES-UNIVERSITEIT
POTCHEFSTROOM CAMPUS
Appendix F

Author guidelines for the Journal of Adolescence

GUIDE FOR AUTHORS

Introduction
The Journal is an international, broadly based, cross-disciplinary, peer-reviewed journal addressing issues of professional and academic importance to people interested in adolescent development. The Journal aims to enhance theory, research and clinical practice in adolescence through the publication of papers concerned with the nature of adolescence, interventions to promote successful functioning during adolescence, and the management and treatment of disorders occurring during adolescence. We welcome relevant contributions from all disciplinary areas.

For the purpose of the Journal, adolescence is considered to be the developmental period between childhood and the attainment of adult status within a person’s community and culture. As a practical matter, published articles typically focus on youth between the ages of 10 and 25. However, it is important to note that JoA focuses on adolescence as a developmental period, and this criterion is more important than age per se in determining whether the subject population or article is appropriate for publication.

The Journal publishes both qualitative and quantitative research. While the majority of the articles published in the Journal are reports of empirical research studies, the Journal also publishes reviews of the literature, when such reviews are strongly empirically based and provide the basis for extending knowledge in the field. Authors are encouraged to read recent issues of the Journal to get a clear understanding of style and topic range.

Types of contributions
Specific instructions for different manuscript types

Full research articles: The majority of the articles carried in the Journal are full research articles of up to 5000 words long. The word count relates to the body of the article. The abstract, references, tables, figures and appendices are not included in the count. These can report the results of research (including evaluations of interventions), or be critical reviews, meta-analyses, etc. Authors are encouraged to consult back issues of the Journal to get a sense of coverage and style, but should not necessarily feel confined by this. Articles should clearly make a new contribution to the existing literature and advance our understanding of adolescent development.

Brief reports: The Editors will consider Brief Reports of between 1000 and 1500 words (three to five typewritten pages). This format should be used for reports of findings from the early stages of a program of research, replications (and failures to replicate) previously reported findings, results of studies with sampling or methodological problems that have yielded findings of sufficient interest to warrant publication, results of well designed studies in which important theoretical propositions have not been confirmed, and creative theoretical contributions that have yet to be studied empirically. The title of the Brief Report should start with the words: "Brief Report:" A footnote should be included if a full-length report is available upon request from the author(s).

International notes: The Journal is interested in developing a new format for the very brief reporting of research replications from developing countries and places with a less well supported adolescence research field, where it may be difficult to find international publication outlets and bring the work to the attention of a wider audience. International Briefs would be published as a very brief summary in the Journal (up to 1000 words in length), with a fuller version available as on-line supplementary material (see above). They are likely to focus on local replications of well-known phenomena or findings.

BEFORE YOU BEGIN

Ethics in publishing
For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.
Conflict of interest
All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. See also http://www.elsevier.com/conflictsinterest. Further information and an example of a Conflict of Interest form can be found at: http://help.elsevier.com/app/answers/detail/a_id/286/p/7923.

Submission declaration
Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere including electronically in the same form, in English or in any other language, without the written consent of the copyright-holder.

Changes to authorship
This policy concerns the addition, deletion, or rearrangement of author names in the authorship of accepted manuscripts:
Before the accepted manuscript is published in an online issue: Requests to add or remove an author, or to rearrange the author names, must be sent to the Journal Manager from the corresponding author of the accepted manuscript and must include: (a) the reason the name should be added or removed, or the author names rearranged and (b) written confirmation (email, fax, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Requests that are not sent by the corresponding author will be forwarded by the Journal Manager to the corresponding author, who must follow the procedure as described above. Note that: (1) Journal Managers will inform the Journal Editors of any such requests and (2) publication of the accepted manuscript in an online issue is suspended until authorship has been agreed.
After the accepted manuscript is published in an online issue: Any requests to add, delete, or rearrange author names in an article published in an online issue will follow the same policies as noted above and result in a corrigendum.

Copyright
Upon acceptance of an article by the Journal, author(s) will be asked to transfer the copyright of the article to the Association for Professionals in Services for Adolescents (APSA), the owner of the Journal of Adolescence. This transfer will ensure the widest possible dissemination of information. Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission from APSA is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations. If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright holder(s) in the article.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated. Please see http://www.elsevier.com/funding.

Funding body agreements and policies
Elsevier has established agreements and developed policies to allow authors whose articles appear in journals published by Elsevier, to comply with potential manuscript archiving requirements as specified as conditions of their grant awards. To learn more about existing agreements and policies please visit http://www.elsevier.com/fundingbodies.

Open access
This journal offers authors a choice in publishing their research:

Open Access
- Articles are freely available to both subscribers and the wider public with permitted reuse
- An Open Access publication fee is payable by authors or their research funder

Subscription
• Articles are made available to subscribers as well as developing countries and patient groups through our access programs (http://www.elsevier.com/access)
• No Open Access publication fee

All articles published Open Access will be immediately and permanently free for everyone to read and download. Permitted reuse is defined by your choice of one of the following Creative Commons user licenses:

Creative Commons Attribution (CC BY): lets others distribute and copy the article, to create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), to include in a collective work (such as an anthology), to text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author’s honor or reputation.

Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA): for non-commercial purposes, lets others distribute and copy the article, to create extracts, abstracts and other revised versions, adaptations or derivative works of or from an article (such as a translation), to include in a collective work (such as an anthology), to text and data mine the article, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, do not modify the article in such a way as to damage the author’s honor or reputation, and license their new adaptations or creations under identical terms (CC BY-NC-SA).

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND): for non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

To provide Open Access, this journal has a publication fee which needs to be met by the authors or their research funders for each article published Open Access. Your publication choice will have no effect on the peer review process or acceptance of submitted articles.

The publication fee for this journal is $1800, excluding taxes. Learn more about Elsevier’s pricing policy: http://www.elsevier.com/openaccesspricing.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier’s WebShop (http://webshop.elsevier.com/languageediting/) or visit our customer support site (http://support.elsevier.com) for more information.

Submission

Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts source files to a single PDF file of the article, which is used in the peer-review process. Please note that even though manuscript source files are converted to PDF files at submission for the review process, these source files are needed for further processing after acceptance. All correspondence, including notification of the Editor’s decision and requests for revision, takes place by e-mail removing the need for a paper trail.

Submit your article

Please submit your article via http://ees.elsevier.com/yjado/

Additional information

The Journal considers full Research Articles (up to 5,000 words), Brief Reports (up to 1,500 words), and International Notes (1,000 words). All manuscripts should observe the following rules about presentation. The word count relates to the body of the article. The abstract, references, tables, figures and appendices are not included in the count.

GENERAL STYLE: The Journal follows the current American Psychological Association style guide. Papers that are not submitted in APA style are likely to be returned to authors. You are referred to their Publication Manual, Sixth Edition, copies of which may be ordered from http://www.apa.org/pubs/books/4200066.aspx, or APA order Dept, POB 2710, Hyattsville, MD 20784, USA, or APA, 3 Henrietta Street, London, WC3E 8LU, UK. There are also abbreviated guides
freely available on the web. Text should be written in English (American or British usage is accepted, but not a mixture of these). Italics are not to be used for expressions of Latin origin, for example, *in vivo*, et al., *per se*. Use decimal points (not commas); use a space for thousands (10 000 and above). If (and only if) abbreviations are essential, define those that are not standard in this field at their first occurrence in the article: in the abstract but also in the main text after it. Ensure consistency of abbreviations throughout the article.

Manuscripts must be typewritten using double spacing and wide (3 cm) margins. (Avoid dull justification, i.e., do not use a constant right-hand margin). Ensure that each new paragraph is clearly indicated. Present tables and figure legends on separate pages in separate electronic files. If possible, consult a recent issue of the Journal to become familiar with layout and conventions. Number all pages consecutively.

PREPARATION

Use of word processing software

It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

Article structure

Subdivision - unnumbered sections

Divide your article into clearly defined sections. Each subsection is given a brief heading. Each heading should appear on its own separate line. Subsections should be used as much as possible when cross-referencing text: refer to the subsection by heading as opposed to simply 'the text'.

Appendices

If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.

Essential title page information

• **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.

• **Author names and affiliations.** Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.

• **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that phone numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author.

• **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract

A concise and factual abstract is required (maximum length 150 words). The abstract should state briefly the purpose of the research, the principle results and major conclusions. An abstract is often presented separate from the article, so it must be able to stand alone. References should therefore be avoided, but if essential, they must be cited in full, without reference to the reference list.
Graphical abstract

A Graphical abstract is optional and should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership online. Authors must provide images that clearly represent the work described in the article. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: Please provide an image with a minimum of 531×1328 pixels ($h \times w$) or proportionally more. The image should be readable at a size of 5×13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. See http://www.elsevier.com/graphicalabstracts for examples. Authors can make use of Elsevier's Illustration and Enhancement service to ensure the best presentation of their images also in accordance with all technical requirements: Illustration Service.

Highlights

Highlights are a short collection of bullet points that convey the core findings of the article. Highlights are optional and should be submitted in a separate file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). See http://www.elsevier.com/highlights for examples.

Keywords

Immediately after the abstract, provide a maximum of 6 keywords, using British spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Artwork

Electronic artwork

General points:
• Make sure you use uniform lettering and sizing of your original artwork.
• Embed the used fonts if the application provides that option.
• Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Size the illustrations close to the desired dimensions of the printed version.
• Submit each illustration as a separate file.

A detailed guide on electronic artwork is available on our website:
http://www.elsevier.com/artworkinstructions

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats

If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format.

Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

EPS (or PDF): Vector drawings, embed all used fonts.
TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 300 dpi.
TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:
Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
Supply files that are too low in resolution;
Submit graphics that are disproportionately large for the content.

Color artwork
Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color on the Web (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or on the Web only. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions.
Please note: Because of technical complications which can arise by converting color figures to 'gray scale' (for the printed version should you not opt for color in print) please submit in addition usable black and white versions of all the color illustrations.

Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Number tables consecutively in accordance with their appearance in the text. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

Reference management software
This journal has standard templates available in key reference management packages EndNote (http://www.endnote.com/support/enstyles.asp) and Reference Manager (http://refman.com/support/rstyles.asp). Using plug-ins to wordprocessing packages, authors only need to select the appropriate journal template when preparing their article and the list of references and citations to these will be formatted according to the journal style which is described below.

Reference style
List: references should be arranged first alphabetically and then further sorted chronologically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters ‘a’, ‘b’, ‘c’, etc., placed after the year of publication.
Examples:
Reference to a journal publication:

Reference to a book:

Reference to a chapter in an edited book:

Video data
Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file’s content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 50 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at http://www.elsevier.com/audioslides. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

AudioSlides
The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available at http://www.elsevier.com/audioslides. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Supplementary data
Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. In order to ensure that your submitted material is directly usable, please provide the data in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions.

Submission checklist
The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item.

Ensure that the following items are present:
One author has been designated as the corresponding author with contact details:
- E-mail address
- Full postal address
- Phone numbers
All necessary files have been uploaded, and contain:
- Keywords
- All figure captions
- All tables (including title, description, footnotes)
Further considerations:
- Manuscript has been 'spell-checked' and 'grammar-checked'
- References are in the correct format for this journal
- All references mentioned in the Reference list are cited in the text, and vice versa
AFTER ACCEPTANCE

Use of the Digital Object Identifier

The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly ‘Articles in press’ because they have not yet received their full bibliographic information. Example of a correctly given DOI (in URL format; here an article in the journal Physics Letters B):

http://dx.doi.org/10.1016/j.physletb.2010.09.059

When you use a DOI to create links to documents on the web, the DOIs are guaranteed never to change.

Online proof correction

Corresponding authors will receive an e-mail with a link to our ProofCentral system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.

If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.

We will do everything possible to get your article published quickly and accurately - please upload all of your corrections within 48 hours. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility. Note that Elsevier may proceed with the publication of your article if no response is received.

Offprints

The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail (the PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use). For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier's WebShop (http://webshop.elsevier.com/myarticleservices/offprints). Authors requiring printed copies of multiple articles may use Elsevier WebShop's 'Create Your Own Book' service to collate multiple articles within a single cover (http://webshop.elsevier.com/myarticleservices/offprints/myarticleesservices/booklets).

AUTHOR INQUIRIES

For inquiries relating to the submission of articles (including electronic submission) please visit this journal's homepage. For detailed instructions on the preparation of electronic artwork, please visit http://www.elsevier.com/authorinstructions. Contact details for questions arising after acceptance of an article, especially those relating to proofs, will be provided by the publisher. You can track accepted articles at http://www.elsevier.com/trackarticle. You can also check our Author FAQs at http://www.elsevier.com/authorFAQ and/or contact Customer Support via http://support.elsevier.com.