Mine energy budget forecasting: The value of statistical models in predicting consumption profiles for management systems

J Greyling
12874469

Mini-dissertation submitted in partial fulfilment of the requirements for the degree Magister in Business Administration at the Potchefstroom Campus of the North-West University

Supervisor: Prof CJ Botha

May 2014
Abstract

The mining industry in South Africa has long been a crucial contributor to the Gross Domestic Product (GDP) starting in the 18th century. In 2010, the direct contribution towards the GDP from the mining industry was 10% and 19.8% indirect. During the last decade global financial uncertainty resulted in commodity prices hitting record numbers when Gold soared to a high at $1900/ounce in September 2011, and thereafter the dismal decline to a low of $1200/ounce in July 2013. Executives in these markets have reacted strongly to reduce operational costs and focussing on better production efficiencies. One such a cost for mining within South Africa is the Operational Expenditure (OPEX) associated with electrical energy that has steadily grown on the back of higher than inflation rate escalations. Companies from the Energy Intensive User Group (EIUG) witnessed energy unit prices (c/kWh) and their percentage of OPEX grow to 20% from 7% in 2008. The requirement therefore is for more accurate energy budget forecasting models to predict what energy unit price escalations (c/kWh) occur along with the required units (kWh) at mines or new projects and their impact on OPEX.

Research on statistical models for energy forecasting within the mining industry indicated that the historical low unit price and its notable insignificant impact on OPEX never required accurate forecasting to be done and thus a lack of available information occurred. AngloGold Ashanti (AGA) however approached Deloittes in 2011 to conclude a study for such a statistical model to forecast energy loads on one of its operations. The model selected for the project was the Monte Carlo analysis and the rationale made sense as research indicated that it had common uses in energy forecasting at process utility level within other industries. For the purpose of evaluation a second regression model was selected as it is well-known within the statistical fraternity and should be able to provide high level comparison to the Monte Carlo model. Finally these were compared to an internal model used within AGA.

Investigations into the variables that influence the energy requirement of a typical deep level mine indicated that via a process of statistical elimination tonnes broken and year are the best variables applicable in a mine energy model for conventional mining methods. Mines plan on a tonnage profile over the Life of Mine (LOM) so the variables were known for the given evaluation and were therefore used in both the Monte Carlo Analysis that worked on tonnes and Regression Analysis that worked on years. The models were executed to 2040 and then compared to the mine energy departments’ model in future evaluations along with current actuals as measured on a monthly basis. The best comparison against current
actuals came from the mine energy departments’ model with the lowest error percentage at 6% with the Regression model at 11% and the Monte Carlo at 20% for the past 21 months. This, when calculated along with the unit price path studies from the EIUG for different unit cost scenarios gave the Net Present Value (NPV) reduction that each model has due to energy. A financial analysis with the Capital Asset Pricing Model (CAPM) and the Security Market Line (SML) indicated that the required rate of return that investors of AGA shares have is 11.92%. Using this value the NPV analysis showed that the mine energy model has the best or lowest NPV impact and that the regression model was totally out of line with expectations.

Investors that provide funding for large capital projects require a higher return as the associated risk with their money increases. The models discussed in this research all work on an extrapolation principle and if investors are satisfied with 6% error for the historical 2 years and not to mention the outlook deviations, then there is significance and a contribution from the work done. This statement is made as no clear evidence of any similar or applicable statistical model could be found in research that pertains to deep level mining.

Mining has been taking place since the 18th century, shallow ore resources are depleted and most mining companies would therefore look towards deeper deposits. The research indicates that to some extent there exist the opportunity and some rationale in predicting energy requirements for deep level mining applications. Especially when considering the legislative and operational cost implications for the mining houses within the South African economy and with the requirements from government to ensure sustainable work and job creation from industry in alignment with the National Growth Path (NGP). For this, these models should provide an energy outlook guideline but not exact values, and must be considered along with the impact on financial figures.

List of Key Terms

Energy Modelling

Energy Price Path

Monte Carlo Analysis

Regression Analysis

Mine Energy Model
Table of Content

Abstract ... i
Key Terms ... ii
Table of Content ... iii
List of Figures ... vi
List of Tables ... viii
List of Abbreviations .. ix

1 CHAPTER 1 (INTRODUCTION) ... 1
 1.1 Background ... 1
 1.1.1 A brief history of the mining sector in South Africa .. 1
 1.1.2 Current situation and policy constraint on energy ... 3
 1.1.3 What message does it send to markets ... 5
 1.2 Problem Statement .. 5
 1.3 Research Objectives .. 6
 1.3.1 Primary Objectives ... 6
 1.3.2 Secondary Objectives .. 6
 1.4 Research Methodology ... 6
 1.4.1 Literature study and theoretical review ... 6
 1.4.2 Empirical research ... 7
 1.5 Scope of the study .. 7
 1.6 Limitations of the study ... 7
 1.7 Layout of the study .. 7

2 CHAPTER 2 (LITERATURE STUDY) .. 8
 2.1. South African Energy Policy environment ... 8
 2.1.1 National Growth Path (NGP) and its dependency on mining 8
 2.1.2 Energy Price Path and IRP energy model .. 9
 2.1.3 Other industry constraints on operational costs in mining 11
 2.1.4 Carbon Tax .. 12
 2.1.5 National Energy Efficiency Strategy (NEES) ... 14
 2.1.6 National Energy Efficiency Action plan (NEEAP) 17
2.1.7. Funding .. 18
 2.1.7.1. Eskom and Integrated Demand Management (IDM) 19
 2.1.7.2. Clean Development Mechanism (CDM) .. 19
2.2. Energy forecasting and Modelling ... 20
 2.2.1. Background .. 20
 2.2.2. Regression Model ... 24
 2.2.3. Monte Carlo Analysis ... 26
 2.2.4. Future Predictions ... 27
2.3. Mine Energy Forecasting ... 28
 2.3.1. Background .. 28
 2.3.2. South African Cost Studies (Mining and Industry) 28
 2.3.3. Current Cost Models .. 29
 2.3.3.1. Price Path Considerations ... 30
 2.3.3.2. Top Down Approach ... 30
 2.3.3.3. IRP 2010 Price Path and EIUG modelling .. 31
 2.3.3.4. Bottom Up Approach ... 32
 2.3.3.5. Megaflex Price Path .. 34
 2.3.3.6. Megaflex Variable and Energy Price Paths ... 35
 2.3.3.7. Summary of Price Path Studies ... 36
2.4. Deloittes Energy Model Study .. 38
 2.4.1. Overview ... 38
 2.4.2. Background .. 39
 2.4.3. Base Load Analysis ... 41
 2.4.4. Variable Load Analysis .. 42

3 CHAPTER 3 (EMPIRICAL RESEARCH) .. 43
3.1 Empirical Research ... 43
 3.1.1. Determination of Variables for a Mine Energy Model 44
 3.1.2. Input Variable Analysis ... 46
 3.1.3. Base and Variable Load Calculations ... 49
 3.1.4. Tonnage Forecast and the Regression Year Prediction 52
 3.1.5. Regression Forecast of Anticipated Energy Load from Years 53
 3.1.6. Comparison of the Regression Prediction vs Monte Carlo Analysis 54
 3.1.7. Impact on OPEX and Free Cash Flow – An Overview of AGA Financials 58
 3.1.8. Current Value of AGA and Security Market Line (SML) 60
3.1.9. Energy Price Predictions

3.1.10. Chapter 3 Summary

4 CHAPTER 4 (PROPOSED ENERGY MODEL AND CONCLUSION).........................66
4.1 Mine Energy Model Analysis..66
4.1.1. Input Variable for the Mine Energy Model...67
4.1.2. Mine Energy Model, Merger of Monte Carlo and Regression Analysis........70
4.1.3. NPV Impact..74
4.2. Conclusion..75
4.3. Requirements for Future Work...78
4.4. Limitations of the Study..78
4.5. Future Studies from work...79

REFERENCES...80

APPENDIX A (MINE ENERGY DATA)...88

APPENDIX B (VARIABLE ANALYSIS)...95

APPENDIX C (REGRESSION FORECAST – MINE UTILITY PROCESSES).........116

APPENDIX D (ABBREVIATED FINANCIALS)..125

APPENDIX E (LANGUAGE EDITING)...131
List of Figures

Figure 1.1: Mining Contribution towards GDP in 2010…………………………………………………2
Figure 1.2: Cross functional roadmap and policy delivery from Government……………………….4
Figure 2.1: Energy cost outlook for South Africa…………………………………………………………10
Figure 2.2: Annual Solar Radiation for South Africa……………………………………………………16
Figure 2.3: Energy modelling as suggested in the NEEAP………………………………………………18
Figure 2.4: Population growth rate versus annual energy per capita………………………………..21
Figure 2.5: South African energy forecast according to Inglesi and Surtees…………………………22
Figure 2.6: Regression model of a response variable Y and its input variable X………………………23
Figure 2.7: IRP2010 energy price path versus EIUG top down study……………………………….31
Figure 2.8: Bottom up approach price path………………………………………………………………33
Figure 2.9: Megaflex price path……………………………………………………………………………34
Figure 2.10: Megaflex variable and energy price path……………………………………………………35
Figure 2.11: LOM profile as calculated from a Monte Carlo Analysis of available data……………37
Figure 2.12: LOM tonnage profile based on available BME data……………………………………..39
Figure 2.13: Base Load Analysis Results…………………………………………………………………41
Figure 2.14: Variable Load Analysis Results………………………………………………………………41
Figure 2.15: Increased Variable Load Result………………………………………………………………42
Figure 3.1: Total mine energy and utility processes that contribute towards it………………….43
Figure 3.2: Total mine energy and utility processes that contribute towards it (Pie)………………45
Figure 3.3: Variable Analysis (VRT vs. Depth)……………………………………………………………48
Figure 3.4: Variable Analysis (Tonnes Hoisted vs Year)………………………………………………48
Figure 3.5: Utility Processes Base Load……………………………………………………………………49
Figure 3.6: Scatter Plot of Total kWh vs Tonnes Hoisted………………………………………………51
Figure 3.7: Residuals vs Tonnes Hoisted……………………………………………………………………51
Figure 3.8: Normal Probability Plot…………………………………………………………………………51
Figure 3.9: LOM tonnage profile based on available BME data……………………………………….53
Figure 3.10: Regression prediction for total energy per year in February…………………………54
Figure 3.11: Regression prediction for total energy per year in August…………………….54
Figure 3.12: Comparison of the LOM energy profile based on the Monte Carlo and Regression model……………………………………………………………………………………………………55
Figure 3.13: Model comparison to actual kWh along with percentage error to actual…………57
Figure 3.14: AGA returns performance relative to the market……………………………………59
Figure 3.15: Security Market Line with AGA performance indicators…………………………61
Figure 3.16: High, average and low price unit price path selection……………………………62
Figure 3.17: NPV calculations of the energy models………………………………………………63
Figure 3.17: NPV calculations of the energy models with OPEX………………………………64
Figure 4.1: Base load analysis results……………………………………………………………………67
Figure 4.2: Deteriorating efficiency profile………………………………………………………………69
Figure 4.3: Iteration process within the Monte Carlo Analysis……………………………………70
Figure 4.4: Monte Carlo equations for each utility process and its sub components………71
Figure 4.5: Model comparison to actual kWh along with percentage error to actual………..73
Figure 4.6: NPV calculations of the energy models…………………………………………………74
List of Tables

Table 3.1: Variable Analysis Summary...47
Table 3.2: Variable Analysis Summary with Tonnes...50
Table 3.3: Variable Analysis Summary with Depth and Ambient Temp.................52
Table 3.4: Comparison of Monte Carlo and Regression model vs Base Model.........56
Table 3.5: Statistical Analysis on AGA and Market returns...............................59
Table 3.6: Selected outlook on unit cost and associated annual increases.............61
Table 3.7: NPV calculations of the energy models...63
List of Abbreviations

AGA: AngloGold Ashanti
AGM: Annual General Meeting
AMCU: Association of Metal and Construction Union
B&TD: Business and Technical Development
BME: Basic Mining Equation
Bn: Billion
c/kWh: cents per Kilowatt Hour
CAPM: Capital Asset Price Model
CDM: Clean Development Mechanism
CDP: Carbon Disclosure Project
CER: Certified Emission Reduction
CPI: Consumer Price Index
DEA: Department of Environmental Affairs
DoE: Department of Energy
DPE: Department of Public Enterprises
EIUG: Energy Intensive User Group
ESCO’s: Energy Saving Companies
FCF: Free Cash Flow
GDP: Gross Domestic Product
IDM: Integrated Demand Management
IPAP: Integrated Policy Action Plan
IPCC: Intergovernmental Panel on Climate Change
IPP: Independent Power Producers
IRP: Integrated Resource Plan
ITTCC: Industry Task Team for Climate Change
JSE: Johannesburg Stock Exchange
kWh: Kilowatt Hour
kWh/t: Kilowatt Hour per tonne
LPG: Liquids, Petroleum and Gas
LOM: Life of Mine
m: millions
MIT: Massachusetts Institute of Technology
MTRMP: Medium Term Risk Mitigation Plan
MYPD: Multi Year Price Determination
Mtoe/a: Million tonnes of energy per annum
NEEAP: National Energy Efficiency Action Plan
NEES: National Energy Efficiency Strategy
NERSA: National Energy Regulator of South Africa
NGP: National Growth Path also known as the NDP: National Development Plan
NOPAT: Net Operating Profit After Tax
NUM: National Union of Mine Workers
NWU: North West University
OCF: Operating Cash Flow
OPEX: Operational Expenditure
P2V: Pathway to Value
R: Rands
ROE: Return on Equity
ROIC: Return on Invested Capital
RPP: Revenue Price Path
SA: South Africa
SAR: South African Region
SML: Security Market Line
SPP: Strategic Project Planning
tCo2-e: tonnes of CO2 gas emitted
TWh: Terawatt Hour
UN: United Nations
USA: United States of America
VRT: Virgin Rock Temperature
YTD: Year to Date