CHAPTER 3

This chapter consists of a full length text article that has been submitted to *Expert Opinion on Drug Metabolism and Toxicology*. In this chapter the author guidelines are given, followed by the article prepared according these guidelines. The aims discussed in this chapter were:

1) to investigate the bioavailability of artemisone entrapped in Pheroid® (Pheroid® test formulation) and artemisone only (reference formulation) in a non-human primate model.

2) to determine the *in vitro* metabolism of artemisone (reference and Pheroid® test formulations) by measuring the hepatic and intestinal metabolism of artemisone by using human and monkey liver and intestinal microsomes, as well as recombinant CYP3A4 enzymes. Results of this study were also presented at 3 conferences and are added as annexure A-C
1. Overview

Expert Opinion on Drug Metabolism and Toxicology (EOMT) is a MEDLINE-indexed, peer-reviewed, international journal, publishing articles on all aspects of ADME-Tox, as well as metabolic, pharmacokinetic and toxicological issues relating to specific drugs, drug−drug interactions and drug classes.

The following document details the requirements for ‘Original Research’ submissions.

1.1 Audience

The journal audience consists of scientists and managers in the pharmaceutical industry, pharmacologists, clinical toxicologists and related professionals.

1.2 Scope

In addition to review papers, drug evaluations and editorials, EOMT is also a medium for the publication of original research on all aspects of ADME-tox.

Contributions are welcomed in the form of:

- Metabolic, pharmacokinetic and toxicological issues relating to specific drugs, drug−drug interactions, drug classes or their use in specific populations;
- Issues relating to enzymes involved in the metabolism, disposition and excretion of drugs;
- Techniques involved in the study of drug metabolism and toxicology;
- Novel technologies for obtaining ADME-Tox data

Supplements are published and actively encouraged. These include both traditional free-standing and in-journal supplements based on symposia proceedings (or sponsored workshops and meetings), and specific areas. Enquiries from potential guest editors, meetings organizers and sponsors are welcomed.

In addition, EOMT has a Correspondence section. We welcome the submission of any correspondence piece or letters regarding any article published in the journal since its launch. The Correspondence section of the journal presents an open arena for objective commentary, debate and lively discussion.

For more information regarding a Supplement or for the submission of a Correspondence piece, please send an email to David.Grech@Informa.com

1.3 Publication process

We have the following service-options for you to choose from, with regards to the publication timeline:

FastTrack:
- Overall submission to online publication in 5 - 7 weeks;
- Peer review comments within 2 - 3.5 weeks;
- Publication support charges £850/E625/€950 per published page;
- 15 downloads of the article via access-tokens.

RapidTrack:
- Overall submission to online publication in 10 - 12 weeks;
- Peer review comments in 3 - 4 weeks;
- Publication support charges £500/E300/€250 per published page;
- 15 downloads of the article via access-tokens.

StandardTrack:
- Still a responsive and competitively rapid service;
- Overall submission to online publication within 20 weeks;
- Peer review comments in 9 - 10 weeks;
Please note that all manuscripts (irrespective of the service chosen) are subject to strict and rigorous peer review. Acceptance for publication is solely dependent on the peer-review outcome.

2. Submitting a manuscript

All material should be prepared as detailed below. Please refer to the Submission Checklist at the end of this document and ensure that all criteria are met before submission. This will ensure timely publication of your article.

Submissions should conform to the latest version of the Uniform Requirements for Manuscripts Submitted to Biomedical Journals, prepared by the International Committee of Medical Journal Editors (ICMJE: http://www.icmje.org/). Although it is recommended that authors read the entire Uniform Requirements document, in particular, authors and contributors are referred to the following sections/paragraphs of this document:

II A.1 and II A.2 – Notes defining and distinguishing authorship and contributorship.
II D.1 – Peer review
II E.1 – Patients and study participants
II F – Protection of human subjects in research
IV A.1 – Conflict of interest notification

Please submit manuscripts in Microsoft Word (double spaced, Times New Roman, 12 pt) using the Manuscript Central online submission system (http://mc.manuscriptcentral.com/eomt). As the peer reviewers will be blinded to the identity of the authors, contributors MUST provide a copy of the manuscript containing no author names or affiliations. These details should be provided on a separate cover sheet. Pages must be numbered.

Prior publication: EOMT will only consider work that has not been previously published in full. Abstract, poster or oral presentations do not constitute prior publication, but should be mentioned in the covering letter and details included as a footnote on the manuscript title page.

Trial registration: EOMT does not require trial registration as a condition for publication. However, as per the ICMJE requirements, if a study that is the subject of the manuscript has been registered, this should be mentioned in the covering letter and trial registration information included at the end of the Abstract; publication of a trial registry summary should also be mentioned on the manuscript title page and the details provided as a reference citation.

3. Correspondence relating to the submission of papers

All manuscripts must be accompanied by a covering letter and an electronic version of the Disclosure Form signed by the principal author(s). The covering letter should include all of the following information:

- The name and contact details (telephone, fax, postal and email addresses) of the corresponding author who will deal with the comments from reviewers and approve final proofs.
- A statement that the contribution represents original work that has not been previously published or simultaneously submitted for publication elsewhere.
- A statement that the manuscript has been read and approved by all the authors, and that all the conditions as previously stated by the ICMJE have been met.
- The body providing explicit ethical approval of the work reported should also be stated.
- A statement of financial or other relationships of a declarable nature (i.e., commercial associations that might lead to a conflict of interest), including disclosure of sources of support in the form of sponsorship, grants, materials (drugs) or equipment, and editorial or manuscript support (see also Acknowledgements under Section 4.2). In case there are no disclosures of a declarable nature, or acknowledgements for financial or editorial support, this should be clearly stated.
- The authors’ preference for publication with either English (UK) or US spellings.

Please note that manuscripts without a covering letter or a Disclosure Form will not be considered to be ‘complete’ submissions. All complete submissions will be acknowledged by the Editorial Office upon receipt.

4. Manuscript content

4.1 General

Manuscripts submitted should be in English and written for an international, general medicine readership. Where national or regional issues are discussed, the international context should also be considered. When a licensed drug or device is being discussed outside its licensed indication, this must be made clear to the reader.
Manuscripts should be double-spaced with numbered pages. Keep the layout as simple as possible – it will be set to house style during the production process.

4.2 Every article must contain:

- **Title page:** All articles should have a concise, informative title that contains no brand names. In addition to the title itself, the title page should also have the name(s) and initials of all the authors and their institutional affiliation(s). The name of the corresponding author and their mailing address should be given in full, including email, telephone and fax numbers. Should any of the material contained in the paper have been previously presented at a meeting, the full name, location and inclusive dates of the meeting should also appear on the title page. Authors are to avoid using Trade names in their titles, and are encouraged to have non-promotional titles for their articles.

- **Abstract:** The second page should contain a brief, structured abstract of the paper (no more than 350 words) summarizing the main facts, findings and principal conclusions. Suggested headings: Objective (including the reason for the study); Research design and methods (including study population and setting, study blinders, comparators, dosage, treatment regimens and durations, efficacy and safety issues). Main outcomes measures; Results (both efficacy results and adverse events should be given). Conclusions (qualified by any key limitations). No references are to be cited in the Abstract. Please bear in mind that the Abstract needs to accurately reflect the content of the article and that the aim of the Abstract is to draw in the interested reader.

- **Keywords:** 4-6 keywords, listed in alphabetical order, are required to assist indexes cross-referencing. The keywords will encompass the therapeutic area, mechanism(s) of action, key compounds and so on.

- **Body of the article:** This should include the following sections: introduction; patients and methods; results; discussion; conclusions (see section 5 for organization of content).

- **Acknowledgements:** This must include any declaration of interest by the authors (see also Section 3: Correspondence), including grants, fellowships or any commercial assistance or financial sponsorship received. It should also list any affiliation(s), organization(s) or entity(ies) that are relevant to the work reported. Some or all of this information may be published at the discretion of the Editor. Any contributions to the research, data analysis or assistance in manuscript preparation must also be acknowledged in this section. Finally, if any trial registration information and/or a trial registration number are available for the study, this should also be mentioned in the acknowledgements section.

- **References:** Full references to relevant material cited in the text should be provided (see Reference style in Section 9 below). References should be comprehensive, accurate and up-to-date: wherever possible, please use primary references, and as far as possible, avoid the use of unpublished references (such as 'Data on file' or 'Poster').

5. Organization of content

5.1 General

Keep all formatting to a minimum and avoid assigning ‘styles’ to headings, extracts or paragraphs. Make sure that the ‘normal’ style is used throughout the text. Turn off the automatic hyphenation feature. Please use double line spacing throughout the manuscript. Headings and sub-headings should be used to provide structure to the text with numbers (Arabic numerals) to indicate a hierarchy of the headings/sub-headings (i.e., 1.0, 1.1, 2.0, 2.1, 2.1.1, 2.1.2 and so on).

5.2 Units and symbols

Use SI units where possible. Non-SI units should be accompanied by SI equivalents, for example, LDL-C < 70 mg/dl (1.8 mmol/l). To indicate atom positions in a molecule, use the convention C-1, C-2 and so on.

5.3 Spelling

EOMT will ensure that consistent British (The Concise Oxford Dictionary) or American (Webster’s Dictionary) spellings are used. If you have a preference for one or other spelling, please clearly state this in your covering letter.

5.4 Abbreviations

Abbreviations should be defined on their first appearance both in the Abstract and in the text; commonly used abbreviations need not be defined. Authors are encouraged to submit a list of abbreviations used to the Editorial Office alongside the manuscript. Only define or italicize words and letters that are required to appear in italics.
5.5 Introduction
This should state the clinical relevance and background to the study, its rationale and purpose.

5.6 Patients (where appropriate) and experimental methods
Authors should see as concise as possible about the experimental methods used. Should this concern human studies, this should contain details of the study population and setting, subject selection (inclusion/exclusion criteria), methods of randomization and blinding, and efficacy and safety measures. The study design and statistical methodology should be described, with justification for the choice of analysis and sample size given. CONSORT guidelines [www.consort-statement.org] should be considered wherever appropriate. All materials should be identified precisely, with drugs referred to by their generic names (proprietary names, if required, should be given in parentheses along with the company name and country of the manufacturer), and with dose and routes of administration. The ethical approval procedure followed and the name of the ethics committee should be stated. Indicate how adverse events were determined (and by whom) and indicate if/how compliance was measured. (Authors are reminded to ensure that they follow the ICMJE requirements when dealing with privacy and informed consent from patients – see Section 8.E.1 of the ICMJE requirements document http://www.icmje.org/ethics.html)

5.7 Results
Use should be made of tables and figures to help with the clear presentation of results data. The sample size of each data point should be shown, with p-values and confidence intervals quoted for significant findings. Any data not included in the analysis (including patients withdrawn from the study) should be detailed. Details of data on efficacy and adverse events should be provided in a balanced fashion.

5.8 Discussion
This will essentially be a discussion of the results and experimental data collected. The section should include implications of the findings and their limitations, with reference to all other relevant studies and the possibilities these suggest for future research. In addition, the discussion affords authors the opportunity to discuss the developments that are likely to be important in the future and the avenues of research likely to become exciting as further studies yield more detailed results.

5.9 Conclusions
This section must summarise the paper, with a concise statement of the clinical implications of the study results. Ensure that extrapolations are reasonable and that conclusions are justified by the data presented. Indicate if the study design can be generalised to a broader patient population.

6. Tables
Each table (with a brief, comprehensive title/heading) should be presented in tabular form (rather than a simple tabulated form) on a separate page, at the end of the text. Tables should be numbered with Arabic numerals (Table 1, Table 2,...) and each table should be followed by a footnote where necessary. Define in the footnotes all abbreviations that are used in the table. Be sure that each table is cited in the text (but not within any section headings) and number tables consecutively in the order of their first citation in the text. In case data from another published or unpublished source is being used, please obtain permission and acknowledge the source(s).

7. Figures & Structures
Do include illustrations (figures/diagrams/structures) as appropriate. Please ensure that the following recommendations are adhered to as closely as possible:
- Provide an editable, electronic copy of all figures. Figures should be submitted in PowerPoint or Word as a last resort.
- Figures should employ CMYK rather than RGB color scheme.
- Small figures should be 300 dpi and large figures should be 72 dpi.
- Please note that we cannot improve resolution beyond that of the file submitted.
- Figures and structures should be in separate files to the text. It is unnecessary to incorporate the figures into the body of the manuscript. If there are several figures, please submit these individually, rather than as one file (preferably the original source files).
- Ensure that titles and figure legends/captions are included on a fresh page at the end of the manuscript. Legends (and labels) should be based on the ‘stand-alone concept’, so that looking at the tables and figures conveys an immediate, clear message without needing to refer to the text. Define in the legend(s) all abbreviations that are used in the figure(s).
- Figures should be numbered consecutively according to the order in which they have been first cited in the text.
- If a figure has been previously published, acknowledge the original source and please submit written permission from the copyright holder to reproduce the material.
8. Companies and drug proprietary names

- Companies are treated as single entities requiring a verb in the third person singular (e.g., GSK is developing an All agonist).
- All medical substances should be referred to by their Recommended International Non-Proprietary Name (RINN). Proprietary or individual company trade names should only be mentioned where absolutely essential, for clarity, as in the case of combination products, or to avoid confusion, for example, between different formulations.
- Drug brand names should not appear in paper titles.
- In the body of an article, if it is necessary to use a brand name, when referring to a lead compound (or compounds claimed in patents) for the first time, please ensure that the * or TM symbols are used as required, and that the name of the relevant company is also stated.

9. References

Please ensure that all key work relevant to the topic under discussion is cited in the text and listed in the bibliography. Where relevant, include references to patents and websites as well. Reference to unpublished data should be kept to a minimum and authors must obtain a signed letter of permission from cited persons to use unpublished results or personal communications in the manuscript.

9.1 Numbering

References MUST be numbered consecutively, in the order in which they are first mentioned in the text. The reference list should appear in the same sequence as the numbers in the text.

9.2 Annotations

Papers or patents of particular interest should be identified using one or two asterisk symbols (* = of interest, ** = of considerable interest), and annotated with a brief sentence explaining why the reference is considered to be of interest.

9.3 Bibliography

References can be formatted using EndNote or Reference Manager according to the style of Current Medical Research and Opinion.

References use plain, unformatted text, as in the following examples:

Journals:

Books:

Working party reports and similar:

Pre-publication articles assigned DCO numbers:

Internet articles and website information:

Patents:
Use the following formats for patent numbers issued by the World, US and European patent offices, respectively: WO01/13324; US6803389; EP1549318

Note, for citations with four or fewer authors/assignees, cite all names; for citations with more than four authors, cite three author names plus et al.

Full reference details must be provided in the bibliography (for example, for journal citations, author surnames and initials, article title, journal name, year, volume, page range). Failure to do so may lead to a delay in publication or a return of the paper by the Editor to the author.

10. Copyright assignment and disclosure

Papers are published on the understanding that their copyright is assigned to the Publisher (Informa UK Ltd) once they are accepted for publication. If any material used is subject to third party copyright, copyright clearance is the sole responsibility of the authors and must be supplied in writing to the Publisher.

It is the responsibility of authors to disclose any affiliation with any organisation with a financial interest, direct or indirect, in the subject matter or materials discussed in the manuscript (such as consultancies, employment, expert testimony, honoraria, speakers bureaus, retained, stock options or ownership) that may affect the conduct or reporting of the work submitted. If uncertain as to what might be considered a potential conflict of interest, authors should err on the side of full disclosure. Information about potential conflict of interest may be made available to reviewers and may be published with the manuscript at the discretion of the Editor.

Corresponding authors will be sent a Copyright Form (and a Disclosure Form, if this has not already been received) to sign on acceptance of their paper. The Disclosure Form (see end of this document) would serve as a signed guarantee that:
1. The manuscript submitted represents original work and has not been previously published or simultaneously submitted elsewhere for publication.
2. Conditions as previously stated by the ICME: http://www.icme.je have been met, and the body providing explicit ethical approval of the work reported has been stated in the manuscript.
3. Trial registration information and a trial registration number (if available) for the study is mentioned in the Acknowledgements section.
4. The manuscript has been read and approved by all authors.
5. Any potential conflicts of interest and sources of funding are disclosed, ethical approval for the study has been obtained and that any sources of contributory support (bio statisticians, medical writers and so on) in the preparation of the manuscript are acknowledged.

Please note that on acceptance of a manuscript, authors are required to send a hard copy of their article to Expert Opinion on Drug Metabolism and Toxicology, Expert Opinion Series, Informa Healthcare, 119 Farringdon Road, London, EC1R 3DA, UK.

11. Proofs and publication

Proofs in the form of Adobe Acrobat PDF files will be sent to the corresponding author via email for checking. If, because of delays, time is limited, the Publisher reserves the right to have proofs checked against original manuscripts by editorial staff or medical advisors. No major alterations to text will be accepted at proof stage. Electronic publication online will constitute formal publication of the article, with all subsequent critical changes or error correction being dealt with via publication of a formal Erratum or Corrigendum. A copy of the print issue in which the article appears, along with 10 free offprints of the article, will be sent to the corresponding author.
The effect of the Pheroid delivery system on the in vitro metabolism and in vivo pharmacokinetics of artemisone

Lizette Groblera, Richard K. Haynesb, Collen Masimirembwac, Roslyn Thelingwanic, Hendrik S. Steynd, Paul Steenkampe,f and Anne F. Groblera

Authors Affiliations

a) DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; b) Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa 2531; c) African Institute of Biomedical Science and Technology, Harare, Zimbabwe; d) Statistical Consultation Service, North-West University, Potchefstroom, South Africa; e) Council for Scientific and Industrial Research, Pretoria, South Africa; f) Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.

Corresponding Authors:

Lizette Grobler, DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa Email: 13065513@nwu.ac.za, Tel: +27 18 299 2281, Fax: +27 18 285 2233; Prof. Anne Grobler, DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa Email: Anne.Grobler@nwu.ac.za, Tel: +27 18 299 4467, Fax: +27 18 285 2233.1

1 Details concerning poster presentations of this work:

2. Grobler, L., Grobler, A., Haynes, R. & Steyn, F. The effect of Pheroid® technology on the bioavailability of artemisone in primates. 33rd Annual Conference of the Academy of Pharmaceutical Sciences of South Africa, Rhodes University, Grahamstown, 2012. (Poster);

Abstract

The pharmacokinetics (PK) of artemisone and artemisone entrapped in the Pheroid drug delivery system were determined in healthy primates. The in vitro metabolism of the formulations was determined in human and monkey liver and intestinal microsomes. For the PK study, a single oral dose of 60 mg/kg artemisone was administered to Vervet monkeys using a crossover design. Plasma samples were analysed for artemisone and the principal metabolite M1 by means of LC-MS/MS. For the in vitro metabolism study, clearance was determined using microsomes and recombinant CYP3A4 enzymes and samples were analysed by means of UPLC-QTOF-MS.

Artemisone demonstrated rapid absorption with T_{max} of 5.11 and 3.44 hours for the reference and test formulations respectively. The metabolite, M1, appeared in the plasma after 30 minutes and had a T_{max} similar to the parent compound. Since artemisone and M1 plasma levels were unexpectedly low in view of that described for man and rodent, first-pass metabolism was evaluated. The in vitro intrinsic clearance (CL$_{\text{int}}$) of the reference formulation with monkey liver microsomes (MLM) is much higher (1359.33 ± 103.24 vs. 178.86 ± 23.42) than that of human liver microsomes (HLM). The in vitro results also suggest that microsomal metabolism of artemisone is inhibited by the Pheroid delivery system.

Keywords: artemisone, clearance, microsomes, monkey, pharmacokinetics, Pheroid
1. Introduction

A major limitation of the artemisinins is their low aqueous solubility that causes poor and inconsistent absorption upon oral administration, resulting in low bioavailability\(^1\). Another limitation is their short half-life, which requires frequent administration, leading to non-compliance, recrudescence, and possibly the development of resistance\(^2,3\). As a result, the World Health Organisation (WHO) recommends artemisinin-based combination (ACT) treatments as first line treatment of uncomplicated malaria\(^4\). Combinations are effective because the artemisinin component eradicates the majority of parasites at the start of the treatment, while the long half-life partner drug eliminates the remaining parasites\(^5\).

Artemisinins have a peroxide bridge incorporated within the trioxane unit, which is crucial for their antimalarial activity\(^6\). The new artemisinin derivative artemisone shows enhanced antimalarial activity, superior bioavailability to other derivatives, as well as the benefit of no detectable neurotoxic potential\(^7,8\).

CYP3A4 is regarded as the fundamental enzyme for phase I biotransformation of artemisone in humans. The phase I reactions include the dehydrogenation in the thiomorpholine-S,S-dioxide moiety leading to metabolite M1, monohydroxylation in the methyloxepane and methylcyclohexyl moieties, leading to the metabolites M2 and M3 respectively and dehydrogenation of M2 and M3 leading to M4 and M57.
The main restriction to oral administration of a drug is the consequence of poor systemic bioavailability arising as a result of rapid clearance or poor absorption of the drug9,10. Due to the first pass effect, drugs with a high metabolic clearance have a low bioavailability11. Drug absorption in the gastrointestinal tract may be limited by poor physicochemical properties of the drug, insufficient contact time in transit through the gastrointestinal tract or poor permeability across the gastrointestinal mucosa. Also, because most drugs are recognized as foreign substances by the body, they are actively pumped back from enterocytes into the gastrointestinal lumen by intestinal efflux proteins12,13.

Recently, artemisinin-loaded polyethylene glycol (PEGylated) liposomes were shown to increase the half-life of artemisinin by more than 5-fold compared to free artemisinin14. Antimalarial activity was also enhanced when artemisinin-loaded conventional liposomes, artemisinin-curcumin-loaded conventional liposomes, artemisinin-loaded PEGylated liposomes and artemisinin-curcumin-loaded PEGylated liposomes were assessed in \textit{Plasmodium berghei NK-65} infected mice15. It was therefore suggested that liposomes loaded with artemisinin may represent efficacious therapeutic nanocarriers for the treatment of tumors and parasitic diseases14,15.
The aim of this study was to investigate the effect of the Pheroid® delivery system on the *in vitro* metabolism and *in vivo* pharmacokinetics (PK) of artemisone. The Pheroid technology is a stable colloidal formulation that is able to entrap, transport and deliver pharmacologically active compounds and other molecules16,17. The multifunctional properties of the Pheroid technology led to a number of different applications18,19,20,21. It primarily consists of an oil phase and a nitrous oxide saturated water phase (\(\text{N}_2\text{O}\))-water phase18,21,17. The Pheroid vesicle oil phase consists mostly of vitamin F ethyl ester, pegylatedricinoleic acid (Kolliphor) and \(\alpha\)-tocopherol18,19,20. The size and structure of the Pheroid formulations can be manipulated to form lipid-bilayer vesicles, microsponges or pro-Pheroid, by altering the ratios of components and/or the process of preparation22. The pro-Pheroid formulations do not contain a water phase and therefore only consist of the oil phase saturated with nitrous oxide gas. Pheroid micro- and nano-particles form spontaneously upon addition of a water phase to the pro-Pheroid. During this reaction, the active pharmaceutical ingredient (API) present in the pro-Pheroid is packaged into the particles22.

In a C57 BL/6 mouse model, the Pheroid delivery system was shown to enhance the bioavailability of artemisone17. Significant differences were found between these two formulations with a greatly increased \(C_{\text{max}}\) (1550.0 vs. 809.5 ng/mL) for the artemisone-Pheroid vesicle formulation compared to the artemisone reference formulation. The AUC\(_{0-\text{last}}\) and AUC\(_{0-\text{inf}}\) also increased (2219.0 and 3094.0 ng h/mL vs. 458.7 and 604.6 ng h/mL) with the Pheroid vesicle formulation. It was proposed that by entrapping artemisone in the Pheroid delivery system, the bioavailability of artemisone may be increased. Here we examine this aspect by using a Vervet monkey model.
2. Methods

2.1 Materials

Artemisone and metabolite M1 were prepared by Ho-Ning Wong and Wing-Chi Chan in the Department of Chemistry at the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. Vitamin F ethyl ester was obtained from Chemimpo (South Africa) and Kolliphor® EL was obtained from BASF (South Africa). Butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), polyethylene glycol (PEG 400) and dl-α-tocopherol were obtained from Chempure (South Africa). Purified water was obtained from SABAX (Johannesburg, South Africa). Recombinant CYPs 3A4 was obtained from CYPEX (Dundee, UK). Human liver microsomes (HLM), human intestinal microsomes (HIM), Cynomolgus monkey liver microsomes (MLM) and Cynomolgus monkey intestinal microsomes (MIM) were obtained from Xenotech (Kansas, USA). NADPH and azamulin were purchased from Sigma Chemical Co. (St. Louis, MO). Capsules were purchased from CapsuGel (Durban, South Africa). All other chemicals and reagents used in this study were of analytical reagent grade.

2.2 In vivo pharmacokinetic studies

2.2.1 Preparation of artemisone reference and test formulations

To prepare the reference formulation, capsules were filled with artemisone in accordance to the weight of each monkey to obtain a dosage of 60 mg/kg. To prepare the Pheroid formulation, artemisone (0.18 g) was dissolved in PEG 400 (20 g), heated to 70 °C and sonicated. Vitamin F ethyl ester (55.72 g), Kolliphor EL (23.22 g), BHA (0.01 g) and BHT (0.01 g) were added and heated to 70 °C and sonicated. Dl-α-tocopherol (1.0 g) was then added and the mixture gassed with nitrous oxide (N₂O) under pressure (200 kPA). The
capsules were filled with the artemisone-pro-Pheroid for a comparative dose of 60 mg/kg in accordance with the weight of each monkey.

2.2.2 Drug administration and sample analysis

Vervet monkeys (Chlorocebus Aetiops) were maintained at the North-West University, Potchefstroom, South Africa. The NWU Ethics Committee for animal experimentation approved all experiments (approval number of NWU-00027-10-A5). Reference (artemisone) and test formulations (artemisone entrapped in pro-Pheroid) were administered to Vervet monkeys (n = 10) as a single dose of 60 mg/kg, using capsules as dosage form. A crossover design with a one week washout period was used. The monkeys were fasted overnight and were given access to food approximately 5 h post dose. The monkeys were anaesthetized with ketamine hydrochloride (10 mg/kg) to enable handling and blood sampling. Blood samples were drawn in heparin through percutaneous venipuncture of the femoral vein pre-dose and at 0.5, 1, 2, 3, 5, 8 and 10 hours post-dose. Plasma samples were prepared by centrifugation at 4 ºC and obtained plasma samples were immediately frozen at -196 ºC and then stored at -80 ºC. The samples were transported overnight on dry ice to the University of Cape Town for analysis.

Parent drug concentrations and metabolite M1 in the plasma samples were determined using a validated quantitative LC-MS/MS assay. The liquid-liquid extraction procedure was performed on ice. Calibrations standards and quality control standards were prepared in drug free (blank) primate plasma. Twenty microlitres of monkey plasma sample were extracted using 200 µL of a universal Britton Robinson buffer (pH 10), artemisinin (internal standard) and 1 mL of the organic solvent 1-chlorobutane. Each sample was thoroughly mixed by vortexing for 2 minutes and centrifuged at 2000 g for 5 minutes. The organic phase (800 µL)
was transferred to clean tubes and evaporated under vacuum for 30 min at room temperature. The dried samples were reconstituted with 100 µL mobile phase consisting acetonitrile and 0.1 % formic acid, mixed by vortexing and transferred to 96 well polypropylene plates. Gradient chromatography was performed on a Phenomenex Luna 5 µm PFP(2), 100 A, 50 mm × 2 mm analytical column. The mobile phase was delivered at a flow rate of 500 µL/min. The organic phase was increased from 50% to 90% over 3 minutes, and the organic phase returned to 50% between 3.1 and 7 minutes to equilibrate the column. An Agilent 1200 series autosampler injected 2 µl onto the HPLC column. An AB Sciex API 4000 mass spectrometer was operated at unit resolution in the multiple reaction monitoring (MRM) mode, monitoring the transition of the protonated molecular ions at m/z 402.1 to the product ions at m/z 267.0 for artemisone, and the protonated molecular ions at m/z 400.1 to the product ions m/z 267.1 for M1, and the protonated molecular ions at m/z 283.2 to the product ions m/z 209.1 for artemisinin.

2.2.3 Statistical analysis

Descriptive statistics are reported for each characteristic in both reference and pro-Pheroid groups as mean ± SD. Log-transformation of the pharmacokinetic parameters C_{max}, AUC_{0-last}, T_{max} and t_{1/2} was used to compare differences in pharmacokinetic parameters of artemisone when given alone and when artemisone was entrapped in the Pheroid. Statistical comparison of the data was done by analysis of variance (ANOVA) at a significance level of p < 0.05, using the GLM-procedure of SAS^{23}. Since a two-way crossover design was used, the product effect was tested for by controlling for the phase, the sequence and the subjects by sequence effects.
2.3 In vitro metabolism studies

2.3.1 Preparation of artemisone reference and test formulations

The 1 mM reference formulation for the in vitro metabolism studies was prepared with artemisone (0.0401 g) in acetonitrile (100 mL). Deionised water was used for dilutions. Artemisone pro-Pheroid formulations were prepared as described (section 2.2.1.2) but with artemisone concentrations of 0.0400 g artemisone per 1 g pro-Pheroid. A drug-free pro-Pheroid formulation, containing no entrapped drug, was also prepared according to the above described method and used for dilution of the study formulations.

2.3.2 Metabolic stability and inhibitor phenotype assays

Artemisone-reference and pro-Pheroid formulations were incubated with microsomes (0.5 mg/mL) and 0.1 M phosphate buffer (pH 7.4). After pre-incubation for 10 minutes, the reaction was initiated by the addition of NADPH. Aliquots were collected at various time points up to 45 minutes. The reaction was stopped by the addition of ice cold acetonitrile. Samples were stored at 4 °C to allow protein precipitation and centrifuged at 10 000 g for 15 minutes at 4 °C. Supernatants were stored at -20 °C until analysis. For inhibitor phenotype assays, similar reaction mixtures were used as described above but azamulin (5μM) was added as a CYP3A4 inhibitor. In addition, artemisone-reference and pro-Pheroid formulations were incubated with CYP3A4 recombinant enzyme (10 pmol/mL). These reactions were initiated by the addition of NADPH, and stopped at zero (baseline) and 30 minutes with the addition of ice cold acetonitrile. The samples were transported on ice to the Council for Scientific and Industrial Research (CSIR) for analysis. The qualitative analysis of artemisone and its metabolites were performed on a Waters ultra performance HPLC system coupled to a G1 hybrid quadrupole Time-of-Flight mass spectrometer (UPLC-QTOF-
MS, (Waters, Milford, MA, USA). Chromatographic separation was achieved on a Waters Acquity UPLC using Acquity HSS C18 150 x 2.1 mm (1.7 um) column maintained at 60 °C. The initial mobile phase consisted of 80% water containing 0.1% (v/v) formic acid and 20% acetonitrile at a flow rate of 400 µL/min. The composition was changed to 10% water and 90% acetonitrile at 10 minutes. These conditions were maintained for 2 minutes whereafter the column was re-equilibrated at the initial conditions. The run time was 15 minutes and the injection volume was 10 µL. Metabolynx, a Masslynx application software program, was used for metabolite identification. The reaction samples were scanned for specific m/z values corresponding to reported metabolites, which in turn confirms microsomal metabolism. The M1 metabolite standard was analysed on the UPLC-QTOF-MS and displayed a 2x [M+H]^+ product of m/z 799.3509 suggesting a dimer-type structure formed in gas phase (C_{38}H_{58}N_{2}O_{12}S_{2}). Cationisation was also observed resulting in a mass ion at m/z 422.1613 corresponding to C_{19}H_{28}NO_{6}SNa.

2.3.3 Determination on intrinsic clearance

The log percentage remaining was plotted against incubation time and the gradient of the line was used to calculate the elimination rate constant (k, equation 1) and the half life (t_{1/2}, equation 2). The \textit{in vitro} intrinsic clearance was calculated according to equation 3.

\begin{align}
\text{Elimination rate constant (k)} & = (-\text{gradient}) \quad \text{equation 1} \\
\text{Half life (t_{1/2}) (min)} & = \frac{\text{Ln2}}{k} \quad \text{equation 2} \\
\text{Intrinsic clearance (CL_{int}) (mL/min/mg)} & = \frac{\text{Ln2} \times \text{volume of incubation (mL)}}{t_{1/2} \times \text{protein incubation (mg)}} \quad \text{equation 3}
\end{align}

In the case of the liver microsomal study, the units of CL_{int} were converted to the apparent clearance for the whole liver (whole liver CL_{int}) by using equation 4. Because there is no
widely used physiological conversion model from mL/min/mg protein to mL/min/kg applicable to the intestine, only CL$_{\text{int}}$ was calculated.

Whole liver CL$_{\text{int}}$ (mL/min/kg) = $\text{In vitro CL}_{\text{int}} \times $ MPPGL x liver weight \hspace{1cm} \text{equation 4}

MPPGL is the microsomal protein per gram of liver. Assuming that MPPGL is the same for Cynomolgus monkeys and humans, 48.8 mg/g liver was used for both species25. For humans and Cynomolgus monkeys, 5.7 and 30.0 liver weight per kilogram of body weight were used respectively26. The in vivo hepatic clearance (CL$_{H}$) was estimated according to the ‘well-stirred liver’ model27 by using equation 5.

\[
\text{In vivo CL}_{H} \hspace{0.5cm} (\text{mL/min/kg}) = \frac{Q_{H} \times \text{whole liver CL}_{\text{int}}}{Q_{H} + \text{whole liver CL}_{\text{int}}} \hspace{1cm} \text{equation 5}
\]

Q_{H} is the hepatic blood flow. Q_{H} is given a value of 21 mL/min/kg and 43.6 mL/min/kg for human and monkeys respectively26. The monkey microsomes used in this study were from Cynomolgus monkeys because Vervet monkey microsomes were not commercially available. Therefore it was assumed that all Cynomolgus monkey parameters used to calculate clearance is the same as in the Vervet monkey.

2.3.4 Statistical analysis

One-way ANOVA’s were used to determine the significance product and system effects. This was followed by Tukey multiple comparison tests to compare group means mutually or by Dunnett’s test to compare the means of groups with that of a control group. When comparing only two group means, the Student t-test was used. Statistical testing of the data was done at a significance level of $p < 0.05$, using the Statistica computer package28.
2.4 Pro-Pheroid characterization

The particle size and zeta potential of the artemisone entrapped Pheroid formulation (P11015 and P11022) for in vivo PK studies, artemisone entrapped Pheroid formulation (P11018) and blank Pheroid formulation (P11020) for in vitro metabolism studies were measured.

The pro-Pheroid was mixed with 0.1 N hydrochloric acid (1:100 v/v) and the size and surface charge (zeta potential) of the resulting Pheroid vesicles was measured using a Hydro Malvern Mastersizer 2000MU and a Malvern 2000 zetasizer (Malvern Instruments Ltd, Malvern, Worcestershire, UK). For particle size measurement, samples were measured in duplicate by diluting samples with water before injection. Span value was calculated by means of the equation (\(d_{0.9} - d_{0.1}\))/ \(d_{0.5}\) where \(d_{0.9}\), \(d_{0.5}\) and \(d_{0.1}\) are the particle diameters determined respectively at the 90\(^{th}\), 50\(^{th}\) and 10\(^{th}\) percentile of the particles. For surface charge measurements, the analyses were performed in de-ionized water and all measurements were performed in triplicate. The morphology of the particles was characterized by confocal laser scanning electron microscopy (CLSM, Nikon D-eclipse C1 confocal laser scanning microscope, the Netherlands) using the method described by Slabbert and colleagues\(^{29}\) by staining the Pheroid formulations with Nile Red.

3. Results and discussion

3.1 Pro-Pheroid characterization

Table 1 shows the particle size distribution of the Pheroid formulations. Span value, as an index of polydispersity, of the formulations was calculated from the particle diameters from the 90\(^{th}\) \((d_{0.9})\), 50\(^{th}\) \((d_{0.5})\) and 10\(^{th}\) \((d_{0.1})\) percentile of the particles.
Table 1: The particle size of the different Pheroid formulations

<table>
<thead>
<tr>
<th>Pheroid formulations</th>
<th>Mean particle size</th>
<th>d₀.₁ (µm)</th>
<th>d₀.₅ (µm)</th>
<th>d₀.₉ (µm)</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>P11015</td>
<td>10.02 ± 0.77</td>
<td>2.07 ± 0.19</td>
<td>7.45 ± 0.51</td>
<td>18.09 ± 1.09</td>
<td>2.15 ± 0.03</td>
</tr>
<tr>
<td>P11022</td>
<td>13.33 ± 1.58</td>
<td>2.47 ± 0.68</td>
<td>12.01 ± 1.46</td>
<td>25.75 ± 3.93</td>
<td>1.93 ± 0.15</td>
</tr>
<tr>
<td>P11018</td>
<td>43.05 ± 1.20</td>
<td>6.05 ± 0.29</td>
<td>34.17 ± 0.85</td>
<td>92.80 ± 2.89</td>
<td>2.54 ± 0.03</td>
</tr>
<tr>
<td>P11020</td>
<td>34.45 ± 1.01</td>
<td>5.46 ± 0.25</td>
<td>27.35 ± 0.78</td>
<td>74.04 ± 2.47</td>
<td>2.51 ± 0.03</td>
</tr>
</tbody>
</table>

All formulations had a relatively low but positive (1-3 mV) zeta potential. This may be due to the formulations containing PEG. Pheroid vesicles that do not contain PEG display a negative zetapotential. Once a PEG layer coats nanoparticles, the zeta potential may change to positive. This low zeta potential is not regarded as unusual. According to the Gouy–Chapmann theory, the surface PEG chains’ hydrodynamic drag moves the hydrodynamic plane of shear away from the charge-bearing plane, and causes the electrophoretic mobilities to decrease. Therefore, although PEG decreases the zeta potential, the amount of attraction between nanoparticles is also decreased by increasing the steric distance between them and, therefore, aggregation is inhibited. The confocal laser scanning electron microscopy images indicates the successful formation of spherical particles.

3.2 In vivo pharmacokinetics

3.2.1 LC-MS/MS assay

The bioanalytical assay was validated for monkey plasma. The lower limit of quantification (LLOQ) for artemisone and metabolite M1 were 3.91 and 7.80 ng/mL, respectively (Figure 2). Calibration was performed in duplicate in the range from 3.91 ng/mL to 500 ng/mL for artemisone and 7.80 to 1000 ng/mL for M1.
The pharmacokinetic parameters of artemisone were determined after a single oral dose of 60 mg/kg artemisone to healthy monkeys. The pharmacokinetics of artemisone could not be determined in one monkey treated with the reference formulation, since this animal presented with an artemisone concentration of zero throughout the experiment (Table 2 and Figure 2).

Table 2: The plasma pharmacokinetics of artemisone (60 mg/kg orally) administered alone, or entrapped in the pro-Pheroid delivery system. Data are mean values ± SD in nine monkeys.

<table>
<thead>
<tr>
<th>Dosage</th>
<th>Drug measured</th>
<th>AUC₀-last (ng·h/mL)</th>
<th>p-value</th>
<th>Cₘₐₓ (ng/mL)</th>
<th>p-value</th>
<th>Tₘₐₓ (hours)</th>
<th>p-value</th>
<th>t₁/₂ (hours)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemisone</td>
<td>Artemisone</td>
<td>184.4 ± 134.4</td>
<td>0.07</td>
<td>47.3 ± 44.5</td>
<td>0.16</td>
<td>5.1 ± 2.5</td>
<td>0.1</td>
<td>3.2 ± 1.7</td>
<td>0.51</td>
</tr>
<tr>
<td>Artemisone-Pheroid</td>
<td>466.0 ± 532.8</td>
<td>114.0 ± 156.7</td>
<td>0.16</td>
<td>3.4 ± 2.5</td>
<td>0.1</td>
<td>4.4 ± 3.7</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log-transformation of Cₘₐₓ, AUC₀-last, Tₘₐₓ and t₁/₂ for artemisone and the metabolite M1 indicated that the pharmacokinetic parameters of the two formulations did not differ significantly (p>0.05). Taking into consideration the small groups of monkeys, indications of trends exist. The total drug exposure over 10 hours (AUC₀-last) was marginally (p=0.07) statistically significant and the test formulation appeared to be almost two fold higher than that of the reference formulation. The ratios between the geometric means for reference to test formulations (with 90% CI in brackets) were: Cₘₐₓ, 53% (28, 112) and AUC₀-last 46% (25, 93) and Tₘₐₓ 195% (101,378). Therefore the lower limits of the 90% CIs for the geometric mean ratios (reference to test formulations) of Cₘₐₓ and AUC₀-last and the upper limits of Tₘₐₓ were outside the 80–125% equivalence window, suggesting a clinically significant increase of Cₘₐₓ and AUC₀-last and a clinically significant decrease of Tₘₐₓ with the
test formulation. The Pheroid had no effect on artemisone $t_{1/2}$ values and the geometric mean ratios for reference to test formulations were not outside the 80–125% equivalence window.

Figure 2: Effect of the Pheroid delivery system on artemisone and metabolite M1 (indicated with smaller circles or squares) plasma concentration in ng/mL; artemisone reference standard (circles) and pro-Pheroid (squares) formulation. Data depicted as the mean ± SE for each time interval.

The artemisone plasma levels are much lower (C_{max} of 47.39 and 113.97 ng/mL for reference and test formulations) than expected for the dosages administered. In a human Phase I study, where artemisone was administered at a dosage of 1 mg/kg, the C_{max} was 140.2 ng/mL8. Also in studies carried out by Steyn and colleagues17, artemisone reference or artemisone entrapped in the Pheroid vesicle formulations at a dose of 50.0 mg/kg to mice resulted in a
C_{max} of 809.5 ng/mL and 1550.0 ng/mL respectively. When these dosages are extrapolated to a human equivalent dose (HED) by using the body surface area normalization method33, the 50 mg/kg bodyweight dosage given to the rodents are equivalent to a 4 mg/kg bodyweight human dose and, therefore, all of these results correlate well with human artemisone studies. Using this same extrapolation for the current Vervet monkey study, the dosage given is 20 times more than in the human clinical trials with a C_{max} that is in comparison, 3 fold lower and the AUC that is 1.5 fold lower for the reference formulation.

Although artemisone is highly crystalline with no polymorphs8, the likelihood of a possible polymorph being the cause of the lower plasma levels, were also investigated. The artemisone used in the studies was recrystallized at the Hong Kong University of Science and Technology (HKUST) using 50:50 hexane/ethylacetate (1:1) as solvent and the pharmacokinetics assessed in one Vervet monkey at the NWU. The AUC were again lower (140.8 vs 127.1 ng·h/mL) for the reference and higher (244.2 vs 267.8 ng·h/mL) for the Pheroid formulation.

3.4 In vitro metabolic stability and inhibition

The in vitro clearance of artemisone and the formation of metabolites were investigated in human liver and intestinal microsomes (HLM and HIM), and monkey liver and intestinal microsomes (MLM and MIM) to evaluate the effect of the Pheroid delivery system on the metabolic clearance of artemisone in humans and monkeys.

The percentage of artemisone remaining vs. time plots (Figures 3a-d) were subjected to linear regression analysis and the apparent terminal half-life ($t_{1/2}$) was calculated. The in vitro intrinsic clearance (CL_{int}) and estimated in vivo CL_{4h} of artemisone were calculated as
indicated above. For the monkey liver microsomes, only time points zero to 10 h (time point where parent compound was depleted) were used to estimate the slope.

Figure 3: Metabolic stability of artemisone reference standard (triangle) and pro-Pheroid (squares) formulation in a) HLM, b) MLM, c) HIM and (d) MIM. Points are experimentally derived values (means of triplicate measurements at each time interval ± SD) while the solid (artemisone reference standard) and dashed lines (artemisone-pro-Pheroid) show computer-derived curves of best fit.

The results demonstrate that the Pheroid drug delivery system inhibits the metabolism of artemisone by the CYP450 system in both human and monkey model systems in vitro (Figure 3a-d). Also, as seen in Table 3, the in vitro intrinsic clearance (CL_{int}) of the reference formulation with MLM is much higher than that with HLM. If extrapolated to the estimated hepatic clearance in vivo, where the microsomal protein per gram of liver, the liver weight and hepatic blood flow are taken into account, the monkey CL_{H} is almost twice the CL_{H} in humans. It is clear that very slow metabolism of the artemisone reference occurred in HIM,
with faster metabolism occurring in the MIM (Figures 3b,d); thus, artemisone is metabolized
in the liver as well as in the intestine of the monkey. These findings might be partly
responsible for the species differences observed in the \textit{in vivo} pharmacokinetics. Numerous
drugs are subject to the first-pass effect and the organs responsible for this are mainly the
intestine, liver and lung. These data suggest that artemisone undergoes extensive catabolism
in both the liver and intestine of the monkey.

Table 3: The \textit{in vitro} intrinsic clearance (CL$_{\text{int}}$) of the artemisone reference and artemisone-
pro-Pheroid formulation in HLM, HIM, MLM and MIM and the estimated \textit{in vivo} hepatic
clearance (CL$_{\text{H}}$) for HLM and MLM for a 45 minute incubation period.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>\textit{In vitro} CL$_{\text{int}}$ (µL/min/mg)</th>
<th>\textit{Estimated in vivo} CL$_{\text{H}}$ (mL/min/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\textit{Species}</td>
<td>HLM (a)</td>
</tr>
<tr>
<td>Artemisone reference (A)</td>
<td>178.9 ± 1359.3 ± 4.0 ± 5.7 ± 85.7 ± 19.2 ± 42.7</td>
<td>(Ba; Ab)</td>
</tr>
<tr>
<td>Artemisone pro-Pheroid (B)</td>
<td>31.0 ± 0.0 ± 17.4 ± 13.6 ± 14.8 ± 0</td>
<td>(Aa)</td>
</tr>
</tbody>
</table>

*if k>0, it was regarded as zero. Data depicted as mean ± SD of duplicate measurements.

Statistical differences (p < 0.5) are indicated in brackets by using the following keys:

Treatment A = artemisone; B = artemisone pro-Pheroid;

\textit{In vitro} clearance of microsomal groups a = HLM; b = MLM; c = HIM and d = MIM

\textit{In vivo} clearance of microsomal groups e = HLM; f = MLM

For example (Ba) states that there was a statistically significant difference between that
parameter and the human liver microsomes treated with artemisone pro-Pheroid.
Figure 4 illustrates the chromatograms of the artemisone metabolites formed. The parent compound (formula: $C_{19}H_{31}NO_6S$, m/z: 402.1950, R_t7.15 min), desaturation metabolite M1 dimer (formula: $C_{38}H_{59}N_2O_6S_2$, m/z: 799.3509, R_t6.00 min), three other desaturation metabolites (formula: $C_{10}H_{30}NO_6S$, m/z: 400.1794, R_t2.24, 4.79 and 6.04 min), hydroxylation-and-desaturation metabolite (formula: $C_{19}H_{30}NO_7S$, m/z: 416.1743, R_t4.55, 4.79 and 6.04 min), mono-hydroxylation metabolite M2 (formula: $C_{19}H_{32}NO_7S$, m/z: 418.1899, R_t4.25 min), mono-hydroxylation metabolite M3 (formula: $C_{19}H_{32}NO_7S$, m/z: 418.1899, R_t3.59 min), three other mono-hydroxylation metabolites (formula: $C_{19}H_{32}NO_7S$, m/z: 418.1900, R_t43.42, 3.82, and 4.79 min), di-hydroxylation metabolite (formula: $C_{19}H_{32}NO_8S$, m/z: 434.1849, R_t4.22 min)

In total, 10 metabolites were produced by human liver microsomes. These consisted of M1, two other unsaturated metabolites, five mono-hydroxylated metabolites of which M2 and M3 are the major metabolites, one unsaturated mono-hydroxylated and one unsaturated di-hydroxylated metabolite were detected. In monkey liver microsomes, three monohydroxylated, metabolites of which M2 and M3 are the major metabolites, and one unsaturated monohydroxylated metabolite were observed. In the human and monkey intestinal microsomes two hydroxylated metabolites were observed. With the artemisone-Pheroid formulation, a unique unsaturated metabolite of retention time of 2.24 min was detected.
Figure 4: Selected ion chromatograms of artemisone and its metabolites obtained from the UPLC/MS scan (human liver microsomes at 45 min incubation).

The relative percentages of metabolites and parent compound were estimated by using the sum of peak areas of metabolites and parent compound at each time point (Figure 5). As illustrated by Figure 5, the formation of metabolites were inhibited with the Pheroid formulation. Only a small fraction of artemisone was converted to M1 in the MLM, while a hydroxylation metabolite formed (RT 4.79) in all microsomes. The possibility exists that, in this particular in vitro system, artemisone is not released by the Pheroid and, therefore, cannot be metabolized by the enzymes. This might also explain the differences observed between the in vitro metabolism and in vivo PK studies where artemisone undergoes first pass metabolism once released in the body.
Figure 5: Percentage representation of the artemisone parent compound depletion and metabolite formation in a,e) HLM, c,g) HIM, b,f) MLM and d,h) MIM. Artemisone treatments depicted as a,b,c and d and artemisone entrapped in the Pheroid technology as e,f, g and h. The colours of artemisone and metabolites correspond with the colours indicated in Figure 7.
Figure 6 depicts the percentages of artemisone that remains following incubation in the different enzyme systems in the presence of azamulin. Previous studies have shown that CYP3A4 is the main hepatic CYP isoform responsible for the metabolism of artemisone in the liver and that azamulin is a specific inhibitor for CYP3A4. In the presence of azamulin, the percentage of artemisone remaining after the incubation time is close to 100% in HLM, HIM and MIM, indicating inhibition of artemisone metabolism by azamulin. For MLM, only 37.75 ± 2.75% of the parent compound was left, indicating that inhibition of artemisone was not achieved.

![Figure 6: Effect of the Pheroid delivery system on artemisone clearance in the presence of the CYP3A4 inhibitor azamulin. Data of the artemisone reference standard (black) and pro-Pheroid (grey) formulation are depicted as mean ± standard deviation (SD) of triplicate measurements. Statistically significant differences are indicated by an asterisk (*) (p < 0.05).](image-url)
It is apparent from Figure 7 that CYP3A4 is the responsible enzyme for artemisone metabolism. The percentage artemisone remaining after incubation with the recombinant CYP3A4 (rCYP3A4) compare well with the mixture with human liver microsomes containing other cytochromes in addition to CYP3A4 (p>0.05). Also, having artemisone entrapped in the pro-Pheroid formulation during manufacturing of pro-Pheroid and adding drug-free pro-Pheroid to the final reaction mixtures of artemisone demonstrates similar inhibition of artemisone metabolism in the HLM and rCYP3A4 incubation mixtures (p > 0.05). When drug-free pro-Pheroid was added to the final reaction mixtures, the percentage of artemisone remaining for the rCYP3A4 was significantly lower than with the HLM incubation mixtures.

![Figure 7](image_url)

Figure 7: a) The effect of Pheroid technology on artemisone metabolism in HLM vs. rCYP3A4. Data depicted as mean ± SD of duplicate measurements; artemisone reference formulation (black), artemisone entrapped in pro-Pheroid during manufacturing (grey) and artemisone with drug free Pheroid added to the final reaction mixture (white). b) Percentage representation of the artemisone parent compound depletion and metabolite formation in HLM and rCYP3A4 treated with artemisone reference formulation. Statistically significant differences are indicated by an asterisk (*) (p < 0.05).
The metabolite pattern of the artemisone reference formulation observed in incubations with human CYP3A4 corresponds well with that found in incubations with human liver microsomes except that the percentage of parent compound, compared to the metabolites formed, are less in HLM than inrCYP3A4 (Figure 7b).

4. Discussion

Non-human primate models are utilized for predicting human pharmacokinetics of drugs35,36,37, but poor correlations of bioavailability of various drugs have been observed between monkeys and humans38,39,40. The extremely low plasma levels in monkeys may be due to incomplete gastrointestinal absorption, greater first-pass metabolism, or a combination of these factors39,40,41. Akabane and colleagues39 concluded that the lower bioavailabilities of drugs in monkeys were caused by intestinal metabolism rather than poor absorption or liver metabolism. Therefore, possible inter-species and possible inter-organ (intestine vs. liver) metabolism of the reference and test formulations were evaluated.

Also, CYP3A accounts for the largest portion of CYP450 in human liver and intestines. The average content of CYP3A in the liver and proximal small intestinal represents 40\% and 82\% respectively of the total P450 enzyme based on total immunoquantified P450 content42,43. Human CYP3A expression between individuals can vary up to 40-fold in liver and small intestine44. Genetic and/or environmental factors may cause variation in CYP levels in Vervet monkeys37. This might possibly explain the high degree of intersubject variability in artemisone plasma levels observed in this study.

In monkeys, CYP3A4 represents approximately 20\% of the total P450 content of the liver45. The total microsomal P450 content is approximately 3 fold higher in monkeys than in
Taking this into consideration, the levels of CYP3A4/unit of liver in the monkey are more than 4-fold higher compared to humans. In this study we used 48.8 mg/g microsomal protein per gram of liver for humans and monkeys according to the assumption of Naritomi and colleagues. Therefore the estimated in vivo clearance (CL_{v}) would actually be much higher than estimated here.

The CYP3A4 inhibitor, azamulin, exhibits species-dependent inhibition of artemisone metabolism in liver microsomes, possibly due to involvement of different cytochrome P-450 isozymes in the monkey or to structural differences at the active site of the CYP3A4 isozyme at which the azamulin interacts.

Nonhuman primates including the Cynomolgus monkey have been considered to be the most appropriate animal models for predicting drug metabolism in humans, and many publications have suggested that the monkey may provide more reliable predictions for human drug metabolism than rodents or dogs. This general belief is based on the sequence similarity of drug-metabolizing enzymes between man and within monkey species. For example the Rhesus, Cynomolgus and Vervet monkey CYP3A4 has a percentage homology of 93, 93 and 94% respectively with human CYP3A4. However, subtle changes in amino acid sequences can give rise to immensely different catalytic activities. Also, diverse cytochrome P450 enzymes can catalyze similar activity.

In a previous study, metabolites M1, M2 and M3 are the primary metabolites of artemisone in human liver microsomes. Of the total radioactivity (TRA), M1, M2 and M3 were responsible for approximately 34%, 19%, 16% respectively while M4 and M5 were responsible for amounts of less than 6% each. In this study, M1 metabolite formation was low in HLM with
no M1 formation in MLM, HIM and MIM. The major metabolite, M2, formed in Rhesus monkey liver microsomes was also the major metabolite formed with Cynomolgus monkey liver microsomes in the current study.

The absence of M1 in MLM does not correlate well with in vivo PK results of this study where the M1 plasma levels were higher than the parent compounds in the plasma of Vervet monkeys. The monkey microsomes used in this study were from Cynomolgus monkeys because Vervet monkey microsomes were not commercially available. This, in part, could be responsible for the differences between in vitro PK and in vitro metabolism results. Tang and colleagues showed that, in the regioselectivity of diclofenac hydroxylation, Rhesus and Cynomolgus monkeys are closer to humans than African green monkeys. They also conclude that there is a significant difference in the kinetic parameters and the reaction to chemical inhibitors between humans and all monkey species.

5. Conclusion

The in vivo results obtained in this study indicate that the Pheroid delivery system improves the pharmacokinetic profile of artemisone by increasing the maximum artemisone concentration and the area under the curve while decreasing the time to reach the maximum concentration in a clinically significant manner.

The in vitro results indicate that artemisone microsomal metabolism is inhibited by the Pheroid delivery system. Although inhibition of drug metabolism is typically regarded as potentially dangerous, or at least undesirable, the enhancement of plasma levels of artemisone in this case may be considered to be beneficial, given the very good safety profile of artemisone coupled with the relatively short half life of the unformulated drug.
6. Acknowledgements

Contract work (LC-MS/MS) conducted under supervision of Dr. Lubbe Wiesner at the University of Cape Town, South Africa. Financial support from the South African Technology Innovation Agency (TIA), the Swiss South African Joint Research Project Initiative and the North-West University.

7. Reference

19 Grobler AF. Composition in the form of a microemulsion containing free fatty acids and/or free fatty acid derivatives. WO2007096833 (2007)

