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Cholinergic neuronal loss in the pedunculopontine nucleus (PPN) associates with abnormal functions,
including certainmotor and nonmotor symptoms. This realization has led to low-frequency stimulation of the
PPN for treating patients with Parkinson disease (PD) who are refractory to other treatment modalities.
However, the molecular mechanisms underlying PPN neuronal loss and the therapeutic substrate for the
clinical benefits following PPN stimulation remain poorly characterized, hampering progress toward
designing more efficient therapies aimed at restoring the PPN’s normal functions during progressive
parkinsonism. Here, we investigated postmortem pathological changes in the PPN of PD cases. Our study
detected a loss of neurons producing gamma-aminobutyric acid (GABA) as their output and glycinergic
neurons, along with the pronounced loss of cholinergic neurons. These losses were accompanied by altered
somatic cell size that affected the remaining neurons of all neuronal subtypes studied here. Because studies
showed that mitochondrial dysfunction exists in sporadic PD and in PD animal models, we investigated
whether altered mitochondrial composition exists in the PPN. A significant up-regulation of several mito-
chondrial proteins was seen in GABAergic and glycinergic neurons; however, cholinergic neurons indicated
down-regulation of the same proteins. Our findings suggest an imbalance in the activity of key neuronal
subgroups of the PPN in PD, potentially because of abnormal inhibitory activity and altered cholinergic
outflow. (Am J Pathol 2013, 183: 1826e1840; http://dx.doi.org/10.1016/j.ajpath.2013.09.002)
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Single-Cell Changes in PPN in Parkinson
Patients with Parkinson disease (PD) present with a multi-
tude of motor-related disabilities, including progressive
resting tremor, rigidity, bradykinesia/akinesia, gait distur-
bances, and postural instability. In addition, it is recognized
increasingly that various nonmotor functions are also left
impaired, including mood, cognition, sleep, autonomic ner-
vous system functions, and sensory functions.1 A neuro-
pathological signature of PD is the progressive deterioration
of dopamine-producing neurons in the substantia nigra
pars compacta (SNpc).2 Although the precise cellular and
molecular mechanisms underlying this neuronal death
remain unknown, several reports implicate an underlying
mitochondrial dysfunction, relating to energy deficits,
enhanced production of free-radical species with concomi-
tant oxidative stress,3 proteasomal deregulation,4 and neu-
ronal excitotoxicity.5

Evidence for a mitochondrial-related cause in PD stems
from studies reporting on the use of human postmortem
brains of patients with PD, which found a deficiency of
complex I of the mitochondrial respiratory chain in the
SNpc.6 Furthermore, outside the central nervous system a
mitochondrial respiratory chain complex I deficiency has
also been detected in the blood platelets of patients with PD,
with some patients who also displayed defects of mito-
chondrial respiratory chain complexes II and III.7 In this
regard, Gu et al8 found that a mitochondrial DNA (mtDNA)
abnormality may underlie this mitochondrial defect in at
least a proportion of patients with PD. By contrast, data
reporting on mitochondrial respiratory chain defects in
skeletal muscle cells of patients with PD remain somewhat
more controversial. In this regard, Penn et al9 performed
31P magnetic resonance spectroscopy on the resting mus-
cles of patients with PD, to report detecting defects in
oxidative phosphorylation in the patients’ musculature,
compared with healthy control cases. However, a study by
Taylor et al10 was unable to validate this result. It has been
proposed that the conflicting results that report on skeletal
mitochondrial defects in patients with PD may relate to
either methodological variation for assessing this biochem-
ical defect or may be a reflection of the heterogeneity of the
disease.11

Further evidence for an association between PD and a
mitochondrial defect was obtained from the use of experi-
mental neurotoxins such as rotenone and 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine. Use of such toxins mimic
parkinsonism in animals to a remarkably accurate extent,
with studies showing that the pathological substrate for this
defect may be due to the ability of such toxins to inhibit
complex I of the mitochondrial respiratory chain.12,13

Finally, disordered mitochondrial function, including de-
fects in oxidative phosphorylation, are also seen in rare,
young-onset genetic forms of PD, such as in patients who
harbor mutations in genes such as Parkinson protein 2, E3
ubiquitin protein ligase [parkin (official symbol, PARK2)],
parkinson protein 7 [DJ-1, (official symbol, PARK7)], and
PTEN (phosphatase and tensin homologue) induced putative
The American Journal of Pathology - ajp.amjpathol.org
kinase 1 (PINK1), where loss of function of the respective
protein products associate with deregulation of the mito-
chondrial quality control pathways of the cells.14

Although the principal motor features of PD stem from
reduced dopaminergic innervation of the striatum because of
a substantial loss of SNpc dopaminergic neurons, recognition
is growing that PD symptoms could result from disruption to
multiple neural regions and systems.15 Although the loss of
neurons is most conspicuous in the SNpc, neuronal loss and
the presence of intracytoplasmic Lewy bodies (LBs) and
Lewy neurites (LNs), composed of aggregation-prone pro-
teins such as a-synuclein (aSYN) form an additional
neuropathological hallmark of PD16 and have been observed
in brain regions as diverse as the dorsal motor nucleus of
vagus of the medulla, the locus ceruleus in the pons, the raphe
nucleus, the basal forebrain, and allocortical regions such as
the hippocampus and amygdala.17 Such widespread distri-
bution of PD pathology could correlate with the variety of
motor and nonmotor symptoms observed in patients with
PD.18 PD-related pathologies that affect regions other than
the dopaminergic-rich SNpc suggest that, although treat-
ments that target only the nigrostriatal dopaminergic system
could substantially benefit patients with PD, they are unlikely
to completely resolve the PD-related deficit.19

One particular brain region, the pedunculopontine nu-
cleus (PPN), located within the lateral tegmental region and
spanning the pontine midbrain isthmus, has been deemed
critically important for regulating some of the physiological
functions that fail during progressive PD. Such functions
include regulating the activity of the reticular activating
system for controlling rapid eye movement (REM) sleep.20

Interestingly, patients with PD frequently present with
abnormal REM muscle tone and concomitant REM sleep
behavior disorder (RBD),21 which may be due to a loss of
PPN cells and their concomitant functions during progres-
sive PD. Moreover, PPN axons project toward and receive
input from a variety of brain regions, including the thal-
amus, SN (both the compacta and reticular part), cortical
regions, and spinal cord, all of which are involved in regu-
lating aspects of voluntarymotor function.22e30 The PPNwas
assigned a role in the onset and progression of PD because of
reports that the nucleus undergoes degenerative changes,
principally affecting the resident cholinergic neurons.31,32

The loss of these cells is believed to provide the cellular
basis for the gait and postural deficits that patients with PD
experience33 and nonhuman primates rendered parkinsonian
via cytotoxic lesions.34,35 In addition, LBs and LNs are seen
within the remaining PPN neurons in the postmortem brains
of patients with PD.36 Such findings provided the rationale for
the commencement of therapeutic trials of deep brain stimu-
lation of the PPN, with trial results reporting a reduction in
gait and postural dysfunction in patients with PD after
receiving PPN deep brain stimulation.37,38

Here, we used serially cut sections taken from the post-
mortem PPN of patients with PD and compared this with
elderly, healthy control persons, who died without known
1827
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neurological or psychiatric deficit. After confirming a
decreased number of cholinergic neurons in PD-affected
PPNs, as previously reported,31,32 we studied whether the
remaining cholinergic neurons undergo somatic cell size
alterations. Because it is unknown whether other, noncho-
linergic neurons are also lost in the PPN of patients with PD,
we next determined whether glycinergic and GABAergic
neurons in the PPN also degenerate as a result of PD, and
whether the remaining neurons undergo structural alter-
ations. In an attempt to explain the altered cell numbers and
cellular structural changes seen in the PPN of the present
study’s cohort of patients with PD compared with controls,
and consistent with the wide amount of literature that sug-
gests an association between PD and mitochondrial dys-
function, we determined whether the loss of different
neuronal subpopulations in the PPN is linked to mitochon-
drial abnormalities.

Materials and Methods

Autopsy Material and Postmortem Neuropathological
Examination

Ethical approval for this study was obtained from the
Newcastle and North Tyneside Local Research Ethics
Committee. Seventeen brains (nine controls, eight PD cases)
were selected from the Newcastle Brain Tissue Resource.
Brain tissue was processed for neuropathological examina-
tion with the use of a standardized protocol as previously
described,39,40 with fixation of the right cerebral hemi-
sphere, hemi-midbrain, brainstem, and cerebellum in neutral
formalin, whereas the left hemisphere (used in the present
study) was coronally sectioned, snap-frozen immediately in
liquid nitrogen-chilled isopentane, and then stored at �80�C
until neurochemical analysis.

Control cases showed an absence of any identifiable
neurological disorder-related neuropathology and only mild
age-related pathology (Table 1). PD cases had documented
evidence of longstanding motor impairment, and evidence of
dementia was present in six of eight cases at the most recent
testing before death (Table 1). PD cases all showed extensive
SNpc cell loss, in addition to the detected presence of LB/
LNs in the brainstem, and in some cases also in the limbic
system and cortex. PD cases also showed some evidence of
limbic and hippocampal Alzheimer-type pathology, but none
met the diagnostic criteria for Alzheimer disease.

IHC for Anatomical Identification of the PPN

Serial frozen sections 20 mm thick were obtained from the
frozen left midbrain at the pontine midbrain border with the
use of a cryostat (Bright Instrument Company Ltd., Hun-
tingdon, UK). To determine architectural boundaries, sec-
tions were air dried at room temperature for 60 minutes,
followed by fixation in 4% paraformaldehyde dissolved in
0.1 mol/L PBS for 30 minutes and another 10 minutes in
1828
Carnoy fixative solution (60% EtOH, 30% chloroform, 10%
glacial acetic acid) for Loyez/Cresyl fast violet (CFV)
staining. The sections were hydrated through a graded series
of ethanol (2 � 100%, 95%, 70%) before being rinsed in
distilled H2O. Sections were then placed in mordant (4%
iron alum) for 6 hours before rinsing in distilled H2O. The
sections were stained overnight in hematoxylin solution.
The next morning the sections were washed in distilled
H2O, before incubation in CFV solution for 15 minutes at
60�C. The sections were left in the CFV solution while it
was being cooled, before finally washing in distilled H2O,
dehydrating, clearing, and mounting with DPX.
To identify the anatomical boundaries of the PPN from

surrounding neural structures, the Loyez/CFV-stained sec-
tions were used (Figure 1, AeD). Previously published
criteria for delineating the boundaries of the PPN,31,41,42

combined with knowledge of the cytoarchitectural features
of the PPN, served as the guideline. The PPN was anatomi-
cally defined as a sickle-shaped zone lying within the dorso-
lateral mesopontine tegmentum, consisting of large neurons
(presumed to be the Ch5 cholinergic population), which
extended rostrocaudally from the level of the rostral locus
coeruleus.31,41,42 Fibers of the superior cerebellar peduncle
and peduncular decussation bordered the PPN medially,
whereas its lateral border comprised the medial leminuscus.
Its rostral end was seen to contact the SNpc, whereas its most
caudal pole was adjacent to neurons of the locus coeruleus
(Figure 1). In the present study, we were unable to distinguish
between neurons inherent to the core and those locating to the
diffuse aspects of the PPN, which may represent ventral parts
of the nucleus subcuneiformis/cuneiformis.

Antibodies Used

Antibodies used were as follows: mouse monoclonal antie
mitochondrial porin (VDAC1; 1:400; Mitosciences, Eugene,
OR; code MSA08); mouse monoclonal antiemitochondrial
Complex-I, subunit 19 kDa (GRIM-19; 1:100; Mitosciences;
code MS103); mouse monoclonal antiemitochondrial
Complex-I, subunit 20 kDa (NDUFB8; 1:100; Mitosciences;
code MS105); mouse monoclonal antiemitochondrial
Complex IV, subunit 1 (COX-1; 1:100; Mitosciences; serum
code MS404); goat polyclonal antiecholine acetyltransfer-
ase (1:500; Millipore, Temecula, CA; code AB144P-200UL;
rabbit polyclonal antieglycine transporter 2 (GlyT-2; 1:500;
Abcam, Cambridge, UK; code ab99098); rabbit polyclonal
antieglutamic acid decarboxylase 65/67 (GAD65/67; 1:500;
Sigma-Aldrich, St. Louis, MO; code G5163); and mouse
monoclonal anti-aSYN (1:20; Novocastra/Leica Biosystems,
Newcastle-On-Tyne, UK; code NCL-L-ASYN; clone KM51).
The secondary antibodies used were biotinylated goat

antiemouse IgG (Hþ L chain specific) for primary antibody
1 (1:150) and 2 to 4 (1:200; Vector Laboratories Inc.,
Peterborough, UK; code: BA-9200); for the immunofluo-
rescence reaction that involved primary antibody 5, the sec-
ondary biotinylated rabbit antiegoat IgG (H þ L chain
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Summary of Clinical and Neuropathological Characteristics of Patients and Controls

Case Sex

Age of PD
symptom
onset (y)

Age at
death
(y)

PMI
(h) Clinical history Meds Neuropathology diagnosis

AD
Braak
stage

Cortical
LB score

PD1 M 73 86 18 Ischemic heart disease; myocardial

infarct; transient ischemic attack;

acute bronchopneumonia; pulmonary

thromboembolism; postural

hypotension; falls

Madopar;

Sinemet

PD dementia; neocortex: ubiquitinþ

and aSYNþ neurons; SN: severe
neuron loss; LC: severe neuron
loss; remainder pale with
occasional LBs

IV 17

PD2 M 70 78 13 Epilepsy; bronchopneumonia; increased

motor tone and cogwheeling

Sinemet;

phenytoin

PD; ischemia in hippocampus CA1;

SN: neuron loss, LBs; LC: LBs

II 1

PD3 F 75 83 19 Bronchopneumonia; postural hypotension Unknown PD; neocortex: aSYNþ neurons III 9

PD4 F 70 76 21 Bronchopneumonia; septicemia;

adult-onset diabetes

Unknown PD-dementia; brainstem: aSYNþ

neurons; SN: severe neuron loss;
remainder pale with LBs; LC:
moderate neuron loss, multiple
LBs; hippocampus: LBs

IV 11

PD5 F 63 72 24 Dementia Unknown PD; DLB; minimal ATP II 7

PD6 M 60 68 11 Dementia; visual hallucinations; delusions Unknown PD; DLB; neocortex: aSYNþ neurons IV 0

PD7 F 55 65 24 Pulmonary embolism; pulmonary edema;

bronchopneumonia; dementia

Unknown PD; dementia; neocortex: aSYNþ

neurons
IV 13

PD8 M 65 78 23 Partial vertical supranuclear gaze palsy;

postural myoclonus; dementia

Donepezil;

Sinemet;

Madopar

PD; mixed DLB; mild ATP III 13

Cntr1 M - 70 18 Cognitively normal; triple ascending aortic

aneurism

Unknown Mild amyloid angiopathology; mild

degree of diffuse amyloid plaques;

0 0

Cntr2 M - 68 21 Cognitively normal; bowel cancer with

pulmonary and liver cancer metastasis;

no brain cancer metastasis

Unknown Small superficial micro-infarcts in

temporal and frontal cortex;

trauma

0 0

Cntr3 M - 72 17 Cognitively normal; esophageal

adenocarcinoma

Unknown Mild ATP: some tangles in the

neocortex

I 0

Cntr4 F - 93 21 Cognitively normal; pneumonia Unknown Mild AD-type pathology; small

cerebellar infarct; striking

perivascular dilation

I 0

Cntr5 F - 69 16 Cognitively normal; blind; hypertension;

renal and cardiovascular disease;

possible heart infarct

Unknown Focal pathology: vessel wall

collagenosis and axon/myelin

loss in periventricle and DWM

of parietal lobe; axon/myelin

loss in optic tract; perivascular

lacunae in GP

I 0

Cntr6 F - 75 30 Cognitively normal; endometrial cancer

metastasis

Unknown No evidence of neurodegenerative/

cerebrovascular disease

0 0

Cntr7 M - 75 19 Cognitively normal; MI; chest infection;

skin cancer

Unknown Mild DWM pathology: activated

microglia; mild vascular changes

in central DWM and cortex;

age-related ubiquitin dot profiles:

profusion in entorhinal cortex;

pons: mild demyelination

I 0

Cntr8 F - 85 18 Cognitively normal; chest infection;

pneumonia

Unknown No evidence of neurodegenerative/

cerebrovascular disease in spinal

cord, hippocampus, multiple

cortical lobes, motor cortex, and

cerebellum

0 0

Cntr9 M - 80 22 Cognitively normal; MI Unknown No evidence of neurodegeneration

in CNS

0 0

For PD cases sex ratio (M/F) was 4:4, mean age of PD symptom onset was 66.38� 6.84 years, mean age at death was .75 � 7.16, and mean PMI was 19.13�
4.94 hours. For control patients, sex ratio (M/F) was 5:4, mean age at death was 76.33 � 8.31years, and mean PMI was 20.22 � 4.18 hours.
F, female; M, male; AD, Alzheimer disease; ATP, Alzheimer type pathology (ie, plaques and tangles); CNS, central nervous system; DLB, dementia with Lewy

bodies; DWM, deep white matter; GP, globus pallidus; LC, locus coeruleus; MI, myocardial infarction; SN, substantia nigra.

Single-Cell Changes in PPN in Parkinson
specific; 1:200; Vector Laboratories; code BA-5000) and
Alexa Fluor 488-conjugated streptavidin (1:200; Molecular
Probes, Eugene, OR; code S-11223) were used. For detecting
antieGlyT-2 (primary antibody 6), rhodamine red (TRITC)
affinity-pure goat antierabbit IgG (H þ L chain specific;
The American Journal of Pathology - ajp.amjpathol.org
1:200; Jackson ImmunoResearch Laboratories, West Grove,
PA; code 111-025-045) was used. Anti-GAD65/67 (primary
antibody 7) was detected with fluorescein-conjugated goat
antierabbit IgM þ IgG (H þ L chain specific; 1:200;
Southern Biotech; Birmingham, AL; code: 4010-02). Finally,
1829
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Figure 1 Loyez-CFV stained sections show the most caudal (A) and
rostral (B) aspects of the series of serial sections stained with various
antibody combinations for the present study. Mapped outlines (C and D)
indicate the anatomical location of the PPN in relation to major sur-
rounding structures, including the PAG, CnF, and DRN that form along the
axis of the brainstem. The individually tiled images that make up A and B
were captured with a Zeiss Axio ImagerZ2. The images were stitched
together to make up the mosaic by using AxioVision software version 4.8
(Carl Zeiss). The insets show magnified images of the PPN region (A and B),
which prominently features large, triangular-shaped neurons that charac-
terize the PPN. A10, ventral tegmentum (paranigral nucleus) A10 cell
population; CnF, nucleus cuneiformis; CP, midbrain cerebral peduncle; DRN,
dorsal raphe nucleus; IC, inferior colliculus; ML, medial lemniscus; MLF,
medial longitudinal fasciculus; PAG, periaqueductal gray; PN, pontine gray
nuclei; PPN, pedunculopontine nucleus compactus; RRF, retrorubral fields;
SNpc, substantia nigra pars compacta; SCP, superior cerebellar peduncle;
III, third cranial nerve. Original magnification: �20 (A and B); �2.5
(insets). Scale bars: 500 mm (A and B); 50 mm (insets).

Pienaar et al
anti-aSYN (primary antibody 8) detection was performed
with biotinylated horse antiemouse IgG (H þ L chain spe-
cific; 1:200; Vector Laboratories; code BA-2000).

All primary and secondary antibody dilutions were made
in Tris-buffered saline (TBS; pH 7.4).

IHC for Detecting Intraneuronal aSYN Aggregates

For detecting intraneuronal aSYN aggregates within the
PPN, standard immunohistochemistry (IHC) methods were
applied to a single frozen section per patients with PD of
control case (Table 2) were air dried for 60 minutes at room
temperature and fixed in 4% paraformaldehyde in PBS for 30
1830
minutes. Endogenous peroxidase activity was quenched by
incubating the sections in 3% hydrogen peroxide (H2O2) for
20 minutes at room temperature. Because frozen sections
allow for better antigen preservation than the excessive fix-
ation and processing regime associated with formalin-fixed,
paraffin-embedded brain tissue,43 leaving antigens in a
more native state, no antigen-retrieval step was required. The
sections were rinsed in TBS before incubation with blocking
buffer (3% normal horse serum in PBS; Vector Laboratories)
for 60 minutes at room temperature. Anti-aSYN was then
applied for 90 minutes at room temperature. After washing in
PBS, an appropriate secondary antibody was applied for
30 minutes at room temperature, followed by incubation in
the avidin-biotin-peroxidase complex (ABC), prepared as
directed (Vectastain Elite ABC kit; Vector Laboratories). The
slides were washed several times in TBS and then rinsed in
TBS that contained 1% Tween-20 before the antibody
binding sites were visualized with a 3,30-diaminobenzidine
tetrahydrochloride (DAB) substrate (Peroxidase Substrate
Kit; Vector Laboratories), prepared as directed and applied to
the sections for 10 minutes at room temperature. Slides were
rinsed in distilled H2O for 10 minutes and then counter-
stained for 10 minutes with Mayer’s hematoxylin (Histolab
Products AB, Göteborg, Sweden) to view the nuclei. Finally,
the sections were dehydrated, cleared, and mounted with
DPX mounting media (Leica Biosystems, Wetzlar, Ger-
many). For negative control slides, anti-aSYN antibody was
omitted (blocking buffer only).

IHC for Detecting Mitochondrial Mass and
Mitochondrial Respiratory Chain Protein Subunits

Table 2 provides an overview of the staining protocols
followed for the various immunodetection combinations
used here. Sections were stained with primary antibodies
directed against specific subunits of respiratory chain com-
plexes I, II, and IV and detection of porin, a voltage-
dependent anion-selective channel, located to the outer
mitochondrial membrane, regarded as a reliable marker of
mitochondrial density.40 Specifically, the mitochondrial
respiratory chain proteins assessed here comprised mtDNA
encoded subunit-I of complex IV (COX-I) and the two
nuclear encoded subunits, Co-I 19 kDa and Co-I 20 kDa.
Briefly, frozen sections were air-dried, fixed in 4%

paraformaldehyde in 0.1 mol/L PBS for 30 minutes, after
which they were thoroughly washed in TBS. Endogenous
peroxidase activity was quenched with 3% H2O2 for 30
minutes followed by washing in TBS. Nonspecific binding
was then blocked in TBS that contained 3% normal goat
serum and 2% bovine serum albumin for 30 minutes. The
blocking solution was then tipped off each section, before
they were incubated for 90 minutes at room temperature in
the respective primary antibody solution used for detecting
the mitochondrial proteins of interest here (for the concen-
trations used, see above). Sections were washed in TBS
(3 � 3 minutes), before the biotinylated secondary antibody
ajp.amjpathol.org - The American Journal of Pathology
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Table 2 IHC Staining Scheme Design for Immunodetection of Antigens

Section no. Stained for

1 (most caudal) Loyez-CFV (high-contrasting histological stain, to confirm presence of PPN using anatomical identifiers)
2 Porin þ cholinergic neuron identifier þ nuclear marker counterstain
3 Porin þ GABAergic neuron identifier þ nuclear marker counterstain
4 Porin þ glycinergic neuron identifier þ nuclear marker counterstain
5 CO-1 (19 kDA) þ cholinergic neuron identifier þ nuclear marker counterstain
6 CO-1 (19 kDA) þ GABAergic neuron identifier þ nuclear marker counterstain
7 CO-1 (19 kDA) þ glycinergic neuron identifier þ nuclear marker counterstain
8 COX/SDH immunoassay
9 IHC for detecting aSYN, including LBs and LNs
10 CO-1 (20 kDA) þ Cholinergic neuron identifier þ nuclear marker counterstain
11 CO-1 (20 kDA) þ GABAergic neuron identifier þ nuclear marker counterstain
12 CO-1 (20 kDA) þ glycinergic neuron identifier þ nuclear marker counterstain
13 COX1 þ cholinergic neuron identifier þ nuclear marker counterstain
14 COX1 þ GABAergic neuron identifier þ nuclear marker counterstain
15 COX1 þ glycinergic neuron identifier þ nuclear marker counterstain
16 (most rostral) Loyez-CFV high-contrasting histological stain (to confirm presence of PPN) þ nuclear marker counterstain

Staining was performed on serial 20-mm thick fresh/frozen sections that followed and contained the PPN. Sections containing the PPN were identified with
combined Loyez-CFV IHC, performed at the start of the most caudally available aspect of the serial sections and at the most rostral end, but still within the PPN
nucleus. An example of a Loyez-CFV stained section can be seen in Figure 1. In each case where a mitochondrial marker is co-stained with a marker identifying
a particular neuronal phenotype (cholinergic, GABAergic, and glycinergic neurons), the mitochondrial protein was detected by using a chromogen (DAB),
whereas the neurochemical phenotype was detected by use of a fluorescence-coupled secondary antibody.

Single-Cell Changes in PPN in Parkinson
diluted in TBS was applied for 30 minutes at room tem-
perature. This was followed by horseradish perox-
idaseeconjugated ABC reagent from the Vector Elite kit
(Vector Laboratories) prepared according to kit protocol.
Bound peroxidase was visualized by incubation with DAB
substrate chromogen, using a commercial kit (Vector Lab-
oratories; SK-4100) for 8 minutes. Care was taken to ensure
that each section was exposed to DAB for this length of
time only, after which time the reaction was stopped by
rinsing the sections in cold PBS solution. Moreover, to
eliminate variation in intensity of immunostaining, staining
with the use of one antibody combination (Table 2) was
performed for all patients with PD and control subjects on
the same day.

Immunofluorescence Histochemistry for Detecting PPN
Neuronal Subtypes

A dual IHC assay was designed, combining staining for the
mitochondrial markers of interest (see above) with the
detection of neuron-specific markers in the PPN (Table 2).
To correlate mitochondrial staining with subtype-specific
PPN neurons, we performed a sequential staining protocol,
by first applying a chromogen detection strategy for the
various mitochondrial proteins of interest (see above).
Immediately after this step, we performed immunofluores-
cence labeling for either GAD 65 or GAD 67 for identifying
GABAergic cells; GlyT-2, a neuronal marker of glycinergic
neurons, or antiecholine acetyltransferase that serves as a
marker of cholinergic cells. We ensured that sections did not
dry out after the immunohistochemical staining protocols
for the various mitochondrial proteins. Immediately after the
chromogen staining protocol, sections were reblocked in 5%
The American Journal of Pathology - ajp.amjpathol.org
normal goat serum, 2% bovine serum albumin, and 0.5%
Triton X-100, before applying the primary antibody for
detecting GABAergic, glycinergic, or cholinergic neurons
and then incubating the sections overnight at 4�C. The
sections were then washed in TBS (3 � 3 minutes), before
applying the fluorochrome-conjugated secondary antibodies
(see above). The sections were incubated in the secondary
antibody solution for 60 minutes at 37�C. Nuclei were
labeled with TBS-diluted Bisbenzimide Hoechst 33342
nucleic acid stain (1:200, no. B2883; Sigma-Aldrich) for 30
minutes at room temperature. The sections were given a
final wash in TBS, before being covered with ProLong Gold
anti-fade mounting media (Invitrogen, Paisley, UK) and
protected with a coverslip. In each case, no signal was
observed in control sections where the primary antibody to
the various neuronal-type (GABAergic, glycinergic, and
cholinergic) marker protein was omitted.

Quantification of Neurons

Quantification of the numbers of GABAergic, cholinergic,
and glycinergic neurons in the PPN was achieved by a
semistereological method. Cell counts for these neurons
were performed on the same images that had been captured
for densitometry and somatic cell size analyses (hence,
serially cut PPN sections).

GABAergic, cholinergic, or glycinergic neurons were
considered as such, if they met the staining criteria deemed
for the respective neuronal subtype (see Neurochemical
Identification of PPN Neurons). The counts were per-
formed with the cell counter function in ImageJ image
analysis software version 1.4 (National Institutes of Health,
Bethesda, MD), which allowed for labeling of neurons. In
1831
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all instances, a GABAergic, cholinergic, or glycinergic
neuron was marked (once only) for counting, if it displayed
large, spherical DAPI-stained neuronal nuclei.44 In addition,
a neuron was considered immunopositive if the nucleus was
surrounded by cytoplasm filled by colored precipitate,
respective to the specific neuronal type being immubola-
beled (GABAergic and cholinergic, green; glycinergic, red).
In addition, a neuron was only flagged for inclusion in the
overall cell count of its respective PPN cell population if it
was deemed to be clearly in focus at a specific focal plane.
Overlapping cells were omitted from the analysis.

Each of the four PPN sections used for calculating
neuronal density for each neuronal subtype covered an area
of 1.949 mm2, representing 15 adjacent PPN regions, which
had been stitched together with AxioVision software
version 4.6 (Carl Zeiss, Jena, Germany). The counts are
presented as number of neurons/mm2 � SD of the means.

Neuronal Cell Body Areas

The same images captured for densitometric analyses were
used for determining area size (mm2) of the somas of cells
identified fluorescently as GABAergic, glycinergic, and
cholinergic and was calculated by using ImageJ software
version 1.4 (National Institutes of Health). Only well-
defined individual cells were used, whereas overlapping
cells were excluded from the analysis.

Relative Densitometric Measurements

In each case the PPN boundary was manually outlined with a
camera lucida attached to the microscope. The section
boundary was then used as a guide to locate the PPN with the
use of an epifluorescent microscope (Axioplan 2; Carl Zeiss)
equipped with a motorized stage used to systematically cover
the entire PPN region. For capturing images, a high-resolution
objective lens (Plan-Neofluar, 40�/0.75) and an Axiocam
HRc digital camera (Carol Zeiss) were used. Identical expo-
sure times were used throughout. Images were captured as
separate or unmixed fluorescent images by using the multi-
channel acquisition function of the image capturing software
(AxioVision; Carl Zeiss). Hoechst 33342 signal was captured
with a DAPI filter cube, green-fluorescent fluorescein with a
fluorescein isothiocyanate cube, and Rhodamine with a
TRITC cube (Carl Zeiss). All images were collected under the
samemicroscope settingswith the use of previously described
procedures. We used a protocol for analysis of bright field
images, which, by being automatic and nonsubjective, has
been shown to facilitate accurate measurement of regional
variations in optical density.40,45e49 The light microscopy
images were converted into an eight-bit gray scale (mono-
chromatic) digital image, for processing binary (black and
white) color information, representative of the DAB content.
Because the DAB stain intensity represents a unitless value
that ranges between 0 (black) to 255 (white), values were
inverted by subtracting them from 255. Therefore, more
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intense staining gave a higher value, before applying a
weighting calculation for estimating the amount of DAB
(antigen) as a dimensionless index.An identical thresholdwas
applied to all images to eliminate background.
Contiguous, slightly overlapping individual images were

stitched together with ImageJ software version 1.4 (National
Institutes of Health) to create a mosaic from which global
computerized densitometric values for porin, COX-I, Co-I
19 kDa, and Co-I 20 kDa expressions were obtained. On the
basis of morphology and the overlap of the nuclear marker
with neurochemical subtype-specific fluorescent staining,
single GABAergic, glycinergic, and cholinergic neuronal
cellswere outlined and copied onto the unmixedmonochrome
images of complex I and IV activity. The densitometric
parameter computed was absorbance (integrated optical
density; IOD), as a proxymarker of protein levels, reported as
arbitrary values of mean pixel density per selection area. The
investigator (I.S.P.) were blinded to clinical diagnosis.

COX-SDH Histochemistry

The presence of COX-deficient neurons is regarded as a
pathological hallmark of mtDNA mutations.50 Succinate
dehydrogenase (SDH) is entirely encoded by nuclear DNA,
whereas COX contains subunits encoded for by both the
mtDNA and nuclear genome, thereby allowing the COX-
SDH assay to detect mitochondrial genomic deficiency that
affects COX. We performed dual histochemistry to identify
and quantify deficiency of COX alongside SDH-positive
cells within the PPN, using a previously described method.51

Statistical Analysis

Comparison of neuronal densities, cell size, mitochondrial
respiratory chain subunit immunoreactivity between cases
and controls are reported as mean values � SD. For the
analyses of cell size and protein expression, the mean value
for each participant, along with the SD and number of ob-
servations was used in significance testing. All these data
sets were analyzed by using an unpaired, two-tailed Stu-
dent’s t-test. Spearman’s rank correlation coefficient was
used to assess whether a correlation between mean protein
expression and either LB or Braak stage could be detected.
Spearman’s rank correlation coefficient was used to assess
whether a correlation between mitochondrial protein
expression levels and postmortem delay could be detected.
Statistical analysis was performed with GraphPad Prism
software version 4.0 (GraphPad Inc., San Diego, CA).

Results

Clinical Details and Neuropathological Features of
Study Cases

The clinical and postmortem neuropatholological charac-
teristics of the control and PD cases used in the present
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Fluorescence IHC with the use of an anti-GAD65/67 antibody
indicates the presence of small, round GABAergic neurons in the PPN of
postmortem brain specimens (in green, control case, arrows, A; PD-
affected case, arrows, B). Immunofluorescence detection of an antibody
that targets GlyT-2 was used for labeling glycinergic neurons in the PPN (in
red, control case, arrows, C; PD-affected case, arrows, D). Choline ace-
tyltransferase fluorescence immunoreactivity indicated the presence of
cholinergic neurons in the PPN (in green, control case, arrows, E; PD-
affected case, arrows, F). For each neuronal subtype investigated here,
the sections were counterstained with a nuclear marker, Bisbenzimide
Hoechst 33342, indicated in blue. Right panels show the merged images.
Images were processed after capture in Adobe Photoshop software version
7.0 (Adobe Systems, Mountain View, CA), adjusting for levels of brightness
and contrast and merged automatically with the built-in functions of the
software program. Original magnification, �64/1.4 NA oil-based. Scale
bars: 50 mm (A, B, E, and F); 20 mm (C and D).

Figure 2 IHC with the use of a peroxidase-DAB detection method for
indicating the accumulation of aSYN deposits within neurons of the PPN
region in postmortem brains of patients with PD. Shown is magnification of
the thread-like LNs (arrows, A) and dot-like LBs (arrowheads, B), both of
which are visible as a dark brown colored precipitate. Lewy pathology in the
PPN was not detected in any of the case controls studied here. Original
magnification: �20 (A and B). Scale bars: 20 mm (A and B).

Single-Cell Changes in PPN in Parkinson
study are summarized in Table 1. PD cases showed the
presence of aSYN-positive LBs and LNs in SNpc and also
in some PD cases the presence of cortical aSYN pathology.
Investigation of the PPN showed the presence of LNs
(Figure 2A) and LBs (Figure 2B) within PPN neurons in six
of eight PD cases but not in any of the neurologically intact
control cases. This accumulation of aSYN aggregates, a
protein known to localize presynaptically, indicates that the
PPN is pathologically affected in PD, consistent with pre-
vious observations.52

Neurochemical Identification of PPN Neurons

GABAergic neurons were identified by labeling with an anti-
body that recognized both GAD65 and GAD67, the enzymes
involved in GABA synthesis, thus serving as a GABAergic
cell-specific marker.53 GAD65/67-immunopositive neurons
were small (<20 mm in diameter) and round (Figure 3, A and
B), while morphologically appearing very dissimilar to neu-
rons labeled for either glycinergic or cholinergic neurons.With
the use of an antibody specific for GlyT-2 as a marker of gly-
cinergic neurons,54 immunoreactivity was observed in glyci-
nergic neurons (<15 mm in diameter) both in the soma and
neurites, with a higher concentration of expression noted at the
polar end of the cell body, similar to previous descriptions
(Figure 3, C and D). The PPN Ch5 cholinergic neurons were
identified (Figure 3, E and F) as a cluster of relatively large
neurons (approximately 30 mm diameter), principally of pyra-
midal shape.Our labeling scheme identified three specific types
of neuronswithin the PPN, but it is plausible that other neuronal
subtypes exist (eg, glutamatergic neurons), although thesewere
not assessed in the present study.

Quantification of Neurons

We estimated the numerical density of different neuro-
chemically defined neurons in the PPN, expressed as the
average number of neurons per square millimeter. Confirm-
ing previous reports,31,32,36 a reduced density of the PPN
cholinergic neurons, by approximately 50%, was seen in PD
The American Journal of Pathology - ajp.amjpathol.org
cases (30.07 � 0.82 neurons/mm2) compared with controls
(62.70 � 1.37 neurons/mm2; P < 0.0001; four sections were
analyzed for each of the PD and control cases) (Figure 4). Our
study reports, for the first time, that GABAergic cell counts
were also significantly decreased in the PD-affected PPN
compared with control PPN (152.0 � 2.76 GABAergic
neurons/mm2 for PD; 184.3 � 3.2 for controls; P < 0.0001;
four N sections analyzed/control or PD case), equating to a
1833
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Figure 5 The means � SD of area covered by the neuronal cell body
(mm2) of GABAergic, glycinergic, and cholinergic neurons were calculated
by identifying such neuronal populations in the PPN region of control and
PD cases, using fluorescent IHC applied to post-mortem brain sections.
Hypertrophy was seen in the neuronal cell bodies of GABAergic and gly-
cinergic neurons in PD, whereas a noted shrunken appearance was observed
in cholinergic neurons in PD. Statistical analyses with an unpaired Stu-
dent’s t-test found a significant increase in somatic area for both GABAergic
and glycinergic (*P < 0.0001) PPN neurons in PD cases compared with
controls. However, the reverse was seen for the PPN cholinergic neurons, to
indicate a statistically significant decrease in the cholinergic neuronal cell
area in PD cases compared with controls (P Z 0.008). The numerical
summary data for both patients and controls can be viewed in Supplemental
Table S2.

Figure 4 The neuronal density for GABAergic, glycinergic, and
cholinergic neurons (� SD) within the PPN of PD-affected cases compared
with controls. Each neuronal type was counted in four serially cut sections
of the PPN region for each of the control and PD cases, the PPN counting
region comprised an area of 1.949 mm2. Analyses found a decreased
number of GABAergic, glycinergic, and cholinergic cells in PD cases
compared with controls, reaching a statistically highly significant extent.
*P < 0.001, unpaired Student’s t-test. The measurements indicated that
the loss of cholinergic cells in the PD-affected cases was most pronounced
(48%) compared with GABAergic and glycinergic cell loss.

Pienaar et al
neuronal loss of 18% in PD cases (Figure 4). At the same time,
another novel observation was that a reduction was observed
for PPN glycinergic neuronal densities (98.64 � 1.28 neu-
rons/mm2 in PD cases, 113.7� 1.1 neurons/mm2 in controls;
P < 0.0001; four sections analyzed per neuronal marker per
control or PD case) (Figure 4), equating to a loss of just>13%
in glycinergic cell density in the PPN of PD cases.

Neuronal Somatic Size

A statistically significant difference was observed in terms
of the somatic area of GABAergic neurons, between the
PPN of normal controls and those of PD affected cases
(P Z 0.0001) (Figure 5), with the PD-affected neurons
appearing generally larger than those analyzed in control
cases. Specifically, the mean somatic size for the GABAergic
neurons in the PD-affected PPN sections was 32.25 � 0.21
mm2 (667 individual neurons analyzed, across four PPN
sections per PD case). In the PPNs of control brains the
neuronal size of GABAergic neurons was calculated to 28.70
� 0.17 mm2 (1428 individual neurons analyzed, across four
PPN sections per control case). Similarly, the area size of
glycinergic neurons in PD cases were larger (P < 0.0001)
(Figure 5) than those in control sections, with a mean cell area
of 16.72 � 0.18 mm2 (496 individual neurons analyzed,
across four PPN sections per PD case), compared with an
average of 8.93 � 0.08 mm2 in the controls (608 individual
neurons analyzed, across four PPN sections per control case).
In contrast, the area size of cholinergic neurons in the PPN
was dramatically reduced in size in PD compared with con-
trols (P Z 0.0008) (Figure 5).

The mean somatic area of cholinergic neurons in the PD-
affected PPN was 75.78 � 0.92 mm2 (313 individual neu-
rons analyzed, across four PPN sections per PD case),
compared with a mean of 94.59 � 1.4 mm2 (501 individual
neurons analyzed, in 4387 PPN sections per control case).
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Supplemental Table S1 shows the number of observations
made for each of the PD cases and controls when totaled
across the four sections examined for each participant. The
same table also shows the means � SD of cell size for each
of the participants; again as an average of the neurons
analyzed over the four sections examined per participant, for
each of the neuronal subtypes studied here. Examination of
the data for each study participant indicated that the sig-
nificance values observed were not the result of outliers in
either cohort, and thus likely reflect an important physio-
logical difference between the two groups. The use of four
PPN sections per participant, per neuronal type, is likely to
have been important in the clear demarcation seen in the cell
size values in the two cohorts.
Measurement of Mitochondrial-Related Protein
Content in Neurochemically Distinct PPN Neurons

PPN GABAergic neurons showed a significantly increased
mean expression level (measured as the IOD score; see
Materials and Methods) of porin in PD cases compared with
controls (P Z 0.0007) (Figure 6A and Supplemental Table
S2). A similar pattern was seen after IHC detection for the
mitochondrial respiratory chain subunits COX-I, Co-I 19
kDa, and Co-I 20 kDa in PD cases compared with controls
in the same PPN neuronal subtype (P < 0.0001) (Figure 6A
and Supplemental Table S2). Analysis of porin expression
levels in glycinergic PPN neurons indicated a highly sig-
nificant up-regulation in PD cases versus controls (P <
0.0001) (Figure 6B and Supplemental Table S3). Similarly,
expression levels of COX-I, Co-I 19 kDa, and 20 kDa
showed a highly significant increase in the same neurons
analyzed in PD-affected cases compared with controls (P <
ajp.amjpathol.org - The American Journal of Pathology
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Figure 7 Dot-plot graphs show individual immunoreactivity measures
taken for porin (A), COX-I (B), Co-I 19 kDa (C), and 20 kDa (D) localizing to
GABAergic PPN neurons. All measures taken for the nine control cases (black)
and eight patients with PD (red) are shown. A comparison of patient and
control data for porin in the GABAergic PPN neurons yielded a significant
difference (P Z 0.0007). In addition, a highly significant difference in
expression was seen for COX, Co-I 19 kDa, and Co-I 20 kDa, when analyzing
the GABAergic PPN neurons of patients with PD versus neurological control
cases (P < 0.0001). EeH: Dot-plots of individual immunoreactivity mea-
sures recorded in PPN glycinergic neurons for controls (black) and patients
(red) for porin (E), COX-I (F), Co-I 19 kDa (G), and Co-I 20 kDa (H)
expression. Statistical analysis indicated a highly significant difference in
the expression levels for all proteins measured (P < 0.0001). Pts, patients.

Figure 6 IOD values of porin, COX-I, Co-I 19 kDa, and Co-I 20 kDa from
densitometric analyses with the use of ImageJ software version 1.4 (Na-
tional Institutes of Health), obtained for distinct PPN neuronal populations
indicated highly significant (*P < 0.001) or extremely significant (**P <

0.0001) differences between controls and patients with PD in GABAergic
(A), glycinergic (B), and cholinergic (C) PPN neurons. In particular, porin
IHC indicated a mitochondrial density increase in the PPN GABAergic and
glycinergic neurons of PD specimens relative to controls. However, this
expression pattern was reversed for cholinergic neurons, with lower porin
expression seen in the PD cases compared with controls. A similar effect
was seen for the mitochondrial electron transport chain proteins COX-I,
Co-I 19 kDa, and Co-I 20 kDa, indicating up-regulated expression in
GABAergic neurons and glycinergic neurons of PD cases. However, a
reversed trend was seen in PPN cholinergic neurons of PD cases, which
rather showed down-regulated expression in PD cases relative to controls.
Numerical summary data for both patients and controls can be viewed in
Supplemental Tables S3 to S5

Single-Cell Changes in PPN in Parkinson
0.0001) (Figure 6B and Supplemental Table S3). In
contrast, analyses of PPN cholinergic neurons for porin
indicated that this protein’s expression level was signifi-
cantly lower in patients with PD than in controls (P <
0.0001) (Figure 6C and Supplemental Table S4). This
pattern repeated itself in analyses performed for COX-I, Co-
I 19, and Co-I 20 kDa expression (P < 0.0001) (Figure 6C
and Supplemental Table S4). Plots showing the individual
data points collected for this analysis are given in Figure 7,
AeH, and Figure 8, AeD; the clouds of data points are a
stark illustration of the differential protein expression in the
cases and controls. Examination of the tabulated data, which
gives participant means, SD, and the number of observa-
tions, indicates clearly that the differences in expression, as
found in Figures 7 and 8, are not the result of a few unusual
cases in either cohort that have been overrepresented in the
data collection.
The American Journal of Pathology - ajp.amjpathol.org
The presence of prolonged agonal factors, such as res-
piratory arrest, multiorgan failure, or coma preceding death,
resulting in decreased pH of the postmortem brain tissue,
has been shown to adversely affect the quality of RNA by
some.55 However, others have reported that, although brain
pH decline was related to agonal state severity, this was seen
to be independent of postmortem interval (PMI) and the
histological presence of hypoxic changes.56,57 Moreover, it
was shown that the PMI exerted no effect on either mRNA
yields or the protein products, up to 48 hours after death.56

Protein level fluctuations are generally regarded as more
resistant to degradation than fluctuations of RNA levels.58

None of the patients with PD or control subjects from
whom postmortem brain tissue was collected for analyses in
the present study indicated what could be regarded as the
excessive duration or a severe agonal state preceding death
(Table 1). Moreover, the collection and processing of
postmortem material from cases and controls was done
1835
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Figure 9 A representative section of PPN tissue stained with COX/SDH
histochemistry shows respiratory-normal activity (brown staining) in the
neurons (arrowheads, A) of a control patient, as opposed to the COX-
deficiency (blue staining) seen in the PPN tissue of PD cases (arrow, C). B:
Shown is the apparent lack of COX-deficiency/SDH positivity throughout the
neuronal projection fibers and particularly for neuronal somata (arrowhead)
within the PPN region of a representative control case, in contrast to the blue
staining seen for neurons in PD cases (arrow, D). However, in PD cases, COX
deficiency was only seen in a limited number of PPN neurons, most of them
appearingwith intact respiratory activity. Originalmagnification:�40 (A and
C); �10 (B and D). Scale bars: 10 mm (A and C); 20 mm (B and D).

Figure 8 AeD: Dot-plots show individual immunoreactivity values for
porin (A), COX-I (B), Co-I 19 kDa (C), and Co-I 20 kDa (D) expression in
PPN cholinergic neurons. As with GABAergic and glycinergic neuronal
populations, a highly significant difference (P < 0.0001) in the expression
levels of these proteins was seen in cholinergic PPN neurons in PD. How-
ever, in contrast to the PPN GABAergic and glycinergic neurons, the
expression of these mitochondria-related proteins in cholinergic neurons
was decreased in the PD cases. Pts, patients.

Pienaar et al
within the parameters set by the BrainNet Europe con-
sortium.57 This included minimizing the time for dissection,
rapid removal of the brain tissue, followed by immediate
and appropriate freezing and storage of the tissue. However,
because determining the effects of PMI on brain tissue
samples is a complex issue, we performed a Pearson’s cor-
relation between the mean mitochondrial protein IOD levels
and PMI, for both PD cases and control subjects for PPN
neuronal subtypes studied here. The results of the 24 corre-
lations conducted affirm that no relation exists between PMI
and the IOD values, providing confidence that the observed
IOD changes were not because of the variable PMIs among
the PD cases and controls (Supplemental Table S5).

No Correlation Between Mitochondrial Protein
Expression Levels and the Related Braak and LB Stage
of PD Cases

Further analyses were performed to address whether a cor-
relation existed between the mitochondrial protein expres-
sion (IOD) values and the respective Braak stage and LB
score of the patients with PD included in this study. The
relevant Braak and LB stage clinical information for all
patients are given in Table 1. No significant correlation was
detected between the mean IOD values in the patients with
PD in terms of either the Braak stage or the LB stage, for
any of the four proteins examined in any of the three
neuronal types (P > 0.05, Spearman’s rank correlation test).

Limited Mitochondrial Dysfunction (COX-deficiency)
Detected in PPN Neurons

COX-SDH histochemistry of sections (one section per
participant) of PD and control cases was used to look for
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indications of mitochondrial respiratory chain dysfunction
within the PPN. All of the neurons inspected in control
cases indicated normal respiration, identified as neurons and
neuronal fibers that stained brown (Figure 9, A and B). In
contrast, respiratory-deficient cells (identified as those that
stained blue) were seen in all eight PD cases included in this
study cohort (Figure 9, C and D), but to a limited extent.
Overtly, COX-negative neurons that were entirely blue were
not seen in any of the PD cases; however, many neurons
that appeared to be COX intermediate could be viewed.

Discussion

Our study aimed to characterize the PPNof patientswith PD in
terms of neurochemically distinct neuronal population loss,
altered neuronal cell size, and differential mitochondrial pro-
tein expression within the remaining PPN neurons. Although
the PPN is traditionally defined as a major cholinergic nu-
cleus, several findings support the view of the PPN being
neurochemically a highly heterogeneous nucleus. Noncho-
linergic PPN neuronal subgroups described so far include
GABAergic,59 glutamatergic,60 and glycinergic61e63 neurons.
In the present study,we quantifiedGABAergic neuronswithin
the PPN and found a significant loss in PD cases compared
with controls (P < 0.001) (Figure 4). This implies that the
GABAergic innervation from the PPN to the SNpc and other
areas of the central nervous system22,64 may be significantly
diminished in PD, potentially contributing to clinical symp-
toms. Although no study before the present one has directly
measured the number of GABAergic neurons, previous
work reported a loss (>40%) of substance-Pecontaining
ajp.amjpathol.org - The American Journal of Pathology
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(presumably GABAergic) neurons in the PPN in PD cases
compared with controls,65 indicating that GABAergic
neuronal loss is a feature of the PPN in PD.Our results suggest
a more modest reduction of GABAergic neurons of 15% to
20% (Figure 4) compared with the extensive PPN cholinergic
neuronal loss we observed in PD-affected brains (approxi-
mately 50%) (Figure 4). This potential imbalance may un-
derlie some of the clinical observations seen in PD. In this
regard, a role has been assigned to GABA disequilibrium in
RBD,66 a frequent co-diagnosis in patients with PD. More-
over, drugs such as clonazepam and melatonin, which
modulate GABAergic function, have been shown to provide
an effective treatment option for alleviating RBD.67,68 Under
normal circumstances, GABA agonist administration to the
PPN results in reduced motor activity, whereas GABA an-
tagonists are without major effects when administered to non-
human primates. However, under conditions of SNpc damage,
GABA antagonists resulted in improved motor function.69

Although it has been assumed that this effect of GABAergic
antagonists in experimental PD models may be due to a
blockade of major inhibitory inputs to the PPN from the in-
ternal part of the globus pallidus and the substantia nigra pars
reticulata,26,60,70 it is possible that local inhibitory activity onto
cholinergic and glutamatergic neurons may also play a role.
Our finding of higher than normal levels of mitochondrial
protein expression within PPN GABAergic neurons may
indicate that local inhibitory neurotransmission within the
PPN may be elevated despite the modest cell loss, requiring
increased mitochondrial function to sustain. Future studies
should aim to identify the GABAergic receptor subtypes
within the PPN to determine whether selective targeting of the
PPN could alleviate aspects of parkinsonism.

We also observed a reduction (approximately 13%) of
PPN glycinergic cell density in PD cases (P < 0.001)
(Figure 4). Glycinergic inhibition is involved in major spinal
motor circuits, and glycinergic receptors have been shown to
complement other inhibitory receptors involved in modu-
lating cholinergic, dopaminergic, and GABAergic neuronal
pathways in the basal ganglia.71 PPN neurons receive
inhibitory glycinergic fast synaptic inputs,63 whereas post-
synaptic inhibition mediated by glycine is also critical for
suppressing motor neuron discharge during the tonic and
phasic periods of REM sleep.72 In addition, Krenzer et al73

provided evidence that in the mouse brainstem glycinergic
neurons serve to regulate REM sleep, while fulfilling a role in
atonia, a frequent feature of PD.21 Our result, of reduced
glycinergic neuronal density in the PPN in advanced PD,
therefore suggests that potential RBD symptoms may at least
in part stem from a loss of glycinergic PPN neurons. Further
investigative work is required to be performed on cases with
prospective assessment of RBD symptoms, with such case
material that were not available with the present cases.

As with GABAergic neurons, glycinergic neurons had
elevated mitochondrial protein expression, potentially trans-
lating to increased mitochondrial function and respiration.
Should future work prove that this feature also translates into
The American Journal of Pathology - ajp.amjpathol.org
enhanced glycinergic tone, REM sleep disturbance and loss
of atonia may be the consequences of enhanced local glyci-
nergic inhibition. Dysfunction of other parts of the circuits
that control muscle tone, including a reciprocal substantia
nigra pars reticulate-to-PPN projection, may also underlie the
postural dysfunction seen in PD.74 Although not investigated
here, excitatory glutamatergic neurons form an additional
PPN subgroup.26,75,76 Given that the SNpc innervation by the
PPN is also mediated by glutamatergic afferents, along with
glycinergic modulation, may provide suitable therapeutic
candidates for treating specific PD symptoms.

Quantification of PPN cholinergic neuron content found
extensive (approximately 50%) cell loss in patients with PD
(Figure 4), to support previous findings.31,32,36 In this respect
the ascending cholinergic projection from the PPN primarily
innervates the SNpc, with up to 25% of cholinergic neurons
in the PPN providing this function.26 Cholinergic neuronal
loss in the PPNwould clearly relate to the findings of gait and
postural disturbances and would further exacerbate SNpc
neuronal loss, with emergence of axial involvement, balance,
and gait problems. In relation to REM sleep disorder, the
cholinergic projection from the PPN to the thalamus may
play a role because the projection is known to regulate REM
sleep and the presence of atrophic PPN cholinergic neurons
would clearly exacerbate this problem in PD.36

In patients with PD, changes in the density of the cholin-
ergic neuron population of the PPNwere accompanied by cell
shrinkage. Both physiological neuronal activity and brain
disorders can lead to cell swelling and shrinkage.77,78 Hirsch
et al31 described the PPN of patients with PD as appearing
shrunken, while displaying a loss of its characteristic sickle
shape. In light of the suggestion that neuronal shrinkage
rather than cell death may be the main phenomenon in
neurodegenerative diseases,79 our present findings support
the concept that these cells could be targeted for potential
therapeutic relief, because atrophied cells can be activated.
The cholinergic cell shrinkage seen in PD may be due to loss
of target innervation and loss of trophic support from the
SNpc and also the thalamus that shows structural and path-
ological changes, particularly in cases with concomitant de-
mentia.80,81 It would be of interest to determine what trophic
factors govern support of PPN neurons or whether activation
of the SNpc provides neurotrophic support. Because PPN
stimulation can ameliorate sleep disturbances accompanying
advanced PD,82 improving the function of cholinergic pro-
jections to the thalamus may be beneficial.

The present report is the first to describe selective changes
in mitochondrial proteins in specified neuronal types of the
PPN, suggesting that widespread mitochondrial abnormal-
ities occur during PD, to not just affect the SNpc. Increasing
evidence implicates mitochondria in the pathogenesis of
PD.5 Here, we analyzed the expression patterns of mito-
chondrial respiratory chain subunits of PPN neurons,
finding a significant decrease in expression of mitochondrial
proteins in cholinergic neurons, suggestive of mitochondrial
injury. A similar decrease in expression was seen for voltage
1837
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dependent anion-selective channel protein 1 (VDAC1/porin),
a major mitochondrial outer membrane protein, to indicate a
loss of mitochondrial mass in PPN cholinergics. Loss of
mitochondrial proteins and mass may relate to our finding of
atrophy of cholinergic neurons, although it is difficult to
ascribe a causal role for the mitochondrial changes. A logical
question that emerges from this finding is whether an un-
derlying mtDNA deficit accompanies the altered expression
of mitochondrial respiratory chain subcomponents. mtDNA
anomalies can be effectively indicated by a dual COX/SDH
histochemical assay.83 Here, PD cases indicated COX defi-
ciency, albeit limited, in scattered neuronal soma (Figure 9, A
and C) and in neuronal projection fibers (Figure 9, B and D),
but with an atypical structure, including patches of soma
appearing COX-deficient in a generally COX-positive cyto-
plasm. It is possible that this represents mitochondrial het-
eroplasmy with certain mitochondria within a cell showing
COX deficiency and others being normal, with entirely COX-
deficient cells only appearing as such when mtDNA muta-
tions reach critical levels.84,85 Previous studies have shown
that mtDNA deletions accumulate to high levels with age in
SNpc neurons,50,86 with a close relationship seen between
high levels of mtDNA deletions and a respiratory chain
defect. In aged healthy persons, COX-deficient skeletal
muscle cells also show mtDNA mutations, including clonal
expansion of the individual mtDNA.87,88 All these studies
concluded that COX-negative cells, with concomitantly high
levels of mtDNA mutation, appear similar to those seen in
patients with inherited mtDNA mutations with similar
biochemical and pathological consequences.

Our study also provides evidence for GABAergic and
glycinergic neuronal losses in the PPN of patients with PD
accompanied by altered somatic structure, similar to cholin-
ergic neuronal loss seen here and in previous reports.31,32,36

Moreover, we report the presence of mitochondrial changes
within neurochemically identified neuronal populations of the
PPN in patients with PD, by finding a reduction in subunits of
complexes I and IV of the mitochondrial respiratory chain in
cholinergic neurons and an up-regulated mitochondrial sub-
unit expression in GABAergic and glycinergic neurons.

Overall, the strategic location of the PPN in the mesen-
cephalic locomotor region of the brain, where it reciprocally
connects with a range of subcortical and thalamic nuclei as
well as the SN, underscores its critical modulatory role in
locomotion and sleep. This suggests that a correlation may
exist between PPN neuronal cell loss and neuronal structure,
altered homeostasis of mitochondrial-related events in the
PPN, and the degree of motor and nonmotor disability seen
in patients with PD.
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