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SUMMARY

The effect of a dynamic technological learning environment on the geometry
conceptualisation of pre-service mathematics teachers

Traditionally, geometry at school starts on a formal level, largely ignoring prerequisite skills
needed for formal spatial reasoning. Ignoring that geometry conceptualisation has a sequential
and hierarchical nature, causes ineffective teaching and learning with a long lasting inhibiting

influence on spatial development and learning.

One of the current reform movements in mathematics education is the appropriate use of
dynamic computer technology in the teaching and learning of mathematics. Conceming
mathematics education, the lecturers may involve the introduction of both dynamic computer
technology and mathematics in meaningful contexts that will enable interplay between the two.
Pre-service mathematics teachers (PMTs) can be encouraged to become actively involved in
their learning and, therefore, less frustrated in their study orientation in mathematics. Therefore,
such learning environments may be essential to enhance the conceptual understanding of
PMTs.

To be able to reach their eventual learners, PMTs' own conceptual understanding of geometry
should be well developed. When PMTs have conceptual understanding of a mathematical
procedure, they will perceive this procedure as a mathematical mode! of a problem situation,
rather than just an algorithm.

This study aimed at investigating the effect of a technologically enhanced learning environment
on PMTs’ understanding of geometry concepts and their study orientation in mathematics, as
prerequisite for deep conceptualisation.

A combined quantitative and qualitative research approach was used. The quantitative
investigation employed a pre-experimental one-group pre-test post-test design. A Mayberry-
type test was used to collect data with regard to PMTs’ conceptualisation of geometry concepts,
while the Study Orientation in Mathematics (SOM) guestionnaire was used to collect data with
regard their study orientation in mathematics. The qualitative investigation employed
phenomenological interviews to coliect supplementary information about the participating PMTs'
experiences and assessment of the influence of the use of the dynamic software Geometer's

Sketchpad (GSP) ® on their learning and conceptualisation of geometry concepts.



During post-testing the participating group of PMTs achieved practically significantly higher
scores in the Mayberry-type test, as well as in all fields of the SOM questionnaire. Results seem
to indicate that PMTs gained significantly in the expected high levels of conceptualisation, as
well as high degrees of acquisition of those levels during the intervention programme. The main
conclusion of the study is that a technologically enhanced learning environment (such as GSP)
can be successfully utilised to significantly enhance PMTs' conceptualisation and study
orientation, as prerequisite for deep conceptualisation, in geometry.

Key terms for indexing:

Mathematics and teaching; mathematics and technology; mathematics teacher; teacher
education; dynamic software; computer technology, mathematics conceptualisation; Piaget;
Vygotsky; Van Hiele; network theory, constructivism; behaviourism.
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OPSOMMING

Die invioed van ‘n dinamiese tegnologiese leeromgewing op die konseptualisering van
voordiens-wiskunde-onderwysers

Tradisioneel begin meetkunde op skool op ‘n formele viak, wat die vereiste vaardighede nodig
vir formele ruimtelike beredenering ignoreer. Die miskenning van die feit dat meetkunde
konseptualisering ‘n sekwensiéle en hiérargiese aard het, veroorsaak oneffektiewe onderrig en
leer met ‘'n langdurige stremmende invioed op ruimtelike ontwikkeling en leer.

Een van die huidige hervormingsbewegings in wiskunde onderrig is die gepaste gebruik van
dinamiese rekenaartegnologie in die onderrig en leer van wiskunde. Rakende wiskunde
onderrig, kan die dosente die bekendstelling van beide dinamiese rekenaartegnologie en
wiskunde in betekenisvolle kontekste plaas wat wisselwerking bewerk. Voor-diens wiskunde
onderwysers (VWO's) kan aangemoedig word om aktief betrokke te raak by hulle leer, en om
sodoende minder gefrustreerd te wees in hulle studie orientasie in wiskunde. Daarom is sulke
leeromgewings essensieel vir die bevordering van die konsepsuele begrip van VWQO's.

VWQO's se eie konseptueile begrip van meetkunde moet goed ontwikkel wees alvorens hulle
hulle uiteindelike leerders kan berelk. Wanneer VWOQO’s konsepsuele begrip het van ‘n
wiskundige prosedure, neem hulle die prosedure waar as ‘n wiskundige model van ‘n probleem
situasie, eerder as net ‘n algoritme.

Hierdie studie het gepoog om die effek van ‘'n tegnologies verrykde leeromgewing op VWQ's se
begrip van meetkunde konsepte en hulle studie oriéntasie in wiskunde, as voorvereiste vir diep
konseptualisasie, te bestudeer.

‘n Gekombineerde kwantitatiewe en kwalitatiewe benadering is gebruik. Die kwantitatiewe
onderscek het ‘n pre-eksmerimentele een-groep voor-toets na-toets ontwerp gehad. ‘n
Mayberry-tipe toets is gebruik om data te versamel aangaande VWO'’s se konseptualisasie van
meetkunde konsepte, terwyl die Studie Oriéntasie in Wiskunde (SOW) vraelys gebruik is om
data te versamel met betrekking tot hulle studie orientasie in wiskunde. Die kwalitatiewe studie
het gebruik gemaak van fenominalogiese onderhoude om bygaande inligting te versamel oor
die deelnemende VWO's se ervarings. Dit het verder gedien as ‘n evaluasie van die invioed
van die gebruik van die dinamiese sagteware Geometer's Sketchpad (GSP) ® op hulle |eer en
konseptualisasie van meetkunde konsepte.
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Gedurende die na-toetse het die deelnemende VWO's praktics veelseggende verbeterde punte
behaal in die Maybemy-tipe toets, sowel as in al die velde van die SOW-vraelys. Die resultate
dui aan dat VWO's beduidend gebaat het in die verwagte vlakke van konseptualisasie, sowel as
in die vlakke van verwerwing gedurende die ingrypingsprogram. Die hoofkonklusie van die
studie is dat ‘n tegnologies verrykde leeromgewing, soos GSP, suksesvol gebruik kan word om
VWO's se konseptualisasie en studie orientasie, as voorvereiste vir diep konseptualisasie in
meetkunde, beduidend te verbeter.

Sleutelterme vir indeksering:

Wiskunde en onderrig; wiskunde en tegnologie; wiskunde onderwyser; onderwysersopleiding;
dinamiese sagteware, rekenaartegnologie; wiskunde konseptualisasie; Piaget; Vygotsky; Van
Hiele; netwerkteorie, konstruktivisme; behaviorisme.
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CHAPTER 1

JNTRODUCTION AND
PROBLEBM STATEMENT

1.1  ORIENTATION

The fundamentai characteristics of any teaching situation include the specific outcomes that the
teacher aims to meet in order to attain. The teaching aim, the thoughts of the teacher and his
beliefs are interwoven with each other (Steyn, 1988:160,161). Teachers should possess specific
skills to be able to teach effectively, therefore, they need to have adequate skills regarding
conceptual understanding (Nieuwoudt, 1998:169).

Korthagen and Kessels {1999:8) propose new ways of preparing pre-service mathematics teachers
(PMTs) for their profession. The intended learning processes start from situated knowiedge,
developed in the interaction of the PMTs with realistic problem situations. The concrete situations

thus remain the reference points during the learning process.

Mathematics education has changed considerably over the last twenty years, shifting from a
mechanistic and structuralist approach to a realistic constructivist approach. The mechanistic point
of view is that mathematics is a system of rules and algorithms. The emphasis is on verifying and
applying these rules to problems that are similar to previous ones. In the siructuralist view
mathematics is an organised, deductive system and the learning process in mathematics education
should be guided by the structure of this system (Korthagen & Kessels, 1999:5).

Realistic constructivist mathematics education of PMTs aims at the construction of their own
mathematical knowledge by giving meaning to problems from realistic contexts. Many of these
attempts can be characterised by an emphasis on reflective teaching, implying that pre-service

mathematics teacher development is conceptualised as an ongoing process of experiencing

e _____
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practical teaching and learning situations. PMTs are challenged to develop their own strategies for
solving such practical problems (Korthagen & Kessels, 1999:7).

One of the main premises of the current reform efforts in mathematics teacher education is that
lecturers want to empower PMTs mathematically to ensure that they are confident and successful
in exploring and engaging in significant mathematical situations (Allsopp, Lovin, Green & Savage-
Davis, 2003:312). A study by Wilson (1993:247,248) revealed that teachers with higher levels of
mathematical knowledge were more conceptual in their teaching than teachers with lower levels of
knowledge. Teachers with lower levels of mathematical knowledge were more rules-based.
Therefore, teachers must understand mathematical concepts well in order to teach them well.

According to Bright and Prokosch (1995.338) dynamic computer technolagy is useful in developing
conceptual understanding. House (2002:113) said that computer-assisted instruction for
mathematics learning can preduce an effective learning situation. The effective environment for
PMTs to learn mathematical concepts, t¢ explore patterns and processes, and to solve problems,
can be one in which they use dynamic computer technology (Fey, 1992:65}.

The use of dynamic computer software aliows PMTs to learn fundamental skilis in new ways, so
they do not have to relive experiences with frustration and failure (Reglin, 1990:405). According to
Fey (1992:7,11,13), an environment where dynamic computer technology is available, results in the
emphasis of mathematics teaching on meaningful concept development and problem salving, and
not on computationat procedures. Using dynamic computer technology, PMTs are able to discover
those properties inductively and be able to make it heir own. The use of dynamic computer
technology must be connected to the broader objective — providing all PMTs access to a broad

range of mathematical ideas.

The dynamic technology environment becomes a mathematics laboratory where PMTs may
actively manipulate mathematical ideas as they construct their own concepts, where logic is
established and they develop their reasoning skilis (McCoy, 1996:439,440). McCoy (1996:446)
found that the results of varied studies indicated that dynamic computer technology was effective in
improving the PMTs intuitive understanding when compared to a control group, and the
researchers also concluded that the computer-intensive group had develop clearer and deeper

concepts.

According tc Maree, Prinsico and Claasen (19973 4) there is a significant relationship between

study orientation in mathematics and mathematics achievement. Learners become frustrated when

L — — ]
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they do not understand mathematics. Learners' affective attitude influences their attitude towards
mathematics. If mathematics does not make sense to learners, they become anxious and
uncertain. When mathematics is presented in a too abstract manner {especially in the early stages),
without tearners being adequately exposed to enough concrete material, it leads to incomdete
conceptualisation. Learners' attitude towards the solving of problems and their study environment
forms an integrated part of their study orientation.

Maree (1997:3.4) highlights the following facets of study orientation in mathematics:

» The formation of basic concepts in mathematics is important and is an essential prerequisite for
learning more advanced work in mathematics.

e The leamers do not understand the relation between concepts when conceptualisation is
incomplete, and therefore they will use heorems and formulas without thinking whether they
are applicable to the situation at hand.

With this background in mind, the following guestions can be asked:

o What will the effect of a dynamic technological iearning environment be on the conceptual
understanding of PMTs in geometry?

¢ How does the use of dynamic technology influence the conceptual understanding of PMTs in
geometry?

o  What will the effect of a dynamic technolegical learning environment be on the PMTs' study

orientation?

1.2  AIMS OF THE RESEARCH

The aim of the research was 1o investigate the effect of a dynamic technological learning

environment on the conceptualisation of PMTs. In particular, the research aimed to:

1.2.1 determine what effect a dynamic technological learning environment has on the conceptual
understanding of PMTs in ggometry.

12.2 determine how the use of a dynamic technological learning environment influences the
conceptual understanding of PMTs in geometry.

1.2.3 determine what effect a dynamic technological learning environment has on the study
orientation of PMTs in geornetry.

CHAFTER 1 3



1.3 RESEARCH DESIGN

1.3.1 Literature study

An intensive and comprehensive review of the relevant literature has been done In A DIALOG
search the following keywords was used: “mathematics and teaching”, “mathematics and
technology”, “mathematics teacher”, ‘“teacher education’, “dynamic software”, ‘computer
technology” and “mathematics conceptualisation”.

1.3.2 Empirical Study

A combination of qualitative and quantitative research methods was employed (see § 5.3.1).

1.3.2.1 Quantitative design
Figure 1.1 depicts the pre-experimental design, namely the one-group pre-test/post-test design

(Leedy & Ormrad, 2001:235) which was used with respect to research aim 1 and research aim 3.

Intervention program

Three months

Pre-test Pre-se_rvice mathematics teachers
{experimental group)

A

Posi+tast

Figure 1.1: Experimental design

Population and sample

The study population consisted of 371 third year education students (in 6 classes) following the
general mathematics module in geometry at the North-West University, Potchefstroom campus. A
sample of 26 prospective mathematics teachers in one of the classes were chosen to take part in

the experiment.

Instruments

The participants were presented with two questionnaires before intervention took place, as well as
after the intervention took place. The Mayberry Type Test was conducted to determine if the
intervention had any influence on the conceptuaiisation of PMTs. The SOMguestionnaire was
distributed to determine if the intervention had any influence on the study orientation in
mathematics, of the PMTs.

e
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Statistical Analysis
Quantitative data analysis was done with the help of the Statistical Services of the Norh-West
University, Potchefstroom campus.

Research Procedure
A literature review was done of related articles aimed at improving the conceptual knowledge of
PMTs.

Only one group was used and there was a pre-test to test the conceptual understanding of PMTs
before intervention and a posttest to evaluate the conceptual understanding of the PMTs after
intervention.

Quantitative data analysis was done and will be discussed in more detaii in chapter 5. Results were
evaluated, analysed and interpreted as is reported in chapter 6. Final ceonclusions are given in
chapter 7.

1.3.2.2 Qualitative design
The literature study forms the basis for the self~developed questionnaires, structured interviews
and observation schedules (see Figure 1.2) used in the qualitative phenomenological survey with

regard to research aim 2.

Pre-service mathemalics teachers
{experimental group)

interviews

Figure 1.2; Qualitative design

Population and sample
A sample of 3 low and 4 top performers were identified to take part in the qualitative part of the
research. The PMTs were selected on the basis of their profile as reflected by their examination in

the geometry module.

e
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instruments

Self-constructed questionnaires and interview schedules were used to evaluate the PMTs with
respect to the impact of the intervention.

Statistical Analysis
Qualitative data analysis was done (see § 5.3.2 4).

Research Procedure
Qualitative research was conducted over a period of three months. The goal was to determine
whether and how the intervention program assisted in developing the conceptual understanding of

the pre-service mathematics teachers.

Results were evaluated, analysed and interpreted and conclusions were made.

14  ETHICAL ASPECTS

A letter, requesting permission to use the above-merntioned study population, was sent to the Dean
of the Faculty of Education Sciences of the North-West University, Potchefstroom campus. In
addition, the relevant school director, subject head, lecturer and selected class of students were
consulted to obtain their permission and full cooperation. The research project formed part of a
bigger naticnal project. sponsored by the National Research Foundation (NRF), and took piace with
full permission and cooperation of the Project Team.

1.5 STRUCTURE OF DISSERTATION

The research is presented in seven chapters as illustrated in Figure 1.3.
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Chapter 1
Orientation and

Chapter 2

problem statement A theoreticai

framework for effective

Chapter?7 mathematics teaching
Conclusions and and leaming
recommendations mathematics

The effect of a dynamic
technoiogy learning

environment on the
conceptualisation of geometry

Chapter 6 and study ori entation in
Research . .
findings and mathematics of pre-service

discussions mathematics {eachers

Chapter 5
Wethod of
research

Chapter 4
A theoretical framework for
dynamic computer
technology in the
development of conceptual
understanding in geometry

Figure 1.3; Presentation of chapters

CHAPTER 1

Chapter 3
A theorstical
framework for the
development of
conceptual
understanding and
study orientation in
mathematics




£ CHAPIGR 2

A THBGOREBTICAL FRAMBWORK
FOR @FFECTIIVE MATHEMATICS
TGACHING AND LBARNING

21 INTRODUCTION

According to Romberg and Kaput (1999:15,16), society's perception of the mathematical content
that learners are expected to understand is changing, as is the field of mathematics itself. We can
na longer assume that mathematics is a fixed body of concepts and skills to be mastered. The aims
of mathematics teaching can be described as teaching learners to use mathematics to build and

communicate ideas and to use it as a powerful analytic and problem-solving tool.

The aim of this chapter is to present a framework for effective mathematics teaching and iearning.
In this regard the views of Piaget and Vygotsky will be discussed. The effect of behaviourism and
constructivism on mathematics teaching will also be discussed. Attention will be paid to Van Hiele's
learning theory because one aspect of the theory deals with the belief that learners’ geometric
thinking skills develop in levels. The influence of process-product teaching, problem-based teaching

and realistic mathematics education will also be discussed.

22 THEORETICAL PERSPECTIVES ON COGNITIVE DEVELOPMENT

2.21 Piaget

Jean Piaget spent much of his professional life fistening to learners. He focused on universal
learner development. Essentially Piaget's explanation of the deveiopment of intelligence postulates
a series of stages according to which the learner functions in the world. Each preceding stage is a
necessary condition for the subsequent stage. Piaget claims that development proceeds according
to a series of transformations of one stage into another {(Atkinson, 1983:13).

e e A —————————
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2.2.1.1 Piaget’s theory of developmental stages

Piaget (1974:117) postulates four stages of mental development in which learners understand the
world, namely the sensori-motor-, pre-operationak, concrete operational- and formal operational
stages.

Sensori-motor Stage (birth to about 2 years)
This period is characterised by a number of performances such as the organisation of spatiai

relationships, the organisation of objects and a notion of their performance, and the organisation of
casual relationships (Piaget, 1974:117).

According to Atkinson {19883:13-15) infants think and understand the world around them through
their senses, using their eyes, ears, mouth and hands. At this level, infants develop their abilities
through the coordination of sensations, their physical movements and actions in the environment.
Learners use their senses and emerging motor skills t¢ explore the environment. Verbal interaction
and an object-rich setting are very important at this time.

Pre-operational Stage (about 2 to 7 years)
The learner is now able to have operational thought though symbolic function. The learner cannct
perform referable internalised actions (Piaget, 1974:117).

Pre-schoo! learners begin to represent the world with symbols. Learners at this stage have
increased capacity for symbolic thinking and can go beyond their earlier sensori-motor discoveries
through the use of language and images. The learner is perceptually bound and is unable to reason

logically concerning concepts that are discrepant from visual clues (Atkinson, 1983:23,24).

Concrete-Operational Stage (about 7 to 11 years)

The learner is able to perform operations, internalised actions. These operations are concrete, for
instance, the learner can classify concrete objects, establish correspondences between them or
use numerical operations on them (Piaget, 1974:117).

According to Atkinson (1983:31-33) learners in his stage can think iogically and are able to
conserve, sedate, classify and organise objects into different sets. The learner is able to use this
logic to analyse relationships and structure his environment into meaningful categories.
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Formal Operational Slage (about 11 to adult)

This period can be characterised by formal or propositional operations. This means that the
operations are no longer applied solely to the manipulation of concrete objects, but now cover
hypotheses and propositions that the learner can use as abstract hypotheses and from which he
can reach deducticns through formal or logical means (Piaget, 1974:117)

Atkinson (1983.40-42) says that adolescents think in more logical and abstract ways. They can
reason with symbols that are beyond the world of concrete experiences. They can imagine many
possible combinations, separate real from possible, deal with hypothetical proportions and combine
elements in a systematic way. They may pass into the period of formal operations and develop the
ability to manipulate concepts abstractly through the use of propositions and hypotheses.

2.2.1.2 Piaget’s intra-, inter- and trans-operational levels

According to Nixon (2005:2347), Piaget and Garcia (1989), identified three leveis in the
development of thought, namely that of intra-operational or perceptual level, inter-operational or
conceptual level and trans-operational or abstract level. These levels are not bound to learmners’
ages or fixed stages of development.

Intra-operational or perceptual level

The perceptual level may be related to Piaget's pre-operational level of thought. At these level
relations appear in forms that might be isolated. In geometry, properties of individual figures are
studied. but no consideration is given o space or to transformations of these figures. The intra-
operational level applies to young learners, but could be applied to the introductory stage of the
learning of any concept. Learners need to acquire an intuitive appreciation for concepts and be
provided with examples, diagrams, pictures and illustrations that help them visualise or form mental
pictures of concepts that have been introduced {Nixon, 2005:47,48,84).

inter-operational or conceptual leve!

This conceptual level may be related to Piagets concrete operation Bvel of thought. 1t is
characterised by efforts to find relationships. At this level iearners are able to understand properties
of figures and the learners are able to interrelate properties of figures and analyse specific cases.
Whereas isolated forms are identified with perceptual levels, correspondences and transformations
amongst these forms characterise the conceptual level (Nixon, 2005:85,102).
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Rising up from the perceptual level to the conceptual leve! is an important step in the acquisition of
knowledge, since it also forms a vital link between the perceptual level and the abstract level
(Nixon, 2005:99).

Trans-operational or abstract level

This abstract levei may be related to Piaget's original formal operation level of thought and involves
definitions, proofs and theorems. At this level there are not only transformations, but also synthesis
between them, which feads to the development of structures {(Nixon, 2005:122,150).

Although any new topic needs to begin at the perceptual level and pass through the conceptual
ievel, it is the attainment of the abstract level that is the ultimate aim in geometry (Nixon, 2005:161).

Encouraging learners to participate and pass through the perceptual level, the conceptual and
abstract levels of learning help to establish a mode of investigation and a way of thought. These
three levels of development can assist learners in developing mental structures to help them
understand new leaming material and integrate it with other material. Learners become
accustomed to the processes invaolved, and therefore they could become independent in their study

(Nixon, 2005:54,161,162).

2.2.1.3 Piaget's theory of cognitive development

For Piaget, there are four factors that determine cognitive development (Webb, 2001:63). Each is

vital, as it is the interaction of these components that results in cognitive growth. Cognitive

development includes:

e maturation of the nervous system, providing physical capabilities. Maturation refers to the onset
of an ability. It occurs without previous training (Atkinson, 1883:154).

e social interaction that offers opportunities for the observation of a wide variety of behaviours.

s experiences based on interactions with the physical environment that leads to the discovery of
the properties of objects and the development of organisationat skilis.

e an internal self-regulation mechanism that responds to environmental stimulation by constantiy
fitting new experiences into existing cognitive structures and revising these structures to fit the
new data. A balance between the cognitive structures and new data maximises cognitive

function.

e i)
CHAPTER 2 1



2.2.1.4 Implications for teaching mathematics

Piaget proposes that cognitive development occurs in stages from birth to about adolescence.
Thus, it seems appropriate that learning experiences should be organised and sequenced in terms
of the PMTs developmental stage.

According to Piaget, secondary school learners are usually concretely and formally operational in
terms of development. At this stage, learners demonstrate the beginning of logical thought.
Although they are able to use certain logical operations, their thinking is concrete rather than
abstract. Thus, in teaching geometry, learners should be provided with concrete objects to facilitate
understanding. In teaching structural properties of, for example guadrilaterals, teachers should
keep in mind that the learner is not proficient in stating generaiisations (Wilson, 2001:85).

Wilson (2001:85) says that leamers, who are formally operational, should be provided with the
opportunity to develop relationships and think abstractly. There should be opportunities for these
learners to solve problems by answering questions in a systematic way until reasonable
conclusions are reached.

2.2.2 Vygotsky's Sociocultural Theory

Vygotsky had a great influence on modermn constructivism. A critical event in Vygotsky's life
occurred in 1924 at the Second Psychoneurological Congress in Leningrad. Vygotsky contended
that humans have the capacity 1o alter the environment for their own purposes. This adaptive
capacity distinguishes humans from lower forms of iife (Schunk, 1996:213,214).

2.2.2.1 Basic Principles

Schunk (1996:214-216) theorises that one of Vygotsky's central contributions o psychological
thought was his emphasis on socially meaningful activity as an important influence on human
consciousness. Rather than discarding consciousness or the role of the environment, he sought a

middle graund of taking environmental influence into account through its effect on consciousness.

Vygotsky considered the social environment as critical for learning and thought the integration of
social and personal factors produced learning. Social activity is a phenomenon that heips explain
changes in consciousness and establishes a psychologicai theory that unifies behaviour and mind
(Schunk, 1996:217).

According to Schunk (1996:217) the social environment influences cognition through its cultural

objects, its language and social institutions. Cognitive change results from using cultural tools in
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social interactions and from internalising and mentaily transforming these interactions. Vygotsky's
position is an example of dialectical constructivism because it emphasises the interaction between
persons and their environment.

Berger (2004:81) theonses that a learner uses a new mathematical sign (which may be in the form
of symbols, graphs, diagrams or geometric shapes) both as an object with which to communicate
(like a word). as an object on which to focus, and to organise his or her mathematical ideas (like a
word). Through this sign usage, the mathematical concept evolves for the learner so that it
eventually has personal meaning, like the meaning of a new word does for a child. Because the
usage is socially regulated, the concept evolves for the learner so hat its usage concurs with its
usage in mathematical community.

An important concept in Vygotsky's theory is the zone of proximal development (ZPD) defined as
“‘the distance between the actual developmentai level as determined by independent problem
solving and the level of potentia! development as determined through problem soiving under
guidance or in collaboration with more capable peers” (Vygotsky, 1978:8).

The ZPD represents the amount of learning possible by a learner given the proper instructional
conditions. In the ZPD the learner and teacher work together on tasks that the learner could not
perform independently because of the level of difficulty. As a result of pedagogical interventions
within the ZPD of the learner, the learner does not remain inactive, but rather begins to use this
mathematical sign (for example the properies of triangles) in communication with others and in
mathematical activities. It is these functional usages of mathematical signs (ke activities
comprising manipulations, comparison and associations) that give an initial access point to the new
object. Furthermore, this functional usage of the mathematical sign is mediated by the learner's
knowledge of related signs (Berger, 2004:85).

According to Berger (2004.86) a learner starts to use a new mathematical sign in mathematical
pursuits such as problem-solving, applications and proofs, before he or she fully understands how
to use that mathematical sign in a culturally meaningful way. Through this use of the mathematical
sign, the learner is able to engage with the mathematical object and to communicate with others
about his or her developing mathematical ideas. On account of this functional use, the
mathematical sign begins to acquire perscnal meaning for that learner and the learner begins to
use the sign in mathematical discourse in a way that is compatible with its socially sanctioned
meaning.
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Vygotsky (1986:106) says that learners use words for communication purposes and for organising
their own activities before they have a full understanding of what these words mean. it is a
functional use of the word or any other sign that plays a central roie in concept formation.

Cognitive change occurs in the ZPD as teacher and learner share cultural tools, and it is this
culturally mediated interaction that produces cognitive change when it is internalised in the learner.
Working in the ZPD requires a good deal of guided participation. However, learners do acquire
cuitural knowiedge passively from these interactions. Rather, learners bring their own
understandings to social interactions and construct meaning by integrating those understandings
with their experiences in the context. During the interaction, the learner modifies his or her beliefs

about working in the area based on present understandings and in light of new knowledge acquired
from the teacher (Schunk, 1996:215,216).

2.2.2.2 Application

Vygotsky's ideas lend themselves to many educational applications. The field of self-regulation has
been strongly influenced by theory.

According to Schunk (19S9€:216-218) a major application involves the concept of instructional
scaffoiding, which refers to the process of controlling task elements that are beyond the leamer's
capabilities so that the learner can focus on and master those features of the task that he or she
can understand. Scaffolding has five major functions: to provide support, to function as a toal, to
extend the range of the learner, to permit the attainment of tasks not otherwise possible and to use
selectively only as needed.

2.2.3 The Van Hiele Theory

P.M. Van Hiele (1986.39) developed, in conjunction with his wife, D. Van Hiele—Geldof, the theory
of cognitive levels in geometry. Van Hiele postulates that learners progress through these ievels
from a Gestalt-like visual level through increasingly sophisticated levels of description, analysis,
abstraction and proof.

Van Hiele (1986:viii,5,6) acknowledges that his theory of cognitive levels originated with Piaget's
theories, although he is critical of certain aspects of Piaget's theory. Van Hiele says that it is not
necessary to refer to biological maturation to explain the development of iogicai thought, whereas
Piaget (see § 2.2.1) suggests that the transition from one level to the next is a biclogical
development rather than one stimulated by the learning process. The Van Hiele theory is based on

the nction that learmer-growth in geometry takes place in terms of identfiable levels of
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understanding and that the level of understanding of the learner is dependent on this experiences
in geometry (Choi-Koh, 1999:3C1). In view of the analysis of Nixon's three levels in the
development of thought (see §2.2.1.2), it becomes clear that Van Hiele's theory of cognitive levels
in geometry follows the same trend.

2.2,3.1 The Van Hiele ievels of geometric thought

According to Van Hiele (1986.39-47) the most prominent feature of the model is a four-level
hierarchy of ways of understanding spatial ideas. Van Hiele (1986) labels his levels as recognition
{level 1), analysis (level 2), informal deduction (level 3) and formal deduction (level 4).

Level 1 recognition

According to Van Hiele (1986) learners recognise and name figures based on the giobal, visual
characteristics of the figure. At this level the learners are able to make measurements and even talk
about properties of shapes, but these properties are not abstracted from the shapes at hand. It is
the appearance of the shape that defines it for the learners.

Learners at this levei will sort and classify shapes based on their appearances. For example,
learmmers will recognise guadrilaterals by their global appearance and they will learn the appropriate
language concerning quadrilaterals. With a focus on appearances of shapes, iearners are able to
see how shapes are alike and different. As a result, learners can create and begin to understand
classifications of shapes (Van de Walle, 2004:347).

Level Z-analysis

Van Hiele (1986) said that learners at the analysis level are abie to consider ail shapes within a
class, rather than a single shape. By focusing on a class of shapes, learners are able to think about
what makes a rectangle a rectangle. The irrelevant features fade into the background. At this level,
learners begin to appreciate that a collection of shapes belong together because of properties.

ldeas about an individual shape can now be generalised to all shapes that fit the ciass. Learners
operating on level 2 may be abie to list all the properties of squares, rectangles and parallelocgrams,
but can not see that they are subclasses of one another (Van de Walle, 2004:347).

As learners start to develop the ability to think about properties of geometric ideas without the
constraints of a particular idea, they are able to develop relationships between these properties.
Observation goes beyond properties themselves and begins to focus on logical arguments about

the properties. Learners at level 2 will be able to follow and appreciate an informal deductive
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argument about shapes and their properties. Proofs may be more intuitive than ngorously
deductive. However, there is an appreciation of the fact that a logical argument is compelling. An
appreciation of the axiomatic structure of a formal deductive system remains under the surface
(Van de Walile, 2004:348).

Level 2-informal deduction

At level 3 leamers are able to examine more than just the properties of shapes. Their earlier
thinking has produced conjectures concerning relationships among properties. Are these
conjectures correct? Are they true? As this analysis of the informal arguments takes place, the
structure of a system complete with axioms, definitions, corollaries and postulates begins to
deveiop, and it can be appreciated as the necessary means of establishing geometric truth. Van
Hiele stresses language appropriate to this level. Learners at this level are able to work with
abstract statements about geometric properties. They can clearly observe that the diagonais of a
rectangle bisect each other, just as a learner at a lower level of thought can. However, at level 3,
there is an appreciation of the need to prove this from a series of deductive arguments (Van de
Walle, 2004:348).

Level 4-formal deduction

Learners start developing longer sequences of statements and begin to understand the significance
of deduction. They are able to devise a formal gecmetric proof and to understand the process
employed. This is generally the level at which a PMT should understand geometry (Van de Walle,
2004, 348 349).

2.2.3.2 The Van Hiele phases between levels of geometric thought

Learners' progress from one level to the next is organised into five phases of sequenced activities
that emphasise exploration, discussion and integration. Van Hiele's model postulates that these five
phases of instruction are necessary to enable learners at a specific level to advance to a higher
level of geometric thinking (Van Hiele, 1986:50,51).

Teppo (1991:210) says that during each phase learners investigate appropriate geometric figures,
develop specific language related to these figures, and engage in interactive learning activities to
help them to progress to the next level.

First phase: Information
The learmers learn to recognise the field of investigation based on the material that is presented to

them. This material causes the learners to discover a certain structure (Van Hiele, 1986.50).
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The learners learn to recognise the field of investigation based on the material that is presented to

them. This material causes the learners to discover a certain structure (Van Hiele, 1986:50).

Teppo (1991:212) suggests that when a teacher wants to develop the concept of symmetry,
learners can demonstrate (at this phase) the reflection of a point A about the line L using a mirror
and show how this reflection can be drawn using graph paper (see Figure 2.1).

&

é

A

Figure 2.1: Demonstration of reflection of a point A about line L (Teppo, 1991:212)

Second phase: Directed orientation
Van Hiele (1986:50) says that learners explore the field of investigation through carefully guided,

structured activities. The characteristic structures appear progressively.

According to Teppo (1991:212) learners can explore the field of inquiry through carefully guided
activities, for example learners reflect the given line segments about the line L (see Figure 2.2) and
determine the shape of the figure. After completing the reflections about L, they can make
observations about the axes of symmetry:

a. What properties must the rhombus have to exhibit the axes of symmetry?

b. These axes are the diagonals of the figure. What observations can be made about the

properties of the diagonals?

Third phase: Explication

The acquired experiences are linked to exact linguistic symbols. The customary terms are used in
discussions. It is during the course of this third phase that the network of relations is partially
formed (Van Hiele, 1986:51).

The learners and the teacher engage in discussions about the geometric figures, remembering to

use the appropriate language (Teppo, 1991:212).
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Figure 2.2: Reflect the given line segments about line L (Teppo, 1991:212)

Fourth phase: Free orientation
Learners must still find their way around this field, and this is achieved by assigning tasks that can
be carried out in different ways. The learners engage in more open—ended activities that can be

approached by several different types of solutions (Van Hiele, 1986:51).

Teppo (1991:212) suggests that learners can do the following activity at this level. Learners are
given three vertices of isosceles trapezoid (see Figure 2.3) and are asked to find the fourth. They
must explain what they did and why their procedure worked.
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Figure 2.3: Given three vertices of an isosceles trapezoid (Teppo, 1991:212)

Fifth phase: Integration
The learners, according to Van Hiele (1986:51), still need to acquire an overview of the methods
that are at their disposal. They then try to condense into a whole the domain which their thought

has explored.

Learners summarise the characteristics of figures that have one or more axes of symmetry. The
teacher can ask the learners how they will recognise a line of symmetry. Afterwards the learners

can summarise the properties of a rhombus (Teppo, 1991:213).

During each phase leamers investigate appropriate geometric figures, develop specific language
related to these figures, and engage in interactive learning activities to enable them to progress to
the next higher level of thinking (Teppo, 1991:210). The levels describe how learners think and
what types of geometric ideas they think about.

Gutierrez, Jaime and Fortuny (1991:237-239) proposes a qualitative utilisation of the different ways
in which learners reason for placement within a proposed range of 0 to 100, thus creating a scale of
degrees of acquisition. Within this range, five stages of acquisition (see Table 2.1) are also
identified.

Table 2.1: Degrees of acquisition of a Van Hiele level (Gutierrez et al., 1991:238)

e FET B 1. EDIATE THIGH MPLETE
ACQUISITION | ACQUISITION 1o QUISITION | ACQUISITION
0-15% 15-40% 40-60% 60-85% ~ 85-100%

According to Van der Sandt (2003:34, following Gutierrez, 1991) answers are firstly classified

according to the Van Hiele levels. Thereafter a numerical weight is assigned to each answer,
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weights of answers of a specific topic (e.g. right-angled triangles) leads to a classification of the

degree of acquisition (see Table 2.1) for that specific topic (e.g. 77% average=high level of

acquisition for right-angled triangies).

Table 2.2: Answer type and degree of acquisition (Van der Sandf, 2003:35, after Gutierrez, 1991)

Answer Degree &
Type & Description Weight Description
Weight
No reply, or answers that cannot Learners are not in need of or are not
C 8 be categorised. - conscious of the existence of thinking
G methods specific to a new level.
Answers thal indicate that the | E£& ' X
learner has not reached the given =@ | ®
1 R | level but has no knowledge of the S e
lower level either. -
Answers that contain incorrect Learners are aware of methods of thinking,
N | @nd incomplete  explanations, 5 know their importance and try to use them.
2 Q | reasoning processes, or resuits. z These learners make some attempts to
® 2 work on a higher level, but have little or no
% - | success due to their lack of experience.
Correct but insufficiently © ‘E
answered, indicating that the % 1a
~ | 9iven level of reasoning has been ﬁ R
3 & | achieved. Answers contain very c,
= |few explanations as well as &
incoherent reasoning processes, 8
or very incomplete results.
Learners use methods of the higher level
Correct and incorrect answers | 4 a more often and with increasing accuracy,
that clearly show characteristics | 8§ @ @ | & | but still fall back on methods of a previous
o ) . C P - . .
4 Q | of two consecutive Van Hiele | 3 a?n o | level.  Typical reasoning is marked by
® llevels. Answers contain clear g’ g g: gg frequent jumps between the two levels.
reasoning processes and | 3 ™ g
sufficient justifications.
Answers that represent reasoning Characterised by progressively
~ | Processes that are complete but strengthened reasoning that indicates that
5 gwg incorrect, or answers that reflect T a learner is using a higher level of
correct reasoning but that still do 2a o | reasoning.  Learners still make some
not lead to the solution. ‘E 2 % | mistakes or sometimes go back to the
Correct answers that reflect the 2a & | lower level.
6 « | Given level of reasoning that are g8 =
?e complete or insufficiently justified. Q,
Correct, complete and sufficiently o | o | Learners have completely mastered the
7 justified answers that clearly g 9__’: new level of thinking and use it without
3 reflect a given level of reasoning. o |8 difficulty
S L | e
® @ |°
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2.2.3.3 Characteristics of the Van Hiele levels of geometric thought

According to Van de Walle (2004:348) the products of thought at each level are the same as the

ideas of thought at the next. The ideas must be created at one level so that the relationships among

these ideas can become the focus of the next level Van de Walle (2004:348) describes four
characteristics of the Van Hiele levels:

¢ The levels are sequential. To arrive at any level above 0, learners must move through all prior
levels. To move through a level means that one has experienced geometric thinking appropriate
for that level and has created in one’s own mind the types of ideas or relationships that are the
focus of thought at the next level.

» The levels are not age-dependent in the sense of the development stages of Piaget. Some
learners and adults may remain forever on level 0, and a significant number of adults may
never reach level 2. Age is related to the amount and types of geometric experiences that
learners have, but if they are not stimulated they will remain on a low level of acquisition.

s Geometric experience is the greatest single factor influencing advancement through the levels.
Activities that permit learners to explore, talk about and interact with the content at the next
level, while increasing their experiences at their current fevel, have the best change of
advancing their level of thought.

+ When instruction or language is a level higher than that of the learners, there will be a lack of
communication and, hence, of understanding between the teacher and the learner. Learners
required to wrestie with obiects of thought that have not been constructed at the earlier level,
may be forced into rote learning and achieve only temporary and superficiat success.

23 LEARNING THEORIES

2.31 Behaviourism
Behaviourism is a psychological theory put forth by John Watson (1924) and then expounded upon
by BF Skinner (1953). According to Brede (1997:.16) behaviourism was both the child of

functionalism and empiricism.

According to Bredo (1997:17), Watson was concerned with the functions of behaviour, so Watson
did not view learning as occurring through conscious thought, but through a process of

conditioning.
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For Skinner (1953.61) learning involved a change in response rate. Bredo (1997:19) says that
Skinner defined learning as a change in response rate using many simple standardised responses

by a single organism.

According to Skinner (1974:3,167 168) hehaviourism is nct the science of human behaviour, but it
is the philosophy of the science of human behaviour. In a behavicural analysis a person is an

organism that has acquired a repertoire of behaviour. A person remains unigue and no one else will

behave in precisely the same way.

Handal (2005) says that behaviourism focuses on the manipulation of the external conditions of the
learner in order to modify behaviours that eventually lead to learning. In a behaviourist oriented
environment completion of tasks is seen as ideal learning behaviour and mastering basic skills
requires learners to move from basic tasks to more advanced tasks. In addition, learning is
considered a function of rewarding and reinforcing learner learning.

Behavicurists saw the learner's affective domain as different from the cognitive domain. They
categorised emotions “as imaginary constructs’ that are causes of behaviour. Conseguently,
behaviourists assume that certain emotions and attitudes can influence behaviour, although, in
general, affective issues are neglected (McLeod, 1992:586).

It has been said that behaviourism emphasises a process-product and teacher-centred model of
instruction that have been prevaient in classroom teaching and in teacher education programs
during the twentieth century (Marland, 1994:6179).

A bebaviourist teaching style in mathematics education tends to rely on practices that emphasise
rote learning and memorisation of formulas, one-way to solve problems, and adherence to
procedures and drill. Repetition is seen as one of the greatest means to skill acquisition. Teaching
is therefore a matter of transmission of knowledge and situated learning is given little value in
instruction (Leder, 1994:41).

2.3.2 Constructivism

Jaworski (2005) believes that constructivism is a theory of knowledge acquisition. Knowledge is
actively constructed by the learner, not passively received from the environment. Coming to know is
a process of adaptation based on and constantly modified by the learner's experience of the world.
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Constructivist theory has been prominent in research on mathematics education and has provided
a basis for transforming mathematics teaching and learning. Learning is a constructive process that
occurs while participating in and contributing to the practices of the local community (Cobb &
Yackel, 1996:185).

Schunk (1996:208) is of opinion that different tearning and teaching theories generally assume that:

¢ Thinking resides in the mind rather than in interaction with persons and situations.

e Processes of learning are relatively uniform across persons and some situations foster higher-
order thinking better than others.

e Thinking derives from knowledge and skills develop in formal instructional settings more than

on general conceptual competencies that result from ones experiences and abilities.

These assumptions are challenged by constructivist researchers who want cognitive accounts to
address the full range of influences on learning, problem-soiving and memory. Inherent in these
views is the notion that thinking takes place in contexts and that cognition is largely structured by
individuals as a function of their experiences in situations. These constructivist accounts highlight
the contributions of individuals to what is learmed. Social constructivist models further emphasise
the importance of the individual's social interactions in acquisition of skills and knowledge (Schunk,
1996:208)

2.3.2.1 Perspectives on constructivism

Constructivism refers to a group of theories about leaming that can in tum be used to guide
teaching. Teachers who have adopied these theories believe that learners construct their own
mathematical knowledge, rather than receiving it in finished form. So, rather than accepting new

information, learners interpret what they see, hear or do in relation to what they already know
(Carpenter, 2003:29).

Nieuwoudt (2000:1) says that the effectiveness of mathematics education depends on the degree
to which teaching activities are linked to reievant and meaningfui learning activities. According to
Shuell (1988:277) cognitive conceptions of learning stress the active, constructive, cumulative, self-
regulated and goalorientated nature of learning. The 'earner must be actively involved in the
learning process. The learner must construct his or her own knowledge because every learner
perceives and interprets new information in a unique manner. Learning must be cumulative
because rew learning builds upon the learner's prior knowledge. The learner must be self-
regulated because he must make decisions about what to do next. He or she must be goal-
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orientated because learning will be more meaningful if the learner has a general dea of the goal
being pursued.

Clark (2000) theorises that constructivism places the emphasis on the learners rather than on the
teacher. Teachers are seen as facilitators who assist learners in constructing their own
conceptualisations and sciutions to problems. Twa schools of thought busy themselves with this

theory namely social constructivism and cognitive constructivism:

Cognitive constructivism

Clark (2000) says that cognitive constructivism is based on the work of Jean Piaget (see § 2.2.1).

Piaget's theory of cognitive development proposes that learners cannot be given information that

they immediately understand and use. Instead, learners must construct their own knowledge. They

build their knowledge through experiences. Cognitive constructivism s based on two different

senses of construction (Clark, 2000):

e |earmers learn by actively constructing new knowledge.

e learmers learn with particular effectiveness when they are engaged in constructing personally
meaningful artefacts (e.g. dynamic computer programs).

Socral constructivism

Lev Vygotsky (see § 2.2.2) is most often associated with social constructivism. He emphasises the
influences of cultural and social contexts in learning and supports a discovery model of learning.
This type of model places the teacher in an active role while the learners’ mental abilities develop
naturally through different paths of discovery (Clark, 2000).

According to Kim (2001) social constructivism emphasises the importance of culture and context in
understanding what occurs in society and constructing knowledge based on this understanding.
There are four general perspectives that inform how teachers can facilitate the learning within a
framework of social constructivism (Kim, 2001);

o Cognitive toofs perspective: It focuses on the learning of cognitive skills and strategies.
Learners engage in those social learning activities that involved hands-on project-based
methods.

» ldea-based social constructivism: it directs educaticn's main aim at important concepts in the
various disciplines (e.g. different types of triangles in geometry)}.

» Pragmatic or emergent approach: Soclal constructivists assert that the implementation of social

constructivism in class should emerge as the need arises. Knowledge, meaning and
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understanding of the world can be addressed in the classroom from both the view of the
individual learner and the collective view of the entire class.
s Situated cognitive perspectives: This perspective focuses on the relationship between learners

and ther environment When a mind operates, the learner interacts with the environment.

2.3.2.2 Assumptions of constructivism

According to Schunk (1996:211, 213) constructivist theories make various assumptions about

human thought and actions in iearning settings. He identifies two prominent assumptions that

involve situated cognition and implicit theories:

o Situated cognition Situated cognition refers to the idea that thinking is situated in physical and
social contexts. Cognitive processes, including thinking and leaming, should be considered as
involving relations between a person and a situation, rather than an activity that salely resides
in a person's mind. The sighificance of these views is that they emphasise the construction of
knowledge by people as they interact in situations. Situated cognition addresses the intuitive
notion that many processes interact to produce learning.

e Implicit theories: A second assumption of constructivist theories is that pecpie hoid impiicit
theories abouf such issues as how we learn, what contribuies fo achievement, and how
motivation affects performance. Learning and thinking occur in the context of individuals’ beliefs
about cognition. Implicit theories can also affect the way in which learners process information.
Learners who believe that learming outcomes are under their control may expend greatler
mental effort, rehearse more, use organisational strategies and employ other tactics to improve
learning. than learners who hold a fixed view of their abilities and may not expend the same
effort.

2.3.2.3 Implications for teachers

Carpenter (2003:30) suggests that when a number of opportunities are provided for learners to
represent their knowledge, teachers have to encourage learners to represent and construct their
ideas. It is therefore important that discussions take place between the leamers. This provides
oppartunities for the learners to indicate what they aiready know and understand about the topic,

while it reveals any misconceptions that learnars might have.

From a constructivist perspective, teachers do not teach in the traditional way. Rather, they use
materials with which learners become actively invoived through manipulation or social interaction.
Activities stress learners’ observance, collection of data, generation and testing of hypotheses and
ability to collaborate with others. Learners are also taught to be more self-regulated and take a
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more-active role in their own learning by setting goals, monitoring and evaluating progress and
going beyond basic requirements by exploring interests (Schunk, 1996:209).

Teachers can make use of concrete and manipulative materials to help 'earners as they become
actively involved in the learning process. Open ended questions will encourage learners to
investigate the aclivities and questions asked by the teacher and learners, will heip the learers to
construct their own ideas. When the teacher pravides a number of opportuntties for the learners to
represent their knowledge, the teachers encourage the learners to represent and to construct their
own ideas {Camenter, 2003:30).

2.3.2. 4 implications for learners

Schunk (1996:208) states that constructivism is a psychological and philosophical perspective, and
contends that learners form or construct much of what they learn and understand. it highiights the
interaction of learners with situations in the acquisition and refinement of skilis and knowledge.

Constructivism places the locus of learning within the mind.

In a constructivist ciassroom, learners will be actively involved in their iearning. They will be
discussing ideas with other learners and representing these ideas in many different ways. Leamers
wili also be invoived in assessing their own work and would refiect on what they have leamed. They
will be actively involved in exploration, invention, discovery and application of, for example, the
properties ¢f quadrilaterals. They will be able to construct their own ideas of quadrilaterals and
discuss, assess and reflect on what they have learned (Carpenter, 2003:31).

According to Schunk (1996:208) a basic assumption of constructivism is that people are active
learners and must construct knowledge for themselves. To truly understand material, learners must
rediscover for themselves the basic principles. Constructivism underlies the emphasis on integrated

curnicula where learners study the topic in various ways.

2.3.2.5 Contributions of constructivism
Learners need to be actively involved in their learning, and teachers need to provide experiences

that challenge learners’ thinking and force them to rearrange their beliefs (Schunk, 1986:210,211).

Alsup (2003:610) espouses a constructivist view of mathematics learning, saying that a lecturer
cannot transmit mathematical knowledge directly to learmers, but that the learners should construct

their own solutions.
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When organising mathematics teaching and learning with the help of technology, the theory of
constructivism states that iearners should be guided to discover the fundamental principies of a
discipline and construct their own knowledge. Thus, constructivists believe that it is necessary to
change the transmission approach of education (Pasqualotti & Freitas, 2002:410).

in a constructivist classroom, the emphasis is on learning rather than teaching. Learners are given
the task of leaming. The role of the teacher is to engage the learners by posing good problems and

creating a classroom atmosphere of exploration and sense making (Van de Walle, 2004:32).

Social-constructivism, as opposed {o behaviorist models of teaching and learning, claims that
knowledge should not be transferred from one individual to another in educational environments.
For constructivist educationalists, knowledge must be actively constructed by the learmner because
the learner is an entity with previous experiences that must be considered as a “knowing being”.
Learning is therefore seen as an adaptive and experiential process, rather than a knowledge
transference activity (Jaworski, 2005).

24 TEACHING APPROACHES

24.1 Process-product teaching (traditional teaching)

Traditional teaching mostly used process-product teaching. For most learners mathematics is an
endless sequence of memorising and fergetting facts and procedures that make little sense to them
(Alsup, 2003:609). Gunter, Estes and Schwab (2003:66) states that the direct instructional method
mostly used in traditional teaching, is most useful in teaching those skills that can be broken into
small, discrete segments, with each segment building upon the prior one. The traditional approach
to teacher education is characterised by relatively short instructional periods followed by practice

until ieaming is achieved.

Alsup (2003:609, 610) also says that pre-service mathematics teachers have a weak, fragmented
knowledge of mathematics, mostly acquired facts and memorised rules. They have rarely
expenenced a kind of teaching that focused on conceptual understanding. This can be ascribed to
process-product teaching, which is in essence teacher-centred mathematics insiruction that
focuses on rules, formulas and answers. If they experience a mathematics course that is learner-
centred, emphasises active-learning, communication and reasoning during their training, they will
be able to teach mathematics effectively.
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Wong (2002:211) says that learners often approach a mathematical problem by searching for a rule
that identifies what is given, what is being asked and the category of the topic for the problem. This
approach to mathematical problems is largely shaped by the way iearners experience learning,
their response to task demands, and the classroom environment. In other words, such a restricted
conception of mathematics, which exists both within the learners and in the classroom culture, has
led learners to tackle mathematical problems by searching for ruies rather than approaching them
through a conceptual understanding of the context.

Mok and Johnson (2000:553) suggest that possible probiems in secondary school algebra may be
due to the procedural paradigm orientation in the conventionai style of teaching in the classroom,
which do not provide sufficient opportunities for learners to express what they think and to develop
conceptual understanding. Furthermore, Romberg and Kaput (1999:4) postulates that this
traditional approach of teaching the basic skills and concepts isolates mathematics from its uses
and from other disciplines. Thus, traditional school mathematics has failed to provide learners with
any sense of its usefulness and has not enabled lsarners to learn mathematics with understanding.

introduction of technology in lessons that embody a cognitive model! in their design and delivery will

provide a viable alternative for enhancing algebraic thinking.

24.2 Problemsolving based teaching

Cangelosi (2003156} says that problem-solving means that learners engage in a task for which the
strategies to solve the problem is not known in advance In order to find a solution ‘earners must
draw on their knowledge and through this process, they will deveiop new mathematical

understanding.

Shuell (1989:107) is convinced that problem-solving offers a productive way of thinking ahout
classroom activities. The presence of an appropriate problem -solving attitude by both the teacher

and the learner plays an important role in the way they view the teaching-learning situation.

Schoenfeld {1992:365) makes the foliowing classroom recommendations for the teacher in a

problem-solving environment:

+ Mode! problem -soiving behaviour whenever possible, for example exploring and experimenting
along with the learners.

» Create a classroom atmosphere in which all learners feel comfortable to try out ideas.

= Invite learners to explain their thinking at all stages of problem solving.

e
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s Allow learners to use their own strategies and approaches to solve problems.

s Present problem situations that closely resemble real situations so that the learners can use
these experiences in real-life situations,

According to Cangelosi (2003.156) learners shauld have enough opportunity to formulate and solve
complex problems, and the teacher should encourage them to refiect on their thinking.

By learning through problem-solving in mathematics, learners should acquire ways of thinking,
habits of persistence and confidence in unfamiliar situations that will serve them well outside the
mathematics classroom. it can lead to great advantages in everyday life, and can help the learner
to become a good problem solver (Cangelosi, 2003:156).

2.4.3 Realistic Mathematics Education

In realistic mathematics education (RME), context problems are intended for supporting a
reinvention process that enables learners to understand mathematics. Context problems are
defined as probiems of which the situation is experientially real to the leamers. In RME the point of
departure is that context problems can function as anchoring points for the reinvention of
mathematics by the learners themselves. Moreover, guided reinvention offers a way out of the
generaliy perceived dilemma of how to bridge the gap between informal knowledge and formal
mathematics (Gravemeijer & Doorman, 1899:112).

Freudenthal (1991:46) speaks of guided reinvention where the emphasis is on the character of the
learning process rather than on invention as such. The idea is to allow learners to come to regard
the knowledge they acquire as their own. This implies that certain norms must be in place, like you
do not tearn mathematics by guessing what the teacher has in mind, but by figuring things out for

yourself.

According to Freudenthal (1991:30) mathematising may invoive both mathematising everyday life
subject matter and mathematising mathematical subject matter. Freudenthal does nct see a
fundamental difference between the two activiies. Therefore, education might start with
mathematising everyday life subject matter. However, reinvention demands that the learners

mathematise their own mathematical activity as well. Therefore, for Freudenthal the core

mathematical activity is mathematising.
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Treffers (1987:348) discerns horizontal and vertical mathematisation. Horizontal mathematisation
refers to the process of describing a context problem in mathematical terms, in other words to be
able to solve the problem with mathematical means. Vertical mathematisation refers to
mathematising ones own mathematical activity. Through vertical mathematisation the learners
reach a higher tevel of mathematics. It is in the process of progressive mathematisation, which
comprises both the horizontal and wvertical component, that the learners construct new
mathematics.

Mathematics should be taught as mathematising. For Freudenthal mathematics is a human activity.
Mathematics as a human activity is an activity of solving problems and of looking for problems.
Therefore, mathematising ts an organising activity (Gravemeijer & Terwel, 2000:780,781).

Treffers (1887:337) explains mathematising according to the following strategies:

s forgenerality. for example locking for analogies, classifying and structuring.

o forcertainty: for example using a systematic approach-reflecting, justifying and proving.

¢ for exactness: for example limitng interpretations and validity-modelling, symbolising and
defining.

e for brevity: for example deveioping standard procedures and notations, symbolising and

schematising.

Freudenthal (1991:41,42) distinguishes between horizontal and vertical mathematising in that
horizontal mathematising leads from the world of life to the world of symbols. In vertical
mathematising symbols are shaped, reshaped, and manipulated, mechanically, comprehensively
and reflectively. in RME both horizontal and vertical mathematising are used to shape the long term

iearning process (Gravemeijer, 1994:1).

Gravemeijer and Doorman (1899:117) say that in RME, context problems are the basis for
progressive mathematisation. The teacher tries to construe a set of contextual problems that can
iead to a series of processes of horizontal and vertical mathematisation that together resuit in the
reinvention of the mathematics that one is aiming for.

According to Gravemeijer and Doorman (1999:119) the goal is not only to help learners elaborate
their informal understanding and informal solution strategies in such a manner that they can
develop more formal mathematical insights and strategies. The objective is also to preserve the
connection between the mathematical concepis and that which they describe. The learners’ final
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understanding of the formai mathematics should remain connected with their understanding of
these experientially real, everyday phenomena.

Gravemeijer and Doorman (1999:126) says that the RME approach tries to transcend the
dichotomy between informal and formal knowiedge, by designing a hypothetical learning trajectory
along which the students can reinvent fonmal mathematics. The actual learning trajectory unfolds in
such a manner that the formal mathematics emerges in the mathematical activity of the learners.
This is connected to Freudenthal's (1991:4) contention that mathematics should start and stay

within common sense. Common sense evolves in the course of the learning process and it is not
static.

Gravemeijer and Terwe! (2000.786) says that leamers must be allowed to regard the knowledge
they acquire as their own, personal knowledge, knowiedge for which they themselves are
responsible. Learners must also be given the opportunity to build their own mathematical
knowledge base.

25 CONCLUSION

The current giobal movement in the reform of mathematics education seems to focus on a number
of new ideas, including standards, quality and teacher preparation. As is said, the best conceived
pregramme in the world, can easily come to naught if those who are to irmpiement the programme
at classroom level are not confident to carry out their tasks efficiently and effectively {Jegede,
Taplin & Chan, 2000:288).

Carpenter (2003:32) says that the teacher is responsible for determining what ideas learners have
about a particular subject so that new material can be introduced and related to learners’

experiences.

Mathematics learning is a deep, rich process, emphasising conceptual understanding, reasaning,

communication and problem-salving (Alsup, 2003.615).

When learners do not understand what they have learned, they perceive each topic as an isolated
skill, they cannot apply their skilis to solve probiems nor extend their learning to new fopics

(Romberg & Kaput, 1989:19).
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CHAPTGR 3

A THEORGBTIGAL FRAMEWORK
FOR T8 DEVELOP MENT OF
CONGEPTUAL UNDERSTANDING
AND STUDY ORIENTATION IN
MATHEMATIGCS

3.1 INTRODUCTION

To keep up with the demands of life and work in the iwenty first century, pre-service mathematics
teachers are expected to learn to teach mathematics in ways that advance conceptual
understanding. The PMTs must act as learning facilitators, providing engaging settings for the
canstruction of knowleage and proposing challenges that encourage mathematical constructions
(Kiein, 2004:35, 38).

The aim of this chapter is to provide a framework for conceptualisation, study orientation in

mathematics, and the learning of mathematics.

3.2 CONCEPTUAL UNDERSTANDING OF MATHEMATICS

3.2.1 Orientation

Schunk (1996:218) says that construcling concepts in our minds enables us to extend what we
understand beyond the specific situations we have experienced in the past. Concepts are the
building blocks of mathematical knowledge, but it is not the only type of mathematical content
included in curricula. There are also discoverabie relationships, conventions and algorithms
{Cangelosi, 2003:177).

To construct a concept, learners use inductive reasoning, distinguishing examples of the concept
from non-examples. Inductive reasoning generalises from broad encounters and moves towards

specifics. It is the cognitive process through which people discover commonalities among specific
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examples, thus leading them to formulate abstract categories, concepts, or discover abstract
relationships (Cangelosi, 2003:177).

Much learning involves concepts. Concepts are labelled sets of objects, symbols or events that
share common characteristics or attributes. A concept is a mental construct or representation of a
category that allows one to identify examples and non-examples of the category. Concept learning
refers to forming representations to identify aftributes, generalising them to new examples and
discriminating examples from non-examples. Concepts may involve concrete objects or abstract
ideas (Schunk, 1996:218).

Romberg and Kaput (1999:30) say that the development of understanding is an ongoing and
continuous process and one that should pervade everything that happens in mathematics
classrooms. When learners learn skills without understanding, the rote application of the traditional
approach to teacher education, often interferes with a learner's subsequent atiempts to develop
understanding. When learners learn skills in relation to developing and understanding, however. not
only does understanding develop, but mastery of skills is also facilitated.

it is more appropriate tc think of understanding as emerging or developing rather than presuming
that somecne either does or does not understand a given tepic, idea or process. Romberg and
Kaput characterise understanding in terms of mental activity that contributes to the development of
understanding rather than as a static attribute of an individual's knowledge (Romberg & Kaput,
1999:20).

Porter and Masingila (2000:165) suggest that learners’ difficulties n doing mathematics can be
related to their views of mathematics. It is not unusual to find learners who use mathematical
procedures with little or no understanding of the concepts behind these procedures.

Some learners are not even aware that there are concepts underlying the procedures they use.
Such learners do not realise that there is meaning in mathematics. They believe that doing
mathematics means performing pointless operations on meaningless symbols and that everyone
learns mathematics by memorisation (Porter & Masingita, 2000:165).

3.2.2 The nature of concepts

Two distinct views have emerged concerning the nature of concepts. The classical theory
postulates that concepts involve definitions that define the critical characteristics, the intrinsic
attributes, of the concept. A second view is the prototype theory. A prototype is a generalised
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image of the concept, which may include anly some of the concept’s defining characteristics, for
example right-angled triangles (Schunk, 1996:219, 220).

Schunk (1996:218) distinguishes between three different types of concepts:

e Conjunctive concepts: These are represented by two or more characteristics. Other
characteristics of that concept are not relevant, for example two blue rectangles.

» Disjunctive concepts: These are represented by one of two or more characteristics of a specific

concept for example two rectangles of any colour or one blue rectangle.

o Relational cancepts: These specify a relationship between characteristics that must be present
in the concept, for exampie the number of objects in the figure must outnumber the number of

baorders. The type of object and colour are unimportant.

Cangelosi (2003:176) theorises that whether a specific is an example of a particular concept or not,
depends on whether that specific possesses the defining attributes of the concept. A concept
attribute is a characteristic common to all examples of a particular concept, for example a right-
angled triangle has three sides, one angle of ninety degrees, and is a closed figure. Aconcept
attribute is a necessary requirement for a specific to be subsumed within a concept. A set of
attributes define the concept, also called the critical or intrinsic attributes.

Accerding to Cangelosi (2003:173-175) researchers categorise and sub-categorise specifics
according to certain attributes. The categories provide a mental filing system for storing, retrieving
and thinking about information. The process (see Table 3.1) through which a person groups
specifics 1o construct a mental category, is referred 1o as conceptuslisation, the category itself is a
concept. A specific is a unique entity, something that is not abstract. Cangelosi defines a concept is
a category people mentally construct by creating a class of specifics possessing a common set of
characteristics. in other words, a concept is an abstraction. Concepts can relate to one ancther,

with broader concepts including narrower sub-concepts.

Table 3. 1. Concept formation (Cangelosi, 2003:174)

CONCEPTS AND SUBCONCEPTS

DEFINITIONS EXAMPLES

A polygon'is a concept, it is a set with more than one element.
polygon

Each of the fcllowing concepts is a subconcept of a polygon: triangle, : }
quadrilateral, pentagon, hexagon, heptagon. Trlangle
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Special types of tiangles (e.g, isosceles), quadrilaterals (e.g., | isosceles triangle
rectangles}, and pentagons (e.g., regular) are subconcepts of triangles,
quadrilaterals and pentagons respectively (i.e., subsets of subsets).

A specific example of a concept is not a concept but a constant; it is The  unique . isosceles
the specified element of a set. triangle determmgd by the
following three points:

»

. . |

Most concepts can be represented in a hierarchy with superordinate and subordinate concepts. For
any given concept, similar concepts may be at the same level in the hierarchy. These are known as
coordinate concepts. for example, the concept “equilateral triangle” has "triangles” and “polygons”
as superordinate concepts, the different categories of triangles (isosceles triangle, equil ateral
triangle, obtuse triangle, scalene triangle) as subordinate concepts and the other categories of
polygons {quadrilateral, pentagon, hexagon, heptagon) as coordinate concepts. There are critical
attributes (e.g., all sides are congruent) and variable attributes (e.g., three sides, three angles)
(Schunk, 1996:221).

3.2.3 Teaching of concepts

3.2.3.1 Concept Attainment

Romberg and Kaput (1999:20) propose five forms of mental activity from which conceptualisation
emerges:.

» (Constructing relationships.

» Extending and applying mathematical knowledge.

» Reflecting about experiences.

e Ariculating what one knows.

e Making mathematical knowledge one’'s own.

Gunter, Estes and Schwab (2003:82, 83) suggests that concepts are the ideas that are formed as a
result of categorising data from a number of observations. Learners form concepts and give them

names in order to make sense of all the various stimuli. Many concepts used are abstract and have
many interpretations.

According to Cangelosi (2003:178,179) the objective for learners to use inductive reasoning to
distinguish between examples and non-examples of a mathematical concept, is at the construct-a-

cohcept level. Teachers must make sure that the choice examples, non-examples, problems and
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leading questions that they choose, will stimulate learners to use inductive reasoning to form

concepts.

Schunk (1996:222) advises that a concept should be defined with its critical attributes before
examples and non-examples are given. Presenting a definition does not ensure students will learn
the concept. Examples should differ widely in variable attributes and non-examples should differ
from examples in a small number of critical attributes at once. This will prevent learners from
overgeneralising, classifying nonexamples as examples, and undergeneralising, classifying
examples as non-examples. Pointing out relationships between examples is an effective way to

arrange sets to foster generalisation.

Schunk (1996:222) says that it is helpful to present examples that differ in optional attributes, but
have relevant attributes in common so that the latter can be clearly pointed out. Cangelosi
(2003:177) calls these optional attributes exampie noise and defines it as any characteristic of an
example of a concept that is not an attribute of that concept, for example two sides of the right-
angled triangle are equai. The noise in the examples a teacher uses in lessons for leading learners
to construct mathematical concepts, plays a key role in how well they conceptualise. To foster
concept discrimination, teachers should present negative examples that clearly differ from positive
examples. As learners’ skills develop, they can be taught to make finer discriminations (see Table
32).

Table 3. 2: Steps for generalising and discriminating between concepts (Schunk, 1996:222)
STEP EXAMPLE

Name concept Triangle

Define concept Three non-collinear points joined by three straight lines and a close figure.

Give relevant attributes Three sides, three angles and a close figure.

Give Trrelevant affributes | Angie of 90°, two / three equal sides.

{example noise)

Give examples Triangle ABC with two sides=4cm and an angle=90°.

VAN [N

Give non-examples
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3.2.3.2 Teaching models

Cangelosi (2003:179) says that inquiry learning activities stimulating learners to reason inductively

to form a concept, can be embedded in a lesson with four stages:

» Sorting and categorising: Present leamers with a task requiring them to sort and categorise
specifics.

» Reflecting and explaining: Learners explain their rationales for categorising the specifics as they
did. The teacher raises leading questions, stimulates thought and clarifies learners’
expressions.

s Generalising and articulating: Learners describe the concept in terms of attributes. They may
also develop a definition for the concept; however, it is not necessary for the conventional name
of the concept to be used.

e Verifying and refining: The definition is tested with additional specifics and nan-exampies. The

definition of the concept is modified in light of the outcome of the tests.

Gunter, et al. (2003: 82, 83) proposes a model, the concept attainment model, whereby learners
construct a concept by extracting critical attributes form examples and non-examples.

In preparing to use the concept attainment model, a teacher must determine the following basic
elements of the concept to be learned:

e Name of the concept.

e Concept definition or rule.

o Conceptual attributes.

e Examples of concept.

¢ Relationship of the concept to other concepts.

3.24 Conclusion

We can conclude with the following words of Cangelosi, (2003:179): “Students’ conceptualizations
provide the basis for subsequent meaningful learning of mathematics... ... The failures of many
students to develop healthy attitudes about mathematics, algorithmic skills, comprehension and
communicating skills with mathematics, and application-level abilities to do mathematics to solve
problems is well publised. Many of these failures can be traced to conceptual gaps in their learning
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However, when learners acquire knowledge with understanding it generates new knowledge
because they can apply that knowledge to new topics and solve new and unfamiliar problems

(Romberg and Kaput, 1999:19).

3.3 NETWORK THEORY

3.3.1 Orientation

Van de Walle (2004:22,23) says that the tools that learners use to build understanding include the
learners’ existing ideas and the knowledge that they already have. Therefore, integrated networks
are the way learners use their existing knowledge to understand and to integrate new knowledge.
The diagram in Figure 3.1 is meant as a metaphor for the constructions of ideas. The small dots
represent existing ideas. The lines joining the ideas represent the logical connections that have
developed between the ideas. The large dot is an emerging idea. Whichever existing ideas are
used in the construction will necessarily be connected to the new idea, because those were the

ideas that gave meaning to the new idea.

Figure 3.1: Learners use the ideas they already have (small dots) to construct a new idea (large dot), in the
process developing a network of connections between ideas (Van de Walle, 2004:23)

Hiebert and Carpenter (1992:66, 67, 69) indicate that a mathematical idea or procedure is
understood if it is part of an internal network, in other words the mathematics is understood if its
mental representation is part of a network of representations. Thus, knowledge can be represented
internally and these internal representations are structured. Understanding mathematics can be
described in terms of the way in which an individual’s internal representation is structured and the
degree of understanding is determined by the number and the strength of the internal connections.
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Understanding can be defined as a measure of the quality and guantity of connections that an idea
has with existing ideas. Understanding depends on the existence of appropriate ideas and on the
deveiopment of new connections. Therefore, the greater the number of connections to a network of
ideas, the better the understanding (Van de Walle, 2004:24, 25).

To think about mathematical ideas, leamers need to represent them internally in such a way that it
ailows the mind to operate on them. Leamers need to recognise relationships between pieces of
information and then understanding will occur as representations get connected into increasingly
structured and cohesive networks (Hiebert & Carpenter, 1982.66, 67, 69).

Gunter, et al. (2003:279,280) theorises that new information can be retained and accessed more
readily if the learners are able to link already familiar information to new data. It is also effective to
iink familiar knowledge to new data as an aid to remembering key concepts.

According to Hiebert and Carpenter (1992:68) there are different kinds of connections to construct

and create mental networks:

o  One kind of relationship is based on similarities and difierences. When learners think about the
similarities and differences between triangles, they can construct relationships between these
representations,

e« A second kind is based on inciusion. inclusion is when one mathematical procedure is seen as

a special case of another,

From their prior experiences learners are likely to have an internal network connected to their

mental representations.

3.3.2 Building Internal network representations and understanding of concepts

Even and Lappan (1994:136) say that learners cannot understand a mathematical concept in
isolation. Connections to other concepts, procedures and pieces of information deepen and
broaden their knowledge. Two important aspects of connections inciude the use of different
representations and applications both within mathematics and between mathematics and other

subjects.

According to Hiebert and Carpenter (1992:69) networks of mental representaticns are built
gradually as new information is connected to existing networks or new relationships are constructed
between previously disconnected information. Underslanding grows as the networks become larger
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and more organised. Understanding can be rather limited if only some of the mental
representations of potentially refated ideas are connected or if the conneciions are weak.
Connections that are weak may be useless when the students are confronted with corflicting or
non-supportive situations.

Even and Lappan (1994:136) theorises hat if learners represent ideas and problems in different
ways, for instance geometrically, verbally, numerically and aigebraically, it allows them {o see how
different representations give different insights into praoblem situations.

According Hiebert and Carpenter (1992:69) growth of networks may occur in several ways. Growth
can be characterised as changes in networks as weli as additions to networks. Learners build their
understanding sporadically, rather than through smooth, monotonic increase. Changes in netwarks
can be described as reorganisations. Representations are rearranged, new connections are formed
and old connections may be modified or abandoned. The construction of new relationships may
force a reconfiguration of affected networks. Therefore, internal networks are better thought of as
dynamic instead of as static, because networks are constantly undergoing realignment and
configuration as new reiationships are constructed.

According to Lesh and Carmona (2003.71) the conceptual models that learners develop can be
thought of as having both internal and external components. The internal components are often
referred to as constructs or conceptual systems and the external components are often referred to
as either artifacts or representations (see Figure 3.2).

INTERNAL [Concemual models J / EXTERNAL

4 |

1
( Constructs 1 [ Artifacts J

Conceptual Systems Representation Media
(GSP®)

Figure 3.2. Mathematical models have internal and externaf components (Lesh and Carmona, 2003:71)
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Gunter, et al. (2003:86,87) said that concept attainment is the process of defining concepts by
attending to those attributes that are absolutely essential to the meaning, and disregarding those
that are not. It also involves learning to discriminate between what is and is not an example of the
concept. Using concept attainment in the classroom is aimed at helping iearners attain the meaning
of concepts through the inductive process of comparing examples and non-examples of the
concept untit the learner derives a definition. In taking ownership of concepts which they have a

part in developing, learners can become authorities in what they are taught (see § 3.2)

3.3.3 Consequences of understanding mathematics

Hiebert and Carpenter (1992:74-77) identify the foilowing consequences of understanding

mathematics:

s Understanding is generative: Learners create their own internal representations of their
interactions and build their own networks of representations. A crucial aspect of learners’
constructive processes is their inventiveness. Learners continually invent ways of dealing with
the world. Learners’ inventions can lead to productive mathematics if the arguments of their
inventions are parts of weil-connected networks. if the mental representations are enriched by
being connected within a network, then the inventions are stimulated, guided and monitored by
much related knowledge.

« Understanding promotes recall. Memory is a constructive or reconstructive process, rather than
a passive activity of storage. One advantage of the inciination to create connections between
new and existing knowledge is that well-connected knowledge is remembered betier. An entire
network of information is less likely to deteriorate than a piece of information, and retrieval of
knowledge is enhanced if it is connected to a larger network.

e Undersianding reduces the amount that must be recalled. A conseguence of understanding
related to enhanced memory pertains 'o what must be remembered. |f something is
understood, it is represented in a way that connects it to a network. The more structured the
network, the fewer individual pieces need to be retrnieved separately. Memory of any single part
of the network comes with memory of the network as a whole, reducing the number of items
that must be remembered.

+ Understanding enhances fransfer. Transfer is essential because new problems need to be
solved using previously learned strategies. |t would be impossible to become competent if a
separate strategy would need to be iearned for every problem. Therefore, learners shouid be
able to make connections between existihg knowledge and newly learned knowledge.

= - - — == — = — = = — = — — — — — — — — _ ———— — — — — — — — — — — — — — ]
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s Understanding influences beliefs: Understanding yields affective consequences as well.
Learners’ beliefs about mathematics influence their growth in understanding. it is also plausible
that the process of building understanding influences leamers’ beliefs about mathematics. The
kind of work learners do determines how they think about a particular domain and what they
believe about the nature of the subject.

Leamners' understanding can be associated with many other existing ideas in a meaningful network
of concepts. This network of concepts can be referred to as “webs” of interrelated ideas. A clear
example of the potentiai for rich reiational understanding is found in the many ideas that can be
associated with the concept of ‘ratio” (Van de Walle, 2004:25) (see Figure 3.3).

Division: the Scate: The scale
ratio 3 to 4 is the on the map shows
same as J+4. 1 om per 50 m.
Trigonometry: All Stapes of lineg The ratio of the
trigonometry functions rise to the runis ? .
are ratios. \ /
RATIO
Comparison. The ratio Geometry: Any two similar figures have
of sunny days is greater corresponding measurements that are
in the South than in the praportional (in the same ratio).
North.

Business: Profit and loss are

Unit prices 12 kg/R1, 79 is figured as ratios of income to
about 80c for every 4 kg. the total lost.

Figure 3.3: Potential web of associations that could contribute to the understanding of “ratio” (Van de Walle,
2004:25)

34 STUDY ORIENTATION

341 Introduction

According to Maree (1897:3,4) the formation of basic concepts n mathematics is very important.
This concept of acquisition is an essential prerequisite for learning more advanced work in
mathematics. Learners display a specific study attitude towards mathematics. This includes matters
like learners' views of the natuwe of mathematics and the nature of learning mathematics. When
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learning mathematical content do not link up with the learners’ level of knowledge and thinking, it
leads to frustration.

When conceptualisation (see § 3.2.6) is incomplete, problem solving in mathematics is inhibited.
Therefore learners do not easily understand the relation between concepts. Under such

circumstances learmers will use theorems and formulas without thinking whether they are applicable
to the specific problem or not.

Learners’ engagement in mathematics refers to their motivation to learn mathematics, their
confidence in their abiiity to succeed in mathematics, and their emotions about mathematics.
Learner engagement in mathematics plays a key role in the acquisition of mathematics skilis and
knowledge. Learners who are engaged in the learning process will tend to learn more (Maree,
1897:4). Yates (2000:77) theorises that the performance of learners is related to their prior
achievement, attitudes towards specific aspects of learning and to motivational factors like seff-
efficacy, self-regulation and self-determination.

Hassan (2004:64) says that study crientation in mathematics focuses on the approaches, the

practice of how, what where and when of learning (see Figure 3.4).

When learners STUDY . Where learners
s{udy ORIENTATION [* study
Whal learners How learners
study study

Figure 3.4. Conceptual understanding of study orientation {after Hassan, 2004:64)

Attitudes are internal believes that infiuence personal actions and that reflect such characteristics
as generosity, honesty and commitment to healthy living (Schunk, 1996:392).

Mathematics anxiety is a complex and subtle problem with no simple solutions. Perry (2004) says
that a common occurrence in mathematics is that leamers have a superficial understanding of
mathematics limited to computational skills, with little conceptual understanding (see § 3.2) and
hence no framework within which to organise hisfher knowledge. As a result, this type of leamer
forgets what he/she learns very quickly, and experiences frustration.
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Mathematics anxiety reduces the storage and processing capacity of the memory system involved
with task performance, and increases the amount of ontask effort required to maintain the
performance {Hopko, 2002:164). When the body is tense, the mind cannot function.

According to Hopko (2002:157) mathematics anxiety is defined as feelings of tension and
apprehension surrounding the manipulation of numbers and the soiving of mathematical problems

in academic, private and social settings.

Wilson, Fernandez and Hadaway (s.a.) says that probiem solving has a special importance in the
study of mathematics. A primary goal of mathematics teaching and learning is to develop the ability
to solve a wide variety of complex mathematics problems.

Maree (1997:4) says that learners' study habits in mathematics are important in terms of the
practising of insights. The execution of assignments in mathematics and the consistent practising of
mathematics concepts form an important part of the learners’ study crientation in mathematics.

34.2 The study Orientation in Mathema tics (SOM) Questionnaire
The need to measure learners' attitudes towards study in mathematics is based on the premise that
mathematics is particuiarly vuinerable to poor teaching. and very little attention is paid to learners’

orientation towards studying mathematics (Maree, 1997:1).

The SOM questionnaire consists of five fields, including 76 statements that relate to how learners
feel or act regarding aspects of their achievement in mathematics. The SOM was developed for
high schoo! learners, but the scope of the questions is also applicable to tertiary students.

The five fields of the SOM can be summarised as follows (Maree, 1997:7.,8,9):

» Study attitude (SA} in mathematics: This fieid has a bearing on feelings and attitudes towards
mathematics and aspects of mathematics. This affects the learners’ motivation and
expectations with regard to mathematics. Attitudes include various factors like enjoyment of the
subject, self-confidence and the challenge that Mathematics offers.

» Mathematics anxiety (MA): l.earners' motivation in mathematics is affected negatively when
they are emotionally disturbed. When learners have not adequately mastered the concepts and
technical language of mathematics, their mathematics anxiety is increased.
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Study habits (SH)} in mathematics: Study habits address the displaying of acquired, consistent
and effective study methods and habits like planning time, preparation, working thraugh
previous tests, working through problems as well as following up problems in mathematics. it
also includes how often they do their assignments, keep homework up to date and how much
time they spend on doing mathematics.

Froblem-solving behaviour (PSB) in mathematics: It inciudes planning, self-monitoring, self-
evaluation, self-regulation and decision making during the process of problem solving in
mathematics. Problem-solving behaviour can also be described as thinking about thinking in
mathematics.

Study milieu (SM) in mathematics: Learners come from different environments. Therefore, study
environment includes factors relating to social, physical and expernential environment. Milieu
disadvantages often lead to mathematics anxiety and undermine learners' self-confidence.

According to Maree (1997.5), the following features were taken into consideration when compiling
the SOM:

The content had to be meaningful to the testee.
The guestionnaire had to have diagnostic value.
ltem biases towards language, race, gender and socio-economic environment had to oe limited.

Mark aliocation had to be objective.

The aims of SOM were (Maree, 1997:5):

*

To identify learners’ negative study orientation in mathematics.

To analyse the data obtained that could help counseliors and mathematics educators to obtain
a better understanding of iearners' poor achievement in mathematics.

To use the information gained from the resuits to help learners improve their study orientation in

mathematics.

The SOM could be used as (Maree ef al,, 1997.5,8):

A diagnostic too! for identifying those learners who need support, remediation and counseliing.

e An aid to make a systematic analysis of a number of impontant background particulars, feelings,

attitudes, habits and customs with regard to the learners’ academic orientation in mathematics.
A study guideline in mathematics to familiarise learners with basic principles of effective
studying in mathematics.
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3.5 EFFECTIVE MATHEMATICS TEACHING AND LEARNING

Klein (2004:36) says that the pedagogic emphasis must move away from a sole preoccupation with
transmission of the content to a concentration on PMTs' acive participation in the learning
processes. Therefore teacher education programs must be so that the emphasis is on active PMTs’
participation, engaged thought and the investigation of mathematical and pedagcegical ideas. PMTs
must be abie to transmit conceptual ideas and recognise the learner's active part in the learning
process. In teacher education, the assumption must be that the PMTs’ involvement in these

learning processes will iead to re-conceptuaiisations of what mathematics is and how it is learned
and taught.

Effective mathematics teaching must promote an understanding of concepts, relationships, and
processes that will lead to a better understanding of mathematics (Wilson,1993:5). Learners should
be given the opportunity to construct their own representations of mathematical concepts, rules,
and relationships. Learners who construct their own knowledge focus on the underlying structure of
problems (Wilson,1993:7,8). Human interaction and physical manipulation in the acquisition of
knowledge is therefore very important.

Tytler (1988:193) comrectly sees that the central goal of professional training should be the
elaboration and expansion of PMTs’ knowledge base. in reforming their educational practice, they
must acquire richer knowledge of subject matter.

According to Cooney and Shealy (1998:308) PMTs’ belief structures and their orientation towards
context are central to their learning how to teach mathematics, and they should be refiective and
adaptive agents. PMTs want to know what principles underlie instructional systems and what these
foundations imply for their classroom practice (Lindschitl, 1939:190).

Shuell and Moran {(1994:3341) states that a big difference between meaningful, cognitive learning
and simpler forms of learning is that the former is usually concerned with understanding, while the
latter is usually concerned with behavioural change. Knowledge must be structured and organised
to be meaningful. Another difference is that meaningful learning involves the acquisition of a
complex bedy of knowledge while simpler forms of learning involve a collection of separate,
isolated facts.
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36 CONCLUSION

Concept learning invoives higher order processes of forming mental representations of critical
attributes of categories. Current theories of concept learning emphasise the analyses of
characteristics and formation of hypotheses about concepts, characteristic analysis, as well as
forming generalised images of concepts that include conly some defining of concepts,
characteristics, and prototypes (Schunk, 1996:232).

Knowledge structures are addressed at two levels: generaliy with respect to conceptual-procedural
properties; and with a specific mathematical focus. Conceptual knowledge is shaped by the
construction of new relationships between existing information, or through linking existing
knowiedge to some new information. Conceptual knowledge is stored as a linked network of units,
where the more elaborate the network, the more nodes there are for activation to be initiated.
Inadequate conceptua! knowledge means that a needed piece of information will not be retrieved
when required, or that some incompiete or inaccurate version will be acted on (Galbraith & Haines,
2000:652)

Learners’ beliefs should be the key to understanding their actions. Their faiure to solve
mathematical problems is can be directly attributed to their less powerfui beliefs about the nature of
mathematics and mathematics problem soiving (Wong, 2002:15).

Porter and Masingila (2000:166) say that a rote conception of mathematics can interfere with
learners’ procedural ability. It can also prevent them from gaining an understanding of mathematical
concepts. Both procedural ability and conceptual understanding are necessary for success in

mathematics.
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A THGORGTICGAL FRAMEBWORK
FOR DYNAMIC COMPUTER
76GHNOLOGY IN THE
DEVELOPMENT OF

GONGEPTUAL UNDERSTANDING
IN GEOMETRY

41 INTRODUCTION

Diagrams are one way to represent geometric figures. These visual representations have a
powerful influence on PMTs' development of geometric concepts. Dynamic computer technology
such as Geometer's skeichpad® (GSP®) has the potential to provide such a rich visual leaming
environment. By designing a rich visual tearning environment in conjunction with GSP®, PMTs can

overcome the visual obstacles imposed by their limited perception (Contreras, 2005).

PMTs will embrace dynamic computer technology since it is the medium of the time. Teachers
need to make this medium their own too. it has been recognised that learning doesn't stop at

school, but has become a life-lang process.

The purpose of this study was to investigate the conceptualisation of geometric leaming of PMTs
during instruction with the aid of dynamic computer technology, with special reference to GSP®
(refer to § 1.2).

4.2 AN OVERVIEW

In this day of rapidly changing technologies, we cannot anticipate ail the skills that learners will
need in their lifetime or the problems they will encounter. We need to prepare iearners to learmn new
skills and knowledge and to adapt their knowledge to solve new problems (Romberg & Kaput,

1989:18, 20}.

e .-
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Information and communication technology play an increasing and significant role in ail facets of
society. Teachers want their learners to be leaders in the field, to set the values and agendas of the

corporate world. Teachers need to equip their learners to think and work in a creative and
connected, lifelong learning environment,

Learners are exposed to direct sources of information like never before. They have to learn to be
critical of information, developing skilis to analyse and sort relevant material, skills that were not
needed when the textbook was the main source of information. Such analytical skills can be
learned and actively pursued with the potential of dynamic computer technology. Given the

challenge, it is an exciting way to leamn how to be responsible and discerning in the quest for
knowledge (De Viliers, 2004.703).

Learners can take more initiative in, and responsibility for their leaming with dynamic computer

technology. VWhen learners da that, they experience reat excitement.

Therefore it will be imporiant to:

» Create a leaming enviconment that can be further explored as the learners grow in
understanding, skills and knowledge;

» Change the classmom from a static environment, where the teacher dictates (see § 2.3.1),to a
more active, engaging and collaborative environment.

43 DYNAMIC COMPUTER TECHNOLOGY

4.31 COrientation

It becomes clear in research done by Van der Sandt (2003:83) that learners teave school with
higher levels and degrees of geometric acquisition than the levels and degrees of acquisition
attained by the PMTs who were exposed to three years of academic and mathematical

methodology training (see §6.2.1.3).

With this background in mind, dynamic computer technology can be effectively used te facilitate the
PMTs conceptual understanding of, and study orientation towards mathematics (Jiang, 2005).

4.3.2 Dynamic computer technology as a tool for teaching and learning
According to Clements and Battista (2000.761,764) there is little doubt that dynamic computer

technology will have a major impact on the teaching and learning of mathematics. The complexity
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of dynamic computer technology teaching and learning, includes both the processes and the
products of leaning. Reflecting on the actions and activities that are enabled by dynamic computer
technology can catalyse a reconceptualisation of the rature and the content of the mathematics
that could be learned. The flexibility of dynamic computer technology allows the creation of a vision
less hampered by the limitations of traditional materials and pedagogical approaches.

According to Becker (2000) a number of research studies have indicated that dynamic computer

technology can play a positive role in academic achievement. Dynamic computer technoiogy is

most effective when:

» |tis combined with instructional strategies that actively involve learners in learning inteliectually
complex work that demands higher order thinking and problem solving skilis

» Teachers have the necessary professionat development.

Becker's (2000) research notes that dynamic computer technology is a strong tool for supportive,
active, inquiry based learning. Becker argues that the kind of active learning necessary to master
principles and concepts is easier to implement in a technology-rich environment where learners
have a rich array of information to work with. Dynamic computer technology seems to be
associated with significant gains in mathematics achievement when it is used to facilitate the
construction of higher order concepts and when teachers are proficient enough in the use of
dynamic computer technology (Wenglinsky, 1998:32).

if learning were viewed merely as an increase in knowledge, active participation on he part of the
learner would not be so important. However, if one accepts Piaget's (see § 2.2.4) view that learning
involves a restructuring of the iearners cognitive schemata, leamer involvement becomes
mandatory (Webb, 2001:96).

Teachers ought to introduce their learners to the art of problem posing early and allow sufficient
opportunity for exploring, conjecturing, reformulating and explaining. However, i teachers
themselves have never been exposed to such approaches in their own learning of mathematics, it
is hardly likely that they would attempt to implement it in their own classrooms. It is therefore
important in mathematics teacher education to devise ways of expanding learmers’ views of proof
and to allow sufficient opportunity for exploring, conjecturing and explaining (De Villiers, 2004:704).

Olive (2000) theorises that dynamic geometry turns mathematics intc a laboratory science rather
than a game of mental gymnastics, dominated by computation and symbolic manipulations.
Mathematics becomes an investigation of interesting phenomena and the role of the students

HAPTER 4 50



becomes that of a scientist, observing, recording, manipulating, predicting. conjecturing and testing.
Students also deveiop thearies as explanations for phenomena.

To illustrate this, Otive (2000) uses dynamic computer technology namely GSP®. Geometric figures
can be constructed by connecting components, for example a triangle can be constructed by
connecting three line segments. This triangle, however, is not a single static instance of a triangle
that would be the result of drawing three line segments on paper. By grasping a vertex of this
triangle and moving it with the mouse, the length and orientation of the two sides of the triangle
meeting at the vertex will change continuously. The use of the dynamic drag feature of this type of
computer tool, ilustrates how such dynamic manipulations of geometric shapes can help learmers
to abstract the essence of a shape from seeing what remains the same as they change the shape.
In the case of the triangle, the learners can abstract the basic definition of a triangle as a closed
figure with three straight sides. Length and orientation of those sides are irrelevant as the shape
remains a triangle, no matter how they changed these aspects of the figure. Such dynamic
manipulations heip in the transition fram the first to the second van Hiele level. From the recognition
of shape to the awareness of the properlies of a shape.

Ben-Zvi (2000:139) adopted an approach based on empirical research and theoretical analysis that

views computers as cognitive tools. A cognitive tool can be described as dynamic computer

technology that helps transcend the limitations of the mind.

This approach is based on a specific conception of the human cognition, of which the following are

key aspects:

e Cognitive processes have a concrete and imagistic base and are not organised by formal or
general rules.

= Cognition depends on available dynamic computer technology. Cognitive development is
understood not merely as development of the individual mind, but also as a social development

of available dynamic computer technology.

» Cognition tends to be context-bound (Ben-2vi, 2000:139).

This conception of cognition ieads to specific ways of using dynamic computer technology and how

dynamic computer technology lends itself to supporting cognitive activities:
The amplifier metaphor:
In environments that are not based on dynamic computer technology, representations produced

and used during dlassroom activities are limited in number, Instruction often concentrates simply on
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translation skills between representations, and mastery of skiils tends to become the central goal of
teaching. The use of dynamic computer technology turns many of the manipulations of
representations into automatic operations. Many more calculations and representations can be
carried out (Ben-Zvi, 2000:140).

The reorganisation metaphor:

An appropriate usage of dynamic computer technology has the potential to bring about structural
changes in the leamers’ cognitive activities. Dynamic computer technology brings about the re-
organisation of physical or mental work in at least the foliowing ways:

o Shifting the activity to a higher cognitive level.

e Changing the objects of the activity.

= Focusing the activity on transforming and analysing representations.

e Supporting the situated cognition mode cf thinking and problem solving.

» Accessing mathematical conceptions.

e Constructing meaning of conceptions (BerrZvi, 2000:140-143).

it is therefore clear that dynamic computer technoiogy is an essential tool for teaching, leaming and
doing mathematics. it furnishes visual images of mathematical ideas. it facilitates organising and
analysing data and it can be used to compute efficiently and accurately. it can support
investigations by learners in every area of mathematics, including geometry, statistics algebra and
measurement. When using dynamic computer techinology learners can focus on decision making,
reflection, reascning and problem -solving. Dynamic computer technology is now available on which
activities with hands-on, physical manipulatives can be simulated on a computer (Cangelosi,
2003:147).

Learners can iearn mathematics more intensively with the appropriate use of technology.
Technology should not be used as a replacement for basic understanding and intuitions, it can
rather be used to foster those understandings and intuitions. Learners' engagement with abstract
mathematical ideas can be fostered through dynamic computer technology. It enriches the range
and quality of investigations by providing a means of viewing mathematical ideas from multiple
perspectives (Cangeiosi, 2003:147).

As illustrated by Olive (2000) many examples of a phenomenon can be created quickly and easily.
This makes it easier for the teacher to facilitate inductive thinking. Inductive reasoning is in essence

the skill of making connections, which promotes creative thinking.

L
CHAPTER 4 52



The curriculum for learners should include many opportunities ‘o ‘earn how to use dynamic
camputer technology to understand mathematics better themseives and how to promote learners’
learning of mathematical concepts. The availability of dynamic computer technology has forced
mathematicians to rethink the way they teach mathematics. Learners need to develop critical
thinking skills. to understand the main concepts and to be able to apply them in a wide variety of
situations {Pecuch-Herrero, 2000:181). Dynamic computer technology has became essential.

According to Drier (2001.70,71) the majority of mathematics courses in PMTs' backgrounds are
taught using traditional instructional methods with iittle use of dynamic computer technology. The
use of dynamic computer technoiogy can provide students with a deeper understanding of
concepts embedded in a problem. Lecturers are challenged with the task of preparing students who
can utilise dynamic computer technology as an essential tool in developing a deep understanding
of mathematics, for themselves as well as for their students. Students should learn how to use
dynamic computer technology as a conceptual teaching and learning tool.

It is belleved that dynamic computer technology provides a promising environment for developing
understanding of difficult symbolic ideas and techniques. According to Hennessy ¢f al. (2001:282)
findings confirm the mplications that portable graphing technologies present a unique opportunity
to help learners develop concepts and skills in traditionally difficult curriculum areas.

According to Schwars and Hershkowitz (2001:260) research has indicated that PMTs who have
engaged Iin dynamic geometry tasks, are able to capitalise on the ambiguity of figures in the
learning of geometrical concepts. Funkhouser (2003:165) reported that learners who used
computer-augmented methods as a supplement to traditional instruction were better able than a
control group to visualise and describe angles and polygons. Dynamic computer technology (e.g..
geometric supposer) promoted the development of geomelry concepts and positive attitudes
toward mathematics. Ng and Teong {2003:5) says that the use of dynamic computer technology
enables learners to model and have an interactive experience with a large variety of two-

dimensional shapes.

According to Ben-Zvi (2000:128) dynamic computer technology has been developed to suppart the
following:
e Leamners’ active knowledge construction, by doing and seeing mathematics.

e Opportunities for learners to reflect on observed phenomena.
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e The development of learners’ metacognitive capabilities.

e The renewal of instruction and curriculum.

Jiang (2005) believes that the integration of dynamic computer technology will effectively help
PMTs reach a better understanding of mathematical concepts and develop stronger problem

solving abilities.

44 GEOMETER’S SKETCHPAD (GSP®)

441 Origin of Geometer's Sketchpad®
The GSP® was developed as part of the Visual Geometry Project, a National Science Foundation
project. GSP® creator and programmer, Nicholas Jackiw, developed GSP® first versions in an

open, academic environment in which teachers and researchers provided design input. Key

Curriculum Press continues to study how GSP® can be most effectively used (Bennett, 1997:viii).

4.4.2 Different uses of Geometer’s Sketchpad

The following uses of GSP® were documented during research done by the Visual Geometry

Foundation {Bennett, 1997:ix}):

» GSP®'s power enable PMTs to create figures of arbitrarily great complexity, but PMTs who are
beginners at using GSP® grasp concepts best when their thinking is directed toward
relationships and simple constructions.

¢ GSP® can integrate dfferent geometry topics in ways textbocks can not. For example in a
GSP® triangle investigation, PMTs might investigate line and angle relationships, area,
transformations, symmetry and coordinate geometry.

e Opportunities for PMTs insight come in many places throughout the course of an investigation.
not just from dragging a completed construction. For this reason, PMTs are explicitly asked to
drag parts of their figures during the course of construction and leading questions are
interspersed throughout the activities (see Appendix B).

According to De Villiers (2004:703) GSP® can be used to develop PMTs' understanding of other
functions of proof than just the traditional function of verification. These other functions are
explanation, discovery, intellectual change and systematisation. However, proof has many other
functions within mathematics, which are of greater importance than mere verification. Some of
these functions are:

o Explanation: providing insight into why a statement is true.

o  E————
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s Discovery: the discovery or invention of new results.
v Intellectual challenge: the self-realisation derived from constructing a proof.
o Systematisation. the organisation of various results into a deductive system of axioms,

cancepts and theorems.

Bennett (1997 xiv) says that PMTs can construct translations, reflections, rotations, dilations and
iterations with GSP®. PMTs can create animations that trace sine waves, expiore other

trigonometric identities and they can encapsulate complex geometric constructions in single steps.

GSP® can also be used to enhance the teaching and iearning of geometricai concepts and
relationships of the PMTs (Ng & Teong, 2003:5). According to Garofalo and Bell (2004:233) GSP®
is a tool to facilitate PMTs' visualisation and exploration of mathematics concepts. The dynamic
features of GSP® can support the conceptual development of PMTs.

443 Rationale for using GSP® as a learning environment
Wilson (s.a.) states that dynamic geometry programs such as GSP® provide exploration toois with
rich potential for all ages. The teols can be used to explore relationships of and among geometric

cbjects in a plane.

PMTs can construct an object and then explore its mathematical properties by dragging the object
with the mouse. All mathematical relationships are preserved, allowing the PMTs to examine an
entire set of similar cases in a matter of seconds. This leads by natural course to generalisation.
GSP® encourages a process of discovery in which PMTs first visualise and analyse a problem, and
then make conjectures, before attempting a proof (Bennett, 1997:vii).

4.44 A framework for teaching geometry with GSP®
Choi-Koh (1999:302) says that active visualisation is the process of forming and interpreting
geometric representations of mathematical concepts, principles or problems, within dynamic

computer technology (GSP®) across all levels of geometric thought.

The traditional approach to geometry focuses mostly on developing the ability of making deductive

proofs, especially for riders. it is aimed at (De Villiers, 2004:710):

¢ Providing the PMTs with exemplars of how geometric content could be organised in learning
activities corresponding to the Van Hiele levels,

* Developing understanding of varied meanings of proof at the different levels.

e I ———— — S ———————
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Actively engaging the PMTs in the process of defining in order that they may realise:

% That different, alternative definitions for the same concept are possible.

@ That definitions may be uneconomical or economical.

@ That some economical definitions lead to shorter, easier proofs of properties.

Developing the PMTs' ability to construct formal, economical definitions for geometrical

concepts.

Webb (2001:96) suggests the following rationale for selecting worthwhile activities:

Each learners success must be measured in terms of bettering his/fher own performance.
Motivation (see § 3.4) is hard to maintain if the learner repeatedly fails.

Avoid activities that are so structured that there is anly one correct way to respond.

Provide activities that are challenging.

Most of the learners’ time must be focused on the activities and not on the teacher (see §
2.3.1).

Provide individual activities to be accomplished in the company of peers. While individual effort

is necessary for cognitive growth, peer interaction provides encouragement and assistance.

GSP® presents the possibility of new kinds of tasks and new ways of looking at old tasks. In

teacher education lecturers can use GSP® to enhance their teaching abilities, and it has the

potential to consolidate the lecturer's task in geometrical concepts, providing informai proofs of

conjectures and easing PMTs’ thinking in problem solving activities. Table 4.1 illustrates a

suggested framework where some GSP® tasks of different emphases can be crafted in the

mathematics classroom. These levels are not fixed (Ng & Teong, 2003:5).

Table 4.1: A framework for teaching geomelry with GSP® (Ng & Teong, 2003:5)

LEVELS PURPOSE OF TEACH CONSOLIDATE | INFORMAL | PROBLEM
INSTRUCTION CONCEPT CONCEPT PROOF SOLVING
Teacher demonstration
Templates/pre-made See Figure 4.1 See  Figure
sketches 4.2
Guided exploration See Figure 4.3

lconstruction tasks

]

Black box tasks See Figure 4 4

In the foliowing achvity the PMTs can experiment with drawing, dragging, measuring and labelling

points segments, rays and lines according to the Van Hiele levels of geometric thought (see §

R R e —w
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2.2.3.1). These objects, along with the circle, are the building blocks of most geometric

constructions.

Levels 1 and 2: demonstration of sketches or templates/pre-made sketches

The PMTs can make use of demonstration sketches or pre-made sketches (See Figure 4.1 and
Figure 4.2). The difference between a demonstration sketch and a pre-made sketch is that in the
former, the lecturer shows the GSP® sketch to his/her class and leads the PMTs to an
understanding of the key concepts presented by the sketch through careful oral questioning and
guided observation. The latter, on the other hand, involves PMTs exploring the sketches prepared
by the lecturer, following certain guidelines. PMTs can drag the items around, add new
constructions into the existing templates, make appropriate measurements and answer questions
accompanying the pre-made sketch. In this way they are steered into making conjectures based on
their observations and then testing them on the templates using the features of GSP®. A more
challenging task with a problem solving focus can also be presented using pre-made sketches (Ng
& Teong, 2003:6).

m

A

D B

Figure 4.1: Pre-made sketch of adjacent angles (Ng & Teong, 2003, 6)
L
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D/\E
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A 3 B

Figure 4.2: Different triangles created in different layers of triangles (Ng & Teong, 2003, 6)
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Level 3: guided explorations/ construction tasks

According to Ng and Teong (2003:6) the PMTs can also make use of guided explorations or
construction tasks (see Figure 4.3), where they are provided with simple construction steps for
constructing certain figures. No pre-made sketches are used. PMTs construct the GSP® sketches
from scratch and are directed to make discoveries about geometrical concepts explored through
lecturer questioning. These activities are usually given to PMTs who are already familiar with the
basic features of GSP® so that time is not wasted on the technicalities of how to use GSP®.

Vertex Adragged

m /BAC =21.17°
m £ZABC =140.60°
m /BCA =18.23°
m /BAC+m £ABC+m £BCA =180.00°

C

Figure 4.3: Explore the sum of angles in triangles (Ng & Teong, 2003, 7)

Level 4: Black box tasks

Ng and Teong (2003:8) suggest that with GSPs® reliable accuracy in constructing basic objects,
construction tasks in GSP® can involve the creation of more complicated figures for fun or for
verifying a geometrical phenomenon. Black box tasks entail a certain degree of freedom on
constructions. Room can be made for different approaches to constructing the same figure. PMTs
are tested based on their abilities to construct geometrically sound figures so that correct
conclusions can be drawn from their sketches. In doing so, PMTs are made to realise that their
sketches should possess certain geometric properties and understand that these geometric
properties are required to construct such objects. In the process, pre-service mathematics teachers
investigate the underlying geometrical relationships between the objects in the construction and

also make use of their problem solving skills, such as working backwards and making deductions.
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m §=2.24 cm
m CA =2.24 cm

Figure 4.4: Identify an isosceles triangle (Ng & Teong, 2003, 8)

GSP(®) can also be used to solve a more conceptual problem, for example:

The power plant problem

A power plant (see CD) has to be built to serve the needs of three cities. Where should the power
plant be located to use the least amount of high-voltage cable that will feed electricity to the three
cities? If the three cities are represented by the vertices of A ABC, then this problem can be solved
by finding a point with minimum sum of distances to all three cities. In exploring this situation in
GSP®, PMTs can measure the three distances from an arbitrary point P and the three vertices A, B
and C of the triangle (see Figure 4.5). They can then sum these distances and move P around to
find a location with minimum sum. When such a location has been found, PMTs can make

conjectures concerning relations among P and the three vertices.

Figure 4.5: Constructing the location of the power plant P
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After the PMTs have successfully located the position of the power piant and found a way of
constructing that position, they have to explain why this point provides the minimum sum of
distances tc each vertex of the triangle formed by the three cities. This question challenges them to

find a way of proving that their constructed point P must be the minimum point.

45 CONCLUSION

Over the last decade, there were huge progress in dynamic computer technology that have become
more powerful, flexible and efficient. Despite all this progress, the penetration of these technologies
in educational practice proves to be very slow. The shortage of technology in schools is one
reason. However, the limited commitment of lecturers and curriculum developers and the great
ignorance about teaching and iearning in compuler-based envirenmenis are imporiant factors
contributing to the scarcity of actual implementation in the classrooms. Educators should be
encouraged to view dynamic computer technology as legitimate extensions of cognitive systems
(Ben-Zvi, 2000:149).

Teachers are a fascinating, intelligent, and somewhat eclectic group of people. Yet some teachers
resist change and nobly cling to traditional teaching models; spurning the integration of dynamic
computer technology. In doing so they deprive their leamers and themselves of a creative and

exiting learning environment.

Whether we like it or not, information and dynamic computer technology are the learning and

teaching media of our time.
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CHAPIEGR 5

MEBTHOD OF RGSGARCH

51 INTRODUCTION

in this chapter the empirical investigation is described and motivated. The nature of the research is
both quantitative and qualitative and multiple methods of data coliection were employed with a view
to increase the reliabitity of the results.

The layout of this chapier covers the aim, experimentat setting, tasks, the population and sample,
the instruments used, the variables used, the method of research, the statistical techniques, which

were used to analyse the data and the conclusion.

52 AIM OF INVESTIGATION

The aim of the investigation was to gain more knowledge with regard to the relationship between a
dynamic technoiogical learning environment and the conceptual undcerstanding of PMTs in
geometry, as well as the relationship between a dynamic technological learning environment and
the study orientation of PMTs (see § 1.2).

The quantitative research served to enable the researcher to determine the effect of a dynamic
technological learning environment, firstly on the conceptual understanding and secondly on the

study orientation of PMTs in geometry.

Mathematics education lecturers in the facuity Education Sciences, of the North-West University,
Patchefstroom Campus, decided that all the PMTs in their third year (2005) had to participate in the
dynamic computer programme. This arrangement excluded the possibility of selecting a control

e——— e _______]
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group. A pre-experimental research design was empioyed (Leedy & Ormrod, 2001:229). To
strenghten the research, the researcher aiso did a qualitative research (interviews). The qualitative
research provided an opportunity to interact face-to-face with the PMTs through interviews in order
to gain more insight in how the PMTs experienced GSP@.

Furthermore, this study was both operational and applied in nature as it was carried out in the
PMTs’ learning environment.

Both qualitative and gquantitative research were conducted (see Figure 5.1).

DESIGN
Quantitative research Quatitative resaarch
Research design Research design
One-group pretest/posttest design Interactive interviews
Aim Aim
To determine the effect of a dynamic To strengthen the
technological environment on: guantitative research
+ The mathematical conceptual
understanding of PMTs
» The study orientation of PMTs
Instruments tnstruments
¢ Mayberry Type Test Structured interviews
e Study Orientation in Mathematics

(SOM) Questionnaire /
\\

integration, reflection, apalysis and
evaluation

Figure 5.1: Combined research! method

53 METHODOLOGY

531 Quantitative design
The pre-experimenta! design namely the one-group pre-test/posttest design (see Table 5.1) was

used. In a one-group pre-test/post-test design, a single group (@) has a pre-experimental
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evaluation, then (b) is administered the experimental treatment, and finally (¢) is evaluated after the
experiment (Leedy & Ormrod, 2001: 235).

Table 5.1: The one-group pretest-posttest design (Leedy & Ormrod, 2001:235)

ROUP

GROU TIME 7

Group Pre-test | Obs Obs Tx Obs Obs Posttest
Where:

« (Obs: indicates that observations, refiecting on the dependent variable, are made.

¢ Tx:indicates that a treatment, refiecting the independent variable, is presented.

The researcher did a pilat study in 2004 to gain some experience of the GSP® and to test the
chasen procedures and materials.

The pre-test (SOM and Mayberry Type Tests) was administered during February 2005. The PMTs
were assured of the confidentiality of the results. The answers to the questionnaires were
anonymous and identification numbers were allocated to each PMT (McMillan & Schumacher,
2001:198}. The same identification numbers were used during the administration of the pre-test and
the post-test to make comparison possible.

There were no right or wrong answers to the SOM questionnaire and PMTs were encouraged to
give honest answers. The answer sheets were collected immediately afterwards. The PMTs wrote
the Mayberry Type Test (see Appendix A) and the SOM Test on the same day.

After the intervention programme had been completed the posttests were administered. The
researcher marked the Mayberry Type Test as well as the SOM questionnaire and the marks were
moderated by a specialist on this field. The scores for the Mayberry Type Test and the SOM test
were submitted to Statistical Consultation Services of North-West University, Potchefstroom
Campus, for processing the data.

5.3.1.1 Intervention

The activities were designed according to the reconstructive approach and were structured in
accordance with the Van Hiele theory of learning geometry.
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The activities (see Appendix B and CD) that the participating lecturer developed, focused on the
development of understanding the concepts to be covered during the course.

In Activity 1 the PMTs learned how to draw a triangle with GSP®. Then, in Activity 2 they developed
the concepts of midpoint, median and ratio (assisting in the development cf the concept of
similarity). During Activity 3 they developed the concepts of perpendicular bisector, circumcircle and
right-angled triangle. Activity 4 aimed to develop the concepts of altitudes, acute triangie, obtuse
triangle and right-angled iriangle. After that they developed the concepts of angie bisectors and
inscribed circles in Activity 5. Finally, in activity 6, the concepts of radius, isosceles triangle and
base angles of an isosceles triangle were reinforced.

The language of instruction was Afrikaans and the PMTs were Afrikaans speaking students.
Completion of the activities occurred through medium Afrikaans. The current dissertation is
presented in English and for the benefit of the reader the activities were translated inta English.

5.3.1.2 Variables
The foliowing dependent and independent variables have been used in this study:

Independert variables

A dynamic technological learning environment in the form of 2 Van Hiele based learning
pregramme, employing a software package namely Geometers Sketchpad® 4 (GSP®) in a
problem solving context.

Dependent vanables

The foliowing dependent vanables were used:

e Study Orentation in Mathematics {SOM) Questionnaire that consists of the following fields:
Study attitudes, mathematics anxiety, study habits, problem -solving behaviour and study milieu.

e Conceptual understanding of triangles.

5.3.1.3 Study population and sample

The study population consisted of 371 third-year education students (in 6 classes) following the
general mathematics module in geometry at the North-West University, Potchefstroom Campus. A
sample of 26 prospective mathematics teachers from one of the classgroups took part in the

axperiment.
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5.3.1.4 Instruments

For the purposes of a quantitative research two questionnaires were completed by the participants.
The first questionnaire was the Maybesry Type Test (see Appendix A) to determine the influence of
a dynamic computer technology programme on the conceptual development of geometric thought
levels of PMTs (see § 3.2). The second questionnaire was the Study Orientaticn in Mathematics
(SOM) Questionnaire (see § 3.3.1) to determine the influence of a dynamic computer technology
programme on the study orientation of PMTs.

Mayberry Type Test

The Mayberry Type test (Lewin & Pegg Version as published by Lawrie, 1998} includes 40 items
each with up to 5 sub-items on a variety of geometric concepts. This questionnaire was used to
assess the concepts included in the activities over the first four Van Hiele levels (see § 2.2.3). The
answers to the items were assessed and scored according to the acquisition scales of Gutiérrez et
al (1999) (see §2.2.3.2).

Study Orientation in Mathematics (SOM) Questionnaire

The Study Orientation in Mathematics (SOM) Questionnaire (Maree et al,1997) was used.
According to Maree et al. (1997:26) the level of reliability in terms of Cronbach Coefficient Alpha
(grade 8 and grade 9 learners), for the SOM questionnaire as a whole ranges from ©=0,89 10
«=0,95. Steyn and Maree (2002:13) report on an action research done dunng 2000-2001, involving
firstyear engineering students in an extended study programme of the School of Engineering at the
University of Pretoria. These two researchers posit that SOM fields, study attitude, mathematics
anxiety, study habits, problem-salving behaviour and study milieu, could be regarded as significant
predictors of performance in mathematics at university level. The SOM questionnaire comprises

seventy six guestions covering the five fields of learning skills (see Table 5.2).

Table 5 2: Number of items per SOM fields (Maree ef al., 1997:7-8)

SOM FIELD NUMBER OF ITEMS
4 | Study attitudes (SA) 14
2 | Mathematics anxiety (MA) 14
™3| Study habits (5H) 77
4 | Problem-solving behaviour (PBS) 18
5 | Study milieu (SM) 13
] 76
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The rationale for using the SOM questionnaire includes the following:

¢ To measure (before and after intervention) the influence of a dynamic technological learning
environment on the study orientation of PMTs.

» To ascertain whether or not the intervention had any effect on improving the study orientation in
mathematics of PMTs.

The questionnaire could be completed by making use of a five-point scale (see Table 5.3)
according to which the PMTs could estimate their response ratings about the five fields of learning

skills.

Tabie 5.3: The five-point scale of the SCM questicnnaire (Maree, 7996:1)

Rarely Sometimes Frequently Generally Almost always

Oto 15 % 16to 35% 36 to 85% 66 to 85% 86 to 100%

5.3.1.56 Data analysis

The Mayberry Type Test was moderated and the Gutierrez, Jaime and Fortuny (1991.237-239)
method (see § 2.2.3.2), to evaluate those answers that denote a possibie transition between the
levels, was used. The SOM guestionnaire was also moderated to ensure reliability and content
validity.

For both the Mayberry Type Test and the Study Orientation in Mathematics (SOM) Questionnaire

the following statistical proceduras and techniques were applied:

o The assistance of the Statistical Consultation Services of the North-West University,
Potchefstroom Campus, was sought to analyse the guantitative data. Descriptive statistical
techniques, means and standard deviation, were used o describe changes in the group.

» Cronbach Coefficient Alpha was employed to determine the reliability of the Mayberry Type
Test and was also used to estimate the reliability of the SOM Test that had no right or wrong
answers or scores and whose test items had more than two scores.

e The paired t-Test was used to compare the mean difference within the group as an indication of
statistically significant differences. When p<0,05, a statistically significant difference between
the groups exists {Gall et af.,1996:391).

o Effecksize (Steyn, 1899:3) was used {0 determine whether the statistically significant

differences between the pre-test and posttast results were of practical significance.
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The following formula was used to determine the effect-size:
d= '.A.I.'
[¢)

with 4 =eflect size, Ax the mean of differences and s=standard deviation of the group. If
0,2 <d <05 it indicates a small effect, if 0,5 <4 <0,8 it indicates a medium efiect, if 4 >08 it
indicates a large effect Only if 4 > 0,8 is there a practical significant difference between the groups
and the leveis, although an effect size of 0,6 <d <0,8 indicates a possible practical significant

difference.

5.3.2 Qualitative design

The PMTs made use of a dynamic computer programme namely GSP ® (see § 4.4). Initially the
PMTs identified and operated on shapes according to their appearance. They recognised figures as
visual “gestalts”. Thereafter, they staried to recognise and characterise shapes by their properties.
Later on during the programme, some of the PMTs managed to form abstract definitions and

distinguish between necessary and sufficient sets of conditions to develop specific concepts.

Phenomenological interviews were held after the PMTs had completed the dynamic computer
technology programme. A phenomenological interview is regarded as a special type of in-depth
interview used to study the meanings of a lived experience among selected participants (see §
5.3.2.2).

Responses, as captured on tape during the interviews, were transcribed. The transcriptions were
transiated into English because this dissertation is presented in English. All the information gained
from the interviews was interpreted and documented (see § 6.2.2.3). The researcher discussed the

findings with the participating lecturer.

5.3.2.1 Study population and sample

In executing the qualitative research, interviews (see Appendix C) were held. Britten (1995:256)
says qualitative interviewing is a flexible and powerful method. According to Leedy and Ormrod
(2001:159) interviews can yield a great deal of useful mformation.

Seven PMTs were selected for interviews as sample for the qualitative study. The PMTs were
selected on the basis of their profile as reflected by their mathematics marks of the June 2005
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examination in the geometry module. Therefore 3 low and 4 top performers were identified to take
part in the qualitative part of the research.

5.3.2.2 Data gereration
McMillan and Schumacher (2001:444) identify three types of interviews, namely interview guide

(semistructured interview), informal conversation {unstructured interview) and standardised
interview (structured interview). See Table 5.4.

Table 5.4: Types of interviews (McMiflan & Schumacher, 2001:444)

TYPES OF INTERVIEWS
Informal conversation Questions emerge from the immediate context.
interview guide - Topics are outiined in advanced B
i Standardised interview The exact words and sequence of questions are predetermined

Qualitative studies often require planned interviews so that the researcher can design the format in
advance, The researcher used phenomenological interviews which is a specific type of in-depth
interview. Phenomenological interviews investigate what was experienced, how it was experienced
and finally the meanings that the interviewees assigned to the experience. The experience studied,
was whether a dynamic computer technology programme such as GSP®, affected the
mathematical conceptual understanding and study orientation in mathematics of PMTs (McMillan &
Schumacher, 2001:445).

This method, the in-depth interview, is one of the most powerful tools in qualitative research. When
selecting in-depth interviews for a qualitative study, the researcher assumes that the perspectives
of the interviewees, who have personal experiences of the 1ssue under investigation, form a vital
saurce of information. In a study that uses the in-depth interview, the researcher decides in
advance to which extent the interview will be structured. Most in-depth interviews use at least some
predetermined system that places them between the structured and unstructured interviews
(McMiltan & Schumacher, 2001:446).

In a phenomenociogical interview the aim is to discover the interviewee's own framework of
meanngs and the research task is to avoid imposing the researcher's structures and assumptions
(Britten, 1995.252).

Kvale (1996:32,33) says that the interviewees describe as precisely as pcssible what they
experience and feel and how they act. The primary task for both the interviewer and the
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interviewee, however, remains that of obtaining descriptions so that the researcher will have
relevant and precise material from which to draw interpretations.

5.3.2.3 Data analysis

Phenomenclogical interviews were held with the PMTs, after the intervention had taken place

because the PMTs were then able to reflect on the activities that they had performed with GSP®.

Responses tc the interviews were recorded manuaily in the field book shortly after the interviews. [t

was done in this manner for the following reasons:

» To avoid distracting the interviewer's concentration if notes were to be tzken during the
interview.

+ To avoid making the interviewee nervous by writing down hisfher words during the interview.

The PMTs were interviewed to

o collect information about the positive and negative influences that the dynamic technological
learning environment (GSP®) had exercised on their understanding of mathematics and aff the
variables.

o dentify improvements, if any, related to the utilisation of the dyrnamic technological learning
programme.

» gain additional information about the activities that were used during the lessons.

The duration of the interviews ranged between twenty and forty minutes per interview.

The data obtained through interviews were analysed in a narrative manner. In the case of the
interviews the actual words of the interviewees were quoted as recorded in the interviewer's field

notes and inductively interpreted in a narrative manner.

54 ETHICAL ASPECTS

A letter, requesting permission to use the afore mentioned study population, was sent to the Dean
of the Education Department of Science, of the North-West University Potchefstroom Campus (see
Appendix D).

Meetings were held with the mathernatics subject chairman and the participating lecturer in order to
explain the research aims, role of the participating lecturer as well as the support and commitment

from them.
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Furthermore, the details of the research were fully discussed with the mathematics subject
chairman as well as the participating lecturer and the researcher also negotiated the procedure of
how the classes would be conducted. As far as possible, the answering of the tests and

questionnaires by the PMTs were conducted in such a way as to mimmise disruption of lectures.

The lecturer involved, as well as the researcher, discussed the experimental programme with the
PMTs and obtained their cooperation as participants in the research

55 CONCLUSION

The use of a dual research approach, i.e. guantitative and quaiitative research approaches afforded
the researcher the oppaortunity to critically discuss and identify attributes about the statistical data.

Chapter B presents the research findings of the data gathered quantitatively and qualitatively and
the statistics will be anaiysed and the resuits interpreted.

W
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CHAPIE@R 6

RESBARGH FINDJINGS
AND DISCUSSION

6.1 INTRODUCTION

The aim of this research (see § 1.2) was to investigate whether and how a dynamic technological
learning environment will influence the conceptual knowledge of PMTs. The purpose of this chapter

is 10 present and discuss the research findings.

The descriptive statistical resuits with regard tc the quantitative research approach are discussed in
paragraph 6.2, while the qualitative results are described in paragraph 6.3, followed by a discussion
of the guantitative as well as the qualitative research findings in paragraph 6.4. Thereafter a

conclusion has been made in paragraph 6.5.

6.2 RESULTS

6.2.1 Quantitative resulis

6.2.1.1 Reliability and validity of instruments

Conceptual understanding of geometry concepts

The Mayberry Type Test (see § 5.3.1.4} was the instrument that the researcher used to determine
whether or not the dynamic computer technology had an influence on the conceptual understanding
of the PMTs over the first four Van Hiele levels (see § 2.2.3). The answers to the items were
quantified according to the acquisition scales of Gutiérrez ef a/. (1991) (see §2.2.3.2).

Cronbach Coefficient Alpha is a test for a model or survey's internal consistency {Gall et af.,
1996:256,257). It assesses the reliability of a rating which measures some underlying factor. A
score is computed from each test item and the overall rating, called a 'scale’ is defined by the sum

e}
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of these scores over ail the test items. The reliability of scores should be established before the
research is undertaken and a reliability evaluation for the posttest has to be performed as weli.

Cronbach Coefficient Alpha (see Table 6.1) was employed to estimate the reliabiity of the
Mayberry Type Test.

Table 6.1: Level of reliability of Mayberry Type Test (Cronbach Coefficient Alpha)

GEOMETRIC FIGURES PRE-TEST ALPHA VALUES
1 | Squares D50
2 | Right-angled triangle 059
3 | Isosceles triangle 0,87
4 | Congruency 050 ]
"8 | Similarity 050

Computation of the Cronbach Coefficient Alpha had a moderate alpha coefficient reading 0,5),

indicating sufficient internal consistency and reliability

Study Orientation in Mathematics

The SOM guestionnaire was the instrument that the researcher used to determine whether or not
the dynamic computer technology had an infiuence on the study orientation of the PMTs. Gay
(2000:174) and McMillan and Schummacher (2001:248) contend that the Cronbach Coefficient
Alpha is also used to estimate reliability of a test that has no right or wrong answers or scores and
whose test items have more than two scores. As explained earlier in chapter 5 (§ 53.1), the items
of the SOM questionnaire have no right or wrong answers. Instead, the PMTs were required to
choose the option that best suited them from the five-point given scale. For these reasons
Cronbach Coefficient Alpha (see Table 6.2) was also employed to estimate the refiability of the
SOM guestionnaire as well as the reliability of the post-test.

According to Maree et al. (1997:26) the estimated reliability level of the SOM questionnaire ranges
from 0,74 to 0,95 for Afrikaans tanguage speakers.
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Table 6.2: Level of reliability of SOM fields (Cronbach Coefficient Alpha)

SOMFIELDS PRE-TEST ALPHA VALUES
1 | Study attitudes (SA) 0,83
2 | Mathematics anxiety (MA) 077
3 | Study habits (SH) 0,80
4 | Problem solving behaviour (PSB) 0,81
5 | Study milieu {SM) 0,77 |

Computation of the Cronbach Coefficient Alpha had a high alpha coefficient reading (=0,8),

indicating high internal consistency and reliabitity.

Maree ef al {1987:7) explain that, in terms of construct validity, the SOM questionnaire aims at
measuring the study aftitudes, mathematics anxiety, study habits, problem-solving behaviour and
the study milieu of learners when leaming mathematics. Each of these phenomena was clearly
defined in chapter 3 (see § 3.3.1).

6.2.1.2 Significance of difference

A paired t-test was conducted o establish the mean difference between the pre-test and postest
results within the experimentai group that received the treatment. The mean difference within the
expearimental group was practically significant (see § 5.3.1.5) for both the Mayberry Type Test (see
Tables 6.3-6.7) and the SOM test (see Table 8.8).

it was desired that the mean difference within the experimental group should differ practicatly
significantly in order to accurately measure the influence of the treatment on the experimental
group. The Cohen effect size (d), Cohen’s category (Cohen, 1988:222), t-value and p-value were
used as an indication of practical o meaningful difference (see § 5.3.1.5). It is clear, from the
resuits, that the dynamic computer programme has a positive influence on the conceptualisation of

PMTs A synopsis of the {-test resuits is provided in Tables 6.3-6.8.




Conceptual understanding of geometry concepts

Table 6.3 t-Test, conceptualisation of squares

SQUARES | n MEAN STANDARD- | STATISTICAL EFFECT
DIFFERENCE (sx) | DEVIATION (o) | SIGNIFICANCE | gzE (d - _%x__)
{p < 0,05)
Level1 |26 0.08 0,25 0,14 (>0,05) .
Level 2 26 0,2C 0,31 0,003 0.85*
Level 3 26 0,38 0,23 <{,0001 1,64
Level 4 26 0,32 0,32 <0,0001 1,007+

** medium effect, *** large effect (practically significant)

The test results (see Table 6.3) revealed that there is not a statistically significant difference
(p=0,14) at level 1, indicating that it is not practically significant. A possible reason why there is not
a statistically significant difference at level 1 is that the PMTs had already acquired a high level of
conceptual understanding before intervention. The test results (see Table 6.3) revealed a
statisticaliy significant difference between leveis 2 ta 4 (p<0,01), the effect size of levet 2 was

medium and the effect sizes of levels 3 and 4 indicated a large effect.

Table 6.4: t-Test, conceptualisation of right -angled triangles

RIGHT T n MEAN STADARD- | STATISTICAL | EFFECT
ANGLED DIFFERENCE | DEVIATION (¢) | SIGNIFICANCE | gizE (; - x)
TRIANGLE (ax) (p <0.05)
Level1 | 26 0,35 027 <0,0007 1,327
Tevel2 | 26 0,31 033 <0,0001 0,027~
Coveld | 26 022 0.24 <0,0001 0,62
Ceveld | 26 023 0,23 <0,0001 102 |

“** large effect (practically significant)

The test results (see Table 6.4) revealed a statisticdly significant difference at the four levels

(p<0,01), the effect sizes of all the levels were Iarge and therefare of practical significance.

Y ]
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Table 6.5: t-Test, conceptualisation of isasceles triangles

ISOSCELES | n MEAN STANDARD- STATISTICAL EFFECT |
TRIANGLES DIFFERENCE | DEVIATION (s) | SIGNIFICANCE | SiZE j - )
(Ax) (p < 005)
Level1 | 26 0.21 0.28 0,001 0,72
Level2 | 26 0,37 0,44 0,003 0,84
Level 3 | 26 0,24 0.17 <0,0001 1,42
Level4 | 26 021 032 0,003 0,66™

** medium effect, *** large effect (practically significant)

The test results (see Table 6.5) revealed a statistically significant difference at the four levels

(p<Q,01), the effect sizes of levels 1 and 4 were medium and the effect sizes of levels 2 and 3 were

large and therefore of practical significance.

Table 6.6: 1-Test, conceptualisation of congruency

CONGRUENCY | n MEAN STANDARD-| STATISTICAL EFFECT
DIFFERENCE | DEVIATION | SIGNIFICANCE | si7E (d - %x;_ )
(&) () (p <0,05)
Level 1 26 0,15 0,29 0,011 0,54
Level 2 26 0,21 0,49 0,042 0,43*
Level 3 26 0,30 0,19 <0,0001 1,60%*
Level 4 26 0,69 0,47 <0,0001 1,47

* small effect, ** medium effect and *** large effect (practically significant)

The test results (see Table 6.6) revealed a statistically significant difference at the four levels

(p<0,01), the effect size of level 1 was medium, the effect size of level 2 was small and the effect

sizes of levels 3 and 4 were large, indicating an effect size of practical significance.
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Table 6.7: t-Test, conceptualisation of similarity

(SIMILARITY [n MEAN STANDARD- | STATISTICAL | EFFECT |
DIFFERENCE | DEVIATION () | SIGNIFICANCE |  gizE (; - 4c)
(Ax) (p <0,08)
Level 1 26 0,31 0,35 0,0001 0,88*
Level 2 26 0,33 0,31 <(0,0001 1,07
Level 3 26 0,35 0,19 <0,0001 1,83
Level 4 26 0,29 045 0,003 0,64

** medium effect, *** large effect (practically significant)

The test results (see Table 6.7) revealed a statistically significant difference between the groups
(p<0,01). The effect size of level 4 was medium and the effect sizes of levels 1 to 3 were large and
practically significant.

Study Orientation in Mathematics

Table 6.8: t-Test: Study Orientation in Mathematics {SOM) Questionnaire

SOMFIELDS MEAN STANDARD | STATISTICAL EFFECT
DIFFERENCE | -DEVIATION | SIGNIFICANCE | g7 (d — _%rx_, )
(Ax) () (p < 0.08)
Study attitudes (SA) 9,00 4,72 <0,0001 1,91
Mathematics anxiety 9,08 4,62 <0,0001 1,97
(MA)

Study habits (SH) 8,87 3,78 <0,0001 2,35

Problem solving 10,52 4,61 <Q,0001 2,28"*
behaviour (PSB)

Study milieu (SM) 4,85 4,50 <0,0001 1,08***

*** large effect (practicaily significant)

The test results (see Table 6.8) revealed a statistically significant difference between the SOM
fields (p<0,01). The effect sizes of ail the levels were of practical significance. It is clear that a
dynamic computer technology programme such as GSP®, results in a marginally significant
difference.
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6.2.1.3 General acquisition of conceptual understanding and study orientation in
mathematics

Conceptual understanding of geometry concepts

Research done by Van der Sandt (2003:83) revealed that learners leave school with higher levels
and degrees of geometric acquisition than the levels and degrees of acquisition attained by the
PMTs who had been exposed to three years of academic and mathematical methodology training.
It seems that the geometry acquisition that learners obtained during school, decays significantly
within only three years, to levels far below those levels expected from teachers. This decay could
point to ineffectiveness of the educational paradigm followed at school level where rote learning is
encouraged. The emphasis is on memorisation without conceptual understanding of mathematics.
This pattern continues into the PMTs’ pre-service training, especially considering the low degree of

geometry acquisition shown by PMTs.

This problem can be addressed by integrating a dynamic computer programme into the curriculum

for teacher education.

The PMTs consistently achieved higher levels of acquisition after they had followed the intervention
programme, leading to the conclusion that the intervention programme did have a positive effect on
the acquisition of higher levels of geometric thought. KL is the cut off line above which the degrees
of acquisition are high and the dotted line MN is the cut off line below which the degrees of
acquisition are low. Between the two lines the degrees of acquisition are intermediate (see Figures
6.1 to 6.5).

Degree of acquisition for squares

100
F
£ ek N ’fpre:tést |
% 40Mm o N| —=— Post-test||
0 . . .
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Figure 6.1: Degree of acquisition for squares
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The graph compares the degree of acquisition for squares (see Figure 6.1) before intervention and
thereafter. The post-test reveals that the PMTs are on a higher degree of acquisition after the
intervention programme. According to Gutierrez et al. (1991:238), the PMTs achieved a high
degree of acquisition in levels 1 and 2 and their degree of acquisition for levels 3 and 4 is

intermediate (see Table 2.1).

Degree of acquisition for isosceles
triangles
120
o 100 —
Z gg e e —+— Pre—test
8 i =
2 e, N —a— Post—test
et =
0 T . .
1 2 3 4
Van Hiele Levels

Figure 6.2: Degree of acquisition for isosceles triangle

The graph compares the degree of acquisition (see Figure 6.2) for isosceles triangles before
intervention and thereafter. According to Gutierrez et al. (1991:238), the PMTs’ degree of
acquisition for levels 1, 2 and 3 is high after having followed the intervention programme, but they

reached a low degree of acquisition for level 4 (see Table 2.1).

Degree of acquisition for right-angled
triangles

Percentage
S

—o— Pre—test
20

Van Hiele Levels

Figure 6.3: Degree of acquisition for right-angled triangle

s
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The graph compares the degree of acquisition (see Figure 6.3) for right-angled triangles before
intervention and thereafter. According to Gutierrez et al. (1991:238), the PMTs’ degree of
acquisition for levels 1, 2 and 3 is high after following the intervention programme, but they reached

a low degree of acquisition for level 4 (see Table 2.1).

Degree of acquisition for similarity
100
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g _g 50;@—'\ \__,_,4. L —e— Pre—test

S aom N| —=— Post—test
. a 26 - \\/
‘ 0 . T .
: 1 2 3 4
‘ Van Hiele Levels

Figure 6.4 Degree of acquisition for similarity

The graph compares the degree of acquisition for similarity (see Figure 6.4) before intervention and
thereafter. According to Gutierrez et al. (1991:238), the PMTs’ degree of acquisition for levels 1 and
2 is high after having followed the intervention programme, but they reached an intermediate

degree of acquisition for levels 3 and 4 (see Table 2.1).

Degree of acquisition for congruency
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Figure 6.5: Degree of acquisition for congruency

The graph compares the degree of acquisition for congruency (see Figure 6.5) before the PMTs

followed the intervention programme and thereafter. According to Gutierrez et al. (1991:238), the
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PMTs’ degree of acquisition for levels 1 and 2 is high after having foilowed the intervention
programme, but they reached an intermediate degree of acquisition for levels 3 and 4 (see Table
2.1).

Geometry is a practical and structured guide for approaching situations and it is evident that for
PMTs to do well in mathematics they have to understand geometric principles and concepts (see
Figures 6.1 to 6.5). Geometry should nct be learned as a set of rules but it should rather be
understood and the PMTs should know how to use and apply geometry.

Study Orientation in Mathematics

A high percentile rank indicates a positive study orientation while a low score indicates a negative
study orientation in mathematics. A high percentile ranking for mathematics anxiety indicates that
the PMTs have a relatively low level of anxiety for mathematics (Maree et al., 1997-15).

According to Maree et al. (see Table 6.9) the foilowing data can be used as a guideline for the
interpretation of the scores:

Table 6.9: A guideline for the inferprelation of the percentile scores (Maree et al., 1997:15)

PERCENTILE INTERPRETATION
SCORE
70-100% Positive study onentation
40-69% Neutral: can contribute to positive or negative study orientation |
0-39% Negative study orientation

The raw mean scotes, of the PMTs, were converted to percentile ranks (Maree et al, 1997:14) and
showed that the level of study orientation of the PMTs is significantly higher (see Figure 6.6) after
they have completed the dynamic computer technoiogy programme (GSP®). The line at 70%
indicates that the different fields above that line have a positive study orientation.
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Degree of acquisition for study
orientation in mathematics
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Figure 6.6: Degree of acquisition for study orientation in mathematics

The graph compares the level of acquisition for study orientation in mathematics (see Figure 6.6)
before intervention and thereafter. The PMTs consistently achieved higher levels of acquisition,
after they had followed the intervention programme, leading to the conclusion that the intervention

programme did have a positive effect on the acquisition of higher levels of geometric thought.

AB is the cut off line above which the study orientation in mathematics (or specific SOM fields) is
positive and line CD is the cut off line below which the study orientation in mathematics is negative.
Between the two lines the study orientation in mathematics is neutral. The level of acquisition for
SA, MA and SM is above 70%, which indicates that the PMTs clearly have a positive study
orientation in these three fields. The level of acquisition for SH and PSB is less than 70% and
therefore the PMTs’ study orientation in these two fields is neutral (see Table 6.9).

6.2.2 Qualitative results

6.2.2.1 Reliability and validity

According to Cowger and Menon (2001:477) triangulation is the process of incorporating multiple
viewpoints of the same phenomenon so as to provide greater validity to the research endeavour. It
provides additional evidence of what the PMTs were observing. To ensure the internal validity of

the interviews, the techniques of triangulation were used (see Figure 6.7).
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Literature study

e Mayberry Type Test

e SOM Questionnaire + Interviews

Figure 6 7 Triangulation of perceptions

in this study, the triangulation technique invoived locking for common perceptions from different

sources and /or statements that appeared in the interviews.

6.2.2.2 Phenomenologicai interviews
The basic purpose of the phenomenological interviews (see § 5.3.2.3) was to gather additional

information of how the PMTs felt about the dynamic technclogical programme (GSP®).

6.2.2.3 Discussion of the qualitative research findings

The questions set to the participants (S) were taken from a prepared interview schedule (see
Appendix C) and the researcher (R) posed further questions as these came up in the spontaneous
development of the interaction between the nterviewer (R} and the interviewee (S). The core
responses that were received are noted below (Table 6.10):

Table 6.10; Core responses

RESPONSES
QUESTION LOW ACHIEVERS HIGH ACHIEVERS
1 {On a scale of 1 to 10, 10 |6 9
being the highest, how much
do you like mathematics?
2 [ Do you always do vyour | Mostof them. | am doing all my
assignments? assignments.
‘How much time do you ||t depends on how much || try to do more than
spend on assignments?” other work | have to do. necessary
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3 | ingeneral, what influences f 1 understand the work | Good results. If my
you to work hard in better it will influence me | results are not so geod it
mathematics? (evidence of | to work harder. will inspire me to work
task orientation, abiiity harder.
orientation, social
orientation).

“ls there anything that || dontthink so The stimuiation when my
causes you to work harder?” marks are good

4 |How good are you at|Notsogood I think | am fairly goad
mathematics?

*How do you know?" I struggle to do all my| | understand the wark
assignments. quite quickly.

5 [Are you better at some | ldon'tlike geometryatall. || am better at algebra
sections of mathematics and trigonometry than at
than other sections? For geometry.
example, are you better at t
algebra than geometry? |
Why? | do not understand the | | didn't understand it

work, | cannot do the | when | was at school but
work. now | understand it
better.

6 | Do you think it takes speciaﬁ Yes, | think so. { think so, but the talent
talent to do well in develops over time.
mathematics?

Do you have such talent? No, my marks are not so | [ think so, my marks are
good. good.

Can people do well in | Not reaily. I don't think so.

mathematics even without

special talent?

o
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Why? You have to understand | You have to know what

the work. is going on.
7 | How important is | it is very important. It is not only a subject
memarisation in that you must

mathematics?

Can someone who is not
very good at memorisation

be good at mathematics?

People with talent do not
have tc memorise that

much.

understand, you have to
learn as well. There is a
difference between
memorisation and leam.
If i

learning

am talking about
then } know
what is going on, if you
memorise then you don't
know what I1s going on,
you have to understand
what is going on.

Yes, when you have
talent you can st do

well.

8 ( How often do you do the
least amount of work you
can to get by? (look forI
evidence of work avoidant-

orientation).

If I do not know what is
going on then | will not

My Work,

It depends on how much
work | have to do, if |
have a lot of work in my
other subjects then | will
spend less tme on
mathematics but if { have
enough time then | will
dc more than expected

from me.

9 | How do you study for a test
in mathematics?

| revise the problems that
we have done in class
and then | will do a ot of
and

problems  again

agatn.

| do the problems that |
have difficulty with first of
all and then | will do

revision.
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Has anyone taught vyou | No Not really.
special skills for studying

mathematics?
10 | Give examples of the | Cubes and GSP. GSP  which is very
activites you have done in interesting and cubes.

mathematics.

111 Of the activites that you |GSP  helps me to} When you have to do
have mentioned in your | understand mathematics | geometry it is very easy

rgsponse 1o the  last | befter and therefore it is [ to draw the sketches and

question, are there any that | easier to learn. you can see the results
were particularly enjoyable very quickly. | can see
or interesting? gradually what happened

I and then it is easier to
understand the work

12 | Are there problems in | Yes, | think so. Yes, especially with OBE
mathematics that can be where the students have
solved in more than one to use their own way of
way? Give examples solving a problem.

13 | Does GSP influence your | Yes, it helps me to Definitely, | enjoy it very

ability to understand | understand the work. much and | understand
mathematics in a  befter the work quicker.
way?

1

14 [ {s there anything that you | No | think | have said | | can just say again that
think is impottant about | everything. GSP is a nice tool to
fearning mathematics  that have in hand.

you haven't said?

The interviews conducted with the PMTs provided some insight into the nature of the influence of a
dynamic computer programme on the geometry conceptuaiisation of PMTs. Firstly, in a dynamic
technologically enhanced learning environment a positive correiation seems to exist between PMTs
that prefer mathematics as a subject and their orientation to complete ge ometry assignments,
whereas PMTs that do not prefer mathematics as a subject show a tendency to often not complete
their geometry assignments. Secondly, in the particular learning environment, PMTs that prefer
mathematics as a subject seem to think that they are expert in doing mathematics (particularly
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geomelry), whereas PMTs who do not prefer mathematics as a subject seem to think that they do
not have the ability to do mathematics (particularly geometry). Thirdly PMTs report that their
attitudes towards mathematics (geometry) have changed positively after they started to use GSP®,
and that they have a better understanding of mathematics, particuiarly certain geometry concepts,
after using GSP® during the course of the module. The PMTs' seem confident that GSP® can be
used to explain some of the work so that they will be able to understand the work better. Overall,
the interviewed PMTs are convinced that a dynamic technoicgically enhanced learning environment
does help to improve their execution of geometry tasks and their learning of geometry concepts, as
well as to promote positive dispositions relating to the subject taught and learned in the module.

It is, therefore. the contention of the author that GSP®, in particular, and dynamic computer
technology, in general, should no longer be seen as an option. Rather it should be viewed as an
essential part of the professional development of the PMTs. The utilisation of dynamic computer
technoiogy should be seen as a powerful opportunity, albeit it challenging, to invigorate learning

environments for PMTs.

According to Reed (1995:241). any professional programme in teacher education should be

dedicated to the idea of excellence teaching and dynamic computer technology shouid be part of it.

63 CONCLUSION

The aim of this chapter was o investigate whether and how a dynamic computer technology

programme influenced learning strategies as well as the development of conceptual knowledge.

The PMTs consistertly achieved significantly higher leveis of conceptual knowledge.

With regard to the identification of triangles it can be said that the PMTs who followed the dynamic
computer technology programme, were able 10 correctly dentify triangles and gave fairly complete
answers to substantiate their answers. These PMTs did not show the tendency to confuse the

different types of triangles with each other.

Combining a dynamic computer technelogy programme with a constructivist-centred teaching
approach can deliver results that would be better than the results obtained by means of a

conventional process-product teaching approach.

Chapter 7 presents the conclusions and the recommendations.
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CHAPTEGR 7

CONCLUSIONS AND
RGCOMMENDATIONS

7.1 INTRODUCTION

This chapter provides an overall summary of the research, by firstly giving a synopsis of the
research and secondly the general conclusions and recommendations about the study. The
synopsis will include an overview of the literature review regarding the theoretical framework; the
mpact of the methods of the research employed in the study the implications of the research
findings in the teaching and learning of mathematics. The second part, wili present the limitations of

the study, recommendations for future research and general concluding remarks.

7.2 PROBLEM STATEMENT

Mathematics problem solving is the core of functionality within mathematics. Appropriate uses of
dynamic computer technology can enhance mathematics learning and teaching and support
concepiual development of mathematics as well as study orientation in mathematics. The growing
availability of dynamic computer technology provides an opportunity to assist teachers in teaching
well and in improving the mathematics experiences of PMTs (Wilson, 2001).

The aim of the research was to determine how the implementation of a Van Hiele based dynamic

computer technology programme influences ine following aspects:

¢ determining what effect a dynamic technological learming environment has on the conceptual
understanding of PMTs in geometry.

* determining how the use of a dynamic technological learning environment influences the
conceptual understanding of PMTs in geometry.

e determining what effect a dynamic technological learning environment has on the study

orientation of PMTs.

R
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73 REVIEWOF LITERATURE

The literature review was done to critically and objectively highlight the strength and weaknesses of
a dynamic computer technology programme in the context te enhance conceptual understanding of
mathematics and study onentation in mathematics. The theoretical framework has the implications
for teaching and learning of PMTs that it is essential to find appropriate methods and environments
to improve the conceptual understanding (see § 3.2) of PMTs.

Piaget (see § 2.2.1) says that the development of leamers proceeds according b a series of
transformations from one stage to ancther and therefore it seems appropriate that learning
experiences should be organised in terms of the learner's developmental stage. According to Nixon
(2005:23,47), Piagel and Garcia (1989) identified three levels in the development of thought and
they state that these levels are not bound to learners’ ages or fixed stages of Gevelopment. In view
of the analysis of Nixon's three levels in the development of thought (see § 2.2.1.2), it becomes
clear that Van Hiele's theory of cognitive levels in geomatry foliows the same trend. Van Hiele (see
§ 2.2.3) developed a theory that dealt with the belief that learners’ thinking skills develop in levels

and these levels represent a hierarchy of growth.

Vygotsky (see § 2.2.2) had a great influence on constructivism (see § 2.3.2) and is most often
associated with the social constructivism. The influence of Vygotsky's ideas, together with the
constructivist theory, lend themselves to many educaticnal applications and have pravided a basis
for transfarming mathematics teaching and learning. Learning is a constructive process that occurs
while participating in and contributing to the practices of the local community. From this
perspective, lecturers can use a dynamic computer technology programme to enable PMTs to

construct their own knowledge.

One of the current reform movements in mathematics education is the appropriate use of dynamic
computer technology in the teaching and learning of mathematics. Concerning mathematics
education, the lecturers may involve the introduction of beth dynamic computer technology and
mathematics in meaningful contexts that will enable interplay between the two (Abramovich &
Strock. 2002:184). PMTs will be actively involved in their learning (see § 2.3.2) and they will
therefare be less frustrated in their study orientation in mathematics (Maree et af, 1957:1,2) (see §
34).

To be abie to reach learners, PMTs' own conceptual understanding (see § 3.2) should be




perceive this procedure as a mathematical model of a problem stuation. rather than just an
algorithm (Abramovich & Strock, 2002:173). PMTs will be less frustrated and their study orientation
in mathematics will also improve if they do understand mathematics (Maree et af., 19971 2.

74 EMPIRICAL INVESTIGATION

74.1 ODesign

This study aimed to investigate the effect of a technologically enhanced learning environment on
PMTs' understanding of geometry concepts and their study orientation in mathematics, as
prerequisite for deep conceptualisation.

A combined quantitative and qualitative research approach was used The quantitative investigation
employed a pre-experimental one-group pre-test post-test design. A Mayberry-type tast was used
to collect data with regard to PMTs’ conceptualisation of geometry concepts, while the Study
Crientation in Mathematics (SOM) questionnaire was used fo collect data regarding their study
arientation in mathematics. The qualitative investigation employed phenomenciogical interviews to
coliect supplementary information about the padicipating PMTs’ experiences and assessment of
the influence of the use of the dynamic software Geometer's Sketchpad (GSP®) on their [earning
and conceptualisation of geometry concepts (see chapter 5).

742 Results

During posttesting the participating group of PMTs achieved practically significantly higher scores
in the Mayberry-type test, as weli as in all fields of the SOM questionnaire. Results seem to indicate
that PMTs gained significantly in the expected high levels of conceptualisation, as well as high
degrees of acquisthon cf those levels during the intervention programme.

The responses during the interviews were overwhelmingly positive (see § 6.2.2.3). The results
attested to an acknowledgement of the success of the use of GSP® as a dynamic computer
technology programme, to enhance the PMTs' gecmetry conceptuaiisation and study grientation in

geometry.
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75 GENERAL CONCLUSIONS AND RECOMMENDATIONS

7.5.1 Limitations of the study

The study might have suffered because of the following limitations:

e ltwas a limited, local study, and the findings reported have limited value for generalisaion.

o Al the third year education students followed the general mathematics module in geometry in
conjunction with a dynamic computer technology programine, and therefore the researcher has
to use the pre-experimental design (see § 1.3.2) with no control group.

» The SOM guestionnaire is a questionnaire that is developed for use of grade 8 to grade 12
learners, but as mentioned before, Steyn and Maree (see § 5.3.1.4) used the questionnaire
involving first-year engineering students and found that it could be regarded as significant
predictors of performance in mathematics at university level Questionnaires developed and
standatdised for tertiary levels were not available, and therefore no alternative existed other
than to use the above mentioned questionnaire.

* The interruptton i the middle of the proegram because of the University's holiday as weli as
semester tests could have negatively influenced the results. Anather factor that could have
influenced the results negatively is the fact that the lecturer could not continue with the classes

(near the end of the program) and a substitute lecturer was used.

7.52 Main conclusion

The main conclusion of the study is that a technologically enhanced learning environment (such as
GSP®) can be successfully utlised to significantly enhance PMTs™ conceptualisation and study
orientation, as prerequisite for deep conceptualisation, in geometry.

From this study, the importance of study orientation for conceptualisation in geometry, becomes
clear.

7.5.3 Recommendations for future research

it is recommended that:

Mathematics education

¢« GSP® can be used to develop the PMTs’ conceptual understanding of geometry.

o GSP® can be used to enhance the PMTs' study orientation in geometry.

e The PMTs can use the expenences that they have gained from GSP® to facilitate their own

iearners’ conceptualisation, when they start teaching.
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Future research

¢ Comparative studies in a bigger study population should be undertaken. Several factors have
limited the generalisation of the resuits of this research (see §7.5.1).

e lLongitudinal studies shouid be undertaken (pre-and post-tests), to determine whether the

results of the dynamic computer technology programme such as GSP® and the study
orientation in geometry, are permanent over a longer period of time.

76 VALUE

1115 essentia! to find methods to improve the conceptual understanding of PMTs. The results in this
study pointed to the use of dynamic computer technology in the training of PMTs, which may

provide a valuable and practical contribution to help the development of conceptual understanding
of PMTs.

7.7  FINAL REMARKS

in this research the effect of an integrated use of a dynamic computer technology programme in a
problem solving context, was analysed. The implementation of a dynamic computer technology
programme had a positive effect not only on the conceptualisation and levels of geometric thought
of the PMTs in the sample, but also on their level of study orientation. These PMTs were nore
confident in doing geometry than previously and their way of studying geometry improved as well.

in summary, it can be stated that a dyramic computer technology programme in combination with a

problem solving environment appears to be a potentially useful strategy to facilitate optimal

achievements and conceptualisation in geometry.

e T
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APPENDIX A
THE MAYBERRY-TYPE VAN HIELE TEST

Institute/Instelling: ...
SEX GBS o,
AGE/OUAEIAOM ..o e

L. _________________________________________________ _______________]
1. This figure is which of the following?

Watter een van die volgende is hierdie figuur?

a) triangle/driehoek

b) quadritateral/vierhoek
) square/vierkant

d) parallelogram
)

rectangle/reghoek

N AN/

Are all of these triangles? YES/NO, Explain:
Is al hierdie figure driehoeke? JA/NEE, Verduidelik:

Do they appear to be a special kind of triangle? If so what kind?

Lyk dit of hulle spesiale soort driehoeke is? Indien, watter soort?
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7\ A

These appear to be what kind of triangles?

Watter soort driehoek is hierdie drichoeke?

N

What is true of A and B? What is true of C and D?

Wat is waar van Aen B? Wat is waarvan Cen D?

What word describes this?

Watter woord beskryf die verskynsel die beste?

5_ OQOO

Are these figures alike in any way? YES/NO/, What word describes this?
Is hierdie figure in enige opsig dieselfde? JA/NEE, Watter woord beskryf die
verkynsel die beste?
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s

Which of these figures are squares?

o] =]

Watter van hierdie figure is vierkante?

a d
Which of these appear to be right-angled triangles?

Watter van hierdie figure lyk soos reghoekige driehoeke?

[

Which of these figures appear to be isosceles triangles?

Watter van hierdie driehoeke lyk soos gelykbenige driehoeke?

104




a b c d
Which figure appears to be similar to a?

Watter figuur lyk of dit gelykvormig kan wees aan a?

10.

A B C D
Which figure appears to be congruent to A?

Watter figuur lyk of dit kongruent kan wees aan A?

11.  Draw a square/Teken ‘n vierkant.

a. What must be true about the sides?ANVat moet waar wees van die sye?

b. What must be true about the angles?/Wat moet waar wees van die hoeke?
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12.  Does aright-angled triangle always have a long side? If so, which one?
Het ‘n reghoekige driehoek altyd 'n langer sy? Indien wel, watter een?

Does a nght-angled triangle always have a largest angle? {f so, which one?
Het 'n reghoekige driehoek altyd ‘n hoek wat die grootste is? Indien wel, water een?

13.  What can you tell me about the sides of an isosceles friangle?

Wat weet jy van die sye van 'n gelykbenige driehoek?

What can you teli me about the angles of an isosceles triangle?
Wat weet jy van die hoeke van 'n gelykbeninge driehoek?

14.

gcm

60°

12cm

Triangie ABC is similar to triangle DEF. How fong is ED?7 How do you know?
Driehoek ABC is gelykvormig aan driehoek DEF driehoek. Hoe lank is ED? Hoe weet jy?

What is the size of / EDF? How do you know?
Wat is die grootte van £ EDF Hoe weet jy?
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15.

These are congruent figures. What is true about their sides? AD =
Hierdie is kongruente figure. Wat is waar omtrent hul sye? AD =

What is true about their angles? #B=___
Wat is waar omtrent hul hoeke? ~B=__

16.

A o
ABCD is a square, BD is a diagonal. Name an angle congruent to £ ABD.

ABCD is ‘n vierkant, BD is 'n diagonaal (hoeklyn). Benoem ‘n hoek wat kongruent is aan
ZABD.

How do you know?/Hoe weet jy?
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17.  Circle the smallest combination of the following which guarantees a figure to be a

square.

Omkring die kleinste kombinasie wat sal verseker dat die figuur ‘n vierkant is.

{a) Itis aparallelogram. /Ditis 'n paralieiogram.

(b) It is a rectangle. /Dit is 'n reghoek.

(c) It has right angles. /Dit het 'n regte hoek.

(d)  Opposite sides are paraliel. /Teenoorstaande sye is parallel.

{e}  Adjacent sides are equal in length. /Aangrensende sye is ewe lank.

f Opposite sides are equal in length. /Teengarstaande sye is ewe lank.

18. Name some ways in which squares and rectangles are alike?

Noem 'n paar coreenkomste {ussen vierkante en reghoeke.

Are all squares also rectangies? Why?

Is alle vierkante reghoeke? Hoekom?

19.  Circle the smallest combination of the following which guarantees a triangle to be a
right triangle?

Omkring die kleinste kombinasie van idie volgende wat verseker dat die drichoek 'n
reghoekige driehoeX is.

(@) It has two acute angles./Dit het twee skerphoekige hoeke.

(b)  The measures of the angies add up to 180°/Die som van die binnehoeke is 180°.
(c) An altitude is also a side./n Hoogtelyn is 0ok ‘n sy.

(d)  The measures of two angles add up to 90° /Die som van twee hoeke is 90°.
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20.  QAB is a triangle. Suppose angle Q is a right angle. Does that tell you anything
about angles A and B?

QAB is 'n driehoek. Veronderstel hoek Q is 'n regte hoek. Vertel dit enigiets vir jou in
verband met hoeke A en B?

if so, what?/Indien wel, wat?

Suppose angke Q is less than 90°. Could the triangle be a right-angled triangle? Why?
Veronderstel hoek Q is minder as 90°. Kan die driehoek ‘n reghoekige driehoek wees?
Hoekom?

Suppose angle Q is more than 90°. Could the triangle be a right-angled triangle? Why?
Veronderstel hoek Q is meer as 90°. Kan die driehoek ‘n reghoekige drichoek wees?
Hoekom?

21.  Circle the smallest combination of the foliowing which guarantees a triangle to be
isosceles.

Omkring die kleinste kombinasie wat sal verseker dat die driehoek ‘n gelykbenige driehoek
iS.

(@)

b)

{c) An altitude bisects the opposite side./'n Hoogtelyn halveer die teenocorstaande sy.
(d)

It has two congruent angles./Dit het twee kongruente hoeke.

——

It has two congruent sides./ Dit het twee kongruente sye.

The measure of the angles add up to 180° /Die som van die hoeke is 180°.
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22, Suppose aifl we know about A MNP is that /M is the same as £ N. What do you
know about sides MP and NP?

Veronderstel dat al wat ons weet in verband met AMNP is dat 2 M dieselfde is as ~N.
Wat weet ons van die sye MP en NP?

Suppose < Ms largerthan /N. What do you know about MP and NP?
Veronderstel dat £ M groteris £ N. Wat weet ons van MP en NP?

Could A MNP be isosceles?
Kan A MNP ‘n gelykbenige driehoek wees?

23. Trangle DEF has three congruent sides. It is an isosceles triangle. Why ar why not?
Driehoek DEF het drie kongruente sye. Dit is 'n gelykbenige driehoek. Hoekom of hoekom

nie?

Is the following true or false? All equilateral triangles are isosceles.

Is die volgende waar of vals? Alle gelyksydige driehoeke s gelykbenige drichoeke.

24.  Which are true? Give reasons:

Wat is waar? Gee redes:

All isosceles triangles are right triangtes.

Alle gelykbenige drichoeke is reghoekige driehoeke.
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Some right-angled triangles are isosceles triangles.
Sommige reghoekige driehoeke is gelykbenige driehoeke.

25. What does it mean to say that two figures are similar?
Wat beteken dit om te sé dat twee figure gelyksoortig is?

26.  Triangle ABC is similar to triangle DEF (in that order). Are the following

(ay certain (b) possible, or (c)impossible? Give reasons for your answers.

Driehoek ABC is gelyksoortig aan driehoek DEF {in die voigorde} Is die voigende
(@) seker (b) moontlik, of (c) onmoontlik? Gee redes vir jou antwoord.

AB =Dk

AB > DE

ZA=LE

ZA=> LE

AB =EF

JA> 2D
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27. Wil figures A and B be similar?

| -—always |l— sometimes or |l — never/nooit? Give reasons for your answers.

Sal figure A en B gelyksoortig wees?

I —altyd Il- soms of Ill - nooit? Gee redes vir jou antwoord.

(a)

A

a square/'n vierkant

(a)

B
a square/'n vierkant

an isosceles triangle

Gelykbenige driehoek

an isosceles triangle

Gelykbenige driehoek

a A congruentto B

‘n A kongruent aan B

a A congruentto A

‘n A kongruent aan A

(d)

a rectangle/n reghoek

a square/'n vierkant

a rectangle/'n reghoek

(e)

a triangle/'n drichoek
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28.  AABC is congruent to A DEF (in that order).

(a) certain  (b) possible, or (c) impossible? Give reasons for your answers.

A ABC is kongruent aan A DEF (in daardie volgorde)
(a) seker (b) moontlik, of (¢) onmoontlik? Gee redes vir jou antwoord.
(a) AB=DE

(b) /A= /E

{c) ZA< /2D

d) AB=EF

29.  Will figures A and B be congruent?

| —always Il - sometimes or Ill — never? Give reasons for your answers./

Sal figuurA en B kongruent wees?
| —altyd Il — soms of Il — nooit? Gee redes vir jou antwoord.
A B

(a) a square/'n vierkant (@) atriangle/n driehoek

113



(b) a square with a 10cm side (b}  asquare with a 10cm side

‘n vierkant met ‘n sy van 10cm ‘n vierkant met ‘n sy van 10cm

(¢) a right-angled triangle with a (c) a right-angled triangle with a 10cm
10cm hypotenuse hypotenuse
‘n reghoekige driehoek met ‘n ‘n reghoekige driehoek met ‘n skuinssy van
skuinssy van 10cm 10cm

(d) a circle with 10cm chord (d) ‘n sirkel met ‘n koord van 10cm

(e) a A similarto B (&) a A similartoB
‘n Agelykvormig aan B ‘n Agelykvormig aan B

30. ABCD is a four sided figure. Suppose we know that opposite sides are parallel.
What are the fewest facts necessary to prove that ABCD is a square?
ABCD is ‘n figuur met vier sye. Veronderstel ons weet dat die teenoorstaande sye parallel

Is. Wat is die minste feite nodig om te bewys dat ABCD 'n vierkant is?

31.  Figure ABCD is a parallelogram, AB = BC and £ ABC is a right angle. Is ABCD a
square?
Figuur ABCD is parallelogram, AB = BC en £ ABC is 'n regte hoek. Is ABCD ‘n vierkant?

Prove your answer./Bewys jou antwoord
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32.

A

D B
CD is perpendicular to AB. 2 C is a right angle. f you measure ~ACD and ZB, you find

that they have the same measure. Would this equality be true for all right-angled triangles?

Why or why not?

CD is loodreg op AB. ~ C is ‘n regte hoek. As jy ~ACD en /B meet, sal jy sien dat hulle
ewe groot is. Is hierdie gelykheid waar vir alle reghoekige driehoeke? Hoekom of hoekom

hie?

33.

]

8 c Q R

Figure ABC and PQR are right-angled isosceles triangle with angles B and Q being right
angles. Prove that /A= ZP and ~C= ZR.

Figuur ABC en PQR is reghoekige, gelykbenige driehoeke met hoeke B en Q regte hoeke.
Bewysdat Z/A= ZPen ZAC= /R
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34.

A D B
ABC is atriangle. AADC = ABDC. What kind of triangle is A ABC? Why?/
ABC is ‘n drichoek. AADC = A BDC. Watter soort driehoek is A ABC? Hoekom?

35.

/1N

X Z

AB is the line segment with A and B the midpoints of the equal sides of the isosceles
triangle XYZ. AY = BY and AAYB is similar to AXYZ so that L/ A= ZX. AB is parallel to
XZ. What have we proved?

AB is die lynsegment met A en B die middelpunte van die gelyke sye van die gelykbenige

driehoek XYZ. AY = BY en AAYB is gelyksoortig aan A XYZ sodat /A = ~ X. AB parallel
18 aan XZ. Wat het ons bewys?
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36.

D

In this figure AB and CB are the same length. AD and CD are the same length. Will ~£A
and / C be the same size? Why or why not?

In hierdie figuur is AB en CB ewe lank. AD en CD is ewe lank. Sal ~Aen ZC ewe groot

wees? Hoekom of hoekom nie?

37. What is the ieast additional information needed to ensure that a pair of right-angled

triangles are similar?

Wat is die minste inligting nodig om te verseker dat ‘n paar reghoekige driehoeke

gelyksoortig is?
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38.

A B

Figure C is a circle. O is the centre. Prove that A AOB is isosceles.
Figuur C is ‘n sirkel. O is die middeipunt van die sirkel. Bewys dat A AOB 'n gelykbenige

driehoek is.

39.

M
N
These circles with centres O and P intersect at M and N. Prove: AOMP = AONP.

Hierdie sirkels met middelpunte O en P sny mekaar in M en N. Bewys dat
AOMP = A ONP.
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40. Prove that the perpendicular from a point (not on the line) to a line is the shortest

line segment that can be drawn from the point to the line.

Bewys dat die loodregte lyn van ‘n punt (wat nie op die lyn I& nie) na ‘n lyn, die kortste

segment is wat na die lyn geteken kan word.
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APPENDIX B

The PMTs must construct a triangle before they can do the following activities. (The

activities, except activity 1, are based on ideas in Bennett, D. Exploring geometry with the

geometer's sketchpad. Emeryville, Calif. : Key Curriculum Press. 285 p ).

Activity 1: Construct a triangle

Inleiding:

1. Maak GSP® oop en kostrueer driehoek
ABC deur van die ‘segment tool’ gebruik
te maak.

2. Maak gebruik van die “text tool” om die
driehoek te benoem.

PAN

B c

Nota: Die sye van die driehoek kan
verander word na “thin, thick” en “dashed”
deur die sye van die driehoek te kies deur
gebruik te maak van die "selection arrow”
en dan daarna die “display” funksie te

gebruik.

Introduction:
1. Open GSP® and construct a triangle ABC
by making use of the segment tool.

2. Make use of the text tool o appoint the
triangle.

A\

B c

Note: The line width of the triangle can be
changed by first selecting the sides of the
triangle by making use of the selection
arrow and then thereafter going to the
display function and choose line width. The
sides of the triangle can then be changed to
thin, thick or dashed.

Activity 2: Medians in a triangle

A median in a triangle is a straight line drawn from the vertex of a triangle to the midpoint
of the opposite side (Laridon et al., 1895:310).

Swaartelyne:

1. Konstrueer driechoek ABC.

2 Konstrueer die middelpunte van die
driehoek. (gaan na die “construct menu”
en kies “midpoint”).

3. Herhaa! die stap 2 met die ander twee

sye.

Median:
1. Construct triangle ABC.

2. Construct the midpoints of the sides (go to

the construct menu and choose midpoint).

3. Repeat step 2 with the other two sides as

well,

120




4. Verbind die met die

middelpunt van die teenoorstaande sy.

hoekpunt

5. Herhaal die stap 4 met die ander twee
sye en hoekpunte.

6. Wat neem jy waar ten opsigte van die
hoogtelyne? Skryf dit neer.

7. die

swaartelyne mekaar sny. Die punt waar

Konstrueer punt waar die
die swaartelyne mekaar sny word die
swaartepunt genoem.

8. Meet die afstand (maak gebruik van die
“measure menu” en Kies ‘distance”)
vanaf die hoekpunt na die swaartepunt en
dan weer van die swaartepunt na die
middelpunt van die sy.

9. Bereken hierdie verhouding.

10. Herhaal die stap 8 en 9 met die ander
twee hoekpunte en middelpunte van die
sye.

11. Skryf ‘n veronderstelling neer oor hoe
die swaartepunt elke swaartelyn van van

‘n driehoek verdeel.

4. Connect the vertex with the midpoint of its |
opposite side.

5. Repeat step 4 with the other two vertices

and sides as well.

6. What do you notice about the medians?

Write it down.

7. Construct the point of intersection of the

medians. The point where the medians

intersect is called the centroid.

8. Measure the distance (make use of the
measure menu and choose distance} from
the vertex to the centroid and then the
distance from the centroid to the midpoint of
the side. |
S. Calculate these ratio.

10. Repeat step 8 and 8 with the other two

vertices and midpoint of the sides as well.

11. Write a conjecture about the way the

centroid divides each median in a triangle.

Activity 3: Perpendicular bisector

A perpendicular bisector of a side of a triangle is a line drawn perpendicular to the side

that it bisects (Laridon ef al., 1995:310).

Middelloodlyne:

1. Konstrueer driehoek ABC.

2. Kies 'n sy van die en konstrueer die
middelpunt.

3. Kies hierdie punt asook die sy en
konstrueer die middelioodlyn (gaan na die
"construct menu” en kies “perpendicular

line”).

| Perpendicular bisector:

L 1. Construct triangle ABC.

2. Choose a side of the triangle, and
construct the midpoint.

3. Select this point as well as the side and
construct a perpendicular bisector (go to the
construct menu an choose perpendicuiar

line).
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4. Herhaal die stap 3 met die ander twee
sye en middelpunte.

5. Wat neem jy waar ten opsigte van die
middelloodlyne? Skryf dit neer.

6. Konstrueer die punt waar die middellyne
mekaar sny. Die punt waar die middellyne
mekaar sny word die middelpunt van die
sirkel

omgeskrewe (ommiddelpunt)

| genhoem.

7. Meet die afstand vanaf die middelpunt
van die omgeskrewe sirkel na elk van die
hoekpunte.

8. Wat merk jy op ten opsigte van die
afstand vanaf die middelpunt van die
omgeskrewe sirkel na die drie hoekpunte
van die driehoek?

9 Trek een van die hoekpunte totdat die
middelpunt van die omgeskrewe sirkel op
‘n sy van die driehoek I1& Watter tipe
1S dit? Waar

middelpunt van die omgeskrewe sirkel?

dnehoek presie & die

4. Repeat step 3 with the other two sides and
midpoints.
5. What
perpendicular bisectors? Write it down.

do you notice about the
8. Construct the point of intersection of the
perpendicular bisectors. The point where the
perpendicular bisectors intersect is called the
circumcenter.

the the

circumcenter to each of the three vertices.

7. Measure distance from

8. What do you notice about the distance
from the circumcenter to the three vertices of |

the triangle?

8. Drag a vertex until the circumcenter falls
on a side of a triangie. What kind of triangle
is this? Where exactly does the circumcenter

lie?

Activity 4: Altitudes in a triangle

An altitude of a triangle is measured by the iength of a line drawn from a vertex of a

triangle perpendicular to the opposite side, ar an extension of the side called the base

(Laridon et al., 1995:310).

Hoogtelyne:

1. Konstrueer driehoek ABC.

2. Kies ‘n hoekpunt en die teenoorgestelde
sy, dan, in die “construct menu’, kies
‘perpendicular line” om ‘n loodregte lyn
deur die sy te konstrueer.

3. Herhaal die stap 2 met die ander twee
sye en hoekpunte.

Altitudes:
1. Construct triangle ABC.

2. Select a vertex and the opposite side |,
the
perpendicular

then, in construct menu, choose

line to construct a line
perpendicular to the side.
3. Repeat step 2 with the other two sides and

vertices.
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4. Solank as wat jou driehoek ‘n
skerphoekige driehoek is, behoort die
hoogtelyn die sy van die driehoek te sny.
Trek nou die hoekpunt sodat die hoogtelyn
buite die driehoek |1&. Watter tipe driehoek
is nou?

5. Trek jou driehoek sodat dit weer ‘n
skerphoekige drehoek is. Konstrueer die
punt waar die hoogtelyne mekaar sny. Die
punt waar die hoogtlyne mekaar sny word
die ortosnypunt genoem.

6. Wat neem jy waar ten opsigte van die
hoogtelyne as  die  driehcek ‘n
skerphoekige driehoek is? Skryf dit neer.

7. Trek die hoekpunte van die driehoek en

neem waar wat met die hoogtelyn gebeur.

a e |
8. Waar 1€ jou hoogtelyn wanneer een van

die hoeke van die driehoek ‘'n regte hoek
is?

3

9. Konstrueer ‘n sirke! deur die
ortosnypunt en die hoekpunte van die

driehoek. Wat noem ons hierdie sirke|?

4 As long as your triangle is acute, this
perpendicular line should intersect a side of
the tnangie. Drag the vertex so that the line
falls outside the triangle. Now what kind of

triangle is it?

5. Drag your triangle so that it is acute again.
Construct the point of intersection of the
altitudes. The point where the altitudes

intersect is called the orthocenter.

6. What do you notice about the altitudes if

the triangle is acute? Write it down.

7. Drag vertices of the triangle and observe
how your altitude behaves.
8. Where is your altitude when one of the

angles of the triangle is a right angle?

9. Construct a circle through the orthocenter
and the vertices of the triangle. What do we
cail this type of circle?

Activity 5: Angle bisectors in triangles

A bisector of an angle is a line that bisects an angle of a triangle (Laridon et af., 1995:311).

Hatveerlyne:

1. Konstrueer driehoek ABC.

2. Konstrueer die halveerlyn van die hoeke
van die driehoek deur drie punte te kies
met die hoekpunt wat jy wil halveer in die
middel. Kies dan in die "construct menu,
angle bisector”.

3. Konstrueer die punt waar die

halveerlyne mekaar sny. Die punt waar die

L

Angle bisectors

1. Construct triangle ABC.

2. Construct the bisector of the angles of the
tnangle by selecting three points, with the
vertex your middle selecticn. Then, in the

construct menu, choose angle bisector.

3. Construct the point of intersection of the

angle bisectors. The point where the angle
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halveerlyne mekaar sny word die

middelpunt van die ingeskrewe sirkel
{inmiddelpunt) genoem.

4. Wanneer jy ZA klaar gehalveer het,
meet die twee hoeke wat by /A gevorm is
(in die "measure menu”, kies “angle’).

5. Kenstrueer 'n sirkel deur die middeipunt
die die

hoekpunte van die driehoek. Wat noem

van ingeskrewe  sirkel en

ons hierdie sirkel?

bisectors intersect is called the incenter.

4. When you have bisect £A, measure the

two angles which is formed at ZA (in the
measure menu, choose angle).

5. Construct a circle through the incenter and |
the vertices of the triangle. What is the name

of this circle?

Activity 6: Isosceles triangles

A friangle is an isosceles triangle when two sides of the triangle are equai (Loots et ai.,

2000:154).

Gelykbenige driehoeke:

1. Konstrueer ‘n sirkel met middelpunt A
en radiuspunt B.

2. Konstrueer radius AB.

3. Konstrueer radius AC. Trek punt C om
seker te maak dat die radius aan die sirkel
raak.

4 Konstrueer BC.

5. Trek elke hoekpunt van jou driehoek en
kyk wat gebeur. Verduidelik hoekom die
driehoek altyd ‘n gelykbenige driehoek is.
6. "Hide” sirkel AB.

7. Meet die drie hoeke in die driehoek.

8. Trek die hoekpunte van jou driehoek en
kyk wat gebeur met die hoeke wat |y
gemeet het. Wat neem jy waar in verband
met die basishoeke en die oorblywende

hoek van die driehoek?

Isosceles triangles:

1. Construct a circle with center A and radius
point B.

2. Construct radius AB.

3. Construct radius AC. Drag point C to make
sure the radius is attached to the circle.

4. Construct BC .

5. Drag each vertex of your triangle to see
how it behaves. Explain why the triangle is
always isosceles.

6. Hide circle AB.

7. Measure the three angles in the triangle.

8. Drag the vertices of your triangle and
observe the angles measures. What do you
observe about the measures of the base
angles and the remaining angle of the

triangle?
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APPENDIX C

Onderhoud 1

1

R Op 'n skaal van 1 tot 10, met 10 die hoogste,
hoe baie hou jy van wiskunde?
S 5
R Jy hou dus nie s¢ baie van wiskunde nie
51 nee, nie so baie nie
R Hoekom nie?
51 Ek sukke! met wiskunde.
2
Doen jy altyd jou werkscopdragte?
S1 Ek probeer om my werksopdragie aimal te
doen, maar dis nie so maklik nie,
R hoeveel 1yd spandeer jy om jou
werksopdragte te doen?
S1 Dit verskil van hoe mosilik dit is, as dit baie
moetiik 15 sal ek dit dalk nie doen nie.
R Hm.
3.
R in die algemeen, wat beinvioed jou om hard
te werk?
S1 Dit is tekker om 'n geeie punt e kry.
4.
R s daar enigiets wat veroorsaak dat jy nog
harder sal werk?
St Nee.
R OK.
5
R Is jy beter in sekere afdelings van wiskunde?

Byvoorbeeld, is jy beter in algebra as in megetkunde?

S1

Ek hou nie van trig en meetkunde nie. Ek kry

dit me reg nie.

Interview 1

1.

R On a scale of 1 o 10, with ten being the
highes!, how much do you like mathematics?

§1 5

R You don't tike mathematics that much?

§1 No, not so much.

R Why not?

51 | struggle with mathematics.

2.

R Do you always complete your assignments?
S1 ! try to do ait the assignments, but it is not
that easy.

R How much time do you spend on doing your

assignments?

81 it depends on how difficult it is. If it is very
gifficult, I might not do it.

R Hm.

3

R in general, what influences you tc work
hard?

St It is nice to get good marks.

4.

R s there anything that causes you to work
harder?

51 No.

R oK.

5.

R Are you better in certain sections of
mathematice? For instance, are you better in

algebra than in gecmetry?
S1 | don't really tke trig and geometry. | can't

do it

i

|

125



['6.
R Dink jy iemand het spesiale talent nodig om
goed te doen in wiskunde?

S1 Ek dink mens moet ‘n talent hé maar ek dink
waar 'n probleem opduik is by die onderwyser by wie
iy wiskunde kry. Die onderwyser kan 'n baie groot rol

speel of mens die werk verstaan of nie.

!
7.
R Hoe belangrik is dit om te memariseer in
wiskunde?
S1 Ek moet goed uit my kop leer om somme in

die eksamen te kan doen
R
memoriseer nie, goed doen in wiskunde?
S1

Dink jy dat iemand wat nie goed is om te

Ja die mense wat die werk maklik regkry.

8.
R Hoe gereeld doen jy so min as moontlik werk

net om by te bly?

51 Dit hang af hoe besig ek is met my ander
vakke.
R OK.

| 9
R Hoe studeer jy vir 'n wiskunde toets?
51 Ek doen eers die somme waarmee ek
gesukkel het op papier en dan sal ek die res hersien.
R OK.
10
R Gee voorbeelde van die akliwiteite wat jy in

wiskunde doen.

S1 Blokkies, geo-stroke en GSP.

R Hm

1.

R Van hierdie akliwiteite wat jy nou net

opgenoem het, is daar enige van die aktiwiteite wat
jy baie geniet en interessant vind? Van hierdie
aktiwiteite wat |y nou net opgencem het. is daar

enige van die aktiwiteile wat jy baie geniet en

6.

R Do you think that a person needs a special
| talent to be good in mathematics?

S | think a person should have an aptitude, but

| think the problem comes in with the teacher that
teaches you mathematics. The teacher plays an
important rote in whether you understand the work or

not.

7.

R How important is it to memorise in

mathematics?

51 I must learn sums by heart 1o be able to do it
in the exam.
R Do you think that someone who is not goed

in memorising can do well in mathematics?

S1 Yes, those whe manage the work easily.

8.

R How often do you do as little as possible just
to keep up?

S It depends on how busy | am in my other
subjects.

R oK.

9.

R How do you study for a mathematics test?
51 t first do the sums that | struggled with on
paper and then | will revise the rest.

R oK.

10.

R Give examples of the activities that you do in

mathematics.

s1 Blocks, geo-strips and GSP.

R Hm.

|

11

R Of these activities that you have just

mentioned, are there any that you enjoy and that you

find interesting?
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interessant vind?

81 GSP is baie interessant.
R Hoekom?
51 Ek geniet dit om te kan sien waarmee ek

werk en dit help my om in te sien wat die dosent vir

my verduidelik.

12,
R is daar probleme in wiskunde wat op meer

as een manier opgelos kan word?

51 Fk dink elke liewe som kan anders opgelos
word.

R Goed so.

13

R Hou jy van GSP?

51 Ja soos ek reeds gesé het, ek verstaan die

werk makliker en dit is interessant om die probleme
met GSP te doen.

14
R ls daar enigiets waaraan }y kan dink wat

pelangrik is om wiskunde te leer wat jy nie genoem

S1 GSP is very interesting.
R Why?
S1 | enjoy being able to see what | am working

with and it helps me to see what the lecturer is

explaining to me.

12.
R Are there problems in mathematics that can

be salved in more than one way?

51 I think each and every sum can be done in
different ways.

R Alright.

13

R Do you like GSP?

81 Yes, as ! have already said, | understand the

work better and it is inferesting to do the preblems
better with GSF.

14
R Is there anything that is important to learn in

het nie. mathematics that you have not mentioned?
51 Nee.
S1 No.
Onderhoud 2 Interview 2
1. 1.
R Op 'n skaal van 1 tot 10, met 10 die hocgste, | R On a2 scale of 1 to 10, with ten being the |
hoe baie hou jy van wiskunde? highest, how much do you like mathematics?
52 10 52 10
2. 2
R Doen jy altyd jou werksopdragte? R Do you always complete your assignments?
g2 Ja. 52 Yes.
R En hoeveel tyd spandeer jy om jou | R And how much time do you spend an deing

werksopdragte te doen?
S2

byvoorbeeid 20 somme is sal ek meer tyd spandeer

dit hang net af hoe groot is dit. As dit

as wat dit net 6 {s. Ek hou daarvan om al die somme

te doen.

your assignments?

s2 it depends on how much it is  (f it is for
instance 20 sums, | would spend more time that if it

were 8. | like doing all the sums,
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my somme reg te kry. As ek sukkel met ‘n som sal
ek aanhou en aanhou tot ek hom regkry. As ek die
som dan reggekry het sal ek nog ‘n soorigelyke een
doen om seker te maak ek verstaan die som.

R Mooi. Is daar ander enigiets ahders wat jou

beinvioed om harder te werk?

S§2 Ek werk aityd konstant hard.
R 0K,
!
4,
R is daar enigiets wat vercorsagk dat jy harder
werk?
52 Ek dink ek is redelik goed.
R Hoe weet jy dit?
S2 Ek kry goeie punte.
5.
R Is jy beter in sekere afdelings van wiskunde?

Byvoorbeeld, is jy beter in algebra as in meetkunde?
g2

maar ek het vergeet van diz meetkunde ek haat

Ek het nou-nou gesé ek hou van wiskunde,

meetkunde gk leer al die bewyse soos 'n papegaai.

R Goed s0.
6.
R Dink jy iemand het spesiale talent nodig om

goed te doen in wiskunde?
82

goed doen in wiskunde al is jy nie aangeld vir

Ek dink so ek dink |y kan as jy wil nog steeds

wiskunde nie maar ek dink party mense is net
doodeenvoudig goed in wiskunde jy kan eenkeer na

n som kyk en jy sal weet wat daar aangaan.

R Het jy sutke talent?
52 Ja ek dink so.
R Hoekom dink Jy so?

'R OK. R OK
3 3
R in die algemeen, wat beinvioed jou om hard | R in general, what influences you to work
te werk? hard?
s52 Goeie punte. Dit is vir my ‘n uitdaging om al | 82 Good marks. For me it is a chalienge to

have all my sums correct. If | struggle t will keep
going until  get it right. If | have succeeded in doing
the sum | will do another similar cne to make sure !
understand the sum.

R Good, is there anything eise that influences

you to work harder?

52 ! constantly work hard.

R O

4.

R ls there anyibing that causes you to wark
harder?

52 } think | am reasonably good.

R How do you know that?

82 | get good marks.

5.

R Are vyou better in cerain sections of

mathematics?  For instance. are you befter in
algebra than in geometry?

82 { said that | like mathematics, but | forgot
about geometry. | hate geomelry and | fearn all the

proofs by heart.

R Good.
6.
R Do you think that a person needs a special

talent to be good in mathematics?
S2

stif do well in mathematics if you do not have

| think so, and ! think if you want to you can

aptitude for it, but | think some people are simply just
good in mathematics and you can took at a sum
once and know what is going on there.

R Do you have such talent?

32 Yes, | think so.

R Why do you think so?
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belangrik dit is om nie goed te memoriseer nie maar
om te kyk waar kom dit vandaan en hoekom is dit so
om dit regtig te kan verstaan. As jy dit verstaan dan
hoef jy nie eers rérig te leer nie want as jy dit
eenkeer verstaan sal jy dit altyd verstaan. As jy die
weark memoriseer dan vergeet |y dit weer en dan
maoet jy weer van voor af leer.

R Dink jy dat iemand wal nie goed is om te
memariseer nie, geced doen in wiskunde?

S2

dit nie te memoriseer nie.

Ja jy moet net die werk verstaan dan hoef jy

8.

R Hoe gereeld doen jy so min as moontlik werk
net om by te bly? Hoe gereeld doen jy so min aas
moontlik werk net om by te bly?

s2 Dit hang net af hoeveel werk word van my
vereis, as ek baie werk in my ander vakke het sal ek
minder tyd spandeer aan my wiskunde maar as ek
genoeg tyd het spandeer ek baie tyd aan wiskunde
dan sal ek meer doen as wat van my verwag word.

R hm.

9.
R Hoe studeer jy vir 'n wiskunde toets?
82 Ek werk gewocnlik konstant baie hard en

dan sal ek die probleme wat ons gedoen het
deurlees en seker maak dat ek almal verstaan en
weaet hoce om dit te doen. Ek doen nie weer al die
somme nie want ek het deur die jaar gesorg dat ek
almal kan doen. Ek sé basies die stappe vir myself
op. Op hierdie manier kan ek my werk meer keer
hersien.

R Goed so.

(82 My punteis goed. S2 My marks are good.

7. 7.

R Hoe belangrik is dit om te memcriseer in | R How importamt is it to memorise in
wishunde? mathematics?

82 Cp Universitet het ek eers besel hoe | 52 { only realised at university that it is important

not to memorise, but rather to look at where
something comas fraom, why it is so, in order {o realty
understand it. ¥ you understand you don't even
really have o study, because if you understand
once you will always understand it. If you memorise
the work, you forget it again and then you have 10
learn it all over again.

R Do you think that someone wha is not good
in memorising can do wel in mathematics?

52 Yes, you should just understand the work,

then you don't have to memorise.

8.

R How often de you do as little as possible just
to keep up?

52 It just depends on hiow much work | have. If |

have much wark in my other subjects | will spend
less time on my mathematics, but if | have enough
fime | spend much tme on mathematics, and 1 do

more that what is expected of me.

R Hm.

9.

R How do you study for a mathematics test?
sz | understand all of the sums and know how

to do them. | don't do all the sums again because
through the year ) saw to it that | can do al of them.
| repeat the basic steps for myseif. In this way | can

revise the work for myse!f more times

R Adright.




10.
R Gee voorbeelde van die akliwileite wat jy in

wiskunde doen.

sz Geo-stroke, GSP wat nogal help om die
werk in te sien, unfix-blokkies

R Hm.

.

R Van hierdie aktiwiteite wat jy nou net

opgencem het, is daar enige van die aktiwiteite wat
jy bate geniet en interessant vind?

S2 Ek dink dat ek GSP kan gebruik om beter te
verstaan ek hou nie van geo-stroke en sulke goed

nie, dit verveel my.

12.
R s daar probleme in wiskunde wat op meer

as een manier opgelos kan word?

52 Ja.

R Hoekom?

52 Elke liewe persoon dink anders en sal 'n
ander manier gebruik om by die regte antwoord uit te
kom.

13.

R Hou jy van GSP?

52 Jda, dit is baie interessant en dit is baie

makliker om meetkunde daarop te doen. Vandat ek
meetkundige sketse op GSP deen geniet ek die
meetkunde meer en ek verstaan meer van die
meetkunde ek kan die uitwerking dadetik sien bv as
ans gelykbenige die hoeke moet teken en die hoeke

meet, kan ek dadelik sick die basishoeke is gelyk.

14
R s daar enigiets waaraan Jy kan dink wat

belangrik is om wiskunde te feer wat jy nie gencem

het nie.

52 Ek dink ek het alies gesé waaraan ek kan
dink

R OK.

10,
R Give examples of the activities that you do in

mathemalics.

52 Geo-strips, GSP, which helps to see the
work, unfix-blocks.

R Hm.

11.

R Of these activities that you have just

mentioned, are there any that you enjoy and that you
find interesting?

52 ! think that [ can use GSP to understand
better, but | don't like geo-strips and such things, it

bores me.
12.
R Are there problems in mathematics that can

be solved in more than one way?

S2 Yes.
R Why?
52 Each and every person thinks differently and

will use a different way to get to the nght answer

13.

R Do you ke GSP?

g2 Yes, it is very interesting and it is much
easier to do mathematics on it Since | do

geometrical sketches on G5F | enjoy geometry more
and [ understand more of the geometry. | can see

immediately, for instance if we do isosceles triangles

and we have to measure the angles, | can
immediately see that the base angles are equal.

14

R Is there anything that is important to learn in

mathematics that you have not mentioned?

s2 | think { have said everything that ! could
think of.
R OK.
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Onderhoud 3
1.

R Op 'n skaal van 1 tot 10, met 10 die hoogste,
hoe baie hou jy van wiskunde?

83 10

R 5o, Jy hou baie van wiskunde.

s3 Ja.

2,

R Doen jy aityd jou werksopdragte?

53 ek doen al my opdragte.

R Hoeveel tyd spandeer jy om  jou
werksopdragte te doen?

83 dit hang af hoeveel somme ek moet doen.

Ex sal nie my werk alleen doen nie, ek sal my
antwoorde met iemand anders sin vergelyk om seker

te maak dat my antwoorde reg is.

3.

R in die algemeen, wat beinvioed jou om hard
te werk?

83 Kom ons s& gk het 'n toets geskryf en my

punte was nie so goed nie, sat dit my klaar inspireer

om harder {2 werk en dan, hm, sal ek somme doen

tot ek dit reg kry of ek sa! hulp vra.

R Mooi. Is daar ander enigiets anders wat jou
beinvioed om harder te werk?

S3 Dis iekker om te weet wat agngaan.

R Goed so.

4.

R Is daar enigiets wat veroorsaak dat jy harder
werk?

53 Uhm, ek dink ek is redelik goed in wiskunde

maar ek moet s& ek leer ook baie hard, behalwe as
ek die werk gesnap het.

R
S3

Wat bedoel jy met gesnap?
Ek verstaan die werk, ek weet wat daar
aangaan ek kan vir myself vertel wat daar aangaan.

R Moci so.

Interview-3
1.
R
highest, how much do you like mathematics?
S3 10

Cn a scale of 1 to 10, with ten being the

R So. you like mathematics very much.

83 Yes.

2.

R Do you always complete your assignments?

53 I always do all my assighments.

R How much time do you spend cn doing your
assignments?

53 it depends on how many sums | have to do.

i will not do my work alone; | will compare my
answers with someone else’s to make sure that my

answers are correct.

3

R In general, what influences you to work
hard?

53 Let's say | wrote a test and my marks are not

50 good, it will already inspire me to work harder and
then, hm, | will do sums unti! | get them right or | will
ask heip.

R Good. s there anything else that influences

you to work harder?

S3 It is good to know what is going on.

R Good.

4.

R s there anything that causes you lo work
harder?

S3 Uhm, | think | am reasonably good in

mathernatics, but | must say | work hard, except if |
have grasped it.

R
S3

on there and | can tell myself what is going on there.

What dc you mean with grasped?

| understood the work, | know what is going

R Good.
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R Is jy beter in sekere afdelings van wiskunde? | 5.
Byvoorbeeld, is Jy beter in algebra as in meetkunde? | R Are you better in certain sections of
53 OK ek hou baie van algebra en trigonometrie | mathematics?  For instance, are you better in

maar ek hou niks van meetkunde nie ek bhet
gesukkel met meetkunde. As ‘n nuwe stelling
gedoen is dan word dit dadeiik toegepas op 'n
meeilike probleem miskien maes ons dit eers op 'n
eenvoudig, bale eenvoudige probleem te doen net

om eers die beginsel vas te &

6.
R Dink jy iemand het spesiale talent nodig om
goed te doen in wiskunde?

S3

doen in die lewe bepaal baie. So as jy met n

Ek dink die gesindheid waarmee jy dinge

negatiewe gesindheid in die wiskunde klas instap
gaan jy nie baie ieer nie. Ek dink daar is mense wat
talent het maar ek dink gesindheid speel 'n groct rol.
Ek dink ook dat ondemwysers ‘n inviced het op 'n
mens of jy die werk verstaan of nie ek het onrdervind
toe ek geproef het, dat 'n juffrou wat wvir graad 5
wiskunde gegee he! nie daarvoor opgelé is nie en
die kinders het dan alreeds in die Laerskool 'n
agterstand omdat die juffrou nie mooi weet hoe om
die werk te verduidelik nie. As die werk in die
grondslag fase nie goed vasgeld is nie is daar af
kKlaar 'n probleem, so ek glo nie dis net talent nie

maar ook hoe die werk verduidelik is.

R hm. Dink jy, jy het talent?

53 Ek het seker talent maar ek werk baje hard.
7.

R Hoe belangrik is dit om te memoriseer in
wiskunde?

53 Dit is nie net 'n verstaan vak nie daar is

bietjie leerwerk aan betrokke. Daar is 'n verskil
tussen memoriseer en ieer. As ek praat van leer dan
weet ek wat daar zangaan. As jy memaoriseer dan
weet |y nie wat daar aangaan nie en vind leer glad

nie plaas nie. Jy moet verstaan wat aangaan.

R Dink jy dat jemand wat nie goed is om te

algebra than in geometry?
53
don't like geometry at all. | struggied with geometry.

OK, | like algebra and trigonometry, but |

When a new theorem has been done, it s
immediately applied to a difficult problem. Maybe we
should first do a simple, a very simple problem just to

first establish the principles.

6.
R Do you think that a person needs a special
talent to be good in mathematics?

S3

in life determines much. So if you have a negative

| think the attitude with which you do things

attitude in the mathematics class, you won’t learn
much. | think there are people with aptitude, but |
think attitude plays an important role. | also think
that teachers have an influence on whether ane
understands the wark or not, and | found that when |
did practicals that the teacher teaching grade 5 was
not trained for . The children then have a backiog
in primary schoo!l already because the teacher does
not know how to explain the work. If the work in the
first phase is not well understood, there is a problem
aiready, so | believe that it is not only talent, but also

how the work has heen explained.

R Hm. Do you think you have tatent?

83 | guess so, but | wotk very hard.

7.

R How important is it to memorise in
mathematics?

53 It is not just a subject that involves
understanding, there is a little studying. There is a

If |

speak of studying | know what is going on there. [f

difference between memorising and studying.

you memorise then you don't know what is going on
and iearning does not take place. You have to

understand what is going on.
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memoriseer nig, goed doen in wiskunde?

83 Ja ek dink so.

8.

R Hoe gereeld doen jy so min aas moontiik
werk net om by te bly?

53 As ek ilets nie verstaan nie sal ek moeite

doen om uit te vind hoe dit gedoen moet word
anders sal ek sorg dat my werk op datum is.
R Goed s0.

8.

R Hoe studeer [y vir ‘n wiskunde toets?

83 Ek doen somme oor en oor en maak seker
dat ek almal verstaan.

R Het iemand jou spesiale vaardighede geleer
om vir wiskunde te leer?

3 Nee.

10.

R Gee vocorbeelde van die aktiwiteite wat jy in

wiskunde doen.

83 GSP, wat baie interessant is, en geo-stroke.
R QK.

11.

R Van hierdie aktiwiteite wat jy nou net

opgenoem het, is daar enige van die aktiwiteile wat

jy baie geniet en interessant vind?

83 £k hou baie van GSP en dit het my gehelp
om die werk beter te snap, te verstaan.

R Hm.

83 Wanneer meetkunde gedoen moet word is

dit maklik en vinnig om die skets op GSP te teken en
Jy kan dadelik sien wat gebeur. Ek Kan stelselmatig
sien wat gebeur en dit maak dit makliker om die werk
te verstaan. Jy kan onmiddellik sien wat gebeur en
wat die effek is wanneer ek byvoorbeeld kyk na
gelykbenige driehoeke dan kan ek sien dat die
basishoeke ewegroot is. Jy kan nie op die bord so

vinnig verduidelik soos met die tegnologie nie.

R Do you think that someone who is not good

in memorising can do well in mathematics?

S3 Yes | think s0.

B.

R How often do you do as little as possible just
to keep up?

53 if | don’t understand something | wilt go to

trouble to find out how it should be done, otherwise |

see to it that my work is up to date.

R Good.

8.

R How do you study for a mathematics test?
S3 | do sums over and over and make sure that

| understand all of them.
R Did someone teach you special skills to

study for mathematics?

S3 No.

10.

R Give examples of the activities that you do in
mathematics.

S3 GSP, which is very interesting, and geo-
strips.

R oK.

11.

R Of these activities that you have jus!

mentioned, are there any that you enjoy and that you

find intergsting?

83 | like GSP and it helped me to grasp the
work, to understand it better.

R Hm.

53 When geometry is heing done it is fast and

easy io draw he sketch on GSP and you can sese
what happens immediately. | can systematically see
what happens and that makes it easier to understand
the work. You can see what happens immediately
when i for instance look at isosceles triangles. Then
| can see that the base angles are equal. You can

naot explain as fast on the beoard as you can with
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technology.
12.
R Is daar probleme in wiskunde wat op meer | 12.
as een manier opgelos kan word? R Are there problems in mathematics that can
83 Ja veral nou met OBE moet kinders | be solved in more than one way?
toegelaat word om hul eie manier op te los. 53 Yes, especially with OBE children should be
allowed to solve things in their own way.
13
R Is daar enigiets waaraan jy kan dink wat | 13.
belangrik is om wiskunde te leer wat jy nie gencem | R Is there anything that is important to fearn in
het nie. mathematics that you have not mentioned?
53 Nee wat, ek dink ek het alles gesé.
53 No, | think | have said everything.
Onderhoud 4 B interview 4
1. 1.
R Op ‘n skaal van 1 tot 10, met 10 die hoogste, | R On a sca'e of 1 to 10, with ten being the
hoe baie hou jy van wiskunde? highest. how much do you like mathematics?
54 5] S4 6
2. 2.
R Doen jy altyd jou werkscpdragte? R Do you always complete your assignments?
54 Die meeste. S4 Most of them.
R Hoe besluit jy watter gaan jy doen en watter | R How da you decide which you are going to
nie? do and which not?
S4 Wanneer ek te veel sukkel om die probleme | 54 When | struggte too much with the problems
te doen sat ek daardie opdrag los. } will teave that assignment.
R Hoeveel tyd spandeer jy om jou|R How much time do you spend on doing your
werksopdragte te doen? assignments?
54 As ek weet wat sangaan dan saf ek meer tyd | S4 i) know what i5 going on | will spend more
spandeer om die opdrag te voltool. time to complete the assignment.
R Goed. R Good.
3. 3
R In die algemeen, wat beinvioed jou om hard | R In general, what influences you to work
te werk? hard?
54 As ek die werk verstaan sat €k harder werk. ! 84 if | understand the work | will work harder.
R ls daar enigiets wat veroorsaak dat jy harder | R Is there anything that causes you to work
werk? harder?
54 Dit sal lekker wees om beter punte te kry 54 1t will be good ta have better marks.
R oK. R oK.
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R Hoe goed is jy in wiskunde?

54 Nie goed nie.

R Hoe weet jy dit?

S4 Ek sukkel om party van die opdragte te
doen,

R Goed.

5,

R Is jy beter in sekere afdelings van wiskunde?

Byvoorbeeald, is jy beter in algebra as in meetkunde?

g4 Ek hou niks van meetkunde nie.

R Hoekom nie?

5S4 Ek verstaan dit nie

6.

R Dink jy iemand het spesiale talent nodig om

goed te doen in wiskunde?

5S4 Ja.

R Het jy su'ke talent?

54 Nee glad nie.

R Hoekom dink jy dat jy nie talent het nie?

54 Ek sukkel met die wiskunde

7.

R Heoe belangrk is dit om te memoariseer in
wiskunde?

54 Ek feer aityd rympies en stappe.

R Dink jy dat iemand wat nie goed is om te

memoriseer nie, goed doen in wiskunde?
S4

doen sonder om goed uit hul kop te leer.

Ja, die persone wat talent het kan goed

8
R Hoe gereeld doen jy so min as moontlik werk

net om by te biy?

S4 Nie so gereeld nie, ek probeer om by te bly
met my werk.
R Hm

R How good are you in mathernaties?

S4 Not good...

R How do you know that?

sS4 | struggle to do some of the assignments.

R Alright

5.

R Are you belier in certain sections of
mathematics? For instance, are you better in

algehra than in geometry?

54 | don’t like geometry at all.

R Why not?

S4 | don't understand it.

6.

R Do you think that 2 person needs a special

talent to be good in mathematics?

54 Yes.

R Do you have such talent?

54 No, not at all.

R Why do you think you don't have aptitude?
54 } struggle with the mathematics.

7.

R How important is it to memorise in
mathematics?

S4 1 always learn rhymes and steps.

R De you think that someone who is not good

in memorising can do well in mathematics?
S4

well without learning things by heart.

Yes, the persons who have aptitude can do

8.

R How often do you do as little as possible just
to keep up?

54 Not often, { try to keep up.

R Hm.
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I°)
R Hoe studear jy vir 'n wiskunde toets?
S4 Ek doen die opdragte en probieme wat ons

in die kias gedoen oor en oor.
R is daar 'n ander manier wat jy ook gebruik

om vir wiskunde te leer

54 Nee.
10.
R Gee voorbeeide van die aktiwiteite wat jy in

wiskunde doen.

54 Geo-stroke, GSP en blokkies

R Goed.

11.

R Van hierdie aktiwiteite wat jy nou net

opgencem het, is daar enige van die aktiwiteite wat

¥ baie geniet en nteressant vind?

54 GSP, dit het my gehelp om die werk beter te
verstaan.

12,

R Is daar probleme in wiskunde wat op meer

as een manier opgelos kan word?
54

probleme op verskillende maniere uitwerk

Ja, verskillende persone sal byvoorbeeid

13
R Hoe hou jy van GSP?
S1 Ja ek geniet dit om die sketse te teken en dit

maak dat ek meer van wiskunde hou, meer van

meetkunde hou

14.
R fs daar enigiets waaraan jy kan dink wat

belangrik is om wiskunds te leer wat jy nie gengem

9.
R How do you study for a mathematics test?
54

did in class over and over.

t do the assignments and problems that we

R s there another method that you use 1o

study mathematics?

54 No.
10.
R Give examples of the activities that you do in

mathematics.

54 Geo-strips, GSP and btocks

R Gocd.

11.

R Of these activities that you bave just

mentioned, are there any that you enjoy and that you

find interesting?

54 GSP. it helped me understand the work
better.

12.

R Are there problems in mathematics that can

be solved in more than one way?
S4 Yes.

out problems in different ways

Different people will for instance work

13
R Do you like GSP?
S1 Yes, | enjoy drawing the sketches and it

makes me like mathematics more and like geometry

maoie.

14.
R is there anything that is important to tearn in
mathematics that you have not mentioned?

het nie.

54 Ek dink nie sg nie. 54 1 don't think so.

Onderhoud § B Interview-5

1. 1.

R Op ‘n skaal van 1 tot 10 met 10 die hoogste, | R On a scale of 1 to 10, with ten being the
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hoe baie hou Jy van wiskunde?

556 6

2

R Doen jy altyd jou werksopdragte?

S5 Nee, nie altyd nie.

R Hoe besluit jy walter gaan )y dcen en watter
nie?

85 Wanneer ek begin met ‘'n opdrag en ek
verstaan nie en ek het nie baie tyd nie, sal ek dit nie
doen nie.

R Hoeveel 1tyd spandeer jy om jou
werksopdragte te doen?

55 Dit hang af hoevee! ander werk gk het om te

doen en weer of ek die werk verstaan of nie.
R Goed.

3.

R In die zlgemeen, wat beinvlioed jou om hard
te werk?

55 As ek weet wat aangaan sal ek meer deen
en meer aandag aan my werksopdragte gee

R Is daar enigiets wat veroorsaak dat jy harder
werk?

S5 Ek dink nie sp nie.

R OK.

4.

R Hoe goed is jy in wiskunde?

) Nie so goed nie.

R Hoe weet jy dit?

&5 Ek sukkel om die werk te doen en my punte
lyk nie so goed nie.

R oK.

5.

R Is jy beter in sekere afdelings van wiskunde?

Byvoorbeeld, is jy beter in algebra as in meetkunde?

S5 Ek hou niks van meetkunde nie.
R Hoekom nie?
S5 Ek kry dit nie reg nie.

highest, how much do you like mathematics?
85 &

2.

R Do you aiways complete your assignments?
S5 No, not always.

R How do you decide which to de and which
not?

S5 Whnen | start with an assignment and | don't

understand and | don't have much time, | will not do
it.

R How much time do you spend on doing your
assignments”?

S5
and whether | understand the work or not.
R Good.

It depends on how much work | have to do

3.

R in general, what influences you to work
hard?

55 If | know what is going on | wil' do more and
pay more altention to my assignments.

R Is there anything that causes you to work
harder?

35 ! don't think so.

R OK.

4.

R How good are you in mathematics?

S5 Not s0 good.

R How do you know that?

35 | struggle to do the work and my marks are
not so good.

R OK

5.

R Are you better 1n ceriain sections of

mathematics? For instance, are you better in
|

algebra than in geometry?

S5 | don't like geometry at all.
R Why not?
S5 | can not do i,
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r
8. 8.
R Dink jy iemand het spesiale taient nodig om | R Do you think that a person needs a special
goed te doen in wiskunde? talent to be good in mathematics?
S5 Ja S5 Yes
R Het jy sulke talent? R Do you have such talent?
S5 Ek dink nie so nie. 55 t dorr't think so.
R Hoekom dink |y dat jy nie talent het nie? R Why do you think that you den’t have
aplitude?
S5 Omdat ek met die werk sukkel. 55 Because | struggle with the work.
7. 7.
R Hoe belangrik is dit om te memoriseer in ! R How important is it to memorise in
wiskunde”? mathematics?
S5 Ek leer die meeste van die werk uit my kop | 55 | learn most of the work by heart.
uit.
R Dink jy dat iemand wat nie goed is cm te | R Do you think that someone who is not good

memoriseer nie, goed doen in wiskunde?
85

doen, hulle weet gewoonlik wat in die klas aangaan.

Daar is mense wat nie hard leer nie en goed

B.

R Hoe gereeld doen jy $o min as moontlik werk
net om by te bly?

85 Gereeld

R Hoekom?

S5 Wanneer ek met die werk sukkel gebruik dit

bate van my tyd wat ek ni¢ altyd het nie.

g
R Hoe sfudeer jy vir 'n wiskunde toets?
55 Ek doen die somme wat ons in die klas

gedoen het weer.
R Het jemand jou ‘n spesiale vaardighede

geteer om vir wiskunde te leer?

S5 Nee.

10.

R Gee voorbeelde van die aktiwiteite wat jy in
wiskunde doen.

55 Ek kan op die oomblik net aan geo-stroke
dink

I

n memohsing can do well in mathematics?
55

do well, they usually know what is going ¢n in class.

There are people who don't study hard and

8.

R How often do you do as little as possible just
10 keep up?

S5 Often.

R Why?

55 When | struggle with the work it takas much

of my time, which i do not always have.

9

R How do you study for a mathematics test?
S5 1 do the sums that we did in class again.

R Did someone teach you special skills to
study for mathematics?

35 No.

10.

R Give examples of the activities that you do in
mathematics.

S5 At the moment | can only think of geo-strips

I
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[ Goed so. R Good.
1. 11.
R ls daar probleme in wiskunde wat op meer [ R Are there problems in mathematics that can

as een manier opgelos kan word?

55 Ja.
R Kan jy voorbeelde gee van sulke probleme.
55 As mens byvoorbeeld goed moet bymekaar

tel sal verskillende mense verskiliende metodes

gebruik om die antwoord te kry.

12.

R Het jy al met GSP gewerk?

S5 Ja in die wiskundeklas

13.

R Hou Jy van GSP?

S8 Ja dit is vir my lekker.

14

R Het GSP enige inviced op jou verstaan van
wiskunde?

S5 Ja. ek verstaan meer wat in die klas

aangaan en dit s lekker om met GSP te werk, dit

maak die werk interessant.

15,
R Is daar enigiets waaraan jy kan dink wat

belangrik is om wiskunde te leer wat jy nie gengem

be solved in more than one way?

S5 Yes.
R Can you give me examples of such
problems?
S5 If one for instance has to add things
together, different people would use different

methods to find the answer.

12,

R Have you worked with GSP?

35 Yes, in the mathematics class.

13

R Do you like GSP?

55 Yes, | enjoy it.

14

R Does GSP have any influence on you

understanding of mathematics?
85
class and it is enjoyabie to work with GSP. It makes

Yes, | understand better what is going on in
the work interesting.
15.

R Is there anything that is important to learn in

mathematics that you have not mentioned?

het nie.

55 Nee ek kan nie aan nog iets dink nie. S5 No | can not think of anything else.
Onderhoud 6 Interview-6

1. 1.

R Op 'n skaal van 1 tot 10, met 10 die hoogste, | R On a scale of 1 to 10, with ten being the
hoe baie hou jy van wiskunde? highest, how much do you like mathematics?

56 8 9 56 8, 9

2. 2.

R Doen jy altyd jou werksopdragte? R Do you always complete your assignments?
56 Ek doen soms my werksopdragte ¢k doen al | S6 | sometimes do my assignments. | do all the
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die opdragte waarvoor ons punte kry

R en hoeveel tyd spandeer jy om jou

werksopdragte te doen?

56 Die opdragte is gewoonlik makiik en dan sal
ek nie so baie tyd spandeer om dit te doen nie

R OK.

3.

R In die aigemeen, wat beinviced jou om hard
te werk?

S6 Vir my is die werk lekker maklik, dit is pret.

R Mooi. Is daar ander enigiets anders wat jou

beinvioed om harder te werk?

S8 Die werk is vir my interessant en daarom sal
ek harder werk.
R oK.
4.
Hoe goed is jy in wiskunde?
S6 Ek dink ek is nogal goed in wiskunde.
R Hoe weet jy ait?
$6 My uitslae wys dat ek goed is.
5
R Is jy beter in sekere afdelings van wiskunde?

Byvoorbeeld is Jy beler in algebra as in meetkunde?

86 Ek Is ewe goed in algebra en trig maar nie
s0 goed in meetkunde nie.

R Goed s0.

6.

R Dink jy iemand het spesiale talent nodig om

goed te doen in wiskunde?
56

aangelegdheid noem. lemand wat aangelé is in

Ek sal dit nie ‘n talent noem nig, ek sal ‘n

wiskunde doen makliker goed in wiskunde
R Het jy sulke talent?

S8
R CK.

Ek dink ek is aangeld in wiskunde.

assignments for which we receive marks.
R And how much time do you spend on daoing

your assignments?

S6 The assignments are usually easy and then |
will not use so much time con doing it

R OK.

3.

R In genemra), what influences you to work
hard?

S8 For me the work is easy, it 1s fun.

R Good. Is there anything that causes you to

wolk harder?

56 The work is interesting and therefore | will
work harder.

R oK.

4

R How good are you in mathematics?

56 [ think | am rather good in mathematics.

R How do you know it?

SB My resuits show that 1 am good.

5.

R Are you better in certain sections of

mathematics? For instance, are you better in

algebra than in geometry?

56 i am equally good in algebra and trig, but not
so good in mathematics.

R Alright.

8.

R Bao you think that a person needs a special

talent to be good in mathematics?
56

aptitude. Someone who has aptitude in mathematics

I will not call it talent; ' will rather call it

do well in mathematics easily.

R Do you have aptitude?

56 | think | have aptitude for mathematics.
R oK.
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as jy nie goed is in memoriseer nie is dit beter om te
leer hoe om die goed self af te lei.

R Dink jy dat iemand wat nie goed is om te
memariseer nie, goed doen in wiskunde?

S8

doen.

Ja as jy die werk verstaan Kan )y goed

8

R Hoe gereeld doen jy so min as moontlik werk
net om by te bly? Hoe gereeld doen jy so min aas
moontlik werk net om by te bly?

S8
vereis, as ek bale werk in my ander vakke het sal ek

Dit hang net af hoeveel werk werd van my

minder tyd spandeer gan my wiskunde maar as ek
genoeg tyd het spandeer gk baie tyd aan wiskunde
dan sal ek meer doen as wat van my verwag word.

4 Hm.

g
R Hoe studeer jy vir 'n wiskunde toels?
56 Ek gaan die studiegids deur en kyk wat is

die opskrifte en dan sal ek seker maak dat ek
daardie werk waaroor die opskrifte gaan kan doen
en dat ek dit goed verstaan en dan sal ek so een of

fwee voorbeelde doen

R Goed so.
10.
R Gee voorbeelde van die aktiwiteite wat jy in

wiskunde doen.
S6 Elke probleem skep sy eie tipe hulpbron wat
gebruik kan word om dit beter te verstaan, tydens
fasilitering was daar 'n probleem waamee die
studente gesukkel het en ek het toe GSP gebruik om
die probleem op te los

R Hm.

(7. 7.

R Hoe belangrik is dit om te memoriseer in | R How important is it 1o memorise in
wigskunde? mathematics?

58 Sekere goed moet gememoriseer word maar | S8 Certain things should be memorised, but if

you are not good in memorising it is better to learn to
deduct things by yourself.

R Do you think that someéone who s not good
in memorising can do well in mathematics?

S6 Yes, if you understand the work you can do

well.

8.

R How often do you do as little as possible just
to keep up?

S6 It depends on how much work is expected of
me. {f { have much work in my other subjects | will

spend less tme on my mathematics, but if | have
enough time { spend much time on mathematics and

then i will do more than expected.

R Hm.

9.

R How do you study for a mathematics test?
S6 I go through the study guide and look at the

headings. Then | will make sure that | can do the
work that the heading deals with and that |

understand it well, and then | will do one or two

examples.

R Alright.

0.

R Give examptes of the activities that you do in
mathematics.

56 Fach problem creates its own type of

resources that can be used to understand it better.
During facilitation there was a problem with which
the studenis struggled and | used GSP to solve the
problem.

R Hm.
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11.

R Van hierdie hulpbronne wat jy al gebruik het,
is daar enige een wat jy baie geniet en interessant
vind?
86
werk duideliker te maak.

Ek dink dat ek GSP kan gebruik om van die

12.
R ls daar probleme in wiskunde wat op meer

as een manier opgelos kan word?

56 Ja.
R Hoekom?
56 Almal dink nie dieselfde nie en een persoon

sal met 'n ander oplossing kom as tiemand anders

13.
R Is daar enigiets waaraan jy kan dink wat

belangrik is om wiskunde te leer wat jy nie genocem

het nie.

S6 Ek dink ek het alles gesé& waaraan ek kan
dink.

R OK.

14

R Hou jy van GSP?

S6 Ja, GSP kan op verskilende maniere
gebruik  word soos  byvoorbeeld om  die

ooreenkomste en verskille van verskillende soorte
driehoeke. Jy kan dadelik verwantskappe sien en dit

help jou om die werk beter te verstaan.

11.
R Of these activities that you have just
mentioned, are there any that you enjoy and that you

find interesting?

56 I think GSP can be used to clarify the work.
12.
R Are there problems in mathematics that can

be sclved in more than one way?

SB6 Yes.
R Why?
S8 All people do not think the same, and one
person will come with a solution different from

someone else’s,

13.
R Is there anything that is important to learn in

mathematics that you have not mentioned?

56 | think | have said everything that | can think
of.

R oK.

14

R Do you like GSP?

S8 Yes, GSP can be used in different ways, like

for instance with the similarities and differences
between different types of triangles. You can
immediately see relationships and it heips you to

understand the work better.

Onderhoud 7
1.

R Op 'n skaal van 1 tot 10, met 10 die hoogste,
hoe baie hou jy van wiskunde?

57 7na8

R oK.

2.

R Doen jy aityd jou werksopdragte?

S7 |a op 'n skaal van 1 tot 10, s¢ 9.

Interview 7

1.

R On a scale of 1 to 10. with ten being the
highest, how much do you like mathematics?

57 7to8

R oK.

2.

R Do you always complete your assignments?
S7 Yes, on a scale of 1 to 10, about 9.
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R en hoeveel tyd spandeer jy om jou
werksopdragte te doen?
s7 Ek sal s& bietjie meer as die gemiddeld wat

nodig is om te doen omdat ek bietie meer te
spandeer om die beginsel te verstaan en dan doen

ek meer somme

R OK.

3.

R In die algemeen, wat beinvioed jou om hard
te werk?

87 Wiskunde is ‘n vak wat soos die Bybel sé

wat jy saai sal jy maai, dit is direk eweredig hoe
harder jy werk hoe meer resultate sier |y dit is nie

soos tale wat oor ‘n lang tydperk vorm nie.

R Mooi. Is daar ander enigiets anders wat jou

beinvioed om harder te werk?

57 Die stimulasie van jy sien die produk op jou
harde werk.

R OK.

4.

R Hoe goed is jy in wiskunde?

S7 Ek dink ek sal net eers onderskel tussen

skoolvlak wiskunde en ingenieurs wiskunde. T  tot

op skoolvlak wiskunde en eerstejaars wiskunde is ek

baie sterk
R Hoe weet jy dit?
S7 Ek dink ek snap redelik vinnig as ek my meet

aan ander studente dan snap ek vnniger as die

meeste van hulle.

5.

R Is jy beter in sekere afdelings van wiskunce?
Byvoorbeeld, is jy beter in algebra as in meetkunde?
g7 My algebra was nog altyd die sterker een
gewees. My meetkunde het egter beter geword
vandat ek op Universiteit is.

R Kan jy enige rede gee hoekom dit so is?

57 Ja ek dink ek begin meetkunde beter

R And how much time do you spend on doing
your assignments?

s7
than what is necessary because ! spend more time

| use more than average because | do more

on understanding the principle, and then | do more

sums.

R CK.

3.

R In gereral, what influences you to work
hard?

57 Mathematics is a subject that as the Bible

says, you reap what you sow. It is directly related to
how hard you work. The more you work the better
you do. lt is not like language that forms over a long
period of time.

R Good. Is there anything that causes you to

work harder?

s7 The stimulation of seeing the product of your
hard work.

R OK.

4.

R How good are you in mathematics?

s7 | think | will first distinguish between school

mathematics and engineering mathematics. | am
strong in school mathematics up to first year
mathematics.

R How do you know?

57 | think | grasp it quickly and f | measure
myself according to other students, | grasp things

quicker than most.

5.

R Are you better in certain sections of

mathematics? For instance, are you better in
algebra than in geometry?
s7

one. My geometry has improved since | have been

My algebra has always been the sfronger

at University.
R Can you give a reason for why this is so?

57 Yes, | think | am starting to understand it

143




verstaan, ek snap dit makliker, ek sien dit meer in sy

geheel.

R Hm.

6.

R Dink jy iemand het spesiale talent nodig om

goed te doen in wiskunde?
S7
egter van graad 1 'n 1 vir wiskunde gekry. Vir my

Ja ek dink so, dit kan ontwikkel word ek het

gaan dit om redenasie vermoé, om dit te kan insien

R Het jy sulke talent?

S7 Ja in ‘n mate.

R OK.

7.

R Hoe belangrik is dit om te memoriseer in
wiskunde?

s7 Daar is sekere dinge wat gememoriseer

moet word. Daar is meetkunde stellings wat geleer
moet word maar ek dink as jy die vermoé het om iets
uit te redeneer dan is dit belangrik om net die
stellings te leer. As jy te goed memoriseer sal jy dalk
lui wees om te probeer verstaan wat aangaan, insig
het in dit wat aangaan.

R Dink Jy dat iemand wat nie goed is om te
memoriseer nie, goed doen in wiskunde?

57 Ja die hele vak bestaan nie uit memoriseer
werk nig, dit is in ‘'n minder mate, jy moet beginsels

verstaan.

8.
R Hoe gereeld doen jy so min as moontlik werk
net om by te bly? Hoe gereeld doen jy so min aas
moontlik werk net om by te bly?

57

doen om by te bly, eis dit nog steeds van jou 24 uur

Wiskunde eis sy pond vieis, as jy net genoeg

dag 'n uur of twee. Die minimum om by te bly in
wiskunde is dalk die maksimum van 'n ander vak om
by te bly

R Hm.

better, I grasp it quicker, | see the whole better.

R Hm.
6.
R Do you think that a person needs a special

talent to be good in mathematics?
S7 Yes | think so.

had a 1 for mathematics since grade 1. Forme it is

It can be developed, but |

about an ability to argue, to see things.

R Do you have such talent?

57 Yes, to a certain extent.

R OK.

7

R How important is it to memorise in

mathematics?
S7

memorised. There are geometry theorems that have

There are certain things that have to be

to be studied, but | think if you have the ability to
argue something it is important ta just study the
theorems. If you are good at memorising, you might
be lazy to try to understand what is going on and to
have insight.

R Do you think that someone who is not good
in memorising can do well in mathematics?

s7 Yes, the subject does not consist of
memorising. Memorising is to a lesser extent, you

must understand the principles.

8.

R How often do you do as little as possible just
to keep up?

57 Mathematics takes its toll, if you only do

enough to keep up, it still takes an hour or two of a
24 hour day. The minimum in mathematics might be

the maximum in another subject.

R Hm.
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9.
R Hoe studeer jy vir ‘n wiskunde toets?
57 As die dosent iets belangriks sé& merk ek dit

af of omkring dit met ‘'n kleur en voor ‘n toets sal ek
dit eers deurgaan,die werk wat ek nie verstaan nie
sal ek ook eers deurgaan en seker maak ek verstaan

dit voor ek gaan skryf.

R Goed so.
10.
R Gee voorbeelde van die aktiwiteite wat |y in

wiskunde doen,.

57 Ek verstaan wiskunde makliker as daar 'n
praktiese som is wat gedoen kan word.

R Hm.

11.

R Van hierdie aktiwiteite wat jy nou net

opgenoem het, is daar enige van die aktiwiteite wat
jy baie geniet en interessant vind?

57 Ek dink dat ek GSP kan gebruik om beter te
verstaan ek hou nie van geo-stroke en sulke goed

nie, dit verveel my.

12.
R s daar probleme in wiskunde wat op meer

as een manier opgelos kan word?

87 Ja.

R Hoekom?

57 Elke persoon dink anders.

13.

R Is daar enigiets waaraan jy kan dink wat

belangrik is om wiskunde te leer wat jy nie genoem

het nie.

57 Ek dink ek het alles gesé waaraan ek kan
dink.

R OK

14

R Hou jy van GSP?

57 Ja, dit is baie interessant en dit is baie

9.

R How do you study for a mathematics test?
s7 If the lecturer says something important |
mark it or circle it with @ colour and then | will go
through it before a test. | also go through the work
that | don't understand and make sure | understand it

before | take the test.

R Alright.
10.
R Give examples of the activities that you do in

mathematics.
57 I
there is a practical problem that can be solved.
R Hm,

understand mathematics more easily if

1.

R Of these activities that you have just
mentioned, are there any that you enjoy and that you
find interesting?

s7

better, and | do not like geostrips and such things, it

| think that | can use GSP to understand

bores me.
12.
R Are there problems in mathematics that can

be solved in more than one way?

S7 Yes.

R Why?

s7 Every person thinks differently.

13.

R Is there anything that is important to learn in

mathematics that you have not mentioned?

57 | think | have said everything that | can think
of.

R OK.

14

R Do you like GSP?

S7 Yes, it is very interesting and it is easier to
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makliker om meetkunde daarop te doen. Vandat ek
meetkundige sketse op GSP doen geniet ek die
meetkunde meer en ek verstaan meer van die
meetkunde ek kan die uitwerking dadelik sien bv as
ons gelykbenige driehoeke moet teken en die hoeke

meet, kan ek dadelik sick die basishoeke is gelyk.

do geometry on it Since | have been doing
geometry sketches on GSP | enjoy geometry more
and | understand more of the geometry. | can
immediately see the effect, for instance if we do
isosceles triangles, | will immediately see that the

basis angles are equal.
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APPENDIXD

YUNIBESITI YA BOKONE-BOPHIRIMA
NORTH WEST UNIVERSITY
NOORDWES UNIVERSITEIT

SKOOL VIR NATUUR WETENSKAP,

WISKUNDE EN TEGNOLOGIE
ONDERWYS
Tel. (018) 299 2415/2405
Faks.(018) 299 2421
17 Mei 2004
Dekaan Opvoedkunde
Potchefstroom Kampus
POTCHEFSTROOM
2520

Geagte Prof. HJ Steyn

Ek is op die oomblik besig met my M.Ed verhandeling (wiskunde-onderwys) en die fokus van
ondersoek is: “The effect of a dynamic technological learning environment on the geometry
conceptualisation of pre-service mathematics teachers’. Verwagte uitkoms van die projek is 'n
betekenisvolle bydrae tot die herontwerp van bestaande voordiensopleidingsprogramme  vir
wiskundeonderwysers om huile vlak van relevante konseptuele wiskundekennis tot verwagte
ontwikkelingsvlakke te verhoog. Die projek vorm deel van die NRF-ondersteunde SOSI-Projek,
met spanlede proff. Dirk Wesseis (Unisa), Michael de Villiers (UKZN) en Hercules Nieuwoudt
{Potchefstroomkampus, UNW).

Ek vra asseblief toestemming om die projek ooreenkomstig my goedgekeurde voorlegging binne
die Fakulteit Opvoedingswetenskappe aan te pak en welmet die hulp van die derde—jaarsgroep
wat algemene wiskunde (WSGK 311) neem. Die navorsing sal plaasvind in deurlopende
medewerking met die verantwoordelike personeellid, mev. Annalie Roux, en onder toesig van die
studieleiers, prof. Hercules Nieuwoudt en mev. Mariana Plotz. Die betrokke dosent sal te alle tye
teenwoordig wees. Die bestaande studiegids en module-uitkomste bly op alle WSGK 311-groepe
van toepassing en dieselfde werkkaarte sal te alle tye deur alle groepe gebruik word, ongeag of
hulle deel van die navorsingsgroep uitmaak. Alle werk {leertake) wat een groep doen sal die

navorsingsgroep ook doen, en omgekeerd, Die enigste wesenlike verskil is die hulpmiddels wat die
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groepe gaan gebruik. en die konteks waarbinne hulle leer. Die navorsingsgroep gaan die
dinamiese sagtewarepakket Geometer's Sketchpad gebruik as hulpmiddel en leerkonteks, terwyl
die ander groepe byvoorbeeld geo-stroke in die gebruiklike klassikale opset gaan gebruik. Die
doelwitte en leeruitkomste van alle groepe is dieselfde.

Die navorsing geskied ook met die medewete van die wiskunde—vakvoorsitter: Dr. Susan
Nieuwoudt, en die saak is reeds deur die studieleier met die betrokke skooldirekteure, prof. Barry
Richter en dr. Elsa Mentz bespreek.

By voorbaat dankie vir u gunstige oorweging van die aansoek.
Jeannette Kotze
Lektor: SNWTO

M.Ed.-student (studente no: 10117784)

Hierdie aansoek word ten volle ondersteun en daar word onderneem om by alle ooreengekome
vereistes wat gestel is of mag word te hou.

Hercules Nieuwoudt Mariana Plotz
Medeprofessor: NSO Lektor: SNWTO
Studieleier Medeleier

By voorbaat dankie.

Jeannette Kotzé

148





