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The effect of a dynamic technological learning environment on the geometry 

conceptualisation of p r e s e ~ i c e  mathematics teachers 

Traditionally, geometry at school starts on a formal level, largely ignoring prerequisite skills 

needed for formal spatial reasoning. Ignoring that geometry conceptualisation has a sequential 

and hierarchical nature, causes ineffective teaching and learning with a long lasting inhibiting 

influence on spatial development and learning. 

One of the current reform movements in mathematics education is the appropriate use of 

dynamic computer technology in the teaching and learning of mathematics. Concerning 

mathematics education, the lecturers may involve the introduction of both dynamic computer 

technology and mathematics in meaningful contexts that will enable interplay between the two. 

Pre-service mathematics teachers (PMTs) can be encouraged to become actively involved in 

their learning and, therefore, less frustrated in their study orientation in mathematics. Therefore, 

such learning environments may be essential to enhance the conceptual understanding of 

PMTs. 

To be able to reach their eventual learners, PMTs' own conceptual understanding of geometry 

should be well developed. When PMTs have conceptual understanding of a mathematical 

procedure, they will perceive this procedure as a mathematical model of a problem situation, 

rather than just an algorithm. 

This study aimed at investigating the effect of a technologically enhanced learning environment 

on PMTs' understanding of geometry concepts and their study orientation in mathematics, as 

prerequisite for deep conceptualisation. 

A combined quantitative and qualitative research approach was used. The quantitative 

investigation employed a pre-experimental onegroup pre-test post-test design. A Maybeny- 

type test was used to collect data with regard to PMTs' conceptualisation of geometry concepts, 

while the Study Orientation in Mathematics (SOM) questionnaire was used to collect data with 

regard their study orientation in mathematics. The qualitative investigation employed 

phenomenological interviews to collect supplementary information about the participating PMTs' 

experiences and assessment of the influence of the use of the dynamic software Geometer's 

Sketchpad (GSP) @ on their learning and conceptualisation of geometry concepts. 



During post-testing the participating group of PMTs achieved practically significantly higher 

scores in the Mayberry-type test, as well as in all fields of the SOM questionnaire. Results seem 

to indicate that PMTs gained significantly in the expected high levels of conceptualisation, as 

well as high degrees of acquisition of those levels during the intervention programme. The main 

conclusion of the study is that a technologically enhanced learning environment (such as GSP) 

can be successfully utilised to significantly enhance PMTs' conceptualisation and study 

orientation, as prerequisite for deep conceptualisation, in geometry. 

Key terms for indexing: 

Mathematics and teaching; mathematics and technology; mathematics teacher; teacher 

education; dynamic sohare; computer technology; mathematics conceptualisation; Piaget; 

Vygotsky; Van Hiele; network theory, constructivism; behaviourism. 



Die invloed van 'n dinamiese tegnologiese leeromgewing op die konseptualisering van 

voordiens-wiskunde-onderwysers 

Tradisioneel begin meetkunde op skool op 'n formele vlak, wat die vereiste vaardighede nodig 

vir forrnele ruimtelike beredenering ignoreer. Die miskenning van die feit dat meetkunde 

konseptualisering 'n sekwensiele en hierargiese aard het, veroorsaak oneffektiewe onderrig en 

leer met 'n langdurige stremmende invloed op ruimtelike ontwikkeling en leer. 

Een van die huidige he~ormingsbewegings in wiskunde onderrig is die gepaste gebruik van 

dinamiese rekenaartegnologie in die onderrig en leer van wiskunde. Rakende wiskunde 

onderrig, kan die dosente die bekendstelling van beide dinamiese rekenaartegnologie en 

wiskunde in betekenisvolle kontekste plaas wat wisselwerking bewerk. Voor-diens wiskunde 

onderwysers (VWO's) kan aangemoedig word om aktief betrokke te raak by hulle leer, en om 

sodoende minder gefrustreerd te wees in hulle studie orientasie in wiskunde. Daarom is sulke 

leeromgewings essensieel vir die bevordering van die konsepsuele begrip van VWO's. 

VWO's se eie konseptuele begrip van meetkunde moet goed ontwikkel wees alvorens hulle 

hulle uiteindelike leerders kan bereik. Wanneer VWO's konsepsuele begrip het van 'n 

wiskundige prosedure, neem hulle die prosedure waar as 'n wiskundige model van 'n probleem 

situasie, eerder as net 'n algoritme. 

Hierdie studie het gepoog om die effek van 'n tegnologies verrykde leeromgewing op VWO's se 

begrip van meetkunde konsepte en hulle studie orientasie in wiskunde, as voowereiste vir diep 

konseptualisasie, te bestudeer. 

'n Gekombineerde kwantitatiewe en kwalitatiewe benadering is gebruik. Die kwantitatiewe 

ondersoek het 'n pre-eksmerimentele een-groep voor-toets na-toets ontwerp gehad. 'n 

Mayberry-tipe toets is gebruik om data te versamel aangaande VWO's se konseptualisasie van 

meetkunde konsepte, terwyl die Studie Orientasie in Wtskunde (SOW) vraelys gebruik is om 

data te versamel met betrekking tot hulle studie orientasie in wiskunde. Die kwalitatiewe studie 

het gebruik gemaak van fenominalogiese onderhoude om bygaande inligting te versamel oor 

die deelnemende VWO's se ewarings. Dit het verder gedien as 'n evaluasie van die invloed 

van die gebruik van die dinamiese sagteware Geometer's Sketchpad (GSP) 63 op hulle leer en 

konseptualisasie van meetkunde konsepte. 



Gedurende die na-toetse het die deelnemende VWO's prak3es veelseggende verbeterde punte 

behaal in die Mayberry-tipe toets, sowel as in al die velde van die SOW-vraelys. Die resultate 

dui aan dat VWO's beduidend gebaat het in die verwagte vlakke van konseptualisasie, sowel as 

in die vlakke van verwenving gedurende die ingrypingsprogram. Die hoofkonklusie van die 

studie is dat 'n tegnologies verrykde leerorngewing, soos GSP, suksesvol gebruik kan word om 

VWO's se konseptualisasie en studie orientasie, as voorvereiste vir diep konseptualisasie in 

meetkunde, beduidend te verbeter. 

Sleutelteme vir indeksering: 

W~skunde en onderrig; wiskunde en tegnologie; wiskunde ondelwyser; onde~lysersopleiding; 

dinamiese sagteware; rekenaartegnologie; wiskunde konseptualisasie; Piaget; Vygotsky; Van 

Hiele; netwerkteorie, konstruktivisme; behaviorisme. 
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CHAPTER 1 

w ? ~ ~ d N  AND 
PROWM STAt6MBM 

1.1 ORIENTATION 

The fundamental characteristics of any teaching situation include the specific outcomes that the 

teacher aims to meet in order to attain. The teaching aim, the thoughts of the teacher and his 

beliefs are interwoven with each other (Steyn, 1988:160.161). Teachers should possess specific 

skills to be able to teach effectively, therefore, they need to have adequate skills regarding 

conceptual understanding (Nieuwoudt, 1998:169). 

Korthagen and Kessels (1999:6) propose new ways of preparing pre-service mathematics teachers 

(PMTs) for their profession. The intended learning processes start from situated knowledge, 

developed in the interaction of the PMTs with realistic problem situations. The concrete situations 

thus remain the reference points during the learning process. 

Mathematics education has changed considerably over the last twenty years, shifting from a 

mechanistic and structuralist approach to a realistic constructivist approach. The mechanistic point 

of view is that mathematics is a system of rules and algorithms. The emphasis is on verifying and 

applying these rules to problems that are similar to previous ones. In the structuralist view 

mathematics is an organised, deductive system and the learning process in mathematics education 

should be guided by the structure of this system (Korthagen & Kesseis, 1999:6). 

Realistic constructivist mathematics education of PMTs aims at the construction of their own 

mathematical knowledge by giving meaning to problems from realistic contexts. Many of these 

attempts can be characterised by an emphasis on reflective teaching, implying that pre-service 

mathematics teacher development is conceptualised as an ongoing process of experiencing 



practical teaching and learning situations. PMTs are challenged to develop their own strategies for 

solving such practical problems (Korthagen & Kessels, 1999:7). 

One of the main premlses of the current reform efforts in mathematics teacher education is that 

lecturers want to empower PMTs mathematically to ensure that they are confident and successful 

in exploring and engaging in significant mathematical situations (Allsopp, Lovin, Green 8 Savage- 

Dav~s, 2003:312). A study by Wilson (1993:247,248) revealed that teachers with higher levels of 

mathematical knowledge were more conceptual in their teaching than teachers with lower levels of 

knowledge. Teachers with lower levels of mathematical knowledge were more rules-based. 

Therefore, teachers must understand mathematical concepts well in order to teach them well. 

According to Bright and Prokosch (1993338) dynamic computer technology is useful in developing 

conceptual understanding. House (2002:113) said that computer-assisted instruction for 

mathematics learning can produce an effective learnmg situation. The effective environment for 

PMTs to learn mathematical concepts, to explore patterns and processes, and to solve problems, 

can be one in which they use dynamic computer technology (Fey, 1992:65). 

The use of dynamic computer software allows PMTs to learn fundamental skills in new ways, so 

they do not have to relive experiences with frustration and failure (Reglin, 1990:405). According to 

Fey (1992.7,Il , I  3), an environment where dynamic computer technology is available, results in the 

emphasis of mathematics teaching on meaningful concept development and problem solving, and 

not on computational procedures. Using dynamic computer technology, PMTs are able to discover 

those properties inductively and be able to make it heir own. The use of dynamic computer 

technology must be connected to the broader objective - providing all PMTs access to a broad 

range of mathemat~cal ideas. 

The dynamic technology environment becomes a mathematics laboratory where PMTs may 

actively manipulate mathematical ideas as they construct their own concepts, where logic is 

established and they develop their reasoning skills (McCoyl 1996:439,440). McCoy (1996:446) 

found that the results of varied studies indicated that dynamic computer technology was effective in 

improving the PMTs intuitive understanding when compared to a control group, and the 

researchers also concluded that the computer-intensive group had develop clearer and deeper 

concepts. 

According to Maree, Prinsloo and Claasen (1997:3,4) there is a significant relationship between 

study orientation in mathematics and mathematics achievement. Learners become frustrated when 
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they do not understand mathematics. Learners' affective attitude influences their attitude towards 

mathematics. If mathematics does not make sense to learners, they become anxious and 

uncertain. When mathematics is presented in a too abstract manner (especially in the early stages), 

without learners being adequately exposed to enough concrete material, it leads to incomflete 

conceptualisation. Learners' attitude towards the solving of problems and their study environment 

forms an integrated part of their study orientation. 

Maree (1997:3,4) highlights the following facets of study orientation in mathematics: 

The formation of basic concepts in mathematics is important and is an essential prerequisite for 

learning more advanced work in mathematics. 

The learners do not understand the relation between concepts when conceptual~sation is 

incomplete, and therefore they will use lheorems and formulas without thinking whether they 

are applicable to the situation at hand. 

W~th this background in mind, the following questions can be asked: 

What will the effect of a dynamic technological learning environment be on the conceptual 

understanding of PMTs in geometry? 

How does the use of dynamic technology influence the conceptual understanding of PMTs in 

geometry? 

What will the effect of a dynamic technological learn~ng environment be on the PMTs' study 

orientation? 

1.2 AIMS OF THE RESEARCH 

The aim of the research was to investigate the effect of a dynamic technological learning 

environment on the conceptualisation of PMTs. In particular, the research aimed to: 

1.2.1 determine what effect a dynamic technological learning environment has cn the conceptual 

understanding of PMTs in geometry. 

1 2.2 determine how the use of a dynamic technological learning environment influences the 

conceptual understanding of PMTs in geometry. 

1.2.3 determine what effect a dynamic technological learning environment has on the study 

orientation of PMTs in geometry 



1.3 RESEARCH DESIGN 

1.3.1 Literature study 

An intensive and comprehensive review of the relevant literature has been done. In A DIALOG 

search the following keywords was used: "mathematics and teaching", "mathematics and 

technology", "mathematrcs teacher", "teacher education" "dynamic software", "computer 

technology" and "mathematics conceptualisation". 

1.3.2 Empirical Study 

A combination of qualitative and quantitative research methods was employed (see § 5.3.1) 

1.3.2.1 Quantitative design 

Figure 1.1 depicts the pre-experimental design, namely the one-group pre-testipost-test design 

(Leedy 8 Ormrod, 2001 :235) which was used with respect to research aim 1 and research aim 3. 

Intenrention program 

Three months 7 
C 

Pretest 
(experimental group) Post-test 

Flgure 1.1: Experimental desfgn 

Populatiorr and sample 

The study population consisted of 371 third year education students (in 6 classes) following the 

general mathernat~cs module in geometry at the North-West University, Potchefstroom campus. A 

sample of 26 prospective mathematics teachers in one of the classes were chosen to take part in 

the experiment. 

Instruments 

The participants were presented with two questionnaires before intervention took place, as well as 

after the intervention took place. The Mayberry Type Test was conducted to determine if the 

intervention had any influence on the conceptualisation of PMTs. The SOMquestionnaire was 

distributed to determine if the intervention had any influence on the study orientation in 

mathematics, of the PMTs. 

r 
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Statistical Analysis 

Quant~tatlve data analysis was done with the help of the Stat~st~cal Services of the North-West 

University, Potchefstroom campus. 

Research Procedure 

A literature review was done of related articles aimed at improving the conceptual knowledge of 

PMTs. 

Only one group was used and there was a pre-test to test the conceptual understanding of PMTs 

before intervention and a posktest to evaluate the conceptual understanding of the PMTs afler 

~ntervention. 

Quantitative data analysis was done and will be discussed in more detail in chapter 5. Results were 

evaluated, analysed and interpreted as is reported in chapter 6. Final conclusions are given in 

chapter 7. 

1.3.2.2 Qualitative design 

The literature study forms the basis for the self-developed questionnaires, structured interviews 

and observation schedules (see Figure 1.2) used in the qualitative phenomenological survey with 

regard to research aim 2. 

I Preservice mathematics teachers 
(experimental group) I 

+ 
Interviews 

Figure 1.2: Qualifative des~gn 

Populatiori and sample 

A sample of 3 low and 4 top performers were identified to take part in the qualitative part of the 

research. The PMTs were selected on the basis of their profile as reflected by their examination in 

the geometry module 
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Instruments 

Self-constructed questlonnalres and interview schedules were used to evaluate the PMTs with 

respect to the impact of the intervention. 

statistical Analysis 

Qualitatwe data analysis was done (see § 5.3.2.4). 

Research Procedure 

Qualitative research was conducted over a period of three months. The goal was to determine 

whether and how the intervention program assisted in developing the conceptual understanding of 

the preservice mathematics teachers 

Results were evaluated, analysed and interpreted and conclusions were made 

1.4 ETHICAL ASPECTS 

A letter, requesting permission to use the above-mentioned study population, was sent to the Dean 

of the Faculty of Education Sciences of the North-West University, Potchefstroom campus. In 

addition, the relevant school director, subject head, lecturer and selected class of students were 

consulted to obtain their permission and full cooperation. The research project formed part of a 

bigger national project, sponsored by the National Research Foundation (NRF), and took place with 

full permission and cooperation of the Project Team. 

1.5 STRUCTURE OF DISSERTATION 

The research is presented in seven chapters as illustrated in Figure 1.3 

- 
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problem statement 
framework for effective 
mathematics teaching 

Conclusions and 
recommendations 

The effect of a dynamic 

technology learning 

environment on the 

conceptualisation of geometry A theoretical 

and study orientation in framework for the 

mathematics of pre-service 

mathematics teachers understanding and 
study wientation in 

A theoretical framework for 
dynamic computer 
technology in the 

development of conceptual 
understanding in geometry 

Figure 1.3: Presentation of chapters 
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2.1 INTRODUCTION 

According to Romberg and Kaput (1999:15,16), society's perception of the mathematical content 

that learners are expected to understand is changing, as is the field of mathematics itself. We can 

no longer assume that mathematics is a fixed body of concepts and skills to be mastered. The aims 

of mathematics teaching can be described as teaching learners to use mathematics to build and 

communicate ideas and to use it as a powerful analytic and problem-solving tool. 

The aim of this chapter is to present a framework for effective mathematics teaching and learning. 

In this regard the views of P~aget and Vygotsky will be discussed. The effect of behaviourism and 

constructivism on mathematics teaching will also be discussed. Attention will be paid to Van Hiele's 

learning theory because one aspect of the theory deals with the belief that learners' geometric 

thinking skills develop in levels. The influence of process-product teaching, problem-based teaching 

and realistic mathematics education will also be discussed. 

2.2 THEORETICAL PERSPECTIVES ON COGNITIVE DEVELOPMENT 

2.2.1 Piaget 

Jean Piaget spent much of his professional life listening to learners. He focused on universal 

learner development. Essentially Piaget's explanation of the development of intelligence postulates 

a series of stages according to which the learner functions in the world. Each preceding stage is a 

necessary condition for the subsequent stage. Piaget claims that development proceeds according 

to a series of transformations of one stage into another (Atkinson, 1983:13). 
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2.2.1.1 Piaget's theory of developmental stages 

Piaget (1974:117) postulates four stages of mental development in which barners understand the 

world, namely the sensori-motor-, pre-operational, concrete operational- and formal operational 

stages. 

Sensori-motor Stage (birth to about 2 years) 

This period is characterised by a number of performances such as the organisation of spatial 

relationships, the organisation of objects and a not~on of their performance, and the organisatlon of 

casual relationships (Piaget, 1974:117). 

According to Atkinson (1983:1315) infants think and understand the world around them through 

their senses, using their eyes, ears, mouth and hands. At this level, infants develop their abilities 

through the coordination of sensations, their physical movements and actions in the environment. 

Learners use their senses and emerging motor skills to explore h e  environment. Verbal interaction 

and an object-rich setting are very important at this time. 

Pre-operational Stage (about 2 to 7 years) 

The learner is now able to have operational thought though symbolic function. The learner cannot 

perform referable internalised actions (Piaget, 1974:117). 

Pre-school learners begin to represent the world with symbols. Learners at this stage have 

increased capacity for symbolic thinking and can go beyond their earlier sensori-motor discoveries 

through the use of language and images. The learner is perceptually bound and is unable to reason 

logically concerning concepts that are discrepant from visual clues (Atkinson 1983:23,24). 

Concrete-Operational Stage (about 7 to 7 I years) 

The learner is able to perform operations, internalised actions. These operations are concrete, for 

instance, the learner can classify concrete objects, establish correspondences between them or 

use numerical operations on them (Piaget, 1974:117). 

According to Atkinson (1983:31-33) learners in his stage can think logically and are able to 

conserve, sedate, classify and organise objects into different sets. The learner is able to use this 

logic to analyse relationships and structure his environment into meaningful categories. 
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Fonnal Operational Sage (about I I to adult) 

This period can be characterised by formal or propositional operations. This means that the 

operations are no longer applied solely to the manipulation of concrete objects, but now cover 

hypotheses and propositions that the learner can use as abstract hypotheses and from which he 

can reach deductions through formal or logical means (Piaget, 1974:117) 

Atkinson (1983:40-42) says that adolescents think in more logical and abstract ways. They can 

reason with symbols that are beyond the world of concrete experiences. They can imagme many 

possible combinations, separate real from possible, deal with hypothetical proportions and combine 

elements in a systematic way. They may pass into the period of formal operations and develop the 

ability to manipulate concepts abstractly through the use of propositions and hypotheses. 

2.2.1.2 Piaget's intrb, inter- and trans-operational levels 

According to Nixon (2005:23,47), Piaget and Garcia (1989), identified three levels in the 

development of thought, namely that of intra-operational or perceptual level, inter-operational or 

conceptual level and trans-operational or abstract level. These levels are not bound to learners' 

ages or fixed stages of development. 

intra-operational or perceptual level 

The perceptual level may be related to Piaget's pre-operational level of thought. At these level 

relations appear in forms that might be isolated. In geometry, properties of individual figures are 

studied. but no consideration is given to space or to transformations of these figures. The intra- 

operational level applies to young learners, but could be applied to the introductory stage of the 

learning of any concept. Learners need to acquire an intuitive appreciation for concepts and be 

provided with examples, diagrams, pictures and illustrations that help them visualise or form mental 

pictures of concepts that have been introduced (Nixon, 2005:47,48,84). 

Inter-operational or conceptual level 

This conceptual level may be related to Piaget's concrete operation bvel of thought. It is 

characterised by efforts to find relationships. At this level learners are able to understand properties 

of figures and the learners are able to interrelate properties of figures and analyse specific cases. 

Whereas isolated forms are identified with perceptual levels, correspondences and transformations 

amongst these forms characterise the conceptual level (Nixon, 2005:85,102). 



Rising up from the perceptual level to the conceptual level is an important step in the acquisition of 

knowledge, since it also forms a vital link between the perceptual level and the abstract level 

(Nixon, 2005:99). 

Transaperational or abstract level 

This abstract level may be related to Piaget's original formal operation level of thought and involves 

definitions, proofs and theorems. At this level there are not only transformations, but also synthesis 

between them, which leads to the development of structures (Nixon, 2005:122,150). 

Although any new topic needs to begin at the perceptual level and pass through the conceptual 

level, it is the attainment of the abstract level that is the ultimate aim in geometry (Nixon, 2005:161). 

Encouraging learners to participate and pass through the perceptual level, the conceptual and 

abstract levels of learning help to establish a mode of investigation and a way of thought. These 

three levels of development can assist learners in developing mental structures to help them 

understand new learning material and integrate it with other material. Learners become 

accustomed to the processes involved, and therefore they could become independent in their study 

(Nixon, 2005:54.161,162). 

2.2.1.3 Piaget's theory of cognitive development 

For Piaget, there are four factors that determine cognitive development (Webb, 2001:93). Each is 

vital, as it is the interaction of these components that results in cognitive growth. Cognitive 

development includes: 

maturation of the nervous system, providing physical capabilities. Maturation refers to the onset 

of an ability. It occurs without previous training (Atkinson, 1983:154). 

social interaction that offers opportunities for the observation of a wide variety of behaviours. 

experiences based on interactions with the physical environment that leads to the discovery of 

the properties of objects and the development of organisational skills. 

an internal self-regulation mechanism that responds to environmental stimulation by constantly 

fitting new experiences into existing cognitive structures and revising these structures to fit the 

new data. A balance between the cognitive structures and new data maximises cognitive 

function. 
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2.2.1.4 Implications for teaching mathematics 

Piaget proposes that cognitive development occurs in stages from birth to about adolescence. 

Thus, it seems appropriate that learning experiences should be organised and sequenced in terms 

of the PMTs developmental stage. 

According to Piaget, secondary school learners are usually concretely and formally operational in 

terms of development. At this stage, learners demonstrate the beginning of logical thought. 

Although they are able to use certain logical operations, their thinking is concrete rather than 

abstract. Thus, in teaching geometly, learners should be provided with concrete objects to facilitate 

understanding. In teaching structural properties of, for example quadrilaterals, teachers should 

keep in mind that the learner is not proficient in stating generalisations (Wilson, 2001:85). 

Wlson (2001:85) says that learners, who are formally operational. should be provided with the 

opportunity to develop relationships and think abstractly. There should be opportunities for these 

learners to solve problems by answering questions in a systematic way until reasonable 

conclusions are reached. 

2.2.2 Vygotsky's Sociocultural Theory 

Vygotsky had a great influence on modern constructivism. A cr~tical event in Vygotsky's life 

occurred in 1924 at the Second Psychoneurolog~cal Congress in Leningrad. Vygotsky contended 

that humans have the capacity to alter the environment for their own purposes. This adaptive 

capacity distinguishes humans from lower forms of life (Schunk, 1996:213,214). 

2.2.2.1 Basic Principles 

Schunk (1996:214-216) theorises that one of Vygotsky's central contributions to psychological 

thought was his emphasis on socially meaningful activity as an important influence on human 

consciousness. Rather than discarding consciousness or the role of the environment, he sought a 

middle ground of taking environmental influence into account through its effect on consciousness. 

Vygotsky considered the social environment as critical for learning and thought the integration of 

social and personal factors produced learning. Social activity is a phenomenon that helps explain 

changes in consciousness and establishes a psychological theory that unifies behaviour and mind 

(Schunk, 1996:217). 

According to Schunk (1996:217) the social environment influences cognition through its cultural 

objects, its language and social institutions. Cognitive change results from using cultural tools in 
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social interactions and from internalising and mentally transforming these interactions. Vygotsky's 

position is an example of dialectical constructivism because it ernphasises the interaction between 

persons and their environment. 

Berger (2004:81) theorises that a learner uses a new mathematical sign (which may be in the form 

of symbols, graphs, diagrams or geometric shapes) both as an object with which to communicate 

(like a word). as an object on which to focus, and to organise his or her mathematical ideas (like a 

word). Through this sign usage, the mathematical concept evolves for the learner so that it 

eventually has personal meaning, like the meaning of a new word does for a child. Because the 

usage IS socially regulated, the concept evolves for the learner so 'hat its usage concurs with its 

usage in mathematical community. 

An important concept in Vygotsky's theory is the zone of proximal development (ZPD) defined as 

"the distance between the actual developmental level as determined by independent problem 

solving and the level of potential development as determined through problem solving under 

guidance or in collaboration with more capable peers" (Vygotsky, 1978:6), 

The ZPD represents the amount of learning possible by a learner given the proper instructional 

conditions. In the ZPD the learner and teacher work together on tasks that the learner could not 

perform independently because of the level of difficulty. As a result of pedagogical interventions 

within the ZPD of the learner, the learner does not remain inactive, but rather begins to use this 

mathematical sign (for example the properties of triangles) in communication with others and in 

mathematical activities. It is these functional usages of mathematical signs (like activities 

comprising manipulations, comparison and associations) that give an initial access point to the new 

object. Furthermore, this functional usage of the mathematical sign is mediated by the learner's 

knowledge of related signs (Berger, 2004:85). 

According to Berger (2004:86) a learner starts to use a new mathematical sign in mathematical 

pursuits such as problemsolving, applications and proofs, before he or she fully understands how 

to use that mathematical sign in a culturally meaningful way Through this use of the mathematical 

sign, the learner is able to engage with the mathematical object and to communicate with others 

about his or her developing mathematical ideas. On account of this functional use, the 

mathematical sign begins to acquire personal meaning for that learner and the learner begins to 

use the sign in mathematical discourse in a way that is compatible with its socially sanctioned 

meaning. 
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Vygotsky (1986:106) says that learners use words for communication purposes and for organising 

their own activities before they have a full understanding of what these words mean. It is a 

functional use of the word or any other sign that plays a central role in concept formation. 

Cognitive change occurs in the ZPD as teacher and learner share cultural tools, and it is this 

culturally mediated interaction that produces cognitive change when it is internalised in the learner. 

Working in the ZPD requires a good deal of guided participation. However, learners do acquire 

cultural knowledge passively from these interactions. Rather, learners bring their own 

understandings to social interactions and construct meaning by integrating those understandings 

with their experiences in the context. During the interaction, the learner modifies his or her beliefs 

about working in the area based on present understandings and in light of new knowledge acquired 

from the teacher (Schunk. 1996:215,216). 

2.2.2.2 Application 

Vygotsky's ideas lend themselves to many educational applications. The field of self-regulation has 

been strongly influenced by theory. 

According to Schunk (1996:216-218) a major application involves the concept of instructional 

scaffolding, which refers to the process of controlling task elements that are beyond the learner's 

capabilities so that the learner can focus on and master those features of the task that he or she 

can understand. Scaffolding has five major functions: to provide support to function as a tool, to 

extend the range of the learner, to permit the attainment of tasks not otherwise possible and to use 

selectively only as needed. 

2.2.3 The Van Hiele Theory 

P.M. Van Hiele (1986:39) developed, in conjunction with his wife, D. Van Hiele-Geldof, the theory 

of cognitive levels in geometry. Van Hiele postulates that learners progress through these levels 

from a Gestalt-like visual level through increasingly sophisticated levels of description, analysis, 

abstraction and proof. 

Van Hiele (1986:viii,5,6) acknowledges that his theory of cognitive levels originated with Piaget's 

theories, although he is critical of certain aspects of Piaget's theory. Van Hiele says that it is not 

necessary to refer to biological maturation to explain the development of logical thought, whereas 

Piaget (see § 2.2.1) suggests that the transition from one level to the next is a biological 

development rather than one stimulated by the learning process. The Van Hiele theory is based on 

the notion that learner-growth in geometry takes place in terms of identifiable levels of 
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understanding and that the level of understanding of the learner is dependent on ths experiences 

in geometry (Choi-Koh. 1999:301). In view of the analysis of N~xon's three levels in the 

development of thought (see §2.2.1.2), it becomes clear that Van Hiele's theory of cognitive levels 

in geometry follows the same trend. 

2.2.3.1 The Van Hiele levels of geometric thought 

According to Van Hiele (1986:3%47) the most prominent feature of the model is a four-level 

hierarchy of ways of understanding spatial ideas Van Hiele (1986) labels his levels as recognition 

(level I), analysis (level 2), informal deduction (level 3) and formal deduction (level 4). 

Level 1 recognition 

According to Van Hiele (1986) learners recognise and name figures based on the global, visual 

characteristics of the figure. At this level the learners are able to make measurements and even talk 

about properties of shapes, but these properties are not abstracted from the shapes at hand. It is 

the appearance of the shape that defines it for the learners. 

Learners at this levei will sort and classify shapes based on their appearances. For example, 

learners will recognise quadrilaterals by their global appearance and they will learn the appropriate 

language concerning quadrilaterals. With a focus on appearances of shapes, learners are able to 

see how shapes are alike and different. As a result, learners can create and begin to understand 

classifications of shapes (Van de Walle, 2004:347). 

Level 2-analysis 

Van Hiele (1986) said that learners at the analysis level are able to consider all shapes within a 

class, rather than a single shape. By focusing on a class of shapes, learners are able to think about 

what makes a rectangle a rectangle. The irrelevant features fade into the background. At this level, 

learners begin to appreciate that a collection of shapes belong together because of properties. 

Ideas about an individual shape can now be generalised to all shapes that fit the class. Learners 

operating on level 2 may be able to list all the properties of squares, rectangles and parallelograms, 

but can not see that they are subclasses of one another (Van de Walle, 2004347). 

As learners start to develop the ability to think about properties of geometric ideas without the 

constraints of a particular idea, they are able to develop relationships between these properties. 

Observation goes beyond properties themselves and begins to focus on logical arguments about 

the properties. Learners at level 2 will be able to follow and appreciate an ~nformal deductive 
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argument about shapes and their properties. Proofs may be more intuitive than ligorously 

deductive. However, there is an appreciation of the fact that a logical argument is compelling. An 

appreciation of the axiomatic structure of a formal deductive system remains under the surface 

(Van de Walle, 2004348). 

Level 3informal deduction 

At level 3 learners are able to examine more than just the properties of shapes. Their earlier 

thinking has produced conjectures concerning relationships among properties. Are these 

conjectures correct? Are they true? As this analysis of the informal arguments takes place, the 

structure of a system complete with axioms, definitions, corollaries and postulates begins to 

develop, and it can be appreciated as the necessary means of establishing geometric truth. Van 

Hiele stresses language appropriate to this level. Learners at this level are able to work with 

abstract statements about geometric properties. They can clearly o b s e ~ e  that the diagonals of a 

rectangle bisect each other, just as a learner at a lower level of thought can. However, at level 3. 

there is an appreciation of the need to prove this from a series of deductive arguments (Van de 

Walle, 2004348). 

Level Cfomal deduction 

Learners start developing longer sequences of statements and begin to understand the significance 

of deduction. They are able to devise a formal geometric proof and to understand the process 

employed. This is generally the level at which a PMT should understand geometry (Van de Walle, 

2004, 348,349). 

2.2.3.2 The Van Hiele phases between levels of geometric thought 

Learners' progress from one level to the next is organised into five phases of sequenced activities 

that emphasise exploration, discussion and integration. Van Hiele's model postulates that these five 

phases of instruction are necessary to enable learners at a specific level to advance to a higher 

level of geometric thinking (Van Hiele, 1986:50.51). 

Teppo (1991:210) says that during each phase learners investigate appropriate geometric figures, 

develop specific language related to these figures, and engage in interactive learning activities to 

help them to progress to the next level. 

First phase: Infomation 

The learners learn to recognise the field of investigation based on the material that is presented to 

them. This material causes the learners to discover a certain structure (Van Hiele, 1986:50). 
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The learners learn to recognise the field of investigation based on the material that is presented to

them. This material causes the learners to discover a certain structure (Van Hiele, 1986:50).

Teppo (1991:212) suggests that when a teacher wants to develop the concept of symmetry,

learners can demonstrate (at this phase) the reflection of a point A about the line L using a mirror

and show how this reflectioncan be drawn using graph paper (see Figure2.1).

A

,. .L

Figure 2.1: Demonstration of reflection of a point A about line L (Teppo, 1991:212)

Second phase: Directed orientation

Van Hiele (1986:50) says that learners explore the field of investigation through carefully guided,

structured activities. The characteristic structures appear progressively.

According to Teppo (1991:212) learners can explore the field of inquiry through carefully guided

activities, for example learners reflect the given line segments about the line L (see Figure 2.2) and

determine the shape of the figure. After completing the reflections about L, they can make

observations about the axes of symmetry:

a. What properties must the rhombus have to exhibit the axes of symmetry?

b. These axes are the diagonals of the figure. What observations can be made about the

properties of the diagonals?

Third phase: Explication

The acquired experiences are linked to exact linguistic symbols. The customary terms are used in

discussions. It is during the course of this third phase that the network of relations is partially

formed (Van Hiele, 1986:51).

The learners and the teacher engage in discussions about the geometric figures, remembering to

use the appropriate language (Teppo, 1991 :212).
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Figure 2.2: Reflect the given line segments about line L (Teppo, 1991:212)

Fourth phase: Free orientation

Learners must still find their way around this field, and this is achieved by assigning tasks that can

be carried out in different ways. The learners engage in more open-ended activities that can be

approached by several different types of solutions (Van Hiele, 1986:51).

Teppo (1991:212) suggests that learners can do the following activity at this level. Learners are

given three vertices of isosceles trapezoid (see Figure 2.3) and are asked to find the fourth. They

must explain what they did and why their procedure worked.

CHAPTER 2 18

- - -

I I I I I I I I I I I I

1\
f \

-

/ \:
I \

- II \
L

....

..
-

..
-

..

- . ,

L

/
/

/
/
\. ,"



Figure 2.3: Given three vertices of an isosceles trapezoid (Teppo, 1991:212)

Fifth phase: Integration

The learners, according to Van Hiele (1986:51), still need to acquire an overview of the methods

that are at their disposal. They then try to condense into a whole the domain which their thought

has explored.

Learners summarise the characteristics of figures that have one or more axes of symmetry. The

teacher can ask the learners how they will recognise a line of symmetry. Afterwards the learners

can summarisethe propertiesof a rhombus (Teppo, 1991:213).

During each phase learners investigate appropriate geometric figures, develop specific language

related to these figures, and engage in interactive learning activities to enable them to progress to

the next higher level of thinking (Teppo, 1991:210). The levels describe how learners think and

what types of geometric ideas they think about.

Gutierrez, Jaime and Fortuny (1991 :237-239) proposes a qualitative utilisation of the different ways

in which learners reason for placement within a proposed range of 0 to 100, thus creating a scale of

degrees of acquisition. Within this range, five stages of acquisition (see Table 2.1) are also

identified.

Table 2.1: Degrees of acquisition of a Van Hiele level (Gutierrez et al., 1991:238)

According to Van der Sandt (2003:34, following Gutierrez, 1991) answers are firstly classified

according to the Van Hiele levels. Thereafter a numerical weight is assigned to each answer,
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weights of answers of a specific topic (eg.  right-angled triangles) leads to a classification of the 

degree of acquisition (see Table 2.1) for that specific topic (e.g. 77% average=high level of 

acquisition for right-angled triangles). 

Table 2.2: Answer type and degree of acqu~s~tion (Van der Sandt, 2003:35, after Gutierrez, 1991) 

Description 

- 
n s  

No reply, or answers that cannot 
be categorised. 

- 

Answers that indicate that the 
learner has not reached the given 
level but has no knowledge of the 
lower level either. 

LP 
Vei - 

-- 

-- 

-- 

-- 

-- 

-- 

Answers that contain incorrect 
and incomplete explanations, 
reasoning processes, or results. 

1 

Correct but insufficiently 
answered, indicating that the 
given level of reasoning has been 
achieved. Answers contain very 
few explanations as well as 
incoherent reasoning processes, 
or very incomplete results. 

Correct and incorrect answers 
that clearly show characteristics 
of two consecutive Van Hiele 
levels. Answers contain clear 
reasoning processes and 
sufficientpst~ficat~ons 
Answers that represent reasonmg 
processes that are complete but 
incorrect, or answers that reflect 
correct reasoning but that still do 
not lead to the solution. 
Correct answers that reflect the 
given level of reasoning that are 
complete or insufficiently justified. 

Correct, complete and sufficiently 
justified answers that clearly 
reflect a given level of reasoning. 

oeg- 
Weight Description 

Learners are not in need of or are not 
conscious of the existence of thinking 
methods specific to a new level. 

Learners are aware of methods of thinking, 
know their importance and try to use them. 
These learners make some attempts to 
work on a higher level, but have little or no 
success due to their lack of experience. 

Learners use methods of the higher level 
more often and with increasing accuracy, 
but still fall back on methods of a previous 
level. Typical reasoning is marked by 
frequent jumps between the two levels. 

Characterised by progressively 
strengthened reasoning that indicates that 
a learner is using a higher level of 
reasoning. Learners still make some 
mistakes or sometimes go back to the 
lower level. 

Learners have completely mastered the 
new level of thinking and use it without 
difficulty 



2.2.3.3 Characteristics of the Van Hiele levels o f  geometric thought 

According to Van de Walle (2004:348) the products of thought at each level are the same as the 

ideas of thought at the next. The ideas must be created at one level so that the relat~onships among 

these ideas can become the focus of the next level. Van de Walle (2004:348) describes four 

characteristics of the Van Hiele levels: 

The levels are sequential. To arrive at any level above 0, learners must move through all prior 

levels. To move through a level means that one has experienced geometric thinking appropriate 

for that level and has created in one's own mind the types of ideas or relationships that are the 

focus of thought at the next level. 

The levels are not age-dependent in the sense of the development stages of Piaget. Some 

learners and adults may remain forever on level 0, and a significant number of adults may 

never reach level 2. Age is related to the amount and types of geometric experiences that 

learners have, but if they are not stimulated they will remain on a low level of acquisition. 

Geometric experience is the greatest single factor influencing advancement through the levels. 

Activities that permit learners to explore, talk about and interact with the content at the next 

level, while increasing their experiences at their current level, have the best change of 

advancing their level of thought. 

When instruction or language is a level higher than that of the learners, there will be a lack of 

communication and, hence, of understanding between the teacher and the learner. Learners 

required to wrestle with objects of thought that have not been constructed at the earlier level, 

may be forced into rote learning and achieve only temporary and superficial success 

2.3 LEARNING THEORIES 

2.3.1 Behaviourism 

Behaviourism is a ps)rchological theory put forth by John Watson (1924) and then expounded upon 

by BF Skinner (1953). According to Bredo (1997:16) behaviourism was both the child of 

functionalism and empiricism. 

According to Bredo (1 997: 17), Watson was concerned with the functions of behaviour, so Watson 

did not view learning as occurring through conscious thought, but through a process of 

conditioning. 



For Skinner (1953:61) learning involved a change in response rate. Bredo (1997:19) says that 

Skinner defined learning as a change in response rate using many simple standardised responses 

by a single organism. 

According to Skinner (1974:3,167,168) behaviourism is not the science of human behaviour, but it 

is the philosophy of the science of human behaviour. In a behavioural analysis a person is an 

organism that has acquired a repertoire of behaviour A person remains unique and no one else will 

behave in precisely the same way. 

Handal (2005) says that behaviourism focuses on the manipulation of the external conditions of the 

learner in order to modify behaviours that eventually lead to learning. In a behaviourist oriented 

environment completion of tasks is seen as ideal learning behaviour and mastering basic skills 

requires learners to move from basic tasks to more advanced tasks. In addition, learning is 

considered a function of rewarding and reinforcing learner learning. 

Behaviourists saw the learner's affective domain as different from the cognitive domain. They 

categorised emotions "as imaginary constructs" that are causes of behaviour. Consequently, 

behaviourists assume that certain emotions and attitudes can influence behaviour; although, in 

general, affective issues are neglected (McLeod, 1992586). 

It has been said that behaviourism emphasises a process-product and teachercentred model of 

instruction that have been prevalent in classroom teaching and in teacher education programs 

during the twentieth century (Marland, 1994:6179). 

A behaviourist teaching style in mathematics education tends to rely on practices that emphasise 

rote learning and memorisation of formulas, one-way to solve problems, and adherence to 

procedures and drill. Repetition is seen as one of the greatest means to skill acquisition. Teaching 

is therefore a matter of transmission of knowledge and situated learning is given little value in 

instruction (Leder, 199441). 

2.3.2 Constructivism 

Jaworski (2005) believes that constructivism is a theory of knowledge acquisition. Knowledge is 

actively constructed by the learner, not passively received from the environment. Coming to know is 

a process of adaptation based on and constantly modified by the learner's experience of the world. 
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Constructivist theory has been prominent in research on mathematics education and has provided 

a basis for transforming mathematics teaching and learning Learning is a constructive process that 

occurs while participating in and contributing to the practices of the local community (Cobb & 

Yackel, 1996:185). 

Schunk (1996:208) is of opinion that different learning and teach~ng theories generally assume that: 

Thinkmg resides in the mind rather than in interaction with persons and situations. 

Processes of learning are relatively uniform across persons and some situations foster higher- 

order thinking better than others. 

Thinking derives from knowledge and skills develop in formal instructional settings more than 

on general conceptual competencies that result from ones experiences and abilities. 

These assumptions are challenged by constructivist researchers who want cognitive accounts to 

address the full range of influences on learning, problem-solving and memory. Inherent in these 

views is the notion that thinking takes place in contexts and that cognition is largely structured by 

indiv~duals as a function of their experiences in situations. These constructivist accounts highlight 

the contributions of individuals to what is learned. Social constructivist models further emphasise 

the impoltance of the individual's social interactions in acquisition of skills and knowledge (Schunk, 

1996:208) 

2.3.2.1 Perspectives o n  constructivism 

Constructivism refers to a group of theories about learning that can in turn be used to guide 

teaching. Teachers who have adopted these theories believe that learners construct their own 

mathematical knowledge, rather than receiving it in finished form. So, rather than accepting new 

information, learners interpret what they see, hear or do in relation to what they already know 

(Carpenter, 2003:29). 

Nieuwoudt (2000:l) says that the effectiveness of mathematics fducation depends on the degree 

to which teaching activities are linked to relevant and meaningful learning activities. According to 

Shuell (1988:277) cognitive conceptions of learning stress the active, constructive, cumulative, self- 

regulated and goaLorientated nature of learning. The learner must be actively involved in the 

learning process. The learner must construct his or her own knowledge because every learner 

perceives and interprets new information in a unique manner. Learning must be cumulative 

because new learning builds upon the learner's prior knowledge. The learner must be self- 

regulated because he must make decisions about what to do next. He or she must be goal- 
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orientated because learning will be more meaningful if the learner has a general klea of the goal 

being pursued. 

Clark (2000) theorises that constructivism places the emphasis on the learners rather than on the 

teacher. Teachers are seen as facilitators who assist learners in constructing their own 

conceptualisations and solutions to problems. Two schools of thought busy themselves with this 

theory namely social constructivism and cognitive constructivism: 

Cognitive constructivism 

Clark (2000) says that cognitive constructivism is based on the work of Jean Piaget (see § 2.2.1). 

Piaget's theory of cognitive development proposes that learners cannot be given information that 

they immediately understand and use. Instead, learners must construct their own knowledge. They 

build their knowledge through experiences. Cognitive constructivism 6 based on two different 

senses of construction (Clark, 2000): 

Learners learn by actively constructing new knowledge. 

Learners learn with particular effectiveness when they are engaged in constructing personally 

meaningful artefacts (e.9, dynamic computer programs) 

Social constructivism 

Lev Vygotsky (see § 2.2.2) is most often associated with social constructivism. He emphasises the 

influences of cultural and social contexts in learning and supports a discovery model of learning. 

This type of model places the teacher in an active role while the learners' mental abilities develop 

naturally through different paths of discovery (Clark, 2000). 

According to Kim (2001) social constructivism emphasises the importance of culture and context in 

understanding what occurs in society and constructing knowledge based on this understanding. 

There are four general perspectives that inform how teachers can facilitate the learning within a 

framework of social constructivism (Kim, 2001): 

Cognitive tools perspective: It focuses on the learning of cognitive skills and strategies. 

Learners engage in those social learning activities that involved hands-on project-based 

methods. 

Idea-based social constructivism: It directs education's main alm at important concepts in the 

various disciplines (e.g. different types of triangles in geometry). 

Pragmatic or emergent approach: Social constructivists assert that the irnplementat~on of social 

constructivism in class should emerge as the need arises. Knowledge, meanlng and 
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understanding of the world can be addressed in the classroom from both the view of the 

individual learner and the collective view of the entire class. 

Situated cognitive perspechves: This perspective focuses on the relationship between learners 

and their environment When a mind operates, the learner interacts with the environment. 

2.3.2.2 Assumptions of constructivism 

According to Schunk (1996:211, 213) constructivist theories make various assumptions about 

human thought and act~ons in learning settings. He identifies two promment assumptions that 

involve situated cognition and implicit theories: 

Situated cognition Situated cognition refers to the idea that thinking is situated in physical and 

social contexts. Cognitive processes. including thinking and learning, should be considered as 

involving relations between a person and a situation, rather than an activity that solely resides 

in a person's mind. The significance of these views is that they emphasise the construction of 

knowledge by people as they interact in situations. Situated cognition addresses the intuitive 

notion that many processes interact to produce learning. 

Implicit theories: A second assumption of constructivist theories is that people hold implicit 

theories about such issues as how we learn, what contributes to achievement, and how 

motivation affects performance. Learning and thinking occur in the context of individuals' beliefs 

about cognition. Implicit theories can also affect the way in which learners process information. 

Learners who believe that learning outcomes are under their control may expend greater 

mental effort, rehearse more, use organisational strategies and employ other tactics to improve 

learning than learners who hold a fixed view of their abilities and may not expend the same 

effort. 

2.3.2.3 implications for teachers 

Carpenter (2003:30) suggests that when a number of opportunities are provided for learners to 

represent their knowledge, teachers have to encourage learners to represent and construct their 

ideas. It is therefore important that discussions take place between the learners. This provides 

opportunities for the learners to indicate what they already know and understand about the topic, 

while it reveals any misconceptions that learners might have. 

From a constructivist perspective, teachers do not teach in the traditional way. Rather, they use 

materials with which learners become actively mvolved through manipulation or social interaction. 

Activities stress learners' observance, collection of data, generation and testing of hypotheses and 

ability to collaborate with others. Learners are also taught to be more self-regulated and take a 

- 
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more-active role in their own learning by setting goals, monitoring and evaluating progress and 

going beyond basic requirements by exploring interests (Schunk, 1996:209). 

Teachers can make use of concrete and manipulative materials to help learners as they become 

actively involved in the learning process. Open ended questions will encourage learners to 

investigate the activities and questions asked by the teacher and learners, w~l l  help the learners to 

construct their own ideas. When the teacher provides a number of opportunities for the learners to 

represent their knowledge, the teachers encourage the learners to represent and to construct their 

own ideas (Carpenter. 2003:30). 

2.3.2.4 Implications for learners 

Schunk (1996:208) states that constructivism is a psychological and philosophical perspective, and 

contends that learners form or construct much of what they learn and understand. It highlights the 

interaction of learners with situat~ons in the acquisition and refinement of skills and knowledge. 

Constructivism places the locus of learning within the mind. 

In a constructivist classroom, learners will be actively involved in their learning. They will be 

discussing ideas with other learners and representing these ideas in many different ways. Learners 

will also be involved in assessing their own work and would reflect on what they have learned. They 

will be actively involved in exploration, invention, discovery and appl~cation of, for example, the 

properties of quadrilaterals. They will be able to construct their own ideas of quadrilaterals and 

discuss, assess and reflect on what they have learned (Carpenter, 2003:31). 

Accordmg to Schunk (1996:208) a basic assumpt~on of constructivwn is that people are active 

learners and must construct knowledge for themselves. To truly understand material, learners must 

rediscover for themselves the basic principles. Constructivism underlies the emphasis on integrated 

curricula where learners study the topic in various ways. 

2.3.2.5 Contributions o f  constructivism 

Learners need to be actively involved in their learning, and teachers need to provide experiences 

that challenge learners' thmking and force them to rearrange ther beliefs (Schunk, 1996.210,211). 

Alsup (2003-610) espouses a constructlvlst view of mathematics learning, saylng that a lecturer 

cannot transmit mathematical knowledge directly to learners but that the learners should construct 

their own solutions. 
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When organising mathematics teaching and learning with the help of technology, the theory of 

constructivism states that iearners should be guided to discover the fundamental principles of a 

discipl~ne and construct their own knowledge. Thus, constructivists believe that it is necessary to 

change the transm~ssion approach of education (Pasqualotti & Freitas, 2002:410). 

In a constructivist classroom, the emphasis is on learning rather than teaching. Learners are given 

the task of learning. The role of the teacher is to engage the learners by posing good problems and 

creating a classroom atmosphere of exploration and sense making (Van de Walle, 2004132). 

Socialconstructivism, as opposed to behaviorist models of teaching and learning, claims that 

knowledge should not be transferred from one individual to another in educational environments. 

For constructivist educationalists, knowledge must be actively constructed by the learner because 

the learner is an entty with previous experiences that must be considered as a "knowing being". 

Learning is therefore seen as an adaptive and experiential process, rather than a knowledge 

transference activity (Jaworski, 2005) 

2.4 TEACHING APPROACHES 

2.4.1 Process-product teaching (traditional teaching) 

Traditional teaching mostly used process-product teaching. For most learners mathematics is an 

endless sequence of memorising and forgetting facts and procedures that make little sense to them 

(Alsup, 2003:609). Gunter, Estes and Schwab (2003:66) states that the direct instructional method 

mostly used in traditional teaching, is most useful in teach~ng those skills that can be broken into 

small, discrete segments, with each segment building upon the prior one. The traditional approach 

to teacher education is characterised by relatively short instructional periods followed by practice 

until learning is achieved. 

Alsup (2003:609, 610) also says that preservice mathematics teachers have a weak, fragmented 

knowledge of mathematics, mostly acquired facts and mernorised rules. They have rarely 

experienced a kind of teaching that focused on conceptual understanding. This can be ascribed to 

process-product teaching, which is in essence teachercentred mathematics instruction that 

focuses on rules, formulas and answers. If they experience a mathematics course that is learner- 

centred, emphasises active-learning, communication and reasoning during their tralnlng, they will 

be able to teach mathematics effectively. 
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Wong (2002:211) says that learners often approach a mathematical problem by searching for a rule 

that identifies what is glven, what is being asked and the category of the toplc for the problem. This 

approach to mathematical problems is largely shaped by the way learners experience learning, 

their response to task demands, and the classroom environment. In other words, such a restricted 

conception of mathematics, which exists both within the learners and in the classroom culture, has 

led learners to tackle mathematical problems by searching for rules rather than approaching them 

through a conceptual understanding of the context. 

Mok and Johnson (2000553) suggest that possible problems in secondary school algebra may be 

due to the procedural paradigm orientation in the conventional style of teaching in the classroom, 

which do not provide sufficient opportunities for learners to express what they think and to develop 

conceptual understanding Furthermore, Romberg and Kaput (1999:4) postulates that this 

traditional approach of teaching the basic skills and concepts isolates mathematics from its uses 

and from other disciplines Thus, traditional school mathematics has failed to provide learners with 

any sense of its usefulness and has not enabled learners to learn mathematics with understanding. 

Introduction of technology in lessons that embody a cognitive model in their design and delivery will 

provide a viable alternative for enhancing algebraic thinking. 

2.4.2 Problemsolving based teaching 

Cangelosi (2003.156) says that problemsolving means that learners engage in a task for which the 

strategies to solve the problem is not known in advance In order to find a solution learners must 

draw on their knowledge and through this process, they will develop new mathemat~cal 

understanding. 

Shuell (1989.107) is convinced that problem-solving offers a productive way of thinking about 

classroom activities. The presence of an appropriate problem-solving attitude by both the teacher 

and the learner plays an important role in the way they view the teaching-learning situation. 

Schoenfeld (1992:365) makes the following classroom recommendations for the teacher in a 

problem-solving environment: 

s Model problem -solving behaviour whenever possible, for example exploring and experimenting 

along with the learners. 

0 Create a classroom atmosphere in which all learners feel comfortable to try out ideas. 

Invite learners to explain thew thinking at all stages of problem solving. 
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Allow learners to use their own strategies and approaches to solve problems. 

Present problem situations that closely resemble real situations so that the learners can use 

these experiences in real-life situations. 

According to Cangelosi (2003.156) learners should have enough opportunity to formulate and solve 

complex problems, and the teacher should encourage them to reflect on their thinking 

By learning through problem-solving in mathematics, learners should acquire ways of thinking, 

habits of persistence and confidence in unfamiliar situations that will serve them well outside the 

mathematics classroom. It can lead to great advantages in everyday life, and can help the learner 

to become a good problem solver (Cangelosi, 2003: 156). 

2.4.3 Realistic Mathematics Education 

In realistic mathematics education (RME), context problems are intended for supporting a 

reinvention process that enables learners to understand mathematics. Contert problems are 

defined as problems of which the situation is experientially real to the learners. In RME the point of 

departure is that context problems can function as anchoring points for the reinvention of 

mathematics by the learners themselves. Moreover, guided reinvention offers a way out of the 

generally perceived dilemma of how to bridge the gap between informal knowledge and formal 

mathematics (Gravemeijer & Doorman, 1999: 11 2). 

Freudenthal (1991:46) speaks of guided remvention where the emphasis is on the character of the 

learning process rather than on invention as such. The idea is to allow learners to come to regard 

the knowledge they acqulre as their own. This implies that certain norms must be in place, like you 

do not learn mathematics by guessing what the teacher has in mind, but by figuring things out for 

yourself. 

According to Freudenthal (1991:30) rnathematis~ng may involve both mathematising everyday life 

subject matter and mathematising mathematical subject matter. Freudenthal does not see a 

fundamental difference between the two activities. Therefore, education might start with 

mathematising everyday life subject matter. However, reinvention demands that the learners 

mathematise their own mathematical activity as well. Therefore, for Freudenthal the core 

mathematical activity is mathematising. 



Treffers (1987:348) discerns horizontal and vertical mathematisation. Horizontal mathematisation 

refers to the process of describing a context problem in mathematical terms, in other words to be 

able to solve the problem with mathematical means. Vertical mathematisation refers to 

mathematising ones own mathematical activity. Through vertical mathematisation the learners 

reach a higher level of mathematics. It is in the process of progressive mathematisation, which 

comprises both the horizontal and vertical component, that the learners construct new 

mathematics. 

Mathematics should be taught as mathematising. For Freudenthal mathematics is a human activity. 

Mathematics as a human activity is an activity of solving problems and of looking for problems. 

Therefore. mathematising IS an organising activity (Gravemeijer & Terwel, 2000:780,781). 

Treffers (1987:337) explalns mathematising according to the following strategies: 

forgeneralitjc for example looking for analogies, classifying and structuring. 

forcertainty: for example using a systematic approach-reflecting, justifying and proving. 

for exactness: for example limiting interpretations and validity-modelling, symbolising and 

defining. 

for brevity: for example developing standard procedures and notations, symbolising and 

schematising. 

Freudenthal (1991:41,42) distinguishes between horizontal and vertical mathematising in that 

horizontal mathematising leads from the world of life to the world of symbols. In vertical 

mathematising symbols are shaped, reshaped, and manipulated, mechanically, comprehensively 

and reflectively. In RME both horizontal and vertical mathematising are used to shape the long term 

learning process (Gravemeijer, 1994:l). 

Gravemeijer and Doorman (1999:117) say that in RME, context problems are the basis for 

progressive mathematisation. The teacher tries to construe a set of contextual problems that can 

lead to a series of processes of horizontal and vertical mathematisation that together result in the 

reinvention of the mathematics that one is aiming for. 

According to Gravemeijer and Doorman (1999:119) the goal 1s not only to help learners elaborate 

their informal understanding and informal solution strategies in such a manner that they can 

develop more formal mathematical insights and strategies The objective is also to preserve the 

connection between the mathematical concepts and that which they describe. The learners' final 



understanding of the formal mathematics should remain connected with their understanding of 

these experientially real, everyday phenomena. 

Gravemeijer and Doorman (1999:126) says that the RME approach tries to transcend the 

dichotomy between informal and formal knowledge, by designing a hypothetical learning trajectory 

along which the students can reinvent formal mathematics. The actual learning trajectory unfolds in 

such a manner that the formal mathematics emerges in the mathematical activity of the learners. 

This 1s connected to Freudenthal's (1991:4) contention that mathemat~cs should start and stay 

within common sense. Common sense evolves in the course of the learning process and it is not 

static. 

Gravemeijer and Terwel (2000.786) says that learners must be allowed to regard the knowledge 

they acquire as their own, personal knowledge, knowledge for which they themselves are 

responsible. Learners must also be given the opportun~ty to build their own mathematical 

knowledge base. 

2.5 CONCLUSION 

The current global movement in the reform of mathematics education seems to focus on a number 

of new ideas, including standards quality and teacher preparation. As is said, the best conceived 

programme in the world, can easily come to naught if those who are to implement the programme 

at classroom level are not confident to carry out their tasks efficiently and effectively (Jegede, 

Taplin & Chan, 2000:288). 

Carpenter (2003:32) says that the teacher is responsible for determining what ideas learners have 

about a particular subject so that new mater~al can be introduced and related to learners' 

experiences. 

Mathematics learning is a deep, rich process, emphasising conceptual understanding, reasoning, 

communication and problem-solving (Alsup, 2003:615). 

When learners do not understand what they have learned, they percelve each topic as an isolated 

skill, they cannot apply their skills to solve problems nor extend their learning to new topics 

(Romberg & Kaput. 1999:19). 



3.1 INTRODUCTION 

To keep up with the demands of life and work in the twenty first century, pre-service mathematics 

teachers are expected to learn to teach mathematics in ways that advance conceptual 

understanding. The PMTs must act as learning facilitators, providing engaging settings for the 

construction of knowledge and proposing challenges that encourage mathematical constructions 

(Klein. 2004:35, 36). 

The aim of this chapter is to provide a framework for conceptualisation, study orientat~on in 

mathematics, and the learning of mathematics. 

3.2 CONCEPTUAL UNDERSTANDING OF MATHEMATICS 

3.2.1 Orientation 

Schunk (1996:218) says that constructing concepts in our minds enables us to extend what we 

understand beyond the specific situations we have experienced in the past. Concepts are the 

building blocks of mathematical knowledge, but it is not the only type of mathematical content 

~ncluded in curricula There are also discoverable relationships, conventions and algorithms 

(Cangelosi, 2003:177). 

To construct a concept, learners use inductive reasoning, distinguishing examples of the concept 

from non-examples Inductive reasoning generalises from broad encounters and moves towards 

specifics. It is the cognitive process through which people discover commonalities among specific 



examples, thus leading them to formulate abstract categories, concepts, or discover abstract 

relationships (Cangelosi, 2003:177). 

Much learning involves concepts. Concepts are labelled sets of objects, symbols or events that 

share common characteristics or attributes. A concept is a mental construct or representation of a 

category that allows one to identify examples and non-examples of the category. Concept learning 

refers to forming representations to identify attributes, generalising them to new examples and 

discriminating examples from non-examples. Concepts may involve concrete objects or abstract 

ideas (Schunk. 1996:ZlB). 

Romberg and Kaput (1999:30) say that the development of understanding is an ongoing and 

continuous process and one that should pervade everything that happens in mathematics 

classrooms. When learners learn skills w~thout understanding, the rote application of the traditional 

approach to teacher education, often interferes with a learner's subsequent attempts to develop 

understanding. When learners learn skills in relation to developing and understanding, however, not 

only does understanding develop, but mastery of skills is also facilitated. 

It is more appropriate to think of understanding as emerging or developing rather than presuming 

that someone either does or does not understand a given topic, idea or process. Romberg and 

Kaput characterise understanding in terms of mental activity that contributes to the development of 

understanding rather than as a static attribute of an individual's knowledge (Rornbefg & Kaput, 

1999:ZO). 

Porter and Masingila (2000:165) suggest that learners' difficulties h doing mathematics can be 

related to their views of mathematics. It is not unusual to find learners who use mathematical 

procedures with little or no understanding of the concepts behind these procedures. 

Some learners are not even aware that there are concepts underlying the procedures they use. 

Such learners do not realise that there is meaning in mathematics. They believe that doing 

mathematics means performing pointless operations on meaningless symbols and that everyone 

learns mathematics by memorisation (Porter & Masingila, 2000:165). 

3.2.2 The nature of concepts 

Two distinct views have emerged concerning the nature of concepts. The classical theory 

postulates that concepts involve definitions that define the cr~tical characteristics, the intrinsic 

attributes, of the concept. A second view is the prototype theory. A prototype is a generalised 



image of the concept, which may include only some of the concept's defining characteristics, for 

example right-angled triangles (Schunk, 1996:219, 220). 

Schunk (1996:218) distinguishes between three different types of concepts: 

Conjunctive concepts: These are represented by two or more characteristics. Other 

characteristics of that concept are not relevant, for example two blue rectangles. 

Disjunctive concepts: hese are represented by one of two or more characteristics of a spec~fic 

concept for example two rectangles of any colour or one blue rectangle 

Relational concepts: These specify a relationship between characterist~cs that must be present 

in the concept, for example the number of objects in the figure must outnumber the number of 

borders. The type of object and colour are unimportant. 

Cangelosi (2003:176) theorises that whether a specific is an example of a particular concept or not, 

depends on whether that specific possesses the defining attributes of the concept. A concept 

attribute is a characteristic common to all examples of a particular concept, for example a right- 

angled triangle has three sides, one angle of ninety degrees, and is a closed figure. Aconcept 

attribute is a necessary requirement for a specific to be subsumed within a concept. A set of 

attributes define the concept, also called the critical or intrinsic attributes. 

According to Cangelosi (2003:175175) researchers categorise and sub-categorise specifics 

according to certain attributes. The categories provide a mental filing system for storing, retrieving 

and thinking about information. The process (see Table 3.1) through which a person groups 

specifics to construct a mental category, is referred to as conceptualisation, the category itself is a 

concept. A specific is a unique entity, someth~ng that is not abstract. Cangelosi defines a concept is 

a category people mentally construct by creating a class of specifics possessing a common set of 

characteristics. In other words, a concept is an abstraction. Concepts can relate to one another, 

with broader concepts including narrower subconcepts. 

A polygon is a concept. it is a set with more than one element. 

Table 3. 1: Concept formation (Cangelosi. 2009174) 

CONCEPTS AND SUBCONCEPTS 

I 
is a subconcept of a polygon triangle. Triangle I 

DEFlNlTlONS 
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Most concepts can be represented in a hierarchy with superordinate and subordinate concepts. For 

any given concept, similar concepts may be at the same level in the hierarchy. These are known as 

coordinate concepts, for example, the concept "equilateral triangle" has "triangles" and "polygons" 

Special types of triangles (eg , isosceles), quadrilaterals (eg ,  
rectangles), and pentagons ( e g ,  regular) are subconcepts of triangles. 
quadrilaterals and pentagons respectively (i.e., subsets of subsets). 
A specific example of a concept is not a concept but a constant; it is 
the specified element of a set. 

as superordinate concepts, the different categories of triangles (isosceles triangle, equilateral 

triangle, obtuse triangle, scalene triangle) as subordinate concepts and the other categories of 

polygons (quadrilateral, pentagon, hexagon, heptagon) as coordinate concepts. There are critical 

isosceles triangle 
- 

The unique isosceles 
triangle determined by the 
following three points: . . . 

- 

attributes (e.g., all sides are congruent) and variable attributes (e.g., three sides, three angles) 

(Schunk, 1996:221). 

3.2.3 Teaching of concepts 

3.2.3.1 Concept Attainment 

Romberg and Kaput (1999:ZO) propose five forms of mental activity from which conceptualisation 

emerges: 

Constructing relationships. 

Extending and applying mathematical knowledge. 

Reflecting about experiences. 

Articulating what one knows. 

Making mathematical knowledge one's own. 

Gunter. Estes and Schwab (2003.82. 83) suggests that concepts are the ideas that are formed as a 

result of categorising data from a number of 0bse~ations. Learners form concepts and give them 

names in order to make sense of all the various stimuli. Many concepts used are abstract and have 

many interpretations. 

According to Cangelosi (2003:178,179) the objective for learners to use inductive reasoning to 

distinguish between examples and non-examples of a mathematical concept, is at the construct-a- 

concept level. Teachers must make sure that the choice examples, non-examples, problems and 



leading questions that they choose, will stimulate learners to use inductive reasoning to form 

conce~ts. 

Schunk (1996:222) advises that a concept should be defined with its critical attributes before 

examples and non-examples are given. Presenting a definition does not ensure students will learn 

the concept. Examples should differ widely in variable attributes and non-examples should differ 

from examples in a small number of critical attributes at once. This will prevent learners from 

overgeneralising, classifying nowexamples as examples, and undergeneralising, classify~ng 

examples as nowexamples. Pointing out relationships between examples is an effective way to 

arrange sets to foster generalisation. 

Schunk (1996:222) says that it is helpful to present examples that differ in optional attributes, but 

have relevant attributes in common so that the latter can be clearly pointed out. Cangelosi 

(2003:177) calls these optional attributes example noise and defines it as any characteristic of an 

example of a concept that is not an attribute of that concept, for example two sides of the right- 

angled triangle are equal. The noise in the examples a teacher uses in lessons for leading learners 

to construct mathematical concepts, plays a key role in how well they conceptualise. To foster 

concept discrimination, teachers should present negative examples that clearly differ from positive 

examples. As learners' skills develop, they can be taught to make finer discriminations (see Table 

3.2). 

Table 3.2: Steps for general~sing and discriminatir~g between concepts (Schunk 1996:222) 

STEP 

Name concept 

Define concept 

Give relevant attributes 

Tve Irrelevant attributes 

(example noise) 
- 
Give examples 

G~ve non-examples 

EXAMPLE 
Triangle 
~p 

Three non-collinear points joined by three straight lines and a close figure 

Three sldes, three angles and a close figure 

Angle of go', two I three equal sides. 

Triangle ABC with two sides=4cm and an angle=90". 
. 

n 



3.2.3.2 Teaching models 

Cangelosi (2003:179) says that inquiry learning activities stimulating learners to reason inductively 

to form a concept, can be embedded in a lesson with four stages: 

Sorting and categorising: Present learners with a task requiring them to sort and categorise 

specifics. 

Reflecting and explaining: Learners explain their rationales for categorising the specifics as they 

did. The teacher raises leading questions, stimulates thought and clarifies learners' 

expressions. 

Generalismg and articulating: Learners describe the concept in terms of attributes. They may 

also develop a definition for the concept; however, it is not necessary for the conventional name 

of the concept to be used. 

Venving and refining: The definition is tested with additional specifics and non-examples. The 

definition of the concept is modified in light of the outcome of the tests. 

Gunter, et al. (2003: 82, 83) proposes a model, the concept attainment model, whereby learners 

construct a concept by extracting critical attributes form examples and non-examples. 

In preparing to use the concept attainment model, a teacher must determine the following basic 

elements of the concept to be learned: 

Name of the concept. 

Concept definition or rule. 

Conceptual attributes. 

Examples of concept. 

Relationship of the concept to other concepts. 

3.2.4 Conclusion 

We can conclude with the following words of Cangelosi, (2003:179): "Students' conceptualizations 

provide the basis for subsequent meaningful learning of mathematics ... ... The failures of many 

students to develop healthy attitudes about mathematics, algorithmic skills, comprehensbn and 

communicating skills with mathematics, and applicatiorrlevel abilities to do mathematics to solve 

problems is well publised. Many of these failures can be traced to conceptual gaps in their learning 
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However, when learners acquire knowledge with understanding it generates new knowledge

because they can apply that knowledge to new topics and solve new and unfamiliar problems

(Romberg and Kaput, 1999:19).

3.3 NETWORKTHEORY

3.3.1 Orientation

Van de Walle (2004:22,23)says that the tools that learners use to build understanding include the

learners' existing ideas and the knowledge that they already have. Therefore, integrated networks

are the way learners use their existing knowledge to understand and to integrate new knowledge.

The diagram in Figure 3.1 is meant as a metaphor for the constructions of ideas. The small dots

represent existing ideas. The lines joining the ideas represent the logical connections that have

developed between the ideas. The large dot is an emerging idea. Whichever existing ideas are

used in the construction will necessarily be connected to the new idea, because those were the

ideas that gave meaning to the new idea.

Figure 3.1: Learners use the ideas they already have (small dots) to construct a new idea (large dot), in the

process developing a network of connectionsbetween ideas (Van de Walle,2004:23)

Hiebert and Carpenter (1992:66, 67, 69) indicate that a mathematical idea or procedure is

understood if it is part of an internal network, in other words the mathematics is understood if its

mental representation is part of a network of representations. Thus, knowledge can be represented

internally and these internal representations are structured. Understanding mathematics can be

described in terms of the way in which an individual's internal representation is structured and the

degree of understanding is determined by the number and the strength of the internal connections.
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Understanding can be defined as a measure of the quality and quantity of connections that an idea 

has with existing ideas. Understanding depends on the existence of appropriate ideas and on the 

development of new connections. Therefore, the greater the number of connections to a network of 

ideas, the better the understanding (Van de Walle, 2004:24. 25). 

To think about rnathemat~cal ideas, learners need to represent them internally in such a way that it 

allows the mind to operate on them Learners need to recognlse relationships between pieces of 

information and then understanding will occur as representations get connected into increasingly 

structured and cohesive networks (H~ebert 8 Carpenter, 1992:66, 67, 69). 

Gunter, et al. (2003:279,280) theorises that new information can be retained and accessed more 

readily if the learners are able to link already familiar information to new data. It is also effect~ve to 

link familiar knowledge to new data as an aid to remembering key concepts. 

According to Hiebert and Carpenter (1992:68) there are different kmds of connections to construct 

and create mental networks: 

One kind of relationship is based on sim~larities and differences. When learners think about the 

similarities and differences between triangles, they can construct relationships between these 

representations, 

A second kind is based on inclusion. Inclusion 1s when one mathematical procedure 1s seen as 

a soecial case of another. 

From the~r prior experiences learners are likely to have an internal network connected to their 

mental representations. 

3.3.2 Building Internal network representations and understanding of concepts 

Even and Lappan (1994:136) say that learners cannot understand a mathematical concept in 

 sola at ion. Connections to other concepts, procedures and pieces of mformation deepen and 

broaden their knowledge. Two important aspects of connections include the use of different 

representations and applications both within mathematics and between mathematics and other 

subjects. 

According to Hiebert and Carpenter (1992:69) networks of mental representations are built 

gradually as new information is connected to existing networks or new relationships are constructed 

between previously disconnected information. Understanding grows as the networks become larger 



and more organised Understanding can be rather limited if only some of the mmtal 

representations of potentially related ideas are connected or if the connections are weak. 

Connections that are weak may be useless when the students are confronted with conflicting or 

non-supportive situations. 

Even and Lappan (1994:136) theorises hat if learners represent ideas and problems in different 

ways, for instance geometrically, verbally, numerically and algebraically, it allows them to see how 

different representations give different insights into problem situations. 

According Hiebert and Carpenter (1992:69) growth of networks may occur in several ways. Growth 

can be characterised as changes in networks as well as additions to networks. Learners build their 

understanding sporadically, rather than through smooth, monotonic increase. Changes in networks 

can be described as reorganisations. Representations are rearranged, new connections are formed 

and old connections may be modified or abandoned. The construction of new relationships may 

force a reconfiguration of affected networks. Therefore, internal networks are better thought of as 

dynamic instead of as static, because networks are constantly undergoing realignment and 

configuration as new relationships are constructed. 

Accord~ng to Lesh and Carmona (200371) the conceptual models that learners develop can be 

thought of as having both internal and external components. The internal components are often 

referred to as constructs or conceptual systems and the external components are often referred to 

as either artifacts or representations (see Figure 3.2). 

Conceptual models 

1 

Constructs Artifacts 

I I 
Conceptual Systems Representation Media 

(GSP@) 

Figure 3.2. Mathematical models have ~nternal and external components (Lesh and CarmofIa, 2003:71) 
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Gunter, et al. (2003:86,87) said that concept attainment is the process of definlng concepts by 

attending to those attributes that are absolutely essential to the meaning, and disregarding those 

that are not. It also involves learning to discriminate between what is and is not an example of the 

concept. Using concept attainment in the classroom is aimed at helping learners attain the meaning 

of concepts through the inductive process of comparing examples and nowexamples of the 

concept until the learner derives a defin~tion. In taking ownership of concepts which they have a 

part in developing, learners can become authorities in what they are taught (see g 3.2) 

3.3.3 Consequences of understanding mathematics 

Hlebert and Carpenter (1992:74-77) identify the following consequences of understanding 

mathematics: 

Understanding is generative: Learners create their own internal representations of their 

interactions and build their own networks of representations. A crucial aspect of learners' 

constructive processes is their inventiveness. Learners continually invent ways of dealing with 

the world. Learners' inventions can lead to productive mathematics if the arguments of their 

inventions are parts of wellconnected networks. If the mental representations are enriched by 

being connected within a network, then the Inventions are stimulated, guided and monitored by 

much related knowledge. 

Understanding promotes recall: Memory is a constructive or reconstructive process, rather than 

a passive activity of storage. One advantage of the inclination to create connections between 

new and exsting knowledge is that well-connected knowledge is remembered better. An entire 

network of information is less likely to deteriorate than a piece of information, and retrieval of 

knowledge is enhanced if it is connected to a larger network. 

Understanding reduces the arnounf that must be recalled: A consequence of understanding 

related to enhanced memory pertains to what must be remembered If something is 

understood, it is represented in a way that connects it to a network. The more structured the 

network, the fewer individual pieces need to be retrieved separately. Memory of any single part 

of the network comes with memory of the network as a whole, reducing the number of items 

that must be remembered 

Understanding enhances transfer Transfer is essential because new problems need to be 

solved using peviously learned strategies. It would be impossible to become competent if a 

separate strategy would need to be learned for every problem. Therefore, learners should be 

able to make connections between existing knowledge and newly learned knowledge. 



Understanding influences beliefs: Understanding yields affective consequences as well. 

Learners' beliefs about mathematics influence their growth ~n understanding. It is also plausible 

that the process of building understanding influences learners' beliefs about mathematics. The 

kind of work learners do determines how they think about a particular domain and what they 

believe about the nature of the subject. 

Learners' understanding can be associated with many other existing ideas in a meaningful network 

of concepts. This network of concepts can be referred to as "webs" of interrelated ideas. A clear 

example of the potential for rich relat~onal understanding is found in the many ideas that can be 

associated with the concept of "ratio" (Van de Walle, 2004:25) (see Figure 3 3). 

3.4 STUDY ORIENTATION 

Division: the 
ratio 3 to 4 is the 

same as 3.4. 

3.4.1 Introduction 

According to Maree (1997:3,4) the formation of basic concepts n mathematics is very important. 

This concept of acquisition is an essential prerequisite for learning more advanced work in 

mathematics. Learners display a specific study attitude towards mathematics. This includes matters 

like learners' views of the nature of mathematics and the nature of learning mathematics. When 

Scale: The scale 
on the map shows 

1 M per 50 m. 

- 
Trigonometry: All Slopes of line8 The ratio of the 

trigonometry functions rise to the run is ? . 
are ratios. 

Comparison: The ratio Geometry: Any two similar figures have 
of sunny days is greater corresponding measurements that are 
in the South than in the proportional (in the same ratio). 

North. 

. 

I 
Business: Profit and loss are 

Unit prices 12 kgIR1, 79 is figured as ratios of income to 
about 6Oc for every 4 kg. the total lost. 

Figure 3.3: Potentla1 web of associations that could contribt~te to the understanding of "ratio" (Van de Walle, 

2004:25J 



learning mathematical content do not link up with the learners' level of knowledge and thinking, it 

leads to frustration. 

When conceptualisation (see $ 3.2.6) is incomplete, problem solving in mathematics is inhibited. 

Therefore learners do not easily understand the relation between concepts. Under such 

circumstances learners will use theorems and formulas without th~nking whether they are applicable 

to the specific problem or not. 

Learners' engagement in mathematics refers to their motivation to learn mathematics, their 

confidence in their ability to succeed in mathematics, and their emotions about mathematics. 

Learner engagement in mathematics plays a key role in the acquisition of mathematics skills and 

knowledge. Learners who are engaged in the learning process will tend to learn more (Maree, 

1997:4). Yates (2000:77) theorises that the periormance of learners is related to their prior 

achievement, attitudes towards specific aspects of learning and to motivational factors like self- 

efficacy, self-regulation and self-determination. 

Hassan (2004:64) says that study orientation in mathematics focuses on the approaches, the 

practice of how, what where and when of learning (see Figure 3.4). 

When learners STUDY Where learners 
study ORIENTATION study 

T T 
What learners How learners 

Ffgure 3 4 Conceptual imderslandmg of study onenfation (after Hassan. 2004 64) 

Attitudes are internal believes that mfluence personal actions and that reflect such characteristics 

as generosity, honesty and commitment to healthy living (Schunk, 1996:392). 

Mathematics anxiety is a complex and subtle problem with no simple solutions. Perry (2004) says 

that a common occurrence in mathematics is that learners have a superficial understanding of 

mathematics limited to computational skills, with little conceptual understanding (see 3 3.2) and 

hence no framework within which to organise hislher knowledge. As a result, this type of learner 

forgets what helshe learns very quickly, and experlences frustration. 



Mathematics anxiety reduces the storage and processing capacity of the memory system involved 

wlth task performance, and increases the amount of omtask effort required to maintain the 

performance (Hopko, 2002:164). When the body is tense, the mind cannot function. 

According to Hopko (2002:157) mathematics anxiety is defined as feelings of tension and 

apprehension surrounding the manipulation of numbers and the solving of mathematical problems 

in academic, private and social settings. 

Wlson, Fernandez and Hadaway (s.a.) says that problem solving has a special importance in the 

study of mathemattcs. A primary goal of mathematics teaching and learning is to develop the ability 

to solve a wide variety of complex mathematics problems. 

Maree (1997:4) says that learners' study habits in mathematics are important in terms of the 

practising of insights. The execution of assignments in mathematics and the consistent practising of 

mathematics concepts form an important part of the learners' study orientation in mathematics. 

3.4.2 The study Orientation in Mathema tics (SOM) Questionnaire 

The need to measure learners' attitudes towards study in mathematics is based on the premise that 

mathematics is particularly vulnerable to poor teaching. and very little attention is paid to learners' 

orientation towards studying mathematics (Maree, 1997:l). 

The SOM questionnaire cons~sts of five fields, including 76 statements that relate to how learners 

feel or act regarding aspects of their achievement in mathematics. The SOM was developed for 

high school learners, but the scope of the questions is also applcable to tertiary students. 

The five fields of the SOM can be summarised as follows (Maree, 1997:7,8,9): 

0 Study attitude (SA) in mathematics: This field has a bearing on feelings and attitudes towards 

mathematics and aspects of mathematics This affects the learners motivation and 

expectations with regard to mathematics Attitudes ~nclude various factors like enjoyment of the 

subject, self-confidence and the challenge that Mathematics offers. 

Mathematics anxiety (MA): Learners' motivation in mathematics is affected negatively when 

they are emotionally disturbed. When learners have not adequately mastered the concepts and 

technical language of mathematics, their mathematics anxiety is increased. 



Study habits (SH) in mathematics: Study habits address the displaying of acquired, consistent 

and effective study methods and habits like planning time, preparation, working through 

previous tests, working through problems as well as following up problems in mathematics. It 

also includes how often they do their assignments, keep homework up to date and how much 

time they spend on doing mathematics. 

Problem-solving behaviour (PSB) in mathematics: It includes planning, self-monitoring self- 

evaluation, self-regulation and decision making during the process of problem solving in 

mathematics. Problem-solving behaviour can also be described as thinkmg about thinking in 

mathematics~ 

Study milieu (SM) in mathematics: Learners come from different environments. Therefore, study 

environment includes factors relating to social, physical and experiential envlronment. Milieu 

disadvantages often lead to mathematrcs anxiety and underm~ne learners' self-confidence. 

According to Maree (1997:5), the following features were taken into consideration when compiling 

the SOM: 

The content had to be meaningful to the testee. 

0 The questionnaire had to have diagnostic value. 

Item biases towards language. race, gender and socio-economic environment had to be limited. 

Mark allocat~on had to be objective 

The aims of SOM were (Maree, 1997:5), 

0 To identify learners' negative study orientation in mathematics. 

To analyse the data obtained that could help counsellors and rnathemat~cs educators to obtain 

a better understanding of learners' poor achievement in mathematics. 

Touse the information gained from the results,to help learners improve their study orientation in 

mathematics. 

The SOM could be used as (Maree eta/., 1997:5,6): . A diagnostic tool for identifying those learners who need support, remediation and counselling 

An aid to make a systematic analysis of a number of important background particulars, feelings, 

attitudes, habits and customs w~th regard to the learners' academic orientation in mathematics. 

0 A study guideline in mathematics to farniliarise learners with basic principles of effective 

studying in mathematics. 



3.5 EFFECTIVE MATHEMATICS TEACHING AND LEARNING 

Klein (200436) says that the pedagogic emphasis must move away from a sole preoccupation with 

transmission of the content to a concentration on PMTs' actve participation in the learning 

processes. Therefore teacher education programs must be so that the emphasis is on active PMTs' 

participation, engaged thought and the investigation of mathematical and pedagogical ideas PMTs 

must be able to transmit conceptual ideas and recognise the learner's active part in the learning 

process. In teacher education, the assumption must be that the PMTs' ~nvolvernent in these 

learning processes will lead to re-conceptualisations of what mathematics is and how it is learned 

and taught. 

Effective mathematics teachlng must promote an understanding of concepts, relationships, and 

processes that will lead to a better understanding of mathematics (W1lson,l993:5). Learners should 

be given the opportunity to construct their own epresentations of mathematical concepts, rules, 

and relationships. Learners who construct their own knowledge focus on the underlying structure of 

problems (Wllson,1993:7,8). Human ~nteraction and physical manipulation in the acquisition of 

knowledge is therefore very important. 

Tytler (1999:193) correctly sees that the central goal of professional training should be the 

elaboration and expansion of PMTs' knowledge base. In reform~ng their educational practice, they 

must acquire richer knowledge of subjectmatter 

According to Cooney and Shealy (1998:308) PMTs' belief structures and their orientation towards 

context are central to their learning how to teach mathematics, and they should be reflective and 

adaptive agents. PMTs want to know what principles underlie instructional systems and what these 

foundations imply for their classroom practice (Lindschitl, 1999:190). 

Shuell and Moran (1994:3341) states that a big difference between meaningful, cognitive learning 

and simpler forms of learning is that the former is usually concerned with understanding, while the 

latter is usually concerned with behavioural change. Knowledge must be structured and organised 

to be meaningful Another difference is that meaningful learning involves the acquisition of a 

complex body of knowledge while simpler forms of learning involve a collection of separate. 

isolated facts. 



3.6 CONCLUSION 

Concept learning involves higher order processes of forming mental representations of critical 

attributes of categories. Current theories of concept learning ernphasise the analyses of 

characteristics and formation of hypotheses about concepts, characteristic analysis, as well as 

forming generalised images of concepts that include only some defining of concepts, 

characteristics, and prototypes (Schunk 1996:232). 

Knowledge structures are addressed at two levels: generally with respect to conceptual-procedural 

properties; and with a specific mathematical focus. Conceptual knowledge is shaped by the 

construction of new relationships between existing information, or through linking existing 

knowledge to some new information. Conceptual knowledge is stored as a linked nehvork of units, 

where the more eiaborate the network, the more nodes there are for activation to be initiated. 

Inadequate conceptual knowledge means that a needed piece of information will not be retrieved 

when required, or that some mcomplete or inaccurate version will be acted on (Galbraith & Haines, 

2000:652) 

Learners' beliefs should be the key to understanding their act~ons Their failure to solve 

mathematical problems is can be directly attributed to their less powerful beliefs about the nature of 

mathematics and mathematics problem solving (Wong, 2002:15). 

Porter and Masingila (2000-166) say that a rote conception of mathematics can interfere with 

learners' procedural ability. It can also prevent them from gainmg an understanding of mathematical 

concepts. Both procedural ability and conceptual understanding are necessary for success in 

mathematics. 



4.1 INTRODUCTION 

Diagrams are one way to represent geometric figures. These visual representations have a 

powerful influence on PMTs' development of geometric concepts. Dynamic computer technology 

such as Geometer's sketchpadB (GSPB) has the potential to provide such a rich visual learning 

environment. By designing a rich visual learning environment in conjunction with GSPQ, PMTs can 

overcome the visual obstacles imposed by their limited perception (Contreras, 2005). 

PMTs will embrace dynamic computer technology since it is the medium of the time. Teachers 

need to make this medium their own too. It has been recognised that learning doesn't stop at 

school, but has become a life-long process. 

The purpose of this study was to investigate the conceptualisation of geometric learning of PMTs 

during instruction with the aid of dynamic computer technology, with special reference to GSPQ 

(refer to 9 1.2). 

4.2 AN OVERVIEW 

In this day of rapidly changing technologies, we cannot anticipate all the skills that learners will 

need in their lifetime or the problems they will encounter. We need to prepare learners to learn new 

skills and knowledge and to adapt their knowledge to solve new problems (Romberg & Kaput. 

1 Q99:l 9, 20). 
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Information and communication technology play an increasing and significant role in all facets of 

society. Teachers want their learners to be leaders in the field, to set the values and agendas of the 

corporate world. Teachers need to equip their learners to think and work in a creative and 

connected, lifelong learning environment. 

Learners are exposed to direct sources of information like never before. They have to learn to be 

critical of information, developing skills to analyse and sort relevant material, skills that were not 

needed when the textbook was the main source of information. Such analytical skills can be 

learned and actively pursued with the potential of dynamic computer technology. Given the 

challenge, it is an exciting way to learn how to be responsible and discerning in the quest for 

knowledge (De Villiers, 2004:703). 

Learners can take more initiative in, and responsibility for their learning with dynamic computer 

technology. When learners do that, they experience real excitement. 

Therefore it will be important to: 

Create a learning environment that can be further explored as the learners grow in 

understanding, skills and knowledge; 

Change the classmom from a static environment, where the teacher dictates (see 5 2.3.1), to a 

more active, engaging and collaborative environment. 

4.3 DYNAMIC COMPUTER TECHNOLOGY 

4.3.1 Orientation 

It becomes clear in research done by Van der Sandt (200333) that learners leave school with 

higher levels and degrees of geometric acquisition than the levels and degrees of acquisition 

attained by the PMTs who were exposed to three years of academic and mathematical 

methodology training (see 5 6.2.1.3). 

Wtth this background in mind, dynamic computer technology can be effectively used to facilitate the 

PMTs conceptual understanding of, and study orientation towards mathematics (Jiang, 2005). 

4.3.2 Dynamic computer technology as a tool for teaching and learning 

According to Clements and Battista (2000:761,764) there is little doubt that dynamic computer 

technology will have a major impact on the teaching and learning of mathematics. The complexity 



of dynamic computer technology teachmg and learning, includes both the processes and the 

products of leaning. Reflecting on the actions and activities that are enabled by dynamic computer 

technology can catalyse a reconceptualisation of the nature and the content of the mathematics 

that could be learned. The flexibility of dynamic computer technology allows the creation of a vision 

less hampered by the limitations of tradmonal materials and pedagogical approaches. 

According to Becker (2000) a number of research studies have indicated that dynamic computer 

technology can play a positive role in academic achievement. Dynamic computer technology is 

most effective when: 

It is combined with instructional strategies that act~vely ~nvolve learners in learning intellectually 

complex work that demands higher order thinking and problem solving skills 

Teachers have the necessary professional development. 

Becker's (2000) research notes that dynamic computer technology is a strong tool for supportive, 

active, inquiry based learning. Becker argues that the kind of active learning necessary to master 

principles and concepts is easier to implement in a technology-rich environment where learners 

have a rich array of information to work with. Dynamic computer technology seems to be 

associated with significant gains in mathematics achievement when it is used to facilitate the 

construction of higher order concepts and when teachers are proficient enough in the use of 

dynamic computer technology (Wenglmsky, 1998:32). 

If learning were viewed merely as an increase in knowledge, active participation on h e  part of the 

learner would not be so important. However, if one accepts Piaget's (see 9 2.2.4) view that learning 

involves a restructuring of the learnefs cognitive schemata, learner involvement becomes 

mandatory (Webb. 2001 96). 

Teachers ought to introduce their learners to the art of problem posing early and allow sufficient 

opportunity for exploring, conjecturing, reformulating and explaining. However, if teachers 

themselves have never been exposed to such approaches in their own learning of mathematics, it 

is hardly likely that they would attempt to implement it in their own classrooms. It is therefore 

important in mathematics teacher education to devise ways of expanding learners' views of proof 

and to allow sufficient opportunity for exploring, conjecturing and explaining (De Villiers, 2004:704). 

Olive (2000) theorises that dynamic geometry turns mathematics into a laboratory science rather 

than a game of mental gymnastics, dominated by computation and symbolic manipulations. 

Mathematics becomes an investigation of interesting phenomena and the role of the students 
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becomes that of a sctentist, observing, recording. manipulating, predicting, conjecturing and testing. 

Students also develop theor~es as explanations for phenomena. 

To illustrate this, Olive (20DO) uses dynamic computer technology namely GSW. Geometric figures 

can be constructed by connecting components, for example a triangle can be constructed by 

connecting three line segments. This triangle, however, is not a single static instance of a triangle 

that would be the result of draw~ng three line segments on paper. By grasping a vertex of this 

triangle and moving it with the mouse, the length and orientation of the two sides of the triangle 

meeting at the vertex will change continuously. The use of the dynamic drag feature of this type of 

computer tool, illustrates how such dynamic manipulat~ons of geometric shapes can help learners 

to abstract the essence of a shape from seeing what remains the same as they change the shape. 

In the case of the triangle, the learners can abstract the basic definition of a triangle as a closed 

figure with three straight sides. Length and orientation of those sides are irrelevant as the shape 

remains a triangle, no matter how they changed these aspects of the figure. Such dynamic 

manipulations help in the transition from the first to the second van Hiele level. From the recognition 

of shape to the awareness of the properties of a shape. 

Ben-Zvi (2000:139) adopted an approach based on empirical research and theoretical analysis that 

views computers as cognitive tools. A cognitive tool can be described as dynamic computer 

technology that helps transcend the limitations of the mind. 

Th~s approach is based on a specific conception of the human cognition, of which the following are 

key aspects: 

Cognitive processes have a concrete and imagistic base and are not organised by formal or 

general rules . Cogn~tion depends on available dynamic computer technology. Cognitive development is 

understood not merely as development of the individual mind, but also as a social development 

of available dynamic computer technology. 

0 Cognition tends to be context-bound (Ben-Zvi, 2000:139). 

This conception of cognition leads to specific ways of using dynamic computer technology and how 

dynamic computer technology lends itself to supporting cognitive activities: 

The amplifier metaphor: 

In environments that are not based on dynamic computer technology, representations produced 

and used during classroom activities are limited in number. Instruction often concentrates simply on 
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translation skills between representations, and mastery of skills tends to become the central goal of 

teaching. The use of dynamic computer technology turns many of the manipulations of 

representations into automatic operations. Many more calculations and representations can be 

carried out (Ben-Zvi, 2000:140). 

The reorganisation metaphor: 

An appropriate usage of dynamic computer technology has the potential to bring about structural 

changes in the learners' cognitive activities. Dynamic computer technology brings about the re- 

organisation of physical or mental work in at least the following ways: 

Shifting the activity to a higher cognitive level. 

Changing the objects of the activity 

Focusing the act~vity on transforming and analysing representations. 

Supporting the situated cognition mode of thinking and problem solving. 

Accessing mathematical conceptions. 

0 Constructing meaning of conceptions (BewZvi, 2000:140-143), 

It is therefore clear that dynamic computer technology is an essential tool for teaching, learning and 

doing mathematics. It furnishes visual images of mathematical ideas. It facilitates organising and 

analysing data and it can be used to compute efficiently and accurately. It can support 

investigations by learners in every area of mathematics, including geometry, statistics algebra and 

measurement. When using dynamic computer technology learners can focus on decision making, 

reflection, reasoning and problem-solving. Dynamic computer technology is now available on which 

activities with hands-on, physical manlpulatives can be simulated on a computer (Cangelosi, 

2003: 147). 

Learners can learn mathematics more intensively with the appropriate use of technology. 

Technology should not be used as a replacement for bs ic  understanding and intuitions, it can 

rather be used to foster those understandings and intuitions. Learners' engagement with abstract 

mathematical ideas can be fostered through dynamic computer technology. It enriches the range 

and qual~ty of investigations by providing a means of viewing mathematical ideas from multiple 

perspectives (Cangelosi 2003:147). 

As illustrated by Olive (2000) many examples of a phenomenon can be created quickly and easily. 

This makes it easler for the teacher to facilitate inductive thinking. Inductive reasoning is in essence 

the sk~ll of making connections, which promotes creative thinking. 



The curriculum for learners should include many opportunities to learn how to use dynamic 

computer technology to understand mathematics better themselves and how to promote learners' 

learning of mathematical concepts. The availability of dynamic computer technology has forced 

mathematicians to rethink the way they teach mathematics. Learners need to develop critical 

thinking skills to understand the main concepts and to be able to apply them in a wide variety of 

situations (Pecuch-Herrero., 2000:181). Dynamic computer technology has become essential. 

According to Drier (2001:70,71) the majority of mathematics courses in PMTs' backgrounds are 

taught using traditional instructional methods with little use of dynamic computer technology. The 

use of dynamic computer technology can provide students with a deeper understanding of 

concepts embedded in a problem. Lecturers are challenged with the task of preparing students who 

can util~se dynamic computer technology as an essential tool in developing a deep understanding 

of mathematics, for themselves as well as for their students. Students should learn how to use 

dynamic computer technology as a conceptual teaching and learning tool 

It is believed that dynamic computer technology provides a promising environment for developing 

understanding of difficult symbolic ideas and techniques. According to Hennessy eta/. (2001:282) 

findings confirm the mplications that portable graphing technologies present a unique opportunity 

to help learners develop concepts and skills in traditionally dimcult curriculum areas. 

According to Schwars and Hershkowitz [2001:260) research has indicated that PMTs who have 

engaged in dynamic geometry tasks, are able to capitalise on the ambiguity of figures in the 

learning of geometrical concepts. Funkhouser (2003:165) reported that learners who used 

computer-augmented methods as a supplement to traditional instruction were better able than a 

control group to visualise and describe angles and polygons. Dynamic computer technology (e.g., 

geometric supposer) promoted the development of geometry concepts and positive attitudes 

toward mathematics. Ng and Teong (20035) says that the use of dynamic computer technology 

enables learners to model and have an interactive experience with a large variety of twe 

dimensional shapes. 

According to BenZvi (2000:128) dynamic computer technology has been developed to support the 

following: 

0 Learners' active knowledge construction, by doing and seeing mathematics. 

Opportunities for learners to reflect on observed phenomena. 



The development of learners' metacognitive capabilities. 

The renewal of instruction and curriculum. 

Jiang (2005) believes that the integration of dynamic computer technology will effectively help 

PMTs reach a better understanding of mathematical concepts and develop stronger problem 

solving abilities. 

4.4 GEOMETER'S SKETCHPAD (GSPQ 

4.4.1 Origin of Geometer's SketchpadB 

The GSPB was developed as part of the Visual Geometry Project, a National Science Foundation 

project. GSPB creator and programmer. Nicholas Jackiw, developed GSPB first versions in an 

open, academic environment in which teachers and researchers provided design input. Key 

Curriculum Press continues to study how GSPB can be most effectively used (Bennett, 1997:viii). 

4.4.2 Different uses of Geometer's Sketchpad 

The following uses of GSPB were documented during research done by the Visual Geometry 

Foundation (Bennett, 1997:ix): 

G S W s  power enable PMTs to create figures of arbitrarily great complexity, but PMTs who are 

beginners at using GSPB grasp concepts best when their thinking is directed toward 

relationships and simple constructions. 

GSPB can integrate dfferent geometry topics in ways textbooks can not. For example in a 

GSPB triangle investigation, PMTs might investigate line and angle relationships, area, 

transformations, symmetry and coordinate geometry. 

Opportunities for PMTs insight come in many places throughout the course of an investigation, 

not just from dragging a completed construction. For this reason, PMTs are explicitly asked to 

drag parts of their figures during the course of construction and leading questions are 

interspersed throughout the activities (see Appendix 6). 

According to De Villiers (2004703) GSPB can be used to develop PMTs' understanding of other 

functions of proof than just the traditional function of verification. These other functions are 

explanation, discovery, intellectual change and systematisation. However, proof has many other 

functions within mathematics, which are of greater importance than mere verification. Some of 

these functions are: 

Explanation: providing insight into why a statement is true. 



0 Discovev: the discovery or invention of new results. 

Intellectual challenge: the self-realisation derived from constructing a proof 

Systematisation: the organisation of various results into a deductive system of axioms, 

concepts and theorems. 

Bennett (1997:xiv) says that FMTs can construct translations, reflections, rotations, dilations and 

iterations with GSPB. PMTs can create animations that trace sine waves, explore other 

trigonometric identities and they can encapsulate complex geometric constructions in single steps. 

GSPB can also be used to enhance the teaching and learning of geometrical concepts and 

relationships of the PMTs (Ng & Teong, 2003:5). According to Garofalo and Bell (2004:233) GSPB 

is a tool to facilitate PMTs' visualisation and exploration of mathematics concepts. The dynamic 

features of GSPB can support the conceptual development of PMTs. 

4.4.3 Rationale for using GSPB as a learning environment 

Wllson (s a ) states that dynarnlc geometry programs such as GSPB provlde explorat~on tools w~th 

rlch potentlal for all ages The tools can be used to explore relationships of and among geometric 

objects In a plane 

PMTs can construct an object and then explore its mathematical properties by dragging the object 

with the mouse. All mathematical relationships are preserved, allowing the PMTs to examine an 

entire set of similar cases in a matter of seconds. This leads by natural course to generalisation. 

GSPB encourages a process of discovery in which PMTs first visualise and analyse a problem, and 

then make conjectures, before attempting a proof (Bennett, 1997:vii). 

4.4.4 A framework for teaching geometry with G S N  

Choi-Koh (1999:302) says that active visualisation is the process of forming and interpreting 

geometric representations of mathematical concepts, principles or problems, within dynamic 

computer technology (GSPB) across all levels of geometric thought. 

The traditional approach to geometry focuses mostly on developing the ability of making deductive 

proofs, especially for riders. It is aimed at (De Villiers, 2004710): 

Providing the PMTs with exemplars of how geometric content could be organised in learning 

activities corresponding to the Van Hiele levels. 

a Developing understanding of varied meanings of proof at the different levels. 



Actively engaging the PMTs in the process of defining in order that they may realise: 

.:. That different, alternative definitions for the same concept are possible. 

That definitions may be uneconomical or economical. 

That some economical definitions lead to shorter, easier proofs of properties. 

Developing the PMTs' ability to construct formal, economical definitions for geometrical 

concepts. 

Webb (2001 :96) suggests the following rationale for selecting worthwhile activities: 

Each learner's success must be measured in terms of bettering hidher own performance. 

Motivation (see § 3.4) is hard to maintain if the learner repeatedly fails. 

Avoid activities that are so structured that there is only one correct way to respond. 

Provide activities that are challenging. 

Most of the learners' time must be focused on the activities and not on the teacher (see § 

2.3.1). 

Prov~de individual activities to be accomplished in the company of peers. While individual effort 

is necessary for cognitive growth, peer interaction provides encouragement and assistance. 

GSPB presents the possibility of new kinds of tasks and new ways of looking at old tasks. In 

teacher education lecturers can use GSFQ to enhance their teaching abilities, and it has the 

potential to consolidate the lecturer's task in geometrical concepts, providing informal proofs of 

conjectures and easing PMTs' thinking in problem solving activities. Table 4.1 illustrates a 

suggested framework where some GSPB tasks of different emphases can be crafted in the 

mathematics classroom. These levels are not fixed (Ng & Teong, 20035). 

In the following activity the PMTs can experiment with drawing, dragging, measuring and labelling 

points segments, rays and lines according to the Van Hiele levels of geometric thought (see 5 
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Table 4.1: A framework for teach~ng geometry with GSFf& (Ng & Teong, 2003:5) 

LEVELS 

1 

2 

3 

4 

PURPOSE OF 

INSTRUCTION 

Teacher demonstration 

Templateslpre-made 

sketches 

Guided exploration 

/construction tasks 

Black box tasks 

TEACH 

CONCEPT 

CONSOLIDATE 

CONCEPT 

See Figure 4.1 See Figure 

4.2 

INFORMAL 

PROOF 

See Flgure 4.3 

See Figure 4.4 

PROBLEM 

SOLVING 



2.2.3.1}. These objects, along with the circle, are the building blocks of most geometric

constructions.

Levels 1 and 2: demonstration of sketches or templates/pre-made sketches

The PMTs can make use of demonstration sketches or pre-made sketches (See Figure 4.1 and

Figure 4.2). The difference between a demonstration sketch and a pre-made sketch is that in the

former, the lecturer shows the GSP@ sketch to his/her class and leads the PMTs to an

understanding of the key concepts presented by the sketch through careful oral questioning and

guided observation. The latter, on the other hand, involves PMTs exploring the sketches prepared

by the lecturer, following certain guidelines. PMTs can drag the items around, add new

constructions into the existing templates, make appropriate measurements and answer questions

accompanying the pre-made sketch. In this way they are steered into making conjectures based on

their observations and then testing them on the templates using the features of GSP@. A more

challenging task with a problem solving focus can also be presented using pre-made sketches (Ng

& Teong, 2003:6).

B
A

Figure 4.1: Pre-made sketch of adjacent angles (Ng & Teong, 2003, 6)

L

KJ

c

BA'

Figure 4.2: Different triangles created in different layers of triangles (Ng & Teong, 2003, 6)
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Level 3: guided explorations! construction tasks

According to Ng and Teong (2003:6) the PMTs can also make use of guided explorations or

construction tasks (see Figure 4.3), where they are provided with simple construction steps for

constructing certain figures. No pre-made sketches are used. PMTs construct the GSP@ sketches

from scratch and are directed to make discoveries about geometrical concepts explored through

lecturer questioning. These activities are usually given to PMTs who are already familiar with the

basic features of GSP@ so that time is not wasted on the technicalities of how to use GSP@.

ve~ragged

c

mLBAC=21.17°

mLABC=140.60°

mLBCA =18.23°

mLBAC+mLABC+mLBCA =180.00°

Figure 4.3: Explore the sum of angles in triangles (Ng & Teong, 2003, 7)

Level 4: Black box tasks

Ng and Teong (2003:8) suggest that with GSPs@ reliable accuracy in constructing basic objects,

construction tasks in GSP@ can involve the creation of more complicated figures for fun or for

verifying a geometrical phenomenon. Black box tasks entail a certain degree of freedom on

constructions. Room can be made for different approaches to constructing the same figure. PMTs

are tested based on their abilities to construct geometrically sound figures so that correct

conclusions can be drawn from their sketches. In doing so, PMTs are made to realise that their

sketches should possess certain geometric properties and understand that these geometric

properties are required to construct such objects. In the process, pre-service mathematics teachers

investigate the underlying geometrical relationships between the objects in the construction and

also make use of their problem solving skills, such as working backwards and making deductions.
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m SA = 2.24 em

m CA =2.24 em

Figure 4.4: Identify an isosceles triangle (Ng & Teong, 2003, 8)

GSP(@) can also be used to solve a more conceptual problem, for example:

The power plant problem

A power plant (see CD) has to be built to serve the needs of three cities. Where should the power

plant be located to use the least amount of high-voltage cable that will feed electricity to the three

cities? If the three cities are represented by the vertices of ~ABC, then this problem can be solved

by finding a point with minimum sum of distances to all three cities. In exploring this situation in

GSP@, PMTs can measure the three distances from an arbitrary point P and the three vertices A, B

and C of the triangle (see Figure 4.5). They can then sum these distances and move P around to

find a location with minimum sum. When such a location has been found, PMTs can make

conjectures concerning relations among P and the three vertices.

;--- ,

"-.
.'., '.' ,

.\ :'''~

Figure 4.5: Constructing the location of the power plant P
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After the PMTs have successfully located the pos~tion of the power plant and found a way of 

constructing that position, they have to explain why this point provides the minimum sum of 

distances to each vertex of the triangle formed by the three cities. This question challenges them to 

find a way of proving that their constructed point P must be the minimum point. 

4.5 CONCLUSION 

Over the last decade, there were huge progress in dynamic computer technology that have become 

more powerful, flexible and efficient. Despite all this progress, the penetration of these technologies 

in educational practice proves to be very slow. The shortage of technology in schools is one 

reason. However, the limited commitment of lecturers and curriwlum developers and the great 

ignorance about teaching and learning in computer-based environments are important factors 

contributing to the scarcity of actual implementation in the classrooms. Educators should be 

encouraged to view dynam~c computer technology as legitimate extensions of cognitive systems 

(Ben-Zvi, 2000: 149). 

Teachers are a fasanating, intelligent, and somewhat eclectic group of people. Yet some teachers 

resist change and nobly cling to traditional teaching models; spurning the integrat~on of dynamic 

computer technology. In doing so they deprive their learners and themselves of a creative and 

exit~ng learning environment. 

Whether we like it or not, information and dynamic computer technology are the learning and 

teaching media of our time. 



5.1 INTRODUCTION 

In this chapter the empirical investigation is described and motivated. The nature of the research is 

both quantitative and qualitat~ve and mult~ple methods of data collection were employed with a view 

to increase the reliability of the results. 

The layout of this chapter covers the aim, experimental setting, tasks, the population and sample, 

the instruments used, the variables used, the method of research, the statistical techniques, which 

were used to analyse the data and the conclusion. 

5.2 AIM OF INVESTIGATION 

The aim of the investigation was to gain more knowledge with regard to the relationship between a 

dynamic technological learning environment and the conceptual understand~ng of PMTs in 

geometry as well as the relationship between a dynamic technological learning environment and 

the study orientation of PMTs (see 5 1.2). 

The quantitative research sewed to enable the researcher to determine the effect of a dynamic 

technological learning environment, firstly on the conceptual understanding and secondly on the 

study orientation of PMTs in geometry. 

Mathematics education lecturers in the faculty Education Sciences, of the North-West University, 

Potchefstroom Campus, decided that all the PMTs in their third year (2005) had to participate in the 

dynamic computer programme. This arrangement excluded the possibility of selecting a control 



group. A pre-experimental research design was employed (Leedy & Ormrod, 2001:229). To 

strenghten the research, h e  researcher also did a qualitative research (interviews). The qualitative 

research provided an opportunity to interact faceteface with the PMTs through interviews in order 

to gain more lns~ght in how the PMTs experienced GSPB. 

Furthermore, this study was both operational and applied in nature as it was carried out in the 

PMTs' learning environment. 

Both qualitative and quantitative research were conducted (see Figure 5.1). 

Quantltatlve research Qualitative research 

Research design 

To determine the effect of a dynamic 
technological environment on: 

The mathematical conceptual 
understanding of PMTs 
The studjr orientation of PMTs 1 

Research design 

To strengthen the 
quant~tat~ve research 

5.3 METHODOLOGY 

1 
lnstruments 

Mayberry Type Test 
Study Orlentatlor? In Mathemattcs 

5.3.1 Quantitative design 

The pre-experimental design namely the onegroup pre-test/pos&test design (see Table 5.1) was 

used. In a onegroup pre-testlpost-test design, a single group (a) has a preexperimental 

lnstruments 
Structured ~ntervtews 

(SOM) Quest~onnalre 

F~gure 5 1 Combmod research method 



evaluation, then (b) is administered the experimental treatment, and finally (c) is evaluated after the 

experiment (Leedy & Ormrod, 2001 : 235). 

Table 5.1: The onegroup pretest-posttest design (Leedy & Ormrod, 2001235) 

I 

Group I Pre-test I Obs 1 Obs I Tx I Obs I Obs I Post-test 

GROUP 

Where: 

Obs: lnd~cates that observat~ons, reflecting on the dependent variable, are made 

Tx: indicates that a treatment, reflecting the independent variable, is presented 

TIME ? 

The researcher did a pilot study in 2004 to gain some experience of the GSP@ and to test the 

chosen procedures and mater~als. 

The pretest (SOM and Mayberry Type Tests) was administered during February 2005. The PMTs 

were assured of the confidentiality of the results. The answers to the questionnaires were 

anonymous and identification numbers were allocated to each PMT (McMillan & Schumacher, 

2001:198). The same identification numbers were used during the administration of the prdest  and 

the post-test to make comparison possible. 

There were no right or wrong answers to the SOM questionnaire and PMTs were encouraged to 

give honest answers. The answer sheets were collected immediately afterwards. The PMTs wrote 

the Mayberry Type Test (see Appendix A) and the SOM Test on the same day. 

ARer the intervention programme had been completed the post-tests were administered. The 

researcher marked the Mayberry Type Test as well as the SOM questionnaire and the marks were 

moderated by a specialist on this field. The scores for the Mayberry Type Test and the SOM test 

were submitted to Statistical Consultation Services of North-West University, Potchefstroom 

Campus, for processing the data. 

5.3.1.1 Intenrention 

The activities were designed according to the reconstructive approach and were structured in 

accordance with the Van Hlele theory of learning geometry. 



The actlvlties (see Append~x 6 and CD) that the partlclpatlng lecturer developed, focused on the 

development of understandmg the concepts to be covered durmg the course. 

In Activity 1 the PMTs learned how to draw a triangle with G S m .  Then, in Activity 2 they developed 

the concepts of midpoint, median and ratio (asssting in the development of the concept of 

similarity). During Activity 3 they developed the concepts of perpendicular bisector, circumcircle and 

right-angled triangle. Activity 4 aimed to develop the concepts of altitudes, acute triangle, obtuse 

triangle and right-angled triangle. After that they developed the concepts of angle bisectors and 

inscribed circles in Activity 5. Finally, in activity 6, the concepts of radius, isosceles triangle and 

base angles of an isosceles triangle were reinforced. 

The language of instruction was Afrikaans and the PMTs were Afrikaans speaking students. 

Completion of the activities occurred through medium Afrikaans The current dissertation is 

presented in English and for the benefit of the reader the activities were translated into English. 

5.3.1.2Variables 

The following dependent and independent variables have been used in this study: 

lndependert variables 

A dynamic technological learning environment in the form of a Van Hiele based learning 

programme, employing a software package namely Geometer's Sketchpad@ 4 (GSPB) in a 

problem solving context. 

Dependent variables 

The following dependent variables were used: 

Study Orlentation in Mathematics (SOM) Questionnaire that consists of the following fields: 

Study attitudes, mathematics anxiety, study habits, problem-solving behaviour and study milieu. 

Conceptual understanding of triangles. 

5.3.1.3 Study population and sample 

The study population consisted of 371 third-year education students (In 6 classes) following the 

general mathematics module in geometry at the North-West University, Potchefstroom Campus. A 

sample of 26 prospective mathematics teachers from one of the classgroups took part in the 

experiment. 
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5.3.1.4 Instruments 

For the purposes of a quantitative research two questionnaires were completed by the participants. 

The first questionnaire was the Mayberry Type Test (see Appendix A) to determine the influence of 

a dynamic computer technology programme on the conceptual development of geometric thought 

levels of PMTs (see 5 3.2). The second questionnaire was the Study Orientation in Mathematics 

(SOM) Questionnaire (see § 3.3.1) to determine the influence of a dynamic computer technology 

programme on the study orientation of PMTs. 

Mayberfy Type Test 

The Mayberry Type test (Lewin & Pegg Version as published by Lawrie, 1998) includes 40 items 

each with up to 5 sub-items on a variety of geometric concepts. This questionnaire was used to 

assess the concepts included in the activities over the first four Van Hiele levels (see !j 2.2.3). The 

answers to the items were assessed and scored according to the acquisition scales of Gutierrez el 

aL (1999) (see 5 2.2.3.2). 

Study Orientation in Mathematics (SOM) Questionnaire 

The Study Orientation in Mathematics (SOM) Questionnaire (Maree et a1..1997) was used. 

According to Maree et a/. (1997:26) the level of reliability in terms of Cronbach Coefficient Alpha 

(grade 8 and grade 9 learners), for the SOM questionnaire as a whole ranges from u=0,89 to 

u=0,95. Steyn and Maree (2002:13) report on an action research done during 2000-2001, involving 

first-year engineering students in an extended study programme of the School of Engineering at the 

University of Pretoria. These two researchers posit that SOM fields, study attitude, mathemat~cs 

anxiety, study habits, problem-solving behaviour and study milieu, could be regarded as significant 

predictors of performance in mathematics at university level. The SOM questionnaire camprises 

seventy six questions covering the five fields of learning skills (see Table 5.2) 

Table 5 2: Number of items per SOM heids (Maree et,al., 1997:7-9) 
NUMBER OF ITEMS 

14 

14 

SOW FIELD 

3 Study habits (SH) 

1 
- 
2 

Study attitudes (SA) 

Mathematics anxiety (MA) 
- 



The rationale for using the SOM questionnaire includes the following: 

To measure (before and after intervention) the influence of a dynamic technological learning 

environment on the study orientation of PMTs. 

To ascertain whether or not the intervention had any effect on improving the study orlentation in 

mathematics of PMTs. 

The questionnaire could be completed by making use of a five-point scale (see Table 5.3) 

according to which the PMTs could estimate their response ratings about the five fields of learning 

skills. 

5.3.1.5 Data analysis 

The Mayberry Type Test was moderated and the Gutierrez, Jaime and Fortuny (1991:237-239) 

method (see § 2.2.3.2), to evaluate those answers that denote a possible transition between the 

levels, was used. The SOM questionnaire was also moderated to ensure reliability and content 

validity. 

Tablc 5.3: The five-poirlt scale of the SCM questionnare [Maree, 1996:l) 

For both the Mayberry Type Test and the Study Orientation in Mathematics (SOM) Questionnaire 

the follow~ng statistical procedures and techniques were applied: 

Rarely 

The assistance of the Statistical Consultation Services of the Northwest University, 

Potchefstroom Campus, was sought to analyse the quantitative data. Descriptive statistical 

techniques, means and standard deviation, were used to describe changes in the group. 

Cronbach Coefficient Alpha was employed to determine the reliability of the Mayberry Type 

Test and was also used to estimate the reliability of the SOM Test that had no right or wrong 

answers or scores and whose test items had more than two scores. 

The paired t-Test was used to compare the mean difference within the group as an indication of 

statistically significant differences. When p<0,05, a statistically signifcant difference between 

the groups exists (Gall et a1.,1996:391). 

Effect-size (Steyn, 1999:3) was used to determine whether the statistically significant 

differences between the pretest and post-test results were of practical significance. 

Sometimes 

I 

Frequently 

Dto15% 

Generally 

I 

Almost always 

16 to 35% 36 to 65% 66 to 85% 86 to 100% 



The follow~ng formula was used to determine the effect-s~ze: 

with dzeffect size, L x  the mean of differences and s=standard deviation of the group. If 

0,2 5 d < 0,5 it indicates a small effect, if 0,5 5 d < 0,8 it indicates a medium effect, if d o,a it 

indicates a large effect Only if d 0,s is there a practical significant difference between the groups 

and the levels, although an effect size of 0,5 5 (1 < 0,8 indicates a possible practical significant 

difference. 

5.3.2 Qualitative design 

The PMTs made use of a dynam~c computer programme namely GSP @ (see § 4.4). Initially the 

PMTs identified and operated on shapes according to their appearance. They recognised figures as 

visual "gestalts". Thereafter, they started to recognise and characterise shapes by their properties. 

Later on during the programme, some of the PMTs managed to form abstract definitions and 

distinguish between necessary and suffnent sets of conditions to develop specific concepts. 

Phenomenological interviews were held after the PMTs had completed the dynamic computer 

technology programme. A phenomenological interview is regarded as a speclal type of imdepth 

interwew used to study the meanings of a lived experience among selected participants (see § 

5.3.2.2), 

Responses, as captured on tape during the interviews, were transcribed. The transcriptions were 

translated into English because this dissertation IS presented in English. All the information gained 

from the interv~ews was interpreted and documented (see 5 6.2.2.3). The researcher discussed the 

findings with the participating lecturer. 

5.3.2.1 Study population and sample 

In executing the qualitative research, interviews (see Appendix C) were held. Britten (1995:256) 

says qualitative interviewing is a flexible and powerful method. According to Leedy and Ormrod 

(2001:159) interviews can yield a great deal of useful information. 

Seven PMTs were selected for interviews as sample for the qualitative study. The PMTs were 

selected on the basis of their profile as reflected by their mathematics marks of the June 2005 
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examination in the geometry module Therefore 3 low and 4 top performers were identified to take 

part in the qualitative part of the  research^ 

5.3.2.2 Data gereration 

McMillan and Schumacher (2001.444) identify three types of interviews, namely interview guide 

(semi-structured interview), informal conversation (unstructured interview) and standardised 

interview (structured interview). See Table 5.4. 

Table 5.4: Types of hlervrews (McMillan & Schumacher, 2001:444) 

TYPES OF INTERVIEWS 

Informal conversation I Questions emerge from the immediate context. 1 
- 

Interview guide 1 Topics are outlined in advanced 

1 Standardised interview 1 The exact words and sequence of questions are predetermined1 

Qualitat~ve studies oflen require planned interviews so that the researcher can design the format in 

advance. The researcher used phenomenological interviews which is a specific type of iwdepth 

intewiew. Phenomenological interviews hvestigate what was experienced, how it was experienced 

and finally the meanings that the interviewees assigned to the experience. The experience studied, 

was whether a dynamic computer technology programme such as GSPB, affected the 

mathematical conceptual understanding and study orientation in mathematics of PMTs (McMillan & 

Schumacher, 2001:445). 

This method, the in-depth interview, is one of the most powerful tools in qualitative research. When 

selecting mdepth interviews for a qualitative study, the researcher assumes that the perspectives 

of the interviewees, who have personal experiences of the Issue under investigation, form a vital 

source of information. In a study that uses the in-depth interview, the researcher decides in 

advance to which extent the interview will be structured. Most in-depth interviews use at least some 

predetermined system that places them between the structured and unstructured interviews 

(McMillan & Schumacher, 2001 :446). 

In a phenomenological interview the aim is to discover the interviewee's own framework of 

meanmgs and the research task is to avoid imposmg the researcher's structures and assumptions 

(Britten, 1995.252). 

Kvale (1996:32,33) says that the interviewees describe as precisely as possible what they 

experience and feel and how they act. The primary task for both the interviewer and the 
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Intervlewee, however, remalns that of obtamng descriptions so that the researcher will have 

relevant and preclse material from whch to draw interpretations. 

5.3.2.3 Data analysis 

Phenomenological interviews were held w~th the PMTs, afler the intervention had taken place 

because the PMTs were then able to reflect on the activities that they had performed with GSPB. 

Responses to the interviews were recorded manually in the field book shortly afler the interviews. It 

was done in this manner for the following reasons: 

To avoid distract~ng the interviewer's concentration if notes were to be taken during the 

mterview 

s To avoid making the interviewee nervous by writing down hislher words during the intew~ew. 

The PMTs were interviewed to 

collect information about the positive and negative influences that the dynamic technological 

learning environment (GSW) had exercised on ther understanding of mathematics and all the 

variables. 

identify improvements, if any, related to the utillsation of the dynamic technological learning 

programme. 

gain additional information about the activities that were used during the lessons. 

The duration of the interviews ranged between twenty and forty minutes per interv~ew. 

The data obtained through interviews were analysed in a narrative manner. In the case of the 

interviews the actual words of the interviewees were quoted as recorded in the interviewer's field 

notes and inductively interpreted in a narrat~ve  manner^ 

5.4 ETHICAL ASPECTS 

A letter, requesting permission to use the afore mentioned study population, was sent to the Dean 

of the Education Department of Sc~ence, of the North-West University Potchefstroom Campus (see 

Appendix D). 

Meetings were held with the mathematics subject chairman and the participating lecturer in order to 

explain the research aims, role of the participating lecturer as well as the support and commitment 

from them. 



Furthermore, the details of the research were fully discussed with the mathematics subject 

chairman as well as the padicipatmg lecturer and the researcher also negotiated the procedure of 

how the classes would be conducted. As far as possible, the answering of the tests and 

questionnaires by the PMTs were conducted in such a way as to minlmise disruption of lectures. 

The lecturer involved, as well as the researcher, discussed the experimental programme with the 

PMTs and obtained their cooperation as participants in the research 

5.5 CONCLUSION 

The use of a dual research approach, i.e, quantitative and qualitative research approaches afforded 

the researcher the opportunity to critically discuss and ~dentify attributes about the statistical data 

Chapter 6 presents the research findings of the data gathered quantitatively and qualitatively and 

the statistics will be analysed and the results interpreted. 



6.1 INTRODUCTION 

The aim of this research (see § 1.2) was to investigate whether and how a dynamic technological 

learning environment will influence the conceptual knowledge of PMTs. The purpose of this chapter 

is to present and discuss the research find~ngs. 

The descriptive statistical results with regard to the quantitative research approach are discussed in 

paragraph 6.2, while the qualitative results are described in paragraph 6.3, followed by a discussion 

of the quantitative as well as the qualitative research findings in paragraph 6.4. Thereafter a 

conclusion has been made in paragraph 6.5. 

6.2 RESULTS 

6.2.1 Quantitative results 

6.2.1.1 Reliability and validity of instruments 

Conceptual understanding of geometry concepfs 

The Mayberry Type Test (see § 5.3.1 4 )  was the instrument that the researcher used to determine 

whether or not the dynam~c computer technology had an influence on the conceptual understanding 

of the PMTs over the first four Van Hiele levels (see 5 2.2.3). The answers to the items were 

quantified according to the acquisition scales of Gutierrez el a/. (1991) (see 5 2.2.3.2). 

Cranbach Coefficient Alpha is a test for a model or survey's internal consistency (Gall el a/., 

1996:256,257). It assesses the reliability of a rating which measures some underlying factor. A 

score is computed from each test item and the overall rating, called a 'scale' is defined by the sum 



of these scores over all the test items. The reliability of scores should be established before the 

research is undertaken and a reliability evaluation for the posktest has to be performed as well 

Cronbach Coefticlent Alpha (see Table 6.1) was employed to estimate the reliability of the 

Mayberry Type Test. 

Table 6.1: Level of reliability of Maybcrry T y ~ e  Test (Cronbach Coefficient Alpha) 

/ GEOMETRIC FIGURES PRE-TEST ALPHA VALUES 1 

Computation of the Cronbach Coefficient Alpha had a moderate alpha coefficient reading @0,5), 

indicating suftic~ent internal consistency and reliab~lity 

1 

2 

3 

- 4  

5 

Study Orientation in Mathematics 

The SOM questionnaire was the instrument that the researcher used to determine whether or not 

the dynamic computer technology had an influence on the study orientation of the PMTs. Gay 

(2000.174) and McMillan and Schummacher (2001246) contend that the Cronbach Coefticient 

Alpha is also used to estimate reliability of a test that has no right or wrong answers or scores and 

whose test terns have more than two scores. As explained earlier in chapter 5 (5 53.1), the items 

of the SOM questionnaire have no right or wrong answers. Instead, the PMTs were required to 

choose the option that best suited them from the five-point given scale. For these reasons 

Cronbach Coefficient Alpha (see Table 6.2) was also employed to estimate the reliability of the 

SOM questionnaire as well as the reliab~lity of the post-test. 

According to Maree et al. (1997126) the estimated reliability level of the SOM questionnaire ranges 

from 0,74 to 0,95 for Afrikaans language speakers. 

I 
Squares 

- 
Right-angled triangle 

- 
Isosceles triangle 

-- 

-Congruency 

Similarity 

0.50 

0.59 

0,67 
- - .  

0,50 
- 

0,50 



Computation of the Cronbach Coeficient Apha had a high alpha coefficient reading (>0,8), 

indcating high internal consistency and reliability. 

Table 6 2 Level of rel~abrl~ty of SOM frelds (Cronbach Coeffmcnt AlplraJ 

Maree et al (1997:7) explain that, in terms of construct validity, the SOM questionnaire aims at 

measuring the study attitudes, mathematics anxiety study habits, problem-solving behav~our and 

the study rn~lieu of learners when learning mathematics Each of these phenomena was clearly 

defined in chapter 3 (see 5 3.3.1), 

1 

2 

3 

4 

5 

6.2.1.2 Significance of difference 

A paired t-test was conducted to establish the mean difference between the pretest and post-rest 

results within the experimental group that received the treatment. The mean difference within the 

experimental group was practically significant (see § 5.3.1.5) for both the Maybeny Type Test (see 

Tables 6.3-6.7) and the SOM test (see Table 6.8). 

It was desired that the mean difference within the experimental group should differ practically 

significantly in order to accurately measure the influence of the treatment on the experimental 

group. The Cohen effect size (d), Cohen's category (Cohen, 1988:222), t-value and p-value were 

used as an indication of practical o meaningful difference (see 9 5.3.1.5). It is clear, from the 

results, that the dynamic computer programme has a positive influence on the conceptualisation of 

PMTs A synopsis of the 1-test results is provided in Tables 6.36.8. 

Study attitudes (SA) 

Mathematics anxiety (MA) 
- 

Study habits (SH) 

Problem solving behaviour (PSB) 

Study milieu (SM) 

3 
0,83 

0,77 

0,80 
- 

0,81 
- 

0,77 
) 



Conceptual understanding of geometry concepts 

Table 6 3 t-Test, concepfi~alisation of squares 

** medium effect, *'* large effect (practically significant) 

The test results (see Table 6 3) revealed that there is not a statistically significant difference 

(p=0,14) at level 1 ind~cating that it is not practically significant. A possible reason why there is not 

a statistically significant difference at level 1 is that the PMTs had already acquired a high level of 

conceptual understanding before intervention. The test results (see Table 6.3) revealed a 

statistically significant difference between levels 2 to 4 (pc0,OI). the effect size of level 2 was 

medium and the effect slzes of levels 3 and 4 indicated a large effect. 

Table 6 4 t-Test, concepfuabsatlon of right-angledtr~angles 

"* large effect (practically s~gnificant) 

The test results (see Table 6.4) revealed a stat~sticdly significant difference at the four levels 

(p<0,01), the effect sizes of all the levels were large and therefore of practical significance. 



Table 6.5: &Test, concept~~al;sat;on of ~sosceles triangles 

- - 

** medium effect, "* large effect (practically significant) 

STATISTICAL 

SIGNIFICANCE 

(P < 0,OJ) 

0,001 

0,003 

<0,0001 

0,003 

The test results (see Table 6.5) revealed a statistically significant difference at the four levels 

(p<0,01), the effect sizes of levels 1 and 4 were medium and the effect sizes of levels 2 and 3 were 

EFFECT 

SIZE (* = &) 
0 

0,72** 

0,84"* 

1,42*** 

0,66" 

STANDARD 

DEVIATION (a) 

0,28 

0,44 

0.17 

0,32 

ISOSCELES 

TRIANGLES 

Level 1 

Level 2 

Level 3 

Level 4 

large and therefore of practical significance 

n 

26 

26 

26 

26 

MEAN 

DIFFERENCE 

( A 4  
0,21 

0,37 

0,24 

0,21 

rable 6 6 !-Test, conceptuahsation of congruency 

small effect, '* medium effect and *" large effect (practically significant) 

CONGRUENCY 

Level I 

Level 2 

Level 3 

Level 4 

STATISTICAL 

SIGNIFICANCE 

(P < O P 5 )  

0,011 

0,042 

<0,0001 

<0,0001 

The test results (see Table 6.6) revealed a statistically significant difference at the four levels 

(p<0,01), the effect size of level 1 was medium, the effect size of level 2 was small and the effect 

sizes of levels 3 and 4 were large, indicating an effect size of practical significance. 

EFFECT 

SIZE (d = +) 

0,54"' 

0,43* 

1,60*** 

1,47*** 

STANDARD- 

DMATION 

(0) 

0,29 

0,49 

0,19 

0,47 

n 

26 

26 

26 

26 

MEAN 

DIFFERENCE 

(A4 
0,15 

0,21 

0,30 

0,69 



Table 6.7: &Test, conceptualisation of similarity 

" medium effect, "* large effect (practically significant) 

STANDARD- 

DEVIATION (o) 

STATISTICAL 

SIGNIFICANCE 

(P < oP5) 

0,0001 

<0,0001 

<0,0001 

0,003 

SIMILARITY 

Level 1 

Level 2 

Level 3 

Level 4 

The test results (see Table 6.7) revealed a statistically significant difference between the groups 

(pc0,OI). The effect size of level 4 was medium and the effect sizes of levels 1 to 3 were large and 

practically significant. 

EFFECT 

SEE (d = @) 

0,88*** 

1 ,07*" 

1,83*** 

0,64** 

0,31 

0,33 

0,35 

0,29 

26 

26 

26 

26 

Study Orientation in Mathematics 

n 

0,35 

0,31 

0,19 

0,45 

Table 6.8: t-Test: Study Orientation in Mathematics (SOM) Quest~onnaire 

MEAN 

DIFFERENCE 

*** large effect (practically significant) 

The test results (see Table 6.8) revealed a statistically significant difference between the SOM 

fields (p<0,01). The effect sizes of all the levels were of practical significance. It is clear that a 

dynamic computer technology programme such as GSW, results in a marginally significant 

difference. 
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General acquisition of conceptual understanding and study orientation in

mathematics

Conceptual understanding of geometry concepts

Research done by Van der Sandt (2003:83) revealed that learners leave school with higher levels

and degrees of geometric acquisition than the levels and degrees of acquisition attained by the

PMTs who had been exposed to three years of academic and mathematical methodology training.

It seems that the geometry acquisition that learners obtained during school, decays significantly

within only three years, to levels far below those levels expected from teachers. This decay could

point to ineffectivenessof the educational paradigm followed at school level where rote learning is

encouraged. The emphasis is on memorisationwithout conceptual understanding of mathematics.

This pattern continues into the PMTs' pre-servicetraining, especially considering the low degree of

geometry acquisitionshown by PMTs.

6.2.1.3

This problem can be addressed by integrating a dynamic computer programme into the curriculum

for teacher education.

The PMTs consistently achieved higher levels of acquisition after they had followed the intervention

programme, leading to the conclusion that the intervention programme did have a positive effect on

the acquisition of higher levels of geometric thought. KL is the cut off line above which the degrees

of acquisition are high and the dotted line MN is the cut off line below which the degrees of

acquisition are low. Between the two lines the degrees of acquisition are intermediate (see Figures

6.1 to 6.5).

Degree of acquisition for squares

-+- Pre-test- Post-test

Van Hiele levels

Figure 6.1: Degree of acquisition for squares
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The graph compares the degree of acquisition for squares (see Figure 6.1) before intervention and

thereafter. The post-test reveals that the PMTs are on a higher degree of acquisition after the

intervention programme. According to Gutierrez et al. (1991 :238), the PMTs achieved a high

degree of acquisition in levels 1 and 2 and their degree of acquisition for levels 3 and 4 is

intermediate (see Table 2.1).

120
100

~ 80cu
C 60Q)

~ 40Q)

a.. 20

o

Degree of acquisition for isosceles
triangles

-+- Pre-test- Post-test

1 2 3 4

Van Hiele Levels

Figure 6.2: Degree of acquisition for isosceles triangle

The graph compares the degree of acquisition (see Figure 6.2) for isosceles triangles before

intervention and thereafter. According to Gutierrez et al. (1991:238), the PMTs' degree of

acquisition for levels 1, 2 and 3 is high after having followed the intervention programme, but they

reached a low degree of acquisition for level 4 (see Table 2.1).

100

G) 80
C)
S 60c
B 40a..
G)

a.. 20

o

Degree of acquisition for right-angled
triangles

L

I

-+- Pre-test

N- Post-test

1 2 3 4

Van Hiele Levels

Figure 6.3: Degree of acquisition for right-angled triangle
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The graph compares the degree of acquisition (see Figure 6.3) for right-angled triangles before

intervention and thereafter. According to Gutierrez et al. (1991 :238), the PMTs' degree of

acquisition for levels 1, 2 and 3 is high after following the intervention programme, but they reached

a low degree of acquisition for level 4 (see Table 2.1).

Degree of acquisition for similarity

LI~ Pre-test- Post-test

Van Hiele Levels

Figure 6.4 Degree of acquisition for similarity

The graph compares the degree of acquisition for similarity (see Figure 6.4) before intervention and

thereafter. According to Gutierrez et al. (1991:238), the PMTs' degree of acquisition for levels 1 and

2 is high after having followed the intervention programme, but they reached an intermediate

degree of acquisition for levels 3 and 4 (see Table 2.1).

80

&60
ra-
; 40
~

&? 20

o

Degree of acquisition for congruency

L
I --+- Pre-test
--- Post-test

1 2 3 4

Van Hiele Levels

Figure 6.5: Degree of acquisition for congruency

The graph compares the degree of acquisition for congruency (see Figure 6.5) before the PMTs

followed the intervention programme and thereafter. According to Gutierrez et al. (1991 :238), the

CHAPTER 6 79

100

Q) 80
C)
C'IS 60:-
c
Q)

40u
...
Q)
Q. 20

0

1 2 3 4



PMTs' degree of acquisition for levels 1 and 2 is high after having followed the intervention 

programme, but they reached an intermediate degree of acquisition for levels 3 and 4 (see Table 

2.1). 

Geometry is a practical and structured guide for approaching situations and it is evident that for 

PMTs to do well in mathematics they have to understand geometric principles and concepts (see 

Figures 6.1 to 6.5). Geometry should not be learned as a set of rules but it should rather be 

understood and the PMTs should know how to use and apply geometry. 

Study Orientation in Mathematics 

A high percentile rank indicates a positive study orientation while a low score indicates a negative 

study orientation in mathematics. A h~gh percentile ranking for mathemat~cs anxiety indicates that 

the PMTs have a relatively iow level of anxiety for mathematics (Mareeet a/., 1997-15). 

According to Maree etal. (see Table 6.9) the followmg data can be used as a guideline for the 

interpretation of the scores. 

Table 6.9: A gu~deline forfhe inferprefafion of the percentile scores (Maree et al., 1997:15) 

The raw mean scores, of the PMTs, were converted to percentile ranks (Maree eta/.. 1997:14) and 

showed that the level of study orientation of the PMTs is significantly higher (see Figure 6.6) after 

they have completed the dynamic computer technology programme (GSPB). The line at 70% 

indicates that the different fields above that line have a positive study orientation. 

PERCENTILE 

SCORE 

7 0  100% 

4@69% 

0.39% 

INTERPRETATION 

Positive study orlentation 

Neutral: can contribute to positive or negative study orientation 

Negative study orientation 



Degree of acquisition for study
orientation in mathematics

B
-+- Pre-test
__ Post-test

Figure 6.6: Degree of acquisition for study orientation in mathematics

The graph compares the level of acquisition for study orientation in mathematics (see Figure 6.6)

before intervention and thereafter. The PMTs consistently achieved higher levels of acquisition,

after they had followed the intervention programme, leading to the condusion that the intervention

programme did have a positive effect on the acquisition of higher levels of geometric thought.

AB is the cut off line above which the study orientation in mathematics (or specific SOM fields) is

positive and line CD is the cut off line belowwhich the study orientation in mathematics is negative.

Between the two lines the study orientation in mathematics is neutral. The level of acquisition for

SA, MA and SM is above 70%, which indicates that the PMTs clearly have a positive study

orientation in these three fields. The level of acquisition for SH and PSB is less than 70% and

therefore the PMTs' study orientation in these two fields is neutral (see Table 6.9).

6.2.2 Qualitative results

6.2.2.1 Reliability and validity

According to Cowger and Menon (2001:477) triangulation is the process of incorporating multiple

viewpoints of the same phenomenon so as to provide greater validity to the research endeavour. It

provides additional evidence of what the PMTs were observing. To ensure the internal validity of

the interviews,the techniquesof triangulationwere used (see Figure6.7).
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I Literature study I 
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Mayberry Type Test 

SOM Questionnaire 

1 I 

Figure 6 7 Triangulation of perceptions 

In the study the tr~angulat~on techn~que lnvolved lookmg for common perceptions from d~fferent 

sources and lor statements that appeared in the ~nterviews 

6.2.2.2 Phenomenological interviews 

The bas~c purpose of the phenomenological lntervlews (see g 5 3 2 3) was to gather addt~onal 

mformation of how the PMTs felt about the dynamic technolog~cal programme (GSP@) 

6.2.2.3 Discussion of the qualitative research findings 

The questions set to the participants (S) were taken from a prepared interview schedule (see 

Appendix C) and the researcher (R) posed further questions as these came up in the spontaneous 

development of the interaction between the nterviewer (R) and the interviewee (S). The core 

responses that were received are noted below (Table 6.10): 

Table 6.10: Core responses 

QUESTION 

On a scale of 1 to 10, 10 

being the highest, how much 

do you like mathematics? 

Do you always do your 

assignments? 

"How much time do you 

spend on assignments?" 

RESPONSES 

LOW ACHIEVERS 

Most of them 

It depends on how much 

other work I have to do. 

HIGH ACHIEVERS 

I am doing all my 

assignments. 

I try to do more than 

necessary 



In general, what influences If I understand the work 

you to work hard in better it will influence me 

mathematics? (evidence of to work harder. 

task orientation, ability 

orientation, social 

orientation). 

"Is there anything that l don't think so 

causes you to work harder?" 

How good are you at Not so good.- 

"How do you know?" / I struggle to do all my 

assignments. 

Are you better at some I don't like geometry at all. 

sections of mathematics I 
than other sections? For / 
example, are you better at 

algebra than geometiy? 

Why? 1 I do not understand the 

1 work, I cannot do t k  

1 work. 

Do you think it takes special i ~ e s  I think so. 

talent to do well in / 
mathematics? I 
Do you have such talent? I No, my marks are not so 

good. 

Can people do well in Not really 

mathematics even without / 
special talent? I 

I 
I 

Good results. If my 

results are not so good it 

will inspire me to work 

harder. 

The stimulation when my 

marks are good 

I think I am fa~rly good 

I understand the work 

quite quickly. 

I am betterat algebra 

and trigonometry than at 

geometry 

I didn't understand it 

when I was at school but 

now I understand it 

better. 

I think so, but the talent 

develops over time. 

I think so, my marks are 

good. 

I don't think so 



I / You have to understand You have to know what ~ 
-low important is 

nernorisation in 

nathematics? 

>an someone who is no1 

tery good at memorisatior 

l e  good at mathematics? 

i o w  often do you do the 

east amount of work yo11 

xn  to get by? (look for 

widence of work avoidant- 

xientation). 

-low do you study for a test 

n mathematics? 

he work 

t is very important. 

'eople with talent do not 

rave to memorlse that 

nuch. 

f I do not know what IS 

joing on then I will not cb 

ny work. 

revise the problems that 

ve have done in class 

and then I will do a lot of 

~roblems again and 

rgain. 

is going on. 

It is not only a subject 

that You must 

understand, you have to 

learn as well. There is a 

difference between 

memorisation and learn. 

If I am talking aboul 

learning then I know 

what is going on, if you 

memorise then you don't 

know what is going on, 

you have to understand 

what is going on. 

Yes, when you have 

talent you can still do 

well. 

It depends on how much 

work I have to do, if I 

have a lot of work in my 

other subjects then I will 

spend less time on 

mathematics but if I have 

enough time then I will 

do more than expected 

from me. 

I do the problems that I 

have difficulty with first of 

all and then I will do 

revision. 



special skills for studying 

mathematics? 
- 

Give examples of the 

activities you have done in 

mathematics. 

Of the activities that you 

have mentioned in your 

response to the last 

question, are there any that 

were particularly enjoyable 

or interesting? 

Are there problems in 

mathematics that can be 

solved in more than one 

way? Give examples 

-- 
Does GSP ~nfluence your 

ability to understand 

mathematics in a better 

way? 

Is there anything that you 
think is important about 

learning mathemat~cs that 

you haven't said? 

Cubes and GSP. 

- 

GSP helps me tc 

understand mathematics 

better and therefore it is 

easier to learn. 

- 
Yes, I think so. 

Yes, it helps me to 

understand the work, 

No I think I have said 

everything. 

GSP which is very 

interesting and cubes. 

W e n  you have to do 

geometry it is very easy 

to draw the sketches and 

you can see the results 

very quickly. I can see 

gradually what happened 

and then it is easier to 

understand the work 

Yes, especially with OBE 

where the students have 

to use their own way of 

solving a problem. 

Definitely. I enjoy it very 

much and I understand 

the work auicker. 

I can just say agaln that 

GSP is a nice tool to 

have in hand. 

The interviews conducted with the PMTs provided some insight into the nature of the influence of a 

dynamic computer programme on the geometry conceptualisation of PMTs Firstly, in a dynamic 

technologically enhanced learning environment a positive correlation seems to exist between PMTs 

that prefer mathematics as a subject and their orientation to complete geometry assignments, 

whereas PMTs that do not prefer mathematics as a subject show a tendency to often not complete 

the~r geometry assignments. Secondly, in the particular learning environment, PMTs that prefer 

mathematics as a subject seem to think that they are expert in doing mathematics (particularly 



geometry), whereas PMTs who do not prefer mathematics as a subject seem to think that they do 

not have the ability to do mathematics (particularly geometry). Thirdly PMTs report that their 

attitudes towards mathematics (geometry) have changed positively after they started to use GSPB, 

and that they have a better understanding of mathematics, particularly certain geometry concepts, 

after using GSfW during the course of the module. The PMTs' seem confident that GSPB can be 

used to explain some of the work so that they will be able to understand the work better. Overall, 

the interviewed PMTs are convinced that a dynamic technologically enhanced learning environment 

does help to improve their execution of geometry tasks and their learning of geometry concepts, as 

well as to promote positive disposit~ons relating to the subject taught and learned in the module. 

It is, therefore. the contention of the author that GSP@ in particular, and dynamic computer 

technology, in general, should no longer be seen as an option. Rather it should be viewed as an 

essential part of the professional development of the PMTs. The utilisation of dynam~c computer 

technology should be seen as a powerful oppottunity, albeit it challenging, to invigorate learning 

environments for PMTs. 

According to Reed (1995:241) any professional programme in teacher education should be 

dedicated to the idea of excellence teaching and dynamic computer technology should be part of it. 

6.3 CONCLUSION 

The aim of this chapter was to investigate whether and how a dynamic computer technology 

programme influenced learning strategies as well as the development of conceptual knowledge. 

The PMTs consistently achieved significantly higher levels of conceptual knwledge. 

Wlth regard to the identificat~on of triangles it can be sald that the PMTs who followed the dynamic 

computer technology programme, were able to correctly identify triangles and gave fairly complete 

answers to substantiate their answers. These PMTs did not show the tendency to confuse the 

different types of triangles with each other 

Combining a dynamic computer technology programme w~th a constructivistcentred teaching 

approach can deliver results that would be better than the results obtained by means of a 

conventional processproduct teaching approach. 

Chapter 7 presents the conclusions and the recommendations. 
r 
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7.1 INTRODUCTION 

This chapter provides an overall summary of the research, by firstly giving a synopsis of the 

research and secondly the general conclusions and recommendat~ons about the study. The 

synopsis will include an overview of the literature review regarding the theoretical framework; the 

Impact of the methods of the research employed in the study the implications of the research 

findings in the teaching and learning of mathematics. The second part, will present the limitations of 

the study, recommendations for future research and general concluding remarks. 

7.2 PROBLEM STATEMENT 

Mathematics problem solving is the core of functionality within mathematics. Appropriate uses of 

dynamic computer technology can enhance mathematics learning and teaching and support 

conceptual development of mathematics as well as study orientation in mathematics. The growing 

availability of dynamic computer technology provides an opportunity to assist teachers in teaching 

well and in improving the mathematics experiences of PMTs (Wilson. 2001)~ 

The aim of the research was to determine how the implementation of a Van Hieie based dynamic 

computer technology programme influences the following aspects: 

determinlng what effect a dynamic technological learning environment has on the conceptual 

understanding of PMTs in geometry. 

determining how the use of a dynamic technological learning environment influences the 

conceptual understanding of PMTs in geometry. 

determinlng what effect a dynamic technological learning environment has on the study 

orientation of PMTs. 



7.3 REVIEW OF LITERATURE 

The hterature review was done to critically and objectively highlight the strength and weaknesses of 

a dynamic computer technology programme in the context to enhance conceptual understanding of 

mathematics and study ortentation in mathematics. The theoretical framework has the irnpllcations 

for teaching and learning of PMTs that it is essent~al to find appropriate methods and environments 

to improve the conceptual understanding (see § 3.2) of PMTs 

Piaget (see § 2.2.1) says that the development of learners proceeds according b a series of 

transformations from one stage to another and therefore it seems appropriate that learning 

experiences should be organised in terms of the learner's developmental stage. According to Nixon 

(2005:23,47), Piaget and Garcia (1989) identified three levels in the development of thought and 

they state that these levels are not bound to learners' ages or fixed stages of development. In view 

of the analysis of N~xon's three levels in the development of thought (see 5 22.1.2), it becomes 

clear that Van Hiele's theory of cognitive levels in geometry follows the same trend. Van Hiele (see 

§ 2.2.3) developed a theory that dealt with the belief that learners' thmking skills develop in levels 

and these levels represent a hierarchy of growth 

Vygotsky (see § 2.2.2) had a great influence on constructivism (see § 2.3.2) and is most often 

associated with the soclal constructivism. The influence of Vygotsky's ideas, together with the 

constructivist theory, lend themselves to many educational applications and have provided a basis 

for transforming mathematics teach~ng and learning. Learning is a constructive process that occurs 

wHle participating in and contributing to the practices of the local community. From this 

perspective, lecturers can use a dynamic computer technology programme to enable PMTs to 

construct their own knowledge. 

One of the current reform movements in mathemdics education is the appropriate use of dynamic 

computer technology in the teaching and learnmg of mathematics. Concerning mathematics 

education, the lecturers may involve the introduction of both dynamic computer technology and 

mathematics in meaningful contexts that wdl enable interplay between the two (Abramovich & 

Strock. 2002:184) PMTs will be actively involved in their learnmg (see 5 2.3.2) and they will 

therefore be less frustrated in their study orientation in mathematics (Maree et a / ,  1997:1,2) (see 5 
3.4). 

To be able to reach learners. PMTs' own conceptual understanding (see § 3.2) should be 

developed. When PMTs have conceptual understanding of a mathematical procedure, they will 
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perceive this procedure as a mathematical model of a problem stuation, rather than just an 

algorithm (Abramovich & Strock, 2002:173). PMTs will be less frustrated and their study orientation 

in mathematics will also improve if they do understand mathematics (Maree et al., 1997:1,2). 

7.4 EMPIRICAL INVESTIGATION 

7.4.1 Design 

Th~s study aimed to investigate the effect of a technolog~cally enhanced learning environment on 

PMTs' understanding of geometry concepts and their study orientation in mathematics, as 

prefequisite for deep conceptualisation. 

A combined quantitative and qualitative research approach was used The quantitative investigation 

employed a preexperimental one-group pre-test post-test des~gn. A Mayberry-type test was used 

to collect data with regard to PMTs conceptualisation of geometry concepts, while the Study 

Orientation in Mathematics (SOM) questionnaire was used to collect data regarding their study 

orientation in mathematics. The qual~tative investigation employed phenomenological interviews to 

collect supplementary information about the participating PMTs' experiences and assessment of 

the influence of the use of the dynamic software Geometer's Sketchpad ( G S W )  on their learning 

and conceptualisation of geometry concepts (see chapter 5). 

7.4.2 Results 

During posbtesting the participating group of PMTs achieved practically significantly higher scores 

in the Maybeny-type test, as well as in all fields of the SOM questionnaire. Results seem to indicate 

that PMTs gained significantly in the expected hlgh levels of conceptualisation, as well as high 

degrees of acquisition of those levels during the intefvention programme. 

The responses during the interv~ews were overwhelmingly positive (see § 6.2.2.3) The results 

attested to an acknowledgement of the success of the use of GSP@ as a dynamic computer 

technology programme, to enhance the PMTs' geometry conceptualisation and study orientation in 

geometry. 



7.5 GENERAL CONCLUSIONS AND RECOMMENDATIONS 

7.5.1 Limitations of the study 

The study might have suffered because of the following limitations: 

It was a limited, local study, and the findings reported have limited valuefor generallsaion. 

All the third year education students followed the general mathematics module in geometry in 

con~unction with a dynamic computer technology programme, and therefore the researcher has 

to use the pre-experimental design (see 5 1.3.2) with no control group. 

The SOM questionnaire is a questionnaire that is developed for use of grade 8 to grade 12 

learners, but as mentioned before, Steyn and Maree (see 5 5.3.1.4) used the questionnaire 

involving first-year engineering students and found that it could be regarded as significant 

predictors of performance in mathematics at university level Questionnaires developed and 

standardised for tertiary levels were not available, and therefore no alternative existed other 

than to use the above mentioned questionnaire. . The interruption in the middle of the program because of the University's holiday as well as 

semester tests could have negatively influenced the results. Another factor that could have 

influenced the results negatively is the fact that the lecturer could not continue with the classes 

(near the end of the program) and a substitute lecturer was used. 

7.5.2 Main conclusion 

The main conclusion of the study is that a technologically enhanced learnlng environment (such as 

GSPB) can be successfully utilised to significantly enhance PMTs' conceptualisation and study 

orientation, as prerequisite for deep conceptualisation, in geometry. 

From this study, the importance of study orientation for conceptualisation in geometry, becomes 

clear. 

7.5.3 Recommendations for future research 

It is recommended that: 

Mathematics education . GSPCB can be used to develop the PMTs' conceptual understanding of geometry. 

GSPCB can be used to enhance the PMTs' study orientahon in geometry 

The PMTs can use the expenences that they have gained from GSP@ to facilitate their own 

learners' conceptualisation. when they start teaching. 



Future research 

Comparative studies in a bigger study population should be undertaken. Several factors have 

limited the generalisation of the results of this research (see § 7 5.1). 

Longitudinal studies Should be undertaken (pre-and post-tests), to determine whether the 

results of the dynamic computer technology programme such as G S W  and the study 

orlentation in geometry are permanent over a longer period of time. 

7.6 VALUE 

\t IS essenttat to find methods to Improve the conceptual understandlng of PMTs The results In thls 

study polnted to the use of dynamlc computer technology in the training of PMTs whlch may 

prov~de a valuable and practical contrlbutlon to help the development of conceptual understandlng 

of PMTs 

7.7 FINAL REMARKS 

In thls research the effect of an integrated use of a dynamic computer technology programme in a 

problem solving context, was analysed. The implementatlon of a dynamic computer technology 

programme had a positwe effect not only on the conceptualisation and levels of geometric thought 

of the PMTs in the sample, but also on their level of study orientation. These PMTs were m r e  

confident in doing geometry than previously and their way of studying geometry improved as well. 

In summary, it can be stated that a dynamic cornpuler technology programme in combination with a 

problem solving environment appears to be a potentially useful strategy to facilitate optlmal 

achievements and conceptualisation in geometry. 
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APPENDIX A 

THE MAYBERRY-TYPE VAN HlELE TEST 

.................................................. NamelNaam: 

Institutellnstelling: 

SexIGeshg 

AgelOuderdom: ....................................... 

1. This figure is which of the following? 

Watter een van die volgende is hierdie figuur? 

a) triangleldriehoek 

b) quadrilaterallvierhoek 

c) squarelvierkant 

d) parallelogram 

e) rectanglelreghoek 

r e  all of these triangles? YESINO, Explain: 

Is al hierdie figure driehoeke? JAINEE, Verduidelik: 

Do they appear to be a special kind of triangle? If so what kind? 

Lyk dit of hulle spesiale soort driehoeke is? Indien, watter soort? 



These appear to be what kind of triangles? 

Watter soort driehoek is hierdie driehoeke? 

What is true of A and B? What is true of C and D? 

Wat is waar van A en B? Wat is waar van C en D? 

What word describes this? 

Watter woord beskryf die verskynsel die beste? 

Are these figures alike in any way? 

Is hierdie figure in enige opsig dieselfde? 

verkynsel die beste? 

Y E S I N O I ,  What word d escribes this? 

J N N E E ,  Watter woord beskryf die 



Which of these figures are squares? 

Watter van hierdie figure is vierkante? 

Which of these appear to be right-angled triangles? 

Watter van hierdie figure lyk soos reghoekige driehoeke? 

C 

Which of these figures appear to be isosceles triangles? 

Watter van hierdie driehoeke lyk soos gelykbenige driehoeke? 



Watter figuur lyk of dit gelykvorrnig kan wees aan a? 

I 
Which figure appears to be ( 

3 
-- 

ngruent to AS 

Watter figuur lyk of dit kongruent kan wees aan A? 

- 

11. Draw a squaremeken 'n vierkant. 

a. What must be true about the sides?N\Jat moet waar wees van die sye? 

b. What must be true about the angles?/Wat moet waar wees van die hoeke? 



12. Does a right-angled triangle always have a long side? If so, which one? 

Het 'n reghoekige driehoek altyd 'n langer sy? lndien wel, watter een? 

Does a right-angled triangle always have a largest angle? If so, which one? 

Het 'n reghoekige driehoek altyd 'n hoek wat die grootste is? lndien wet, water een? 

13. What can you tell me about the sides of an isosceles triangle? 

Wat weet jy van die sye van 'n gelykbenige driehoek? 

What can you tell me about the angles of an isosceles triangle? 

Wat weet jy van die hoeke van 'n gelykbeninge driehoek? 

Triangle ABC is similar to triangle DEF. How long is ED? How do you know? 

Driehoek ABC is gelykvorrnig aan driehoek DEF driehoek. Hoe lank is ED? Hoe weet jy? 

- - 

What is the size of L EDF? How do you know? 

Wat is die grootte van L EDF Hoe weet jy? 



These are congruent figures. What is true about their sides? AD = -- 
Hierdie is kongruente figure. Wat is waar omtrent hul sye?AD = - 

What is true about their angles? 1 B =- 

Wat is waar omtrent hul hoeke? L B =- 

ABCD is a square, BD is a diagonal. Name an angle congruent to I A B D .  

ABCD is 'n vierkant. BD is 'n diagonaal (hoeklyn). Benoem 'n hoek wat kongruent is aan 

I ABD. 

How do you know?lHoe weet jy? 



17. Circle the smallest combination of the following which guarantees a figure to be a 

square. 

Omkring die kleinste kornbinasie wat sal verseker dat die figuur 'n vierkant is. 

(a) It is a parallelogram. lDit is 'n parallelogram. 

(b) It is a rectangle. iDit is 'n reghoek. 

(c) It has right angles. IDit het 'n regte hoek. 

(d) Opposite sides are parallel. rreenoorstaande sye is parallel. 

(e) Adjacent sides are equal in length. IAangrensende sye is ewe lank. 

(9 Opposite sides are equal in length. neenoorstaande sye is ewe lank. 

18. Name some ways in which squares and rectangles are alike? 

Noem 'n paar ooreenkomste tussen vierkante en reghoeke. 

Are all squares also rectangles? Why? 

Is alle vierkante reghoeke? Hoekorn? 

19. Circle the smallest combination of the following which guarantees a triangle to be a 

right triangle? 

Ornkring die kleinste kombinasie van idie volgende wat verseker dat die driehoek 'n 

reghoekige driehoek is. 

(a) It has two acute angles.lDit het twee skerphoekige hoeke. 

(b) The measures of the angles add up to 18O0/Die sorn van die binnehoeke is 180" 

(c) An altitude is also a side.l'n Hoogtelyn is ook 'n sy. 

(d) The measures of two angles add up to 90°.1Die som van twee hoeke is 90". 



20. QAB is a triangle. Suppose angle Q is a right angle. Does that tell you anything 

about angles A and B? 

QAB is 'n driehoek. Veronderstel hoek Q is 'n regte hoek. Vertel dit enigiets vir jou in 

verband met hoeke A en B? 

If so, what?llndien wel, wat? 

Suppose angk Q is less than 90". Could the triangle be a right-angled triangle? Why? 

Veronderstel hoek Q is minder as 90". Kan die driehoek 'n reghoekige driehoek wees? 

Hoekom? 

Suppose angle Q is more than 90". Could the triangle be a right-angled triangle? Why? 

Veronderstel hoek Q is meer as 90". Kan die driehoek 'n reghoekige driehoek wees? 

Hoekom? 

21. Circle the smallest combination of the following which guarantees a triangle to be 

isosceles. 

Ornkring die kleinste kombinasie wat sal verseker dat die driehoek 'n gelykbenige driehoek 

is. 

(a) It has two congruent angles./Dit het twee kongruente hoeke. 

(b) It has two congruent sides./ Dit het twee kongruente sye. 

(c) An altitude bisects the opposite side.l'n Hoogtelyn halveer die teenoorstaande sy. 

(d) The measure of the angles add up to 18O0./Die sorn van die hoeke is 180". 
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22. Suppose all we know about A MNP is that L M is the same as L N. What do you 

know about sides MP and NP? 

Veronderstel dat al wat ons weet in verband met A MNP is dat L M  dieselfde is as L N. 
Wat weet ons van die sye M P  en NP? 

Suppose i M  is largerthan /: N. What do you know about MP and NP? 

Veronderstel dat L M groter is i N. Wat weet ons van MP en NP? 

Could h M N P  be isosceles? 

Kan A M N P  'n gelykbenige driehoek wees? 

23. Triangle DEF has three congruent sides. It is an isosceles triangle. Why or why not? 

Driehoek DEF het drie kongruente sye. Dit is 'n gelykbenige driehoek. Hoekom of hoekom 

nie? 

Is the following true or false? All equilateral triangles are isosceles. 

Is die volgende waar of vats? Alle gelyksydige driehoeke IS gelykbenige driehoeke. 

24. Which are true? Give reasons: 

Wat is waar? Gee redes: 

All isosceles triangles are right triangles. 

Alle gelykbenige driehoeke is reghoekige driehoeke 



Some right-angled triangles are isosceles triangles. 

Sommige reghoekige driehoeke is gelykbenige driehoeke. 

25. What does it mean to say that two figures are similar? 

Wat beteken dit om te 52. dat twee figure gelyksoortig is? 

26. Triangle ABC is similar to triangle DEF (in that order). Are the following 

(a) certain (b) possible, or (c) impossible? Give reasons for your answers. 

Driehoek ABC is gelyksoortig aan driehoek DEF (in die volgorde) Is die volgende 

(a) seker (b) moontlik, of (c) onrnoontlik? Gee redes vir jou antwoord. 

A 6  = DE 



27. Will figures A and B be similar? 

I -always II - sometimes or Ill - neverlnooit? Give reasons for your answers 

Sal figure A en B gelyksoortig wees? 

I - altyd II - soms of Ill - nooit? Gee redes vir jou antwoord. 

A B 

(a) a squarel'n vierkant (a) a squarel'n vierkant 

(b) an isosceles triangle 

Gelykbenige driehoek 

(b) an isosceles triangle 

Gelykbenige driehoek 

(c) a A congruent to B (c) a A congruent to A 

'n A kongruent aan B 'n A kongruent aan A 

(d) a rectanglel'n reghoek (d) a squarel'n vierkant 

(e) a rectanglel'n reghoek (e) a triangleh driehoek 



28. A ABC is congruent to 

(a) certain (b) possible, or 

A DEF (in that order). 

(c) impossible? Give reasons f o ~  your answers 

AABC is kongruent aan A DEF (in daardie volgorde) 

(a) seker (b) moontlik, of (c) onmoontlik? Gee redes vir jou antwoord. 

(a) AB=DE 

(b) L A = L E  

(c) L A < L D  

(d) AB=EF 

29. Will figures A and B be congruent? 

I - always II - sometimes or Ill - never? Give reasons for your answers./ 

Sal figuurA en B kongruent wees? 

I - altyd II - soms of Ill - nooit? Gee redes vir jou antwoord. 

A B 

(a) a squarel'n vierkant (a) a trianglel'n driehoek 



(b) a square with a 10cm side (b) a square with a 10cm side 

'n vierkant met 'n sy van 10cm 'n vierkant met 'n sy van 10cm 

(c) a right-angled triangle with a (c) a right-angled triangle with a 1Ocm 

10cm hypotenuse hypotenuse 

'n reghoekige driehoek met 'n 'n reghoekige driehoek met 'n skuinssy van 

skuinssy van 10cm 10cm 

(d) a circle with 10cm chord (d) 'n sirkel met 'n koord van 10cm 

(e) a A similar to B (e) a A similar to B 

'n A gelykvormig aan B 'n A gelykvormig aan B 

30. ABCD is a four sided figure. Suppose we know that opposite sides are parallel. 

What are the fewest facts necessary to prove that ABCD is a square? 

ABCD is 'n figuur met vier sye. Veronderstel ons weet dat die teenoorstaande sye parallel 

is. Wat is die minste feite nodig om te bewys dat ABCD 'n vierkant is? 

31. Figure ABCD is a parallelogram, A6 - BC and L A B C  is a right angle. Is ABCD a 

square? 

Figuur ABCD is parallelogram, AB = BC en LABC is 'n regte hoek. Is ABCD 'n vierkant? 

Prove your answer.lBewys jou antwoord 



CD is perpendicular to AB. L C  is a right angle. If you measure L A C D  and L B, you find 

that they have the same measure. Would this equality be true for all right-angled triangles? 

Why or why not? 

CD is loodreg op AB. L C  is 'n regte hoek. As jy L A C D  en L B meet, sal jy sien dat hulle 

ewe groot is. Is hierdie gelykheid waar vir alle reghoekige driehoeke? Hoekom of hoekom 

nie? 

Figure ABC and PQR are right-angled isosceles triangle with angles B and Q being right 

angles. Prove that L A  = L P and L C  = L R. 

Figuur ABC en PQR is reghoekige, gelykbenige driehoeke met hoeke B en Q regte hoeke. 

Bewysdat L A =  L P e n  L C = L R .  



ABC is a triangle. AADC L A BDC. What kind of triangle is AABC? Why?/ 

ABC is 'n driehoek. AADC - A BDC. Watter soort driehoek is AABC? Hoekom? 

AB is the line segment with A and B the midpoints of the equal sides of the isosceles 

triangle XYZ. AY = BY and AAYB is similar to AXYZ so that L A  = L X .  AB is parallel to 

XZ. What have we proved? 

AB is die lynsegment met A en B die middelpunte van die gelyke sye van die gelykbenige 

driehoek XYZ. AY = BY en AAYB is gelyksoortig aan AXYZ sodat L A  = L X .  AB parallel 

is aan XZ. Wat het ons bewys? 



In this figure AB and CB are the same length, 

and L C  be the same size? Why or why not? 

AD and CD are the same length. Will L A  

In hierdie figuur is AB en CB ewe lank. AD en CD is ewe lank. Sal L A  en L C  ewe groot 

wees? Hoekom of hoekom nie? 

37. What is the least additional information needed to ensure that a pair of right-angled 

triangles are similar? 

Wat is die minste inligting nodig 

gelyksoortig is? 

te verseker dat 'n paar reg hoekige driehoeke 



Figure C is a circle. 0 is the centre. Prove that AAOB is isosceles. 

Figuur C is 'n sirkel. 0 is die rniddelpunt van die sirkel. Bewys dat AAOB 'n gelykbenige 

driehoek is. 

These circles with centres 0 and P intersect at M and N. Prove: A OMP = AONP 

Hierdie sirkels met rniddelpunte 0 en P sny 

A O M P  AONP. 

rnekaar in M en N. Bewys dat: 



40. Prove that the perpendicular from a point (not on the 

line segment that can be drawn from the point to the line. 

Bewys dat die loodregte lyn van 'n punt (wat nie op 

segment is wat na die lyn geteken kan word. 

die lyn 

line) 

li. nie) 

line is the shortest 

lyn, die kortste 



APPENDIX B 

The PMTs must construct a triangle before they can do the following activities. (The 

activities, except activity 1, are based on ideas in Bennett, D. Exploring geometry with the 

geometer's sketchpad. Emeryville, Calif. : Key Curriculum Press. 285 p.) 

Activity 1: Construct a triangle 

Inleiding: 

1. Maak GSPB oop en kostrueer driehoek 

ABC deur van die 'begment tool" gebruik 

te maak. 

2. Maak gebruik van die 'text tool" om die 

driehoek te benoem. 

Nota: Die sye van die driehoek kan 

verander word na "thin, thick" en "dashed" 

deur die sye van die driehoek te kies deur 

gebruik te maak van die "selection arrow" 

en dan daarna die "display" funksie te 

gebruik. 

Introduction: 

1. Open GSPQ and construct a triangle ABC 

by making use of the segment tool. 

2. Make use of the text tool to appoint the 

triangle. 

Note: The line width of the triangle can be 

changed by first selecting the sides of the 

triangle by making use of the selection 

arrow and then thereafter going to the 

display function and choose line width. The 

sides of the triangle can then be changed to 

thin, thick or dashed. 

Activity 2: Medians in a triangle 

A median in a triangle is a straight line drawn from the vertex of a triangle to the midpoint 

of the opposite side (Laridon et a/.  , 1995:310). 

Swaartelyne: 

1. Konstrueer driehoek ABC. 

2. Konstrueer die rniddelpunte van die 

driehoek. (gaan na die "construct menu" 

en kies "midpoint"). 

3. Herhaal die stap 2 met die ander b e e  

sye. 

Median: 
- 

1. Construct triangle ABC. 

2. Construct the midpoints of the sides (go to 

the construct menu and choose midpoint). 

3. Repeat step 2 with the other two sides as 

well. 



rniddelpunt van die teenoorstaande Sy. 

5. Herhaal die stap 4 met die ander twee 

sye en hoekpunte. 

6. Wat neem jy waar ten opsigte van die 

hoogtelyne? Skryf dit neer 

7. Konstrueer die punt waar die 

swaartelyne mekaar sny. Die punt waar 

die swaartelyne mekaar sny word die 

swaartepunt genoem. 

8. Meet die afstand (rnaak gebruik van die 

"measure menu" en kies "distance") 

vanaf die hoekpunt na die swaartepunt en 

dan weer van die swaartepunt na die 

middelpunt van die sy. 

9. Bereken hierdie verhouding. 

10. Herhaal die stap 8 en 9 m t  die ander 

twee hoekpunte en middelpunte van die 

sye. 

11. Skryf 'n veronderstelling neer oor hoe 

die swaartepunt elke swaartelyn van van 

'n driehoek verdeel. 

opposite side. 

5. Repeat step 4 with the other two vertices 

and sides as well. 

6 What do you notice about the medians? 

Write it down 

7. Construct the point of intersection of the 

medians. The point where the medians 

intersect is called the centroid. 

8. Measure the distance (make use of the 

measure menu and choose distance) from 

the vertex to the centroid and then the 

distance from the centroid to the midpoint of 

the side. 

9. Calculate these ratio. 

10. Repeat step 8 and 9 with the other two 

vertices and midpoint of the sides as well. 

11. Write a conjecture about the way the 

centroid divides each median in a triangle. 

Activity 3: Perpendicular bisector 

A perpendicular bisector of a side of a triangle 1s a line drawn perpendicular to the side 

that it bisects (Laridon etal. ,  1995:310). 

Middelloodly ne: I Perpendicular bisector: 
I 

1. Konstrueer driehoek ABC. 1. Construct triangle ABC. 

2. Kies 'n sy van die en konstrueer die 2. Choose a side of the triangle, and 

middelpunt. construct the midpoint. 

3. Kies hierdie punt asook die sy en 3. Select this point as well as the side and 

konstrueer die rniddelloodlyn (gaan na die construct a perpendicular bisector (go to the 

"construct menu" en kies "perpendicular construct menu an choose perpendicular 

line"). line). 
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1 4. Herhaal die staa 3 met die ander twee 1 4.Repeat step 3 with the other two sides and 

sye en rniddelpunte. 

5. Wat neern jy waar ten opsigte van die 

middelloodlyne? Skryf dit neer. 

6. Konstrueer die punt waar die middellyne 

mekaar sny. Die punt waar die middellyne 

mekaar sny word die middelpunt van die 

omgeskrewe sirkel (ommiddelpunt) 

genoem. 

7. Meet die afstand vanaf die middelpunt 

van die omgeskrewe sirkel na elk van die 

hoekpunte. 

8. Wat merk jy op ten opsigte van die 

afstand vanaf die middelpunt van die 

orngeskrewe sirkel na die drie hoekpunte 

van die driehoek? 

9. Trek een van die hoekpunte totdat die 

rniddelpunt van die orngeskrewe sirkel op 

'n sy van die driehoek li5 Waiter tipe 

driehoek is dit? Waar presie li' die 

rniddelpunt van die orngeskrewe sirkel? 
- 

Activity 4: Altitudes in  a triangle 

midpoints. 

5. What do you notice about the 

perpendicular bisectors'? Write it down. 

6. Construct the point of intersection of the 

perpendicular bisectors. The point where the 

perpendicular bisectors intersect is called the 

circumcenter. 

7. Measure the distance from the 

circumcenter to each of the three vertices. 

8. What do you notice about the distance 

from the circurncenter to the three vertices of 

the triangle? 

9. Drag a vertex until the circumcenter falls 

on a side of a triangle. What kind of triangle 

is this? Where exactly does the circurncenter 

lie? 

An altitude of a triangle is measured by the length of a line drawn from a vertex of a 

triangle perpendicular to the opposite side, or an extension of the side called the base 

(Lar~don eta/ . ,  1995:310). 

- 
Hoogtelyne: 

1. Konstrueer driehoek ABC. 

2. Kies 'n hoekpunt en die teenoorgestelde 

sy, dan, in die "construct menu", kies 

"perpendicular line" om 'n loodregte lyn 

deur die sy te konstrueer. 

3. Herhaal die stap 2 met die ander twee 

sye en hoekpunte. 

- 

Altitudes: 

1. Construct triangle ABC. 

2. Select a vertex and the opposite side , 

then, in the construct menu, choose 

perpendicular line to construct a line 

perpendicular to the side. 

' 3. Repeat step 2 with the other two sides and 

vertices. 
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skerphoekige driehoek is, behoort die 

hoogtelyn die sy van die driehoek te sny 

Trek nou die hoekpunt sodat die hoogtelyn 

buite die driehoek 16. Watter tipe driehoek 

is nou? 

5. Trek jou driehoek sodat dit weer 'n 

skerphoekige drehoek is. Konstrueer die 

punt waar die hoogtelyne mekaar sny. Die 

punt waar die hoogtlyne mekaar sny word 

die ortosnypunt genoem. 

6. Wat neem jy waar ten opsigte van die 

hoogtelyne as die driehoek 'n 

skerphoekige driehoek is? Skryf dit neer. 

7. Trek die hoekpunte van die driehoek en 

neem waar wat met die hoogtelyn gebeur. 

8. Waar I& jou hoogtelyn wanneer een van 

die hoeke van die driehoek 'n regte hoek 

is? 

9. Konstrueer 'n sirkel deur die 

ortosnypunt en die hoekpunte van die 

driehoek. Wat noem ons hierdie sirkel? 
- 

Activity 5: Angle bisectors in triangles 

perpendicular line should intersect a side of 

the triangle. Drag the vertex so that the line 

falls outside the triangle. Now what kind of 

triangle is it? 

5. Drag your triangle so that it is acute again. 

Construct the point of intersection of the 

altitudes. The point where the altitudes 

intersect is called the orthocenter. 

6. What do you notice about the altitudes if 

the triangle is acute? Write it down. 

7. Drag vertices of the triangle and observe 

how your altitude behaves. 

8. Where is your altitude when one of the 

angles of the triangle is a right angle? 

9. Construct a circle through the orthocenter 

and the vertices of the triangle. What do we 

call this type of circle? 
- 

A bisector of an angle is a line that bisects an angle of a triangle (Laridon eta/., 1995:311). 

~alveerlyner 

1. Konstrueer driehoek ABC. 

2. Konstrueer die halveerlyn van die hoeke 

van die driehoek deur drie punte te kies 

met die hoekpunt wat jy wil halveer in die 

middel. Kies dan in die "construct menu, 

angle bisector". 

3. Konstrueer die punt waar die 

halveerlyne mekaar sny. Die punt waar die 

-- 
Angle bisectors 

1. Construct triangle ABC. 

2. Construct the bisector of the angles of the 

triangle by selecting three points, with the 

vertex your middle selection. Then, in the 

construct menu, choose angle bisector. 

3. Construct the point of intersection of the 

angle bisectors. The point where the angle 



middelpunt van die ingeskrewe sirkel 

(inmiddelpunt) genoem. 

4 Wanneer jy LA klaar gehalveer het, 

meet die twee hoeke wat by LA gevorrn is 

(in die "measure menu", kies "angle"). 

5. Konstrueer 'n sirkel deur die middelpunt 

van die ingeskrewe sirkel en die 

hoekpunte van die driehoek. Wat noem 

ons hierdie sirkel? 
- 

halveerlyne mekaar sny word die 

4. When you have bisect LA, measure the 

two angles which is formed at L A  (in the 

measure menu, choose angle). 

5. Construct a circle through the incenter and 

the vertices of the triangle. What is the name 

of this circle? 

bisectors intersect is called the incenter. 

Activity 6: Isosceles triangles 

A triangle is an isosceles triangle when two sides of the triangle are equal (Loots et a/., 

Isosceles triangles: 

1. Construct a circle with center A and radius 

point 6. 

2. Construct radius AB. 

3. Construct radius AC. Drag point C to make 

sure the radius is attached to the circle. 

Gelykbenige driehoeke: 

1. Konstrueer 'n sirkel met middelpunt A 

en radiuspunt B. 

2 Konstrueer radius AB. 

3. Konstrueer radius AC. Trek punt C om 

seker te maak dat die radius aan die sirkel 

raak. 

4. Konstrueer E. 
5. Trek elke hoekpunt van jou driehoek en 

kyk wat gebeur. Verduidelik hoekom die 

driehoek altyd :n gelykbenige driehoek is. 

6. "Hide" sirkel AB. 

7. Meet die drie hoeke in die driehoek. 

8. Trek die hoekpunte van jou driehoek en 

kyk wat gebeur met die hoeke wat jy 

gemeet het Wat neem jy waar in verband 

met die basishoeke en die oorblywende 

hoek van die driehoek? 

4. Construct 

5. Drag each vertex of your triangle to see 

how it behaves. Explain why the triangle is 

always isosceles. 

6. Hide circle AB. 

7. Measure the three angles in the triangle. 

8. Drag the vertices of your triangle anc 

observe the angles measures. What do you 

observe about the measures of the base 

angles and the remaining angle of the 

triangle? 

I 

I 

: 

I 



APPENDIX C 

Dnderhoud 1 

1 

R Op 'n skaal van 1 tot 10, met 10 die hoogste. 

hoe baie hou jy van wlskunde? 

S1 5 

R Jy hou dus nie so baie van wiskunde nie 

S1 nee, nie so bale nie 

R Hoekom nie? 

S1 Ek sukkel met wiskunde. 

2. 

R Doen ly altyd IOU werksopdragte? 

S1 Ek probeer om my werksopdragte almal te 

doen, maar dis nie so maklik nie. 

R hoeveel tyd spandeer jy om j o ~  

werksopdragte le doen? 

S1 Dit verskil van hoe moeilik dit is, as dit baie 

moehlik 1s sal ek dit dalk nie doen nie. 

R Hm 

3 

R In d ~ e  algerneen. wat be~nvloed jou om harc 

te werk7 

S1 Dlt IS lekker om 'n goele punt te kry 

4. 

R Is daar enhgiets wat veroorsaak dat jy nog 

harder sal werk? 

S 1  nee^ 

R OK 

5. 

R Is jy beter in sekere afdelings van wlskunde' 

Byvoorbeeld. IS jy beter in algebra as in meetkunde? 

S1 Ek hou nle van trig en meetkunde nie. Ek k r  

dlt nle reg nie. 

- 
Interview 1 

1 

R On a scale of 1 to 10 wlth ten belng the 

hlghest how much do you lhke rnathemat1cs7 

S1 5 

R You don t lhke mathemat~cs that much7 

S1 No, not so much 

R why not7 

S1 I struggle wlth mathematlcs 

2. 

R Do you always complete your assignments? 

S1 I try to do all the assignments, but it is not 

that easy. 

R How much time do you spend on dolng your 

assignments? 

S1 It depends on how difficult it is. If it is very 

diffcult, I might not do it. 

R Hm. 

3. 

R In general, what influences you to work 

hard? 

S1 It IS nlce to get good marks. 

4. 

R Is there anything that causes p u  to work 

harder? 

S 1 No. 

R OK 

5. 

R Are you better in certain sections ol 

mathematics? For instance, are you better ir 

algebra than in geometry? 

S1 I don't really l~ke trig and geometry I can't 

do it. 



R Dink jy iemand het spesiale talent nodig or 

goed te doen in wiskunde? 

S1 Ek dink mens moet 'n talent hi. maar ek din 

waar 'n probleem opduik is by die onderwyser by wi 

iy wiskunde kry. Die onderwyser kan 'n baie groot rf 

speel of mens d ~ e  werk verstaan of nie. 

7. 

R Hoe belangrik is dit om te memoriseer i 

w~skunde? 

S1 Ek moet goed u ~ t  my kop leer om sornme i 

die eksamen te kan doen 

R Dink jy dat iemand wat nie goed is om tc 

rnemoriseer me, goed doen in wiskunde? 

S1 Ja die rnense wat die werk maklik regkry. 

8. 

R Hoe gereeld doen jy so min as moontlik wer 

net om by te bly? 

S1 Dit hang af hoe besig ek is met my ande 

vakke. 

R OK. 

9 

R Hoe studeer jy wr n wlskunde toets? 

S1 Ek doen eers d ~ e  sornme waarmee e 

gesukkel het op paper en dan sal ek dle res herslen 

R OK 

10 

R Gee voorbeelde van d ~ e  aktlwlte~te wat jy I 

wlskunde doen 

S1 Blokk~es, geo-stroke en GSP 

R Hm 

11. 

R Van hierdle aktiwiteite wat jy nou nc 

opgenoem het, is daar enige van die aktiwiteite WE 

jy baie geniet en interessant vind? Van hierdi 

aktiw~teite wat jy nou net opgenoem het, is daa 

enige van die aktiwiteite wat jy baie geniet e 

R Do you think that a person needs a special 

talent to be good in mathematics? 

S1 I think a person should have an aptitude, but 

I think the problem comes in with the teacher that 

teaches you mathematics The teacher plays an 

important role in whether you understand the work or 

not. 

7. 

R How important is it to memorise in 

mathematics? 

S1 I must learn sums by heart to be able to do it 

in the exam 

R DO you think that someone who is not good 

in rnemorising can do well in mathematics? 

S1 Yes, those who manage the work easily. 

8 

R How often do you do as M e  as posslble just 

to keep up? 

S1 It depends on how busy I am in my other 

Subjects 

R OK 

9. 

R How do you study for a mathematics test? 

S1 I first do the sums that I struggled with on 

paper and then I will revise the rest. 

R OK. 

10 

R Give examples of the activities that you do n 

mathematics. 

S1 Blocks, geo-strips and GSP. 

R Hm. 

11. 

R Of these activities that you have just 

mentioned, are there any that you enjoy and that you 

find interesting? 



nteressant vind? 

S l  GSP is baie interessant. 

3 Hoekom? 

51 Ek geniet dit om te kan slen waarmee ek 

~ e r k  en dit help my om in te sien wat die dosent vir 

ny verduidelik. 

12. 

2 Is daar probleme in wiskunde wat op meer 

3s een manier opgelos kan word? 

51 Ek dink elke liewe som kan anders opgelos 

~ o r d .  

R Goed so. 

13. 

R Hou jy van GSP? 

S1 Ja soos ek reeds gese het, ek verstaan die 

werk makliker en dit is ~nteressant om d ~ e  probleme 

met GSP te doen. 

14 

R Is daar enlgiets waaraan ]y kan dtnk wat 

belangrik IS om w~skunde te leer wat jy  nle genoem 

het nle 

S 1 Nee 

Onderhoud 2 

1 

R Op 'n skaal van 1 tot 10, met 10 die hoogste, 

hoe baie hou jy van wiskunde? 

10 

Doen jy altyd IOU werksopdragte? 

Ja 

En hoeveel tyd spandeer ]y om IOU 

rksopdragte te doen7 

d ~ t  hang net af hoe groot 1s dtt As dl' 

byvoorbeeld 20 somme IS sal ek meer tyd spandeer 

as wat d ~ t  net 6 IS Ek hou daarvan om at die somme 

te doen 

Sl GSP is very interesting. 

3 Why7 

51 I enjoy being able to see what I am work~ng 

with and it helps me to see what the lecturer is 

pxplaining to me. 

12. 

R Are there problems in mathematics that can 

be solved in more than one way? 

51 1 think each and every sum can be done in 

different ways. 

R Alright. 

13 

R Do you like GSP? 

S1 Yes, as I have already said, I understand the 

work better and it is interesting to do the problems 

better with GSP. 

14 

R Is there anything that is important to learn in 

mathematics that you have not mentioned? 

- 
Interview 2 

1. 

R On a scale of 1 to 10, with ten being the 

highest. how much do you like mathematics? 

S2 10 

2. 

R Do you always complete your assignments? 

S2 Yes. 

R And how much time do you spend on doins 

your assignments? 

S2 It depends on how much it is If it is for 

instance 20 sums, I would spend more time that i f  I 

were 6. 1 like do~ng all the sums. 



3 

R In die algemeen. wat beinvioed jou om hard 

te werk? 

S2 Goele punte. Dit is vir my 'n uitdagmg om al 

my somme reg te kry As ek sukkel met 'n som sal 

ek aanhou en aanhou tot ek hom regkry As ek die 

som dan reggekry het sal ek nog 'n soortgelyke een 

doen om seker te maak ek verstaan die som. 

R Moo1 Is daar ander enigiets anders wat jou 

beinvloed om harder te werk? 

52 Ek werk altyd konstant hard. 

R OK. 

4. 

R Is daar enigiets wat veroorsaek dat jy harder 

werk? 

S2 Ek dink ek is redel~k goed. 

R Hoe weet jy dit? 

5 2  Ek kry goeie punte. 

5.  

R Is jy beter in sekere afdelings van wiskunde? 

Byvoorbeeld, is jy beter in algebra as in rneetkunde? 

5 2  Ek het nou-nou gese ek hou van wiskunde, 

maar ek het vergeet van die meetkunde ek haat 

meetkunde ek leer al die bewyse soos 'n papegaal. 

R Goed so. 

6. 

R Dink jy iemand he! spesiale talent nodig om 

goed te doen in wiskunde? 

52 Ek dink so ek dlnk jy kan as jy wil nog steeds 

goed doen in wiskunde al is jy nie aangel6 vir 

wiskunde nie maar ek dink party mense is net 

doodeenvoudig goed in wiskunde jy kan eenkeer na 

'n som kyk en jy sal weet wat daar aangaan. 

R Het jy sulke talent? 

52 Ja ek dink so. 

R Hoekom dink jy so? 

-- 
R OK 

3 

R In general, what influences -7 you to work 

hard? 

S2 Good marks. For me it is a challenge to 

have all my sums correct. If I struggle I will keep 

going until I get it right. If I have succeeded in doing 

the sum I will do another similar one to make sure I 

understand the sum. 

R Good, 1s there anything else that influences 

you to work harder? 

S2 I constantly work hard. 

R OK 

4. 

R Is there anythlng that causes you to work 

harder? 

52 1 think I am reasonably good. 

R How do you know that? 

5 2  1 get good marks. 

5 

R Are you better in certam sect~ons of 

mathematics? For Instance, are you better in 

algebra than in geometry7 

52 1 sa~d that I like mathemat~cs but I forgot 

about geometry I hate geometry and I learn all the 

proofs by heart 

R Good 

6. 

R Do you think that a person needs a special 

talent to be good in mathematics? 

S2 I think so, and I think if you want to you can 

stlll do well in mathematics if you do not have 

aptitude for it, but I think some people are simply just 

good in mathematics and you can look at a sum 

once and know what is going on there. 

R Do you have such talent? 

52 Yes, I think so. 

R Why do you think so? 



7. 

R Hoe belangrik is dit om te memoriseer in 

w~skunde? 

S2 Op Universite~t het ek eers besef hoe 

belangrk dit is om nie goed te memoriseer nie maar 

om te kyk waar kom dit vandaan en hoekom is dit so 

om dit regtig te kan verstaan. As jy d ~ t  verstaan dan 

hoef jy nie eers rerig te leer nie want as jy dit 

eenkeer verstaan sal jy dit altyd verstaan As jy die 

werk memoriseer dan vergeet ~y dlt weer en dan 

moet jy weer van voor af leer. 

R Dink jy dat iemand wat nie goed is om te 

memorlseer nle goed doen in w~skunde? 

52 Ja jy moet net dte werk verstaan dan hoef jy 

dlt nle te memorlseer nle 

8 

R Hoe gereeld doen jy so min as moontl~k werk 

net om by te bly? Hoe gereeld doen jy so min aas 

moontlik werk net om by te bly? 

S2 Dit hang net af hoeveel werk w r d  van my 

vereis, as ek baie werk in my ander vakke het sal ek 

minder tyd spandeer aan my wiskunde maar as ek 

genoeg tyd het spandeer ek bale tyd aan w~skunde 

dan sal ek meer doen as wat van my verwag word. 

R hrn. 

9 

R Hoe studeer jy vlr n wiskunde toets? 

S2 Ek werk gewoonhk konstant bale hard en 

dan sal ek die probleme wat ons gedoen het 

deurlees en seker maak dat ek almal verstaan en 

weet hoe om dit te doen. Ek doen nle weer al die 

somme nie want ek het deur die jaar gesorg dat ek 

almal kan doen. Ek s2. basies die stappe vir myself 

op. Op hierdie manier kan ek my werk meer keer 

hersien. 

R Goed so. 

7 

3 How important is i t  to memorise in 

nathematics? 

52 I only realised at university that it is important 

lot to memorise, but rather to look at where 

something comes from, why it is so, in order to really 

mderstand it. If you understand you don't even 

really have to study, because if you understand it 

mce you will always understand it. If you mernorise 

the work, you forget it again and then you have to 

learn it all over again 

R Do you th~nk that someone who is not good 

In memorising can do well in mathematics? 

52 Yes, you should just understand the work. 

then vou don't have to memorise. 

8. 

R How often do you do as little as possible just 

to keep up? 

52 It just depends on how much work I have. If I 

have much work in my other Subjects I will spend 

less time on my mathematics, but if I have enough 

lime I spend much 6me on mathematics, and I do 

more that what is expected of me. 

R Hm. 

9 

R How do you study for a mathemat~cs test? 

52 1 understand all of the sums and know how 

to do them I don't do all the sums agam because 

through the year I saw to it that I can do dl of them 

I repeat the baslc steps for myself In thls way I can 

revlse the work for myself more tlmes 

R Alright 



R Gee voorbeelde van die aktiwitelte wat ]y in 

wlskunde doen 

S2 Geo stroke GSP wat nogal help om die 

werk in te sfen unf~x-blokkies 

R Hrn 

11. 

R Van hierdie aktiwiteite wat jy nou net 

opgenoem het, is daar enige van die aktiwiteite wat 

jy baie geniet en lnteressant vind? 

S2 Ek dink dat ek GSP kan gebruik om beter te 

verstaan ek hou nie van geo-stroke en sulke goed 

nie, dit verveel my 

12. 

R Is daar probleme in wiskunde wat op meer 

as een manier opgelos kan word? 

52 Ja. 

R Hoekom? 

S2 Elke liewe persoon dink anders en sat 'n 

ander manier gebruik om by die regte antwoord uit te 

kom. 

13. 

R Hou jy van GSP? 

5 2  Ja, dit is bale interessant en dit is baie 

rnakliker om meetkunde daarop te doen. Vandat ek 

meetkundige sketse op GSP doen geniet ek die 

meetkunde meer en ek verstaan meer van die 

meetkunde ek kan die uitwerking dadelik sien bv as 

ons gelykbenige die hoeke rnoet teken en die hoeke 

meet, kan ek dadelik siek d ~ e  basishoeke is gelyk. 

14 

R Is daar enlgtets waaraan jy kan dlnk wat 

belangr~k is om wiskunde te leer wat jy nle genoem 

het nie 

52 Ek dink ek het alles gesB waaraan ek kan 

dink 

R OK 

2 Give examples of the activities that you do in 

nathematics. 

52 Geo-strips, GSP, which helps to see the 

NOrk, unfix-blocks. 

R Hm. 

11. 

R Of these activ~ties that you have just 

mentioned. are there any that you enjoy and that you 

find interesting? 

52 1 think that I can use GSP to understand 

better, but I don't like geo-strips and such things. !t 

bores me. 

12. 

R Are there problems in mathematics that can 

be solved in more than one way? 

S2 Yes. 

R Why7 

S2 Each and every person thinks differently and 

will use a different way to get to the right answer 

13. 

R Do you lhke GSP7 

S2 Yes, it is very interesting and it is much 

easier to do mathematics on it. S~nce I do 

geornetrlcal sketches on GSP I enjoy geometry more 

and I understand more of the geometry. I can see 

~rnmediately, for instance if we do isosceles triangles 

and we have to measure the angles, 1 can 

immediately see that the base angles are equal. 

14 

R Is there anything that 1s important to learn in 

mathematics that you have not mentioned? 

S2 I think I have said everything that I could 

think of. 

R OK. 



Onderhoud 3 

1 

R Op 'n skaal van 1 tot 10, met 10 die hoogste, 

hoe baie hou jy van wiskunde? 

S3 10 

R So, jy hou baie van wiskunde. 

S3 Ja 

2. 

R Doen jy altyd jou werksopdragte? 

53 ek doen al my opdragte. 

R Hoeveel tyd spandeer jy om jou 

werksopdragte te doen? 

S3 dit hang af hoeveel somme ek rnoet doen. 

Ek sat nie my werk alleen doen nie, ek sal my 

antwoorde met iemand anders sin vergelyk om seker 

te maak dat my antwoorde reg  is^ 

3. 

R In die algerneen, wat beinvloed jou om hard 

te werk? 

S3 Kom ons se ek he! 'n toets geskryf en my 

punte was nie so goed nie. sal dit my klaar insplreer 

om harder te werk en dan. hm, sal ek somrne doen 

tot ek dit reg kry of ek sal hulp vra. 

R Mooi. is daar ander en~g~ets anders wat jou 

beinvloed om harder te werk? 

S3 Dis lekker om te weel wat aangaan 

R Goed so 

4 

R Is daar eniglets wat veroorsaak dat jy harder 

werk7 

53 Uhm, ek dnk ek IS redelik goed in wiskunde 

maar ek moet se ek leer ook bale hard, behaiwe as 

ek d ~ e  werk gesnap het 

R Wat bedoel jy met gesnap? 

53 Ek verstaan d ~ e  werk, ek weet wat daar 

aangaan ek kan vir myself vertel wat daar aangaan 

R Moot so 

Interview-3 

1. 

R On a scale of 1 to 10, with ten being the 

highest, how much do you like mathematics? 

53 10 

R So you like mathematics very much. 

53 Yes. 

2 

R Do you always complete your asstgnments? 

53 1 always do all my asslgnments 

R How much tlme do you spend on domg you1 

asslgnments? 

53 it depends on how many sums 1 lave to do 

I wdl not do my work alone I will compare m) 

answers w~th  someone else s to make sure that my 

answers are correct 

3 

R In general, what influences you to work 

hard? 

53 Let's say I wrote a test and my marks are no 

so good, it will already inspire me to work harder anc 

then. hm, I will do sums unttl I get them right or I wil 

ask help. 

R Good Is there anything else that influences 

you to work harder? 

53 i t  is good to know what is going on. 

R Good. 

4. 

R Is there anything that causes you to work 

harder? 

53 Uhrn, I think I am reasonably good ir 

mathematics, but I must say I work hard, excepl if I 

have grasped it. 

R What do you mean wlth grasped? 

S3 I understood the work, I know what is going 

on there and I can tell myself what is going on there. 



ii Is jy beter in sekere afdelings van wiskunde? 

Byvoorbeeld, is jy beter in algebra as in meetkunde? 

33 OK ek hou baie van algebra en trigonometrie 

naar ek hou niks van rneetkunde nie ek het 

gesukkel met rneetkunde. As 'n nuwe stelling 

aedoen is dan word dit dadelik toegepas op 'n 

moe~like probleem miskien moes ons dit eers op 'n 

eenvoudig, baie eenvoudlge probleern te doen net 

om eers die beginsei vas te I&. 

6. 

R Dink jy iemand het spes~ale talent nodig om 

goed te doen in wiskunde? 

S3 Ek dink die gesindheid waarrnee jy d~nge 

doen in die lewe bepaal baie. So as jy met 'n 

negatiewe gesindheid in die wiskunde klas instap 

gaan jy nie baie leer nie. Ek dink daar is mense wat 

talent het maar ek dink gesindheid speel 'n groot rol. 

Ek dink ook dat onderwysers 'n invloed het op 'n 

mens of jy die werk verstaan of nie ek het ondervind 

toe ek geproef het, dat n juffrou wat vir graad 5 

wiskunde gegee het nie daarvoor opgele is nie en 

die klnders het dan alreeds in die Laerskool 'n 

agterstand omdat die juffrou nle mooi wset hoe om 

die werk te verduidelik nie As die werk In die 

grondslag fase nie goed vasgele 1s nie is daar al 

klaar n probleem. so ek glo nie dis net talent nie 

maar ook hoe dle werk verduidelik is. 

R hm Dink jy, jy het talent7 

53 Ek het seker talent maar ek werk baie hard. 

7. 

R Hoe belangr~k is d ~ t  om te rnernoriseer in 

wiskunde? 

53 Dit is nie net 'n verstaan vak me daar is 

bietjie leerwerk aan betrokke. Daar is 'n verskil 

tussen memorlseer en leer. As ek praat van leer dan 

weet ek wat daar aangaan As jy memoriseer dan 

weet jy nie wat daar aangaan nie en vind leer glad 

nie plaas nie. Jy moet verstaan wat aangaan. 

R Dink jy dat iemand wat nie goed is om te 

Are you better in certain sections 

nathernatics? For instance, are you better in 

algebra than in geometry? 

53 OK. I like algebra and tr~gonometry, but I 

jon't like geometry at all. I struggled with geometry. 

ahen a new theorem has been done, it IS 

mmediately applied to a difficult problem. Maybe we 

should first do a simple, a very simple problem lust to 

first establish the principles. 

5. 

R Do you think that a person needs a special 

talent to be good in mathematics? 

S3 I think the attitude with which you do things 

in life determines much. So if you have a negative 

attitude in the mathematics class, you won't learn 

much. I think there are people with aptitude, but I 

think attitude plays an important role. I also think 

that teachers have an influence on whether one 

understands the work or not, and 1 found that when I 

did practicals that the teacher teach~ng grade 5 was 

not trained for it. The children then have a backlog 

in primary school already because the teacher does 

not know how to explain the work If  the work in the 

f~rst phase is not well understood, there is a problem 

already. so I believe that it is not only talent, but also 

how the work has been explained. 

R Hm. Do you think you have talent? 

S3 I guess so, but I work very hard. 

7. 

R How important is it to memorise in 

mathematics? 

53  It is not just a subject that involves 

understanding, there is a little studying. There is a 

difference between memorising and studying. If I 

speak of study~ng I know what is going on there. If 

you memorise then you don't know what IS going on 

and learning does not take place You have to 

understand what is going on. 



memoriseer nie, goed doen in wiskunde? 

S3 Ja ek dink so. 

8. 

R Hoe gereeld doen jy so min aas moontlik 

werk net om by te bly? 

S3 As ek iets nie verstaan nie sal ek moeite 

doen om uit te vind hoe dit gedoen moet word 

anders sal ek sorg dat my werk op datum IS. 

R Goed so. 

9. 

R Hoe studeer jy vir ' n  wiskunde toets? 

S3 Ek doen sornme oor en oor 81 maak seker 

dat ek almal verstaan. 

R Het iemand jou spesiale vaardighede geleer 

om vir w~skunde te leer'? 

53  Nee. 

10. 

R Gee voorbeelde van die aktiwiteite wat jy in 

wlskunde doen. 

53  GSP, wat baie interessant is, en geo-stroke. 

11. 

R Van hierdie aktiwiteite wat jy nou net 

opgenoem het, is daar enige van die aktiwiteite wat 

jy baie geniet en interessant vind? 

S3 Ek hou baie van GSP en dit het my gehelp 

om die werk beter te snap, te verstaan 

R Hm. 

S3 Wanneer meetkunde gedoen moet word IS 

dit maklik en vinnig om die skets op GSP te teken en 

jy kan dadelik sien wat gebeur. Ek kan stelselmatig 

sien wat gebeur en dit maak dit makliker om die werk 

te verstaan. Jy kan onmiddellik sien wat gebeur en 

wat die effek is wanneer ek byvoorbeeld kyk na 

gelykbenige drlehoeke dan kan ek sien dat die 

basishoeke ewegroot is. Jy kan nie op d ~ e  bord so 

vinnig verduidelik soos met die tegnologie nie. 

in mernorlsing can do well in mathematlcs? 

S3 Yes I think so. 

8 

R How oflen do you do as llttle as possble just 

to keep up? 

53  If I don't understand someth~ng I wlll go to 

trouble to fmd out how it should be done, otherwse I 

see to it that my work is up to date 

R Good 

9 

R How do you study for a mathernatlcs test7 

S3 I do sums over and over and make sure that 

I understand all of them 

R Dtd someone teach you spec~al skdls to 

study for mathematlcs? 

53  No 

10. 

R Give examples of the activltles that you do in 

mathematics. 

5 3  GSP, which is very interesting, and ge* 

strips. 

R OK. 

11. 

R Of these activities that you have just 

menttoned, are there any that you enjoy and that you 

find interesting? 

53  1 like GSP and it helped me to grasp the 

work, to understand it better. 

R Hm. 

53  When geometry is being done it is fast and 

easy to draw h e  sketch on GSP and you can see 

what happens immediately. I can systemat~cally see 

what happens and that makes it easier to understand 

the work. You can see what happens ~mmediately 

when I for instance look at isosceles triangles. Then 

I can see that the base angles are equal. You can 

not explatn as fast on the board as you can with 



R Is daar probleme in wiskunde wat op meer 

as een manier opgelos kan word? 

5 3  Ja veral nou met OBE moet kinders 

toegelaat word om hul eie manier op te 10s. 

1 13 

R Is daar enig~ets waaraan jy kan dlnk wat 

belangr~k IS om wlskunde te leer wat ly nle genoem 

het nle 

S3 Nee wat, ek dmk ek het alles gese 

Onderhoud 4 

1. 

R Op 'n skaal van 1 tot 10. met 10 dle hoogste. 

hoe baie hou jy van w~skunde? 

( 5 4  6 

2. 

R Doen jy altyd lou werksopdragte? 

S4 Die meeste. 

R Hoe besluit jy watter gaan jy doen en watter 

nie? 

5 4  Wanneer ek te veel sukkel om dte probleme 

te doen sal ek daardie opdrag 10s. 

R Hoeveel tyd spandeer ly om jou 

werksopdragte te doen? 

S4 As ek weet wat aangaan dan sal ek meer tyd 

spandeer om d ~ e  opdrag te voltooi. 

R Goed. 

3 

R In d ~ e  algerneen, wat belnvloed jou om hard 

te werk? 

54 As ek d ~ e  werk verstaan sat ek harder werk 

R Is daar enlglets wat veroorsaak dat jy harder 

werk? 

S4 Dlt sal lekker wees om beter punte te kry 

R OK 

technology 0 12. 

? Are there problems in mathematics that car 

,e solved in more than one way? 

33 Yes, especially with OBE children should bl 

allowed to solve thmgs in thew own way. 

13 

2 Is there anythmg that IS important to learn 11 

nathematlcs that you have not ment~oned? 

53 No, I th~nk I have said everythmg 

Interview 4 

1 

R On a scale of 1 to 10, wlth ten being t h ~  

highest how much do you l~ke  mathematlcs7 

54 6 

2 

R Do you always complete your assignments? 

S4 Most of them. 

R How do you decide which you are going t, 

do and which not? 

S4 When I struggle too much with the problem 

I will leave that assignment. 

R How much time do you spend on doing  yo^ 

assignments? 

54 If I know what is golng on I will spend mor 

time to complete the assignment. 

R Good. 

3 

R In general, what influences you to wor 

hard? 

S4 If I understand the work I will work harder. 

R Is there anythlng that causes you to worl 

harder? 

S4 It will be good ta have better marks. 

R OK. 



I .  

i Hoe goed 1s jy in wiskunde? 

;4 Nie goed me. 

i Hoe weet jy dit? 

$4 Ek sukkel om party van die opdragte te 

joen. 

< Goed. 

5. 

? Is jy beter in sekere afdelhgs van wiskunde? 

3yvoorbeeld. is jy beter in algebra as in meetkunde? 

34 Ek hou n~ks van meetkunde nle 

? Hoekom rile? 

34 Ek verstaan dit nie 

5 .  

9 Dink jy iemand het spesiale talent nodig om 

Joed te doen in wiskunde? 

54 Ja. 

R Het jy sulke talent? 

34 Nee glad nie~ 

R Hoekom dink jy dat jy nie talent het nie? 

54 Ek sukkel met die wiskunde 

7. 

R Hoe belangrik is dit om te memoriseer lr 

wiskunde? 

S4 Ek leer altyd ~ympies en stappe. 

R Dink jy dat iemand wat nie goed is om te 

memoriseer nie, goed doen in wiskunde? 

S4 Ja, die persone wat talent het kan goec 

doen sonder om goed uit hul kop te leer. 

8 

R Hoe gereeld doen jy so mln as moontlik werk 

net om by te bly? 

S4 Nle so gereeld me, ek probeer om by te bly 

met my werk. 

R Hm 

R How good are you in mathemat~cs? 

54 Notgood .. .  

R How do you know that? 

54 1 struggle to do some of the assignments 

R Alright 

5. 

R Are you better in certain sections of 

mathematics? For instance, are you better in 

algebra than in geometry? 

5 4  1 don't like geometry at all. 

R Why not? 

5 4  1 don't understand it 

6. 

R Do you think that a person needs a special 

talent to be good in mathematics? 

S4 Yes. 

R Do you have such talent? 

S4 No. not at all. 

R Why do you think you don't have aptitude? 

S4 I struggle with the mathematics. 

7 

R How important IS it to memorlse in 

mathematlcs7 

S4 I always learn rhymes and steps 

R Do you th~nk that someone who is not good 

in memorlslng can do well In mathematics? 

5 4  Yes the persons who have apt~tude can do 

well without learnmg thlngs by heart 

8. 

R How often do you do as little as possible just 

to keep up? 

54 Not oflen, I try to keep up 

R Hm. 



9. 

R Hoe studeer jy vir 'n wiskunde to&.? 

S4 Ek doen die opdragte en probleme wat ons 

in die klas gedoen oor en oor 

R Is daar 'n ander manier wat jy ook gebruik 

om vir wiskunde te leer 

S4 Nee. 

10 

R Gee voorbeelde van die aktiwiteite wat ~y in 

wiskunde doen 

54 Geo-stroke, GSP en blokkies 

R Goed 

11 

R Van h~erdie akttw~telte wat j y  nou net 

opgenoem het is daar enlge van d ~ e  aktiw~te~te wat 

jy bale genlet en lnteressant v1nd7 

S4 GSP, dit het my gehelp om d ~ e  werk beter te 

verstaan 

12 

R Is daar problerne in w~skunde wat op meer 

as een manler opgelos kan word7 

S4 Ja versk~llende persone sal byvoorbeeld 

probleme op versk~llende manwe u~twerk 

13 

R Hoe hou jy van GSP? 

S1 Ja ek geniet dit om die sketse te teken en dit 

rnaak dat ek meer van wiskunde hou, meer van 

meetkunde hou 

14 

R Is daar enigiets waaraan jy kan dink wat 

belangrik is om wiskunde te leer wat jy nie genoem 

het nie. 

S4 Ek dink nle so nie. 

- 

Onderhoud 5 

1. 

R Op 'n skaal van 1 tot 10, met 10 die hoogste, 

R How do you study for a mathematics test? 

54 1 do the assignments and problems that we 

d ~ d  in class over and over. 

R Is there another method that you use to 

study mathematics? 

S4 No. 

10 

R Gtve examples of the act~vlt~es that you do in 

mathematlcs 

S4 Geo-str~ps, GSP and blocks 

R Good 

11. 

R Of these activities that you have just 

mentioned, are there any that you enjoy and that you 

find interesting? 

5 4  GSP It helped me understand the work 

better 

12. 

R Are there problems in mathematics that can 

be solved in more than one way? 

54 Yes. Different people will for instance work 

out problems in different ways 

13 

R Do you like GSP? 

S1 Yes, I enjoy drawing the sketches and it  

makes me like mathematics more and like geometry 

more. 

14. 

R IS there anything that is important to learn in 

mathematics that you have not mentioned? 

S4 I don't think so. 

- 

I n t e ~ i e w d  

1. 

R On a scale of 1 to 10, with ten being the 



2 

R Doen jy altyd jou werksopdragte? 

5 5  Nee, nie altyd nie. 

R Hoe besluit jy watter gaan jy doen en wattel 

nie? 

S5 Wanneer ek begin met 'n opdrag en e l  

verstaan nie en ek het nie baie tyd nie. sal ek dit nit 

doen nie. 

R Hoeveel tyd spandeer jy om jot 

werksopdragte te doen7 

S5 Dit hang af hoeveel ander werk ek het om te 

doen en weer of ek die werk verstaan of me. 

R Goed. 

3. 

R In die algemeen, wat beinvloed jou om harc 

te werk? 

S5 As ek weet wat aangaan sal ek meer doen 

en meer aandag aan my werksopdragte gee 

R Is daar enigiets wat veroorsaak dat jy hardel 

werk? 

S5 Ek dink nie so nie. 

R OK. 

1 bale hou jy van wiskunde? 

4. 

R Hoe goed is jy in wiskunde? 

5 5  Nie so goed rile. 

R Hoe weet jy dit? 

S5 Ek sukkel om die werk te doen en my punte 

lyk nie so goed nie. 

R OK. 

h~ghest how much do you llke mathemat~cs? 

5. 

R Is jy beter in sekere afdelings van wiskunde? 

Byvoorbeeld, IS jy beter in algebra as in meetkunde? 

S5 Ek hou niks van meetkunde nie 

R Hoekom nie? 

S5 Ek kry dit nie reg nie. 

2. 

R Do you always complete your assignments? 

S5 No, not always. 

R How do you decide which to do and which 

not? 

55 When I start wlth an assignment and I don't 

understand and I don't have much time, I will not do 

i t .  

R How much time do you spend on doing your 

asslgnments? 

S5 I t  depends on how much work I have to do 

and whether I understand the work or not. 

R Good. 

3. 

R In general. what influences you to work 

hard? 

S5 If I know what is going on I will do more and 

pay more attention to my asslgnments. 

R Is there anything that causes you to work 

harder? 

S5 I don't think so. 

R OK. 

4 

R How good are you in mathemat~cs? 

S5 Not so good 

R How do you know that? 

S5 I struggle to do the work and my marks are 

not so good 

R OK 

5. 

R Are you better in certain sections of 

mathematics? For instance, are you better in 

algebra than in geometry? 

S5 I don't like geometry at all. 

R Why not7 

5 5  1 can not do it. 



5. 

R Dink jy iemand het spesiale talent nodig om 

goed te doen in wiskunde? 

55 Ja 

R Het jy sulke talent? 

55 Ek dink nie so nie. 

R Hoekom dink jy dat jy nie talent het nie? 

S5 Omdat ek met die werk sukkel 

7 .  

R Hoe belangrik is dit om te memoriseer ir 

wiskunde? 

S5 Ek leer die rneeste van die werk uit my kop 

uit. 

R Dink jy dat iemand wat nie goed is om te 

memoriseer nie, goed doen in wiskunde? 

55 Daar is mense wat nie hard leer nie en goea 

doen, hulle weet gewoonlik wat in die klas aangaan. 

8. 

R Hoe gereeld doen jy so rnin as moontlik werk 

net om by te bly? 

S 5  Gereeld 

R Hoekom? 

S5 Wanneer ek met die werk sukkel gebruik dil 

bale van my tyd wat ek nie altyd het nie. 

9. 

R Hoe studeer jy vir 'n wiskunde toets? 

55 Ek doen die somme wat ons in die k l a ~  

gedoen het weer 

R Het iemand jou 'n spesiale vaardighede 

geleer om vir wiskunde te leer? 

55 Nee. 

10 

R Gee voorbeelde van d ~ e  aktiw~teite wat ~y in 

~tskunde doen 

55 Ek kan op die oombltk net aan geo-stroke 

dink 
- 

6. 

R Do you think that a person needs a speclal 

talent to be good in mathematics? 

S5 Yes 

R Do you have such talent? 

55 1 don't think so. 

R Why do you think that you don't have 

aptitude? 

S5 Because I struggle with the work. 

I .  

R How important is i t  to memorise in 

rnathematlcs? 

5 5  1 learn most of the work by hearl. 

R Do you thlnk that someone who IS not good 

tn memorlslng can do well in mathematics? 

S5 There are people who don t study hard and 

do well they usually know what o gomg on In class 

8 

R How often do you do as little as poss~ble just 

to keep up7 

S5 Often 

R Why? 

S5 When I struggle with the work it takes much 

of my tlme, whlch I do not always have 

9. 

R How do you study for a mathematics test? 

S5 I do the sums that we did in class again. 

R Dld someone teach you special sktlls to 

study for mathematics? 

S5 No. 

10 

R G~ve  examples of the activities that you do in 

mathematics 

S5 At the moment I can only thmk of geo-str~ps 



R Goed so. 

11. 

R Is daar probleme in wiskunde wat op meer 

as een manier opgelos kan word? 

S5 Ja. 

R Kan jy voorbeelde gee van sulke probleme 

S5 As mens byvoorbeeld goed moet bymekaar 

tel sal verskillende mense versk~llende metodes 

gebruik om die antwoord te kry. 

12. 

R Het jy al met GSP gewerk? 

55 Ja in d ~ e  wiskundeklas 

13. 

R Hou jy van GSP? 

S5 Ja dit is vir my lekker. 

14 

R Het GSP enige invloed op jou verstaan van 

wiskunde? 

S5 Ja, ek verstaan meer wat in die klas 

aangaan en dit is lekker om met GSP te werk, dit 

maak die werk interessant. 

15. 

R Is daar enigiets waaraan jy kan dink wat 

belangrik is om wiskunde te leer wat jy nie genoem 

het nie 

S5 Nee ek kan nie aan nog iets dink nie. 

Onderhoud 6 

1. 

R Op 'n skaal van 1 tot 10, met 10 die hoogste, 

hoe baie hou jy van wiskunde? 

S6 8 . 9  

2. 

R Doen jy altyd jou werksopdragte? 

S6 Ek doen soms my werksopdragte ek doen a 
- 

/ R Good. 

11 

R Are there problems in mathematics that can 

be solved in more than one way7 

S5 Yes 

R Can you give me examples of such 

problems7 

S5 If one for Instance has to add th~ngs 

together, different people would use dtfferenl 

methods to find the answer 

12. 

R Have you worked wtth GSP? 

S5 Yes, in the mathematics class. 

13. 

R Do you like GSP? 

55 Yes, I enjoy it 

14 

R Does GSP have any influence on  yo^ 

understanding of mathematics? 

S5 Yes, I understand better what is going on iri 

class and it is enjoyable to work wtth GSP. It maker 

the work interest~ng. 

15. 

R Is there anything that is important to learn ir 

mathematics that you have not mentioned? 

S5 No I can not think of anything else 

-- 
Intewiew-6 

1. 

R On a scale of 1 to 10, with ten bemg the 

highest, how much do you like mathernatics? 

S6 8.  9 

2 

R Do you always complete your assignments? 

S6 I sometimes do my assignments. I do all the 
- 

13s 



die opdragte waarvoor ons punte kry 

R en hoeveel tyd spandeer jy om jou 

werksopdragte te doen? 

S6 Die opdragte is gewoonllk makhk en dan sal 

ek nie so bate tyd spandeer om dlt te doen nle 

R OK 

3. 

R In die algerneen. wat beinvloed jou om hard 

te werk? 

S6 Vir my is die werk lekker rnaklik, dit is pret. 

R Mooi. Is daar ander enigiets anders wat jou 

beinvloed om harder te werk? 

S6 Die werk is vir my interessant en daarom sal 

ek harder werk. 

R OK. 

4. 

R Hoe goed is jy in wiskunde? 

S6 Ek dink ek 1s nogal goed in wiskunde. 

R Hoe wee! jy dit? 

S6 My uitslae wys dat ek goed is. 

5. 

R Is jy beter in sekere afdelings van wiskunde? 

Byvoorbeeld is jy beter in algebra as in meetkunde? 

S6 Ek is ewe goed in algebra en trig rnaar nie 

so goed in meetkunde nie. 

R Goed so. 

6 .  

R Dink jy iemand het spesiale talent nodig om 

goed te doen in wiskunde? 

S6 Ek sal dit nie 'n talent noern me, ek sal 'n 

aangelegdheid noem. lemand wat aangele is in 

wiskunde doen makliker goed in wiskunde 

R Het jy sulke talent? 

S6 Ek dink ek is aangele in wiskunde. 

R OK 

assignments for which we receive marks. 

R And how much time do you spend on doing 

your assignments? 

S6 The assignments are usually easy and then I 

will not use so much time on doing it 

R OK. 

3. 

R In general. what influences you to work 

hard? 

S6 For me the work is easy, it is fun. 

R Good. Is there anything that causes you to 

work harder? 

S6 The work is interesting and therefore I will 

work harder. 

R OK 

4 

R How good are you in mathematics? 

S6 I think I am rather good in mathematics 

R How do you know it? 

S6 My results show that I am good. 

5 

R Are you better in certaln secttons of 

mathematics? For lnstance are you better in 

algebra than in geometry? 

S6 I am equally good In algebra and trlg but not 

so good in mathematlcs 

R Alr~ght 

6 

R Do you think that a person needs a special 

talent to be good in mathematlcs? 

S6 I will not call it talent. I will rather call it 

aptitude. Someone who has aptitude in mathematics 

do well in mathematics easlly. 

R Do you have aptitude? 

S6 I think I have aptitude for mathemat~cs. 

R OK. 



I 

R Hoe belangrik is dit om te memoriseer in 

wiskunde? 

S6 Sekere goed moet gememoriseer word maar 

as jy nie goed is in memoriseer nie is dit bet6 om te 

leer hoe om die goed self af te lei. 

R Dink jy dat iemand wat nie goed is om te 

memoriseer nie, goed doen in wiskunde? 

S6 Ja, as jy die werk verstaan kan jy goed 

doen. 

8 

R Hoe gereeld doen jy so mln as moontlik werk 

net om by te bly7 Hoe gereeld doen jy so mln aas 

moontlik werk net om by te bly7 

S6 Dlt hang net af hoeveel werk word van my 

verels as ek bale werk in my ander vakke het sal ek 

m~nder tyd spandeer aan my wlskunde maar as ek 

genoeg tyd he! spandeer ek bale tyd aan w~skunde 

dan sal ek meer doen as wat van my verwag word 

R Hrn 

9. 

R Hoe studeer jy vir 'n wiskunde toets? 

S6 Ek gaan die studiegids deur en kyk wat is 

die opskrifte en dan sal ek seker maak dat ek 

daardie werk waaroor die opskr~fte gaan kan doen 

en dat ek dit goed verstaan en dan sal ek so een of 

b e e  voorbeelde doen 

R Goed so. 

10 

R Gee voorbeelde van die akt~w~tette wat jy in 

wlskunde doen 

S6 Elke probleem skep sy ele tlpe hulpbron wat 

gebrulk kan word om dit beter te verstaan tydens 

fasilltering was daar n probleem waarmee d ~ e  

studente gesukkel het en ek het toe GSP gebru~k om 

d ~ e  probleem op te 10s 

R Hm 

R How important is it to mernorise in 

mathematics? 

S6 Certain things should be memorised, but if 

you are not good in memorising it is better to learn to 

deduct things by yourself. 

R Do you think that someone who is not good 

in memorising can do weli in mathematics? 

S6 Yes, if you understand the work you can do 

 well^ 

8. 

R How often do you do as little as possible just 

to keep up? 

S6 It depends on how much work is expected of 

me. If I have much work in my other subjects I will 

spend less tlme on my mathematics, but if I have 

enough time I spend much time on mathematics and 

then I will do more than expected 

R Hm. 

9 

R How do you study for a mathemat~cs test7 

S6 I go through the study gu~de and look at the 

headings Then I will make sure that I can do the 

work that the heading deals w~th and that I 

understand it well, and then I will do one or two 

examples 

R Alr~ght 

10. 

R Give examples of the activities that you do in 

mathematics. 

S6 Each problem creates its own type of 

resources that can be used to understand it better. 

During facilitation there was a problem with whlch 

the students struggled and I used GSP to solve the 

problem. 

R Hm. 



R Van hlerdle hulpbronne wat jy al gebru~k het 

IS daar enlge een wat ]y bale genlet en mteressant 

vmd7 

S6 Ek dmk dat ek GSP kan gebru~k om van dfe 

werk du~dellker te maak 

12 

R Is daar probleme in w~skunde wat op meer 

as een manler opgelos kan word? 

S6 Ja 

R Hoekom7 

S6 Alrnal dmk nle d~eselfde nle en een persoon 

sal met 'n ander oplossmg kom as temand anders 

13. 

R Is daar enigiets waaraan jy kan dink wat 

belangrik is om wiskunde te leer wat jy nie genoem 

het nie. 

S6 Ek dink ek het alles ges* waaraan ek kan 

dink. 

R OK. 

14 

R Hou jy van GSP? 

S6 Ja. GSP kan op verskillende maniere 

gebruik word soos byvoorbeeld om die 

ooreenkomste en verskille van verskillende soorte 

driehoeke. Jy kan dadelik verwantskappe sien en d ~ t  

help jou om die werk beter te verstaan. 

Onderhoud 7 

1. 

R Op 'n skaal van 1 t d  10, met 10 die hoogste, 

hoe baie hou jy van wiskunde? 

5 7  7 na 8 

R OK. 

2. 

R Doen jy altyd jou werksopdragte? 

S7 ]a op 'n skaal van 1 tot 10, so 9. 

R Of these activities that you have just 

mentioned, are there any that you enjoy and that you 

find interesting? 

S6 I think GSP can be used to clarify the work. 

12. 

R Are there problems in mathematics that can 

be solved in more than one way? 

S6 Yes. 

R Why? 

S6 All people do not think the same, and one 

person will come with a solution different from 

someone else's. 

13. 

R Is there anything that is important to learn in 

mathematics that you have not mentioned? 

5 6  1 think I have said everything that I can think 

of. 

R OK. 

14 

R Do you like GSP? 

S6 Yes, GSP can be used in different ways, like 

for instance with the similarities and differences 

between different types of triangles. You can 

lmmedlately see relationships and it helps you to 

understand the work better. 

Interview 7 

1. 

R On a scale of 1 to 10: with ten being the 

highest, how much do you like mathematics? 

5 7  7 t o 8  

R OK. 

R Do you always complete your assignments? 

S7 Yes, on a scale of 1 to 10, about 9. 
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3 en hoeveel tyd spandeer jy om jou 

~erksopdragte te doen? 

57 Ek sal SO bietjie meer as die gemiddeld wat 

iodig is om te doen omdat ek bietlie meer te 

spandeer om die beginsel te verstaan en dan doen 

ek meer somme 

R OK. 

3. 

R In die algemeen, wat beinvloed jou om hard 

te werk? 

5 7  Wiskunde is 'n vak wat soos die Bybel si! 

wat jy saai s a  jy maai, dit is direk eweredig hoe 

harder jy werk hoe meer resultate sier jy dit is nie 

soos tale wat oor 'n lang tydperk vorm nle. 

R Moo1 Is daar ander enlg~ets anders wat jou 

belnvloed om harder te werk7 

5 7  Die st~mulas~e van jy sen d ~ e  produk op jou 

harde werk 

R OK 

4. 

R Hoe goed is jy in wlskunde? 

S7 Ek dink ek sal net eers onderske~ tusser 

skoolvlak wiskunde en ingenieurs wiskunde T tot 

op skoolvlak wiskunde en eerstejaars wiskunde is ek 

baie sterk 

R Hoe weet ]y dit? 

S7 Ek dink ek snap redelik vinnig as ek my meel 

aan ander studente dan snap ek vnniger as die 

meeste van hulle. 

5. 

R Is jy beter in sekere afdelings van wiskunde? 

Byvoorbeeld, is jy beter in algebra as in meetkunde? 

S7 My algebra was nog altyd die sterker een 

gewees. My meetkunde het egter beter geworc 

vandat ek op Universiteit is. 

R Kan jy enlge rede gee hoekom dit so is? 

S7 Ja ek dink ek beg~n meetkunde betel 

R And how much time do you spend on doing 

your assignments? 

57 1 use more than average because I do more 

than what is necessary because I spend more time 

on understanding the princ~ple, and then I do more 

sums. 

R OK. 

3. 

R In general, what Influences you to work 

hard? 

S7 Mathematics is a subject that as the B~ble 

says, you reap what you sow. It is directly related to 

how hard you work The more you work the better 

you do. It is not like language that forms over a long 

period of time. 

R Good. Is there anything that causes you to 

work harder? 

S7 The stimulation of seeing the product of your 

hard work. 

R OK. 

4. 

R How good are you in mathematics? 

S7 I think I will first distinguish between school 

mathematlcs and engineering mathematics I am 

strong in school mathematics up to first year 

mathematics. 

R How do you know? 

S7 I think I grasp it quickly and if I measure 

myself according to other students. I grasp things 

quicker than most. 

5. 

R Are you better in certain sections of 

mathematics? For instance, are you better in 

algebra than in geometry? 

S7 My algebra has always been the stronger 

one. My geometry has improved since I have been 

at University. 

R Can you give a reason for why this is so? 

S7 Yes, I think I am starting to understand it 



geheel. 

R Hm 

6. 

R Dink jy iemand het spesiale talent nodig om 

goed te doen in wiskunde? 

S7 Ja ek dink so, dit kan ontwikkel word ek het 

egter van graad 1 'n 1 vir wiskunde gekry. Vir my 

gaan dit om redenasie vermoe, om dit te kan insien 

R Het jy sulke talent? 

S7 Ja in 'n mate. 

R OK. 

verstaan, ek snap dit makliker, ek sien dit meer in sy 

7 .  

R Hoe belangrik is dit om te memoriseer in 

wiskunde? 

S7 Daar is sekere dinge wat gememoriseer 

moet word. Daar is meetkunde stellings wat geleer 

moet word maar ek dink as jy die vermoe het om iets 

uit te redeneer dan is dit belangrik om net die 

stellings te leer. As jy te goed memoriseer sal jy dalk 

lui wees om te probeer verstaan wat aangaan, insig 

het in dit wat aangaan. 

R Dink jy dat iemand wat nie goed is om te 

memorlseer me, goed doen in w~skunde? 

5 7  Ja die hele vak bestaan nie uit memoriseer 

werk nie, dit is in 'n minder mate, jy moet beginsels 

verstaan 

better, I grasp it quicker. I see the whole better. 

8. 

R Hoe gereeld doen jy so min as moontlik werk 

net om by te bly? Hoe gereeld doen jy so min aas 

moontlik werk net om by te bly? 

S7 Wiskunde eis sy pond vleis, as jy net genoeg 

doen om by te bly, eis dit nog steeds van jou 24 uur 

dag 'n uur of b e e .  Die minimum om by te bly in 

wiskunde is dalk die maksimum van 'n ander vak om 

by te bly 

R Hm. 

r 
6. 

R Do you think that a person needs a special 

talent to be good in mathematics? 

S7 Yes I think so. It can be developed. but I 

had a 1 for mathematics since grade 1. For me it is 

about an ability to argue, to see things. 

R Do you have such talent? 

S7 Yes, to a certain extent. 

R OK. 

7 

R How important is it to memorise in 

mathematics? 

5 7  There are certain things that have to be 

memorised. There are geometry theorems that have 

to be studled, but I think if you have the ability to 

argue something it is important to just study the 

theorems. If you are good at memorising, you might 

be lazy to try to understand what is going on and to 

have insight. 

R Do you think that someone who IS not good 

in memorising can do well in mathematics? 

5 7  Yes, the subject does not consist of 

memorising. Memorising is to a lesser extent, you 

must understand the principles. 

8. 

R How often do you do as little as possible just 

to keep up? 

S7 Mathematics takes its toll, if you only do 

enough to keep up, it still takes an hour or two of a 

24 hour day. The minimum in mathematics might be 

the maximum in another subject. 

R Hm. 





meetkundige sketse op GSP doen geniet ek die 

meetkunde meer en ek verstaan meer van die 

meetkunde ek kan die uitwerking dadelik sien bv as 

ons gelykbenige driehoeke moet teken en die hoeke 

meet, kan ek dadelik siek die basishoeke is gelyk. 

makliker om meetkunde daarop te doen. Vandat ek 

geometry sketches on GSP I enjoy geometry more 

and I understand more of the geometry. I can 

immediately see the effect, for instance if we do 

isosceles triangles, I will immediately see that the 

basis angles are equal. 

do geometry on it. Since I have been doing 1 
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17 Mei 2004 

Dekaan Opvoedkunde 

Potchefstroom Karnpus 

POTCHEFSTROOM 

2520 

Geagte Prof. HJ Steyn 

Ek is op die oornblik besig met my M.Ed verhandeling (wiskunde-onderwys) en die fokus van 

ondersoek is: "The effect of a dynamic technological learning environment on the geometry 

conceptualisation of pre-service mathematics teachers". Verwagte uitkoms van die projek is 'n 

betekenisvolle bydrae tot die herontwerp van bestaande voordiensopleidingsprogramrne vir 

wiskundeonderwysers om hulle vlak van relevante konseptuele wiskundekennis tot verwagte 

ontwikkelingsvlakke te verhoog. Die projek vorrn deel van die NRF-ondersteunde SOSI-Projek, 

met spanlede proff. Dirk Wessels (Unisa), Michael de Villiers (UKZN) en Hercules Nieuwoudt 

(Potchefstroornkampus, UNW). 

Ek vra asseblief toesternming om die projek ooreenkornstig my goedgekeurde voorlegging binne 

die Fakulteit Opvoedingswetenskappe aan te pak en welrnet die hulp van die derde-jaarsgroep 

wat algernene wiskunde (WSGK 311) neem. Die navorsing sal plaasvind in deurlopende 

rnedewerking met die verantwoordelike personeellid, mev. Annalie Roux, en onder toesig van die 

studieleiers, prof. Hercules Nieuwoudt en rnev. Mariana Plotz. Die betrokke dosent sal te alle tye 

teenwoordig wees. Die bestaande studiegids en module-uitkornste bly op alle WSGK 311-groepe 

van toepassing en dieselfde werkkaarte sal te alle tye deur alle groepe gebruik word, ongeag of 

hulle deel van die navorsingsgroep uitmaak. Alle werk (leertake) wat een groep doen sal die 

navorsingsgroep ook doen, en omgekeerd. Die enigste wesenlike verskil is die hulprniddels wat die 
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groepe gaan gebruik, en die konteks waarbinne hulle leer. Die navorsingsgroep gaan die 

dinamiese sagtewarepakket Geometer's Sketchpad gebruik as hulpmiddel en leerkonteks, tetwy 

die ander groepe byvoorbeeld geo-stroke in die gebruiklike klass~kale opset gaan gebruik. Die 

doelwitte en leeruitkomste van alle groepe is dieselfde. 

Die navorsing geskied ook met die medewete van die wiskunde-vakvoorsitter: Dr. Susan 

Nieuwoudt, en die saak is reeds deur die studieleier met die betrokke skooldirekteure, prof. Barry 

Richter en dr. Elsa Mentz bespreek. 
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