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Abstract 

It is well known t hat fragmentation and aggregation are not the only processes occurring 
in population grouping dynamics. The latter also includes other processes , like advection, 
convection , diffusion, direction changing, flow (transport). Existence of global solut ions 
to discrete models and continuous non-local convection-fragmentation equations are in­
vestigated in spaces of distributions with finite higher moments. Assuming that t he 
velocity field is divergence free , the method of characteristics and Friedrichs lemma [56] 
are used to show that the transport operator generates a stochastic dynamical system. 
This allows for the use of substochastic methods and Kato- Voigt perturbation theorem 
[12] to ensure that the combined transport-fragmentation operator is the infinitesimal 
generator of a strongly continuous semigroup. In particular , it is shown t hat the solut ion 
represented by this semigroup is conservative. 

A double approximation technique is used to show existence result for a non-local and 
non-autonomous fr agmentation dynamics occurring in a moving process. The case 
where sizes of clusters are discrete and fragmentation rate is t ime, position and size 
dependent is considered. The system involving transport and non-autonomous fragmen­
tation processes, where in addition, new particles are spatially randomly distributed 
according to some probabilistic law, is investigated by means of forward propagators 
associated to evolution semigroup theory and perturbation t heory. The full gener­
ator is considered as a perturbation of the pure non-autonomous fragmentat ion op­
erator. One can therefore make use of t he truncation technique [57], the resolvent 
approximation [88], Duhamel formula [39] and Dyson-Phillips series [76] to establish 
the existence of a solut ion for this model, hereby, bringing a contribution that may 
lead to the proof of uniqueness of strong solutions to this type of transport and non­
autonomous fragmentation problem which remains unresolved. After that , the solution 
of the same model is approximated by a sequence of solutions of cut-off problems of a 
similar form. Then , the classical argument of Dini [50 , Lemma 4] is used to show exis­
tence of strong solutions in the class of Banach spaces ( of functions with finite higher 
moments) Xr := {g : lR3 x N 3 (x , n) -t g(x , n) , ll9llr := f!R3 I::=l nrlg(x, n)l dx < oo }. 
Finally, the equivalent norm approach and semigroup perturbation theory are used to 
state and set conditions for a non-autonomous fragmentation system to be conservative. 
Generally, it is assumed that the generators are of class 9 (1, 0) [33, 50], but this condi­
tion is modified in this study. Instead , it is assumed that the renormalisable generators 
involved in t he perturbation process are in the class of quasi-contractive semigroups. 
This, henceforth , allows the use of admissibility with respect to the involved operators , 
Hermitian conjugate [74], Hille-Yosida's condition [12 , 88] and the uniform bounded­
ness [50] to show that t he operator sum is closable , its closure generates a propagator 
( evolut ion system) and , therefore , a C0 semigroup , leading to the existence result and 
conservativeness of the model. 

Existence of a global solution to continuous, non-common and non-linear convection-
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coagulation equations are investigated in the space L1 (JR3 x lR+, mdmdx). This is done 
by showing first that the t ransport operator generates a stochastic dynamical system, 
making use , as mentioned above, of the method of characteristics and Friedrichs lemma. 
Next , substochastic methods and Kato-Voigt perturbation theorem are used to en­
sure t hat the linear operator ( t ransport-coagulat ion ) is the infinitesimal generator of 
a strongly cont inuous semigroup. Once the existence for the linear problem has been 
established , the solution of the full non-linear problem follows by showing that the co­
agulation term is globally Lipschitz. In particular , it is shown that the solution of the 
full model is unique. 

Laplace t ransform techniques and the method of characteristics are used to solve frag­
mentation equations explicitly. The result is a breakthrough in the analysis of pure 
fragmentation equat ions as this is the first inst ance where by, an exact solution is pro­
vided for the fragmentation evolut ion equation with arbitrary fragmentation rates. This 
provides a key for resolving most of the open problems in fragmentat ion theory including 
'shat tering' and the sudden appearance of infinitely many particles in some systems with 
initial finite particles number. In another concrete application , the effects of ocean iron 
fertilisation on the evolut ion of the phytoplankton biomass are investigated , using the 
theory of semilinear dynamical systems and numerical simulations are performed. The 
results demonstrate the validity of t he iron hypothesis in fighting climate change. 

In the process of discrete and non-local aggregation , the major problem arises when each 
fr agmentation rate becomes infinite at infinity. A discrete Cauchy problem describing 
mult iple fragmentation processes is investigat ed by means of parameter-dependent op­
erators together with t he theory of ubstochastic emigroups wit h a parameter. Focus is 
on the case where fragmentat ion rates are size and position dependent and where new 
particles are spat ially randomly distributed according to a certain probabilist ic law. Dis­
crete models with both bounded and unbounded fragmentation rates are t reated . The 
existence of semigroups is est ablished for each parameter and "glued"together in order 
to obtain a semigroup to the full space. The dominated convergence theorem [21] is used 
to show existence of the infinitesimal generator of a positive semigroup of contractions 
and give sufficient condit ions for honesty. Essentially, it was demonstrated that even in 
discrete and non-local case, the process is conservative if at infinity daughter part icles 
tend to go back into the system with a high probability. 
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Chapter 1 

Introduction 

This study explores some important aspects of fragmentation and coagulation processes 
evolving in moving areas which are not properly discussed in the literature. In fact , 
fragmentation-coagulation models which combine other processes like transport or di­
rection changing and where the rate at which particles coalesce or fragment depends on 
t ime, is still sketchy in the domain of applied analysis. In this chapter several concepts 
are introduced, such as mathematical models and spaces and will be examined using 
various techniques including the theory of substochastic semigroups, Kato- Voigt per­
turbation , equivalent norm approach , t he theory of evolut ion systems, Laplace transform 
techniques and the method of characteristics. 

1.1 Transport, direction changing, fragmentation 
and coagulation processes 

An Organism's (Population) Grouping refers to a phenomenon in which a number 
of living beings are involved in movement as a group (cluster). For example, one count 
the swarms of locust, mosquitoes , flies or midges, a herd of elephants or sheep , a school 
of fish, marine zooplankton or phytoplankton cluster. A group size can change due to 
splitting ( fission or fragmentation) into smaller sizes or combining ( aggregation , fusion 
or coagulation) to form a bigger group size. The dynamics in population grouping 
is not limited only to fragmentation and aggregation. There are other processes like 
advection , diffusion , direction changing and flow (transport) . It is obvious that some 
clustering and direction change act on a faster t ime scale (school of fish) or a slower time 
scale (herd of elephants). Theses processes combined in the same model are still barely 
investigated and pose a challenge for this study. (Pure) Fragmentation processes 
can be observed in natural sciences and engineering. A few examples include t he study 
of stellar fr agments in astrophysics, rock fracture, degradation of large polymer chains, 
DNA fragmentation, evolution of phytoplankton aggregates , liquid droplet breakup or 
breakup of solid drugs in organisms. Coagulation-fragmentation processes describe 

1 



CHAPTER 1. INTRODUCTION 2 

the evolution of systems in which particles react in either fusing together or breaking 
apart while the transport and direction changing processes add movement to all 
of it. 

In concrete applications , the mathematics of an evolution dynamical system is repre­
sented by a concentration function (t , TJ) --+ p(t , TJ ), where t is the time and T/ is an 
element of some state space n which identifies an individual uniquely. The function p is 
then interpreted as the probability (density) of finding an individual which at the time 
t enjoys the property TJ . An intrinsic property of the dynamical process is that all the 
particles must be accounted for or, in other words: 

(1. 1) 

for any time t , where dµ 11 is an appropriate measure in the state space. Therefore, from 
the physical point of view, the natural spaces for studying such problems are L1 spaces. 
In fragmentation-coagulation theory, T/ could be for example, the mass or the size of a 
particle , its spatial location or a combination of all of them. 

The general discrete model of the dynamics as described above and which is a spatially 
explicit group-size distribut ion model as presented in [67] reads as follows: 

l n-1 00 

+2 L c(m, n - m)PmPn-m - L c(n , m)PnPm 
m= l m=l 

l n - 1 oo 

- 2 L h(n , m)pn + L h(m, n)pm, (1.2) 
m=l m=n+ l 

where the velocity w = w(x, n) of the transport is supposed to be a known quan­
tity, depending on the size n of aggregates and their position x . More details about 
this model are given in equation (3. 1). It should be noted t hat the term -~(n)pn + 
~(n) fv PnK(w , w' , n)dw' , which is the Boltzmann part of the equation , describes t he 
change of the direction of motion. This study is interest ed in solving the problem (1.2) 
with the transport and fragmentation processes only. The fo llowing Cauchy Problem 
( the model with an init ial condition) is considered : 

a . 
al(t , x , n) = -div(w(x, n)p(t , x, n)) - anp(t , x, n) + L 

m=n+l 

00 

p(O , x, n) = Pn(x) , n = 1, 2, 3, ... (1.3) 

where an = ½ :z:=;::.,,-:,,\ h( n , m) is the average fragmentation rate, that is the average num­
ber at which clusters of size n undergo splitting, bn,m 2'. 0 is the average number of 
n-groups produced upon the splitting of m-groups and given by h(m, n) = bn,mam = 
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½ ~ ;;i:i1 bn,mh( m, k) . The coefficients an and bn,m give a randomly spatial distribution 
and are better to analyse than the previous ones c and h which describe a binary process. 
The space variable x is supposed to vary in the whole of IR.3 = D. The function Pn rep­
resents the density of n-groups at the beginning of observation (t = 0) and is integrable 
with respect to x over t he full space IR.3 , this integral multiplied by n is summable so 
that t he total init ial population is finite. 

Because the total number of individuals in a population is not modified by interactions 
among groups, the following conservation law is supposed to be satisfied: 

(1.4) 

where U(t ) = JIR3 ~:=1 np(t , x, n)dx = ~ :=In JIR3 p(t , x, n)dx is the total number of 
individuals in the space. Since Pn = p(t, x, n) is the density of groups of size n at the 
position x and t ime t and that mass is expected to be a conserved quant ity, the most 
appropriate Banach space to work in is the space 

X1 := {g = (gn)~=l : IR.3 
X N :3 (x , n) ➔ 9n( x), 

llgll 1 := 1 f nlgn(x)l dx < CX) } . 

IR
3 n=l 

(1.5) 

Work is dine in this space because t hey have many desirable properties, like controlling 
the norm of their elements which , in this case, represents t he total mass ( or total number 
of individuals) of the system and must be fini te. Because uniqueness of solut ions of (1.3) 
proved to be a more difficult problem [15], t he analysis is limited to a smaller class of 
functions, then , t he following class of Banach spaces ( of distributions with finite higher 
moments) is introduced: 

Xr := {g = (gn) ~=l : IR.3 
X N :3 (x, n) ➔ 9n(x), 

llgllr := 1 f nrl9n(x)l dx < CX) } , 

IR3 n=l 

r ~ 1, which coincides with X1 for r = l. 

(1.6) 

Mathematical expression of the non autonomous model: The dynamical be­
haviour of a system that can break up to produce smaller particles is given by the 
integro-different ial system: 

{ 
gtp(t , x) = -a(t , x) p(t , x) + fx00 a(t , y)b(xl y)p(t , y)dy 
p(T,x) =p7 (x) O:::; T < t::;T, x> O 

(1. 7) 

where p is the particle mass distribut ion function (p( T, x) = p7 (x) is the mass distribution 
at some fixed time T ~ 0 ) with respect to the mass x , b(xly) is the distribut ion of 
part icle masses x spawned by the fragmentation of a particle of mass y , T E IR , a( t , x) 
is the evolutionary time-dependent fragmentation rate that is t he rate at which mass x 



CHAPTER 1. INTRODUCTION 4 

particles break up at a t ime t. The first term on the right-hand side of (1.7) describes the 
reduction in the number of particles in the mass range (x ; x+dx) due to the fragmentation 
of particles in the same range. The second term describes the increase in the number of 
particles in the range due to fragmentation of larger particles. 
The idea here is to analyse the equation (1.7) in the Banach space L1 (J , X 1) where 
J = [O ,T] and 

X1 = L1([0, oo) , xdx) = { 'l/J : ll'l/J llx1 := 100 

xl 'l/J (x)I dx < oo } , 

using the t heory of evolut ion semigroup. The model ( 1. 7) is recast as the non-autonomous 
abstract Cauchy problem in X1 : 

{ 
ftu( t ) = Q(t)u(t) 
u(T) = UT 

(1.8) 

where Q(t) is defined by Q(t) = Q(t) and which represents the realisation of Q(t ) 
on the domain D(Q(t)) = {u E X 1 ; Q(t )u(t ) E X1 } , with (Qu) defined as follows: 
(Qu)(t ,x) = (Qu)(t )(x) = -a(t ,x)u(t ,x) + J; a(t ,y)b(xl y)u(t ,y)dy 
Q(t) is seen as the pointwise operation 

'ljJ (t ,x) 1-t -a(t ,x) 'ljJ (t,x) + 100 

a(t ,y)b(xl y) 'lfJ (t ,x)dy 

defined on the set of measurable functions. Q(t ) indeed defines various operators. To 
analyse this system, a two parameter family called (Evolution system {74] or prop­
agator {64]) is needed. 

The analysis of such models required the researcher to proceed step by step as pre­
sented in t his study. Important results, definit ions and theorems which lie at the core of 
dynamical systems are used. 

1.2 Outline of the thesis 

This study explores less known aspects characterising the multiple combination of forms 
arising in fragmentation-coagulation-transport (non-local or non-autonomous) theory. It 
is the outcome of the researcher 's three years PhD research at the North-West University. 
Most of t he materials contained in this study are based on the fo llowing published 
articles: 

1. E.F. Doungmo Goufo (co-published with S.C. Oukouomi Noutchie) , " Global Solv­
ability of a Continuous Model for Non-local Fragmentation Dynamics in a Moving 
Medium," Mathematical P roblems in Engineering, vol. 2013 , Article ID 320750, 8 
pages , 2013. http://dx.doi.org/ 10.1155/ 2013/ 320750; 
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2. E.F. Doungmo Goufo (co-published with S.C. Oukouomi Noutchie) , Honesty in 
discrete, nonlocal and randomly position structured fragmentation model with un­
bounded rates , Comptes Rendus Mathematique, C.R Acad. Sci, Paris , Ser , I, 2013 , 
http: //dx.doi.org/ 10.1016/ j .crma.2013 .09.023; 

3. E.F. Doungmo Goufo (co-published with S.C. Oukouomi Noutchie) , Global solv­
ability of a discrete non-local and non-autonomous fragmentation dynamics occur­
ring in a moving process , Abstract and Applied Analysis, vol. 2013 , Article ID 
484391 , 9 pages , 2013. doi :10.1155/ 2013/ 484391; 

4. E.F. Doungmo Goufo (co-published with S.C. Oukouomi Noutchie) , "On the Hon­
esty in Non-local and Discrete Fragmentation Dynamics in Size and Random Po­
sit ion ," ISRN Mathematical Analysis, vol. 2013 , Article ID 908753 , 7 pages, 2013. 
http://dx.doi. org/ 10.1155 / 2013 / 908753; 

5. E.F. Doungmo Goufo (co-published with S.C. Oukouomi Noutchie) , Analysis of 
the effects of large scale marine iron f ertilisation, Journal of Pure and Applied 
Mathematics: Advances and Applications, 2012 Scientific Advances Publishers. 

And the following submitted papers (still under review) : 

1. E.F. Doungmo Goufo (with S.C. Oukouomi Noutchie) , On conservativeness of evo­
lution family by equivalent norm analysis for a non-autonomous fragmentation 
model ; 

2. E.F. Doungmo Goufo (with S.C. Oukouomi Noutchie), Analysis by approximation 
technique for discrete, non-local and non-autonomous fragmentation models; 

3. E.F. Doungmo Goufo (with S.C. Oukouomi Noutchie) , Global solvability of a con­
tinuous and special model for coagulation process in a moving medium. 

Despite the fact that most of the methods and techniques used in the study are relatively 
well known, the investigation and analysis often required some possibly less familiar 
results and considerations. Hence, Chapter 2 discusses these subsidiary results and 
considerations. 

The aim of Chapter 3 is to combine and analyse fragmentation models with the trans­
port ( streaming) operator in order to model fragmentation processes in moving media. 
The streaming operator arises in many models of mathematical physics ( e.g. Boltz­
mann equation, radiative transfer , neutron transport theory) and mathematical biology 
(population dynamics etc.) dealing with the t ime evolution of t he distribution function 
p(t; x ; n) of individuals of some population (particles in the Boltzmann kinet ic theory, 
population of cells in biomathematics) having the state (x; n) at time t 2 0. Commonly, 
x stands for the position of a particle and n for its size. Because uniqueness of solu­
tions of the model under investigation proved to be a more difficult problem [15], t he 
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researcher in this study distances himself from previous works [12, 31 , 68] by restrict­
ing the analysis to the spaces of distributions with finite higher moments. The analysis 
consists of considering at first , the model only with the transport process , and later , 
gradually add the loss and the gain parts of fragmentation operator with the hope that 
it will make a significant contribution to the analysis of the fu ll problem (with transport , 
direction changing, fragmentation and coagulation processes ) which remains an open 
problem. Assuming t hat the velocity field is divergence free , the researcher succeeded 
in using the method of characteristics and Friedrichs lemma [56] to show existence of 
global solutions to discrete models and continuous non-local convection-fragmentation 
equations . In particular , it is shown that the solutions represented by these semigroups 
are conservative. 

Chapter 4 deals with non-autonomous fragmentation dynamics. In the first part of the 
chapter, a global analysis of the discrete non-local and non-autonomous fragmentation 
dynamics occurring in a moving process is performed. Use of a double approximation 
technique together with the truncation technique [57], the resolvent approximation [88], 
Duhamel formula [39] and Dyson-Phillips series [76] is made to show that the solution for 
the model exists. Various factors , such as temperature and viscosity, influence the rate 
at which part icles coalesce and fragment . These factors, and the kernels which model 
their effects , are discussed in the survey article by Drake [37] . Most mathematical inves­
tigations have concentrated on time-independent coalescence and breakdown rates and 
a number of existence and uniqueness results have been produced for the autonomous 
version of the fragmentation and coagulation equations. It should be noted that local 
non-autonomous cases have been examined by McLaughlin et al [59]. An investigation 
into the non-local non-autonomous fragmentation equations is therefore a natural ex­
tension as this allows the factors which determine breakdown to be t ime-dependent and 
spatially non-homogeneous. In this study, a special focus is placed on the particle dis­
tribution kernel represented by a time dependent probabilistic density function as well 
as the fragmentation rate t hat will be time and position dependent. The investigation 
is done by means of forward propagators associated to evolution semigroup theory and 
perturbation theory. The analysis in the second part of Chapter 4 consists of approx­
imating the solution of the same model by a sequence of solutions of cut-off problems 
of a similar form. The classical argument of Dini [50, Lemma 4] is then used to show 
existence of strong solut ions of the model in t he class of Banach spaces of functions 
with finite higher moments. The chapter concludes by applying the equivalent norm 
approach to non-autonomous fragmentation systems. In the common literature, it is 
assumed that t he generators are of class 9 (1, 0) [33, 50], but this condition is modified 
by assuming t hat the renormalisable generators involved in the perturbation process are 
in the class of quasi-contractive semigroups. evertheless , it is possible to show that, 
thanks to admissibility with respect to the involved operators , Hermit ian conjugate [74], 
Hille-Yosida 's condition [12 , 88] and the uniform boundedness [50], that the operator 
sum is closable leading to the existence result and conservativeness of the model. 

In Chapter 5, a continuous and less known model for coagulation process evolving in a 
moving medium is globally solved in the space L1(lR3 x lR+ ,mdmdx). The first part of 
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t he analysis resembles the one performed in Chapter 3. Once the existence for the linear 
problem is established , the solution of the full non-linear problem follows by showing that 
the coagulation term is globally Lipschitz. In particular, it is shown that the solution of 
the full model is unique. The coagulation model considered here differs from the classical 
one and it is assumed that any individual in the populations is viewed as a collection of 
joined cells. 

The aim of Chapter 6 is to establish a better understanding concerning some real phenom­
ena occurring in applied sciences , and which are shattering and marine iron fertilisation. 
In t he first part of the chapter , exact solutions of fragmentation equations with arbi­
trary fragmentation rates and separable particles distribution kernels are found , using 
Laplace transform techniques. Since fr agmentation processes are difficult to analyse as 
they involve evolution of two intertwined quantities: the distribution of mass among the 
particles in t he ensemble and the number of particles in it , t hat is why, though linear , 
they display non-linear features such as phase transition which , in this case , is called 
shattering and consists in the formation of a 'dust ' of particle of zero size carrying, 
nevertheless , a non-zero mass. Quantitatively, one can identify this process by disap­
pearance of mass from the system even though it is conserved in each fr agmentation 
event. Probabilistically, shattering is an example of an explosive, or dishonest Markov 
process , see e.g. [3, 66]. So the analysis yields a key for resolving most of the open 
problems in fragmentation theory including shattering and the sudden appearance of in­
finitely many part icles in some systems with initial finite part icles number. In the second 
part of the chapter , the theory of semilinear dynamical systems is exploited in order to 
investigate the effects of ocean iron fertilisation on the evolution of the phytoplankton 
biomass and provide numerical simulations of the results. The results demonstrate the 
validity of the iron hypothesis in fighting climate change. 

Chapter 7 focuses on conservativeness in discrete, non-local and randomly positioned 
structured fragmentation model wit h unbounded rates. The major problem arises when 
each fragmentation rate becomes infinite at infinity so t he dominated convergence theo­
rem [21] is used to show existence of the infinitesimal generator of a positive semigroup 
of contractions and to give sufficient conditions for honesty in t he case of unbounded 
fr agmentation rates. Essentially, it is demonstrated that even in a discrete and non-local 
case, t he process is conservative if at infinity, daughter particles tend to go back into the 
syst em with a high probability. 



Chapter 2 

Preliminary and Auxiliary Results 

In this chapter , results , definit ions and theorems to be used later in the analysis were 
collected. For the most part of this study, techniques from the calculus of vector-valued 
functions are applied and a brief introduction to some functional analysis concepts used 
in subsequent chapters is given. 

2.1 Calculus of vector-valued functions and Banach 
lattices 

2. 1. 1 Spaces and operators 

D efinition 2 .1.1. A vector-valued function u from some abstract set I to a Banach space 
X is a mapping t -+ u( t) from I into X , where to each point t E I there corresponds a 
unique vector u( t) E X . 

In the case where the Banach space is the space of bounded linear operators from X into 
Y , denoted by £ (X, Y ) with norm II · 11.qx,Y), the funct ion is referred to as an operator 
valued function. (When X = Y, £ (X) with norm 11 · 11.c(X) is written.) 

D efinit ion 2 .1.2. (Strong D erivative) Let X be a Banach space with n orm II · llx 
and let the fun ction u be an X -valued fun ction oft E [O , oo). Then the strong derivative 
du(t) 
-- of u at t > 0 is defined to be an element u(t) such that 

dt 

lim llh-1 [u(t + h) - u(t)] - u(t) llx = 0 
h--;O 

(2 .1 ) 

provided that the limit exists. 

D efinition 2.1.3. Let II denote any partition a= t0 < t1 < t2 ... < tn = b of the closed 
interval [a, b] together with the arbitrary points sk E [t,_1 , t ,;], c;- = 1, 2, ... , n and let the 

8 
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norm IIII = max(t, - t,_1 ) . If for a vector-valued function u : [a , b] -+ X , there exists 
<; 

v E X (independently of the manner in which IIII -+ o+) such that 

n 

lim L u(s, )(t, - t,_ 1 ) - v = 0, 
I II l➔O+ 

, = 1 X 

then v is the strong Riemann integral and is denoted by 

Theorem 2.1.4. If u is a strongly continuous vector-valued fun ction on [a, b] to X , 
then the strong Riemann integral over [a, b] exists. Moreover, if A : X ;;;? D (A) -+ Y is 
a closed linear operator, u(t) E D (A ) for each t E [a, b] and if Au is strongly continuous 
on [a, b], then 

Proof. [46 , Theorem 3.3.2] . □ 

D efinition 2.1.5. A Banach space X is of type L if it consists of equivalence classes of 
numerically-valued fun ctions defin ed on a set D and if it has the following two properties: 
(i) If u is a continuous X -valued fun ction defin ed on I = [a, ,B], then there exists a 
fun ction '1/J m easurable on the product I x D such that u(t ) = <f>(t , ·) for each t E [a ,,B]. 
Note u (t ) = 'f (t , ·) m eans equality in X. (ii) If u is continuous on I = [a ,,B] and '1/J is 
any function that is m easurable on I x D and satisfies u(t) = 'f (t , ·) for each t E [a,,B], 
then 

(2.2) 

where the integral on the left- hand side is the abstract Riemann integral and the integral 
on the right-hand side is the Lebesgue integral of numerically-valued fun ctions. 

Theorem 2.1.6. Any space Lp(D), 1 ~ p < oo is of type L. 

Proof. [12, Theorem 2.39]. □ 

Theorem 2.1.7. Let X be a Banach space of type L. !Ju is a vector-valued function on 
I = [a, b] to X and if u is n-times continuously strongly differentiable, then there exists 
a numerically-valued function v m easurable on I x D such that (i) for O ~ s ~ n - 1, 
3s 
~ v ( t , x) is absolutely continuous f or each x E D and 
ut8 

f)
8 

[ d
8 

] - v(t ·) = -u(t) (- ) 
8t8 

' dt8 
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for each t E I ; (ii) ~n v(t, x) exists almost everywhere in I x n and 
utn 

for almost all t E I. 

Proof. See [46 , Theorem 3.4.2]. 

10 

□ 

ote that in case the Banach space X is a space of numerically-valued functions de­

fined on some abstract set n, the relation between the differential equation iu(t) = 
dt 

g(t , u(t )) (in strong sense) and the partial differential equation :t u(t , x) = g(t , u (t, x) ) 

depends on the nature of X . 

Theorem 2.1.8. Let { vin } be a Cauchy sequence in Lp(D) that converges strongly to vi . 
Th en there exists a subsequence { vin, } that converges pointwise almost everywhere on n 
to a limit fun ction vi. 

Proof. See [75 , Corollary 5.11]. □ 

Theorem 2.1.9. Let { vin } be a sequence of Lebesgue-integrable fun ctions over D S: IR.n 
such that (i) { vin } increases almost everywhere on D; (ii) limn➔oo J:i vin(x )dx exists. 
Th en { vin } converges almost everywhere to a limit function vi E 1 1 (D) and 

lim f vin (x)dx = f vi (x)dx . 
n➔oo Jn Jn 

Proof. See [4 , Theorem 10.24]. □ 

2.1.2 Banach lattices and positive operators 

Definition 2.1.10. Let X be an arbitrary set. A partial order (or simply, an order) on 
X is a binary re lation, denoted here by ' 2 ', which is reflexive, transitive, and antisym­
m etric, that is, (1) x 2 x for each x E X ; (2) x 2 y and y 2 x imply x = y for any 
x, y EX; (3) x 2 y and y 2 z imply x 2 z for any x, y , z EX. 

D efinition 2 .1.11. An ordered vector space is a vector space X equipped with partial 
order which is compatible with its vector structure in the sense that (4) x 2 y implies 
x + z 2 y+ z for all x, y ,z E X ; (5) x 2 y implies o:x 2 o:y for any x, y EX and o: 2 0. 
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The set X + = {x EX; x 2:: O} is referred to as the positive cone of X. It is considered 
that X is a lattice if every pair of elements ( and so every finite collection of them) has 
both supremum and infimum. If an ordered vector space X is also a lattice, t hen it is 
called a vector lattice or a Riesz space. Typical examples of Riesz spaces are provided 
by spaces of functions. If X is a vector space of real-valued functions on a set n, then 
a pointwise order in X can be introduced by saying that f ~ g in X if f ( x) ~ g( x) for 
any x E S. Equipped with such an order , X becomes an ordered vector space. It should 
be recalled that if S1 is a measure space, then all considerations above are valid when 
the pointwise order is replaced by f ~ g if f (x) ~ g(x) almost everywhere. With t his 
in mind , L0 (S1) and Lv(D) spaces with 1 ~ p ~ oo become function spaces and are thus 
Riesz spaces. For an element x in a Riesz space X, its positive and negative part, and 
its absolute value could be defined, respectively, by 

x+ = sup{x, O} , x_ = sup{-x, O} , Jxl = sup{x, -x }. 

Proposition 2.1.12. If x is an element of a R iesz space, then 

x = x+ - x_, Jxl = x+ + x_ 

Thus, in particular, the positive cone in a Riesz space is generating. 

Proof. See [12 , Proposition 2.46]. □ 

In the next step, the relation between t he latt ice structure and the norm is investigated 
when X is both a normed and an ordered vector space. 

Definition 2.1.13. A norm on a vector lattice X is called a lattice norm if 

Jxl ~ JyJ implies llxll ~ JJy JJ. (2.3) 

A Riesz space X complete under a lattice norm is called a Banach lattice. 

Property (2.3) gives the important identity: 

llxll = lllxlll, x EX. (2.4) 

Proposition 2.1.14. If X is a normed lattice, then all lattice operations are uniformly 
continuous in the norm of X with respect to all variables involved. 

Proof. [12 , P roposit ion 2.55]. □ 
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2.1.3 Positive operators 

D efinition 2.1.15. A linear operator A from a Banach lattice X into a Banach lattice 
Y is called positive, denoted by A ~ 0, if A x ~ 0 fo r any x ~ 0. 

Posit ive operators are fully determined by their behaviour on the positive cone. Precisely 
speaking, the following theorem is obtained . 

Theorem 2.1.16. If A : X + -+ Y+ is additive, then A extends uniquely to a positive 
linear operator from X to Y. K eeping the notation A for the extension, we have, for 
each x E X , 

Ax = Ax+ - Ax_. 

Proof. [12 , Theorem 2.64] 

An easy and often used result on positive operators could be pointed out here. 

Proposition 2.1.17. If A is positive, then 

Proof. [12 , Theorem 2.67] 

IIAII = sup IIAxl l­
x2'.0, llxll9 

(2.5) 

□ 

(2. 6) 

□ 

Definition 2.1.18. A Banach lattice X is said to be a KB-space (K antorovic B anach 
space) if every increasing norm bounded sequence of elem ents of X + converges in norm 
in X. 

The next t heorem characterises the KB-spaces and is very useful in applications. 

Theorem 2.1.19. Assume that X is a weakly sequentially complete Banach lattice. If 
(xn)nEN is increasing and (llxnll)nEN is bounded, then there is x E X such that 

lim Xn = X 
n-+oo 

(2.7) 

in X. In other words, weakly sequentially complete and, in particular, reflexive Banach 
lattices are KB-spaces. 

Proof. [12 , Theorem 2.82]. □ 
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2.2 Linear semigroups 

In this section methods of finding solutions of a Cauchy problem are examined. 

D efinition 2.2 .1. Given a Banach space X and a linear operator A with domain D(A) 
and range ImA contained in X and also given an element u0 E X , find a function u( t) = 
u(t , u0 ) such that {1) u(t) is continuous on [O , oo) and continuously differentiable on 
(0, oo) , {2) for each t > 0, u(t ) E D (A) and 

du 
dt(t) = Au(t) , t > 0, (2.8) 

(3) 
lim u(t) = uo 
t-;O 

(2.9) 

in the norm of X. A function satisfying all the conditions above is called the classical 
{or strict) solution of (2.8) , (2.9). 

D efinition 2. 2. 2 . A family (S(t))t;,".O of bounded linear operators on X is called a C0 -

semigroup, or a strongly continuous semigroup if {i) S(O) = I ; {ii) S(t + s) = 
S(t )S(s) fo r all t , s ~ 0; {iii) limt-;0+ S(t)x = x fo r any x EX. A linear operator A is 
called the {infinitesimal) generator of ( S ( t ) )t "?.O if 

A 
_ 

1
. S( h )x - x 

x - 1m h , 
h-,Q+ 

(2.10) 

where the domain of A, D (A ), is defined as the set of all x E X for which this limit 
exists . Typically, the semigroup generated by A is denoted by (SA ( t) )t>O · 

it should be noted that if A is the generator of (S(t))t>o, then for x E D (A) the function 
t ➔ S(t)x is a classical solution of the following Cauchy problem, 

du 
dt ( t) = A ( u ( t)) 

(2. 11) 
lim u(t) = x 

t-;O+ 

For x EX\ D (A), however, the function u(t ) = S(t )x is cont inuous but , in general, not 
differentiable, nor D (A)-valued , and , therefore , not a classical solution . Nevertheless, 
the integral v(t) = J; u(s)ds E D (A) and it is a strict solution of the integrated version 
of (2.11): 

dv 
dt (t) = A(v(t)) + x t ~ 

0 (2. 12) 
lim v(t ) = 0 

t -,o+ 

or equivalently, 

u(t) = A 1t u(s)ds + x. (2. 13) 

It is said that a function u satisfying (2. 12) (or, equivalently, (2. 13) ) is a mild solut ion 
or integral solut ion of (2. 11). 
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Proposition 2.2.3. Let (S( t ))t~o be the semigroup generated by (A, D (A)) . Then 
t-+ S(t) x, x E D (A), is the only solution of (2. 11) taking values in D (A). Similarly, 
fo r x EX, the function t-+ S(t) x is the only mild solution to (2. 11 ). 

Proof. [12, P roposition 3.4] □ 

Thus, if there is a semigroup , the Cauchy problem of which it is a solution can be 
identified. Usually, however, the interest is in the reverse question , that is , in finding the 
semigroup for a given equation. The answer is given by the Hille-Yosida theorem. 

Theorem 2.2.4. (Hille-Yosida Theorem) A E 9 (1\/1 ,w) if and only if (a) A is 
closed and densely defin ed, (b) there exists M > O, w E ~ such that (w , oo) E p(A) and 
for all n ~ 1, A > w, 

ll(AJ - A) -nll ~ (A ~w)n · (2 .14) 

where p(A) is the resolvent set of the operator A and is defin ed as follows: 

p(A) = {>. E ~ ; Al - A: D (A) -+ X is invertible and (AI - A) - 1 E .C (X)}. (2. 15) 

Proof. [12, Theorem 3.5] □ 

Theorem 2.2.5. Assume that the closure (A , D (A)) of an operator (A , D (A)) generates 
a C0 -semigroup in X . If (B , D (B )) is also a generator, such that B ID(A) = A , then 
(B , D (B )) = (A, D (A)). 

Proof. [12, Proposition 3.8] □ 

The Lumer-Phillips Theorem gives an alternative characterisation of the infinitesimal 
generator of a C0-semigroup of contractions. Before stating the t heorem a definit ion of 
the term dissipative is given. 

Definition 2.2.6. Let A be a linear operator with dense domain D (A ) in X. The 
operator A is dissipative if II (A I - A )1/J llx ~ All1/Jllx fo r all 1/J E D(A) and A > 0. 

Theorem 2.2.7. (Lumer-Phillips) Let A be a linear operator with dense domain 
D (A ) in X. (i) If A is dissipative and if there exists Ao E C, such that the range 
I m(A0 I - A ) of Aol - A is X , then A is the infinitesimal generator of a C0 -semigroup 
of contractions on X. (ii) If A is the infinitesimal generator of a C0 -semigroup of 
contractions on X , then A is dissipative and fo r all A > 0, I m( Al - A ) = X. 

Proof. [74 , Theorem 4.3 , p14] . □ 

It is not always necessary to know the infinitesimal generator on its whole domain. 

D efinition 2.2.8. Let A be a closed operator in a B anach space X. A core of A is a 
dense subspace D of X such that A is the closure of its restriction to D i.e. A ID = A. 
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Theorem 2 .2.9. (Core) Let A be the gen erator of the semigroup (SA( t ))t>o on a B anach 
space X and let D be a dense set contained within the domain of A , i. e. D c D (A). If 
the set D is invariant under the semi group (SA ( t) )t>o, then D is a core for A. 

Proof. [61 , Theorem 2.1.1]. □ 

ext, a case of restrictions of (S (t))t> o, acting in a Banach space X , to a subspace Y 
which is continuously embedded in X and which is invariant under (S(t))t>o, is con­
sidered. The restriction (Sy(t))t20 of (S (t ))t20 to Y is obviously a semigroup but not 
necessarily a C0-semigroup. If, however , it is strongly continuous, then the generator of 
(Sy(t))t 2o can be identified as the part in Y of the generator A of (S(t ))t20. 

Proposition 2.2.10. Let (A , D (A)) gen erate a C0-semigroup (S( t ))t2o in a Banach 
space X and let Y, be a subspace continuously embedded in X , invariant under (S(t ))t20. 
If the restrict ed sem igroup ( Sy( t ) )t2o is strongly continuous in Y then its generator is 
the part Ay of A in Y . Moreover, if Y is closed in X , then (Sy( t))t2o is automatically 
strongly continuous and Ay is the restriction of A to the domain D (A) n Y. 

Proof. [12 , Proposit ion 3.12] □ 

Next , resolvent positive operators are considered. 

D efinition 2.2. 11. Let X be a Banach lattice. It is said that the semigroup (S(t))t20 
on X is positive if for any x EX+ and t 2:: 0, 

S(t) x 2:: 0. 

It is said that an operator ( A , D ( A)) is resolvent positive if there is w such that ( w , oo) C 

p(A) and R (>. , A ) 2:: 0 fo r all >. > w . 

It should be noted that a strongly continuous semigroup is positive if and only if its 
generator is resolvent positive. Let A be a resolvent positive operator . The following 
notation is introduced: 

s(A) = inf{w E IR : (w, oo) C p(A ) and R(>. , A) 2:: 0 for all >. > w }, 

where p(A) is the resolvent set of A. 

Theorem 2 .2 .12 . (Arendt-Robinson-Batty ) Let A be a densely defined resolvent 
positive operator. If there exists >.0 > s (A), c > 0 such that for all 1/J 2:: 0, 

IIR(>-o , A)7/J II 2:: c1l7/JII, (2. 16) 

then A generates a positive sem igroup (SA(t))t 20 on X and s(A) = wo(SA), where wo(SA) 
is the uniform growth bound of the semigroup (SA( t) )t20• 

Proof. [12, Theorem 3.39] □ 
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2.3 Some classical perturbation results 

Let (A , D(A)) be a generator of a C0-semigroup on a Banach space X and (B , D(B)) 
be another operator in X. The purpose of the pert urbation theory is to find condit ions 
that ensure that there is an extension G of A + B that generates a C0-semigroup on X 
and characteri e this extension . 

2.3.1 Bounded perturbation theorem 

The simplest and possibly the most often used perturbation result can be obtained if the 
operator B is bounded . The fo llowing theorem holds: 

Theorem 2.3 .1. (Bounded p erturbation) Let (A , D(A)) E Q(M, w); that is, it 
generates a Co -semigroup (SA(t)k:::o satisfying IISA(t)II ::; M ewt for some w E JR and 
M 2:: 1. If B E £ (X), then 

(A + B , D(A)) E Q(NI ,w + MIIB II)-

Proof. [1 2, Theorem 4.9] □ 

2.3.2 Kato-Voigt perturbations 

The Kato-Voigt theorem is useful in the sense that , it allows the establishment of the 
existence of a smallest substochastic semigroup associated wit h a specific Cauchy prob­
lem. The defini t ions of the terms stochastic and substochastic semigroups introduce this 
section . 

D efinition 2.3.2. The strongly continuous semigroup of operators (S(t))t 2'.0 on the Ba­
nach space X = L1 (D. ,µ) is said to be (i) substochastic if S(t) 2:: 0 and 11S(t)II::; 1 for 
all t 2:: 0, (ii) stochastic if, in addition, it satisfies II S( t) 1/; II = 111/1 II for all non-negative 
1/; EX. 

Theorem 2.3.3. Let A be the generator of a C0-semigroup in X = L1 (D,) and let 
B E £ (D(A) , X) be a positive operator. If for some >. > s(A) the operator >.I - A - B 
is resolvent positive, then (A + B , D(A)) generates a positive C0-semigroup on X . 

Proof. [12, Theorem 5. 13] □ 

Corollary 2.3 .4 . Let (S(t))t>o be the semigroup generated by (A+ B , D(A)). Then 
(S(t))t2'.0 sati fi es the Duhamel equation 

S( t )x = SA( t )x + 1t S(t - )BSA(s)xds, x E D(A). (2.17) 
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Proof. [12 , Corollary 5.15] □ 

Theorem 2.3.5. Let X = L1 (D) and suppose that the operators A and B satisfy: {1} 
(A , D (A)) generates a substochastic semigroup (SA(t))i ~o; {2) D (B) :) D (A) and 
B u~ 0 f or u E D (B )+; (3) For all u E D (A)+ , 

1 (Au+ B u)dµ :S 0. (2. 1 ) 

Then there exists a smallest substochastic semigroup, (Sc(t))t ~o, generated by an exten­
sion, G, of A + B . Moreover, G is characterised by 

u - ct 1'lf; = 1=u - A)-1 [BU - A) - 1t 'lf;, v'lj; Ex. (2. 19) 
n=O 

Proof. [12, Corollary 5. 17] □ 

Proposition 2.3.6. Let D be a core of A. If (S( t ))t~o is another semigroup generated 
by an extension of (A+ B, D) , then S(t) ~ Sc( t ) . 

Proof. [12, P roposit ion 5. 7] □ 

2.4 Semilinear semigroups 

The success of linear semigroup theory in solving linear evolut ion equations has stimu­
lated extensions of the linear ideas , which provide an opportunity for the examination 
of semilinear problems. Unlike the linear case, semilinear semigroup theory is not com­
plete , yet it remains a usefu l and powerful method of analysing more difficult evolut ion 
equations. 

Definition 2.4 .1. (Semilinear Abstract Cauchy Problem ) Let X be a Banach space 
and let (G , D (G)) be an operator in X with associated semigroup (Sc(t) )t~o- Further­
more, let N be a non-linear operator which maps a subset D of X into X where D (G)n D 
is not empty. Then the abstract problem 

du 
dt (t) = Gu(t) + Nu(t), (t > O); u(O) = u0 E D( G) n D , (2.20) 

is called a semilinear abstract Cauchy problem ( A GP) . 

Definition 2.4 .2 . A function u is said to be a strong solution to the semilinear ACP 
(2.20) on [O , t0 ) if u is continuous on [O , t0), differentiable on (0, t0 ) and is such that 
u(t) E D (G) n D fo r all t E [O , t0 ) and u satisfies (2.20). 



CHAPTER 2. PRELIMINARY AND AUXILIARY RESULTS 18 

Proposition 2.4.3. Let u be a strong solution on [O , t0) of the semilinear ACP (2.20) . 
Then u satisfi es the integral equation 

u(t ) = Sa(t )u0 + i t Sa (t - s)N(u (s) )ds , 0 :::; t < t0, (2.21 ) 

where (Sa(t ))t 2'.0 is the semigroup associated with the linear operator G . 

Proof. [25 , p. 108]. □ 

Definition 2.4.4. u : [O, t0) -+ X is said to be a mild solution to the semilinear ACP 
(2.20) if 

1. u is continuous on [O, t0), 

2. u (t ) E D for all t E [O , t0), 

3. u satisfi es (2.21 ) . 

Some of the definitions required in the t heorems are as follows: 

Definition 2.4.5. (Local Lipschitz Condition) An operator N on a Banach space 
X is said to satisfy a local Lipschitz condition if for any given u0 E X , there exists a 
closed ball, 

B(uo , r ) ={!EX : II /- uoll:::; r} , 
such that II NJ-Ngll :::; Cll/ - gll for all f , g E B(uo , r ) where C depends on uo an d r. 

Definition 2.4.6. (Frechet Derivative) If a linear operator Ni E L: (X ) exists such 
that N (f + 8) = N f + N1 8 + H (f , 8) where H satisfies 

1. ( IIH(f, 8) 11 ) = 0 
/j1!Ri 11811 ' 

then N is Frechet differentiable at f and Ni is the Frechet derivative. 

Theorem 2.4.7. Let (G, D(G) ) be the generator of the strongly continuous semigroup 
(Sa(t ))t2'.0 on X , let N be a non-linear operator and let X be a Banach space. If N 
satisfies a local Lipschitz condition on X , then the semilinear A GP has a unique, local 
in tim e, mild solution. 

Proof. [25 , Theorem 3.20, p. 119]. □ 

Theorem 2.4.8. Let (G, D(G) ) generate the strongly continuous sem igroup (Sa(t ))t 2'.0 
on X and let N satisfy the local Lipschitz condition 

II N(f) - N(g)II:::; K:11/ - gll 

for all f , g in the closed ball B( u0, r) ~ D = D(N ). If 



CHAPTER 2. PRELIMINARY AND AUXILIARY RESULTS 19 

1. N is Frechet differentiable at any f E B ( u0 , r) and the Frech et derivative N f is 
such that IIN1gll ~ 11: 1 11 911 f or all f E B (u0 , r), g EX where 11: 1 is a positive constant 
independent off and g, 

2. the Frechet derivative is continuous with respect to f E B(u0 , r) such that 

f or any given g E X , 

3. u0 E D (G), 

then there exists t 1 > 0 such that the continuous solution on [O, t 1) of (2.21) is strongly 
differentiable on [O , t 1 ) and satisfies the equation (2.20). 

Proof. [25, Theorems 3.30 and 3.32]. □ 



Chapter 3 

Groups Fragmentation Process 
Moving Medium 

3.1 Introduction 

• 
Ill a 

This chapter discusses the dynamics of groups in social grouping population. Existence 
of global solut ions to continuous non-local convection-fragmentation equations is investi­
gated in spaces of distribut ions with finite higher moments . Assuming that the velocity 
field is divergence free, use is made of t he method of characteristics and Friedrichs lemma 
[56] to show t hat the transport operator generates a stochastic dynamical system. This 
allows for the use of substochastic methods and Kato-Voigt perturbation t heorem [12] 
to ensure that the combined transport-fragmentation operator is the infinitesimal gen­
erator of a strongly continuous semigroup. In particular , it is shown that the solut ion 
represented by this semigroup is conservative. 

3.2 Motivation 

The world of today is full of interactions that range from simple to dynamic. Many, 
if not all , of the Earth 's processes affect human life. The Earth 's processes are greatly 
stochastic and seem chaotic to the naked eye [85]. Climate change, global warming, the 
spread of diseases and pollution have aroused general interest in the type of relationships 
that living organisms have with each other , with their natural settlement and in interac­
tions between these organisms and the physical environment . Most of the fundamental 
elements of ecology, ranging from individual behaviour to species abundance, diversity 
and population dynamics exhibit spatial variation. The spatial variat ion influences t he 
relationships between living organisms and their natural environment and has a deep 
impact on the ecology. The rate of evolut ion of a population in an (aquatic) (eco)system 
may affect its balance. For instance, phytoplankton is a key food item in both aqua­
culture and maricult ure since both use phytoplankton as food for the animals being 

20 
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farmed . So phytoplankton clusterings acting on a slower t ime scale may be catastrophic 
for t hese two types of farming. This is one of the sources of the motivation and it is 
therefore necessary to study the behaviour of some populations in their midst . However , 
a plethora of patterns can be noticed and are brought forth by using population modeling 
as a tool. For instance, Ecological Population Modeling is concerned with changes in 
population size and age distribution within a population as a consequence of interactions 
of organisms wit h the physical environment , with individuals of their own species, and 
with organisms of other species [82]. 

Mathematically, a model of animal dynamics could be represented by differential equa­
tions or integro-differential equations for more complex models, which describe the sys­
tem using mathematical concepts and language. P artial differential equation models 
provide a means of combining organism movement with population processes and have 
been used extensively to elucidate the effects of spatial variation on populations. They 
also allow a better understanding of how complex interactions and processes work. 

Clusters in social grouping include swarms of locust, mosquitoes, flies or midges , flocks 
of sheep , herds of elephants , schools of fish , the marine zooplankton and phytoplankton 
swarming. A group size can change due to splitting (fission or fragmentation) into groups 
of smaller sizes or combining ( aggregation, fusion or coagulation) to form groups of big­
ger sizes . The dynamics in population grouping is not limited only to fragmentation 
and aggregation , but also includes other processes, like advection , diffusion , direction 
changing, flow (transport) . It is obvious that some clusterings and direction changes act 
on a faster t ime scale (school of fish) or a slower t ime scale (herd of elephants) . There 
are short and long-term changes in the size and age composit ion of populat ions, and the 
biological and environmental processes influencing these changes. Population dynamics 
deals with the way populations are affect ed by birth and death rates , and also by im­
migration and emigration. A typical example of transport problem wit h fragmentat ion 
and aggregation is the dynamics of phytoplankton in a flowing water. 

In phytoplankton dynamics , a system of part icles called TEP (Transparent Exopolymer 
P articles) plays a major role. They are by-product of the growth of phytoplankton and 
their stickiness causes cells to remain together upon contact [32 , 73] . On the other hand , 
the low level of concentration of TEP results in fragmentation of the aggregate due to 
external causes , like currents or turbulence on one hand , and internal unspecified forces 
of biot ic nature on the other. The aggregate size can change due to splitting , death , 
growth or combining aggregates into bigger ones. 

The global question of interest is how clustering of phytoplankton affects t he evolut ion 
of the population throughout a seascape and what t he consequences are for the ecology 
and other populations involved. Because population of phytoplankton includes numerous 
groups, even a group-level descript ion is too numerically costly to use to model the entire 
populat ion. Instead , one turns to the statistical descript ion that estimates the frequency 
of groups of various sizes and characteristics , based on the rates at which such groups 
appear and disappear. It is then possible to use mathematical models of animal grouping 
(with fragmentation , aggregation, transport , direction changing processes) to establish a 
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direct linkage between the behaviour of individuals and their consequences for ecological 
or environmental dynamics. 

3.3 Description of the model 

If we define a spatial dynamical system in which locally a group-size distribution can be 
estimated , but in which we also allow immigration and emigration from adjacent areas 
with different group-size distribut ions, we obtain the general model of the dynamics of 
phytoplankton as described above and which is a spatially explicit group-size distribution 
model as presented in [67]: 

fj 1 n-1 oo 

8tPn + div(wpn) = 2 L c(m , n - m)PmPn- m - L c(n , m)PnPm 
m=l m = l 

l n-1 oo 

- 2 L h(n , m)pn + L h(m , n)pm , 
m= l m=n+l 

(3. 1) 

where t he velocity w = w(x , n) of t he transport is supposed to be a known quantity, 
depending on the size n of aggregates and their position x. Pn = p(t , x , n) is t he density 
of n-groups (i. e. groups of size n) at t he posit ion x , with the velocity w at time t . 
Equation (3. 1) is really complex: the second member on its left-hand side represents 
the fl.ow process (the transport part), while on the right-hand side, the terms represent 
respectively t he fusion to form groups of size n ( that is, the gain part of the coagulation 
process) , the fusion of groups of size n ( the loss part of the coagulation) , t he fission of 
groups of size n (the loss due to t he fragmentat ion) and the fission to form groups of 
size n (the gain due to the fragmentation). Then c(n, m) ~ 0 is the fusion rate, that is, 
the rate at which n-groups and m-groups joint to form n + m-groups and h( n , m ) ~ 0 
( n > m) is the number of m-groups produced upon splitting of n-groups. The analysis of 
such a model required the researcher to proceed step by step as indicated in the following 
sections. 

3.4 Well posedness of the transport problem with 
fragmentation 

First , the study is interested in solving t he problem (3 .1 ) with t he transport and frag­
mentation processes only. So the following Cauchy Problem ( the model with an initial 
condition) is considered: 

00 

:l(t, x, n) = -div(w(x , n)p(t , x, n)) - anp(t , x, n) + L bn,mamp(t , x, m) 
m=n+l 
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n = 1, 2, 3, ... (3.2) 

where an = ½ I::-:,\ h( n , m) is the average fragmentation rate, t hat is the average number 
at which clusters of size n undergo splitting , bn,m ~ 0 is the average number of n­
groups produced upon the splitting of m-groups and given by h(m, n) = bn,mam = 

½ I:;;1:i1 
bn,mh(m, k). The coefficients an and bn,m give a randomly spatial distribut ion 

and are better to analyse t han the previous ones c and h which describe a binary process. 
The space variable x is supposed to vary in the whole of JR3 = n. The function Pn 
represents the density of n-groups at the beginning of observation (t = 0) and it is 
integrable wit h respect to x over the full space IR3 , this integral multiplied by n is 
summable so that the total initial population is finite, see the definit ion of U ( t) below . 
The necessary assumpt ions that will be useful in the analysis are introduced below. 

3.4.1 Fragmentation equation 

Since a group of size m S n cannot split to form a group of size n , we require that 
bn,m = 0 for all m S n and 

n-l 
a1 = 0, ~ mbm,n = n , (n = 2, 3, ... ), 

m=l 

(3 .3) 

meaning that a cluster of size one cannot split and the sum of all individuals obtained 
by fragmentation of an n-group is equal to n. To proceed , it is necessary to recall t he 
fo llowing assumptions and spaces which are crucial for the analysis. Because the total 
number of individuals in a population is not modified by interactions among groups, t he 
following conservation law is supposed to be satisfied: 

d 
dt U(t) = 0 (3.4) 

where U(t) = J IR3 I::=1 np(t , x , n)dx = I::=1 n J IR3 p(t , x , n)dx is the total number of 
individuals in the space. Since Pn = p(t, x, n) is the density of groups of size n at the 
position x and time t and that mass is expected to be a conserved quantity, the most 
appropriate Banach space to work in is the space 

X1 := {g = (gn)~= l : IR3 
X N 3 (x, n)-+ 9n(x), 

ll gll1 := 1 f nlgn(x)ldx < 00 }. 

IR
3 n=l 

(3.5) 

Recall t hat work is done in this space because t hey have many desirable properties, like 
controlling the norm of their elements which, in the case of this study, represents the 
total mass (or total number of individuals) of the system and must be finite. Because 
uniqueness of solutions of the system (3. 2) proved to be a more difficult problem [15], the 
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analysis is restricted to a smaller class of functions, so the introduction of t he following 
class of Banach spaces (of distribut ions with finite higher moments) 

Xr := {g = (gn) ~=l : ~ 3 
X N 3 (x , n)-+ 9n(x) , 

llgllr := 1 f nrl9n(x)ldx < CX) } , 

IR3 n=l 

(3.6) 

r 2'. 1, which coincides with X1 for r = l. We assume that for each t 2'. 0, the function 
(x , n) ~ p(t , x , n) = Pn(t , x) is such that p = (Pn(t , x))~= I is from the space Xr wit h 
r 2'. 1. In Xr, (3.2) can be rewritten in more compact form , 

a 
at p = '.Dp - Ap + 523Ap := '.Dp + Fp , 

(3.7) 

Here, pis the vector (p(t , x, n))nE N, A is the diagonal matrix (an)nEN, 523 = (bn,mh ::;n::;m- 1,m:::2, 
'.D the transport expression defined as (p(t , x ,n))nEN ~ (-div(w(x,n)p(t ,x ,n)))':=l ' p 
the init ial vector (p n ( x) )nEN which belongs to Xr and F the fragmentation expression 
defined by 

In this study, for any subspace S s:;;; Xr, S+ will denote the subset of S defined as 
S+ = {g = (gn) ~=l E S; 9n(x ) 2'. 0, n E N, x E ~ 3

}. Note that any g E (Xr) + possesses 
moments 

00 

Mq( g) := L nqgn 
n=l 

of all orders q E [O, r]. Although some of the results , such as the existence of a strongly 
cont inuous semigroup of contractions associated with the transport problem and t he 
fragmentation process hold in Xr for all r 2'. 1, other important properties will require 
r > 1, especially when considering the coagulation process. In fact , by the substochas­
tic semigroup t heory developed in [12], one can look at (3.1) as a perturbation of the 
transport-fragmentation semigroup by the non-linear operator defining t he coagulation 
process . Imposing r > 1 ensures that a significant amount of mass after fragmentation 
is concentrated in small particles. This has the physical interpretation that surface ef­
fects are reduced , i.e. it is unlikely that a large cluster will fr agment into large groups, 
therefore making more clusters with small sizes and concentrated at the origin. How­
ever, the calculations are practically t he same for both cases and , in fact for other spaces 
corresponding to other moments of the solution. In Xr, operators A and B are defined 
by 

Ag := (angn) :=l , D (A ) := {g E Xr: 1 f nr anl9n(x)ldx < 00 } ; (3.8) 
IR3 n=l 
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Bg := (Bngn)C:=1 = ( f bn,mamgm) 

00 

, D (B ) := D(A ). (3.9) 
m=n+l n=l 

Throughout , we assume that the coefficients an and bn,m satisfy the mass conservation 
condit ions (3.3) . Now let us prove t hat B is well-defined on D(A) as stated in (3.9) . 
Following t he same method as in [15] and using the condition (3.3) , we obtain 

n- l n-1 

nr - ~ m rb > n r - (n - l)r- l ~ mb = nr - n(n - l )r-l > 0. L m ,n - L m,n _ 

m= l m= l 

Hence, 

(3. 10) 
m=l 

for r 2: 1, n 2: 2. Note t hat the equality holds for r = 1. For every g E D (A), we have 

IIBgll, - f., t n' Ct, bn,maml9m(x)I ) dx 

J.J;, aml9m(x)I (t n' bn,m) dx 

]., ~ am l9m(x)I (}; n' bn,m) dx 

< 1 f aml9m(x) Jmrdx 
IR1

3 
m=2 

JJAg JJr 
< oo, 

where t he inequality (3.10) has been used and the fact that m 2: m - 1. Then JJ Bg llr ::; 
IJ Ag ll r, for all g E D (A), so that D (B) := D (A) can be t aken and (A + B , D(A)) is 
well-defined . 

3.4.2 Cauchy problem for the transport operator in A = IR3 x N 

The primary objective in t his section is to analyse the solvability of the Cauchy problem 
for the t ransport equation 

: tp(t , x, n) = - div(w(x , n ) p(t , x , n )) , (3. 11) 

p(O, x, n) = Pn (x) , n = 1, 2, 3, ... 
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in the space Xr. 
Let u~ fix n E N. We consider the function Wn : IR3 ---+ IR3 defined by wn(x) = w(x, n) 
and Dn the expression appearing on the right-hand side of the equation (3. 11) . Then 

i\[p(t , x , n)] := - div (w(x , n) p(t , x, n)) 

= ('v · w(x, n))p(t , x , n) + w(x, n) · ('vp(t , x, n)). 

We assume that Wn is divergence free and globally Lipschitz continuous. Then 
divwn(x) := 'v ·w(x ,n) = 0 and (3. 12) becomes 

'Dn[p(t , x , n)] := w(x , n) · ('vp(t , x , n)). 

For x E IR3 and t E IR, the initial value problem 

dt n ( ) 
ds = Wn tn ) s E IR 

tn(t) = X, 

(3.12) 

(3. 13) 

(3. 14) 

has one and only one solution tn(s) taking values in IR3
. Thus, we can consider t he 

function ¢ : IR3 x IR2 ---+ IR3 defined by the condition that for (x , t) E IR3 x IR, 

s---+ ¢(x,t,s) , s E IR 

is the only solution of the Cauchy Problem (3. 14). The integral curves given by the 
¢-parameter family (tn\t, (with tn(s) = ¢(x, t , s) , s E IR , the only solut ion of (3. 14)) 

are called the characteristics of 'Dn. The function ¢ possesses many desirable propert ies 
[45, 81, 83] that will be relevant for studying the transport operator in Xr. Some of t hem 
are listed in [12 , Proposit ion 10.1] . 

Mathematical setting 

It is observed that the operators on the right-hand side of (3. 7) have the property t hat 
one of the variables is a parameter and , for each value of this parameter , the operator has 
a certain desirable property (like being the generator of a semigroup) with respect to the 
other variable. Thus , there is a need to work with parameter-dependent operators t hat 
can be "glued"together in such a way t hat the resulting operator inherits the properties 
of the individual components. Let us provide a framework for such a technique called 
the method of semigroups with a parameter [12]. We consider the space X := Lv(S, X) 
where 1 :Sp < oo, (S, dm) is a measure space and X a Banach space. Let us suppose 
that we are given a family of operators {(A s, D(As) )} sES in X and define the operator 
(A, D (A)) acting in X according to the following formul ae, 

D (A) := {g EX; g(s) E D(As) for almost every s ES, Ag E X} , 

and , for g E D (A), 
(A.g)(s) := A8 g( s), 

for every s E S. The following proposit ion is obtained 

(3. 15) 

(3. 16) 
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Proposition 3.4.1. (see {12}, Proposition 3.28). If for almost any s E S the operator 
As is m-dissipative in X , and the function s --+ R(>. , As)g(s) is m easurable fo r any 
>. > 0 and g E X , then the operator A is an m-dissipative operator in X . If (Gs ( t ) )t2:o 
and ( 9 ( t ) )t 2:o are the semigroups generated by As and A, respectively, then for almost 
every s E S, t ~ 0, and g E X , we have 

[Q (t)g](s) := Gs(t)g(s). (3. 17) 

Using the above ideas , we introduce relevant operators in the present applications. In 
the transport part of (3. 7) , t he n variable is the parameters and x is the main variable. 
We set 

X x := L1 (IR.3 , dx ) := { 7P : 11 7P II = J l7ji (x) ldx < oo} 

~ 3 

and define in X x the operators (Dn, D(Dn)) as 
- -

DnPn = DnPn , with DnPn represented by (3.13) 

D(Dn) := {Pn E X x, DnPn E X x} , n EN. 

Then we introduce the operator D in Xr defined by 

[Dp] (x , n) = [f)p](x, n) 

D(D ) = {p = (Pn)nEN E Xr , Pn E D(Dn)for almost everyn EN, Dp E Xr}-

(3. 18) 

(3.19) 

Now, the transport operator D can properly been studied. Using the above proposit ion 
in the application, we can take A = D , X = Xr = L 1(N , X x) = L 1 (A ,dµdm r) = 
L1(1R3 x N ,dµdmr ), where N is equipped with the weighted counting measure dmr with 
weight nr and dµ = dx is the Lebesgue measure in 1R3

. In the notation of the proposition, 
(N, dmr) = (S, dm) , X x = X and A s = Dn, therefore (Dn, D(Dn))nEN is a family of 
operators in X x and using (3.16), we get 

(3.20) 

Here, DnPn is understood in the sense of distribution. Precisely speaking, if we take 
CJ(IR3

) as the set of test functions, Pn E D(Dn) if and only if Pn E X x and there exists 
9n E X x such that 

(3.21) 

for all ~ E CJ(IR3
) , where 

3 

Wn . o~(x) := L Wn,jOj~(x) (3. 22) 
j=l 

with wn,j = wj(x, n), the Ph component of the velocity w(x , n). The middle t erm in 
(3.21) exists as Wn is globally Lipschitz continuous, and the last equality follows as W n is 
divergence-free. If this is the case , we define (DnPn)nEN = Dp = g = (gn)nEN . 
Now we can show that the operator D is the generator of a stochastic semigroup on Xr 
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Theorem 3.4.2. If for each n E N the fun ction Wn : ~ 3 --+ ~ 3 is globally Lipschitz 
continuous and divergence-free, then the operator (D(D ), D ) defined by (3. 19) is the 
generator of a strongly continuous stochastic semigroup (G D(t))t~o , given by 

(3.23) 

Proof. According to t he relation (3. 17), it suffices to prove that: 

(3.24) 

for each Pn E D(Dn), where ( Gvn (t) )t>o is a strongly continuous stochastic semigroup 
generated by Dn. 
Let ( Z 0 ( t ) )t~o be the family defined by the right-hand side of the relation ( 3. 24). The 
proof of t he theorem will follow three steps. 

(i): First , It is shown that (Z0 (t))t ~o is a strongly cont inuous semigroup of bounded 
linear operators. We need some properties of ¢ as listed in [1 2, 81, 83] and given 
as follows: The function ¢ has the fo llowing properties . 

(P1): ¢(x , t, t) = x for all x E ~ 3
, t E ~; 

(p2 ) : ¢(¢(x ,t , s) , s,T) = ¢(x ,t ,T) for all x E ~ 3
, t , s, TE~; 

(p3 ): ¢(x, t , s) = ¢(x , t - s, 0) = ¢(x, 0, s - t ) for all x E ~ 3
, t , s E ~ ; 

(p4) : 1¢(x, t , s) - ¢(y, t , s)I :::; eKlt- sl lx - YI for all x E ~ 3
, t , s E ~; 

(p5 ): Function ~ 3 x ~ x ~ 3 (x, t ,s )--+ ¢(x,t,s) is continuous; 

(p6 ) : The transformation T defined by t = t , s = s, y = ¢(x , t , s) is a topological 
homeomorphism which is bimeasurable and its inverse 7 - 1 is represented by 
t = t , S = S , X = cp(y, S , t); 

(p7 ): For all t , s E ~ the transformation of ~ 3 onto itself defined by y = ¢(x , t, s) 
is measure-preserving. 

Then , by t he properties (p6 ) and (p7 ) , it is observed that for any Pn, the composit ion 
(x , t)--+ Pn(¢(x , t , 0)), in (3.24) is a measurable function satisfying the equality 

(3.25) 

hence the family ( Z0 ( t) )t>o consists of bounded linear operators from Xx --+ X x. 
Then, the following relations can easily been verified : 

(ia): Zo(0) = I 

(ib): Zo(t + s) = Zo(t)Z0 (s) , for all t , s E ~; 

(ic): limt➔o+ IIZo(t)pn - Pnll = 0, for each Pn E X x. 
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In fact , (ia) and (ib) follow immediately from the properties (p1 ) and (p2). To prove 
(ic) , we can follow the argument of Example 3.10 in [12]. Thus, it is enough to 
show (ic) for Pn E Cg"(IR3

). For such Pn,, we have limt-+o+(Zo(t)pn)(x) = Pn(x) for 
all x E IR3

. Furthermore, if IPn(x )I :::; M for all x E IR3 then l(Zo(t)pn)(x)I :::; M 
for all x E IR3 and , because the support of Z0 (t)pn is bounded , the Lebesgue 
dominated convergence theorem shows t hat (ic) is satisfied . Thus, ( Z0 ( t) )t~o is a 
C0-semigroup. 

(ii): Secondly, we prove that the generator T0 of (Z0 (t))t>o is an extension of Dn. 
Let Y be the set of real-valued functions defined on IR3

, are Lipschitz continuous, 
and compactly supported. Obviously, Y C D(Dn ) because if Pn E Y, then the first­
order partial derivatives of Pn are measurable, bounded , and compactly supported 
and thus , multiplied by Lipschitz continuous functions of wn, belong to L 1 (IR3 , dµ). 
For a fixed Pn E Y, we now denote by {} the real-valued function defined on IR3 x R+ 
by 

iJ(x , t) = (Zo(t )pn)(x). 

From the previous considerations and properties (p3 )-(p5 ), there exists a measurable 
subset E of IR3 x R+, with µ (IR3 x R+ \ E) = 0, such that at each point (x, t ) E E, 
t he function {} has measurable first-order partial derivatives. In part icular , 

BiJ 
-(x, t) = (Zo(t )DnPn)(x) , (x , t ) EE, at 

and therefore , if we let ,\Pn := ess SUP (x)EJR3 l'DnP n l, t hen 

for any (x , t) E E. 

From this and from part ( i) of the proof, it follows that 

as h ---+ o+. This proves that Y C D(To ) and that ToPn = 'DnPn , for all Pn E Y. 
Next we prove that Y is a core of Dn, that is, that (Dn, D(Dn)) is t he closure of 
(Dn, Y). Let we , f > 0, be a mollifier and for Pn, let w e * Pn be the mollification 
of Pn· We use the Friedrichs lemma, [56 , pp. 313-315], or [80, Lemma 1.2.5], 
which states that there is C > 0, independent of f, such that for any Lr function 
Pn, l :::; r < oo, we have 

(3.26) 

and 
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Estimates (2 .9) in [12] and the relation (3.26) above imply 

which shows that the mollification Pn ➔ 'we: * Pn is a continuous operator in D(Dn) 
(equipped wit h the graph norm) uniformly bounded with respect to c. 

Next , it is observed that the subset of D(Dn) consisting of compactly supported 
functions is dense in D(Dn) with the graph norm . Indeed , let Pn E D(Dn)- Because 
both Pn, DnPn E X x, the absolute continuity of the Lebesgue integral implies t hat 
for any given <5 > 0, t here exists a compact subset D' of ~ 3 such t hat 

j (IPnl + IDnPnl) dµ < 6 
JR3\!1' 

For this D' we choose 'ljJ E C0 (~
3) satisfying 0 ::; 'ljJ (x) ::; 1 for all (x) E ~ 3 , and 

'1/J (x) = 1 for all (x) E D' . Now it is easy to see that 'I/Jpn E D(Dn) and has a 
compact support . Moreover , 

11 '1/JPn - Pnll ::; 2 j IPnldµ , 
JR3\!1' 

II Dn('I/JPn) - 'DnPnll ::; 2 j IDnPnldµ + L j IPnldµ 
JR3\!1' JR3 \ !1' 

where L = suplDn'I/J I can be made independent of D' due to the fact that ~ 3 is t he 
whole space. 

Let Pn E D(Dn) be compactly supported . It is well known [12] that rve: * Pn is 
infinitely differentiable and compact ly supported and thus belongs to Y. Equation 
(3.27) yields that 'we: * Pn ➔ Pn as c ➔ o+ in the graph norm of D(Dn)- Because it 
has been shown above that compact ly supported functions from D(Dn) are dense 
in D(Dn) , it is observed that (Dn, D(Dn)) is the closure of (Dn, Y) and , because 
T0 is a closed extension of (Dn, Y ) and Dn C To is obtained. 

(iii): Let us conclude t he proof by recognising t hat D(T0 ) C D(Dn) so that the operators 
To and Dn coincide and (Gvn(t) )t~o = (Zo(t))t~O· Suppose Pn E D(To) . Then for 
any fixed >. > 0, there exists a unique 9n E X x such that Pn = (>.I - To) - 19n· For 
any 'ljJ E CJ(~3

) , we obtain , using (3 .21) , 



CHAPTER 3. GROUPS FRAGMENTATION PROCESS IN A MOVING MEDIUM3 1 

= j (] e-"gn( ¢,(x , t , O))dt ) (wn · 8'1/J ) (x )dx 
]R3 0 

= l U e- "gn(<P(x ,t ,0))(wn 8¢, )(x)dx) dt 

= l u e - At 9n(Y )(wn a,p )( ¢,(y , 0, t))(x )dy) dt 

= J (] e-M :t ¢, (¢,(y, 0, t))dt) 9n(y)dy 
]R3 0 

= j ( e- >-t 'l/J (cp (y , 0, t))l rgn(y) dy + >- j (] e- " ,p(¢,(y , 0, t))dt)) 9n(y)dy 

~ ~ 0 

= - j 9n(Y) 'l/J (y)dy + A j (] e-"gn(<P(x , 0, t))dt ) 'l/J (x)dx 
]R3 ]R3 0 

= - J (gn - APn) 'l/Jdµ. 
]R3 

This implies that Pn E D(V n)- Hence To C 'Dn and 'DnPn = ToPn· 

□ 

Remark 1. ( Conservativeness of the transport model ) 
Because the flow process does not modify the total number of individuals in t he system, 
let us show that the model (3. 11) is conservative in the space Xr, that is, the law (3.4) is 
satisfied. We have proven that the semigroup generated by the operator D is stochastic, 
this implies 

0 = J Dp dµdm r, 
A 

j f nr'Dnp(t , x , n)dx , 
IR3 n = l 

(3.28) 
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for all p E D(D ) t 2: 0, r 2: 1. Thus, J ~:=I nV np(t , x, n )dx = 0 for all t 2: 0 which 
JR3 

leads to 

:t ( t, n f (t , x, n)dx) 

f n J Btp(t , x, n )dx 
n= l IR3 

f n J V np(t , x, n )dx 
n= l IR3 

0 

and therefore proving t he conservativeness of the transport model in (3.19). 

3.5 Perturbed transport-fragmentation proble m s 

Attent ion is now shift ed to the t ransport problem with the loss part of the fragmentation 
process. We assume t hat t here are two const ants O < 01 and 02 such t hat for every x E ~ 3 , 

(3.29) 

with an E ~+ and independent of t he state variable x. T hen an is bounded for each 
n E N and t he loss operator (An, D (An)) can be defined in X x as An(x) = an (x) with 
D(An) = X x= L1 (~ 3 ). T he corresponding abst ract Cauchy problem reads as 

Btp(t , x, n) = V np(t , x, n) - Anp(t , x, n ) = Fnp(t , x, n ) 

p(0, x, n) = Pn(x) , n = 1, 2, 3, ... 
(3.30) 

where 
Fn = V n - An 

D (Fn) := D(V n), 
(3 .31 ) 

(where we have made use of (3.29) to have D(Fn) = D(V n) n D(An) = D(V n) n L1 (~
3

) 

and 
D(V n) ~ L1(~3)). The problem (3.30) can be rewritten in Xr in more compact form 

a 
- p = Dp - Ap = Fp at 

0 

P it=O = p. 

(3.32) 

with F = D - A , where A is defined by (3 .8). It is necessary to characterise the domain 
of F . According to t he condition (3 .29), for each n EN, the operator An is the generator 
of a C0-semigroup of contract ions, say ( G An ( t ) )t 2'.0 · The following theorem holds. 
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Theorem 3.5.1. Assume that (3.29) is satisfied for each n EN. 
The operator (F , D(F) ) = (D - A , D( D ) n D(A )) is the generator of a substochastic 
semigroup ( G F( t) )t>o given by 

(3.33) 

fo r p E Xr and t > 0, where (GvJt))t2'.0 is defin ed by (3.24). 

Proof. First of all it should be proven that for a fix n E N, Fn is the generator of a 
substochastic semigroup (GpJt))t 2'.0 in Xx given by 

[GFn(t)pn] (x) = v~ oo [c'Dn (f) GAn (f) r p(t,x,n) (3.34) 

for each Pn E D(Fn) := D(Dn)-
We need to show that Dn and An satisfy the conditions of the Corollary 5.5 in [7 4]. 
(a) From Theorem 5.4.1 and assumption (3.29), it is observed that Dn and An are 
generator of positive semigroups of contractions , t hen 

IIGvn(t)II :S 1 = l e0t, and IIGAn(t)II :S 1 = l e0
t for all t 2: 0. 

Thus, Dn, An E Q(l ,0) and Gvn(t) 2: 0, GAn(t) 2: 0 for all t 2: 0. 
(b) According to Hille-Yosida Theorem 2.2.4 , Dn is closed and densely defined in X x and 
because L1(IR3

) = D(An) =:> D(Dn), we have D(Dn) n D(An) = D(Dn) is dense in X x. 
(c) From the above condit ion (a) , we can write 

II (Gvn( t)GAn(t)t II ~ IIGvn(t)ll vl lGAJt)ll v 

~ 1 

= l eOvt, v= l , 2, 3 ... 

(3.35) 

(d) According to the Bounded perturbation theorem [12 , Theorem 4.9], Dn - An is the 
generator of a posit ive semigroup of contractions since Dn generates a positive semigroup 
of contractions (Theorem 5.4.1 ) and An is bounded (assumption (3. 29)). 
We know that ).J - (Dn - An) : D(Dn) -----1 X x and by Hille-Yosida Theorem 2.2.4 , 
>.I - (Dn - An) must be invertible for some>. > 0 and (>.I - (Dn - An)) - 1 E .C(Xx) (the 
space of bounded linear operators from X x into X x) - Then the range of >.I -(Dn - An) = 
X x. Thus, >.I - (Dn - An) is densely defined in Xx. 

All the condit ions of the Corollary 5.5 in [74] are satisfied by Dn and An, hence 
Fn = Dn - An = Dn - An = Fn is the generator of a semigroup ( G Fn ( t) )t2'.0 defined by 

(3.36) 

where we have used the fact that Dn - An is closed since it is the generator of a positive 
semigroup of contractions (Hille-Yosida Theorem 2. 2.4). 
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Let us show that (GpJ t))t~o is substochastic. According to (3.34) and the above condi­
tion (a) , we have G Fn (t) 2'. 0 for all t 2'. 0, since G pJt)pn is the limit of a sequence of 
elements of the positive cone of X x 

which is closed. Lastly, by (3.35) and (3.34) , we obtain 

for all t 2'. 0. Thus, by the relation (3 .17), the operator F with the domain D(F) 
defined by (3.15) is the generator of a substochastic semigroup (Gp(t))t~o in Xr and 
given by (3.33) . ow we provide a characterisation of the domain D(F). Because 
Dn is conservative, integration of (3.30) over IR3 gives ft IIPnll = ft JIR3 p(t , x , n)dx 
- JIR3 an(x)pn(x )dx. Hence (3.29) yields 

- { 02anPn(x)dx :S - { an (x)pn(x) dx :S - { 01 0'.nPn(x)dx 
J[R3 J[R3 J[R3 

for all Pn E (Xx)+ and using Gronwall 's inequality, we obtain 

then 

e-02antllPnll :S IIPnll :S e-eiantllPnll­
This inequality for Pn = GFn(t )1\ yields 

(3 .37) 

where Pn E (C0 (IR3))+ ~ D(Fn)+- If we t ake 0 :S Pn E L1 (IR3
), then it can always be 

mollified by construction of approximations to the identity (mollifiers) w e: (x ) = Ce: w(x/c) 
(as in [12, Example 2.1]) where w is a C0 (IR3

) function defined by 

w(x) = { exp(ix1L 1 ) for lxl < 1 
0 for lxl 2: 1 

and Ce: are constants chosen so that J w e: (x )dx = 1. Using the mollification of Pn by 
[R3 

taking the convolution 

Pn,e: := j Pn(x - y)we: (y)dy = j Pn(y)we: (X - y)dy , (3.38) 

[R3 [R3 
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0 1· 0 Pn = lm Pn e 
e ---+O+ ' 

Moreover , Pn,e are also non-negative by (3.3 ) since O ~ Pn , and the family (Pn,e)e ~ 
Cif(IR3

). This shows that any non-negative Pn taken in L1 (IR3 ) can be approximated 
by a sequence of non-negative functions of C0 (IR3

). The inequality (3.37) is therefore 
valid for any non-negative Pn E L1 (IR3). Using the fact that any arbitrary element 9 of 
L1 (IR3 ) ( equipped with the pointwise order almost everywhere) can be written in the form 
9 = 9+ - 9_, where 9+, 9_ E L1 (IR3)+, the positive element approach , [22 , 88] or [12, 
Theorem 2.64], allows t he extension of t he right inequality of (3.37) to all X x = L1 (1R3 ), 

in order to obtain 
(3 .39) 

Using the semigroup representation of the resolvent , [12, Theorem 3.34] then, for >.. > 0, 
00 

II R(\ Fn)Pnll ~ J e- ,\tllGFn(t)pnlldt 

by the right inequality of (3. 29), 

0 
00 

~ J e-,\te-OiantllPnll dt 
0 

1 
~ )._ + 01 a)Pnll-

02an 02 
IIAnR(>.. , Fn)Pnll ~ )._ + 0lan IIPnll ~ 0

1 
IIPnll 

is obtained . Passing to the whole space Xr using the gluing technique in Proposit ion 
3.4.1 , we have 

00 

n=l 

0 00 

~ 0: L nrllPnll 
n=l 

02 
= 

01 
IIPllr 

This relation states that D(A) "J D(F), (the domain of A is at least that of F). Because 
Fn = 'Dn - An and An is bounded for each n E N, we exploit the fo llowing relation for 
resolvents in X x := L 1 (IR3 ) : 

>..I - Fn = >..I - 'Dn + AnR(>.. , Fn)(>..I - Fn) 
I = (>..I - 'Dn) R(>.. , Fn) + AnR( >.. , Fn) 

R(>.. , 'Dn) = R(>.. , Fn) + R(>.. , 'Dn)AnR( >.. , Fn) 
R(>.. , Fn) = R(>.. , 'Dn)(I - AnR(>.. , Fn)) 
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for every n E N. Extending to the whole space Xr yields 

R(>., F) = R(>., D)[I - A R(>. , F)] 

leading to D (D ) :2 D (F ) and therefore D (F ) ~ D (D ) n D (A ). 
On the other hand , if p E D (D ) n D(A ), then II DP llr < oo and II AP llr < oo. Therefore , 

II Dp - Ap llr ~ II DP llr + II AP llr < 

indicating that p E D (F ) and thus D(D ) n D (A ) ~ D (F ). Con equent ly, we obtain 
D (F ) = D (D ) n D(A ), which ends the proof. D 

Now, let us take the gain part of the fragmentation process defined by (3 .9) with the 
coefficients satisfying t he conservation law (3.3) and consider the perturbed transport 
equation 

8 
ot p = Dp - Ap + Bp 

(3.40) 
0 

P it=O = p 

Theorem 3. 5. 2. If the assumptions of the Th eorem 5. 5.1 hold, then there is an extension 
(K , D(K)) of (D - A + B, D (D ) n D(A )) that generates the smallest substochastic 
semigroup on Xr, denoted by (GK( t) )t>O · 

Proof. This theorem is a direct cont inuation of Theorem 5.5.1 using Kato 's Theorem in 
L 1 , see Theorem 2.3 .5. Because D (B ) = D (A ) (relation (3.9)) , then D (B ) :::) D (D ) n 
D(A ). Thus, to apply Kato's Perturbation Theorem, there is a need to show that for 
all p = (Pn)n=l E D(D - A )+= (D(D ) n D(A ))+ , 

J (Dp - Ap + Bp) dµ dmr ~ 0 

A 

or , equivalent ly, 

j t n' ( V .p(t , X , n) - a,,(x)p(t, x , n) + m~l bn,mam(x)p(t , x, m)) dx <: 0. (3.41) 

Since p E D(D ) then L :=l J nrDnp(t, x, n)dx < oo. 
]R3 

On the other hand , II AP llr < oo , II BP ll r < oo and (3 .41 ) can be split in order to get its 
left hand-side equal to 

J f nr Dnp(t , x, n)dx + J L nr (-an(x)p(t , x , n) 
IR3 n=l IR3 n=l 

00 

+ L bn,mam(x)p(t, x , m) )dx. 
m=n+l 
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The first term vanishes by the stochasticity (3.28) of the operator D . For t he other term , 
using the relation (3.10) in its explicit form yields 

l t, n' (-anPn + m~l bn,mllmPm) dx 

j (-a2p2(2r - b1 ,2) - a3p3(3r - b1 ,3 - 2rb2,3) 

JR3 

-a4p4(4r - bi,4 - 2rb2,4 - 3rb3,4) - · · · ) dx 

i [-~ a,.pn ( n' - }; m' bm,n) ] dx 

- er(p ) 
< 0 

(3.42) 

(3.43) 

with Pn = p(t , x , n) and where we have used t he fact that - I::=2 anpnllt ) ~ 0 is valid 
for every x E JR3 with 

n- 1 
" (r) = nr - ~ mrb > 2 > 0 
L...l. n ~ m ,n , n - ' r - ' (3.44) 

m= l 

and where Cr is a non-negative (possibly zero) functional defined on 

(D(D ) n D(A)) , 

which proves the theorem. □ 

3.6 A continuous model for non-local fragmentation 
dynamics in a moving medium 

The corresponding cont inuous model for non-local fragmentation dynamics in a moving 
medium reads as 

00 

:l(t, x , m) = -div (w(x , m )p(t , x , m))- a(x , m )p(t , x, m)+ j b(x, s , m)a(x , s) p(t , x , s) ds 

m 

p(O, x , m) = p (x , m) , a.e. (x, m) E JR3 x lR+ (3.45) 

where in terms of the mass size m and the posit ion x , the st ate of t he system is charac­
terised at any moment t by the part icle-mass-position distribut ion p = p(t , x, m ), with 
p : lR+ x JR3 x lR+ -+ lR+· w has the same definition as in (3.1). a(x, m) describes the 
ability of aggregates of size m and position x to break into smaller particles. Once an 
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aggregate of mass s and position x breaks, the expected number of daughter particles of 
size m is the non-negative measurable function b(x, s , m) defined on IR3 x JR x R The 
treatment of the system (3 .45) is very similar to the analysis performed for the model 
(3.1) above. In the continuous case, there is no need for the "gluing" Theorem 3.4.1 and 
the analysis is straightforward . The complete analysis for the continuous model is found 
in the published paper [70]. 

3. 7 Concluding remarks 

In this chapter, the theory of strongly continuous semigroups of operators was used 
to analyse the well-posedness of an integro-differential equation modeling convection­
fragmentation processes. This study, with the inclusion of the spatial transportation ker­
nel, is seen as a generalisation of the preceding studies which did not consider such a ker­
nel before. The result obtained here is that the combined fragmentation-transportation 
operator is the infini tesimal generator of a strongly continuous stochastic semigroup, 
thereby addressing the problem of existence of solutions for this model. However, the 
full identification of the generator and characterisation of its domain remain an open 
problem. 



Chapter 4 

Non-autonomous Fragmentation 
Dynamics 

Fragmentation equations ( discrete or continuous) where different coefficients are time 
dependent has caught the attention of researchers in the past decade. This chapter deals 
with two related aspects to the model: The first is about the analysis of the system 
using various approximation techniques and the second is concerned with the equivalent 
norm approach for a non-autonomous fragmentation model. The latter approach makes 
a contribution that may lead to the full characterisation of the infinitesimal generator 
of a C0 semigroup for non-autonomous fragmentation and coagulation dynamics which 
remain unresolved. 

4.1 Global analysis of a discrete non-local and non­
autonomous fragmentation dynamics occurring . . 
1n a moving process 

4 .1.1 Introduction 

In this section a double approximation technique is used to show existence result for a 
non-local and non-autonomous fragmentat ion dynamics occurring in a moving process. 
The case where sizes of clusters are discrete and fragmentation rate is time, posit ion and 
size dependent is considered. The system involving transport and non-autonomous frag­
mentation processes, where in addition, new particles are spatially randomly distributed 
according to some probabilistic law is investigated by means of forward propagators asso­
ciated to the evolut ion semigroup theory and the perturbation theory. The full generator 
is considered as a perturbation of the pure non-autonomous fragmentation operator. Use 
can therefore be made of the truncation technique [57], the resolvent approximation [88], 

39 
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Duhamel formul a [39] and Dyson-Phillips series [76] to est ablish the existence of a so­
lut ion for a discrete non-local and non-autonomous fragmentation process in a moving 
medium, hereby, making a contribution that may lead to the proof of uniquene s of 
strong solutions to this type of transport and non-autonomous fragmentation problem 
which remains unresolved. 

4.1.2 Preliminaries and assumptions 

Fragmentation models have attracted considerable attention of late as they can be found 
in many important areas of science and engineering. Examples range from the split­
ting of phytoplankton clusters , astrophysics, rock crushing, colloidal chemistry, polymer 
science to depolymerisation. The dynamical behaviour of a non autonomous system of 
phytoplankton clusters (for example) which are undergoing break up to produce smaller 
particles in a moving medium can be derived by balancing loss and gain of clust ers of size 
n ( with posit ion x ) over a short period of time and is given by the following differential 
equation as presented in [67]: 

{ 

gt p(t , x , n) = -div(w(x, n )p(t , x , n)) 

_ + mf+i a(t , x, m)b(t , x , n, m):(t , x , m) - a(t , x , n: p(t , x, n) , (4. 1) 

p(To ,x,n)- pT0 (x ,n), 0 ~To< t ~ T , n-1 , 2, 3 . .. , xElR, 

where p(t , x , n) is the particle mass distribut ion function wit h respect to t he mass n at 
the position x E lR3 and t ime t , (p70 (x , n) = Pn,70 (x ) is the mass distribution at some 
fixed t ime To 2: 0 ) , b(t ,x n ,m) = bn,m(t , x) is the distribution of particle masses n and 
position x , spawned by the fragmentation of a particle of mass m at t ime t , T E JR 
and a(t , x , n) = an(t , x) is the evolutionary t ime-dependent fragmentation rate, that is, 
the rate at which mass n part icles at position x break up at a time t. The velocity 
w = w(x , n) of the transport is supposed to be a known quantity, depending on the size 
n of aggregates and their posit ion x . 

The combination of fragmentation equations and transport mechanisms have been uc­
cessfully utilised to model a wide range of natural processes. Examples in chemical engi­
neering include polymer breakup and solid drugs degradation in fluids. In aquaculture, 
such models are used to describe phytoplankton dynamics under the kinetic constraints 
of the flow. The mathematical invest igation of fr agmentation models presents several 
challenges both from the t heoretical and numerical point of view. In Chapter 3 and 
also in [70] , the authors investigated the existence of global solutions to continuous non­
local convection-fragmentation equations in spaces of distribut ions with finite higher 
moments. But t ill today, models with time dependent coefficients (non-autonomous) 
remain barely touched. Moreover, models of tran port and non-autonomous fragmen­
tation process have not yet been studied in t he same work and there are still only few 
studies devoted to their analysis (well-posedness, conservativeness , honesty,··· ,) sepa­
rately or in the ame model. In [57] , t he authors used techniques of t runcation to prove 



CHAPTER 4. NON-AUTONOMOUS FRAGMENTATION DYNAMICS 41 

existence, uniqueness and mass conservation for a pure non-autonomous fr agmentation 
model under certain conditions on initial data and the associated truncated system. The 
authors in [6] used evolution semigroups approach which allowed them to build on the 
substochastic semigroup theory and to obtain an equivalent result as in [57] . In the 
analysis of the book by Tosio Kato [50] and later improved by Da P rado et al. [33], it is 
generally assumed that the generators A(t) and B(t) involved in t he perturbat ion are of 
class Q(l , 0). This condit ion is modified in [65] where the authors used semigroup pert ur­
bation and renormalisation approach to show that the closure of t he involved operators 
is an anti-generator . However , in many applicat ions of forward propagator (evolut ion 
semigroup) theory to evolution equations, like transport equations used in this study or 
population equations [42 , 63] , perturbation method remains essential no matter which 
generator is the perturbed or the pert urbing operator. 

As in [71] and also in Chapter 7, focus is on the case where after clusters fr agmentation , 
the centres of new generating groups are dispersed and spread according to a given 
random law h(· , n , m , y). This is the probability density that after a break up of an m­
aggregate (wit h the centre at y), the new formed n-group will be located at x . Therefore, 

and the system ( 4. 1) becomes 

{ h(x , n , m , y )dx = 1, J.~3 (4. 2) 

{ 

ftp( t , x, n) = -div(w(x , n)p(t , x , n)) 

+ m~+l J,, a(t, y, m)b(t , y, n, m)h(x , ~ m , y)p(t, y, m)dy; a(t , x, n)p(t , x, n), 

p(To , x , n) - Pr0 (x , n) , 0 :S To< t :S T , n - 1, 2, 3 ... , x E JR . 
(4 .3) 

Since a group of size m :<:::; n cannot split to form a group of size n then , it is required 
that 

(4.4) 

at any time t and posit ion x for all m :<:::; n . The following assumptions are also required: 

n-1 

~ mbm,n(t , x ) = n (n = 2, 3, ... ), (4. 5) 
m=l 

meaning t hat a cluster of size one cannot split and t he sum of all individuals obtained by 
fragmentation at a position x of an n-group is equal to n all the t ime t .. The second term 
on the right-hand side of ( 4.3) describes the increase in the number of particles of size 
n due to fission of larger particles (the gain due to the fragmentation). The third term 
describes the reduction in the number of particles of size n due to the fission of groups 
of same size (the loss due to t he fragmentation). The space variable x is supposed to 
vary in the whole of JR.3 . 
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4.1.3 Approximation and analysis of the fragmentation opera­
tor 

Since p = p(t , x, n) is t he density of n-groups at the position x and time t and that total 
mass 

U(t) = f n 1 p(t, x , n)dx 
n=l IR

3 

(4.6) 

is expected to be a conserved quantity, the most appropriate Banach space to work in is 
the space 

(4.7) 

where N is equipped with t he weighted counting measure dm 1 with weight n and dµ = dx 
is the Lebesgue measure in ~ 3 . ote that elements 'norm of Yi represent the total mass 
( or total number of individuals) of the system. ow, we put 

and (4.3) is recast as the non-autonomous abstract Cauchy problem in Y1 : 

atp(t , x , n) = [Dp](t, x, n) + Q(t)p(t , x , n) , 
{ 

a -

p(To ,x ,n) =p-r0 (x,n) , 0 :::; To < t:::; T , n = 1, 2,3 ... , x E ~ 3
, 

or in the compact form 

{ 
gt p (t) = ~ p (t) + Q(t)p (t) , 
p (t)lt=-ro - P-r0 , 

(4.8) 

(4 .9) 

where p( t) is the vector p( t) = (p( t, x, n) )~=l , p70 the mass distribution vector (Pn( To , x) )n=l 
at the fixed time To 2:: 0 and position x , Q(t) the non-autonomous fragmentation operator 
defined by 

Q(t)p(t) = ([Q( t)p(t)](t , x , n))n=l 

c= (m~l ]., a(t, y, m)b(t, y, n, m)h(x, n, m, y)p(t, y, m)dy - a( l , x, n)p(t, x, n) ) n~,' 
(4. 10) 

where Q(t) is seen as the pointwise operation 

'ljJ (t , x , n) 1----7 f 1 a(t , y, m)b(t , y, n , m)h(x, n , m, y) 'ljJ (t , y, n)dy - a(t , x, n)'ljJ (t , x , n) 
m=n+l IR

3 

(4. 11) 
defined on the set of measurable functions. Q(t) is defined by Q(t) = .O(t) and represents 
the realisation of .Q ( t ) on the domain 

D(Q(t)) = {p E Y1 ; .Q(t)p(t) E Yi} , ( 4.12) 
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with D. (t)p( t ) given by (4. 11). The transport matrix Dis given by Dp := (V p(t , x, n))~=i 
with 

[Vp] (t, x, n) = -div (w(x, n) p(t, x , n)). (4.13) 

To investigate and analyse the abstract Cauchy Problem ( 4.8) and show existence for 
this system, a two parameter family is needed. 

D efinition 4.1.1. (Evolution system [74] or propagator [65]) 
A two parameter family of bounded linear operators U ( t , T), 0 ::::; T ::::; t ::::; T , on a 

Banach space is called forward propagator or evolution system if the following conditions 
are respected: 
(i) U(T ,T)= IforO::::;T::::;T.· 
(ii) U(t, r)U(r, T) = U(t, T) fo r O::::; T::::; r::::; t::::; T. 
(iii) (t , T) --+ U(t , T) is strongly continuous for O::::; T::::; t::::; T. 

Recall that ([65]) the forward propagator U(t, T), 0 ::::; T ::::; t::::; T can be associated to the 
so-called evolut ion semigroup (Gt(s))s2:o defined in Yi , i.e. if for any fixed t E J = [O , Tl, 
the operator Q(t) generates a forward propagator U(t, T) , 0 ::::; T ::::; t ::::; T , then this 
propagator defines a C0 semigroup ( Gt ( s)) s2:o given by the relation 

[Gt(s)p](a) = (a - s)x'.J U(a , a - s) p(a - s) , (4 .14) 

where XJ is the characteristic function of J = [O, T], p E Y1 and a E J . In the rest of 
the chapter, when we say Q(t) is t he generators of C0-semigroups in Y1 , it means Q(t) 
generates a propagator which defines a C0-semigroup in Yi satisfying the relation (4. 14). 

We introduce, for any given k E N, t he proj ection operator qk defined for a function 
g E Y1 as 

k > n > 0 and x E JR3 

otherwise. 

The space 
xk = {g E Yi: g(x,n) = 0 on IR3 

X (k,oo)} 

is t herefore a closed subspace of Yi on which t he projection operator qk acts. Let us 
associate to the fragmentation model 

{ 
:~(t) = Q(t)p(t) , 
p(To) = Ao, 0 ::::; To< t::::; T , 

the following t runcated version 

{ 
C::(t) = Q(t)qkp(t) , 
p( To) = PTo , 0 ::::; To < t ::::; T , 

(4.15) 

where Q(t) is represented by (4.11). If Qk(t) = Q(t)qk is set , then Qk(t) can be decom­
posed as Qk(t) = Ak(t) + Bk(t) where the loss and the gain fragmentation operators 
Ak(t) and Bk(t) are given by 

Ak(t)g(t , x, n) = A(t)qkg(t , x, n) = -a(t , x, n)g(t, x, n) 
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and 

Bk(t )g(t , x , n ) = B (t)qkg(t , x, n) 
k 

= L r a(t , y , m )b(t , Y, n , m )h(x, n , m , y )g(t , Y, m)dy , 
m=n+l } TR. 3 

where A(t ) and B (t) are expressed as 

and 

B (t )g(t , x, n) = f 1 a(t , y , m)b(t , y, n , m )h(x , n , m , y )g(t , y , m )dy. (4. 16) 
m=n+ l IR

3 

Thus, for all g E Y1 , k EN and (t ,x, n ) E J x JR3 x N , 

k 

I: JTR. 3 a(t , y , m )b(t , y , n , m)h(x, n , m , y)g(t , y , m) 
m=n+l 

- a(t , x , n)g(t , x , n ), k > n > 0 
Q,( t )g(t, x, n) = { 

0, otherwise , 
( 4. 17) 

with 
D(Qk(t )) = {g E Y1; Qk(t )g E X k}-

We assume that for t fixed in JR , there are two const ants O < 01 and 02 such t hat 

01a(n , t ) :S at(x, n ) = a( t , x ,n) '.S 02 a(n , t ) for almost all (x, n ) E JR3 x N, (4.18) 

where a(n , t ) E L oo,lac(JR+ 2 ) is a real-valued function which can depend on n and t but 
is independent of the state variable x . This obviously implies t hat for any k E N, t here 
exists a posit ive Gt,k such that 

ess supfR.3x(O,k)at(x, n) '.S Gt,k· 

tloreover , t he sequence {Gt,d kEN (t fixed in JR) is bounded in t he following way: 

ess sup0 '.St'.ST8 t,k '.S Gr,k < oo . 

(4. 19) 

(4.20) 

Lemma 4 .1. 2. Fort fixed in 'J , and k E N, there is a positive uniformly continuous 
semigroup of contractions on X k C Y1 , say (Gt,k(s))s~o generated by the operator Qk( t ) 
such that ( Gt,k ( s) ) s~o is conservative on ( X k) + and given by 

(4.21) 

Moreover, for any r 2'. k , s 2'. 0, 

( 4.22) 
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Proof. Let us fix tin 'J. The operator Ak(t ) is bounded by (4. 19) . Changing the order 
of summation by the Tonelli 's theorem , for every g E X k, 

II B,(t)gll , - L (~ n mt,/., a(t , y , m)b(t , y , n , m)h(x , n, m, y)lg(t , y , m)ldy) dx 

L (t n mt , a(t, Y, m)b(t , y , n , m)lg(t, y, m)I) dy 

Li;, a(t , y,m )lg(t, y , m)I (~ nb(t, y ,n,m)) dy 

Li;, a(t, y , m)lg(t , Y, m)I (}; nb(t , y , n, m)) dy 

k 1 L ma(t , y, m)lg(t , y, m )ldy 
IR

3 
m = 2 

k 1 L ma(t, y, m)lg(t , y, m )ldy 
IR

3 
m = l 

< 1 L ma(t , y, m)lg(t , y, m )ldy 
IR

3 
m=l 

IIAk(t)glli 
8t,kll9lli 

< oo , 

where we have used (4.2) and (4.5 ) respect ively. Then Bk(t) is also bounded . Hence Qk(t) 
generates a uniformly continuous semigroup. We denote this semigroup by (Gt ,k(s)) s~o­
Clearly, Ak(t) generates a positive semigroup of contractions and Bk(t) is a posit ive 
operator. Moreover , the above calculations also imply that D(Bk( t )) => D(Ak (t)) and 

f 1 n(Ak(t)g(t , x , n) + Bk(t)g(t , x , n))dx 
n=l IR

3 

k 

= L 1 n(Ak(t)g(t , x, n) + Bk(t)g(t , x , n) )dx:::; 0 
n=l IR3 

fo r all g E (D(Ak( t) ))+ with 

D(Ak(t)) = {g E Y1 ; -atg E Xk} and D(Bk(t)) = {g E Y1 ; Bk(t)g E Xk}. 

Thus, the a sumptions of Kata 's Theorem in L1-space, Theorem 2.3.5 hold. It is es­
sent ially noted t hat , for each fixed t , the operator Qk(t) becomes independent of t ime 
[57, Lemma 2.1] and Kata 's Theorem is immediately applicable. Therefore, there i an 
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extension {;]k(t) of Qk (t) which generates a substochastic semigroup . Because at(x, n) 
is bounded in IR3 x (0, k) , this substochastic semigroup is conservative , it fo llows that 
{;]k(t) = Qk(t), where Qk(t) is t he closure of Qk(t) . Since Qk(t) generate a uniformly 
(and hence strongly) continuou semigroup , Qk(t) is a closed operator. This yields 
Qk(t) = Qk(t) , consequently, the uniformly cont inuous semigroup (Gt ,k(s)) s;::,:o is a posi­
tive strongly continuous semigroup of contractions, furthermore, (Gt ,k(s))s ;::,:o is honest . 

The proof of (4. 21) is clear since the usual power series definition can be used to define 
Gt,k(s) = exp(sQk(t)). By induction, (Qk(t)f = (Q(t)qk)J = (Q(t))J qk for J = 1, 2, · · ·, 
from which the exponent ial formul a yields ( 4.21). 

To prove (4.22) , we have that B(t)qkg = qkB(t)qkg on B(t)(0JR3, k) x [0, k] since for 
k ~ n ~ 0, B(t)qkg(t , x , n) is given by (4. 16) and B (t)qkg(t , x, n) = 0 for k < n . 
Moreover, it is obvious that A(t)qkg = qkA(t)qkg, hence we have also 

ext, by qkqr = qrqk = qk we have 

qkQr(t) qk = qkqrQ(t)qrqk = qkQ(t)qk = Qk(t) 

if we assume, by induction, that qk(Qr(t))J- lqk = (Qk(t))J-l , then 

qk( Qr( t ) )j- lQr( t)qk 

qk( Qr( t) )j-lqrQ( t)qrqk 

qk ( Qr ( t) )j-l qrqkQ( t )qk 

qk( Qr( t) )j-l qkQk( t) 

( Qk( t) )j. 

Now, using (4.21) and the the fact that Qr(t) is a bounded operator , the semigroup 
generated by Qr(t) is expressed by 

f Sj ( Qk?) )j 

n=O J. 

Gt,r(s) , 

which concludes the lemma. 

Next , we assume that a(t ,x ,n) satisfies the Lipschitz condition 

la(t ,x, n) - a(cr, x ,n)I ~ It - crli\(x ,n) , t , cr E J 

□ 

(4.23) 

where J\(x , n) ~ 0 together wit h J\(x , n) ~ Gk for all k ~ n > 0. We state the following 
lemma 



CHAPTER 4. NON-A UTONOM OUS FRAGMENTATION DYNAMICS 47 

Lemma 4.1.3. The function t --+ Qk(t) is continuous in the unifo rm operator topology 
for each k fixed in N 

Proof. Using Fubini 's t heorem and assumpt ion ( 4.23) yields 

and the result fo llows. □ 

Making use of (4. 14) and the Lemma 4.2.1 , there is a forward propagator, let us say 
{Uk( t , T)}o::;r::;t::;T defined in X k C Y1 which is associated to t he evolut ion semigroup 
(Gt ,k(s))s :::,,: o, t E 'J. The propagator {Uk(t , T)}o::;r::;t:ST shares certain properties wit h t he 
family of semigroups (Gt ,k(s )) s:::,,:o, t E J , as st ated in the following theorem and proven 
in [57, Theorem 4.1]. 

Theorem 4.1.4. (74} For each k E N, the forward propagator {Uk(t ,T)}o::;r::;t::;r gener­
ated by the family of infinitesimal generators {Qk(t)} tEJ have the following properties: 

1. Uk( t , T) is positive; 

2. IIUk(t , T)glh = llglh , for all g E Y1 ; 

3. I:~=0 n[Uk(t , T) g](t ,x, n) = I:~=0 ng(t ,x,n), fo rallg E Yi, x E IR3
; 

4- ftUk(t, T) = Qk(t)Uk(t, T), 

s. ;Tuk(t, T) = -ukQk(t , T) , 

Theorem 4.1.5. The truncated problem (4.15) has a unique, strongly continuously dif­
ferentiable, positive, mass-conserving solution for all initial data p( To) = Pro E X k. The 
solution is given by p(t) = Uk(t , To)Pro (0 ~To~ t ~ T ). 

Proof. This theorem is an immediate consequence of Lemmas 4. 2.1 and 4.2. 2, Theorem 
4. 2.1 as ociated with [74, Theorem 5. 1]. □ 

Remark 2. According to [74, Definit ion 2.1, p. 130 and Remark 3.2, p . 138], for each 
fixed k > 0, t he family of infinitesimal generators { Qk( t)}tEJ of C0-semigroups on Xk is 
stable with stability constants 1 and 0. Moreover , from Theorem 4.2.3 we obtain 

( 4.24) 



CHAPTER 4. NON-AUTONOMOUS FRAGMENTATIO DYNAMICS 48 

4.1.4 Cauchy problem for the transport model in IR.3 x N 

We consider the Cauchy problem for the transport equation 

a . 
al(t , x, n) = -div(w(x, n) p(t, x, n)) , (4.25) 

p(O, x, n) = Pn(x) , n = l , 2, 3, ... 

in the space Yi . 
The function w : ~ 3 x N ~ ~ 3 defined by (x , n) ~ w(x , n) is considered and it should 
be recalled that i5 in ( 4. 13) is the expression that appears on the right-hand side of the 
equation (4 .25). Then, 

[vp] (t , x, n) := -div (w(x, n) p(t , x, n)) 

= (v7 · w(x, n))p(t , x, n) + w(x , n) · (v7p(t , x , n)). 

We assume that 

(H 1) w is divergence free; 

(H2) w globally Lipschitz continuous, 

then div w(x, n) := v7 · w(x, n) = 0 and (4.26) becomes 

[vp] (t , x, n)) := w(x , n). (v7p(t , x , n)). 

We define in Yi t he operators ('D , D('D)) as 

['Dp] (t , x, n) = [Vp](t , x, n) , with [Vp](t , x, n) repres nted by (4.27) 

D ('D ) := {p E Yi , w · (v7p) E Yi} , n EN. 

(4. 26) 

(4.27) 

(4.2 ) 

Remark 3. With the assumptions (Hl) - (H2), it is proven [70] that 1) is the generator of a 
strongly continuous stochastic semigroup , say (Gv(t))t :c::o and IIGv(t)II::; 1 = l e0

t. Then 
1) E 9 (1, 0) and because of Hille-Yosida's characterisation (Theorem 2.2.4), ('D , D ('D )) 
is a closed and densely defined operator satisfying for the resolvent set p('D ) =:> [0, oo) 
and 11>-R(,\ 'D ) Iii ::; K for some constant K > 0 and all >. > 0. Furthermore, 

(i): for any g E Yi , 
lim >.R(>. , 'D )g = g 

.>..➔ 

(ii ): 'DR(>. , 'D ) are bounded operators and for any g E D('D), 

lim >.DR(>. , 'D )g = 'Dg . 
.>..➔ 

(4.29) 

( 4.30) 
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4.1.5 Perturbed approximated problem 

Let 1)>.. = >-.DR(>-. , D ), Yosida [88] was the first to use the bounded operators 1)>.. to 
approximate the unbounded operator 7J , for which semigroups can be defined via t he 
exponential formula 

t1) t27J2 
ew = I+ - + -- + · · · . 

l! 2! 
This idea is exploited to analyse the following approximated problem associated to ( 4.3): 

{ 
%t p(t , x , n) = Qk(t)p(t , x , n) + [D>..p](t , x , n) , (

4
_
31

) 
p(To , x ,n) = Pr0 (x , n ), 0 S To < t S T , n = 1, 2, 3 . .. , x E 1R3

, 

Lemma 4 .1.6. Let each k fixed in N and any >-. > 0. Under the assumptions (4- 5) , (4- 19 ), 
(4. 20}, (4. 23}, (HJ } and (H2}, the operator (Tk,>..( t ) = Qk(t )+D>.. , D(Qk(t))) , (0 St S T) 
which appears in approximated Cauchy problem (4. 31} is a stable generator, with the sta­
bility constants l and II D>..11 1 , of a forward propagator { llh,>..(t , T)}o::;r::; t::;T associated to 
an evolution semigroup (Gt ,k,>..( s)) s~o, positive, conserving the norm 11 · 11 1 and given by 

00 

Gt,k,>.. (s) g = Gt,k(s)g + L G\ (s) g, 
i = l 

where 

G\(s )g = 1 s Gt ,k(s - v)g1J>,.Gt1(v)gdv and g E x k 

with (Gt ,k(s))s~o defin ed in Lemma 4.2. 1. 

(4.32) 

Furthermore, the problem (4- 31} has a unique, strongly continuously differentiable, posi­
tive; mass-conserving solution fo r all initial data p( To) = Pro E Xk. The solution is given 
by p(t ) = l[h,>..(t, To)Pro (0 S To St S T) . 

Proof. Let us fix k E N and >-. > 0. The fact t hat Tk,>..(t) is the generator of a forward 
propagator comes from Lemma 4.2.1, the Bounded perturbation theorem and the remark 
(4.14). According to Remark 2 we have p(Qk(t)) :) (0, oo). If v > IID>..l li , it is obvious 
that v E p(Tk,>.. ( t)) (Bounded pert urbation) and the resolvent satisfies 

00 

R (v , Tk,>..(t) ) = L R(v, Qk( t )) [D>.. R (v , Qk(t))f. 
i= l 

Hencefort h, for any finite sequence OS t 1 S t2 S · · · S tr S T , r = l , 2, · · · , we have 

The development of t he right-hand side of ( 4.33) yields a series with the general term in 
the form 
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r 

where in 2: 0. If I:: in= i , then using t he stability of the family Qk(t)o<<t<T' we estimate 
n=l -- -

estimate (4.34) by ll'D>.ll 1v-i-r_ Therefore , 

r oo 

IT R(v, Tk ,>.(tn)) ~ v- r I::(~) (ll 'D>. lliv-1r i = [(v - ll 'D>.ll1)r1, 
n=l i= l 

r 

where (~) is the number of terms in which I:: in= i in this series . To prove (4.32), we 
n=l 

use the Duhamel equation [39] 

Gt,k,>.(s) g = Gt,k(s)g + 1s Gt,k(s - v)g'D>,Gt,k,>.(v)gdv, g E xk (4.35) 

whose the iteration leads to the Dyson- Phillips series given by 

00 

Gt,k,>.(s) = L G\(s) , with G1(s)g = Gt,k(s) g 
i=O 

and ( 4.32) follows. 

The second part of the theorem follows from the Theorem 4.2.4 and Remark 3. We just 
need to show t hat the model with the transport process is conservative. It has been 
proven [70] t hat the semigroup generated by the operator 'D is strongly continuous and 
stochastic, t his implies 

j f n'Dp(t , x, n)dx, 
IR 3 n= l 

( 4.36) 

for all p E D ('D ) t 2: 0, which leads to 

:t (t, njp(l,x,n)dx) 

f n j Otp(t , x , n)dx 
n=l IR3 

= f n j 'Dp(t , x, n)dx 
n=l IR3 

= 0 

where U(t ) is the total mass of the system defined in (4. 6) and therefore proving t he 
conservativeness of the transport process. D 
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It is known , see [57, Corollary 6.4] that , under the assumptions of the previous Lemma, 
the Cauchy problem 

{ 

ft p(t , x, n ) = mf+i JIR3 a(t , y , m)b(t , y , n , m )h(x, n , m , y )p(t , y , m )dy 
( 4. 37) 

- a(t , x , n )p(t , x , n ), 
p(To , x , n) = pT0 (x ,n ), 0 ::; To < t ::; T , n = 1, 2, 3 ... , x E IR3

, 

has a solut ion p defined on the product set [O, oo) x IR x N whenever PTo E Y1 and given 
by 

p(t , x , n) = [U( t , To )pT0 ]( x, n) , n EN, 0 ::; To < t , ( 4.38) 

where 
( 4.39) 

for all g E Y1 with {Uk( t , T) }o :::;T<t:::;T defined in the Theorem 4.2.3 . In t he same way, if 
(Gt(s)k::o be t he evolution semi-group associated to U( t , T) , (see (4.14)) then 

Gt(s) g = lim Gt,k(s )g 
k---+oo 

( 4.40) 

for all g E Y1 with {Gt,k(s )} 8 2o defined in the Lemma 4. 2.1. Because V >. is bounded , it 
follows that the perturbed Cauchy problem 

{ 

ft p(t , x, n ) = V>.p (t , x, n )) 

+ m~+l f., a( t , Y, m)b(t , y , n, m)h(x , ~ m, y )p(t , y , m )dy ; a(l , x, n)p(l , x, n) , 

p(To, x ,n ) - pT0 (x ,n) , 0 ::; To < t ::; T , n - 1, 2, 3 . .. , x E IR, 
(4 .41) 

also has a solut ion p defined on the product set [O , oo) x IR x N whenever PTo E Y1 . The 
following can thus be stated: 

Lemma 4 .1. 7 . Let fix >. > 0. Consider the fam ilies (Gt ,k,>. (s) )s20 and {1lh,>.(t , T)}o:::;T:::; t:::;r 
defined in Lemma 4.1 .6. The family (Gt,>.(s))s20 defin ed by 

( 4.42) 

exists for all O ::; t ::; T and ( Gt,>. ( s)) s20 forms a positive, Co-semigroup on Y1 conserving 
the norm II · Iii-
In the same way, the family {1lh (t , T)}o:::;T:::; t:::;T defin ed by 

1[1>.( t , T)g = lim 1l.h,>. (t , T) g, 
k---+oo 

( 4.43) 

exists for all O ::; T < t ::; T and {1lh ( t , T )}0 :::;T:::;t:::;T fo rms a forward propagator on Y1 

conserving the norm II · Iii -
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Proof. Let g E Y1 , from (4. 21 ) and (4.22) we have 

Then 

where k 2:: r. 

IIGt,k,>.(s)g - Gt,r,>.(s)gll 1 :::; JIGt,k,>.(s)g - Gt,k,>.(s)qrgJJ 1 + Jjg - qrgJJ1 

= 2 JJg - qrgll1 

-----+ 0 , as k , r -----+ 

Hence , t he family ( Gt,k,>. ( s)) kEN is a Cauchy sequence in t he Banach space Y1 and t here­
fore convergent and its limits , uniform in s , exists as Gt,>.(s) : Y1 -----+ Y1. Furthermore, 

IIGt,>.(s)gJl1 = 111~1 Gt,k,>.(s)gll1 

= 1~m IIGt,k,>.(s)gJJ 1 

= lim Jj gJ J1 
k --HXJ 

= 11 9111 , 

where we have used the continuity of II · jj 1 on Y1 and the fact t hat { Gt,k,>. ( s) } conserves 
t he norm II· 111- Thus, {Gt,>.(s)} s2:0 conserves the norm II· ll1 -
(Gt,k,>.(s)) s2:o is a semigroup , in fact 
(a) 

Gt,>.(s + v)g = 1~~ Gt,k,>.(s + v)g 

= lim Gt,k,>. ( s) lim Gt,k,>. ( v) g. 
k--+oo k--+ oo 

In the same way as previously, it is shown, using t he definit ion of (Gt,>.(s))s 2:o, t hat 

Hence 

k -----+ oo. This convergence, being strong in Y1 finally yields Gt,>. ( s )Gt,>. ( v) = Gt,>. ( s + v) 
(b)Gt,>.(0) = I since 

Gt,>.(O)g = lim Gt,k,>.(O)g = lim g = g 
k--+ k--+oo 

for all g E Y1. (c) In a similar way, we show t hat lim Gt k >.9 = g since t he limits ( 4.42) 
s➔O+ ' ' 

exists uniformly in s . 
(d ) {Gt,>.(s)} is positive since from the defini t ion of Gt,>.(s) and [75, Corollary 5. 11], there 
exists a subsequence {Gt,kc1 ,>.(s)g} ('5 = 1, 2, ·· ·)so t hat 

[Gt ,k0 ,>.(s)g](x, n) -----+ [Gt ,>.(s)g](x , n) , as '5-----+ oo for a.e. (x.n) E IR3 x N. 
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Because {Gt,k,1 ,,\(s)g} is posit ive, then if g > 0, this pointwise limit gives 

[Gt ,,\(s)g](x , n) 2:: 0 for a.e. (x.n) E ~ 3 x N 

and the results fo llow. The proof of the second part of this lemma is very similar to the 
proof of the first part with the additional note that the limit ( 4.43) is uniform in t and 
T , which concludes the proof of t he lemma. □ 

The above discussions allow the stating of the fo llowing existence result for an approxi­
mated discr te and non-autonomous fragmentation model in a moving medium. 

Theorem 4.1.8 . Let >. > 0. Under the assumptions of the Lemma 4-1.6, the fami ­
lies defin ed in (4-42) and (4- 43) are respectively an evolution semigroup and a forward 
propagator generated by the operator (T,\(t) = Q(t) + D,\ , D (Q(t))), (0 :St :S T ) defin­
ing the Cauchy problem (4 -41). Furthermore, the solution given, for all initial data 
p(To) = PTo E Yi , by 

p(t , x, n) = [11.h(t , To)) pT0 ](x , n) , n E N, 0 :S To < t , 

satisfies the perturbed Cauchy pro blem (4.41). 

4.1.6 Existence results: Discussion 

( 4.44) 

Now, what happens if we tend >. --+ oo! It is known, via (4.30) , that the perturbed 
Cauchy problem (4.41) tends to the discrete and non-autonomous fragmentation model 
in a moving medium (4.3) as >. --+ . For this reason , the solut ion obtained in Theorem 
4.1.8 can serve to approximate a solution for the Cauchy problem (4.3). The results 
obtained here, where we had to deal with a two parameter family of bounded linear 
operators , improve the preceding ones [70 , 57] where the two processes involved in the 
system, namely, transport and non-autonomous fragmentation , were treated separately. 
However , the problem of characterising the full generator is still an open problem for 
this type of perturbed non-autonomous and transport model. 

4.2 Analysis by approximation technique 

4.2.1 Introduction 

In this section, forward propagators are used to investigate the fr agmentation part of the 
system (4. 1). A part of the technique here is similar to the one used in the Section 4. 1. 
Our analy is consists of approximating the solution of that fr agmentation model which 
is discrete, non-local and non-autonomous by a sequence of solutions of cut-off problems 
of a similar form. Then, the classical argument of Dini [50, Lemma 4], and Duhamel 
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formul a can be exploited to show existence of strong solutions of the model in the class 
of Banach spaces (of functions with finite higher moments) Xr := L1 (J,Xr) , where 

Xr = {g: IR3 x N 3 (x, n)-+ g(x , n), llgllr := 1 L nrlg(x , n) ldx < oo }. 
IR

3 
n= l 

This re ult is a great contribution to the proof of uniqueness of strong solutions to 
the discrete, non-local and non-autonomous fragmentation model which is still ongoing. 
Taking into account assumption (4.2) , the fragmentation part of the system (4.1 ) yields 

{ 

ftp( t , x, n) = mf+i J IR3 a(t , y, m)b(t , y, n , m)h(x , n , m , y)p(t , y, m)dy 

-a(t , x, n)p(t , x , n) , 
p(To , x, n) = pT0 (x, n ), 0 :S To < t :S T , n = l , 2, 3 ... , x E IR3

, 

(4.45) 

with the coefficients a and b satisfying the condit ions (4.4)-(4.5) . As in the previous 
section , the total mass I::n= l n JIR 3 p(t , x , n)dx is expect d to remain unchanged , then 
the sui table Banach space to work in reads as 

{g : IR3 x N 3 (x , n)-+ g(x, n) , 119111 := 1 f nlg(x , n)ldx < oo } 
IR

3 
n= l 

( 4.46) 

We re trict the analysis, as in the previous chapter , to t he class of Banach spaces of 
functions with finite higher moments: 

X r := {g : IR3 
X N 3 (x, n )-+ g(x , n) , llgllr := 1 f nrl g(x , n)ldx < oo }, 

IR
3 

n= l 

r ~ l , which coincides with ( 4 .46) for r = l. 

Let us put 

( 4.47) 

Let us recall that until now, models wit h time dependent coefficients (non-autonomous) 
remain barely touched and there are still only few studies devoted to their analysis ( well­
posedness , conservativeness, honesty.) In [57], t he authors used techniques of t runcation 
to prove existence, uniqueness and mass conservation for a model of type ( 4.45) under 
certain conditions on init ial data and associated truncated sy tern. The authors in [6] 
used t he evolution semigroups approach which allowed them to build on the ubstochastic 
semigroup theory and obtain an equivalent result as in [57]. In the analysis of the book 
by Tosio Kato [50], and later improved by Da P rado et al. [33] , it is generally assumed 
that the generators A(t) and B(t) involved in the perturbation are of class 9 (1, 0). This 
condition is modified in [65] where the authors used the semigroup pert urbation and 
renormalisation approach to show that the closure of the involved operators is an anti­
generator. 
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Let us rewrit e ( 4.45) as non-autonomous abstract Cauchy problem in Xr: 

{ 
Xtp(t , x , n) = Q(t)p(t , x, n) , (

4
.4S) 

p(To ,x, n)=pT0 (x, n), 0 '5.To< t '5_ T , n= l , 2, 3 .. . , xE IR.3 , 

or in the compact form 

{ 
-9i p(t) = ~ (t )p(t) 
p (t )lt=To - PTo ' 

(4.49) 

where p ( t ) is the vector p ( t) = (p( t , x, n) )~=l , P 70 the mass distribution vector (Pn (To , x )) n EN 

at the fixed t ime To 2:: 0 and position x and Q(t ) the non-autonomous fragmentation 
operator defined by 

Q(t) p (t ) = ([Q( t)p(t)](t , X, n)): =l 

,~ (m~l J., a(t , y, m)b(t , y, n, m) h(x , n, m, y)p(t , y, m)dy - a(t , x, n)p(t , x, n) ) ~~ , , 

( 4.50) 
here, Q( t ) is seen as the pointwise operat ion 

'lj; (t , x, n) f-----+ f 1 a(t , y, m )b(t , y, n , m )h(x , n , m , y)'lj; (t , y, n)dy - a(t , x, n)'lj; (t , x, n) 
m=n+ l IR

3 

(4.51) 
defined on the set of measurable functions. Q(t) is defined by Q(t) = .Q(t ) and represents 
the realisation of .Q ( t ) in t he domain 

D(Q(t )) = {p E Xr; .Q(t )p(t ) E Xr }, ( 4.52) 

wit h .Q(t )p(t ) given by (4 .51). To investigate and analyse the abstract Cauchy Problem 
( 4.48) and show existence for t his system, we will also need t he two parameter family 
defined previously as propagator or evolut ion system (see Definit ion 4. 1.1) together with 
the relation ( 4.14) . 

4.2.2 Mathematical setting and analysis in Xr 

We have set 
X r := L1 (IR.3 

X N, dµdm r) 

to get Xr = L 1('J ,Xr) , where N is equipped with the weighted count ing measure dmr 
with weight nr and dµ = dx is t he Lebesgue measure in IR.3 and 'J = [O , T]. The operator 
(Q(t) , D(Q(t ))) represented by (4.51)-(4.52) can also be defined in X r. For any given 
K E N, we introduce t he proj ection operator qK defined for a function g E Xr defined as 

K > n > 0 and x E IR.3 

otherwise. 
( 4.53) 
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The space 
Xr,K = {g E Xr: g(x ,n) = 0 on IR3 x (K ,oo)} ( 4.54) 

is therefore a closed subspace of Xr on which the projection operator qK acts. We 
associate to ( 4.48) the following shortened version 

{ 
t(t) = Q(t)qKp(t ), 
p( To) = PTo , 0 :S To < t :S T , ' 

(4.55) 

where Q(t) is represented by (4.51). Let us set QK(t) = Q(t)qK , then QK(t) can be 
decomposed as QK(t) = AK(t) + BK(t) where the loss and t he gain fr agmentation 
operators AK(t) and BK (t) are given by 

AK(t)g(t , x, n) = A(t) qKg(t , x, n) = -a(t , x, n)g(t, x , n) (4 .56) 

and 

BK(t)g(t , x, n) = B (t) qKg(t , x , n) 
K 

= L 1 a(t , y, m)b(t , y, n , m)h(x , n , m , y)g(t , y, m)dy, 
m=n+l ~3 

( 4.57) 

where A(t) and B (t ) are expressed as 

( 4.58) 

and 

B(t)g(t , x, n) = f 1 a(t , y, m)b(t , y, n , m)h(x , n , m , y)g(t , y, m)dy. (4.59) 
m=n+l ~3 

Thus, for all g E Xr, J{ E N and (t , x, n ) E J' x IR3 x N, 

K 

~ J~3 a(t , y, m)b(t , y, n , m)h(x, n , m , y)g(t , y, m) 
m=n+l 

0, 
-a(t , x , n)g(t , x , n) , 

otherwise. 
J{ > n > 0 

We assume that for t fixed in IR , there are two constants 0 < 01 and 02 such that 

(4.60) 

01a(n , t) :::; at(x , n) = a(t , x, n) :::; 02 a(n, t ) for almost all (x , n) E JR3 x N, (4.61) 

where a(n, t) E L oo,loc(IR+ 2 ) is a real-valued function which can depend on n and t but 
is independent of the state variable x. This obviously implies that for any J{ E N, there 
exists a posit ive Gt,K such that 

(4.62) 
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The sequence {8t,K}KEN (t fixed in IR) is not necessarily bounded. Using the conditions 
(4.5), we can prove that 

n-1 

L mrbm,n(t , x) :S: nr (4. 63) 
m=l 

for any r 2:: 1, n 2:: 2, x E IR3 at any time t . In fact , 

n-1 n-1 

nr - L mrbm,n(t , x) 2:: nr - (n - 1r-1 L mbm,n(t, x) = nr - n(n - 1r-l 2:: 0. 
m=l m=l 

Note that the equality holds for r = 1. 

Lemma 4.2.1. Fort fixed in J , and J{ E N, there is a positive uniformly continuous 
semigroup of contractions on Xr,K C Xr, say (Gt,K(s))s2'.0 generated by the operator 
QK(t) such that (Gt ,K(s)) s2'.0 is conservative on (Xr,K) + and given by 

( 4.64) 

Moreover, for any N 2:: K , s 2:: 0, 

(4 .65) 

Proof. Let us fix tin J. The operator AK(t) is bounded by (4.62) . Changing the order 
of summation by the Fubini theorem, for every g E Xr,K , 

IIBK(t)gll, /., (t n' mt., J., a(l , y, m)b(t , y, n, m)h(x , n, m , y)lg(t, y, m)ldy) dx 

L (t n' mt., a(t,y, m)b(l,y,n,m)lg(t ,y,m)I ) dy 

J., f;: (t,y,m)lg(t, y,m)I (t n'b(t ,y,n,m) ) dy 

J.:f;, a(l ,y,m)lg(l ,y,m)I (~ n'b(t ,y, n, m)) dy 

K 

< 1
3

; mra(t,y,m)lg(t, y ,m)ldy 

K 1 L m ra(t , y , m )l g(t , y ,m) ldy 
IR3 m=l 
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< 1 L mr a(t , y , m)lg(t, y, m)ldy 
IR3 m=l 

IIAK(t)gllr 

8 t,Kll9llr 
< oo , 

where (4.2) , (4.5) and (4.63) have been used respectively. Then BK(t ) is also bounded. 
Hence, QK (t) generates a uniformly cont inuous semigroup. This semigroup is denoted by 
(Gt,K(s)) s2=: o- Clearly, AK(t ) generates a posit ive semigroup of contractions and BK(t) 
is a posit ive operator. Moreover , t he above calculations also imply that D(BK (t)) :=) 

D(AK(t)) and 

f 1 nr(AK(t)g(t, x, n ) + BK (t )g(t , x , n))dx 
n= l IR3 

K 

= L 1 nr(AK(t)g(t , x, n) + BK(t )g(t , x, n))dx:::; 0 
n= l IR3 

for all g E (D(AK(t )))+ with 

D(AK(t)) = {g E Xr; -atg E Xr,K} and D(BK (t)) = {g E Xr; BK (t)g E Xr,K }. 

Thus, t he assumptions of Kato 's Theorem 2.3.5 hold . We essentially note t hat for each 
fixed t the operator QK (t) becomes independent of time [57 , Lemma 2.1] and Kato's 
Theorem is immediately applicable. Therefore, there is an extension Q K ( t) of Q K ( t) 
which generates a substochastic semigroup . Because at(x, n) is bounded in IR3 x (0, K ), 
this substochastic semigroup is conservative, it follows that QK(t) = QK(t) , where QK (t ) 
is t he closure of Q K ( t). Since Q K ( t) generates a uniformly ( and hence strongly) contin­
uous semigroup , QK (t) is a closed operator. Therefore, we have t hat QK(t) = QK (t) , 
consequent ly, t he uniformly cont inuous semigroup ( Gt,K ( s) )s 2=:o is a posit ive strongly 
cont inuous semigroup of contractions, furthermore, ( Gt,K ( s) )s 2=:o is honest. 

The proof of (4 .64) is clear since the usual power series definition can be used to define 
Gt,K(s) = exp(sQK (t)). By induction , (QK (t)) 1 = (Q(t) qK )1 = (Q(t)) 1 qK for J = 
1, 2, · · · , from which the exponential formula yields (4 .64). 

To prove (4.65), it is stated that B(t)qKg = qKB(t )qKg on B (t)(0JR3, K ) x [0, K] since 
for K 2:'. n 2:'. 0, B (t)qKg(t , x , n) is given by (4.59) and B (t) qKg(t , x , n) = 0 for K < n. 
Moreover , it is obvious t hat A(t)qKg = qKA(t)qKg , hence, we have also 
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if we assume, by induction, that qK (QN(t)) j- lqK = (QK(t)) j- l , then 

qK ( QN ( t) )j-lQN ( t)qK 

qK( QN(t) )j - lqNQ(t )qNqK 

qK ( QN( t ) )j - lqNqKQ( t )qK 

qK ( QN( t) )j-lqKQK(t) 

(QK(t))l_ 

Now using (4.64) and the the fact that QN(t ) is a bounded operator , the semigroup 
generated by Q N ( t) is expressed by 

f sJ(Q1~(t))J 

n=O J . 

Gt,N(s) , 

which concludes the lemma. □ 

Next , we assume that a(t ,x,n) satisfies the Lipschitz condition 

la(t , x , n) - a(Cl , x , n)I ~ It - O"IA(x, n) , t , O" E J (4.66) 

where A(x , n) ~ 0 together with A(x , n) ~ GK for all K ~ n > 0, we state the following 
lemma 

Lemma 4.2.2. The function t ---+ QK(t) is continuous in the uniform operator topology 
for each K fixed in N 

Proof. Using Fubini 's theorem and assumption ( 4.66) yields 

and the result fo llows. □ 

Using ( 4. 14) and the Lemma 4.2.1, there is a forward propagator , say {U K(t , T)}o '.Sr9 ::;r 
defined in Xr,K C Xr which is associated to the evolution semigroup (Gt ,K(s))s 2:o, t E J. 
The propagator {UK ( t , T )}o::;r::;t::;T shares certain properties with the family of semi­
groups (Gt ,K(s))s 2:o, t E J , a stated in the following theorem and proven in [57, 
Theorem 4.1]. 

Theorem 4.2.3. For each K E N, the fo rward propagator {U K(t , T)}o ::;r::;t::;T generated 
by the family of infinite imal generators {QK (t)} tE'.l have the following properties: 
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1. UK(t ,T) is positive; 

2. IJUK(t ,T)gllr = JllgJJr , forallg E Xr; 

3. E ~=0nr[UK(t ,T)g](t , x,n) = L n=Onrg(t , x ,n) , forallg E Xr, x E ~ 3
; 

4. ftu K(t,T) = QK(t)UK(t , T) , o :ST :St :S T; 

Theorem 4.2.4. The truncated problem ( 4.55) has a unique, strongly continuously dif­
ferentiable, positive, mass-conserving solution for all initial data p( To) = Pro E Xr,K. The 
solution is given by p(t) = UK(t , To)Pro (0 :S To :S t :S T ). 

Proof. This theorem is an immediate consequence of Lemmas 4.2. 1 and 4.2. 2, Theorem 
4.2. 1 associated with [74, Theorem 5. 1]. □ 

Now we consider the strong limit as K ---+ oo of the forward propagator {U K(t , T) }o:s:r :S: t :S:T· 

From Theorem 4. 2.3, UK(t, T) is not two-sided differentiable with respect to t at t = T, 
but we have t hat %t UK ( t , T )p is cont inuously differentiable [7 4] and 

The family {U K(t, T)}o:s:r :S: t :S:T defined in Theorem 4. 2.3 can be extended to the uniformly 
cont inuous family of operators defined on Xr by 

It should be noted that UK(T ,T) =/- Ixr for O :ST :S T , t herefore UK(t ,T) is no longer 
a propagator. On t he other hand , the operator QK (t ), as a bounded operator on Xr, 
generates a uniformly cont inuous forward propagator , denoted by {UK(t, T)}o:s: r:S:t:S:T· As 
the restriction of QK(t) to the complement of Xr,K is the zero operator, it generates 
t here a constant propagator and we have 

( 4.67) 

where I X r is t he ident ity on Xr. Thus, 

Proposition 4.2.5. For a fixed t in J , the families {UK(t , T)}o:s:r 9:S:T and (U K(t, T))s 2'.0 
have the following properties: 

1. For any fixed Tin [0 , t), the family (UK(t,T))o :s:r:S:t:S:T is increasing with K ; 
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2. There is a positive, strongly continuous family of forward propagators, let us say 
(U( t , T))o<T<t<T, such that for p E Xr, and O :ST :St :ST 

U(t , T)p = lim {]g(t , T)p = lim Ux(t , T)p in Xr; (4.68) 
K➔ K➔oo 

3. Both limits in (4.68) are uniform int and T on bounded intervals. In particular, 

fo r PTo E Xr, K' 

(4.69) 

Proof. ( 1) Let p 2'. 0 and define 

Px(t) = qKU x(t , T) qxp = U x(t , T)p 2'. 0, T :St. 

By the monotonicity of t he proj ection operators we have 

On the other hand , b cause 

then , 
d 
dt qKPK+l = qxQK+I (t) qKPK+l + qxQK+l (t)(qK+I - qK )PK+l · 

However , qxQx+1(t )qx = Qx(t) and qxAx+1 = qxAK so that 

qxAx(qx+1 - qx )Px+1 + qxBx+1(qx+1 - qx )Px+1 

qxBx+1(qx+1 - qx )PK+1 2'. 0 , 

and 
qxPK+1 (0) = qxp = Px(0). 

Thus, by the Duhamel formula in Xr,K, 

qKPK+l (t) U x(t , T) qxp + i t Ux (t - a, T) qx Bx+1 (qK+1 - qx )Px+1 (a)da 

> Ux(t,T) qxp 

and 
qxPK+1(t ) = qxqKPK+1(t) 2'. qxUx(t ,T)qxp = Ux(t,T)p. 

Combining t he estimates , we obtain 
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and the result fo llows. 
(2) The family {UK(t , T)}o<7 <t<T is not increasing with K ; we have, however , UK 2:: Ux. 
Because the space Xr is a _.KB-space and the sequence (UK( t , T))o<7 <t<T is increasing 
with 

IIU K(t , T)Pllr = IJU K(t , T)Pllxr,K = llqKPllxr, K ::; IIPII ,. 
provided p 2:: 0, we can define 

U(t,T)p = lim U K(t , T)p , 0 ::; T ::; t ::; T p 2:: 0, 
K➔oo 

and by linearity this definit ion can be extended to arbitrary p E Xr. Moreover , from 
(4. 67), we get 

and because 
lim Uxr - qK)P = 0 
K➔oo 

for any fixed p then , 

U(t , T)p = lim UK(t)p , 0 ::; T::; t ::; T for any p E X,.. 
K➔oo 

Therefore, ( U ( t , T) )o :::; 7 :::; t:::;T is the strong limit of a sequence of uniformly bounded posit ive 
propagators. We need to show t hat (U( t , T))o ::; 7 :s;t:s;T is a positive strongly continuous 
propagators. The relation U(t , r)U(r, T) = U(t , T) for 0 ::; T ::; r ::; t ::; T. is just the 
limit relation for {UK(t , T)}o ::; 7 :s;t:s;T- For any p E X,. , we set PK= qKp for some fixed K ; 
Then for N > K we have 

and for such N , as t -+ T+, 

IIU(t, T)PK - PKllr < IIU(t, T)PK - UN(t , T)PKll r + IJUN(t , T)PK - PKllr 

IIU(t, T) PKll r - IIUN( t , T)PKllr + IIUN(t , T)PK - PK llr 
< IIPK llr - JJUN(t , T)PKllr + IIUN(t, T)PK - PKllr -+ 0. 

For arbitrary p, the density of compactly supported functions in X,. and the boundedness 
of ( U ( t , T) )o<7 <t<T are used to conclude the assertion. 
( 3) The unifo~~ convergence of (UK ( t , T) )o :::; 7 :::;t :::;T fo llows from the classical argument 
of Dini , as in ([50], Lemma 4). To prove this statement for {Ug (t , T)}o ::;7 :s;t:s;T, it is 
enough to note that the difference between {Ug(t ,T)}o::;T::;t:s;T and (UK(t ,T)) o::;T::;t :ST is 
independent of the parameter t. Equat ion (4. 69) follows directly from relat ion (4. 14) 
and the last stat ment of Lemma 4.2.1. □ 

4.2.3 The existence of solutions to the discrete , non-local and 
non-autonomous fragmentation model: Discussions 

At this stage of the analysis , there is a temptation to use time-dependent analogue of 
the Hille-Yosida Theorem 2.2.4 , see also [88], to find the infinitesimal generator of the 



CHAPTER 4. NON-AUTONOMOUS FRAGMENTATION DYNAMICS 63 

limit forward propagator (U (t , T))o ::;7 ::;t::;T and to verify that this generator coincides 
with the operator Q(t) expressed in (4.48). However , the challenge we face is that 
there is no such a time-dependent analogue, and there is no way of finding a family 
of generators that uniquely characterises the forward propagator ( U ( t , T) )o<7 <t<T or 
at least not yet (the question remains an open problem). We have proven (Theorem 
4.2.4) t hat the discrete , non-local and non-autonomous fragmentation model ( 4.45) has 
a unique solut ion whenever the init ial mass distribution p70 (x , n) = Pn,70 (x) at some fixed 
time To 2:'. 0 is in LJK X r,I<· However , the existence of solutions to such a model with 
A

0
(x , n) E X r is guaranteed by imposing t he additional condition (4.62) and investigating 

the pointwise limit 

p(t , x,n) = [ lim U( t ,To)PTo ] (x ,n) x E IR.3 , n EN, 0 :::; To:::; t:::; T , 
I<➔oo 

where (U(t , T))o ::;7 ::;t ::;T is t he limit forward propagator defined in (4.68). This analysis, 
which differs from the one used in [57], is what was done in Lemma 4.2.1 and Proposit ion 
4.2.5 above, by approximating the solution of (4.45) by a sequence of solutions of cut­
off problems of a similar form and showing mass conservativeness in t he closed subspace 
X r,I< . Analysis that t end to prove uniqueness of strong solutions to t he discrete, non-local 
and non-autonomous fragmentation model considered in t his study is still in progress 
around t he world and t here is hope that this study will make a significant contribut ion 
in improving this situation. 

4.3 An equivalent norm approach and conservative­
ness for a non-autonomous fragmentation model 

4 .3.1 Introduction 

To conclude this chapter , the equivalent norm approach and semigroup perturbation 
theory are used to state and set conditions for a non-autonomous fragmentation system 
to be conservat ive. It is commonly assumed t hat the generators are of class Q(l, 0) , 
see [33, 50], but this condition is modified in this section. Instead , we assume that t he 
renormalisable generators involved in the perturbation process are in the class of quasi­
contractive semigroups. We can henceforth exploit Hille-Yosida 's condition (Theorem 
2.2.4), t he uniform boundedness [50], Hermitian conjugat e [74] and the admissibility with 
respect to the involved operators to show that t he sum of these operators is closable, 
its closure generates a propagator ( evolution system) and , therefore , a Co semigroup, 
leading to the existence result and conservat iveness of the model. 

The dynamical non-autonomous system under investigation in this section is given by 
the integro-differential system : 

{ 
-ftu(t , x) = -a(t , x )u(t , x) + fx00 a(t, y)b(t , x , y)u(t , y)dy 
u(T,x)= u7 (x), 0 :::;T< t :::; T , x> 0, 

( 4. 70) 
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where u i the particle mass distribution function ( u( T , x) = uT (x) is the mass distribut ion 
at some fixed t ime T ~ 0 ) with re pect to the mass x, b(t , x , y) is the distribution of 
part icle masses x spawned by the fragmentation of a particle of mass y. at the time 
t ::::; T E IR and a( t , x) is t he evolut ionary time-dependent fragmentation rate, that is , 
the rate at which mass x particles break up at a time t. In a practical point of view, 
t he first term on the right-hand side of (4.70) represents t he reduction in the number of 
particles in t he mass range ( x; x + dx) due to t he fragmentation of part icles in the same 
range. The second term describes t he increase in the number of particle in the range 
due to fragmentation of larger particles. 
The idea here is to analyse t he equation ( 4. 70) in t he Banach space £ 1 (J , X 1) where 
J = [0, T ] and 

X1 = L1 ([0, oo), xdx) = { 1/; : ll 1/; llx1 := 1 xl 'l/; (x)I dx < } , 

using the t heory of evolution semigroup. 

Throughout , t he following regularity assumpt ions will be considered: 

(t ,x) ~ a(t , x) E £ 1 ([0 , T'],L00 ([k , l])), for any 0 < k < l < oo and T' E (0,T) 

b(t , x , y) is a positive measurable function with 

b(t , x , y) = 0 for all x ~ y and 0 ::::; t::::; T , ( 4. 71) 

and the local conservative law 

1Y xb(t , x , y)dx = y (4 .72) 

for all y ~ 0 and 0 ::::; t ::::; T. 

Until now , existence results and honesty have been proven for a number of fragmentation 
(autonomous or non-local) models , see for e.g. [35, 70, 71 , 12, 36], where the authors 
used various methods including the substochast ic semigroup theory. As said earlier , Da 
P rado et al. [33] assumed that the generators A(t) and B (t ) involved in the perturbation 
are of class Q(l , 0) , but t his condition is modified in t his study as we will see later in t he 
analysis. 

We recast (4. 70) as the non-autonomous abstract Cauchy problem in X 1 : 

{ 
1£u(t ) = Q(t)u(t) 
U(T) = UT , 

(4.73) 

where Q(t) is defined by Q(t ) = Q(t) and represents t he realisation of Q(t ) on the 
domain D(Q(t)) = {u E X 1 ; Q(t)u(t) E Xi} , with (Qu) defined as 

(Qu)(t,x) = (Qu)(t)(x) = -a(t , x)u(t , x) + 100 

a(t , y)b(t,x,y)u(t , y) dy , 



CHAPTER 4. NON-AUTONOMOUS FRAGMENTATI O DYNAMI CS 65 

Q( t ) is seen as the pointwise operation 

'ljJ (t , x) f-----7 -a(t ,x)'ljJ (t , x) + 100 

a(t , y )b(t , x , y) 'ljJ (t , x) dy 

defined on the et of measurable functions. Q(t) indeed defines various operators. The 
aim here is to analyse the problem by rephra ing it in abstract form (abstract Cauchy 
Problem (ACP)) as an ordinary differential equation. 

Let us start with something simple and come back to the abstract Cauchy Problem 
(4. 73); From Definit ion 4. 1.1 , it is clear that for O '.:S t '.:S T , Q(t) is a bounded linear 
operator in Xi and that t ~ Q(t ) is continuous in the uniform operator topology. Next , 
we will find the propagator U(t , T) , see Definition 4.1.1 , associated with (4.73) such t hat 
u(t) = U(t , T)ur is in some sense, a solution of (4. 73) satisfying the init ial condition 
u(T) = Ur-

Lemma 4.3.1. Let Q(t) be a bounded linear operator in Xi for O '.:S t '.:S T . If the function 
t ~ Q(t ) is continuous in the uniform operator topology, then for every Ur E Xi , the 
abstract Cauchy Problem (4. 73) has a unique classical solution u given by the relation: 

u(t ) = Ur+ lt Q(<:) u(<;) d<;. (4.74) 

Proof. see [74, Theorem 5.1, Chapter 5], the proof is done in a Banach space X which 
is also t rue in Xi. D 

Theorem 4.3.2. There is a propagator U(t , T) associated with the initial value problem 
(4- 73) such that U(t,T)ur is its solution satisfying the initial condition u(T) = Ur. 

Proof. From the Lemma ( 4.3. 1), the existence and uniqueness of the solution can already 
be noticed. Let u(t) be t his solution . T he so-called solut ion operator of (4. 73) is defined 
by 

U(t, T)ur = u(t) for O '.:ST '.:St '.:S T . (4. 75) 

• For every Ur E Xi , U(T,T)ur = u(T) = Ur then U(T,T) = I (condition (i)). 
• For every Ur E Xi , we have U( t , T )ur = u(t) and U( t , r )U(r, T)ur = U(t , r )u(r ) = u(t) , 
then condition (ii ) follows from the uniqueness of the solution of (4.73). 
• It is obvious that U(t , T) is a linear operator defined in all X i since (4 .73) is lin­
ear. The relation (4.74) implies llu(t)II '.:S llurll + J: IIQ(<:)ll llu(<:)11 d<; and from Gron-

wall 's inequality, we also have llu(t)II '.:S llurll exp (J: IIQ(<:)11 d<;). Then, (4 .75) yields 

IIU(t,7)urll = llurll exp (I: IIQ(<:) 11 d<; ) , 

leading to 

(4.76) 

Hence, U(t , T) is bounded and , therefore , strongly continuous. This concludes the proof. 

□ 



CHAPTER 4. NON-AUTONOMOUS FRAGME TATION DYNAMI CS 66 

The fact that Q( t ) is bounded actually makes this existence result easier to obtain. 
Unfortunately, Q(t ) is not always bounded and then , in the following subsection . a 
different approach is used to obtain an equivalent result. 

4.3.2 Equivalent norm approach 

Let us come back to the equation (4.73) and split it to have (4 .70) written in the abstract 
form: 

{ 
ftu(t) = A(t )u(t) + B(t )u(t) 
u(T) = Un 

(4.77) 

where A(t) is defined as A(t) = A (t) and repre ents the realisation of A (t) on the domain 
D(A(t)) = {u E X 1 ; A (t)u E Xi} , with 

(4.78) 

and B (t) is defined as B(t) = B(t) and represents the realisation of B(t) on the domain 
D(B(t)) with 

[B(t) uT](x) = 100 

a(t , y)b(t, x, y)uT(x)dy. (4.79) 

Making use of the assumptions (4.71) and (4. 72), it is easy to show that (see [70] or 
[71]) for any u E X 1 , B(t)u E X 1 , so we can take D(B(t)) = D(A(t)) and (A(t) + 
B (t ), D (A(t))) is a well-posed operator. Let us put 

X1 = L1 (J, X1) 

:= {'I/; : [0 ,T] x IR 3 (cr ,x) ➔ u(cr,x) , 11 '1/J lli := 1T 100 

xl'I/J( cr ,x)ldcrdx < oo}, 
in the fo llowing sections the subscript t in At means the operator A depends on t ime t 
but is defined in X1 instead of X 1 . The aim here is to set some conditions in X1 under 
which the operator sum K ( 

(4. 0) 

is closable, its closure generates a propagator and therefore a C0 semigroup. We rely on 
the following theorem which was originally proven by Tosio Kato [50] and later improved 
by Da P rado et al. [33]. 

Theorem 4.3.3. Consider in X1 the operator At and Bt be generators both belonging 
to the class Q(l , 0). If D(At) n D(Bt) is dense in X 1 and ran(At + Bt + 0 is dense in 
X fo r some ~ < 0, then Kt is closable and its closure Kt is a generator from the class 
9 (1, 0). 
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The condition At and Bt E 9 (1, 0) is dropped in this study to provide stronger results. 
Let the integral operator in ( 4. 77) be treated as a perturbation of the much easier 
operator of mult iplication by a on Xi 

( 4. 1) 

Recall that (Theorem 4.3. 2 and [6]) A(t)tE'.J (J = [O , Tl) is a family of generators of 
C0 semigroups in Xi , then , for any fixed t E J = [O, T l, A(t) generates a propagator 
U(t, T) , 0 :ST< t :S T and this propagator defines a C0 semigroup (SAt (s))s~o in X i by 
the relation (4. 14) given here as: 

(O" - s)x'.J U(O" , O" - s) uT(O" - s) 

(O" - s)x'.J exp (- 1 :s a(~ , .) d~ ) uT(O" - s) , U 7 E Xi, ( 4.82) 

Then , as mentioned earlier , A is said to be the generators of C0-semigroups in X i means 
A generates a propagator which defines a C0-semigroups in Xi satisfying t he relation 
(4.82). In the following definit ion , we assume that Y is a subspace of X i which is clo ed 
with respect to the norm 11-11 y , not necessary in the norm II-Iii (hence Y is itself a Banach 
space) . 

D efinition 4 .3.4 . Let SAt(s)s>o be a C0 -semigroup and At its infin itesimal generator. 
A subspace Y of Xi is called At- admissible if it is an invariant subspace of S At ( s), s 2:: 0 
i.e. SAt(s)Y ~ Y , and the restriction of SAt(s) to Y (i.e. S;1Js) := SAt(s) 1y, s 2:: OJ is 
a Co -semigroup in Y (i.e. it is strongly continuous in the norm 11- IIY ). 
If T : Y ---+ Xi is the embedding operator of Y into Xi , we have 

which gives 

with 
(4. 3) 

It should be recalled that the adjoint A; of At is a linear operator from D(A;) C Xi* into 
Xi* (the dual of Xi ) and is defined as follows: D (A;) is the set of all elements x* E Xi* 
for which there is a y* E Xi* such t hat 

(x*, Atx) = (y*, x) for all x E D(At) ( 4.84) 

and if x* E D(A;) then y* = A;x* where y* is the element of Xi* satisfying (4.84) . With 
the t he assumpt ions (4.71) and (4.72) in mind , th following lemma can be stated: 

Lemma 4.3.5. Let At and Bt two operators defin ed by (4- 83) and satisfying, fo r all 
,\ E (O , oo) C p(At) and K- E (O ,oo) C p(Bt ), 

V i 1 
11( >-I - At )- IIY :S ~ ' (4. 5) 
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ll(KI - l\) - 1 IIY::; ! , (4.86) 
K 

in the B anach space Y. If either At* or Et* are densely defin ed in Y *, then for any T/ < 0, 
we have the inequality: 

Proof. Suppose that D(Bt *) is dense in Y * and defines the sum 

It is obvious that f<t,e also satisfies the relations (4.85) or (4.86) since At and Bt do. 
Then the relation ( 4.85) yields 

II (.\ I - f<t,e)- 1ullY < II (.\ I - f<t ,e)-1 lldullY 
1 

< ~llullY, uEY, .\ > 0, 1:< 0, 

leading to 

llullY 
1 . 

< ~ 11( .\I - Kt,e )ullY , u E Y, .\ > 0, c < 0 

1 . 
< ~ll(Kt,e - .\I)ullY , u E Y, .\ > 0, c < 0 

1 . 
< ~ll (J<t,e + T/J)ullY , u E Y , c < 0, where we have set - A = T/ < 0 

or 

Immediate properties of Hermitian conjugate give 

and 
J{ *t ,EV = A;v + Bt (I + 1: Bt)-1v , v E D(J{ *t,e ) = D(.A;), E < 0. (4.89) 

Since B/ is densely defined in Y *, then 

(I + 1:Bt) - 1 ----+ I as E /' 0 

and then, 
K *t,EV----+ A;v + Btv as E /' 0. 

Substituting the latter relat ion in ( 4.88) yields ( 4.87). 
The approach is the same if we con ider that it is rather At* which is densely defined in 
Y *. □ 
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Corollary 4.3.6. Let At and E t two closed and densely defin ed operators satisfying, for 
all,\ E (0,oo) C p(At) and K, E (0 , oo) C p(Bt) , 

i I i ll(>J - At )- Ii ~ ~) (4.90) 

(4.91) 

on Xi , let Y '-+ Xi be admissible with respect to At and Et and let the operator E t verify 

(4.92) 

W e assume that the induced generators At and B t , given by (4.83) , are closed, densely 
defined and satisfy the relations (4.85) and (4.86) respectively. If D (B;) is dense in Xi* , 
then 

l11 lllv llr ~ II.A/v +B/v+ 11vllY·, vE D (.A/)nT* X i*, 17 < 0 , (4.93) 

where T : Y --+ Xi is the embedding operator. 

Proof. Let v E D(.At *) n T * Xi* , then there is w E Xi* such that v = T *w. We also have 
T *X i* C D (B/) thanks to the condition (4.92). Therefore, t he relation (4.89) of the 
previous lemma applies to v = T *w as: 

Since T is the embedding operator of Y into X i , we have 

which is well posed since t he operator BtT: Y -r X1 is bounded thanks to (4. 92). Since 
B ; is densely defined in X i*, we have 

and then , 

KV* T * Av*T* + Ev* T *( I + B *)-1 Av*T * + Bv*T * t,E W = t W t E t W --+ t W t W as E / 0. 

Substituting the latter relation in (4.88) with v = T *w yields (4 .93). □ 

Remark 4. It is in general possible to find in the Banach Space X1 a new norm 11-11 , which 
is equivalent to its natural norm 

T oo 

llulli := J J xlu(a , x) I dadx, 

0 0 

such that t he operator At becomes a generator of the contraction semigroups on X1 . 
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Indeed , since At is the generator of a C0 semigroup , say (SAt(s))s>o, t her is ]\I[ > 0 and 
w such t hat Vs~ 0, ll (SAt(s) ll1 ::; ]\fews_ 
\Ve have 

ll(SAt(s)ull1 < Mews llulli , Vu E X1 

< MAtews_ ( 4.94) 

Let the following be set 

T oo 

llull = (M MAJ-1 sup e-ws j j x lSAt(s)u(lT , x)I dO"dx 
s>O 
- 0 0 

Simple calculations show that 

T oo 

j j xlu( lT ,x) ldO"dx = llull1::; MMAtll ull::; M 2 MAtllull1 , Vu E X1 (4.95) 

0 0 

which proves that the norm 11-11 is equivalent to llulli­
On the other hand we have 

T 

IISAt ( c;-)ull = (M J\/[Att 1ewc; sup e-w(s+c;) j j x i (SAt (s )SAt ( c;-)u(lT , X) I dO" dx 
s>O 

which gives 

- 0 0 

IISAt ( c;-)ull ::; (J\1 MAJ - lewc; sup e-w(s+c;) ]\I[ MAtewc; ews 
s2'.0 

IISAJ c;-)ull ::; ewe; 

This prove that the semigroup SAt(s)s2'.0 is in t he class 9(1,w) of quasi-contractive 
semigroups in the Banach space X1 equipped with the norm 11 -11- Next , we extend this 
result and characterise the existence of an equivalent norm in X1 for t he pair of generators 
{At , Bt}. 

Definition 4 .3 .7. Let At and Bt be the generators of C0-semigroups SAt(s)s>o and 
S8 t(s)s>o in X1 . The pair {At, Bt} is called renormalisable with constants w and v if 
for any-sequences {ak}r=l' ak ~ 0 and {ok}r=l7 Ok~ 0, n EN, one has 

up e-wEake-vE<lk IISAt (a1)Sst (O1) ... SAt (an)Sst (on) ulli < (4.96) 
012'.0 , ... ,on2'.0 
812'.0 , ... ,8n2'.0 

nEN 

fo r each u E X1 . 
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Lemma 4.3.8. Let At and Bt be two generators of C0 -semigroups in X1 equipped with 
its natural norm 

T oo 

JJuJJ1 := j j xJu(a , x)I dadx . 

0 0 

The pair {At, Et} is renormalisable with constants w and 1.1 if and only if there is an 
equivalent norm 11-11 in X1 such that At and Et are closed, densely defined and we have 
(w , oo) C p(At) and ( 1.1 , oo) C p(Bt) , so that for all A > w, K > 1.1 , 

(4 .97) 

(4 .98) 

with 
p(At) = {>- EC , >-I - At: D(At) -+ X1 invertible} 

and 
p(Et) ={>-EC, >-I - Bt: D(At)-+ X 1 invertible} 

the resolvent sets of At and Et respectively. 

Proof. Let us suppose t hat t here is an equivalent norm 11-11 in X1 such t hat At and Bt 
are closed , densely defined and satisfy t he relat ions (4.97) and (4.98 ), t hen using the 
Theorem 2.2.4 (Hille-Yo ida 's condition) , there are w and 1.1 such that Va , 8 2:: 0, 

Since 11-11 and 11-11 1 are equivalent , there are M 2:: 0 and N 2:: 0 such t hat 

and 

leading to 

and 
e- v"JJSst(8)u JJi :S Nst < oo , 'i8 2:: 0 andu E X1. 

It is observed that for any sequences {a k} f= I> O'.k 2:: 0, and {8k}f= 1 , 8k 2:: 0, n EN, one 
has 

sup e -wfoke - vE<lk JI S A t ( a1)S Bt ( 81) .. . S At ( O'.n)S si( 8n)uJJ 1 < 00 
a1 2'.0 , ... ,n n2'.0 
81 2'.0 , .. ,8n2'.0 

nE N 
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and the pair {At, Bt} is renormalisable with constants w and v. Conversely, we consider 
the pair {At , Bt} renormalisable with constants wand v. Then, 

T oo 

M := 
01

2'.;,~-~n :C:: O e-wEake-vE'5k j j xlSAt (a1)SBt (81) ... SAt (an)SBt (8n)u(a , x)I dadx < oo. 

61 2'.0 , ... ,6n2'.0 0 0 
nEN, l1ull1:S l 

(4.99) 
At this stage, we use the uniform boundedness principle shown in [50] and defined in X1 

the norm: 

T oo 

llull := M - 2 

01
2'.;,~~n:C::O e-wEake-vE'5k j j xlSAt(a1)SBt(81) ... SAt(an)SBt(8n)u(a, x)I dadx. 

612'.0, ... ,6n2'.0 0 0 
nEN 

Acknowledging the fact that 

T oo T 

j j xlSAt(a1)SBJ81) ... SAt(an)SBt(8n)u(a, x)I dadx ~ MewEake"E
6
k j j x lu(a, x)I dadx , 

0 0 0 0 

( 4.100) 
it is clear that 

T T 

llull ~ !lr2 M j j xlu(a, x)ldadx and j j xl u(a, x)ldadx ~ M 2 llull foru E X1. 

0 0 0 0 

Then , 
(4 .101) 

(4. 102) 

Hence, the norms 11-11 and 11-11 1 are equivalent. Moreover , (4. 100) , (4.102) and the fact 
that At E g ( A1, w) also yield 

IISAt ( c;)ull < M - 2 sup e-wEake- vE'5k x 
012'.0 , ... ,an2'.0 
612'.0, ... ,6n2'.0 

nE N 

T oo 

j j xlSAJa1)SBt (81) ... SAt (an)SBt (8n)SAt ( c;)u(a, x)I dadx 
0 0 



CHAPTER 4. NON-A UTONOMOUS FRAGMENTATION DYNAMI CS 73 

< M - 2 sup e-wfok e-vEok II S AJ a1) S Bi ( 61) .. . S Ai ( an)S aJ On)S Ai ( <;- )u II 1 
a 12':0, ... ,an2':0 
812':0, ... ,on2':0 

nEN 

< M-2 sup e-wfoke-vEok IISAi (a1)Sa
1 
(51) ... SA

1 
( an)Ssi (on) Iii IISAi ( c;-)ull1 

Cl'J 2':0, ... ,D'n2':0 
812':0, ... ,0n:2':0 

nEN 

< Ar2 sup e-wfoke-vEok IISAt ( a1)SBt (61) ... SAt (an)SBt (on) 111 Mew' 
Cl'J 2': 0, ... ,D'n2':0 
OJ 2':0, ... ,0n2':0 

nEN 

< M·- 2
ew' llu ll 1 

< ew'llull 

We have 

In the same way, we obtain 

This means that the generators At E g ( 1, w) and Bt E g ( 1, z; ) in the Banach space X 1 

endowed with the norm 11-11- Using the Theorem 2. 2.4, At and Bt are closed , densely 
defined and satisfy the relat ions ( 4. 97) and ( 4. 9 ) in ( X1 , 11-11) . D 

Actually, we are in possession of all the essential elements that allow us to st ate the 
following perturbation theorem: 

Theorem 4 .3 .9. Let At and Bt be a renormalisable pair of generators of C0 -semigroups 
on X1 and the induced generators At and Et be closed, densely defined and satisf y the 
relations (4 .85) and (4.86) respectively. Further, let the B anach space Y '---+ X1 be 
admissible with respect to operators At and Bt so that Y <:;: D (Bt) - If either A/ or B/ 
is densely defined in Y *, or only B; is densely defined in Xt , then the closure K t of the 
operator sum K t: 

(4. 103) 

exists and K t is the gen erator of a C0 -semigroup. 

Proof. We just need to prove that the range of (K t+ TJ ) for some TJ < 0 ie dense in X 1 

and apply the Theorem 4.3. 3. Let T be the embedding operator of Corollary 4.3.6 , we 
have , from t he Defini tion 4. 3.4, that 

and 
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We also have D (.B/) ;;;;? T * Xi* since D(Et) ;;;;? Y . Therefore, D(I<t) is dense in X1 and we 
obtain D(I<t) ;;;;? T D (.At) since .At is closed , densely defined in Y which is itself densely 
embedded in X1 . 

Now, let v E D(K;) <;: Xi* , t hen , we obtain 

or 

Then , 

(u , Kt T *v) - (u, Et T *v) 

(u , A~T*v) , u E D (.At) , 

which means T*v E D (.A/) and , t hen , T * D(I{;) <;: D (.A/). Since D (.B/) ;;;;? T * Xi* , we 
have 

T * D(Kt) <;: D (.A/) n D(.B/). ( 4. 104) 

Assuming now by contradiction that ran(Kt + 77 ) is not dense in X1 for some 77 < 0, then 
there is v E Xi* such that 

((I<t + 77 )u , v) = 0, u E D(I<t) , 

which means 
v E D(K;) and (Kt+ 77 )v = 0. 

Hence , 
T *v E D (.At*) n D (.Bt*), since T *D(I<t) <;: D(At*) n D(Bt*). 

If E; is densely defined in Xi* , then we apply the corollary ( 4. 3.6) and find t hat T *v = 0. 
If either A./ or B/ is densely defined in Y *, then we apply the lemma ( 4.3.5) to also find 
that T *v = 0. Therefore, we obtain v = 0, which is impossible. Hence , ran( Kt + 77 ) is 
dense in X1 for all 77 < 0. Because At and Et are a renormalisable pair of generators of 
C0-semigroups on X1 , we can use t he Lemma (4 .3.8) and Hille-Yosida Theorem 2.2 .4 to 
say that At and Et are of class Q(l , 0) . Therefore, the operator Kt =At+ Et is closable 
and the relation 

l77 lllulli ~ IIKtu + 77ulli , u E D(I<t ), 77 < 0, 

yields the existence of the closure Kt of Kt. The t heorem ( 4.3.3) completes t he proof. D 

Corollary 4.3.10. Let the operators A(t ) = A and E (t) = E , independent oft and 
satisfying the conditions of Theorem 4- 3. 9, then, the closure K (t) = K given as 

K 'ljJ = A'ljJ + E'ljJ, on D(A) n D(E ) = D(A) (4. 105) 

exists and is the generator of a C0 -semigroup. 



CHAPTER 4. NON-A UTONOMO US FRAGME TATION DYNAMICS 75 

Proof. In concret e applications , A(t ), t E J is often a measurable family of generators 
or generators belonging uniformly to the class 9 ( M , w) , for some constants M and w , 
and , since we are in one dimensional case, one can easily verify, as shown in [74], that , 
in this case the induced multiplication operator A is an anti-generator or generator in 
Lp(J , X1 ), for some p E [l , oo) with J ~ IR+· This reduces the problem to finding certain 
conditions for the operator sum 

K 'lj; = A'lj; + B'lj;, on D(A ) n D(B ) = D(A) ( 4. 106) 

to be closable and its closure generates a C0 emigroup and Theorem 4.3. 9 ends the 
proof. □ 

R emark 5. From the relation (4.82), it follows that the closure of A(t ) + B (t) generates 
a propagator. 

This allows the following conservativeness result to be stat ed: 

Theorem 4.3.11. (a) The C0 semigroup (SRJs))s2:o gen erated by K t = At+ Bt is con­
servative if an d only if the associated propagator U ( t , T) , 0 :S T < t :S T , is conservative . 
(b) If the operators At and B1 , satisfy the conditions of Th eorem 4- 3.9, then the model 
(4. 77) is conservative. 

Proof. (a) We make use of the relat ion (4. 82) and properties of U given in Defini t ion 
4.1.1. The rest of the proof fo llow from [6 , proposition 5.1]. (b) The second part of t he 
proof follows from (a) and is based on [12, Theorem 6.13] . □ 

4.3.3 Discussion 

We have set conditions on the generat ors involved in the semigroup perturbation and used 
the renormalisation method (which i different from the preceding ones [6, 57]) , to analyse 
(4 .77). We dropped the class 9 (1, 0) for the class 9 (1, v) of quasi-contractive semigroups 
in X1 = L1 ( [0 , T] x [0 , oo) , x dCJdx) , and showed existence results and conservativeness 
for the non-autonomous fragmentation model ( 4. 77) , therefore, giving a stronger result 
than [33 , 50], where the model wa autonomous with coefficients independent of time. 
The result obtained here can lead to the full characterisation of the infinitesimal gen­
erator for the non-autonomous fragmentation model ( 4. 77) and lat er for non-autonomous 
fragmentation-coagulation or non-autonomous transport-fragmentation-coagulat ion mod­
els, which remain open problems. 



Chapter 5 

Special Coagulation Process 
Moving Medium 

5.1 Introduction 

• 
Ill a 

Existence of a global solution to continuous, non-common and non-linear convection­
coagulation equations i investigated in space L1 (IR3 x IR+ , mdmdx) . A discussed in 
Chapter 3 ( also see [70]) , the method of characteristics and Friedrichs lemma are applied 
here to show t hat the transport operator generates a stochastic dynamical system, with 
the assumpt ion t hat the velocity field is globally Lipschitz continuous and divergence 
free. We then proceed by using substochastic methods and Kato-Voigt perturbation 
theorem to ensure that the linear operator ( transport-coagulation ) is the infinitesimal 
generator of a strongly continuous semigroup. Once the existence for the linear problem 
has been est ablished , the solution of the full non-linear problem fo llows by showing that 
the coagulation term is globally Lipschitz. In part icular , we are able to prove that the 
olut ion of the fu ll coagulation-transport model is unique. 

5.2 Motivation 

The process of clusters undergoing coagulation (coalescence) , also referred to as inverse 
of the fragmentat ion dynamics, can be seen in many branches of natural sciences like 
biology, ecology, physics , chemistry, engineering and numerous domains of applied sci­
ences. Among concrete examples one can count agglutination and splitt ing of blood 
cells, formation and splitting of aerosol droplets , evolution of phytoplankton aggregates , 
depolymerisation, rock fractures and breakage of droplets. The coagulation kernel can 
be size and position dependent and new particles result ing from the coagulat ion can be 
spatially di tributed across the space. Coagulation equations , combined with transport 
terms (sometimes combined with fragmentation process) , have been used to describe a 

76 
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wide range of phenomena. For instance, in ecology or aquaculture, there are phytoplank­
ton population evolving in flowing water. Various types of coagulation equations have 
been comprehensively analysed in numerous works: The authors in [16, 69] only consid­
ered growt h processes modeled by a first order partial different ial operator and showed 
exist ence result for fragmentation-coagulation model with coagulation kernel taking into 
account that not all part icles in an aggregate have the same ability to combine wit h 
particles of other aggregates which result in a "damped" coagulation process . In [5] , t he 
authors used similar kernels to model the evolut ion of phyt oplankton. The author in [59] 
exploited the contraction mapping principle to prove exist ence and uniqueness resul ts 
for t he non-autonomous coagulation and multiple-fragmentation equation . As already 
known for transport and fragmentation processes , transport and coagulation dynamics 
combined in the same model are still not widely exploited in the domain of mathematical 
and abstract analysis. A special and non-common type of t ransport model was analysed 
in [70] where the authors proved the existence of the smallest substochastic semigroup 
generated by the linear part , consisting of the transport operator combined to fragmen­
tation term . Kinetic-type Models with diffusion were globally investigated in [12] and 
later extended in [23] , where the author showed that the diffusive part does not affect 
the breach of the conservation laws and very recently, in [20], the author investigated 
equations describing fragmentation and coagulation processes with growth or decay and 
proved an analogous result. 

In this chapter, the model we analyse is presented as follows: In social grouping pop­
ulation where we have defined a spatial dynamical system in which locally group-size 
distribution can be estimated , but in which immigration and emigration are also allowed 
from adj acent areas wi th different distributions, we obtain the general model consist­
ing of transport , direction changing, fragmentation and coagulation processes describing 
the dynamics a population of, for example, phytoplankton which is a spatially explicit 
group-size distribution model as presented in [67]. We analyse the model consisting of 
transport and coagulation processes with the coagulation part different from the clas­
sical one where the kernel k(m , n) is defined as the rate at which part icles of mass m 
coalesce with particles of mass n and is derived by assuming that the average number 
of coalescences between particles having mass in ( m ; m + dm) and tho e having mass 
in (n; n + dn) is k(m , n)p(t , m )p(t , n)dmdndt during the time interval (t ; t + dt ). In the 
current model, we assume that any individual in the populat ions is viewed as a collection 
of joined cells. 

5.3 Well posedness of the transport problem with 
coagulation 

The model of coagulation dynamics occurring in a moving process [67 , 70 , 16], as de­
cribed above, is given by 
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ft p(t , x, m) = -div(w(x, m)p(t , x, m )) - d( x, m )p(t , x, m ) 
m - mo 

J J n d(x ,n)p(t ,x ,n)(m-n)d(x ,m - n )p(t ,x ,m - n )dndx 

+xulR (m,X)R3 mo oo 

m J J 11d(x ,11 )p(t ,x ,17)d11dx 
R3 mo 

p(0, x , m) = p (x , m), a. e. (x , m) E IR3 x IR+ 

(5. 1) 

where in terms of the mass size m and the posit ion x , the state of the system is charac­
terised at any moment t by the particle-mass-position distribut ion p = p(t , x, m ), (p is 
also called the density or concentration of particles), with p : IR+ x IR3 x ( m0 , oo) -+ IR+ . 
The space variable x is supposed to vary in the whole of IR3

. The function p ( x , m ) repr -
sents the density of groups of size mat posit ion x at t he beginning (t = 0). In the model 
(5 .1 ), we assume that the quasi non-local coagulation process at a posit ion x occurs in 
the following way: T wo clusters in a neighbourhood of x coalesce to form a third group 
which becomes located at x. The other terms and elements are defined in t he following 
subsection. 

5.3.1 The coagulation equation 

Because the space variable x varies in the whole of IR3 (unbounded) and since the total 
number of individuals in a population is not modified by interactions among groups, t he 
fo llowing conservation law is supposed to be satisfied: 

d 
dtI(t ) = 0, (5. 2) 

00 

where I (t) = J J p(t , x, m)mdmdx, is the total number of individuals in the space (or 
JR3 mo 

total mass of the ensemble) with the assumpt ion that m0 > 0 is the smalle t mass/size a 
monomer can have in the system. Henceforth we assume t hat for each t > 0, the density 
of groups of size m at the position x and time t is the function (x , m ) ---+ p(t , x , m) 
taken from the Banach space 

and p E X 1 . When any subspace S ~ X1 , we will denote by S+ the subset of S defined 
as S+ = {g E S; g(x, m ) ~ 0, m E IR+ , x E IR3

}. 

In X1 , we define from the right-hand side of (5 .1) , the coagulation expression N given 
by 

[N p] (x , m) := [Cp - Dp] (x, m) (5 .3) 
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where 

m-mo J J nd(x , n)p(t , x, n)(m - n)d(x, m - n)p(t , x, m - n)dndx 

l 
JR3 mo 

[Cp (x, m) = X uR (m, x)--------------------

JR3 mo 

(5.4) 
for any p E Xi+\ {0} , 

C(0) = 0, 

and 
[Vp] (x , m) = d( x, m)p(x, m). (5.5) 

We assume that no particle of mass m < 2m0 can emerge as a result of coagulat ion , then 
XuR is the characteristic funct ion of the set UIR = JR3 x U = JR3 x [2m0 , oo). Following [5], 
we assume that only a part of the aggregates has the competence to join. This could for 
example be due to the fact that only cells of some species have t he necessary devices to 
glue or to attach to others. The coefficient of competence is a function d(x, m) depending 
also on the posit ion of the cluster. We assume that dis a positive and bounded function 
in the sense that t here are two constants 0 < 01 and 02 such that for every x E JR3

, 

(5.6) 

with Ctm E lR+ and independent of x. 

Proposition 5.3.1. The coagulation model described by (5.3) is formall y conservative . 

Proof. The aim is to show that (5.2) is satisfied , that is, 

CXl 

:t I (t) = :t J J p(t , x, m)mdmdx = J J m :l(t , x, m)dmdx = 0. 
JR 3 mo JR 3 mo 

According to assumption (5. 6) , we just need to prove that 

J J~ (xuR (m, x) J L:-mo nd(x , n)p(t , x, n)(m - n)d(x , m - n)p(t , x, m - n)dndx) 
JR3 JR3 

CXl 

dmdx = J J md(x , m)p(t , x, m)dmdx · J J rJd(x, rJ)p(t , x, rJ)drJdx. 
JR 3 mo JR3 mo 

(5.7) 
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Making use of the Fubini integration theorem, we obtain 

J L: [xuR (m, x) J L:-mo nd(x, n)p(t , x , n)(m - n)d(x , m - n)p(t , x , m - n)dndx] dmdx 
JR3 JR3 

= J 1:, r J !~-""' nd(x ,n)p(t ,x, n)(m - n)d(x ,m -n)p(t , x ,m - n)dndx] dmdx 
JR3 ~ 3 

= J !,,,. nd(x ,n)p(t,x, n) r J 1+mo (m - n)d(x ,m - n)p(t , x ,m - n)dmdx] dndx 
JR3 ~ 3 

= J !,,,. nd( X ' n )p( t , x, n) r J l . ( ry )d( x , ry )p( t , X' ry )drydx] dndx 
JR3 ~ 3 

= J L
0 

nd(x , n)p(t , x, n)dndx x J L: (77)d( x, 77 )p(t , x , 77)d77dx , 
JR3 JR3 

which ends the proof. D 

The total number of cells in all aggregates that , at time t , are implicated in t he coagu­
lation process is given by: 

M(t) := J L: 77d(x , 77 )p(t , x, 77 ) d77dx , 
JR3 

and 

f ( ) 
._ md(x, m)p(t , x , m) 

t , x , m .- M(t) 

is the fraction of cells in size-m aggregates and position x competent for the coagulation 
process with respect to the total population of cells in aggregates prone to join. In 
terms of the quantitie introduced so far , we can express t he time rate of cells forming 
aggregates of size m and posit ion x : 

J\1(t , x)xuR (m, x) J L:-mo J(t , x, m - n)J(t , x, n) dndx , 
JR3 

If coagulation were the only process , the equation would read: 

a 11m-mo at mp(t , x, m) = M(t)xuR (m, x) m o J (t , x, m-n)f(t , x , n)dndx-md(x, m)p(t , x, m) , 

JR3 

which , after basic algebra, leads to : 

a 
atp(t , x, m) = [Cp - Dp] (t, x, m) 

with C and 1) given by (5.4) and (5.5) respectively. 

(5.8) 
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5.4 Cauchy problem for the transport operator in 
J\ = JR.3 

X IR+ 

A is endowed with the Lebesgue measure dµ = dµm ,x = dmdx. The primary objective 
in this section is to analyse the solvability of the transport problem 

:tp(t, x, m) = -div(w(x, m) p(t , x, m)) , (5.9) 

p(O, x, m) = p (x , m) , m E JR+, x E JR3 

in the space X1 . 

Furthermore, to simplify the notation , we put v = (x , m) E A. Assuming that w is 
divergence free and globally Lipschitz cont inuous, then divw(v ) := 'iJ · w(v) = 0. To 
properly study the transport operator , we consider the function w : A ---+ JR3 and 
denote by T the expression appearing on the right-hand side of the equation (5 .9). Then 

T [p(t , v)] := -div (w(v ) p(t , v)) 
= ('v · w(v ))p(t , v) + w(v ) · ('vp(t , v)), 

(5. 10) 

which becomes 
T [p(t , v)] := w(v ) · ('vp(t, v)) . (5. 11) 

For v E A and t E JR, the Cauchy problem 

dt 
ds = w(t ), s E JR 

(5. 12) 
t (t) = v , 

has a unique solution t (s) wit h values in A. Let the function ¢: A x JR2 ---+A be defined 
by the condition that for (v, t) E A x JR, 

s---+ ¢ (v , t , s) , s E JR 

is the unique solut ion of t he Cauchy problem (5.12). We obtain the characteristics of T 
given by the integral curves ¢-parameterized family (t )</:> (with t (s) = ¢(v , t , s), s E JR, the 
only solut ion of (5.12)). Recall that the function ¢ possesses many desirable properties 
[45 , 81 , 83] that will be relevant for studying the transport operator in X1 . We can take 

T p = Tp , with Tp represented by (5.11) 

D(T ):={pEX1 , T pEXi} , 
(5. 13) 

Note that T p is understood in the ense of distribution. Precisely speaking, if we take 
CJ (A) as the set of the test functions, each p E D(T ) if and only if p E L 1 (A) and there 
exists g E X1 such that 

J ~gdµ = J pa· (~w)dµ = J pw · EJ~dµ , (5. 14) 

A A A 
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for all ( E CJ(A), where 
3 

w. o((v) := L WjOj(( v ) 
j = l 

(5.15) 

with Wj = wj(v), the Ph component of the velocity w(v ). The middle term in (5. 14) exists 
as w is globally Lipschitz continuous , and the last equality follows as w is divergence­
free. If this i the case , we can define T p = g. ow, we prove that the operator Tis the 
generator of a stochastic semigroup on X1 . 

Theorem 5.4 .1. If the function w is glo bally Lipschitz continuous and divergence-free, 
then the operator (D (T) , T ) defined by (5 .13} is the generator of a strongly continuous 
stochastic semigroup (G7(t))t>o, given by 

[G7 (t)p] ( v) = p(</>( v, t , 0)) (5 .16) 

for any p E X1 and t > 0. 

Proof. The proof of this theorem is fully given in detail in [70 , Theorem 2] . □ 

Remark 6. The previous theorem allows us to show that the model (5.9) is conservat ive 
in the space X1 , that is , t he law (5.2) is satisfied. In fact , the semigroup generated by 
the operator T is stochastic, then 

which lead to 

0 = J T pdµ , for all p E D(T ), then 

A 
00 

0 j j m Tp(t, x , m)dmdx , for all t 2'. 0, 

JR3 0 

:t (j l mp(t , x , m)dmdx) 

00 

j j m 8tp(t , x , m)dmdx 

JR3 0 

00 

j j mTp(t , x, m)dmdx 

JR3 0 

0. 

(5.17) 

This is an expected result since the flow process alone does not modify the total number 
of individuals in the system. 
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5.5 Coagulation competency in the moving Process 

We consider the coalescence competence operator (V , D(V )) defined in (5.5) , as a per­
turbation of the transport syst em (5.9). We obtain the abstract Cauchy problem 

Otp(t , v) = T p(t , v) - Vp(t , v) = Fp(t , v) 

p(O , v) = p (v), v E A. , 
(5.1 ) 

where 
F = T - D . (5. 19) 

Remark 7. (F, D(F )) = (T - V , D(T)) is a well-defined operator. 

To show this assertion , it is first noted that D(T ) n D(V ) = D(T ) since D(V) = X1 . 

Because Tis conservative , integration of (5.18) over A gives 

00 00 

! IIPlli = :t J J mp(t , x, m)dmdx = - J J d(x , m)mp(x , m)dmdx. 
R3 O R3 O 

Hence, (5.6) leads to 

00 

-J J 0201.mmp(x , m)dmdx '.S - J J d( x , m)mp(x , m )dmdx 
R3 o R3 O 

:S - J J 01 01.mmp(x, m)dmdx 
R3 O 

for all p E (Xi)+ and using Gronwall 's inequality, we obtain 

then , 

e-02amtllPlli ::S; IIPll1 :s; e-OiamtllPlli­
This inequali ty for p = Gp(t)p yields 

(5 .20) 

where p E (C8°(A. ))+ ~ D(F)+- If we take O :Sp E X1 then , we can use approximations 
to the identi ty (mollifier) w0 (v) = C0 w(v/c) where w is a C8°(A.) function defined by 

w(v) = { exp (iv 1L1) for lvl < 1 
0 for lvl 2'. 1 
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and Ce are constants chosen so that J u:7e(v )dx = 1. Using the mollification of p by 
A 

taking the convolut ion 

'Pe := j P (v - y )r;;;e(y )dµ y = j p (y)r;;;e(v - y )dµ y, (5.21) 

A A 

we obtain Pe in X1 (since p E Xi) and p = lim 'Pe in X1 . Moreover, Pe are also 
e--tO+ 

non-negative by (5 .21 ) ince O::; p, and the family (Pe)e ~ C0 (A). This shows that any 
non-negative p taken in X1 can be approximated by a sequence of non-negative functions 
of Cff(A). The inequality (5.20) is therefore valid for any non-negat ive p E X1 . Using 
the fact that any arbitrary element 9 of X 1 ( equipped with the pointwise order almost 
everywhere) can be written in t he form 9 = 9+ - g_, where 9+ , g_ E (Xi)+ , the posit ive 
element approach , [22 , 88] allows us to extend the right inequali ty of (5.20) to all X1 in 
order to have 

IIGF(t)pll1 ::; e-Oiamt llPlli-

Using the semigroup representation of the resolvent , we obtain for >. > 0 
00 

IIR( >. , F )pll 1 ::; j e-AtllGF(t)pllidt 

0 
00 ::; J e-At e-01amt llP ll1 dt 

0 

1 
::; A + 01 am II PII 1 · 

According to the right inequality of (5. 6) , we obtain that 

02am 02 
II DR(>. , F )plli ::; >. + 

01
am II Plli ::; 

01 
IIPlli-

(5.22) 

This relation states that D (D ) ~ D (F), (the domain of Dis at least t hat of F). Because 
F = T - D and D is bounded , we exploit t he following relation for resolvent in X1 : 

>.I - F = >.I - T + DR(>. , F )(>. I - F ) 

I = (>.I - T )R(>. , F ) + DR(>. , F) 

R(>. , T ) = R(>. , F) + R(>. , T )DR(>., F ) 

R(>. , F ) = R(>. , T )(I - DR(>. , F )) 

for every m E IR+· This leads to D (T ) ~ D (F) and therefore, D (F ) ~ D (T ) n D (D ). 
On the other hand , if p E D (T ) n D (D ) then II T Pll1 < oo and II DPlli < oo. Therefore , 

II T P - Dplli ::; IIT Plli + IIDPll 1 < oo, 

meaning that p E D (F ) and thus D (T ) n D (D ) ~ D (F) and the remark is completed. 

Assumption (5.6) implies that the operator D generates a C0-semigroup of contractions 
(Gv( t ))r~o, which yields t he following theorem [70, Theorem 5] . 
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Theorem 5.5 .1. The operator (F, D(F)) is the infinit esimal generator of a substochastic 
semigroup ( G F ( t) k :=::o defin ed by 

(5 .23) 

for p E X 1 and t > 0, where (G7(t))t '20 is defin ed by (5. 16}. 

In the next section , the non-linear perturbation is used to analyse t he full model (5.1). 

5.6 Global solution for the full model 

The coagulation process appearing in a moving medium mathematically reads as: 

Btp(t , x , m) = T p(t , x, m) - Dp(t , x , m) + Cp(t , x, m) 

p(0 , x , m) = p (x, m) , a.e . (x , m) E IR3 x IR+ 

where C, given by (5.4) , is defined on t he set XI+ = {g E X 1 : g ~ 0} . We recall that 
C(0) = 0. We need the following lemma: 

Lemma 5.6.1. The operator C satisfies a global Lipschitz condition on the set XI+ . 

Proof. We set: 

wh(x, m ) = md(x, m)h(x, m) and a( h) = j j wh(x , m) dmdx . 

IR3 mo 

Thanks to (5.6) , we also set{) = es supJR3x(mo,oo) d(x , n) < oo. 

Remark . For every h E XI+ \ {0} C XI+ = D(D ), t he operator a satisfies 

00 00 

a( h) = j j wh(x, m )dmdx = j j md(x, m) h(x , m) dmdx = IIDhlli ~ {) ll hll1 < oo. 

IR3 mo JR3 mo 

In terms W and er t he operator C takes the expression 

(wh * wh)(m) 
Ch(x , m) = X uR (m, x ) ma(h) , 

where h E XI+ \ {0} and 

(wh * wh)(m) := J L:-mo wh(x, n) wh(x, m - n) dndx . 

JR3 
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Let g0 be a function fixed in Xl+ \ {O}. We set r;, := a(g0 )'!9 - 1 . Let g be any function 
from Xi+\ {O} such that 119 - 9oll1 :::; r;, . Then 

a(g) = a(go) + a(g - go) :::; 2a(go)- (5.24) 

faking use of t he linearity of a and properties of the convolution * we have t he following: 

[( wg * Wg )(m)]a(go - g) 
Cg(x , m) - Cgo(x , m) = Xu (m, x) ( ) ( ) 

R ma 9o a g 

( ) 
( Ill g * W g) ( m) ( ) ( Ill 9o * W 9o) ( m) 

+ Xu m, x ( ) + Xu m , x ( ) 
R ma 9o R ma 9o 

( ) 
[(wg * lllg)(m)]a(go - g) ( ) [w(g +go)* w(g - go)](m) 

= Xu m , x ( ) ( ) + Xu m , x ( ) R ma g0 a g R ma g0 

It follows that 

a(lgo - gl ) j j (wg * wg )(m) dmdx 

JR3 mo 

a(go)a(g) 
00 

j j [w(g + 9o) * llll (g - go)I ](m) dmdx 
JR3 mo 

+-------------
a(go) 

(5 .25) 

According to the Remark 8 we have 

11 ('l!g * 'I! g)( m) dmdx = ~ l('l!g)(m) dmdx] ' = (c.(g) )2 
:; .illhll, < 00 , 

and 
00 J j rw(g + 9o) * llll (g - 9o )l](m)dmdx = a(lg - 9ol)a(go + g). 

JR3 mo 

Therefore, using again the linearity of a and applying (5 .24) yield 

II Cg - Cgolh 
< a(g)a(l go - gl) + a(go + g)a(lg - 9o l) 

a(go ) a(go) 
< 5a(l9o - 91) 

< 519119 - 9o lh - (5.26) 

ext, we prove t hat the later inequality is valid for all h, g E Xl+ \ {O}. Let us fix h, g in 
XI+\ {O} and let ht= (1-t) h+tg fort E [O , l ]. Since t he function t H a(ht) is cont inuous 
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and a(ht) > 0 for each t E [0, l ] we have inft a( ht) > 0. Let °K- = 19-i inft a(ht)- Then 
(5. 26) yields 

II Chs - Chtlli :S 5'19llhs - htll1 provided that llhs - htll1 :SK 

Let n be an integer such t hat n ~ ll h - glli / °K- and let ti= i / n for i = 0, 1, ... , n . Then , 
II ht; - ht;_1 II 1 :S °K- and then: 

n 

i = l 
n (5.27) 

i=l 

= 5'19llh - glli , 

g-h . 
where we used t he fact t hat ht; - ht;_

1 
= -- for any i = 0, 1, ... , n . Furthermore, from 

n 

(5. 7) and Remark 8, II Cg-C0ll1 = II Cg lli :S J J md(x , m)g(x, m) dmdx :S '1911 9111 for any 
~3 m 0 

g E XH. This concludes t hat the operator C is continuous at 0. T herefore, inequality 
(5.27) passes to the limit at h = 0 or g = 0, which concludes t he proof. D 

Theorem 5.6.2. Let p E D (F ) n X i+ , the Cauchy problem 

du 
dt (t) = F[p(t )] + C[p(t)] 

(5.2 ) 
0 

Pit=O = p ' 

has a global unique solution. 

Proof. First , we recall t hat t he solut ion p of (5. 2 ) is the unique solution of the integral 
equation 

(5.29) 

where (Gp(t))t>o is the semigroup generated by the operator F given in (5. 23). We 
consider 

and its norm 

Furt hermore , we let 

with r 1 E IR+ · Now, we define M on '.:: as the mapping 
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Then, M (::::) C Y and (Mg )(t ) E XI+ for all t E [O, t 1] . The proof of the existence of a 
unique solution p E :::: to the equation p = M p follows in the standard way [74, Theorem 
6.1.2] since XI+ is a complete metric space as a closed subspace of a Banach space. 
Consequently, the integral equation (5. 29) has a unique solut ion p E C([O, t1], Xi+)- The 
existence of a global strong solution to problem (5. 28) immediately fo llows from the fact 
that C is globally Lipschitz, as shown in the Lemma 5.6.1. D 

5. 7 Concluding remarks 

In this chapter , t he theory of strongly continuous semigroups of operators [74] was u ed 
to analyse the well-po edness and show existence result of an integro-differential equation 
modelling convection-coagulation processes. This study is an innovation in the domain 
of applied analysis thanks to the inclusion of t he spatial transportation kernel which 
was not considered in previous studies. We proved that the full model with combined 
coagulation-transport operator has global unique solution , thereby addressing the prob­
lem of existence of solutions for this model. This may help to analyse in the same way, 
a model with combined coagulation-fragmentation-transport-direct ion changing whose 
full identification of the generator and characterisation of the domain remain open. 



Chapter 6 

Some Applications for 
Fragmentation Models 

6.1 Introduction 

In this chapter , two concrete phenomena that occur in applied sciences and applicable 
to fragmentation-coalescence models are presented and analysed. The aim is to estab­
lish a better understanding concerning the occurrence of t hese real phenomena, namely 
shattering and marine iron fert ilisation. 

6.2 Exact solutions of fragmentation equations with 
arbitrary fragmentation rates and separable par­
ticles distribution kernels 

6.2.1 Introduction and pre liminaries 

We make use of Laplace transform techniques and the method of characteristics to olve 
fragmentation equations explicitly. The result is a breakthrough in the analysis of pure 
fragmentation equations as t his is the first instance whereby an exact solution is provided 
for the fragmentation evolution equation with arbitrary fragmentation rates . Recall 
that fragmentation processes are difficult to analyse as they involve evolution of two 
intertwined quantities: the distribution of mass among the part icles in th ensemble and 
the number of particles in it , that is why, though linear , they display non-linear features 
such as phase transition which , in this case, is called "shattering" and consists in the 
formation of a "dust" of particles of zero size carrying, nevertheless , a non-zero mass. 
Quantitatively, one can identify this process by disappearance of mass from the system 
even though it is conserved in each fragmentation event . Probabilistically, shattering i 

89 
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an example of an explosive , or dishonest Markov process, see e.g. [3 , 66] . So t he analysis 
yields a key for resolving most of the open problems in fragmentation theory including 
shattering and the sudden appearance of infinitely many particles in some systems with 
init ial finite particles number. Though mathematical study of fragmentation processes 
can be traced back to article by Melzak [62] (from the analytical point of view) and 
Filippov [41] (from the probabilistic one), it was not until the 1980s that a systematic 
investigation of t hem was undertaken , mainly by Ziff and his students , e.g. [91, 92], who 
provided explicit solut ions to a large class of fragmentation equations of t he form 

a 1
00 

Bt u(t, x) = -a(x)u(t , x) + x a(y) b(x ly)u(t , y)dy , X 2:: 0, t > 0, (6.1 ) 

with power law fragmentation rates a(x) = x 0
, a E (-oo , ) and where b( xly), the 

distribution of particle masses x spawned by t he fragmentation of a particle of mass 
y > x, also was given by a power law 

xv 
b(xl y) = (v + 2) yv+l , (6.2) 

with v E (-2, O] (see also [6 1] for a more detailed discussion of this case). Here, u(t , x) 
is the density of particles having ma s x at time t . 

In the absence of any other mechani m, the mass of all daughter particles must be equal 
to the mass of the parent . This ' local' conservat ion mass principle mathematically is 
expressed by 

1Y xb(xly)dx = y. (6.3) 

Similarly, the expected number of particles produced by a particle of mass y is given by 

n(y) = 1Y b(xl y)dx . (6.4) 

We note that n(y) may be infinite. 

Local conservation principles (6 .3) and (6 .4) render formal conservation principles by 
integration of ( 6.1): 

d 
dt M(t) 

d 
-d N(t) t 

100 a 
0 

Btu(t,x)xdx = 0, 

100 

:t u(t , x) dx = 1 a(x)(n(x) - l )u(t , x)dx. 

(6.5) 

(6.6) 

In this study, we extend the class of power law fragmentation rates to arbitrary positive 
and continuous function on ( 0, oo). Furthermor , we assume that b can be written as 

b(xly) = /3 (x),( y) (6.7) 
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where, to satisfy the local principle of mass conservation , 

y 
, (y) = Ii sf3(s) ds· (6.8) 

We assume that f3 is a non-negative continuous function on (0, oo). Equation (6.7) is 
a natural generalisation of the power law b described in (6.2) and has the advantage of 
allowing the number of daughter particles 

n(y ) = y Ii f3(s) ds 
Ii sf3 (s) ds' 

(6.9) 

to vary wi th the parent ize y , [18]. An important role in the analysis is played by the 
function 

xf3(x) d 1x 
b(xlx) = f3 (x),(x) = fi x /3( ) = -d ln sf3(s )ds. 

0 
s s ds x 0 

(6.10) 

Theorem 6 .2 .1. {18} Assume that lim a(x) exists (finite or infin ite). 
x➔O+ 

mentation equation 6.1 is conservative if and only if there exists o 
Then, the frag­

> 0 such that 
b(x lx)/a(x) ff:: L1 ([0 , o]). 

Laplace transforms 

D efinit ion 6.2.2. 

The la place tans form of a piecewise continuous function f ( t ), 0 ~ t < + is the function 
F (s) = £{f (t )} defined by 

F (s) = 1= e-st f (t )dt. 

The inverse Laplace transform of F (s) is f (t), J (t ) = £ - 1(F (s)) . 

6.2.2 Solvability of the fragmentation equation 

In this section , Laplace transform is used to solve the fragmentation equation 

8 
atu(t ,x) 

u(0,x) 

-a(x )u(t , x) + 100 

a(y) b(x ly )u(t , y) dy , x ~ 0, t > 0, 

uo(x). 

Let u(s , x) = £ [u(t , x)]. Clearly, we have that 

£ { : t u(t , x)} = su(s , x) - u0 (x) , 

(6. 11) 

(6.12) 
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£ {a (x)u( t , x) } = a(x )u(s , x) (6. 13) 

and 

£ {1 a(y)b(xly)u(t , y)dy } = 100 

a(y)b(xly)u(s , y)dy. (6. 14) 

Substitut ing into (6.26) , we obtain t he equation 

that is, 

su(s , x) - uo(x) = -a(x)u(s, x) + 100 

a(y)b(xly)u(s , y)dy 

u0 (x) = (s + a(x))u(s, x) - 100 

a(y)b(xly)u(s , y)dy. (6.15) 

Viewing s as a parameter , t his is similar to the resolvent equation solved in 2010 (Ba­
nasiak and outchie). The solut ion reads as: 

_( ) _ uo(x) + f3 (x) -{.(x) 1
00 

a(y)'y(y) {s(Y) ( )d u s , x - e e u0 y y, 
s+a(x) s+a(x) x s+a(y) 

(6.16) 

where 

(6. 17) 

The solut ion u(t , x) of (6.26) is the inverse Laplace transform of u(s , x). Clearly, 

_c - 1 { uo(x) } = uo(x) .c-1 { 1 } = uo(x) e-ta(x) 
+ a(x) s + a(x) 

and 

_c- 1 { /3 (x) e-{.(x) 1 a(y)'y(y) e{s(Y)uo(y)dy } 
s+a(x) x s+a(y) 

= 1
00 

a(y)b(xl y)uo(y) .C- 1 { 
1 1 

e {{.(y)-{.(x)} } dy 
x s+a(x)s + a(y) 

= 100 

a(y)b(xl y)u0 (y) .C- 1 {8(s , x, y)} dy , 

where 
1 1 {1Y a(17)b(1Jl1J) } 

8 ( s, x, y) = ( ) ( ) exp ( ) d17 . s+ax s+ay x s+a17 
(6. 1 ) 

Therefore, the solut ion of the fragmentation equation 

:t u(t, x) = -a(x)u(t , x) + 100 

a(y)b(xly)u(t, y)dy , x 2'. 0, t > 0, 

u(0, x) = u0 (x) . (6. 19) 

is given by 

u(t , x) = uo(x)e-ta(x) + 100 

a(y)b(xl y)uo(y) .C- 1 {8(s, x, y)} dy. (6.20) 
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6.2.3 Applications 

In this section, we assume that 

a E (-oo , oo) 

and xv 
b(xj y) = (2 + v) yv+l 

with v E (-2, O] . We have 

---d17=(2+v) ---d77 =-- ln --- , 
1

Y a(17 )b(17 j17) 1 Y 17°' 2 + v { s + y<:r+l } 
x s+ a(17 ) x s+17°+1 a+ l s+x0 +1 

it follows that 

where 

Thus, 
(s + ya+l p-1 { l }-y+ l 

Ga,v(s , X, y) = (s + xa+l)-y+l = s + xa+l { s + ya+l }-y-1. 

Therefore, the solution u(t,x) is given by 

u(t , x) = uo(x)e-tx"+i + (2 + v ) 1
00 

{ ; } v y°'uo (y) L- 1 {80 ,v(s, x, y)} dy . 

Case a = -3 and v = 0 

We want to solve the equat ion 

a 
~u(t ,x) 
ut 

u(O ,x) 

-x- 2u(t , x) + 2 1
00 

y- 3u(t , y)dy, 

uo(x). 

We have , = -1 , it follows that 

1 -2 -2 -2 -2 

{ }

o 

8 _3 ,0 (s,x, y) = s+x-2 {s +y } = {s+ y } . 

Thus, 

Therefore, 

(6. 21) 

(6. 22) 

(6.23) 

(6. 24) 
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Case a = - 2 and v = 0 

We want to solve the equation 

8 
atu(t ,x) 

u(0,x) 

- x-1u(t ,x) + 2100 

y- 2u(t ,y)dy , 

uo(x). 

We have 1 = - 2, it fo llows that 

Thus, 

T herefore, 

8 - 2,o(s , x , y) { 
1 }-l { -1} -3 

S + x- l S + y 

S + y - l _ y - l + X - l 

(s + y- 1)3 
1 (x-1 - y- 1) 

(s + y- l)2 + (s + y- 1)3 · 

£ - ] { 1 } + - 1 - 1 £ - 1 { 1 } 
(s +y- 1)2 (x - y ) (s+y- 1)3 

t - ty - l + ( - 1 - 1 ) -ty - 1 t
2 

e x - y e -2· 

~ - - - uo(y)dy . _!_ ( 1 1) 
y2 X y 

xv 
General case a(x) = x0 +1 and b(x ly) = (2 + v)-

1 yv+ 

We want to solve 

8 
at u(t , x) - x°'+1u(t , x) + (2 + v )xv 1 y°'- vu(t , y)dy, x 2: 0, t > 0, 

(6.25) 

u(0,x) u0 (x ). (6. 26) 

From the previous section , the solut ion of this equat ion is 
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Note that 

- 1 - 1 1 a+l 7- l 
{ { }

,+1 } 
[, {8 0 ,v(s , x , y)}=L s+ xa+l {s+y } 

L- 1 {Ga,v(s , X, y)} £ - 1 { { 1 }
7

+l { S + ya+I }7- l } 
S + xa+ I 

texp(-tx0 +1) 1F1(1 - "(; 2; t(x0 +1 -ya+1)) . 

It follows that 

u(t ,x) t 0+ 1 u0 (x)e - x + 

(2+v)texp(-tx0 +1
) 1 {;}v 1F1(l- "(; 2; t(x0 +1 -y0 +1 ))y0 u0 (y)dy. 

We recover t he results of Ziff and his students , which were exactly the expected results. 

6. 3 Analysis of the effects of large scale marine iron 
fertilisation 

6.3.1 Introduction and motivation 

In t his section , a non-linear integro-differential equation is used to investigate the effects 
of ocean iron fertilisation on the evolution of the phytoplankton biomass. This equation 
contains terms responsible for fr agmentation , coalescence, growth-decay, grazing and 
sinking of the phytoplankton aggregates. The evolution equation is analysed using t he 
theory of semilinear dynamical systems and numerical simulations are performed. The 
results demonstrate the validity of the iron hypothesis in fight ing climate change. 

Phytoplankton are microscopic plant- like marine organisms that sit at the bottom of t he 
food chain. They are food for other plankton and small fish , as well as larger animals 
such as whales. Phytoplankton get their energy from carbon dioxide through photosyn­
thesis and so are very important in carbon cycling. Each year , as they transfer billions 
of tonnes of carbon from the atmosphere to the ocean reducing global warming in the 
process , they are of primary interest to oceanographers and Eart h scient i ts around the 
world . According to researchers [40 , 55], these t iny marine organisms, which are crucial 
components of marine ecosystems, have been slowly disappearing over the last century. 
The decline is worrying because it may have profound effects on marine life and climate 
change. The major decrease has been recorded in the High Nitrate Low Chlorophyll 
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(HNLC) Regions that are t hought to represent about 20 percent of the areal extent 
of the world 's oceans ([40] and references therein). These are generally regions char­
acterised by more t han 2 micromolar nitrate and less than 0.5 micrograms chlorophyll 
per lit re. The major HNLC regions include t he Subarctic P acific, large regions of the 
Eastern Equatorial P acific and the Southern ocean. These HNLC regions persist in 
areas which have high macronutrient concentrations, adequate light and physical char­
acteristics required for phytoplankton growth , but have very low plant biomass . It is 
believed that phytoplankton growth in major nut rient-rich H LC regions is limited by 
iron deficiency [40, 55]. The main purpose of this study is to show that global warming 
can be subst antially reduced and to some extent , annihilated by fertilizing the HNLC 
areas of the oceans by a very modest amount of iron. The form at ion of large part icles 
(aggregates) through mult iple collision of smaller ones is a highly visible phenomenon in 
oceanic waters. Several authors have attempted to model the dynamics of phytoplank­
ton in such a way as to exhibit t his structure [2, 5, 10, 13, 26 , 27, 28 , 53, 58, 68, 69]. In 
this setting, t he individual unit is an aggregate and aggregates are structured by their 
mass. One of the most efficient approaches to modeling the dynamics of phytoplankton 
aggregates is through a rate equation which describes the evolut ion of the distribution of 
interacting aggregates wit h respect to their mass . The evolution equation contains terms 
responsible for the coalescence, disaggregation , growth-decay, sinking to t he seabed of 
the aggregates and their grazing by the zooplankton. The novelty in the model from a 
mathematical point of view is t hat we allow the kernels to vary according to the level 
of marine iron concentration . Next , we present a full descript ion of the phytoplankton 
aggregates model used in this article and provide the assumptions. Then , we make use 
of t he t heory of semilinear abst ract Cauchy problem used to analyse coagulat ion frag­
mentation processes with growt h [5 , 10, 12, 13, 28, 58, 62 , 69 , 68] or decay [12, 69] in 
order to show the well-posedness of t he adopted model. In the last part of the study, 
numerical simulat ions are performed and the results are discussed. 

6.3.2 Description of the model and assumptions 

Following [10], we consider the following non-linear transport equation that contains 
terms responsible for the growth/ decay of phytoplankton aggregates , their fr agmenta­
tion , coagulation , grazing and sinking of aggregates into the seabed: 

where ( represents the iron concentration in the sea. The sinking rate and the growth­
decay rate of t he clusters are denoted by s( and r( respectively, they are ( -dependent. 
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Here , x E IR+ represents the size of particles , t is t he time variable and uc:; is the density 
of particles of mass x. The fragmentation rate is denoted by a and b describes the 
distribution of masses x of particles spawned by the fragmentation of a part icle of mass 
y . The removal of phytoplankton aggregate is carried out by the grazing of the population 
by the zooplankton and the clusters sinking into the seabed. The grazing rate is denoted 
by d(x) and it is assumed that 

We introduce the following notation for formal expressions appearing in (6.27) : 

f) 
[~ uc:;](x) = - ox [rc:;(x)uc:;(x)] - qc:;(x)uc:;(x) , 

[Buc:;](x) = 100 

a(y)b(x ly )uc:;(Y) dy , 

Assumptions on the coeffic ients 

(6.2 ) 

(6.29) 

(6. 30) 

(6.31) 

The sinking function sc:; 2 0 represents the removal rate of the aggregates of phytoplank­
ton into the seabed; it is assumed that for any fixed ( E IR+, 

(6.32) 

We assume that the fr agmentation rate a is essentially bounded on compact subintervals 
of IR+; i.e. 

(6.33) 

Further , b 2 0 is assumed to be a measurable function of two variables , satisfying 

b(xl y) = 0 ; for x > y. (6.34) 

The local law of mass conservation requires 

1Y xb(xly) dx = y, for each y > 0. (6.35) 

The coagulation kernel k( x, y) represents the likelihood of a part icle of size x attaching 
itself to a part icle of size y and we assume 

0 :S k E L (IRt) . (6 .36) 

The transport part is more tortuous. Our principal assumption is that clu ters of phyto­
plankton grow (rc:; > 0) when the iron concentration ( in the sea is bigger than a crit ical 



CHAPTER 6. SOME APPLICATIONS FOR FRAGMENTATION MODELS 9 

value (c and they decay otherwise (r< < 0) . In phytoplankton models typically, we 
have r < ( x) ~ x as growth/ decay is proportional to t he number of particles (cells) in the 
aggregate. Thus, we assume that 

h(x) I ::; rx (6.37) 

for some constant r > 0 and 
(6 .38) 

where r< E AC(IR+) means that r< is absolutely continuous on each compact subinterval 
of IR+· Further assumpt ions on r< depend on whether to deal with the decay, or growth , 
case. As we shall see , in the decay case th re is no need for boundary conditions . On 
the other hand , depending on the integrability of r< at x = 0, the transport equation 
describing growth may require a boundary condition at x = 0. In this study, we consider 
the general McKendrick-von Foerster renewal boundary condition 

(6. 39) 

where /3< is a suitable posit ive measurable function for any ( =/= 0. If /3( = 0, then we have 
standard no-influx condit ion. If, however , f3<(Y) > 0, then it describes t he rate at which 
an aggregate of size y sheds monomers of the smallest 'zero ' size which t hen re-enter t he 
system as new aggregates and start to grow. The non-linear integro-different ial equation 
(6.27) will be supplemented with an initial condition. 

6.3.3 Analysis of the problem 

The approach in this study is to analy e the evolution equation in the Banach space 

X 0,1 := L1 ((0 , oo), (1 + x) dx) = { ¢; 100

1¢(x) l(l + x) dx < +oo } 

in which both t he total mass and the number of part icles are controlled. In order to 
ensure t he validity of the general McKendrick-von Foerster renewal boundary condit ion, 
we fur ther assume that 

/3 E X 00,1 , and r< E X 00 ,1 for any ( > 0, 

where X 00 , 1 is the dual space of X 0,1 . It consists of measurable functions f for which 

llfl loo,1 = ess sup lf (x)I < 
xEIR+ 1 + X 

The duality pairing is given by the integral 

< f ,g >= 100 

J(x) g(x) dx. 
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In this sect ion, we make use of the t heory of semilinear abstract Cauchy problems. The 
idea is to show that the linear operator induced by fragmentation , growth and sinking 
of the aggregates generates a strongly continuous semigroup. This linear operator is 
then perturbed by the non-linear operator induced by coagulation of the aggregates and 
yields the existence and uniqueness of a local solution to the evolution equation. Global 
existence is thereafter obtained by showing t hat the local solut ion does not blow up in 
finite t ime. 

Analysis of the linear part 

Let us denote by T( the realisation of Tc; (defined via (6.29)) in t he domain 

D( = {'l/J E Xo,1; q'l/J E Xo,1, r( 'l/J E A C((xo,oo)) (r('l/J)x E Xo,i} (6.40) 

if rt non-integrable at 0, and in the domain 

lim r((x) 'ljJ (x) = ( X) (3( y) 'ljJ(y) dy } , 
x-to+ Jo (6.41) 

otherwise. In addit ion , let B be the realisation of B ( defined via (6.30)) in t he domain 

D(B ) = D (T() = {'l/J E Xo,1; q'l/J E X o.1, r'ljJ E AC((0,oo)) (r'l/J )x E Xo,1}. 

For further use we, define for any iron concentration ( > 0 

(6.42) 

Theorem 6.3.1. The operator (T(; D (T()) with the resolvent given by 

_ e .XR((x)+Q((x) 1 e .XR(( y )+Q(( y ) 

(Res((>.)J)(x) - ( ) ( ) f(y)dy , 
r ( x x r( y 

(6 .43) 

for any >. > 0 and f E X0,1 is the generator of a strongly continuous positive semigroup 
of contractions, say { Sr< ( t ) h :::::o on Xo,1. 

Proof. The case r( > 0 represent ing fragmentation with growth is similar to [68] and the 
case r( < 0 representing decay can be found in detail in [69] . In both cases , the expression 
of t he resolvent is obtained and Hille-Yosida 's inequality is proven to be satisfied. D 

Theorem 6.3.2. There exists an extension (G(; D (G()) of the operator (T( + B ; D (T()) 
which generates a positive strongly continuous semigroup (Sc<(t))t:::,:o in X0,1 . Moreover, 
the generator G( is characterised by: 

00 

(>.I - G()- 1'1/J = I)>-I - T()- 1[B(>-I -T() - 1t 'l/J, (6.44) 
n=O 

for 'ljJ E Xo,1 and >. > 0. 
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Proof. The proof is a generalisation of a similar result for the space X0 ,1 , obtained in [10] 
by assuming t hat the fr agmentat ion rate a is linearly bounded. The analysis in [10] can 
be easily extended to general fragmentation rates because the fragmentation equation 
behaves well in the bigger space X1 := L1( (0 , oo) , xdx) = {¢; fo lef>(x)lxdx < +oo}. A 
complete proof of this thm is available in [69]. □ 

Theorem 6.3.3. Assume lim q((x) = lim a(x)+d(x)+s((x) < +oo, then the generator 
x-+xo x-+0 

of the semigroup (Sc((t))t2:o is given by 

Proof. The theory of extension of operator is instrumental in the proof of this thm. In 
the case r-1 non-integrable at x0 , the assumption made is not necessary. The semigroup 
(Sc( ( t) )t2:o is honest for arbitrary fragmentation rate a E L , loc( (0, oo)) and grazing rate 
d E L00 (( 0, )). The proof is analogous to the analysis for honesty performed in [12] . 
For r- 1 integrable at 0, t he proof is obtained in a similar way as in [10] where honesty 
was investigated in the space Xo,1 . D 

Global solutions of the transport equation with fragmentation and coagula­
tion 

In this section we show the existence of a global solution to the full evolution problem 
(6.27) endowed with its initial and boundary conditions. This evolution equation is 
represented by the fo llowing semilinear ast ract cauchy problem: 

Uo , (6.45) 

where I{ is the realisation of the expression 

llx 100 

[K:1/J](x) = - k( x - y , y )1j; (x - y) 1j;( y)dy -1/J(x) k( x, y) 1j;(y)dy , 
2 0 0 

(6.46) 

for non-zero 1j; on the space X0,1 and K (0) = 0. Since t he linear semigroups (Sc( (t))t 2:o 
is positive, we shall work in the posit ive cone of X0,1, denoted by Xt 1 . 

Theorem 6.3.4. Let u0 E Xt1 , then the Cauchy problem 

(6 .47) 

has a unique global solution. 
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Proof. In order to prove that (6.45) has a solution which is global in t ime, we shall 
proceed in a usual way [10] by converting it to the integral equation 

(6.48) 

where (Sc(t))t~o is the semigroup generated by G. We use the fact that Xo ,1+ is a 
complete metric space as a closed subspace of a Banach space , see [74 , Theorem 6.1.2]. 
The method is analogous to the proof of global existence in [10] with the space X0,1 . □ 

6.3.4 Numerical simulations 

This section provides a prediction of the phytoplankton biomass 

from 2010 to 2030. A numerical method will be used and numerical simulations per­
formed over the evolution equation 

a 
-

0
x[rc(x) u(t , x)] - s<(x)u(t,x) - d( x)u(t,x) 

-a(x)u(t , x) + 1 a(y)b( xJ y)u(t , y) dy 

1
00 

l 1x -u(t , x) k(x , y)u(t , y)dy + - k(x - y, y)u(t , x - y)u(t , y)dy 
0 2 0 

describing the dynamics of t he phytoplankton populat ion. 

Empirical data and estimation of kernels 

Let the init ial conditions set to be u(x , 0) = l08 xe-x, where x is a positive real number. 
To determine the effect of ocean iron concentration ( on the dynamics of the population , 
we follow [ 9] and make use of Runge-Kutta methods extended with a quadrature 
technique (Pouzet type) in order to simulate the corresponding non-dimensionalised 
evolut ion equation. We investigate the dynamics of the plankton population in t he 
HNLC regions to predict the evolut ion corresponding to some specified values of iron 
concentration . The kernels used in the simulations are summarised in the following table: 

Parameter values were estimated from available experimental information. In the event 
where no observational data could be obtained , parameter values were picked out to 
provide the best qualitative numerical simulation results. This is in line with previous 
studies successfully simulating the dynamics of phytoplankton [2 , 55] . 
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Table 6.1: Kernels used in the simulations 
Description Kernels 
Fragmentation rate a(x) = xa 

Daughter particles distribution rate 

Grazing rate 

b( ) = (v+ 2)xv 
x, y v + l y 

d(x) = d 
Aggregation rate 
Growt h rate 
Sinking rate 
Renewal rate 

k(x , y) = k 
rc;(x) = (( - (c)x 
sc;(x) = (x 
f3c(x) = (x 

Table 6.2: Parameter values used in the simulations 
P aramet er 
(c 
( 
d 
k 
V 

X 
a 

Computational simulations 

Value Source 
2 [2 , 55] 
(0.02 , 10) fitted 
20 fitted 
500 
0 
(1. , 2.2) 
0.75 

fitted 
[55 , 69] 
fit ted 
[2 , 55 , 69] 

The crit ical iron concentration value that determines the growth or decay of phyto­
plankton aggregates is approximately 2 nanomole (nM) per lit re in the High Nitrate 
Low Chlorophyll (H LC) regions of t he oceans [69]. Simulations are performed for iron 
concentration values around this critical value: 

( E {0.02 , 0.1 , 0.5 , 1, 1.4, 1.6 , 2.1 , 2.4 , 2. 5, 3, 5, 10} 

and arbitrary x values in the range (1.8, 2.2). The fragmentation daughter part icle 
distribution kernel is chosen to be binary v = 0 and the fragmentation rate a( x) = x0 75 

is chosen to be linearly bounded. The coalescence rate k and the grazing rate d are taken 
to be 500 and 20 respectively. The simulation results are summarised in Figures 6.1 , 6.2 
and 6.3 re pectively. 

Interpretation of the results and discussions 

The simulations results suggest that iron (Fe) availability is the primary factor controlling 
phytoplankton production in H TLC regions of the oceans. The population biomass is 
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Figure 6.1 : Comprehensive prediction of the phytoplankton biomass. 
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seen to increase with ( > (c and decreas otherwise over a long period of time. The 
increment in the biomass observed for ( = 1.4, 1.6 < ( c in the first 10 year interval can be 
explained by the fact that HNLC regions are in general nutrient-rich areas and plankton 
population may grow with a very little amount of iron available (( < 0.03 nM) . However , 
the population reduces substantially in the long run because the acquisition of sufficient 
iron (Fe) for phytoplankton syntheses of Chl and nitrate reductase needed by them to use 
the abundant major nut rients becomes a serious problem [40, 55]. Another important 
feature in Figure 6.2 is the suggestion that maintaining t he level of iron concentration 
just a little above the critical value ( c has t he potential to ensure a long term satisfactory 
level of phytoplankton biomass. It also clearly shows that raising the level of marine iron 
too much above ( c does not present any technical advantage in the long run . The results 
of this study indicate that iron hypothesis can be implemented in a very cost-effective 
way and produce impressive results. In summary we have made used of mathematical 
and computational techniques in order to present a very efficient method to increase 
the world phytoplankton biomass. This method may be recommended for future use in 
order to systematically reduce the effects of global warming. 



Chapter 7 

Discrete Non-local Fragmentation 
Dynamics 

7 .1 Introduction 

In t his chapter , an investigation of t he honesty in non-local and discrete fragmentation 
dynamic is done. In the process , t he major problem always arises when each frag­
mentation rate becomes infinite at infinity. That is why in this chapter , we consider a 
discrete Cauchy problem describing multiple fr agmentation processes that is investigated 
by mean of parameter-dependent operators together with the t heory of substochastic 
semigroup with a parameter. Focus is on t he case where fragmentation rates are ize 
and position dependent and where new part icles are also spatially randomly distributed 
according to a certain probabilistic law. The existence of semigroups is established for 
each parameter and "glued"together in order to obtain a semigroup to t he full space. 
The cases of discrete models with bounded and unbounded fragmentation rates are both 
t reated (see also the published art icles [36 , 71]). We use Kato 's theorem in L1 [12] and 
the dominated convergence theorem [21] to show existence of the infinitesimal generator 
of a posit ive semigroup of contractions and give ufficient conditions for honesty in the 
case of unbounded fr agmentation rates . Essent ially, we demonstrate that even in discrete 
and non-local case, t he process is conservative if at infinity, daughter part icles tend to 
go back into the system wit h a high probability. 

7.2 Motivation and models' description 

In t he process of fragmentation dynamics, when it is supposed that every group of size 
n E N ( one n-group) in a system of particles clusters consists of n identical fund am ntal 
units (monomers) , then the mass of every group is simply a multiple posit ive integer 
of t he mass of the monomer. We focus here on clusters that are discrete; that is, they 
consist of a fini te number of elementary (unbreakable) part icles which are assumed to be 

107 
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of unit mass. The state at a given time t is the repartition at that time of all aggregates 
according to their size n and their position x . The evolut ion of such particle-mass­
posit ion di t ribution is given by an integrodifferent ial [9] equation as we will see in t his 
thesis. Recall that various types of fragmentation equations have been comprehensively 
analysed in numerous studies (see , e.g. , [1 2, 18, 17, 19, 11 , 43 , 54, 86, 91 , 92]). But 
discrete fragmentat ion processes have not yet been widely investigated . In [9] , a discrete 
model with the concentration depending only on the size n of clusters and t ime t i 
analysed and the author used compactness of the semigroup to analyse their long time 
behaviour and proved that t hey have the asynchronous growth property. 

In this chapter , a technique called the method of semigroup wit h a parameter [12] is 
exploited to analyse discrete fragmentation models with the concentration of particles 
depending not only on the size n of clusters and t ime t , but also on the random posit ion 
x of the clusters in the space. 

Let us recall some useful assumptions already used in previous chapters. We fo cus on 
models with discrete size; that is, we assume that the mass of a particle can be an 
arbitrary posit ive integer. The starting point is to describe the state variable of the 
problem. Pn = p(t , x , n) which characterises the state of the system at any moment t is 
the particl -mass-position distribution defined as p : IR+ x IR3 x N -t IR+. For the sake 
of simplicity, p(t , x, n) = Pn(t , x) or simply Pn will sometimes be used. During the unit 
t ime, a fraction an(x) = a(x , n) (or simply an ) of aggregate of size n and located at 
x are undergoing breakup. We assume that for each n E N, an satisfies the condition 
(3.29), t hat is, t here are two constants O < 01 and 02 such that 

(7.1) 

with an E IR+ and independent of the state variable x. For the same reasons as in (3.3) , 
we also require 

(7.2) 

for every x E IR3 . Once a group of size m and posit ion x breaks, the expected average 
number of n-group produced upon the splitting is a non-negative measurable function 
bn,m(x) = b(x , n , m) defined on IR3 x N x N wit h support in the set 

IR3 x { (n, m) EN x N: m > n}. 

The sum of all individuals obtained by fr agmentation of a n-group should obviously be 
n , hence it follows, as in (3. 3) , that for any n E N, x E IR3 

n-1 

L mb(x , m , n) = n. 
m = l 

Since a group of size m ~ n cannot split to form a group of size n , we require 

bn,m = 0 for all m ~ n. 

(7.3) 

(7.4) 
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Furthermore, the expected number of daughter particles produced by fragmentation of 
n-1 

a n-group ( with position x) is , by definit ion, given by I: b( x , m , n). In case of binary 
m=l 

fragmentation [5 , 52], it i straightforward that for a.ax E IR3
, b(x , m , n) = b(x , n- m , n) 

n-1 

for all n, m , n > m, and I: mb(x, n , m) = 2 for all n EN. 
m=l 

We also assume that the condition ( 4.2) holds. Therefore, the centres of new groups 
issued from cluster fragmentation are distributed according to the given probabilistic 
law h(·, m , m , y) verifying (4 .2) . 

The equation describing the evolution of the particle-mass-size distribution function for 
a discrete system undergoing fragmentation can be derived by balancing loss and gain 
of clusters of size n (with position x) over a short period of time and is given by 

op 
ot (t, x, n) (7.5) 

+ L 1 am(y)bn,m(y)h(x, n , m, Y)Pm(y)dy , n = l , 2, 3, · · · 
m=n+l IR

3 

where in terms of n and x, the state of the system is characterised at any moment t by 
the density ( or concentration) of particles Pn = p( t , x, n) . 

7 .3 Well posedness of the fragmentation problem 

Since Pn = p(t , x , n) is the number density of groups of size n at the posit ion x and that 
mass is expected to be a conserved quantity, the most appropriate Banach space to work 
in is the space 

in which the total number of individuals is finite. We assume that for each t 2'. 0, the 
function ( x , n) ---+ p( t , x, n) = Pn ( t , x) is from the space X1 . In order to make use of 
the semigroup theory of linear operators, we need to complement (7.5) with the init ial 
mass-position distribution 

p(O ,x,n)=pn(x), n=l,2, 3,... (7.6) 

where the function Pn is integrable with respect to x over the full space IR3
, this integral 

multiplied by n is summable and t he sum is finite. 

In X1 , (7.5) and (7 .6) can be rewritten in more compact form , 

(7.7) 
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Here, p is the vector (p( t , x, n ) )nEl\l, 2l is the diagonal matrix ( an ( x) )nEl\l, ~ is defined 
by the expression 

p the initial vector (Pn(x))nEN which belongs to X1 

Operators A and B are introduced in X1 and defined by 

[Ap] (x , n) = [2lp] (x , n) , D (A ) = {g E X1 ; ag E Xi} 
[Bp] (x, n) = [~p] (x , n) , D (B ) := D (A ) 

Lemma 7.3.1. The operator (A+B, D (A )) is well-defin ed. 

Proof. We need to show that BD (A ) C X1 . For every g E D (A ), 

1/Bgll, = J., (~ n mf;., L am(y)bn,m(y)h(x, n, m, y)lg(y , m)ldy) dx 

J., (~ n mf;.l a,,,(y)bnm(Y)lg(y, m)I) dy 

L f;,, am(Y )l g(y , m) I (t, nbn,m(Y) ) dy 

L "'f a,,,(y)lg(y , m) I ( ~ nbn,m(Y) ) dy 

1 f mam(Y )lg(y , m) ldy 
IR3 m=2 

1 L mam(Y )lg(y , m)ldy 
IR

3 
m=l 

II Ag ll1 
< 

(7.9) 

where ( 4.2), (7.3) and (7.4) have been used respect ively. Then , II Bglli = Aglli , \ig E 

D (A ), so that we can take D(B ) := D (A ) and (A + B , D (A )) is well-defined . D 

7.3.1 Mathematical setting and analysis 

The context of this analysis is the same as the one given in Section 3.4.2. In fact , 
the operators on the right-hand side of (7.9) have the property t hat one of the vari­
ables is a parameter and , for each value of t his parameter , the operator has a certain 
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desirable property (like being the generator of a semigroup) with r spect to the other 
a variable. Thus, we also need to work wit h parameter-dependent operators that can 
be "glued"together in such a way that the resulting operator inherits the properties 
of the individual ones. A framework for such a technique was provided in Section 
3.4.2. According to that context , we consider here, the space X := Lp(V, X) where 
1 :S p < , (V, dm ) is a measure space and and X a Banach space. Then , we can take 
A= A , X = X1 = L1(N , X x) = L1 (A ,dµdc; ) = L1 (~3 x N, dµd c;) , where 

X x:= L1 (~3 , dx) := { 'lj; : ll 'l/J II = / l'l/J(x,n)ldx < oo}, 
JR3 

A is defined in (3 .15)- (3.16) and N is equipped with the counting measure de; and dµ = dx 
is the Lebesgue measure in ~ 3 . In X x, we define the operators (A n, D(A n)) as 

A np(t,x ,n) = an(x) p(t , x ,n), 

D(A n) := {Pn E X x, A nPn E X x}, n EN. 
(7.10) 

Obviously, (N, de;) is likened to (V, dm) , X x is likened to X and Av likened to A n in 
Proposition 3.4.1 , therefore, (An, D(An))nEN is a family of operator in X x and using 
(3. 16), we have 

(7.11) 

Theorem 7. 3. 2. There is an extension K of A+ B that generates a positive semigroup 
of contractions (SK(t ))t"20 on X 1 . Moreover, for each p = (Pn( x ))nEN E D(K) , there is 
a measurable representation p of SK(t) p which is absolutely continuous with respect to 
t ~ 0 for almost any (x, n) and such that (7.7) is satisfied almost everywhere. 

Proof. To prove the first part of the theorem , it is necessary to show t hat for each 
n E N, A n generates a positive semigroup of contractions. In fact, because the operator 
A n is a multiplication operator on X x induced by the measurable function a, it is closed 
and densely defined [3 ]. Also , for any>. > 0, it is obvious t hat >.I - A n is bijective and 
the resolvent R( >. , A n) of A n satisfies the estimate 

(7.12) 

for any 'lj; E X x. Furthermore , for any positive >. , the operator R(>. , A n) is non-negative. 
Therefore, (A n, D(A n)) generates a posit ive semigroup of contractions. Thus , by the 
relation (3. 17), we claim that (A , D (A)) also generates a posit ive semigroup of contrac­
tions. 

It is clear that (B , D (B )) is positive. Furthermore, for any p E D (A ), from the calcu-
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lations in the Lemma (7.3. 1) , we have II Ag lli = II Bglli and 

J (-Ap + Bp) dµd~ (7.13) 

A 

-1 L mam(Y)lg(y , m)jdy (7. 14) 
IR

3 
m = l 

+ /., ( ~ n m~ l /., a,,,(y)bn,m(y)h(x , n, m , y)lg(y, m)ldy) dx 

0. 

Thus, the a sumptions of Theorem 2.3.5 are satisfied. Therefore , t here is an extension K 
of A + B generating a substochastic semigroup (G K(t ))t~o- Let Kn be the n th component 
of K according to (7.11) and P roposition 3.4.1, then from (3. 17), it suffices to prove the 
assertions of the t heorem for each Kn, n E N. For any Pn E D(Kn) , t he function 
t-+ GKn(t)pn is a C 1-function in the norm of X x and satisfie the equation 

(7.15) 

where the equality holds for any t > 0 in the sense of equali ty in X x. The initial condit ion 
is satisfied in the following sense 

(7.16) 

where t he convergence is in t he X x-norm. 

In order to prove the second part of t his theorem we make use of t he theory of extensions 
and the t heory of L spaces [12]. Let 8 be the set of fini te alma t everywhere measurable 
functions defined on IR3

. Recall that 8 is a lattice with respect to the usual relation 
(:S almost everywhere) , X x C 8 and X x is a sublattice of 8 . We denote by (Xxh 
and 8 + the positive cones of X x and 8 respectively. For each n E N, we introduce the 
operator Dn defined such t hat for any nondecreasing sequence ('1/Jk)kE N in (Xx)+ with 
supkEN 1Pk = 'ljJ E 8 +, 

Dn'1/J := sup Bn1Pk· 
kEN 

(7.17) 

where Bn i given by lBp = (Bn):=1 defined in 7 .. Since Bn is an integral operator with 
positive kernel, Lebesgue's monotone convergence theorem yields that Dn = Bn. Thus, 
[12, Theorem 6.20] yields Kn C An+ Bn. Hence, GKn(t)pn satisfies 

(7.18) 

for each fixed t > 0, where the right hand side does not depend (in the sense of 
equality almost everywhere) on what representation of the solution G Kn ( t )Pn is con­
sidered. Making use of the fact t hat Xx is an L- pace , from [46, Theorem 3.4.2], we 
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have that since the function G KJ t )Pn is strongly differentiable, t here is a representat ion 
p(t, x, n) = Pn of G Kn (t)pn that is absolutely continuous with respect tot 2'. 0 for almost 
any (x ,n) E IR+ x IR3

, and that satisfies ftp(t , x ,n) = [;ftGKn(t)pn ] (x.n) for any t 2'. 0 
and almost any (x , n). Hence, taking this representation, we obtain that 

-an(X)Pn (7.19) 

+ f 1 am(y )bn,m(y)h(x , n, m , y) pm(y)dy 
m=n+ l IR

3 

holds almost everywhere on IR+ x IR3
. Moreover , the continuity of Pn with respect to 

t for almost every (x , n) shows t hat lim Pn = p(x , n) exists almost everywhere. From 
t➔O+ 

(7.16) we see that there is a sequence (tk)kEN converging to Osuch that lim p( tk, x , n) = 
k➔oo 

Pn(x, n) , for almost every (x , n ). Here, we can use the same representation as above 
because we are dealing with a ( countable) sequence. Indeed , changing the representation 
on a set of measure zero fo r each n and furt her taking the union of all these sets still 
produces a set of measure zero. Thus, Pn = Pn almost everywhere. D 

In general, for each n EN, t he function GKJt)pn is not differentiable if Pn E X x \ D(Kn)­
Therefore, it cannot be a classical solut ion of the Cauchy problem (7.1 5) , (7. 16). How­
ever , it is a mild solution. that is , it is a continuous function such that J; Pn( T )dT E D(J{ n) 
for any t 2'. 0, satisfying the integrated version of (7.15), (7 .1 6): 

Pn(t ) = Pn +Kn i t Pn( T) dT. (7.20) 

Corollary 7.3.3 . If Pn E X x\D(Kn) , then Pn = [GKn(t )pnJ(x,n) satisfies the equation 

p(t , x , n) = Pn (x , n) - an(x) i t p(T, x , n)dT (7.21) 

+ m~ l J., Um (y )bn,m(Y )h(x , n, m , y )Pm(Y) ([ p( 7 , Y, n )d,) dy 

Proof. Because Pn is continuous in the norm of X x· = L 1 (IR3
, dx) , we can use the fact that 

X x is of type L , see [12, Theorem 2.39], to claim that aan(x) fo p(T, x , n)dT is defined for 
almost any (x , n) and any t , and hence, we can write 

[(A n + Bn) i \(T)dT] (x, n) = -an(x) i \(T,x,n)dT (7.22) 

+ mf;.l J., am(y )bn,m(y) h(x, n, m, y)pm(Y) ([ p(7, y , n)d,) dy. 

Thus, combining t he result used in the previous theorem, that is, Kn C A n + Bn with 
(7.20), we obtain (7.21) and the proof ends. □ 

Next , we provide a fairly general condition for honesty of ( G Kn (t) )t>O· 
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7.4 Honesty 

Because the total number of individuals in a population is not modified by interaction 
(fragmentation) among groups , the following conservation law is supposed to be satisfied 
throughout the evolution: 

(7.23) 

00 

where U( t ) = I: Ju~3 n p(t , x , n)dx = I: n JIR3 p(t , x , n)dx is th tot al number of particle 
n= l n=l 

( total mass) in the system. This is formally expressed by ( 7. 5) as the mass rate equation 
can be found by multiplying (7.5) by n, integrating over IR.3 , summing from n = 1 to oo 
and using (7.3), which agrees wi th the physics of the process as fragmentation should 
simply rearrange the distribution of masses of the particles wi thout altering the total 
mass of the system. However , the validity of (7.23) depends on certain properties of the 
solut ion p that we t acit ly assumed during the integration and which are far from obvious. 
In fact, by analysing models with specific coeffi cients, several authors have observed that 
the local version of (7.23) is not valid [90] . In other words, there occurs an unexpected 
mass loss in t he system. In local fragmentation , the unaccounted for mass loss was 
termed shattering fragm entation ( defined in Chapter 6) and was attributed to the phase 
transit ion in which a dust of part icles with zero ize and non-zero mass is formed . The 
presence of x in (7.23) suggests that honesty in non-local discrete fragmentation depends 
also on the spatial propert ies of t he fragmentation kernels. In this section , we provide 
sufficient conditions for the discrete fr agmentat ion semigroup to be honest for general 
coefficients . 

Lemma 7.4.1. A ssume that fo r any p = (Pn)~=I E (X1)+ such that 
- Ap + Bp E X1 we have the inequality 

J (- Ap + Bp) dµd ~ ~ 0, 

A 

(7.24) 

and f or any Pn = (p)~=I E D (K )+- In other words, the sem igroup (GK (t))t 2'.0 is honest. 

Proof. The method employed is analogous to that used in [12 , Theorem 6. 22] . Assume 
that for any p = (Pn)~=l E (Xi) + such that - Ap + Bp E X 1 the inequali ty (7.24) holds, 
then we have 

-1 f n a(y, n )g (y , n) dy 
!R

3 n= l 

+ L (t n mt !]., a(y , m)bn,m(y)h(x , n , m , y)g(y , m)dy ) dx ~ 0. 

\ 
\, ~lJ 

ft ..., f"-:0: \ 
/J , -
'l,._ :;... ) Vo ai.::J 
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According to Proposition 3.4. 1 and [12, Theorem 6. 13 and 6.22], it suffices to show, for 
each n EN, that any fn(x ) = J( x . n) E Fn+ such that - fn + BnLfn E X x the fo llowing 
inequality holds, 

f 1 [Lfn](x)ndx + f 1 (- fn(x) + [BnLfn](x))ndx ~ 0, 
n = l IR 3 

n=l IR 3 

where Fn := { '!j; E 8 ; (1 + an) - 1 '1/J E X x}, L : (Fn)+ -+ X x is defined such that 
Lfn := (1 + an)- 1 fn and Bn is given by IBp = (BnPn) ':;:'= 1 defined in (7.8). Now, let 
fn E Fn+ such that - fn + BnLfn E X x, let us set 9n := Lfn, it is clear that 9n E (X x)+­
Furthermore, 

Since 9n satisfies the assumption then , 

f 1 [Lfn](x)ndx + f 1 (-J (x , n) + [BnLfn](x))ndx 
n = l IR3 

n = l IR3 

= f 1 (gn (x) - (1 + an(x))gn(x) + [Bngn](x))ndx 
n=l IR

3 

= f 1 (- an(x)gn(x) + [Bngn]( x))ndx ~ 0. 
n=l IR3 

The second part of the lemma follows from (7.23). □ 

Theorem 7.4.2. Assume that the condition (1. 1) is satisfied for almost all (x , n) E 
JR3 x N, that is 01an ::S: an(x) ::S: 02an , then the semigroup (GK(t))i 20 is honest. 

Proof. Using the previous lemma, it is enough to prove that for any p = (Pn)n=I E (X1)+ 
such that - Ap + Bp E X1 , the inequality J (-Ap + Bp) dµdc:; ~ 0 is satisfied. Then , 

J (-Ap + Bp) dµdc:; 

A 

A 

= f 1 ((- a(x , n )pn(x , n) + [BnPn](x))ndx) dx 
n=l IR

3 

= lim (t { -a(x, n)pn(x)ndx + t { [BnPn](x)ndx ) . 
N➔oo }JR3 }JR3 

n=l n = l 
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Also, according to (4.2) , 

N 

L 1 [BnPn](x)ndx 
n= l IR

3 

t n m~I L a(y. m)bn,m(Y) ( /., h(x, n , m, y)dx) Pm(y )dy 

J., (t n mt a(y , m)bn,m(Y)Pm(Y) ) dy. 

Furthermore, with reference to (7.3), we have for almost all y E IR3 

N oo 

L n L a(y , m)bn,m(Y)Pm(Y) 
n=l m=n+l 

N m - l 

m= l n = l 

N 

WN(Y) + L ma(y , m)pm(Y) , 
m=l 

where 
oo N 

W N(Y) = L L na(y , m)bn,m(Y)Pm(Y) 2:: 0. 
m=N+1 n=l 

Combining, for any N > 0, we obtain 

Therefore, 

L ( (-a(x. n)pn(x) + [BnPn](x))ndx = lim ( WN( y)dy 2:: 0, 
} ~ N➔ook3 

n= l 

and the theorem is proven. □ 
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7.5 Honesty in discrete, non-local and randomly po­
sition structured fragmentation model with un­
bounded rates 

As stated in the introduction , the conservation of total mass is not always satisfied in 
the system. In fact , by analysing models with pecific coefficients, several authors have 
observed that the local version of the conservation law (7.23) is not valid [90]. That 
was attributed to the phase transition in which a dust of particles with zero size and 
non-zero mass is formed (shattering). The previous theorem shows that when each 
discrete fragmentation rate an is bounded by a size-only dependent function , the spatial 
and random distribution of the particles has no influence on the conservativenes of 
the system. In other words , non-lo al discrete models with ach an(x) bounded as lxl 
approaches infinity always behave like local models, therefore, are conservative provided 
that the fragmentation rate an is bounded as n approaches zero. However , there is 
a major complication [12] that arises when, in the discrete case, each fragmentation 
rate an(x) becomes infinite as lxl is close to infinity. The next theorem gives sufficient 
conditions for conservativeness in that case. 

Theorem 7.5.1. Assume that fo r each n EN we have 

(7.25) 

and there exists K > 0 such that 

am(Y) f h(x , n , m , y )dx < K. 
J lxl>IYI 

(7.26) 

is satisfied for almost all ( x , m) E JR3 x N, then the semigroup (GK ( t) )t::'. 0 is honest. 

Proof. The proof is based on [12 , Theorem 6.13]. Let p = (Pn)~=l E (Xi)+, by 
(7.25), for any O < N1 < oo we have t hat anPn E L 1(B(O , Ni) , ndx) , where B(O , Ni) 
represents the ball {x E lR3 ; lxl :S Ni}. Because -Ap + Bp E X1 , we also have 
BnPn E L 1(B (O, Ni) , ndx). So, making use of Lemma?? , it is enough to prove that the 
inequality J (-Ap + Bp) dµdc; 2:: 0 is satisfied. Then, 

A 

j (-Ap + Bp) dµdc; = f 1
3 

(-a(x , n)pn(x) + [BnPn](x)) ndx 
A n=l IR 

= lim (t f -a(x , n)pn(x)ndx + t f [BnPn](x)ndx) . 
N,N1 ➔00 n=l J B (O ,N1) n=l J B (O ,N1 ) 
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We have 

N 

L 1 [BnPn](x )ndx 
n= l B (O ,N1) 

= t J.(O,N, ) C~, /., a,,,(y)bn,m(Y) (h(x , n , m , y)) Pm(y)dy) ndx 

where 

DO N 

Q(N, Ni )= L 1 L 1 am (y) bn,m(y)h(x , n , m , y)pm(y)ndxdy 2 0, 
m =N+l JR3 n=l B(O ,N1) 

with h defined by (4.2). It follows that 

N 

L 1 [BnPn](x )ndx 
n= l B (O,N1 ) 

CO: t. /., am(Y)Pm(Y) ( }; J.(O,N,) bn,m(y) h(x ,n,m,y)ndx) dy 

2 t 1 am(Y)Pm(Y) (~ 1 bn,m(y) h(x, n , m , y )ndx) dy . 
m= l B (O,N1) n= l B (O ,N1) 

Thus, 

N N 

L 1 [BnPn](x)ndx 2 L 1 am(Y)Pm(y)mdy 
n=l B(O.N1) m=l B (O,N1) 

-t 1 am(Y)Pm(Y) (~ 1 bn,m(y)h(x, n , m , y)ndx ) dy. 
m= l B (O,Ni) n=l lxl>N1 

Hence , 

N N 

L r (-a(x, n)pn(x))ndx + L r [BnPn](x)ndx 
n=l J B(O ,N1) n= l J B (O,N1) 

2 - t 1 am(Y)Pm(Y) (~ 1 bn,m(y)h(x , n , m , y)ndx ) dy. 
m= l B (O.N1) n=l lxl > N1 

Following the assumption (7.26) , for any y E B (O,N 1 ) , we have 

am(Y) { h(x, n , m, y)dx ~ am (Y) { h(x, n, m, y)dx < K. 
J lx l>N1 } lxl>IYI 
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Using (7.3), this implies that 

f { am(Y)Pm(Y) ('f { bn,m(y)h( x , n , m , y)ndx) dy 
m= l } B (O ,N1) n = l J lxl>N1 

'.o K ~ f. , Pm(Y) ( }; nbn,m(Y) ) dy 

::; K f 1 mpm(y)dy < 00. 

m=l IR! 3 

According to the dominated convergence theorem [21] and using (4.2) , 

lim t 1 am(Y)Pm(Y) (I: 1 bn,m(y) h(x , n , m , y)ndx) dy 
N ,Ni---,oo m= l B (O,N1) n = 1 lxl>N1 

= f 1 'f nam(Y)Pm(y)bn,m(Y) (1 - lim 1 h(x , n , m , y)dx ) dy 
m=l IR!3 n=l Ni ---,oo B (O ,N1) 

= 0. 

Therefore, 

f 1 (-a(x , n)pn(x) + [BnPn](x))ndx ~ 0, 
m=l IR!3 

which concludes t he proof. □ 

7 .6 Concluding remarks and discussion 

The processes of fragmentation with rates both finite and infinite at infinity have be n 
investigated by means of t he t heory of substochastic semigroups with a paramet er and 
parameter-dependent operators. We succeeded to combine a discrete model with a non­
local mult iple fragmentation process with fragmentation rate depending on size and 
posit ion and where new particles are spatially randomly distributed according a given 
probabili t ic law. We used Kato's Theorem and the dominated convergence theorem 
to get the main results here, that are conditions (7.25) and (7.26) which guarantee 
existence and conservativeness for t he non-local discrete model described above and 
where each fragmentation rate an(x) becomes infinite as lxl is close to infinity. The 
physical interpretation is that the process is conservative if at infinity, daughter particles 
tend to move back into the system with a high probability described by (7 .26). 



Chapter 8 

General Conclusion 

As we discussed ear lier in this study, fragmentation ( or coagulation) and transport pro­
cesses combined in the ame model are still barely touched in the domain of mathemat­
ical and abstract analysis. T he great achievement in this research was to explore less 
known aspects characterising the multiple combinat ion of mathemat ical models that arise 
in fragmentation-coagulation-transport (non-local or non-autonomous) t heory. Various 
techniques and methods were exploited throughout . In chapter 3, the theory of st rongly 
cont inuous semigroups of operators was used to analyse the well-posedness of an integro­
differential equation modelling convection-fragmentat ion processes, and in chapter 5, a 
similar analysis was repeated , but thi time for non-linear convection-coagulation models. 
We showed that the combined fragmentation ( or coagulat ion)-transportation operator 
is the infini tesimal generator of a strongly cont inuous stochastic semigroup , t hereby ad­
dressing the problem of existence of solutions for these models. Moreover , we est ablished 
the particulari t ies of conservativeness for the fragment ation process and uniqueness for 
the coagulation process. Non-local and non-autonomous fragmentat ion processes with 
transport dynamics wer analysed , by using an equivalent norm approach on one side, 
approximation and t runcation techniques on other side, to obtain a similar result of ex­
istence. These results are a prowess in the sense that , they generalize previous studies 
wit h the inclusion of the spat ial t ransport ation kernel which was not considered before. 

Another great feat of the present study was to address more concrete and applicable 
problems like 'Shat tering' or the effects of ocean iron ferti lisation on the evolution of the 
phytoplankton biomass. The former is known as the formation of a 'dust' of part icles 
of zero size carrying, nevertheless , a non-zero mass. We succeeded to derive an analytic 
expression for the resolvent of the fragmentation operator , hereby extending t he work 
by Banasiak et al. [14], where a similar problem was solved for fr agmentation with 
separable kernels) and which was an open problem in pure fragmentation theory. There­
fore, the resolvent can be used to derive the spectral properties of the fragmentation 
operat or , which fully explain the phenomenon of shattering. For the second problem 
concerning the analysis of effects of ocean iron fertilisation on the evolut ion of the phy­
toplankton biomass, mathematical and computational techniques were used to present a 

120 
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very efficient method to increase the world phytoplankton biomass. We clearly showed , 
analytically and with simulations t hat , raising t he level of marine iron too much above ( c 
does not present any technical advantage in the long run. Hence, we can conclude that 
iron hypothesis can be implemented in a very cost-effective way and produce impressive 
results. This result is also a prowess since the met hod can be recommended in fu ture 
use in order to systematically reduce t he effects of global warming. 

Final-ly we addressed the major problem that arises the process of discrete and non­
local aggregation when each fragmentation rate becomes infinite at infinity. After giving 
sufficient conditions for honesty, we demonstrated that even in discrete and non-local 
case , t he process is conservative if at infinity daughter particles tend to go back into the 
system with a high probability. 

Alt hough some progress have been made in the use of ( sub )stochastic semigroups tech­
niques to analyse and better understand t he evolution of (non-local or non-autonomous) 
fr agmentat ion ( or coagulation) dynamics in moving media, there are still many areas 
in which further investigation could prove frui t ful. For instance, the full identification 
of the generator and characterisation of its domain for the integro-differential equation 
modelling convect ion-fragmentation processes. This may help analyse in the same way a 
model with combined coagulation-fragmentation-transport-direction changing whose the 
full identification of the generator and characterisation of the domain is still ongoing. 
It would also be interesting to provide , in the context of non-local and non-autonomous 
fragmentation process , a reasonable physical interpretation of the phenomenon of 'shat­
tering'. The future will guide us. 
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