Detection of Atmospheric Water Vapour using the Global Positioning System

A.Z.A. Combrink

Dissertation submitted in partial fulfilment of the requirements for the degree Magister Scientiae in Physics at the Potchefstroomse Universiteit vir Christelike Hoër Onderwys

Supervisor: Dr. W.L. Combrinck
Co-supervisor: Prof. H. Moraal

2003
Potchefstroom
DEDICATION

This work is dedicated to my parents who, through love and hard work over many years ensured that I have only had the best opportunities available in life.

I would also like to thank Mariska for the support and encouragement that she gave me whilst I was writing this dissertation.

“And without controversy great is the mystery of godliness: God was manifest in the flesh, justified in the Spirit, seen of angels, preached unto the Gentiles, believed on in the world, received up into glory.”

1 Timothy 3:16.
ACKNOWLEDGEMENTS

I would like to express my gratitude to the following individuals whose support made this work possible:

- Dr. Ludwig Combrinck, the promoter of this project and programme leader of HartRAO’s Space Geodesy Programme, for teaching me all that I know about geodesy. It was only through his innovative approach to every problem that the success of this project was ensured.

- Prof. Harm Moraal of the Potchefstroom University for CHE, co-promoter of this project, for patiently working on this dissertation with me during his sabbatical.

- Richard Wonnacott, Chief Directorate: Surveys and Mapping, who made Trignet data available to me for use in my research.

- Tracey Gill at the South African Weather Service, who made radiosonde data available to me and who showed a keen interest in the results.

I would also like to acknowledge the support received from the National Research Foundation.
ABSTRACT

The Global Positioning System (GPS) has been used for more than a decade for the accurate determination of position on the earth's surface, as well as navigation. The system consists of approximately thirty satellites, managed by the US Department of Defense, orbiting at an altitude of 20 200 kilometres, as well as thousands of stationary ground-based and mobile receivers. It has become apparent from numerous studies that the delay of GPS signals in the atmosphere can also be used to study the atmosphere, particularly to determine the precipitable water vapour (PWV) content of the troposphere and the total electron content (TEC) of the ionosphere.

This dissertation gives an overview of the mechanisms that contribute to the delay of radio signals between satellites and receivers. The dissertation then focuses on software developed at the Hartebeesthoek Radio Astronomy Observatory's (HartRAO's) Space Geodesy Programme to estimate tropospheric delays (from which PWV is calculated) in near real-time. In addition an application of this technique, namely the improvement of tropospheric delay models used to process satellite laser ranging (SLR) data, is investigated. The dissertation concludes with a discussion of opportunities for future work.

KEY TERMS

Global Positioning System
zenith tropospheric delay
total electron content
precipitable water vapour
ionosphere
troposphere
WAARNEMING VAN ATMOSFERIESE WATERDAMP MET BEHULP VAN DIE GLOBALE POSISIONERINGSISTEEM

UITTREKSEL

Die Globale Posisioneringsisteem (GPS) word alreeds vir meer as 'n dekade gebruik vir akkurate navigasie en posisionering op die oppervlak van die aarde. Die sisteem bestaan uit ongeveer dertig satelliete wat om die aarde wentel op 'n hoogte van 20 200 kilometer, en word bestuur deur die Amerikaanse Departement van Verdediging. Verder sluit die sisteem ook duisende stasionele en mobiele ontvangers in. Verskeie studies het getoon dat die vertraging van GPS-seine in die atmosfeer gebruik kan word om die atmosfeer te bestudeer, in besonder om die presipiteerbare waterdampinhoud van die troposfeer en die totale elektroninhoud van die ionosfeer te bepaal.

Hierdie verhandeling lewer 'n oorsig oor die mekanismes wat bydra tot die vertraging van radioseine tussen satelliete en ontvangers. Die sagteware wat ontwikkel is deur die Hartebeesthoek Radio-astronomie Observatorium se Ruimtegeodesie Program om troposferiese vertraging (waaruit die presipiteerbare waterdampinhoud bereken word) enigds te bepaal, word ook bespreek. Die bereken presipiteerbare waterdampinhoud kan ook gebruik word om troposferiese vertragingsmodelle, wat gebruik word om satelliet-laserrekafstandsbeperking data te prosesseer, te verbeter. Hierdie tegniek word bespreek, en die verhandeling word afgesluit deur 'n oorsig van toekomstige navorsingsgeleenthede op hierdie gebied.

SLEUTELTERME

Globale Posisioneringsisteem
seniet troposferiese vertraging
 totale elektroninhoud
presipiteerbare waterdamp
ionosfeer
troposfeer
TABLE OF CONTENTS

Introduction and Background 1

1. The Global Positioning System (GPS) 3

2. The Propagation of Electromagnetic Waves in Matter 7
 2.1. The Tropospheric Delay 8
 2.2. The Ionospheric Delay 13

3. The Zenith Tropospheric Delay (ZTD) of Radio Waves 20
 3.1. Mapping Functions 25

4. The Acquisition and Processing of GPS Observational Data 27
 4.1. The Acquisition of GPS Observational Data 27
 4.2. The Processing of GPS Observational Data 29

5. Results of PWV Determination 30

6. An Application: Improving SLR Tropospheric Delay Models 38

7. The Square Kilometre Array in South Africa and the Surface-upgraded 26m Radio Telescope at HartRAO 47
 7.1. The Influence of Precipitable Water Vapour on Centimetre Wavelength Radio Astronomy 48
 7.2. The Influence of Free Electrons in the Ionosphere on VLBI Astrometry 49
 7.3. Results from the SKA Site Survey 49

Summary and Conclusions 55

Bibliography 58
LIST OF FIGURES AND TABLES

Figure 1: The two existing GPS networks in southern Africa are HartRAO's SADC IGS Network and the Chief Directorate: Surveys and Mapping's Trignet (Cilliers et al., 2003:52)...5

Figure 2: Profile of the earth's atmosphere (Robertson, 2003)..7

Figure 3: The electrons in a dielectric substance are pictured as if attached to the end of an imaginary spring, and driven by a varying electric field (Griffiths, 1999:400)...8

Figure 4: Anomalous dispersion and absorption in the frequency region of a resonance (Griffiths, 1999:403)..12

Table 1: Properties of the ionospheric layers (Medeiros, 2000)..14

Figure 5: Radio signals from a GPS satellite arrive at a ground-based receiver, from a direction with an associated elevation angle θ above the horizon, travelling along an electrical (true) path; for elevation angles greater than 15 degrees the electrical path can be approximated by the shortest geometric path G...................20

Figure 6: The Niell Mapping Function (NMF) for latitudes of 45 degrees (Niell, 1996:3230,3250)..26

Figure 7: A comparison of the Zenith Tropospheric Delay (ZTD) as calculated by HartRAO and IGS for the IGS GPS station HRAO; an arbitrary 20-day dataset was chosen..30

Figure 8: A comparison of the Zenith Tropospheric Delay (ZTD) as calculated by HartRAO and IGS for the IGS GPS station HRAO; the HartRAO estimates generally agree with the IGS post-processed estimates...31

Figure 9: The ZTD estimated over Africa and the surrounding oceans at 12:00 UT on day 154 of 2003. The isoline figure (top) shows the absolute tropospheric delay (in metres). Relative ZTD is represented in the bottom figure, where warmer colours represent less delay and cooler colours represent more delay....32

Figure 10: An isoline map of the zenith tropospheric delay over South Africa for 12:00 UT on day 154 of 2003..33
Figure 11: The distribution of precipitable water vapour (PWV) over South Africa at 12:00 UT on day 154 of 2003. The isoline map (top) shows the absolute PWV (in millimetres) while the colour-enhanced isoline map (bottom) shows the relative PWV, with cooler colours representing more, and warmer colours less, water vapour. These maps were generated from the estimated ZTD under the assumptions of hydrostatic equilibrium and uniform temperatures over the subcontinent.

Figure 12: A satellite image of the southern African subcontinent at 12:00 UT on day 154 of 2003 (obtained from http://www.eumetsat.de/, copyright © 2003 EUMETSAT).

Figure 13: A comparison of precipitable water vapour (PWV) for May 2003, obtained from GPS observations at Hartebeesthoek, and radiosondes launched at Irene, 50 km east of Hartebeesthoek. PWV is presented as a function of time in Figure A, while Figure B presents the correlation between GPS-derived and radiosonde-derived PWV.

Figure 14: The position time series of the MOBLAS6 satellite laser ranger at HartRAO, calculated using the standard Marini and Murray model.

Figure 15: The position time series of the MOBLAS6 satellite laser ranger at HartRAO, calculated using the new proposed strategy.

Table 2: A comparison of station velocities obtained by VLBI and two SLR processing strategies.

Figure 16: A comparison between the tropospheric delay as predicted by the Marini and Murray model and the new proposed strategy (Combrinck & Combrink, 2003).

Figure 17: Statistics of TEC values as determined by GPS over the period 1998-2003.

Figure 18: TEC values for a one week period during the April 2001 solar outburst indicates a negative ionospheric storm effect. A rapid recovery follows the day of the negative storm effect.

Figure 19: The partial solar eclipse of 4 December 2002 caused a small negative effect which has been circled in the figure.
Figure 20: Total electron content (TEC) during the 4 December 2002 partial solar eclipse, normalised to the average TEC of the two days prior and two days after the eclipse.
LIST OF KEY TERMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDSM</td>
<td>Chief Directorate: Surveys and Mapping</td>
</tr>
<tr>
<td>DoD</td>
<td>United States Department of Defense</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>EUMETSAT</td>
<td>European Organisation for the Exploitation of Meteorological Satellite</td>
</tr>
<tr>
<td>GFZ</td>
<td>GeoForschungsZentrum Potsdam</td>
</tr>
<tr>
<td>GIF</td>
<td>Graphic Interchange Format</td>
</tr>
<tr>
<td>GIMs</td>
<td>Global Ionospheric Maps</td>
</tr>
<tr>
<td>GLONASS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GMT</td>
<td>Generic Mapping Tools</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Positioning and Global Navigation Satellite Systems</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>HartRAO</td>
<td>Hartebeesthoek Radio Astronomy Observatory</td>
</tr>
<tr>
<td>IERS</td>
<td>International Earth Rotation Service</td>
</tr>
<tr>
<td>IGS</td>
<td>International GPS Service</td>
</tr>
<tr>
<td>ILRS</td>
<td>International Laser Ranging Service</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MOBLAS6</td>
<td>Mobile Laser Ranging System 6</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NMF</td>
<td>Niell Mapping Function</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NRCan</td>
<td>Natural Resources Canada</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PWV</td>
<td>Precipitable Water Vapour</td>
</tr>
<tr>
<td>RINEX</td>
<td>Receiver Independent Exchange Format</td>
</tr>
<tr>
<td>Riometer</td>
<td>Relative Ionospheric Opacity Meter</td>
</tr>
<tr>
<td>rms</td>
<td>Root mean square</td>
</tr>
<tr>
<td>SAAO</td>
<td>South African Astronomical Observatory</td>
</tr>
<tr>
<td>SAC</td>
<td>Satellite Application Centre</td>
</tr>
<tr>
<td>SADC</td>
<td>Southern African Development Community</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SAWs</td>
<td>South African Weather Service</td>
</tr>
<tr>
<td>SKA</td>
<td>Square Kilometre Array</td>
</tr>
<tr>
<td>SLR</td>
<td>Satellite Laser Ranging</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SOPAC</td>
<td>Scripps Orbit and Permanent Array Center</td>
</tr>
<tr>
<td>TEC</td>
<td>Total Electron Content</td>
</tr>
<tr>
<td>TECU</td>
<td>Total Electron Content Units</td>
</tr>
<tr>
<td>TEQC</td>
<td>Translate/Edit/Quality Check</td>
</tr>
<tr>
<td>USNO</td>
<td>United States Naval Observatory</td>
</tr>
<tr>
<td>UT</td>
<td>Universal Time</td>
</tr>
<tr>
<td>VLBI</td>
<td>Very Long Baseline Interferometry</td>
</tr>
<tr>
<td>ZTD</td>
<td>Zenith Tropospheric Delay</td>
</tr>
</tbody>
</table>
INTRODUCTION AND BACKGROUND

Radio astronomers, space geodesists and meteorologists all have an interest in the amount of water vapour in the atmosphere for various reasons. To the radio astronomer observing electromagnetic waves at the centimetre wavelength level, atmospheric water vapour is a nuisance, causing absorption and emission at these wavelengths, as discussed in Chapter 7. Atmospheric water vapour also causes satellites, used in space geodetic techniques, to appear further than they really are, as a result of the refraction of electromagnetic waves. Accurate measurements of water vapour enable radio astronomers and space geodesists to correct their observations by including it in tropospheric models.

Meteorologists bring atmospheric water vapour a little closer to the man in the street. The atmosphere's water vapour content is an extremely important parameter in numerical weather prediction. The high cost of radiosondes (weather balloons) – currently the only source of water vapour data – forced South African meteorologists to reduce the number of launches to approximately two per day, at a maximum of seven selected sites only (Cilliers et al., 2003:53).

The Global Positioning System (GPS), described in Chapter 1, offers a solution. If the position of a ground-based GPS station and the orbit of a GPS satellite is known, one can calculate how long it should take for a radio signal to travel between the two, assuming that the radio signal travels at the speed of light in vacuum. Refraction caused by the ionosphere and the troposphere results in a delay, as shown in Chapter 2. Chapter 3 concludes the theoretical component of this dissertation and shows how the precipitable water vapour (PWV) content of the troposphere can be obtained from this delay.

The research performed for the sake of this dissertation aims to determine whether it will be possible to determine PWV from observational GPS data, using the existing southern African GPS network, and the available processing software, discussed in Chapter 4, thus confirming the theory. The results obtained with the software, developed specifically with this research project in mind, are shown in Chapter 5. If it was shown to be feasible, a further aim would be to make the results available in
near real-time to anyone who wishes to use them in their applications, or to use the
results to solve existing problems in space geodesy or radio astronomy.

One application of the determination of PWV, namely the improvement of satellite
laser ranging (SLR) tropospheric models, is explored in Chapter 6. Chapter 7
explores some of the results and a summary is given of the site suitability survey
conducted for the South African Square Kilometre Array (SKA) Steering Committee.
The committee's intention is to include these results in their bid to build a new state-
of-the-art radio telescope in the Northern Cape. The dissertation concludes with a
summary and a short discussion of future work.
CHAPTER 1

THE GLOBAL POSITIONING SYSTEM (GPS)

GPS is a satellite-based radio navigation system, designed and controlled by the U.S. Department of Defense (DoD) in its NAVSTAR navigation satellite programme. In the 1970s DoD decided to create a space-based navigation system to save the costs associated with the navigation systems in use at that time (Hoffmann-Wellenhof et al., 1993:3). The first GPS satellite was launched in 1978.

There is also a Russian equivalent to GPS, called the Global Navigation Satellite System (GLONASS), from which signals have been received since 1996 (Borbás, 1997:262). The European equivalent, of which the first satellite is to be launched in 2005, is called GALILEO. GPS, GLONASS and GALILEO together form the GNSS, or Global Positioning and Global Navigation Satellite Systems (Cilliers et al., 2003:51). This research focuses specifically on GPS, since different equipment is needed to receive signals from GLONASS.

GPS consists of approximately thirty satellites, of which at least 24 are active at any given time. They are uniformly dispersed in six circular orbits, each with an inclination of 55° relative to the equatorial plane. They orbit at an altitude of approximately 20 200 km with an orbital period of 11.967 hours, or one half of a sidereal day (Cilliers et al., 2003:51).

The satellites transmit coded signals at two different carrier frequencies in the L-band. Denoted by L₁ and L₂, the frequencies are 1.57542 GHz and 1.22760 GHz respectively (Ros et al., 2000:357). A signal contains information about the satellite’s approximate position (broadcast ephemeris with an accuracy of ~260 cm (IGS, 2003)), as well as a time stamp of the time when the signal was emitted. In the case of the latter, GPS satellites carry accurate atomic clocks – also called “atomic time and frequency standards” (King, 2002) – for which relativistic corrections are made by an on-board computer.

The principles used to determine the location of a GPS receiver, are Einstein’s second postulate, namely that electromagnetic waves in vacuum propagate at the constant
speed \(c \), and triangulation. A GPS receiver receives digital signals like these continuously, and can then determine its position. The GPS processing software used for this research uses a technique called “double differencing” and is discussed in Section 4.2.

GPS was originally designed for military purposes. For this reason, a deliberate satellite clock bias – the so-called “selective availability” – was introduced to derate the accuracy of GPS for non-U.S. military users. On the 1st of May 2000 the selective availability was de-activated, because the value of GPS research, e.g. crustal dynamics, plate tectonics, GPS meteorology, TEC mapping and ocean level monitoring, which requires accurate data, became apparent (Ashby, 2002:47). Also, commercial users of GPS data had developed signal processing techniques using, among others, Kalman filtering to overcome the limitations introduced by selective availability.

High-precision geodetic measurements with GPS are performed using the carrier beat phase. This is the difference between the phase of the carrier wave of the signal received from the satellite, and the phase of a local oscillator within the receiver. The carrier beat phase can be measured with sufficient precision and results in the instrumental resolution being less than a millimetre in equivalent path length. The dominant source of error in a phase measurement between a single satellite and a single ground station is the unpredictable behaviour of the “time and frequency standards” (clocks) serving as reference for the transmitter and receiver (King, 2002).

For a single satellite, differencing the phases of signals, received simultaneously at each of two ground stations, eliminates the effect of bias or instabilities in the satellite clock. This measurement is commonly called the single-difference observable. A double difference is formed by differencing the between-station differences between satellites, to completely cancel the effects of variations in the station clocks.

Since the phase biases of the satellite and receiver oscillators at the initial epoch are eliminated in doubly-differenced observations, the doubly-differenced range is the measured phase plus an integer number of cycles. If the measurement errors – which may arise from mismodelled orbits, receiver noise or a poorly modelled propagation medium – are small compared to a cycle, it is possible to determine the integer values
of the biases. An unambiguous measure of doubly-differenced range is therefore obtained from the initially ambiguous doubly-differenced phase.

Two networks of dual-frequency GPS receivers, which can be used for geodetic purposes, exist in Southern Africa. Figure 1 shows the distribution of these stations. Ten stations, set up by HartRAO's Space Geodesy Programme in collaboration with JPL (NASA's Jet Propulsion Laboratory), NRCan (Natural Resources Canada), NOAA (National Oceanic and Atmospheric Administration, US Department of Commerce) and GFZ Potsdam (GeoForschungZentrum), form the SADC (Southern African Development Community) IGS (International GPS Service) network. Trignet, consisting of approximately thirty stations, is the network set up and maintained by the Chief Directorate: Surveys and Mapping (CDSM). Section 4.1 will indicate which stations' data were used for near real-time processing.

![Figure 1: The two existing GPS networks in southern Africa are HartRAO's SADC IGS Network and the Chief Directorate: Surveys and Mapping's Trignet (Cilliers et al., 2003:52).](image)

The positions of these GPS receivers have been accurately pinpointed (to the millimetre level). Assuming that we also know the orbits that the satellites follow, we can calculate from Einstein's second postulate how long it should take for radio
signals to travel the distance between a specific satellite and receiver. However, as the radio signals travel through the atmosphere, they undergo refraction and delay relative to the propagation time in vacuum due to the phase velocity differing from that in free space. As a result of the refraction they do not travel in a straight line and do not travel at the speed of light (c). However, the increased path length due to the refraction is negligible compared to the apparent increase in path length due to the different phase velocity. Therefore, in the next chapter we will consider the transport of electromagnetic waves in matter, and in Chapter 3 we will indicate how the delay experienced by a radio wave in the troposphere can be used to estimate the atmospheric water vapour content.
CHAPTER 2

THE PROPAGATION OF ELECTROMAGNETIC WAVES IN MATTER

A medium’s index of refraction is defined as $n = c/v$, with c the speed of an electromagnetic wave in vacuum and v the phase velocity of the wave in the medium. It is well known that n depends on the frequency of the electromagnetic wave—a phenomenon known as dispersion. This chapter deals with the index of refraction of the atmosphere.

Figure 2 shows the different layers (spheres) that make up the earth’s atmosphere. For our purposes, we divide the atmosphere into two parts:

- The neutral part, termed the troposphere. It actually includes the troposphere, stratosphere, ozonosphere and the lower part of the mesosphere. It extends over altitudes of 0 – 70 km; and

- The charged part, which is called the ionosphere, made up of the upper mesosphere and the thermosphere, and with altitudes above 70 km.

![Figure 2: Profile of the earth’s atmosphere (Robertson, 2003).](image-url)
The refractivity (and the resultant delay) of each of these parts of the atmosphere will now be derived from first principles.

2.1. The Tropospheric Delay

In this section we make a model of dispersion that takes place on atomic scale. We follow the derivation by Griffiths (1999:398-404), which is only an approximation of the quantum mechanical model, but yields satisfactory results nevertheless.

The electrons in a dielectric substance are bound to specific molecules. We shall picture each electron as attached to the end of an imaginary spring, with force constant \(k_{\text{spring}} \), so that \(F_{\text{binding}} = -k_{\text{spring}} x = -m\omega_0^2 x \) is the centrifugal force acting on the electron as it orbits the atom's nucleus, with \(x \) being the displacement from equilibrium, \(m \) the mass of the electron and \(\omega_0 = \sqrt{k_{\text{spring}}/m} \) the natural oscillation frequency, as shown in Figure 3.

![Electron](image)

Figure 3: The electrons in a dielectric substance are pictured as if attached to the end of an imaginary spring, and driven by a varying electric field (Griffiths, 1999:400).

The electrons will also experience a damping force \(F_{\text{damping}} = -m\gamma (dx/dt) \), with \(\gamma \) a damping coefficient and where the negative sign follows from the fact that the force is in the direction opposite to the velocity of the electron. This damping is a result of the
fact that oscillating charges radiate electromagnetic waves, carrying off energy with them.

In the presence of an electromagnetic wave of frequency ω, polarised in the x-direction, there is a driving force $F_{\text{driving}} = gE = qE_0 \cos(\omega t)$ acting on the electron, with q the charge of the electron and E_0 the amplitude of the wave.

Newton’s second law now states

$$ m \frac{d^2 x}{dt^2} = F_{\text{total}} = F_{\text{binding}} + F_{\text{damping}} + F_{\text{driving}} $$

or

$$ m \frac{d^2 x}{dt^2} + m\gamma \frac{dx}{dt} + m\omega_0^2 x = qE_0 \cos(\omega t). \tag{1} $$

This model describes the electron as a damped harmonic oscillator, driven at frequency ω.

Consider (1) as the real part of the complex equation

$$ \frac{d^2 \tilde{x}}{dt^2} + \gamma \frac{d\tilde{x}}{dt} + \omega_0^2 \tilde{x} = \frac{q}{m} E_0 e^{-i\omega t}. $$

In the steady state, the system oscillates at the driving frequency ω

$$ \tilde{x}(t) = \tilde{x}_0 e^{-i\omega t}. $$

Placing this in (1), it follows that $\tilde{x}_0 = \frac{q/m}{\omega_0^2 - \omega^2 - i\gamma \omega} E_0$.

The dipole moment (defined as $p = qx$) is the real part of

$$ \tilde{p}(t) = q\tilde{x}(t) = \frac{q^2/m}{\omega_0^2 - \omega^2 - i\gamma \omega} E_0 e^{-i\omega t}. $$

Electrons in the same molecule that have different orientations will, of course, experience different damping coefficients and natural frequencies. Assume that there are f_j electrons with frequency ω_j and damping coefficient γ in each molecule. If there are N molecules per unit volume, the polarisation (defined as dipole moment per unit volume) will be given by the real part of
Because of the phase difference between \(\vec{P} \) and \(\vec{E} \) we have to define a complex susceptibility by

\[
\vec{P} = \varepsilon_0 \chi_e \vec{E}.
\]

The permittivity of the substance is defined as \(\varepsilon = \varepsilon_0 (1 + \chi_e) \), while the dielectric constant is defined as \(\varepsilon_r = \varepsilon / \varepsilon_0 \). For this model it implies that

\[
\varepsilon = \varepsilon_0 (1 + \chi_e)
\]

and

\[
\varepsilon_r = 1 + \frac{Nq^2}{m\varepsilon_0} \sum_j \frac{f_j}{\omega_0^2 - \omega^2 - i\gamma_j\omega}.
\]

In a dispersive medium the wave equation for a given frequency is

\[
\nabla^2 \vec{E} = \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2},
\]

with \(\mu_0 \) the permeability of vacuum. It admits plane wave solutions of the form

\[
\vec{E}(z,t) = \vec{E}_0 e^{i(kz - \omega t)},
\]

with complex wave number

\[
\tilde{k} = \sqrt{\varepsilon \mu_0 \omega}.
\]

We can also write the complex wave number in terms of real and imaginary components:

\[
\tilde{k} = k + ik.
\]

Using (5), expression (3) now becomes \(\vec{E}(z,t) = \vec{E}_0 e^{-\kappa} e^{i(kz - \omega t)} \), indicating that the wave is being damped.

The power of the electromagnetic wave is proportional to \(\vec{E}^2 \), and therefore also to \(e^{-2\kappa} \). Consequently, the quantity
\[\alpha = 2 \kappa \] \hspace{1cm} (6)

is called the absorption coefficient. Furthermore, the phase velocity is \(\omega k \), and the index of refraction is

\[n = ck/\omega. \] \hspace{1cm} (7)

For gases, as in the case of the troposphere, the second term of the complex dielectric constant is small. Using equation (2), expression (4) and the binomial expansion \(\sqrt{1 + x} \equiv 1 + \frac{1}{2} x \), we can write

\[\tilde{k} = \frac{\omega}{c} \sqrt{\varepsilon_r} \equiv \frac{\omega}{c} \left[1 + \frac{Nq^2}{2m\varepsilon_0} \sum \frac{f_j}{\omega_j^2 - \omega^2 - i\gamma_j \omega} \right], \]

so that it follows from (5) and (7) that

\[n = \frac{ck}{\omega} \equiv 1 + \frac{Nq^2}{2m\varepsilon_0} \sum \frac{f_j (\omega_j^2 - \omega^2)}{\omega_j^2 - \omega^2 + \gamma_j^2 \omega^2} \] \hspace{1cm} (8)

and from (6) follows

\[\alpha = 2 \kappa \equiv \frac{Nq^2 \omega}{m\varepsilon_0 c} \sum \frac{f_j \gamma_j}{(\omega_j^2 - \omega^2)^2 + \gamma_j^2 \omega^2}. \]

The index of refraction rises gradually with increasing frequency, except in the vicinity of a resonance \(\omega = \omega_j \), where it drops sharply, as shown in Figure 4. The resonances are caused by electrons being driven at specific (resonance) frequencies, which correspond to relatively large amplitudes and, consequently, the dissipation of large amounts of energy due to the damping mechanism. Therefore, the resonances also coincide with frequencies of maximum absorption. This atypical behaviour in the vicinity of a resonance is called anomalous dispersion.
In this study we consider radio and optical waves. In the troposphere we find that the natural frequencies, ω_j, typically occur at ultraviolet and higher frequencies, and also between the deep infrared and submillimetre wavelength-level, which explains why the atmosphere appears to be opaque at these frequencies. Therefore, in the case of the optical and radio frequencies we can ignore damping and reduce (8) to

$$n = 1 + \frac{Nq^2}{2m\epsilon_0} \sum_j \frac{f_j}{\omega_j^2 - \omega^2}.$$ \hspace{1cm} (9)

Since $\omega << \omega_j$, we now write

$$\frac{1}{\omega_j^2 - \omega^2} = \frac{1}{\omega_j^2} \left(1 - \frac{\omega^2}{\omega_j^2}\right)^{-1} \approx \frac{1}{\omega_j^2} \left(1 + \frac{\omega^2}{\omega_j^2}\right),$$

so that (9) can be written as

$$n = 1 + \left(\frac{Nq^2}{2m\epsilon_0} \sum_j \frac{f_j}{\omega_j^4}\right) + \omega^2 \left(\frac{Nq^2}{2m\epsilon_0} \sum_j \frac{f_j}{\omega_j^4}\right).$$

We can also write this in terms of wavelength ($\lambda = 2\pi c/\omega$):
\[n = 1 + N_n \left(1 + \frac{B}{\lambda^2} \right). \]

(10)

This is known as the Cauchy equation, with \(N_n \) the refractivity and \(B \) the dispersion coefficient. \(B \) was found to be \(1.7 \times 10^{-14} \text{ m}^2 \) for the atmosphere (Riepl & Schlüter, 2000).

Optical wavelengths are typically of the order of \(\sim 5.0 \times 10^{-7} \text{ m} \), so that \(\lambda^2 \) is comparable to \(B \); \(N_n \) is typically of the order of \(\sim 0.4 \) for air. Cauchy's equation (10) applies reasonably well to most gases in the optical region (Griffiths, 1999:404). One can therefore conclude that the transport of optical waves in the troposphere is dispersive.

The typical radio wavelengths we consider are of the order of \(\sim 0.2 \text{ m} \) (L-band), so that \(\frac{B}{\lambda^2} << 1 \), and consequently \(N_n = n - 1 \). Thus we can conclude that the propagation of radio waves in the troposphere is non-dispersive.

In the troposphere \(n > 1 \) for both the radio and optical cases; from the definition of the index of refraction \((n = c/\nu) \) follows that an electromagnetic wave traversing the atmosphere will experience a delay (or longer apparent path length) relative to the propagation time (or apparent path length) of the same wave in vacuum, if the propagation velocity is assumed to be \(c \) in both cases. Consequently, we will explore the delay of radio waves in the troposphere in Chapter 3, and the tropospheric delay of optical waves in Chapter 6.

2.2. The Ionospheric Delay

The ionosphere is the upper, partially charged part of the atmosphere, which is responsible for the absorption and reflection of radio waves at low frequencies (generally below 25 MHz). Atoms in the upper atmosphere are ionised by absorbing radiation energy from the sun - the electrons gain kinetic energy and are displaced from their orbits around the nucleus. Free electrons and ions in the ionosphere continuously recombine, so that only a fraction of the ionosphere is charged at any given time.
The ionosphere has traditionally been split up into three layers, D, E and F, which are classified according to altitude, maximum reflected radio frequency and the most dominant chemical component (Medeiros, 2000). During the daytime, when ionisation from solar radiation is at a maximum, the F layer splits up into two layers, namely the F1 and F2 layers. Table 1 gives a summary of the basic characteristics of the ionospheric layers; the altitudes and maximum reflected radio frequencies are averages of quantities that vary with time (these quantities are dependent on season, time of day and solar activity, also discussed in Chapter 7).

Table 1: Properties of the ionospheric layers (Medeiros, 2000).

<table>
<thead>
<tr>
<th>Layer</th>
<th>Altitude (km)</th>
<th>Maximum reflected frequency (MHz)</th>
<th>Most representative chemical component</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>65 – 80</td>
<td>16</td>
<td>Ozone</td>
</tr>
<tr>
<td>E</td>
<td>80 – 115</td>
<td>28</td>
<td>Oxygen</td>
</tr>
<tr>
<td>F</td>
<td>140 – 250 (F1)</td>
<td>16</td>
<td>Nitrogen (F1)</td>
</tr>
<tr>
<td></td>
<td>250 – 400 (F2)</td>
<td></td>
<td>Oxygen (F2)</td>
</tr>
</tbody>
</table>

The ionosphere is characterised by its content of free electrons and ions. The F2 layer of the ionosphere has the largest density of charged particles, with values up to $3 \times 10^{12} \text{ m}^{-3}$ (Ros et al., 2000:357).

The total electron content (TEC) is defined as the number of electrons in a column of unit area cross section along the transionospheric ray path, written as

$$E_r = \int_{h_0}^h N \, dh,$$

where N is the spatial density of electrons, h is the coordinate of propagation of the wave, and h_0 corresponds to the effective top of the ionosphere.

TEC is highly variable and depends on several factors, such as local time, geographical location (latitude in particular), season and solar activity. TEC can have values between 1 TECU (or TEC unit, defined as 10^{16} m^{-2}) and 10^3 TECU (Ros et al., 2000:357).
Because the ionosphere is partially charged, we would expect that the propagation of electromagnetic waves would differ drastically from the tropospheric case. Therefore, in this section we derive the refractivity of the ionosphere, following Chen (1984:114-116) and Choudhuri (1998:239-243), neglecting the effects of electron collisions and the Earth’s magnetic field on wave propagation.

Free electrons in the ionosphere interact with electromagnetic waves travelling through the ionosphere. Maxwell’s equations state

\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \]

(12)

\[\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}. \]

(13)

\(\mathbf{E} \) and \(\mathbf{B} \) are the electric and magnetic components of the electromagnetic waves respectively, and \(\mathbf{J} \) is the resulting current density.

The curl of (12) is

\[\nabla \times (\nabla \times \mathbf{E}) = \nabla (\nabla \cdot \mathbf{E}) - \nabla \mathbf{B} = -\nabla \times \frac{\partial \mathbf{B}}{\partial t}, \]

(14)

while the time derivative of (13) is

\[\nabla \times \frac{\partial \mathbf{B}}{\partial t} = \mu_0 \frac{\partial \mathbf{J}}{\partial t} + \mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}. \]

(15)

From (14) and (15) it follows that

\[\nabla^2 \mathbf{E} - \nabla (\nabla \cdot \mathbf{E}) = \mu_0 \frac{\partial \mathbf{J}}{\partial t} + \mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}. \]

(16)

Assuming that the electromagnetic waves have an \(e^{ikr-\omega t} \) dependence, it follows from (16) that

\[k^2 \mathbf{E} - \mathbf{k} (\mathbf{k} \cdot \mathbf{E}) = i\omega \mu_0 \mathbf{J} + \omega^2 \mu_0 \varepsilon_0 \mathbf{E}. \]

(17)

Electromagnetic waves are transverse in nature, so that \(\mathbf{k} \cdot \mathbf{E} = 0 \), and (17) becomes

\[(\omega^2 - c^2 k^2) \mathbf{E} = \frac{-i\omega}{\varepsilon_0} \mathbf{J}. \]

(18)

Electromagnetic waves in both the radio and optical regions have such high frequencies that the ions can be considered as fixed; comparing their inertial mass to those of electrons, we expect that the motion of electrons will be the only source of current:

\[\mathbf{J} = -n_0 e \mathbf{v}, \]

(19)
with $-e$ the charge of an electron, n_0 the number density of electrons and v their velocity.

Newton's second law states $m \frac{dv}{dt} = -eE$; from the assumption that the waves have an $e^{i(kr - \omega t)}$ dependence, follows $v = -\frac{eE}{im\omega}$. Combining (18) and (19), it follows that

$$ (\omega^2 - c^2 k^2)E = \frac{n_0 e^2}{\varepsilon_0 m} . \quad (20) $$

The plasma frequency is defined as $\omega_p^2 = \frac{n_0 e^2}{\varepsilon_0 m}$. From (20) we then obtain the dispersion relation

$$ \omega^2 = \omega_p^2 + c^2 k^2 . \quad (21) $$

One can also write this as $ck = \omega \sqrt{1 + \left(\frac{\omega_p}{\omega}\right)^2}$. From (21) and the definition of the phase velocity, $v_{\text{phase}} = \frac{\omega}{k}$, follows $v_{\text{phase}}^2 = c^2 + \omega_p^2 / k^2 > c^2$; i.e. the phase velocity of an electromagnetic wave in the ionosphere is greater than c. The definition of group velocity, $v_{\text{group}} = \frac{\partial \omega}{\partial k}$, and (21) leads to $v_{\text{group}} = \frac{kc^2}{\omega} = \frac{c^2}{v_{\text{phase}}} < c$, showing that the group velocity of an electromagnetic wave in the ionosphere is less than c. The effects of the ionosphere on microwaves are therefore referred to as phase advance and group delay; the latter can be defined as the rate of change of the phase shift with respect to the frequency through a medium.

Per definition the relationship between ω and k is given by $\omega(k) = \frac{ck}{n(k)}$. Group velocity can then also be expressed in the general form

$$ v_{\text{group}} = \frac{\partial}{\partial k} \left(\frac{ck}{n(k)} \right) = \frac{c}{n(\omega) + \omega(\frac{dn(\omega)}{d\omega})} , $$

where $n(\omega)$ is the conventional index of refraction as depicted in Figure 4 (in Section 2.1). Furthermore, from Figure 4 it is evident that $(dn/d\omega) > 0$ and $n > 1$ for normal dispersion, while $(dn/d\omega)$ can also become large and negative in the vicinity of a resonance. The ionosphere is transparent in both the optical and radio frequencies, so that one would expect normal
dispersion at these frequencies because of the absence of resonances. This argument also confirms that the group velocity of optical and radio waves in the ionosphere should be less than c and that the group refractivity should be positive.

Consequently, two indices of refraction can be defined: the conventional (phase) index of refraction, $n_p = \frac{c}{v_{\text{phase}}}$, as depicted in Figure 4, and the group index of refraction, $n_g = \frac{c}{v_{\text{group}}}$. Therefore,

$$n = \sqrt{1 \pm \left(\frac{\omega_p}{\omega} \right)^2},$$

(22)

where the negative sign applies to phase velocities and the positive sign to group velocities. From (22) it is clear that $n_p = 0$ at $\omega = \omega_p$; therefore, k becomes zero and the wavelength of the electromagnetic wave becomes infinitely long in this limit. Thus, ω_p is a cut-off frequency, so that no electromagnetic waves below this frequency can propagate through the ionosphere.

For the radio frequencies used for GPS communication (1.2 and 1.6 GHz) and the optical frequencies used for satellite laser ranging (2.8×10^{14} Hz to 4.3×10^{14} Hz), $\frac{\omega_p}{\omega} \ll 1$ and $\frac{\omega_p}{\omega} \ll 1$ respectively, and by means of the binomial expansion $\sqrt{1 \pm \epsilon} \approx 1 \pm \frac{1}{2} \epsilon$, (22) becomes

$$n \approx 1 \pm \frac{1}{2} \frac{\omega_p^2}{\omega^2} \quad \text{(radio)} \quad \text{and} \quad n \equiv 1 \quad \text{(optical)}.$$

(23)

Defining the refractivity of the ionosphere as $N_e = n - 1$, we obtain

$$N_e \equiv 1 + \frac{1}{2} \frac{\omega_p^2}{\omega^2} = 40.3 \text{ Hz}^2 \text{m}^3 \frac{4}{f^2} n_0$$

(24)

for the case of radio waves. In the ionosphere n_0 is typically of the order of 10^{12} m$^{-3}$, so that the refractivity of a 1.6 GHz GPS signal in the ionosphere is typically $N_e = 4 \times 1.6 \times 10^{-5}$.

For vertical incidence of radio waves, the correction to the path distance of the waves, i.e. the experienced delay through the ionosphere, is defined as
with z the coordinate of propagation.

Thus the vertical path correction for the ionosphere is given by

$$\Delta L_z = \int_0^z N_e(z) \, dz,$$

with E_T the so-called "total electron content" in m$^{-2}$ (Lynn and Gubbay, 1975:8), as defined in (11). As seen in Chapter 7, a typical value of the TEC is 50 TECU=5×10^{17} m$^{-2}$, so that the experienced ionospheric delay of a 1.6 GHz GPS signal is ~ 8 m.

From (26) one can determine that the path correction is proportional to the total electron content (TEC), and inversely proportional to the square of the frequency of the incoming electromagnetic wave. It is also apparent from (23) that the transport of optical waves in the ionosphere is non-dispersive, while the transport of radio waves in the ionosphere is dispersive.

GPS satellites emit signals at two frequencies, namely 1.57542 GHz (L$_1$) and 1.22760 GHz (L$_2$). The refractivity for the L$_2$ signal is a factor $(1.57542/1.22760)^2 = 1.65$ larger than for the L$_1$ signal.

It is therefore easy to correct for the ionospheric delay using the following argument: the GPS receiver measures a time difference Δt between the propagation delays of the L$_1$ and L$_2$ signals, relative to vacuum propagation times over the direct path between the satellite and the receiver. As shown above, the ionospheric time delay of the L$_2$ signal is a factor 1.65 larger, so that $\Delta t_2/\Delta t_1 = 1.65$. From the measured time difference $\Delta t = \Delta t_2 - \Delta t_1$ follows $\Delta t_1 = \Delta t / 0.65$ and $\Delta t_2 = 1.65 \Delta t / 0.65$. These ionospheric corrections are being done very accurately, to the submillimetre-level in path length, by GPS processing software such as GAMIT (Combrinck W.L., personal communication, 2003), which is discussed in Section 4.2.
It should be noted that the accuracy of ionospheric corrections determines the accuracy of zenith tropospheric delay (ZTD) estimations. The determination of TEC is therefore relevant to the determination of ZTD and tropospheric precipitable water vapour (PWV) content from GPS data.
The index of refraction for radio waves in the troposphere is always greater than 1 (per definition equals 1 for vacuum), as can be seen from expression (10). These waves traversing the troposphere experience a resulting delay, which appears to add up to ~2 metres to the path length of the waves; this is \(\sim 10^{-5}\% \) of the total path length of 20200 km.

We now determine the delay of an incoming radio wave in terms of the apparent length added to the signal's path. Take \(\Delta L(\theta) \) to be the geometric delay (or additional apparent path length) of the radio wave, with \(\theta \) the elevation angle of the direction from which the wave arrives, as shown in Figure 5. Let \(S \) be the true path along which the radio wave propagates and \(G \) the shortest geometric path along which the signal would traverse if \(n = 1 \). Then

\[
\Delta L(\theta) = \int_S nds - G = \int_S (n-1)ds + (S-G).
\]

Figure 5: Radio signals from a GPS satellite arrive at a ground-based receiver, from a direction with an associated elevation angle \(\theta \) above the horizon, travelling along an electrical (true) path; for elevation angles greater than 15 degrees the electrical path can be approximated by the shortest geometric path \(G \).

The first term of (27) refers to the delay of a signal due to its reduced speed in the troposphere, while the second term refers to the geometric delay due to the bending of
the signal, which can be neglected for elevation angles greater than 15° (Gradinarsky, 2000:12). We can therefore approximate $S = \int sd = G$.

The tropospheric zenith delay, conventionally abbreviated as ZTD, is one of the quantities estimated by the GPS processing software discussed in Section 4.2, and can be defined as $\Delta L = \Delta L(90°)$. The focus now shifts to the contributions of water vapour and the "dry" gases to the zenith delay, and in Section 3.1, we will look at techniques to map the zenith delay to a real measured delay.

In parts per million (ppm) notation, the refractivity can be written as $N = 10^6(n-1)$, so that (27) becomes

$$\Delta L = 10^{-6} \int_S N(s) ds.$$ \hspace{1cm} (28)

We now calculate N and the consequent delay experienced by a radio wave in the troposphere as a function of the precipitable water vapour content (PWV) of the troposphere, and pressure and temperature measured at ground level. This will enable us to estimate PWV from the pressure, the temperature and the delay of a radio wave measured at ground level.

For the troposphere, consisting of, say, q gases, the delay depends on the density ρ_i of each gas. Following Gradinarsky (2000:12) we write

$$N = \sum_{i=1}^{q} \rho_i (A_i + B_i/T),$$ \hspace{1cm} (29)

as first derived by Debye (1929:30-35). T is the temperature and A_i and B_i are constants for each gas. In the case of monatomic and diatomic gasses, which account for the biggest part of the atmosphere, $B_i = 0$. However, this is not the case for H$_2$O, because of its permanent dipole moment. (As in Chapter 2, the dipole moment of a pair of opposite charges of magnitude q is defined as the magnitude of the charge multiplied by the distance between the charges, and the defined direction is toward the positive charge.) In his classical work, Debye (1929:30-35) gives a quantitative explanation for the temperature dependence of water's coefficient of refraction. The temperature dependence can also be understood qualitatively, as explained in the following argument: For higher temperatures, the average distance between atoms in water molecules increases. Therefore, the dipole moment and volume per molecule
increase with temperature. Let the temperature dependence of the average distance between the atoms be expressed by $d \propto T^s$, so that the polarisation $P \propto T^{-2a}$, because the dipole moment $p \propto d$ and volume $V \propto d^3$. Consequently, the relative permittivity $\varepsilon_r \propto T^{-2a}$ and the refractivity will decrease as the temperature T increases.

This means that, because the water molecules are permanent electric dipoles, we will have to treat atmospheric water vapour and the "dry" gasses in the atmosphere, separately.

The equation of state for the atmosphere's ith component, with Z_i the dimensionless compressibility, is $p_iV = Z_i n_i R_i T$, where the gas constant of the ith component is defined as $R_i = R/M_i$, with $R = 8.31\text{J.K}^{-1}\cdot\text{mol}^{-1}$ the universal gas constant and M_i the molar mass, and all other symbols have their normal meaning. Using $\rho_i = n_i/V$, it is clear that

$$\rho_i = \frac{p_i}{Z_i R_i T}.$$ (30)

From (29) and (30) follows that the refractivity is

$$N = \sum_{\text{dry}} \left(A_i p_i / Z_i R_i T \right) + \left(A_{\text{mix}} p_w / Z_w R_{\text{mix}} T \right) + \left(B_{\text{mix}} p_w / Z_w R_{\text{mix}} T^2 \right),$$

where distinction has been made between water vapour and the dry gasses. This can also be expressed as

$$N = k_1 \frac{p_d}{T} Z_d^{-1} + k_2 \frac{p_w}{T} Z_w^{-1} + k_3 \frac{p_w}{T^2} Z_w^{-1},$$ (31)

with k_i constants, p_d and p_w the partial pressure of the dry and wet components respectively (Emardson, 1998:5). The first term of (31) can be written in terms of the total density, $\rho = \rho_{\text{dry}} + \rho_{\text{wet}}$. Defining $k'_2 = k_2 - k_1 \frac{M_{\text{mix}}}{M_{\text{dry}}}$, with M_{mix} and M_{dry} the molar masses of the water vapour and dry air respectively, (31) becomes

$$N = k_1 R_d \rho + k'_2 \frac{p_w}{T} Z_w^{-1} + k_3 \frac{p_w}{T^2} Z_w^{-1}.$$ (32)

It is assumed that the condition of hydrostatic equilibrium,

$$\frac{dp}{dz} = -\rho(z) g(z),$$ (33)
is satisfied, with \(g(z) \) the gravitational acceleration and \(\rho(z) \) the mass density at a height \(z \), and \(p \) the total pressure. The first term of (32), which is the hydrostatic component of \(N \), can now be written as

\[
N_h = k_1 R_p \rho.
\]

(34)

From (28), (33) and (34) the hydrostatic delay is then expressed as:

\[
\Delta L_h = 10^{-6} \int_s N_h ds = 10^{-6} \int_s k_1 R_p \rho(z) dz = 10^{-6} k_1 R_p p_0 g_m^{-1},
\]

(35)

with \(p_0 \) the total pressure and \(g_m \) the gravitational acceleration at the centre of mass of the vertical column. According to the model proposed by Saastamoinen (1972:250),

\[
g_m = 9.8062(1 - 0.00266 \cos 2\lambda - 2.8 \times 10^{-7} H) \text{m.s}^{-2},
\]

with \(\lambda \) the latitude and \(H \) the height (in metres) above the ellipsoid.

In Davis et al. (1985:1603) we find the values of the following constants:

\[
k_1 = 77.604 \pm 0.014 \text{K/mbar} \quad \text{and} \quad M_d = 28.9644 \pm 0.0014 \text{g/mol}.
\]

Substituting this into (33), we obtain the hydrostatic delay (in metres)

\[
\Delta L_h = \frac{p_0}{f(\lambda, H)},
\]

where

\[
f(\lambda, H) = 1 - 2.66 \times 10^{-3} \cos(2\lambda) - 2.8 \times 10^{-7} H,
\]

with \(p_0 \) is measured in millibars and \(f \) is dimensionless.

The second and third terms of equation (32) are the wet components of \(N \), and can be written as

\[
N_w = \left[k'_2 \frac{P_w}{T} + k'_3 \frac{P_w}{T^2} \right] Z_w^{-1}.
\]

(36)

The mean temperature of the vertical column of water vapour is defined as

\[
T_m = \frac{\int P_w \, dz}{\int \frac{P_w}{T} \, dz}.
\]

(37)

From (28), (36) and (37) the delay due to tropospheric water vapour is then expressed as

\[
\Delta L_w = 10^{-6} \left[k'_2 + \frac{k'_3}{T_m} \right] \int \frac{P_w}{T} Z_w^{-1} \, ds.
\]

(38)
The equation of state for water vapour can be written in the form \(\frac{P_w}{T} Z_w^{-1} = \frac{nR}{V} \), where all the symbols have their normal meanings. The right hand side can further be written in terms of the specific gas constant \(R_w \) and molar mass \(M_w \) of water, so that

\[
\frac{P_w}{T} Z_w^{-1} = \frac{nR}{V} = D \rho_w R_w, \quad \text{with} \quad \rho_w \text{ the density of water (10}^3 \text{ kg.m}^{-3} \text{)} \quad \text{and} \quad D \text{ the relative density of the precipitable water vapour in the troposphere.}
\]

Defining the total precipitable water vapour content (PWV) of the troposphere as \(PWV = \int D ds \), we can write it as

\[
PWV = \frac{1}{\rho_w R_w} \int \frac{P_w}{T} Z_w^{-1} ds = k(T_{\text{surface}}) \Delta L_w. \tag{39}
\]

with \(k(T_{\text{surface}}) = \frac{10^6}{\rho_w R_w (k_2' + k_3 T_m^{-1})} \) and the mean temperature approximated as \(T_m = 70.2K + 0.72T_{\text{surface}} \), following Bevis et al. (1992). Further, \(k_2' = 22.1 \text{K.hPa}^{-1} \), \(k_3 = 3.739 \times 10^5 \text{K}^2 \text{.hPa}^{-1} \) and \(R_w = 4.614 \times 10^3 \text{J.K}^{-1} \text{.kg}^{-1} \), according to Borbás (1997).

We have therefore shown that the ZTD is the sum of the hydrostatic and wet delay components, i.e. \(\Delta L = \Delta L_h + \Delta L_w \), and how PWV can be calculated from ZTD if pressure and temperature measurements are available. The hydrostatic delay is typically in the range of 1.7 to 2.1 metres; it does not vary much at a specific site and depends mainly on the site’s altitude. Although hydrostatic delay is the main contributor to the total delay, the wet delay is the main contributor to variation in the total delay, with values ranging between zero and forty centimetres, depending on local meteorological conditions. Very few, if any, GPS observations are made at zenith and as a result Section 3.1. is devoted to discussing how ZTD can be mapped to estimated delays from arbitrary elevation angles.
3.1. Mapping functions

Conventionally, the tropospheric delay at an arbitrary elevation angle θ is expressed as a function of hydrostatic and wet delays (ΔL_0) and mapping functions ($m(\theta)$) respectively:

$$\Delta L(\theta) = \Delta L_0 m_h(\theta) + \Delta L_0 m_w(\theta).$$

(40)

Thus, through the use of mapping functions we can map the zenith delay to a delay that a signal would experience at an arbitrary elevation angle.

On the basis of the assumption that the atmosphere in the vicinity of a GPS station is uniform, a simple sine function can be used to map the zenith delay ΔL_z to the delay for an arbitrary elevation angle θ:

$$\Delta L(\theta) = \Delta L_z / \sin(\theta).$$

(41)

This mapping function is sufficient for elevation angles $\theta > 20^\circ$; for lower elevation angles, more complex functions must be used to account for the curvature of the earth (Gradinansky, 2000:15).

The Niell Mapping Function (NMF) proposed by Niell (1996:3230) is most commonly used in space geodesy, because it is presently believed to be the most accurate at elevation angles from 90° down to below 10°, and it does not require any meteorological observations. The NMF was also employed in the processing of GPS observational data for this project. The NMF is of the form

$$m(\theta) = \frac{1 + \frac{a}{b}}{1 + \frac{c}{\sin(\theta) + \frac{b}{\sin(\theta) + c}}}$$

(42)

with a, b and c different constants for the hydrostatic and wet mapping functions, and also varying with latitude. Figure 6 shows the form of equation (35), where we have used the values of the constants as given by Niell (1996:3250) for latitudes of 45°. This figure shows that the mapping function is nearly a power law in θ, approximately of the form $f = 28.9\theta^{-0.77}$ (shown by the straight line).
Extensive research on the comparison of different mapping functions was done by Rocken et al. (2001:1205-1213). Comparing different mapping functions extends beyond the scope of this dissertation.
CHAPTER 4

THE ACQUISITION AND PROCESSING OF GPS OBSERVATIONAL DATA

4.1. The Acquisition of GPS Observational Data

HartRAO serves as a regional data centre for the International GPS Service (IGS). Currently, about 30 IGS stations’ observational data, from January 1998 to the present, are stored at HartRAO and can be obtained from ftp://geoid.hartrao.ac.za/rinex/ (Combrinck, 1999). The data are stored in RINEX (Receiver INdependent EXchange) format, containing 24-hour data sets.

Hourly RINEX files can be obtained from the SOPAC (Scripps Orbit and Permanent Array Center) ftp site at ftp://garner.ucsd.edu/ for near real-time applications. The TEQC (Translate/Edit/Quality Check) software package, which can be downloaded from http://www.unavco.ucar.edu/software/teqc/teqc.html, was used to concatenate an arbitrary number of hourly RINEX files into a single file. This strategy was not only applied to the observational files, but also to the RINEX navigational files required by the GAMIT processing software which is described in Section 4.2.

The predicted and precise orbits of the satellites can both be obtained from the SOPAC ftp site. The predicted orbits, which are used for the near real-time processing, have an accuracy of ~25 cm, while the precise orbits, which are used for precise geodetic measurements, have an accuracy of less than 5 cm, but are only available after ~13 days. These accuracies are relevant for the along-orbit as well as the across-orbit coordinates of the satellites.

Only data from the following IGS stations were available for the near real-time determination of zenith tropospheric delays over southern Africa (i.e. the 1-hour RINEX files of these stations were made available hourly):

- HRAO (HartRAO, Hartebeesthoek, South Africa)
- SUTH (SAAO, Sutherland, South Africa)
- SUTM (GFZ Potsdam, Sutherland, South Africa)
- SIMO (Simon’s Town, South Africa)
To estimate the tropospheric delay during post-processing, observational data (24-hour RINEX files) from another 13 IGS stations could be used (obtained from the HartRAO ftp archive):

- HARB (SAC, Hartebeesthoek, South Africa)
- OHI2 (O'Higgins, Antarctic Peninsula)
- KERG (Port aux Francans, Kerguelen Island)
- VESL (SANAE IV, Vesleskarvet, Antarctica)
- GOUG (Gough Island)
- PALM (Palmer, Antarctica)
- SEY1 (La Misere, Seychelles)
- CAS1 (Casey, Antarctica)
- MSKU (Masuku, Franceville, Gabon)
- NKLG (NKoltang, Libreville, Gabon)
- RABT (Rabat, Morocco)
- SYOG (Syowa, Antarctica)
- ZAMB (Lusaka, Zambia)

The Chief Directorate: Surveys and Mapping has also set up a network of approximately 30 permanent GPS receivers in South Africa, called Trignet. The observational data from seven of these stations were also made available for day 154 of 2003:

- BFTN (Bloemfontein)
- DRBN (Durban)
- MFKG (Mafikeng)
- NSPT (Nelspruit)
- PELB (Port Elizabeth)
- SBOK (Springbok)
4. 2. The Processing of GPS Observational Data

The GAMIT GPS processing software used for this project was developed at the Massachusetts Institute of Technology (MIT) by R. King, T. Herring and several co-workers. The software is freely distributed for use in scientific research, and can be downloaded from ftp://bowie.mit.edu/.

GAMIT was initially designed to process GPS data in 24-hour sets, for high-precision geodetic measurements, utilising precise satellite ephemerides, published weekly by the IGS. Some software scripts were written and some GAMIT input tables were changed to adapt the software for our specific purpose, namely to estimate tropospheric parameters in near real-time, with arbitrary data spans, and utilising predicted satellite ephemerides.

GAMIT incorporates a weighted least squares algorithm to estimate the positions of stations, orbital and earth rotation parameters and atmospheric delays, by fitting it to doubly-differenced phase observations, which were discussed in Chapter 1 and are derived from the carrier beat phase observations using difference-operator algorithms. These algorithms are described by King (2002) and a critical evaluation thereof is beyond the scope of this dissertation.

Graphical results were generated with the Generic Mapping Tools (GMT programs), which can also be obtained freely from http://gmt.soest.hawaii.edu/. The results are in PostScript (*.ps) format.

Optionally, the ImageMagick programs “convert” and “animate” (available from http://www.imagemagick.org/) can be used to convert the PostScript files to GIF images (*.gif) and generate an animation of a series of images.

All the programming for this project was done in CShell, running the scripts under the LINUX Debian (Woody version, kernel version 2.2) operating system on a PentiumII-266MHz personal computer.
CHAPTER 5

RESULTS OF PWV DETERMINATION

Figures 7 and 8 represent comparisons of zenith tropospheric delay (ZTD) as calculated by HartRAO and IGS. The HartRAO near real-time product utilises predicted satellite orbits in its hourly estimation of ZTD, while the IGS ZTD product is generated only after the precise satellite orbits have been published by the IGS, approximately two weeks after the GPS observations have been made. The IGS product also combines several estimations of ZTD from different global processing centres using different processing software, and 24-hour data sets are processed to obtain ZTD estimates; the HartRAO product only includes 6 hour data sets to minimise processing time.

One would therefore expect a plot of the IGS ZTD data as a function of time to be much smoother than the HartRAO near real-time estimates; this can be seen quite clearly in Figure 7.

![ZTD Comparison: IGS Post-Processed vs HartRAO Near Real-Time](image)

Figure 7: A comparison of the Zenith Tropospheric Delay (ZTD) as calculated by HartRAO and IGS for the IGS GPS station HRAR; an arbitrary 20-day data set was chosen.
Figure 8 is another comparison of ZTD obtained by the two different techniques, but now also contains the uncertainties of the estimations. One can see that the HartRAO near real-time product generally agrees, within the uncertainties, with the IGS post-processed product; data analysis yielded a correlation coefficient $r^2 = 0.91$. However, the uncertainties associated with the IGS estimates are approximately four times smaller than those associated with the near real-time estimates; this can be attributed to the approximately four times more accurate satellite ephemerides used to obtain the post-processed product. As connectivity in southern Africa improves, ensuring the availability of all stations' data every hour, and as the satellite orbit predictions become more accurate, the near real-time estimates of ZTD should correlate even better with the post-processed product.

![ZTD Comparison: IGS Post-Processed vs HartRAO Near Real-Time](image)

Figure 8: A comparison of the Zenith Tropospheric Delay (ZTD) as calculated by HartRAO and IGS for the IGS GPS station HRAO; the HartRAO estimates generally agree with the IGS post-processed estimates.

To estimate the ZTD at a station, GPS observational data is usually processed in a regional network. Figure 9 shows a regional map of ZTD estimated for Africa and the surrounding oceans; data from the IGS stations and Trignet stations listed in Section 4.1 were used to generate this map.
Figure 9: The ZTD estimated over Africa and the surrounding oceans at 12:00 UT on day 154 of 2003. The isoline figure (top) shows the absolute tropospheric delay (in metres). Relative ZTD is represented in the bottom figure, where warmer colours represent less delay and cooler colours represent more delay.

The network of dual-frequency GPS receivers in South Africa is denser than elsewhere in Africa; Figure 10 shows better spatial resolution when focussing on South Africa.
Unfortunately all the GPS receivers are not collocated with weather stations or meteorological units. As shown in Chapter 3, measurements of the temperature and pressure are required to determine the precipitable water vapour (PWV) from the estimated ZTD. Assuming uniform temperatures over the subcontinent and hydrostatic equilibrium in the troposphere, one is able to make rough estimates of the distribution of water vapour over South Africa, as shown in Figure 11.
Figure 11: The distribution of precipitable water vapour (PWV) over South Africa at 12:00 UT on day 154 of 2003. The isoline map (top) shows the absolute PWV (in millimetres) while the colour-enhanced isoline map (bottom) shows the relative PWV, with cooler colours representing more, and warmer colours less, water vapour. These maps were generated from the estimated ZTD under the assumptions of hydrostatic equilibrium and uniform temperatures over the subcontinent.

Both qualitative and quantitative attempts have been made to verify the obtained results. Figure 12 shows a satellite image of Southern Africa at 12:00 UT on day 154.
of 2003. This can be compared qualitatively with the maps in Figure 11, showing clouds associated with a front of moist air over the north-eastern part of South Africa.

Figure 12: A satellite image of the southern African subcontinent at 12:00 UT on day 154 of 2003 (obtained from http://www.eumetsat.de/, copyright © 2003 EUMETSAT).

Estimates of PWV were also compared quantitatively with data from radiosondes. The PWV estimates at HartRAO were calculated using pressure and temperature measurements from the collocated satellite laser ranger (technique discussed in Chapter 6). The South African Weather Service (SAWS) launches two radiosondes daily from Irene, located approximately 50 km east of HartRAO. In Figure 13 the radiosonde-derived PWV is compared with 12-hour averages of GPS-derived PWV.
Figure 13: Comparisons of precipitable water vapour (PWV) for May 2003, obtained from GPS observations at Hartebeesthoek, and radiosondes launched at Irene, 50 km east of Hartebeesthoek. PWV is presented as a function of time in Figure A, while Figure B presents the correlation between GPS-derived and radiosonde-derived PWV.
There is a definite offset between the PWV values measured at HartRAO and Irene. This difference may be due to the different techniques used in the two cases, but it is more likely due to the distance between the two sites. Combrinck (2000:101) has shown that for baseline lengths longer than ~15 km the de-correlation of troposphere and ionosphere becomes so large that one cannot simply assume uniformity. Even so, a strong correlation exists between these two data sets; the comparison in Figure 13(B) yielded a correlation coefficient $r^2 = 0.60$ and a regression coefficient of $b = 0.81$.
CHAPTER 6

AN APPLICATION: IMPROVING SLR TROPOSPHERIC DELAY MODELS

The international satellite laser ranging (SLR) network consists of approximately forty stations (ILRS, 2003), with the purpose of tracking artificial satellites and determining their orbits.

As in the case of GPS, the basic principles underlying SLR are Einstein’s second postulate of Special Relativity and basic geometry. An SLR station would send out a laser pulse at a specific time and measure the time it takes the pulse to reflect off an array of mirrors on a satellite and return to the satellite laser ranger.

SLR is one of the four space geodetic techniques in use at Hartebeesthoek; the others are GPS, Very Long Baseline Interferometry (VLBI) and Doris, which is a Doppler satellite geodesy system. VLBI is the most accurate of these techniques, but the high cost associated with the large radio telescopes required for VLBI experiments, gives the VLBI network a very poor spatial resolution, with the HartRAO 26m antenna being the only one in Africa. All these techniques operate in the radio window of the electromagnetic spectrum, except SLR, which operates at optical frequencies, the only other part of the electromagnetic spectrum where the (dry) atmosphere appears to be transparent, i.e. where the attenuation of electromagnetic radiation is small due to the absence of nuclear and molecular absorption bands (Rohlfs & Wilson, 2000:4). The radio window was chosen for GPS, because navigation systems have to be able to operate under all weather conditions, and clouds are opaque at optical frequencies. Optical frequencies are, however, ideal for ranging to satellites because of the high coherence of laser beams and the absence of radio transmitters on board many low earth orbiting geodetic satellites. It is important to note that GPS’s accuracy depends on orbit determinations performed by SLR.

Scientists in the SLR community are working hard to improve SLR accuracy – in October 2003 the International Laser Ranging Service (ILRS) hosted a workshop under the theme of “Working toward the full potential of the SLR capability”. One of the existing errors in SLR analysis is the estimation of tropospheric delays experienced by laser beams, which are currently estimated using ground-based
meteorological measurements. A new estimation strategy is proposed here, using GPS-derived water vapour, as discussed in Chapter 3, as an input parameter for the tropospheric delay modelling.

During an SLR observation session a collection of observations, called normal points, is written to a data file, containing information about the SLR station, the satellite, meteorological conditions (pressure, temperature and relative humidity) at the SLR station, time-of-flight of the laser pulses, and the direction of ranging. Corrections then have to be made to the observed time-of-flight by processing software, because the laser pulses experience delays while travelling through the troposphere, as discussed in Chapter 2. The ionospheric delay is negligible in the optic wavelengths, as can be seen from (23).

In an attempt to improve the existing tropospheric delay model used in SLR processing, the following hypotheses were formulated:

- Although the contribution of water vapour to the total tropospheric delay is much smaller (approximately 20 times) for optical wavelengths than for radio wavelengths, it must be included in tropospheric delay models when aiming to achieve millimetre-level accuracy.
- Upper-air measurements of water vapour are highly uncorrelated with relative humidity measurements at ground level. Furthermore, relative humidity measurements are the most inaccurate of all the measurements done with every observation, with uncertainties of up to 2% (ILRS, 2003).
- It is believed that tropospheric delay models should include the influence of water vapour, but that this will over-estimate the delay at times of low, and under-estimate the delay at times of high PWV conditions.

The RGODYN software used for this analysis, was developed by Graham Appleby and Andrew Sinclair at the Royal Greenwich Observatory, and was made available to HartRAO's Space Geodesy Programme for research purposes. RGODYN uses the Marini and Murray model (USNO, 2002) to predict the delay experienced by laser pulses, as a function of temperature, pressure and relative humidity at the SLR station, the elevation angle of the satellite as seen from the SLR station, the laser's wavelength, and the station's latitude and geodetic height.
According to the Marini and Murray model, the delay of a one-way range can be calculated from

\[
\Delta R = \frac{f(\lambda)}{f(\varphi, H)} \cdot \frac{A + B}{\sin \theta + B/(A + B)},
\]

where

\[
A = 0.002357 P + 0.000141 e
\]

\[
B = (1.084 \times 10^{-8}) P T K + (4.734 \times 10^{-8}) \frac{P^2}{T (3 - 1/K)}
\]

\[
K = 1.163 - 0.00968 \cos 2 \varphi - 0.00104 T + 0.00001435 P
\]

\[
e = \frac{R_a}{100} \times 6.11 \times 10^{\frac{7.5(T - 273.15)}{237.3 + (T - 273.15)}}
\]

\[
f(\lambda) = 0.9650 + \frac{0.0164}{\lambda^2} + \frac{0.000228}{\lambda^4}
\]

and where atmospheric pressure \(P \) is measured in millibars, atmospheric temperature \(T \) in Kelvin, relative humidity \(R_a \) measured in percentage points, elevation angle \(\theta \) measured in degrees, laser wavelength \(\lambda \) measured in microns, latitude \(\varphi \) measured in degrees, geodetic height \(H \) measured in kilometres, and lastly, the latitude and height correction term proposed by Saastamoinen (1972:250) is

\[
f(\varphi, H) = 1 - 0.0026 \cos 2 \varphi - 0.00031 H.
\]

This is the standard tropospheric model used for SLR data processing. Because it employs ground-based relative humidity measurements, we expect that a strategy using the remote sensing of atmospheric water vapour will improve this standard model.

Therefore, we now propose a new approach, namely to split up the experienced delay into wet and hydrostatic zenith components. As in the case of radio signals travelling through the troposphere, we assume the “hydrostatic delay” to be proportional to the total atmospheric pressure, with the coefficient of proportionality a function of the SLR station’s latitude, geodetic height and the laser wavelength. We calculate the “wet delay” by multiplying the PWV, which was determined by the GPS method discussed in Chapter 3 and given by equation (39), with the refractivity of water, which is 0.33.
One of the weaknesses of the Marini and Murray model is that it has no separate mapping function as in the case of radio waves, like the Niell Mapping function discussed in Section 3.1. Rather, it has a very complex mapping function embedded in the delay calculation. To ensure that all the changes in tropospheric delay, for any elevation angle \(\theta \), can be attributed only to the new calculated zenith delay, no new mapping function was introduced. To do this, the following simple strategy was employed: relative humidity \(R_h \) was set to zero and atmospheric temperature \(T \) was set to 273.15 K. A new pressure parameter \(P \) was calculated by \(P = P_{\text{measured}} + [412.74 \times \text{wet delay (in metres)}] \), with \(P_{\text{measured}} \) the originally measured atmospheric pressure. When these new parameters were put into the Marini and Murray model, the predicted zenith tropospheric delay matched the delay calculated by the new proposed strategy.

To test our new approach, we first processed the 2001 and 2002 observational data for the geodetic satellites Lageos 1 and 2, using the Marini and Murray model. The observational data (in QuickLook format) were obtained via ftp from ftp://cddisa.gsfc.nasa.gov/pub/slr/slrql/. Seven-day windows of data were used, stepping one day forward between every processing session. During every processing session RGODYN was first employed to determine the orbits of the two satellites, based on the global observations in the data files, and from this the position of the MOBLAS6 SLR station located at HartRAO, was calculated. Using GMT, CShell and C, scripts were developed to represent the position of MOBLS6 at different times, and to do a linear least squares fit through the points. The resulting time series can be seen in Figure 14, indicating the station’s velocity as calculated by this method. The root mean square (rms) values of the uncertainties of the individual positions are also shown in the figure.
Figure 14: The position time series of the MOBLAS6 satellite laser ranger at HartRAO, calculated using the standard Marini and Murray model.

We then calculated the tropospheric delay associated with every single one of the 16100 normal points observed by MOBLAS6 to the Lageos satellites over the two-year period. To do this, we first extracted the ZTD data for the collocated GPS receiver, HRAO, from the IGS post-processed combined results, available from http://garner.ucsd.edu/pub/troposphere/. The obtained values give the ZTD in 2-hour intervals. Very few, if any, of the normal point observations took place at the exact time for which a ZTD value was available. We therefore fitted a third-order polynomial through every four consecutive data points, so that the ZTD value
associated with a normal point observation between the second and third data point in the four-point sequence, could be calculated. The pressure and temperature measurements associated with the normal points were used to calculate the PWV corresponding with every normal point observation. Multiplying the PWV with the refractivity of water, gave the wet component of the tropospheric delay.

We assumed that the component of the delay due to the dry air is proportional to the total atmospheric pressure; this is analogous to the case of radio waves, described by equation (35). Therefore, the remaining problem was to determine the coefficient of proportionality with which to multiply the measured pressure to obtain the hydrostatic component of the delay. To do this, we used the total delay predicted by the Marini and Murray model minus the calculated wet delay as a first approximation of the hydrostatic delay. Linearly fitting the total pressure onto the hydrostatic delay, using a least squares method, yielded the coefficient of proportionality. (This coefficient is a function of the SLR station’s latitude, geodetic height and laser wavelength; only one SLR station was included in this research, so that the function can be considered as a constant.) The calculated coefficient was 0.002419.

RGODYN was used to reprocess the data using the new approach to calculate tropospheric delay. Another time series for the HartRAO SLR station was then generated, as shown in Figure 15.
The results obtained by the two processing strategies were compared to the accurate VLBI results for the 26m radio telescope, collocated at HartRAO with the MOBLAS6 SLR station and the HRAO GPS station. The August 2003 VLBI solutions were obtained from ftp://gemini.gsfc.nasa.gov/pub/solutions/2003cn_aug03/topocentric_velocities.2003cn.1; all the results are summarised in Table 2.
Table 2: A comparison of station velocities obtained by VLBI and two SLR processing strategies.

<table>
<thead>
<tr>
<th>Direction</th>
<th>VLBI</th>
<th>Marini & Murray</th>
<th>New Strategy</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>North (mm/year)</td>
<td>16.21 ± 0.15</td>
<td>12.2 ± 3.2</td>
<td>12.6 ± 3.2</td>
<td>$10 %$</td>
</tr>
<tr>
<td>East (mm/year)</td>
<td>15.67 ± 0.14</td>
<td>14.4 ± 4.5</td>
<td>15.3 ± 4.5</td>
<td>$70 %$</td>
</tr>
<tr>
<td>Up (mm/year)</td>
<td>0.26 ± 0.21</td>
<td>-5.4 ± 3.3</td>
<td>-4.1 ± 3.3</td>
<td>$23 %$</td>
</tr>
<tr>
<td>North (mm rms)</td>
<td>18.5</td>
<td>18.4</td>
<td></td>
<td>$0.5 %$</td>
</tr>
<tr>
<td>East (mm rms)</td>
<td>20.7</td>
<td>19.6</td>
<td></td>
<td>$5.3 %$</td>
</tr>
<tr>
<td>Up (mm rms)</td>
<td>25.7</td>
<td>24.1</td>
<td></td>
<td>$6.2 %$</td>
</tr>
</tbody>
</table>

The improvements of station velocities in Table 2 were calculated as the percentage by which the difference between the VLBI and SLR results were reduced when using the new processing strategy.

Figure 16 shows the difference between the tropospheric delay calculated by the Marini and Murray model and by the new proposed strategy, against the measured PWV. If one comes to the conclusion from Table 2 that the new proposed tropospheric model is more accurate than the Marini and Murray model, Figure 16 confirms our third hypothesis, namely that existing tropospheric delay models will over-estimate the delay at times of low PWV and under-estimate the delay at times of high PWV.
Figure 16: A comparison between the tropospheric delay as predicted by the Marini and Murray model and the new proposed strategy (Combrinck & Combrinck, 2003).

The results shown in this chapter are preliminary; the new proposed strategy will be used to process SLR data over longer periods and for more of the SLR stations collocated at GPS sites before it can be considered as a new standard processing strategy.
CHAPTER 7

THE SQUARE KILOMETRE ARRAY IN SOUTH AFRICA AND THE SURFACE-UPGRADED 26M RADIO TELESCOPE AT HARTRAO

This chapter contains a summary of the theoretical part of a document on the ionosphere and troposphere's influence on radio astronomical observations, submitted to the Steering Committee of the South African Square Kilometre Array (SKA) in November 2003, as well as some of the results obtained from the SKA site survey. The SKA is a planned state-of-the-art radio telescope with an effective surface area of one square kilometre, to be operational by 2015. South Africa is one of the five countries actively bidding to host the SKA on its own soil.

The following two sections, one covering the influence of water vapour in the troposphere and the other concerning the influence of free electrons in the ionosphere, are also important to consider when doing single-dish radio astronomy, currently taking place at HartRAO. A third section is included in this chapter, showing results obtained by HartRAO's Space Geodesy Programme while performing the SKA site survey.

The 26m radio telescope at Hartebeesthoek is the only radio telescope in Africa. It has recently undergone a surface upgrade in which the perforated surface has been replaced by a solid surface. This will enable radio astronomers to observe at the centimetre wavelength level. One of the important bands to be studied for the observation of water masers is around 22.235 GHz, a strong spectral line of water. This means that the atmospheric water vapour would emit and absorb radio waves at this frequency.

The ionosphere's influence is also ever-present when doing VLBI experiments. Whereas the troposphere is responsible for absorption and emission, the ionosphere causes a dispersive delay of radio waves; the astrometric observables have to be corrected for ionospheric delay.
7.1. The Influence of Precipitable Water Vapour on Centimetre Wavelength Radio Astronomy

The earth’s atmosphere is fairly transparent to radio waves if their frequency is above the ionosphere’s cut-off frequency (which is usually in the region below 25 MHz). In the case of radio astronomical observations made from the ground, the signal entering the receiver, however, has been attenuated by the earth’s atmosphere, thus affecting the apparent brightness of the source. In addition, there is also broadband emission from the atmosphere, and consequently, for the centimetre and millimetre wavelength range, tropospheric absorption and emission has to be taken into account (Rohlfs & Wilson, 2000:186).

It has become customary in radio astronomy to measure the brightness of a source by its brightness temperature T_b. However, the actual quantity measured by radio astronomers is the antenna temperature T_A, which relates the output of the antenna to the power of a matched resistor (Rohlfs & Wilson, 2000:131). By introducing an effective temperature for the atmosphere T_{atm}, which can be determined from atmospheric profiles, we write

$$T_A(s) = T_0 e^{-\tau} + T_{\text{atm}}(1 - e^{-\tau})$$

(43)

with τ the frequency-dependent total opacity along the line of sight. The total opacity is defined as $	au = \int_{\text{atmosphere}} \kappa(s) ds$, with κ an absorption coefficient along the path s of a radio wave through the atmosphere. The first term of (43) is due to absorption in the earth’s atmosphere, while the second is due to emission.

The magnitude of opacity depends on the composition of the atmosphere; for the 22.235 GHz spectral line of water, τ has typical values of ~ 1.2, so that the received signal will be attenuated by a factor of ~ 0.3. Furthermore, during these typical conditions of 20 mm PWV the atmosphere will contribute ~ 35 K to the total antenna temperature, while the total antenna temperature would be ~ 6 K for a dry atmosphere. It is therefore important to be able to determine how much atmospheric water vapour is present during observations at this frequency.

Rohlfs and Wilson (2000:189) show how the opacity along the line of sight at any zenith angle can be calculated from the zenith opacity. Stark (2002) has shown that a
tight linear relation exists between the zenith opacity of the atmosphere and the precipitable water vapour (at zero PWV the opacity has a non-zero cut-off due to the dry air's contribution to the opacity). The constant of proportionality and the cut-off opacity for a specific frequency can be determined by a technique called "skydips" (Stark, 2002).

Therefore, using skydips and the method discussed in Chapter 3 to determine the precipitable water vapour, a radio astronomer can calculate the amount by which a received signal's intensity was modified.

7.2. The Influence of Free Electrons in the Ionosphere on VLBI Astrometry

A limiting factor in centimetre-wavelength VLBI astrometry is the uncertainty in the contribution of the ionosphere to the astrometric observables. As shown in (26), the dispersive character of the ionosphere makes its contribution to the astrometric observable scale as f^{-2}, which in principle allows it to be determined accurately.

One strategy to take advantage of this scaling, as in standard astrometric VLBI experiments, is to observe in two well separated bands of frequency simultaneously. The main disadvantage of this option is that the fixed bandwidth of the recording equipment has to be split between two frequency bands, decreasing the signal-to-noise ratio (SNR) for each. Alternatively, one may compute corrections based on estimates of the ionosphere total electron count (TEC) obtained independently from the Global Positioning System (GPS). The advantage of the latter approach is that only single-band VLBI observations are needed, avoiding loss of sensitivity (Pérez-Torres et al., 2000:162).

7.3. Results from the SKA site survey

The importance of monitoring PWV and TEC for radio astronomical purposes, is evident from the previous two sections. In Chapter 5 the current capabilities of
monitoring the troposphere were presented; in this section the current capabilities of monitoring the ionosphere over southern Africa are discussed. All the results in this section are derived from work done by HartRAO’s Spacc Geodesy Programme.

GPS observational data from the South African IGS stations are used by the University of Berne to generate global ionospheric maps (GIMs), from which ionospheric data were extracted for the coordinates 30° south, 20° east, which is central to the three proposed SKA sites in South Africa. The GIMs can be obtained from http://www.cx.unibe.ch/aiub/ionosphere.html.

Figure 17 describes the seasonal variability of TEC values over a period of six years. A clear seasonal signal is evident, indicating relative ionospheric inactivity during the winter period. This long term time series indicates monthly averaged TEC variation over the past 5 years at the geographical location 30° S, 20° E, which is more or less in the centre of the proposed location of the SKA hubs in South Africa.

![Bar chart showing Total Electron Content at 30S 20E for January 1998 to October 2003](chart.png)

Figure 17: Statistics of TEC values as determined by GPS over the period 1998-2003.

This seasonal signal is a purely geometric effect; the level of ionisation varies with the changing angle of incidence of solar radiation.
Figure 18 illustrates the clear diurnal signal in ionisation levels. This is due to the recombination of electrons and ions during night time, when solar radiation, the source of the ionising energy, is absent. Figure 18 further illustrates the effect of a solar outburst as experienced at the proposed SKA sites.

Figure 18: TEC values for a one week period during the April 2001 solar outburst indicates a negative ionospheric storm effect. A rapid recovery follows the day of the negative storm effect.

The solar outburst, which has been dubbed "the resurrection event" because it took place during the Easter of 2001, is indicated by an arrow in Figure 18. Its effect on the ionosphere could only be observed three days later when the plasma ejected from the sun, reached the earth.

The April 2001 solar outburst caused a negative ionospheric storm effect (decrease in ionisation density). Currently, negative storm effects are attributed to composition
changes of the ionosphere. These effects are the dominant characteristic in ionospheric response to geomagnetic activity enhancements (Tsagouri et al., 2000:3579).

Figure 19 indicates TEC measured at the proposed SKA sites during the 4 December 2002 partial solar eclipse.

![Figure 19: The partial solar eclipse of 4 December 2002 (Modified Julian Day 52612) caused a small negative effect, which has been circled in the figure.](image)

Figure 19 clearly demonstrates the sensitivity of GPS to detect small scale short term variations in ionisation density. A further analysis, not included in the report submitted to the SKA Steering Committee, was done on the eclipse TEC data: a linear fit was plotted through the minima of the two days prior and two days after the eclipse. The minima obtained from the straight line were subtracted from the TEC data for these four days and average TEC values were calculated for every 2-hour
interval. In Figure 20 we compare the eclipse day's TEC data with the average TEC of the days around the eclipse.

The minimum TEC measured on the day of the eclipse was approximately 3.4 TECU less than the average minimum TEC for the surrounding days, attributed to the decrease in solar radiation reaching the ionosphere.

The minimum TEC was observed approximately four hours earlier. This should come as no surprise, since the eclipse, travelling from west to east, started a few hours earlier in the upper atmosphere than on the ground. Furthermore, the area of the eclipse in the ionosphere is much bigger than on the ground.

Other (more conventional) TEC measuring equipment in use, include ionosondes and relative ionospheric opacity meters (riometers). A comparison of the results obtained by the various methods is beyond the scope of this dissertation; however, it is
necessary to note that the TEC decrease measured by GPS could not be replicated by riometer measurements done at Potchefstroom during the eclipse (Stoker P.H., personal communication, 2003), indicating the sensitivity of GPS to monitor the ionosphere.

Figures 19 and 20 directly illustrate the usefulness of a dense network of GPS stations in the proposed SKA region. To cater for additional nodes of the SKA, densification of the IGS GPS network in the southern part of Africa will be necessary.
SUMMARY AND CONCLUSIONS

The theory of the propagation of electromagnetic waves in the troposphere and ionosphere was discussed in Chapter 2. It was shown that the ionosphere acts as a dispersive and non-dispersive medium for radio and light waves respectively, while the troposphere acts as a non-dispersive and dispersive medium for radio and light waves respectively. Therefore, dual-frequency GPS receivers enable users to correct for the delay of radio signals traversing the ionosphere. The tropospheric delay of radio waves can then be estimated by GPS processing software from GPS observational data.

The troposphere can be split into hydrostatic and wet components; due to the permanent dipole moment of water molecules, the wet and hydrostatic components of the troposphere will interact differently with electromagnetic waves. The numerically larger contribution to the total tropospheric delay comes from the hydrostatic component, while the major contributor to variations in the total tropospheric delay is the variation of the troposphere's water vapour content. In Chapter 3 it was shown that the total atmospheric pressure, which is proportional to the hydrostatic component of the tropospheric delay, and the air temperature measured at the GPS antenna, can be used to determine the amount of precipitable water vapour above the GPS site from the estimated total delay.

The data sources used and processing techniques followed to obtain results, were summarised in Chapter 4. It was shown in Chapter 5 that the HartRAO Space Geodesy Programme has the capability to produce estimates of the tropospheric delay and the distribution of water vapour over southern Africa in near real-time, using GPS observational data from the southern African IGS network.

One application of the estimation of the water vapour content of the troposphere, is the improvement of tropospheric models used to predict the delay of laser pulses travelling through the troposphere. In Chapter 6 a new strategy for the processing of satellite laser ranging data was proposed, and the results obtained using this strategy indicate the feasibility and improved accuracy of this technique.
In view of South Africa’s bid to host the Square Kilometre Array, it is important to establish a network of dual-frequency GPS receivers to monitor changes in the ionosphere and the troposphere. The influence of the ionosphere on astrometric observables and the tropospheric influence on observed radio intensities were discussed in Chapter 7. Some results from the site survey were also presented, proving the ability of monitoring the ionosphere using the IGS GPS network in southern Africa.

In the work done for this dissertation, software was developed to estimate tropospheric delays from GPS observational data in near real-time, i.e. within the three hour window allowed by SAWS for inclusion in numerical weather predictions, and have it available for any potential users. One can then derive the atmospheric water vapour content from the estimated tropospheric delay. The obtained results compare well with zenith delay estimates from IGS and water vapour measurements from SAWS.

The use of water vapour measurements to improve tropospheric models used for satellite laser ranging, is currently being investigated by the ILRS Refractivity Study Group. SAWS is also in the process of evaluating water vapour measurements obtained from GPS techniques, possibly to include it in operational numerical weather prediction models in the future. Verification of PWV estimates will also be done at GPS sites collocated with SAWS stations from where radiosondes are launched.

Centimetre wavelength radio astronomy, to be performed at HartRAO in the near future, requires estimates of water vapour to correct measured intensities; the technique and theory presented in this dissertation to determine the tropospheric water vapour content, can readily be implemented by radio astronomers.

Apart from future work to be done in the fields of SLR, numerical weather prediction and radio astronomy, TEC mapping will also be investigated as a potential product to the scientific community, comparing obtained TEC results with those from other techniques, such as ionosondes and riometers.

The densification of the southern African GPS network is high on the priority list of HartRAO’s Space Geodesy Programme. Access to Trignet data, to be used for near
real-time products, is another issue to be resolved. Due to the remoteness of many IGS GPS stations, the lack of connectivity reduces the number of stations that can be used to produce near real-time tropospheric estimates. Connectivity between GPS stations and the database at HartRAO will also be investigated and thereby the spatial resolution of results can be improved.

In the near future HartRAO will set up a computer cluster as a powerful real-time processing tool. This will enable the inclusion of more stations’ data for near real-time processing to improve both the spatial and temporal resolution of results.

Finally, the conclusion can be made that the network of dual-frequency receivers in southern Africa can, apart from its use in geodetic research and surveying, be used as a remote sensing tool for the troposphere and ionosphere and that some exciting research in this field lies ahead.

COMBRINCK, W.L. 1999. The HartRAO Space Geodesy Programme. [Internet:] http://www.hartrao.ac.za/geodesy/geodesy_index.html. [Date of access: 23 October 2002]

