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ABSTRACT 

Human language resources (HLR) and applications currently available in South Africa are of a 

very basic nature, with lemmatisation being one of the basic. South African languages, except 

for English are considered underdeveloped when it comes to HLRs. The work detailed in this 

thesis is the development of a lemmatiser for one such language, namely isiXhosa. The 

previous benchmark in isiXhosa lemmatisation, which achieved 79.28%, was a rule-based 

lemmatiser implemented for the development of isiXhosa lemmatisation data. That data was 

used in this study. 

IsiXhosa, one of the South African official languages belonging to the Bantu language family 

that are classified as "resource scarce languages", is the second largest language in South 

Africa with 8.1 million mother-tongue speakers, second only to isiZulu. IsiXhosa is closely 

related to languages such as isiZulu, Siswati and isiNdebele and the work done in it could easily 

be bootstrapped to these languages.  

A lexicalised probabilistic graphical lemmatiser, the IsiXhosa Graphical Lemmatiser (XGL), was 

investigated, designed, implemented and evaluated against two benchmark lemmatisers, the 

CST Lemmatiser and the LemmaGen lemmatiser. 

The investigation towards the XGL involved five objectives. The first objective was to establish 

good characteristics for an automatic lemmatiser for morphologically complex languages. This 

was achieved by reviewing existing research material on the lemmatisation of morphological 

complex languages. To establish the most appropriate lemmas for isiXhosa in the context of 

natural language processing, a study of the isiXhosa language morphology was done, and 

appropriate lemmas for each word category were identified. Exploring the training data 

answered the objective of establishing what good data features are for an isiXhosa lemmatiser. 

The objective of designing an isiXhosa lemmatisation model was realised through the 

implementation of XGL. The last objective, the evaluation of an isiXhosa lemmatisation model, 

was achieved through training and testing XGL, and comparing it to two benchmark 

lemmatisers, the CST Lemmatiser and the LemmaGen lemmatiser. 

The XGL lemmatiser achieved the highest accuracy compared to the selected benchmark 

lemmatiser, with an accuracy rate of 83.19%. 

KEY TERMS 

Natural Language Processing, Human Language Technology, Machine Learning, 

Lemmatisation, IsiXhosa 



iv 

TABLE OF CONTENTS 

DECLARATION ......................................................................................................................... I 

ACKNOWLEDGEMENTS ......................................................................................................... II 

ABSTRACT  .......................................................................................................................... III 

LIST OF ABBREVIATIONS AND ACRONYMS ..................................................................... XIV 

CHAPTER 1: INTRODUCTION ................................................................................................. 1 

1.1 Motivation ......................................................................................................... 1 

1.1.1 IsiXhosa.............................................................................................................. 2 

1.1.2 Automated Lemmatisation for isiXhosa ............................................................... 3 

1.2 Proposed Research Work ................................................................................ 4 

1.2.1 Research Hypothesis .......................................................................................... 4 

1.2.2 Research Questions ........................................................................................... 5 

1.2.3 Research Objectives........................................................................................... 5 

1.3 Research Methodology .................................................................................... 5 

1.3.1 Literature Review ................................................................................................ 6 

1.3.2 Determining an appropriate lemma for isiXhosa in the Natural Language 

Processing context ............................................................................................. 6 

1.3.3 Feature Selection ............................................................................................... 7 

1.3.4 The isiXhosa Lemmatiser ................................................................................... 7 

1.3.5 Evaluation ........................................................................................................... 7 

1.4 Thesis Structure ............................................................................................... 8 



v 

CHAPTER 2: LITERATURE REVIEW ...................................................................................... 9 

2.1 Introduction ...................................................................................................... 9 

2.2 HLT Techniques ................................................................................................ 9 

2.2.1 Knowledge-Based/Rules Based ......................................................................... 9 

2.2.2 Statistical Based HLT Techniques .................................................................... 11 

2.2.3 Hybrid ............................................................................................................... 15 

2.2.4 Similarity Measure Techniques ......................................................................... 16 

2.2.5 Performance Evaluation Techniques ................................................................ 18 

2.2.6 Emerging Techniques ....................................................................................... 20 

2.3 Techniques Used in Lemmatisation .............................................................. 21 

2.3.1 Rules Based Lemmatisation Work .................................................................... 21 

2.3.2 Data Driven Lemmatisation Studies .................................................................. 22 

2.3.3 Hybrid Lemmatisation Studies .......................................................................... 27 

2.3.4 Summary .......................................................................................................... 27 

2.4 Conclusions .................................................................................................... 28 

CHAPTER 3: ISIXHOSA LEMMA FORMS IN THE CONTEXT OF NATURAL 

LANGUAGE PROCESSING ............................................................................ 30 

3.1 Introduction .................................................................................................... 30 

3.2 A lemma in the NLP context .......................................................................... 30 

3.3 Word Categories of isiXhosa ......................................................................... 32 

3.4 IsiXhosa Lemmas Details ............................................................................... 33 

3.4.1 Nouns ............................................................................................................... 33 

3.4.2 Pronouns .......................................................................................................... 36 



vi 

3.4.3 Qualificatives .................................................................................................... 40 

3.4.4 Predicates ........................................................................................................ 45 

3.4.5 Descriptive ........................................................................................................ 58 

3.4.6 Adverbs ............................................................................................................ 59 

3.4.7 Conjunctions ..................................................................................................... 59 

3.4.8 Interjections ...................................................................................................... 59 

3.4.9 isiXhosa NLP Lemma in Summary ................................................................... 60 

3.5 Conclusions .................................................................................................... 60 

CHAPTER 4: FEATURE SELECTION .................................................................................... 62 

4.1 Introduction .................................................................................................... 62 

4.2 Source of Data ................................................................................................ 62 

4.3 Data Exploration ............................................................................................. 62 

4.3.1 Method ............................................................................................................. 63 

4.3.2 Prefixes ............................................................................................................ 64 

4.3.3 Suffixes............................................................................................................. 67 

4.3.4 Circumfix Coverage .......................................................................................... 69 

4.3.5 Classes............................................................................................................. 71 

4.3.6 Word Length ..................................................................................................... 72 

4.4 Conclusions .................................................................................................... 73 

CHAPTER 5: ISIXHOSA GRAPHICAL LEMMATISER ........................................................... 75 

5.1 Introduction .................................................................................................... 75 

5.2 XGL Model ....................................................................................................... 75 



vii 

5.2.1 XGL Model‟s Lexicon ........................................................................................ 75 

5.2.2 Model‟s Hierarchy of Transformation Classes ................................................... 76 

5.2.3 XGL Class Confidence Threshold ..................................................................... 78 

5.3 How does the XGL work? ............................................................................... 79 

5.3.1 Overview of XGL .............................................................................................. 79 

5.3.2 How does the XGLTrainClassesSplit work? ...................................................... 80 

5.3.3 How does XGLTrainClassTree work? ............................................................... 80 

5.3.4 How does the XGLLemmatise work? ................................................................ 82 

5.4 Using the XGL ................................................................................................. 83 

5.4.1 How to use XGLTrainClassesSplit .................................................................... 84 

5.4.2 How to use XGLTrainClassTree ....................................................................... 84 

5.4.3 How to use the XGLLemmatise ........................................................................ 84 

5.5 Conclusions .................................................................................................... 85 

CHAPTER 6: EVALUATION ................................................................................................... 86 

6.1 Introduction .................................................................................................... 86 

6.2 Experimental Design ...................................................................................... 86 

6.2.1 Data Source ..................................................................................................... 86 

6.2.2 Data Setup ....................................................................................................... 87 

6.2.3 Choice of Lemmatiser ....................................................................................... 91 

6.2.4 Overview of the Experiment .............................................................................. 92 

6.2.5 Conclusions on Experimental Design ............................................................... 94 

6.3 Results ............................................................................................................ 95 

6.3.1 Introduction ....................................................................................................... 95 



viii 

6.3.2 Linguistic Performance ..................................................................................... 95 

6.3.3 Computing Resources Performance ............................................................... 103 

6.4 Summary ....................................................................................................... 107 

CHAPTER 7: CONCLUDING REMARKS ............................................................................. 109 

7.1 Summary of the work ................................................................................... 109 

7.2 Main Findings ............................................................................................... 110 

7.3 Evaluation of the Hypothesis ....................................................................... 113 

7.4 Future Work .................................................................................................. 114 

7.5 Conclusions .................................................................................................. 114 

BIBLIOGRAPHY ................................................................................................................... 116 



ix 

 

LIST OF FIGURES 

Figure 1: Distribution of isiXhosa Letters ................................................................................. 13 

Figure 2: Graphical Representation of Precision and Recall Measures (Manning & 

Schütze, 1999:268) ...................................................................................... 19 

Figure 3: Hierarchy of IsiXhosa Word Categories used ........................................................... 33 

Figure 4: Prefix coverage ........................................................................................................ 65 

Figure 5: Prefix coverage in Prefix Only Data .......................................................................... 66 

Figure 6: Suffix cumulative coverage ....................................................................................... 68 

Figure 7: Suffix cumulative coverage for suffix only data ......................................................... 69 

Figure 8: Circumfix cumulative coverage for Suffix Only data .................................................. 71 

Figure 9: Classes cumulative coverage ................................................................................... 72 

Figure 10: Bubble Plot of Affix Length relative to Word Lengths .............................................. 73 

Figure 11: XGL Workflow ........................................................................................................ 79 

Figure 12: XGL validation Performance vs Threshold .............................................................. 81 

Figure 13: Word Lemmatisation Workflow ............................................................................... 83 

Figure 14: Development Data Sets .......................................................................................... 88 

Figure 16: Validation and Evaluation Testing Test ................................................................... 90 

Figure 15: Sampling for 10 Fold Validation .............................................................................. 90 

Figure 17: Experiment Workflow .............................................................................................. 93 

Figure 18: Lemmatisation Accuracy on General Corpus by Training Set Size ......................... 96 

Figure 19: Lemmatisation Accuracy on Testing Corpus by Training Set Size .......................... 97 

Figure 20: Average Accuracy for Known Words Tested on General Corpus by Training Set 

Size .............................................................................................................. 98 

LibraryCopy.MEngDissertation.doc#_Toc447123701
LibraryCopy.MEngDissertation.doc#_Toc447123701
LibraryCopy.MEngDissertation.doc#_Toc447123702
LibraryCopy.MEngDissertation.doc#_Toc447123713
LibraryCopy.MEngDissertation.doc#_Toc447123715


x 

Figure 21: Average Accuracy on Known Words Evaluated on Testing Corpus by Training 

Set Size ....................................................................................................... 99 

Figure 22: Average Accuracy on OoV Words Validated on General Corpus by Training Set 

Size ............................................................................................................ 100 

Figure 23: Average Accuracy on OoV Words Evaluated on Testing Corpus by Training Set 

Size ............................................................................................................ 101 

Figure 24: F1-Score for Evaluation on General Corpus by Training Set Size ......................... 102 

Figure 25: F1-Score Evaluated on Testing Corpus by Training Set Size ............................... 103 

Figure 26: Training Duration (mS/word) by Training Set Size ................................................ 104 

Figure 27: Average Lemmatisation Duration (mS/word) by Training Set Size ........................ 105 

Figure 28: Average Training Memory (KB/word) by Training Set Size ................................... 106 

Figure 29: Lemmatisation Memory Usage (KB/word) by Training Set Size ............................ 107 

 

 



xi 

LIST OF TABLES  

Table 1: Discrepancy in Levenshtein Distances for isiXhosa Words. ....................................... 17 

Table 2: Paradigm Example .................................................................................................... 31 

Table 3: Noun Class Prefixes .................................................................................................. 34 

Table 4: Noun Prefixes Proper/Basic Prefix ............................................................................. 34 

Table 5: Subject Concords ...................................................................................................... 36 

Table 6: Object Concords ........................................................................................................ 36 

Table 7: IsiXhosa Absolute Pronouns ...................................................................................... 37 

Table 8 : Demonstrative Pronouns from Louw et al. (1984:61) ................................................ 38 

Table 9: Quantitative Pronouns ............................................................................................... 38 

Table 10: Differentiative Pronouns .......................................................................................... 39 

Table 11: Superlative Pronouns (Louw et al., 1984:74; Pahl, 1982:39; Pahl et al., 

1989:690) ..................................................................................................... 40 

Table 12: List of Adjective Concords (Louw et al., 1984:77) .................................................... 41 

Table 13: isiXhosa Adjective Stems (Pahl, 1982:46; Louw et al., 1984:78) .............................. 41 

Table 14: Relative Concords (Pahl et al., 1989:685; Louw et al., 1984:84) .............................. 42 

Table 15: Enumeratives Based on -nye ................................................................................... 43 

Table 16: List of Enumeratives Based on –ni? ......................................................................... 43 

Table 17: Enumeratives based on –mbi and “-phi?” ................................................................ 44 

Table 18: List of Possessive Concords (Louw et al., 1984:100) ............................................... 44 

Table 19: Possessive Pronominal Stems (Pahl et al., 1989:690) ............................................. 45 

Table 20: Verb Extension examples ........................................................................................ 46 

Table 21: Examples of different isiXhosa tenses ..................................................................... 48 



xii 

Table 22: Copula (Louw et al., 1984:220) ................................................................................ 50 

Table 23: Absolute Pronoun Derived Copulatives (Pahl, 1982:167; Louw et al., 1984:220) ..... 50 

Table 24: Absolute Pronoun Derived Impersonal Copulatives (Louw et al., 1984:222) ............ 51 

Table 25: Noun Derived Copulative Prefixes (Louw et al., 1984:220) ...................................... 52 

Table 26: Demonstrative Derived Impersonal Copulatives from Louw et al. (1984:225) .......... 54 

Table 27: Demonstrative Derived Impersonal Negative Copulatives from Louw et al. 

(1984:226) ................................................................................................... 54 

Table 28: Adjective stem derived copulatives (Pahl 1982: 171; Louw et al. 1984: 220) ........... 56 

Table 29: Relative Stem Derived Copulatives (Pahl 1982: 171; Louw et al. 1984: 230) ........... 57 

Table 30: Examples of Enumerative Stem Derived Copulatives .............................................. 58 

Table 32: Top 10 Prefixes, their counts and cumulative coverage ........................................... 64 

Table 33: Percentiles of overall prefix coverage ...................................................................... 65 

Table 34: Top 10 Prefixes, their counts and cumulative coverage ........................................... 66 

Table 35: Percentiles of Prefix Only Coverage ........................................................................ 66 

Table 36: Top 10 Suffix, their counts and cumulative coverage ............................................... 67 

Table 37: Percentiles of suffix coverage .................................................................................. 67 

Table 38: Top 10 Suffix, their counts and cumulative coverage ............................................... 68 

Table 39: Percentiles of suffix coverage .................................................................................. 69 

Table 40: Top 10 Circumfixes, their counts and cumulative coverage ..................................... 70 

Table 41: Percentiles of circumfix coverage ............................................................................ 70 

Table 42: Top 10 Classes, their counts and cumulative coverage ........................................... 71 

Table 43: Percentiles of class coverage .................................................................................. 72 

Table 44: Affix counts, and their maximum data coverage ....................................................... 73 

Table 45: XGL Performance vs Threshold ............................................................................... 81 

LibraryCopy.MEngDissertation.doc#_Toc447123759
LibraryCopy.MEngDissertation.doc#_Toc447123760
LibraryCopy.MEngDissertation.doc#_Toc447123761
LibraryCopy.MEngDissertation.doc#_Toc447123762
LibraryCopy.MEngDissertation.doc#_Toc447123763
LibraryCopy.MEngDissertation.doc#_Toc447123764
LibraryCopy.MEngDissertation.doc#_Toc447123765
LibraryCopy.MEngDissertation.doc#_Toc447123766
LibraryCopy.MEngDissertation.doc#_Toc447123767
LibraryCopy.MEngDissertation.doc#_Toc447123768
LibraryCopy.MEngDissertation.doc#_Toc447123769
LibraryCopy.MEngDissertation.doc#_Toc447123770
LibraryCopy.MEngDissertation.doc#_Toc447123772


xiii 

Table 46: Development Data Set Sizes ................................................................................... 88 

Table 47: Validation and Evaluation Testing Set Sizes ............................................................ 91 

Table 48: Pair-Wise Wilcoxon p-values for Known Word Lemmatisation on General 

Corpus by Training set size .......................................................................... 98 

LibraryCopy.MEngDissertation.doc#_Toc447123775
LibraryCopy.MEngDissertation.doc#_Toc447123775


xiv 

LIST OF ABBREVIATIONS AND ACRONYMS 

ANN – Artificial Neural Network 

ANOVA – Analysis of Variance 

CFG – Context Free Grammar 

CTexT – Centre for Text Technology 

DAG – Directed Acyclic Graph 

DCG – Definite Clause Grammar 

FN – False Negative 

FP – False Positive 

FSA – Finite State Automata 

GDX – Greater Dictionary of IsiXhosa 

HCL – Helsinki Corpus of Swahili 

HLT – Human Language Technology 

HMM – Hidden Markov Models 

KB – Kilobytes 

KNN – K- Nearest Neighbour 

LCS – Longest Common String 

LiA –“Lemma-identifiseerder vir Afrikaans” [Lemmatiser for Afrikaans] 

MBL – Memory-based learning 

MBSMA – Memory-Based Swahili Morphological Analyser 

MDL – Minimum Description Length 

MSD – Morphosyntactic Description 

NCHLT – National Centre for Human Language Technologies 



xv 

NLP – Natural Language Processing 

OoV – Out of Vocabulary 

PBAC – Prototype Based Active Learning 

PFCG – Probabilistic Context Free Grammars 

POS – Part of Speech 

RDR – Ripple Down Rules 

RMA – Resource Management Agency 

SVM – Support Vector Machines 

TiMBL – Tilburg Memory-Based Learner 

TN – True Negative 

TP – True Positive 

WER – Word Error Rate 

XGL – IsiXhosa Graphical Lemmatiser 



1 
 

CHAPTER 1: INTRODUCTION 

This thesis demonstrates that machine learning can be used to automate the lemmatisation of 

isiXhosa. Based on an understanding of the isiXhosa language and an analysis of existing 

isiXhosa lemmatisation data, a machine learning lemmatiser was designed, implemented, and 

evaluated against two benchmark lemmatisers. 

1.1 Motivation 

The Constitution of the Republic of South Africa (1996) recognises eleven (11) official South 

African languages. It also recognises the need for redress in that it requires that "all official 

languages must enjoy parity of esteem and must be treated equally". Knowledge and 

information, as well as the distribution thereof, are an important part of ensuring redress. In 

South Africa, the majority of text is in English and continues to be created and distributed in 

English. The other South African languages are considered under-resourced languages. 

The above status in South African languages is reflected in the developments in human 

language technologies. Human language resources and applications currently available in 

South Africa are very basic. According to Groenewald (2009), this can be attributed to the 

dependence on Human Language Technology (HLT) expert knowledge, scarcity of data 

resources, lack of market demand for the African languages, and how the particular language 

relates to other more resourced languages. English benefits from world developments in HLT 

and Afrikaans has benefited, albeit to a lesser extent, because it is similar to Dutch. 

Lemmatisation is one of the basic tools in natural language processing (NLP). The work detailed 

in this thesis is the development of a lemmatiser for one of South Africa‟s under-resourced 

languages, isiXhosa. 

IsiXhosa is one of the South African official languages belonging to the Bantu language family 

which are classified as "resource scarce languages" (Groenewald, 2009).   

IsiXhosa is an agglutinating and highly inflected language with affixes substituting for what 

would be important parts of speech in other languages. It has a "complex and productive 

derivational system" (Bennet, 1986 as quoted by Prinsloo, 2011), and its orthography is 

conjunctive. There has been work in computational linguistic tools for isiXhosa but the work has 

been limited (Sharma Grover et al. 2010).  

IsiXhosa is closely related to languages such as isiZulu, Siswati and isiNdebele; therefore work 

done in it could easily be bootstrapped to these languages, as has been shown in Bosch et al. 

(2008). 
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1.1.1 IsiXhosa 

IsiXhosa is one of the 11 official languages in South Africa. It has 8.1 million mother-tongue 

users, 16% of the South African population, and is second only to IsiZulu (Statistics South 

Africa, 2012:25). It is spoken primarily in the Eastern Cape province of South Africa and is the 

second most dominant language of the Western Cape Province. 

IsiXhosa is a Bantu language, similar to isiZulu, Siswati and isiNdebele. IsiXhosa is 

ethnologically classified as S.41 in the Guthrie Nguni languages classification system (Maho, 

2009; Lewis et al., 2014). The Glottocode for isiXhosa is "xhos1239". The Ethnologue (2014) 

and the Glottolog (Hammarstrom et al., 2014) are two of the genealogical classification systems 

used in world language classification. Other language classification methods use geographical 

origins, i.e. areal classification and typology (Bender, 2013:6).  

IsiXhosa uses the same 27-letter alphabet (including <space>) and the ten numeral symbols, 0 

to 9, as English, but some of the letters denote different sounds from their English 

representation, e.g. c, q and x (McLaren, 1948:1). IsiXhosa also uses the same punctuations as 

English. 

Every isiXhosa syllable is open, i.e. ends in a vowel (Mncube, n.d.:1; McLaren, 1948:3). Vowels 

can stand as independent syllables if they are at the beginning of a word (McLaren, 1948:4). 

Some vowels, however, can be swallowed by a preceding consonant, which then gives that 

consonant a syllabic nature. This is common in the occurrence of m (Mncube, n.d.:1; McLaren, 

1948:3). Consonants can be combined into various forms to produce different sounds, e.g. 

ngca. These are called compound consonants (Boyce, 1844:3). This makes the syllabic 

structure of isiXhosa simple, with minor exceptions. 

According to Pahl (1982:1), isiXhosa words are composed of morphemes, and an isiXhosa 

morpheme is seldom used alone as a word form. A morpheme is the smallest meaning bearing 

component of a word (Kosch, 2006). Each word has a root and affixes, i.e. suffixes, prefixes 

and circumfixes. A circumfix is the "simultaneous affixation of a prefix and suffix to a root or a 

stem to express a single meaning" (Kosch, 2006). An example of a circumfix in isiXhosa is the 

combination a…nga in isiXhosa negation, e.g. akahambanga [he/she did not go]. Most roots, 

which are the meaning carrying constituents of words, consist of two syllables (Meinhof, 

1932:36). 

Examples of prefixes: 

Uyaphi? <U-ya-phi 

[Where are you going? -> you-going-where?] 
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Balele <Ba-lel-e 

[They are sleeping -> They-sleep.] 

Examples of suffixes: 

uhambile < u-hamb-ile 

[he/she is gone] < she/she go-PAST-TENSE.SUFFIX] 

isityakazi < i-sitya-kazi 

[a big dish < a dish-big] 

Injana < i-nja-ana 

[A small dog < a-dog-small] 

Examples of circumfixes: 

akalalanga < aka-lal-anga. 

[he/she is not sleeping < she/he.is.not–sleep-

NEGATION.SUFFIX.] 

In the example above, the negative prefix aka- and the suffix –anga express a single meaning, 

namely negation. 

Each of the affixes (i.e. prefixes, suffixes or circumfixes) is made up of one or more morphemes. 

Morphemes follow one another in an order prescribed for each word type (Louw et al., 1984).  

IsiXhosa is an agglutinating and polysynthetic language in that it has many morphemes per 

word (Kosch 2006; Bender 2013). It is also fusional/inflectional because morpheme boundaries 

are fused and difficult to distinguish (Kosch, 2006).  

1.1.2 Automated Lemmatisation for isiXhosa 

Lemmatisation is "concerned with finding the lemma of a set of inflected word forms or with 

assigning lemmas to inflected word forms" (Spiegler, 2011). 

In natural language processing lemmatisation is looked at in terms of inflection, as "a 

normalisation step on textual data, where all inflected forms of a lexical word are reduced to its 

common headword, the lemma" (Erjavec & Dzeroski, 2004). Jurafsky and Martin (2000) explain 

this by stating that in the context of natural language processing, a lemma represents a set of 

lexical forms with the same stem, the same major part-of-speech and the same word-sense. 

A process similar to lemmatisation is stemming. For a particular paradigm, a stemmer simply 

finds the common substring among the paradigm word forms. The lemmatiser, in contrast, 

maintains the meaning. An example is that the lemma for "better", and "best" is "good" 

(Daelemans et al., 2009). 
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Prinsloo (2011) cites a popular morphologically inspired definition of lemmatisation as "the 

selection of a canonical form to represent a specific paradigm". This approach is supported by 

Manning and Schutze (1999:132) by saying that a lemma "imply disambiguation at the level of 

lexeme, such as whether a use of lying represents the verb lie:-lay - to prostrate oneself or lie: - 

fib". The work of Jones et al. (2005), shows the value of lemmatisation, at least in dramatically 

improving spell-checking for a highly inflected language, such as isiXhosa. This confirms that 

lemmatisers generally improve precision and recall in information retrieval, as stated by 

Jongejan and Dalianis (2009). 

One of the earliest reports on automated morphological analysis of isiXhosa is that of Theron 

and Cloete (1997) on the automatic acquisition of a Directed Acyclic Graph (DAG) to model the 

two-level rules for morphological analysers and generators. The algorithm was tested on 

English adjectives, isiXhosa noun locatives and Afrikaans noun plurals. The algorithm was 

implemented for Afrikaans lemmatisation and achieved 5-fold validation accuracy of 93% for 

Afrikaans noun plurals (Russell & Norvig 2014).  

The next lemmatisation work on isiXhosa was a supplement to spellchecking (Jones et al., 

2005). The primary objective was to identify lemmas so that inflection could then be applied to 

increase the lexicon of the spellchecker. This approach increased the lexical recall of the 

spellchecker from 78.82% to 92.52%. 

The last lemmatisation work for isiXhosa was used to generate isiXhosa lemmatisation data. 

The work was presented by Eiselen and Puttkammer (2014). The exercise reported a rule-

based lemmatiser accuracy rate of 79.82% when measured against a gold standard. 

1.2 Proposed Research Work 

The work presented in this study covers investigating and implementing a machine learning 

based lemmatiser for isiXhosa, and its results will be compared to other machine learning 

lemmatisers that are freely available.  

1.2.1 Research Hypothesis 

It is expected that a machine learning lemmatiser specifically designed for isiXhosa will perform 

significantly better linguistically than existing lemmatisers in the lemmatisation of isiXhosa. 

Therefore, the null hypothesis is that a machine learning lemmatiser specifically designed for 

isiXhosa will not perform significantly better linguistically than existing lemmatisers in the 

lemmatisation of isiXhosa. 
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1.2.2 Research Questions 

The main research question, therefore, is "How does the performance of a machine-learning 

lemmatiser designed specifically with isiXhosa in mind compare with other machine-learning 

lemmatisers on the lemmatisation of isiXhosa?" 

The main research question was addressed by answering the following questions: 

(1) What characteristics do the most successful lemmatisers have? 

(2) What is the appropriate lemma for isiXhosa in a Natural Language Processing context? 

(3) What are good data features for an isiXhosa lemmatiser and how should they be 

structured? 

(4) What is a good way to model an isiXhosa machine learning lemmatiser? 

(5) How does the performance of a lemmatiser that implements the above model compare to 

existing similar lemmatisers on the lemmatisation of isiXhosa? 

1.2.3 Research Objectives 

The research questions posed above result in the following study objectives: 

(1) To define the characteristics of a successful lemmatiser; 

(2) To define the appropriate lemmas for isiXhosa in the context of Natural Language 

Processing (NLP); 

(3) To determine good data features for the lemmatisation of isiXhosa; 

(4) To design and implement a model for an isiXhosa machine learning lemmatiser, and  

(5) To compare the implemented isiXhosa lemmatiser to existing machine learning 

lemmatisers. 

The above objectives are expounded upon in the following section, section 1.3: Research 

Methodology. 

1.3 Research Methodology 

The work conducted was an experimental study. In an experimental study, an intervention is 

applied to a sample of a population, and the results of the interventions to the sample evaluated 



6 
 

and compared to one or more control interventions and generalised to the population (Welman 

et al., 2005:78; Rasinger, 2013:41).  

In this study, the population is isiXhosa text and the sample is an existing isiXhosa lemma 

annotated corpus. The intervention being evaluated is a machine learning lemmatiser that was 

specifically designed for isiXhosa, and the control interventions are existing lemmatisers. The 

process of applying the lemmatisers involves training the lemmatisers using part of the corpus 

and evaluating them against a testing corpus. 

The objectives stated above were achieved by following the phases below: 

1.3.1 Literature Review 

A thorough literature study was done on: 

(1) Human language technology techniques; 

(2) Lemmatisation techniques, and 

(3) HLT measurement techniques. 

The objective of the literature study was to gain an understanding of the broad field of human 

language technology, specifically the techniques that are used in the field, and then to focus on 

the techniques used in lemmatisation. This work is presented in chapter two of the document.  

This study provided guidance on a good approach to implementing a lemmatiser for isiXhosa, 

on choosing good control lemmatisers that could be used for comparison purposes, and on how 

to measure and compare the performance of the lemmatisers. 

1.3.2 Determining an appropriate lemma for isiXhosa in the Natural Language 

Processing context 

To get to a lemmatiser that is specifically designed for isiXhosa, a study of the lemmatisation 

aspects of the language are required. Because isiXhosa is a morphologically complex 

language, it was important to do an analysis of the morphology of isiXhosa words to establish 

the most appropriate lemma form for each word category of isiXhosa.  

As there is contention regarding the best approach to word categorisation for isiXhosa, a list of 

categories that would meet the needs of the study was adopted. Each word category was 

analysed and conclusions were made on what would be the best lemma form for that word 

category. This work is presented in chapter three of this document. 



7 
 

This analysis guided the work on feature selection. 

1.3.3 Feature Selection 

This study did not require data annotation as there was already isiXhosa lemma annotated data 

available on the Language Resource Management Agency‟s website1 . This data conformed to 

the lemmas defined in the study on the appropriate lemma for isiXhosa for the natural language 

processing environment. Because isiXhosa is an affixing language, an analysis of the coverage 

of the different types of affixes was explored. The characterisation of the data was meant to find 

a heuristic that points to good features in the data that could be used in a lemmatiser for 

isiXhosa. This was primarily a statistical analysis. This work is presented in chapter four of the 

document. 

From this study, a good combination of features was chosen and used in the design of the 

isiXhosa lemmatiser. 

1.3.4 The isiXhosa Lemmatiser 

A lemmatiser specifically for isiXhosa was designed, implemented and tested. The model of the 

lemmatiser was designed, and the model was implemented as a set of applications. The 

lemmatiser, as a machine learning lemmatiser, is trained using word lemma pairs, and 

generates the model from that input. The trained lemmatiser can then be used to lemmatise 

other isiXhosa words. This work is presented in chapter five of the document. 

The objective of this work was to implement a lemmatiser that is specifically designed for 

isiXhosa.  

1.3.5 Evaluation 

To evaluate the performance of the isiXhosa lemmatiser against existing lemmatisers, 

experiments were set up and the results were captured and compared. Statistical comparisons 

that had been determined during the literature review were used to test the study hypothesis. 

The experiments were set up to ensure the reliability and validity of the results. Reliability is a 

measure of the repeatability of an experiment, i.e. the method used repeatedly and providing 

consistent and stable measurements (Rasinger, 2013:28; Welman et al., 2005:9).  

                                                

1 The Language Resource Management website address is http://rma.nwu.ac.za 
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To ensure the validity of the result, the experiments were set up to ensure that the results could 

be compared without bias, using the 10-fold cross validation. 

1.4 Thesis Structure 

This document comprises seven chapters including this introduction. 

Chapter two covers the literature review, which includes a study of Human Language 

Technology techniques and lemmatisation studies conducted in the recent past to establish 

what approach the best lemmatisers took and what characteristics they had. 

Chapter three looks into the meaning of a lemma for isiXhosa in the context of natural language 

processing. The chapter starts by establishing a context for the language and its character. It 

then presents a hierarchy of word categories that provides an approach to the work. Each 

category is then discussed with a view to establishing what the best lemma should be for that 

word category.  

Chapter four explores the data to find good features for use in a lemmatiser. The understanding 

of the language from the previous chapter guided the work. This chapter looks at the influence 

of the affix types on the identification of a lemmatisation strategy by calculating the cumulative 

coverage of each affix type and concludes by specifying what features would work for the 

automated lemmatisation of isiXhosa. 

Chapter five presents the isiXhosa lemmatiser, which was designed and implemented from 

scratch. The chapter first explains the model, describes how the system works, and finally 

guides the reader on how to use the lemmatiser. 

Chapter six details how the lemmatiser was evaluated. The chapter starts by detailing the 

experimental setup, including the data splits, motivates for the choice of control lemmatisers 

against which to benchmark the isiXhosa lemmatiser, and concludes by detailing the results. 

Chapter seven summarises the work conducted, presents the main findings and reflects on 

future work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Natural language processing (NLP) is a scientific field concerned with creating techniques and 

methods for the processing of natural language both in audio format as in speech processing, 

and written format as in text processing (Manning & Schütze, 1999).  

Natural language processing has concerned itself with both the analysis and synthesis of 

natural language. Examples of natural language analysis are word boundary identification in 

speech and morpheme identification in text; examples of synthesis are speech synthesis in 

speech and word form derivation in text.  

Since the work in this study is on text, the author will constrain the rest of the document to text 

processing.  

Bates (1995) categorises the fundamental challenges in natural languages processing and 

understanding thereof under syntax, semantics, pragmatics and discourse. Jurafsky and Martin 

(2000:4) extended this by prefixing the list with phonetics and phonology, and morphology. This 

study focuses on lemmatisation; therefore it will be confined to morphology. This chapter starts 

by detailing HLT techniques in general, it then zooms into techniques that have been used in 

lemmatisation, and finally suggest features for a machine learning lemmatiser. 

2.2 HLT Techniques 

Jurafsky and Martin (2000:5) categorises the elements of a natural language processing toolkit 

under "state machines, formal rule systems, logic, and probability theory", and goes on to 

highlight a state space search algorithm and dynamic programming as among the most 

important elements. 

This document categorises HLT techniques under knowledge-based/rules based, statistical 

based and hybrid systems. 

2.2.1 Knowledge-Based/Rules Based 

Rule-based systems implement language rules that have been defined by expert linguists. As 

linguistic work started by analysing words and grammar, morphosyntactic rules have been 

known for a long time and computational linguistics naturally started by using those rules. 

Chapter three will discuss the aspects of isiXhosa morphology that are relevant to this study. 
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The most prevalent rule-based systems are Finite State Automata, Context Free Grammars, 

First Order Logic and Definite Clause Grammars. These are detailed below. 

2.2.1.1 Finite State Automata 

A finite-state machine/automaton (FSA) is a computational machine that can be in one of a finite 

set of states. A state machine consists of three things, i.e., states, state transition functions and 

data. One of the states is the initial/start state. The state machine can have a number of 

final/termination states, where the finite-state machine is allowed to finally stop. The other states 

are intermediate states and the inability of the state machine to move from these intermediate 

states is considered a fault.  Movement between states is determined by the state transition 

function/s. A transition function attached to a state takes the data as input and returns the next 

state based on the characteristics of the data.  

State transition functions are modelled as regular expressions in morphological analysis 

applications (Jurafsky & Martin, 2000:21). The most widely used finite state automata system in 

HLT is the Xerox Finite State Automata system composed of a Finite-State Lexicon Compiler 

(lexc) and the Xerox Finite State tool (xfst) (Karttunen, 1993). The FSA has been used 

in the South African context for morphological analysis (Pretorius & Bosch, 2005; Jones et al., 

2005) and lemmatisation (Brits et al. 2005).  

2.2.1.2 Context-Free Grammars 

Another form of rule-based systems is context free grammars (CFG). Context free grammars 

have been used for parsing sentences into phrases and terminals/words (Collins, 2003; 

Spiegler et al., 2010). For example: 

S -> NP VP 

NP -> D N 

VP -> V NP 

VP -> D V 

with S=Sentence, VP=Verb Phrase, NP=Noun Phrase, N=Noun, 

V=Verb and D=Determiner. 

A sentence could then be parsed as follows: 

John is going -> S=(N=John VP=(D=is V=going)) 

Context free grammars work at word level and are used for sentence parsing. Context free 

grammars are a model at parts-of-speech level and only represent relationships between 

categories. 



11 
 

2.2.1.3 First-Order Logic and Definite Clause Grammars 

Yet another type of rules based system is first-order predicate calculus (Russell & Norvig, 

2014:), also known as first order logic. First-order logic allows one to specify a set of truth 

statements, and then test to see if an assertion could be inferred from those truths. Inference in 

first-order logic provides for the querying of a system for cases where a particular input would 

be true (Russell & Norvig 2014:327). This makes for good morphological analyses. 

Definite Clause Grammars (DCG) are a form of first order logic used in artificial intelligence and 

are mostly implemented in the Prolog language. Examples of DCG rules are: 

w --> n. word 

n --> iv, nst1. Noun -> initial vowel + noun stem 1 

nst1 --> npf, 

nst2. 

Noun stem 1 -> noun prefix + noun 

stem 2 

nst2 --> nr, 

dim. 

Noun stem 2 ->: noun root + 

diminutive 

npf --> n2. Noun prefix 

iv --> [a]. Terminal initial vowel 

n2 --> [ba]. Terminal noun class 2 prefix 

nr --> [ntu]. Terminal noun root 

dim --> [ana]. Terminal diminutive 

 

A word could then be analysed as follows: 

abantwana [children] ->  w=(n=(iv=[a], nst1=(npf=(n2=[ba]), 

nst2=(nr=[ntu],dim=[ana])))) = a(iv)ba(n2)ntu(nr)ana(dim) 

The Ukwabelana corpus, an isiZulu corpus, was generated with DCGs (Spiegler, 2011; 

Spiegler, et al. 2010). 

2.2.2 Statistical Based HLT Techniques 

Statistics and probability have played a large role in natural language processing. The initial 

statistical work was founded on information theory; it then progressed to the use of artificial 

intelligence techniques. Before going into the statistical techniques and the statistical nature of 
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language, one must differentiate between the supervised and unsupervised training of 

stochastic systems. 

2.2.2.1 Learning System Training Modalities 

Statistical based systems learn a model from data. This model is then used in prediction. The 

nature of the training data in relation to what the system needs to predict determines whether 

the system is supervised or not.  

If the training data contains input/output pairs, then the system is a supervised system. If the 

learning system‟s training data does not contain output samples, then the system is 

unsupervised. 

That said, it is very rare to get a fully unsupervised system because the exercise of developing 

the system implies supervision, albeit not from training data but from a human. In the validation 

of a system, some prediction samples are also used by its designer to validate and tune the 

system. This is another form of supervision. However, because the training algorithm itself does 

not have access to the prediction sample, this phenomenon is therefore referred to as semi-

supervised training. 

Having learnt about the learning modalities of statistical system, one can consider the statistical 

nature of language before looking at the statistical techniques used in NLP. 

2.2.2.2 Zipf’s Law 

One of the fundamental characteristics of language is Zipf‟s law (Manning & Schütze, 1999; 

Zipf, 1945). Zip‟s law characterises the relationship between the frequencies of occurrence f  of 

a type of language phenomena to its rank r  in relation to others in the same category. For 

example, if the category "letters" is considered, each letter being the type in that category, then 

the relationship between the frequencies of occurrence of each letter to its frequency‟s rank 

among other letters, has the relationship: 

 
r

f
1

  ( 1 ) 

Letters on a corpus of isiXhosa data (van Huyssteen & Snyman, 2012) showed a distribution of 

letters that follows Zipf‟s law. This is shown in Figure 1 below, with „*‟ denoting <space>. 
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Percent prevalence of isiXhosa letters  
(ordered alphabetically) 

 

Percent prevalence of isiXhosa letters  
(ordered by rank) 

 

Figure 1: Distribution of isiXhosa Letters 

2.2.2.3 Maximum Entropy 

A number of information theory based tools have been used in natural language processing. 

The minimisation of mutual entropy has been used in language modelling (Manning & Schütze, 

1999:73; Jurafsky & Martin, 2000:226) and syllabification (De Pauw & de Schryver, 2009). Of 

interest however, has been the use of maximum entropy in language modelling (Manning & 

Schütze, 1999:589; Berger et al., 1996), POS tagging, ambiguity resolution (Ratnaparkhi, 1998) 

and morphological analysis (Shalonova & Golenia, 2010). 

"Entropy is a measure of uncertainty or diversity. The more we know about something, the lower 

the entropy" (Manning & Schütze, 1999:73). Given a number of models, the one with the lowest 

entropy has a better quality. 

If given a model that predicts the future data with a probability distribution of m(x), even though 

the true probability distribution is p(x), the performance of that model can be calculated from 

data entropy H(X) and cross entropy between model predictions and actual readings D(p||m) as: 


x

xmxpmpDXHmXH )(log)()|()(),(  ( 2 ) 

A model that minimised H(X,m) improves prediction. 

2.2.2.4 N-Grams 

The N-grams language model asserts that the probability of a language token in a sequence 

can be computed from the preceding n-previous tokens if such probability estimates have been 

measured before. N-grams are used in handwriting recognition, augmentative communication 
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for the disabled, and spelling error correction (Jurafsky & Martin, 2000:192). They are also used 

in language modelling. N-grams model a probability P: 

)....|( 11 nn wwwP   ( 3 ) 

where nww ....1  is termed history of n-previous token in a sequence and 1nw  the option of a 

token being evaluated. Based on the length of the previous tokens chosen, one gets a unigram 

(n=1), bigram (n=2), trigram (n=3), and 4-gram (n=4), etc. 

Because the n-gram probabilities are determined from type counts of a corpus, which is finite, 

there are valid types that are not in the corpus. This is referred to as sparseness and the counts 

of the missing types would be zero, which is an incorrect estimate. In addition, counting from the 

corpus produces poor estimates for near-zero probability types (Jurafsky & Martin, 2000:207). 

Compensating for these deficiencies is referred to as smoothing. There are a number of 

smoothing methods but the Good-Turing Discounting with back off is the most used.  

Good-Turing Discounting is based on the assumption that bigrams are binomially distributed 

(Jurafsky & Martin, 2000:215), and it does a re-estimation of the n-gram probability of scarce 

tokens from the number of n-grams with higher counts. The smoothed count (c*) is: 

c

c

N

N
cc 1* )1(   ( 4 ) 

where c is the unsmoothed count and Nc the number of n-grams that occur c times. 

An easier smoothing method is called Deleted Interpolation where P is calculated from all 

unigrams, bigrams and trigrams as follows: 

)()|()|( 312211 nnnnnn wPwwPwwwPP   


 ( 5 ) 

where 

1
i

i  ( 6 ) 

The easiest choice is 
3

1
321   . 
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2.2.2.5 Markov Models 

Markov processes are stochastic state-space processes that satisfy the Markov property. A 

process is characterised by states and transitions between states. Stochastic processes have 

an associated probability of activation for each transition. The Markov property states that the 

selection of the next state or previous state in a process is dependent only on the current state. 

Such processes are regarded as memory-less. Mathematically, a Markov model satisfies the 

following probability equation: 

)|(),....,,|( 1211 nnnn XXPXXXXP    ( 7 ) 

where Xn+1 denotes the next state and Xn the current state. A Markov chain is another term for 

Markov processes. 

Ordinarily all the states, transitions, and their probabilities for the Markov process are visible and 

determinable; however there are stochastic processes where the possible states are known but 

the transitions (and transition probabilities) between the states are not apparent. These 

processes can be modelled using Hidden Markov Models (HMM). HMMs are modelled as 

states, transitions and emission probabilities. The transition probabilities would determine the 

hidden model, and the emission probabilities show the visible output of the process.  

Hidden Markov Models have been used in Morphological Analysis (Creutz & Lagus, 2005), 

parts-of-speech tagging (Van Eynde et al., 2000), information retrieval (Manning et al., 2009) 

and lemmatisation (Van Eynde et al., 2000). 

2.2.3 Hybrid 

Hybrid techniques use statistical methods but capitalise on existing linguistic knowledge.  

2.2.3.1 Probabilistic Context-Free Grammars 

Probabilistic context-free grammars (PCFG) add count of the prevalence of a particular rule in 

context-free grammars. These counts are used in calculating the probability of a particular 

sentence parse and selection of the most probable sentence parse tree. PCFGs have also been 

used in information retrieval (Manning et al., 2009:204) and sentence parsing (Gildea & 

Jurafsky, 2002; Manning & Schütze, 1999:382; Collins, 2003).  

However, PCFGs have a number of limitations. The first limitation is the context insensitivity. An 

example cited by Russell and Norvig (2014:912) is the difference in the probabilities of "eat a 

banana" and "eat a bandanna". In a PCFG, the difference in the probabilities of the two words is 
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in P(Noun -> "Banana") and P(Noun -> "Bandanna"), and not the relationship between "eat" and 

"banana" or "bandanna". This is the motivation for lexicalised PCFG. 

2.2.3.2 Probabilistic/Stochastic Definite Clause Grammar 

Probabilistic definite clause grammars are very similar to PCFGs. They have been used in the 

sentence parsing of Vietnamese (Nguyen et al., 2013; Have, 2009). This adds statistical 

information to the clause grammar rules, which are then used in the disambiguation between 

competing rules. 

2.2.4 Similarity Measure Techniques 

In this text, two similarity measures are covered that have been used extensively, i.e. Minimum 

Description Length and Shortest Edit Distance. The nearest neighbour classifier that is 

dependent on similarity measures is also addressed. 

2.2.4.1 Minimum Description Length 

The idea of using the Minimum Description Length (MDL) in statistical natural language 

processing is based on the concept of "equating 'learning' with 'finding regularity'" (Grunwald, 

2005:3). MDL is concerned with finding an efficient code to represent a string of data, i.e. 

compression (Rissanen, 1978) or finding regularity in the data. What makes MDL appealing, is 

that it balances model fit and model generalisation. 

Given a particular model, which is a code mapping to the data being observed, a model fit 

relates to how the model accurately represents the observed data. This is measured using the 

mean-squared-error 
2  of the output of the model related to the observation. The lower the

2 , 

the better the fit of the model to the observed data.  

However, a model with a good fit to the observed data may provide a bad fit to future 

observations or more data from the same source. This is referred to as over-fitting. 

"Generalisation" is the ability of a model to fit new observations adequately. The MDL provides 

good generalisation because MDL penalises for model complexity. Given a model km  such 

that Mmk  , where M  is a set of models, the MDL criteria for the most efficient model is: 

 nkmspsL k
k

log)|(logmin)(   ( 8 ) 
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where p(s|mk) is the probability of the data given a particular model or cross entropy between 

the model and the data, k is the number of parameters the model uses and n is the size of the 

observed data s. 

The MDL has been used in grammar inference (Grunwald, 2005:6), word clustering (Manning & 

Schütze, 1999:514), morpheme discovery (Creutz & Lagus, 2002; Creutz & Lagus, 2005) and 

the induction of morphology and lexical categories from text corpora (Chan, 2008). 

2.2.4.2 Shortest Edit Distance 

The Shortest Edit Distance/Minimum Edit Distance/Shortest Edit Script or the Levenshtein 

distance is a metric for measuring the difference between two strings. It is based on the fact that 

any string can be transformed to another string by using a series of character edit operations 

(insertion, deletion, substitution and swopping). The distance then is the count of these 

operations. A generalisation is to assign a weight to each operation, e.g. insertion=deletion=1, 

swopping=substitution=2, and to add the weighted operations. The Levenshtein distance is a 

special case where the operations are given a weight of one (Manning et al., 2009:58; Jurafsky 

& Martin, 2000:154). Another modality of the Levenshtein distance is to restrict the operations to 

insertion and deletion.  

A distance measurement allows one to use numerous distance based algorithms, including 

regression and clustering (Chrupala, 2006). 

However, even though Levenshtein distances have extensive use, the typology of the language 

may render these distances useless. An example is the distance between engceni [in the 

grass], umgca [a line], and umnga [an acacia tree] to ingca [grass], as shown in the table below: 

Table 1: Discrepancy in Levenshtein Distances for isiXhosa Words. 

Words Levenshtein Distance from 
ingca -grass 

umnga [acacia tree] 3 

engceni [in the grass] 4 

umgca [a line] 2 

 

One can see from the above table that the words that are not related to ingca score better than 

a related word because with isiXhosa typology, for example, umnga is made up of three 

syllables: u-m-nga, while ingca is made up of two syllables, i-ngca. 
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2.2.4.3 K-Nearest Neighbour 

The K-Nearest neighbour classifier is an unsupervised clustering system that uses a similarity 

measure to cluster items into cluster/classes of K items that are closest to each other. 

K-Nearest neighbour has been used in morpheme induction in English (Belkin & Goldsmith, 

2002) and lemmatisation has been used in Afrikaans (Groenewald, 2007). 

2.2.5 Performance Evaluation Techniques 

This section deals with the evaluation of the models and how their performance is measured i.e. 

how well the observations are predicted. 

2.2.5.1 Perplexity 

Entropy was discussed in section 2.2.2.3. Cross entropy can be used to measure the 

performance of a system. 

Perplexity is sometimes used in the place of entropy and is calculated as follows: 

),(2),( mXHmXperplexity   ( 9 ) 

where X is the set of input data, m is the model and ),( mXH is a defined in Equation 2.  

2.2.5.2 Accuracy and Error Rate 

A simple measure of an algorithm‟s performance is accuracy and the error rate. They are 

defined as: 

all

correct

T

T
accuracy   ( 10 ) 

And 

all

incorrect

T

T
rateerror   ( 11 ) 

where  is the number of correct predictions,  the number of incorrect 

predictions, and allT  is the total number of prediction attempts. 
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2.2.5.3 F-Measure 

The standard for evaluating performance of machine learning algorithms is precision, recall and 

the F-Measure (Jurafsky & Martin, 2000:578), because test data must cover the whole domain 

of the field and must contain instances the algorithm should identify as Positive and others as 

Negative. Positives are those data points that the algorithm should identify as hits, and the 

Negatives are those points that the algorithm should reject.  

  

 

In the graphic above TP stands for the count of True Positive, TN for the count of True 

Negatives, FP for the count of False Positives and FN stands for the count False Negatives. 

"Precision" measures how well the algorithm correctly discriminates between Positives and 

Negatives. The formula for precision is: 

FPTP

TP
precision


  ( 12 ) 

"Recall" is a measure of the coverage of the algorithm. It is synonymous with accuracy. 

FNTP

TP
recall


  ( 13 ) 

Where TP is the count of true p 

The F-Measure is a weighted average of precision and recall. 

 
recallprecision

recallprecision
MeasureF






2

2 1




 ( 14 ) 

A prevalent F-measure is the F1-Score, which is the F-Measure with 1 . Most studies present 

the accuracy rate and the F1-Score. 

selected target 

 

FP TP FN 

TN 

Figure 2: Graphical Representation of Precision and Recall Measures (Manning & Schütze, 1999:268) 
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2.2.5.4 Computing Resource Usage Evaluation 

In addition to linguistic performance, HLT resources are measured on their use of computational 

resources. Results are mostly presented for execution time and memory usage. Execution time 

is mainly presented in seconds taken to lemmatise the testing set, and the memory in KB used 

by the lemmatiser. 

Another approach is the normalisation of the results on the number of words in question. This is 

a better comparison when looking at comparing multiple batch sizes, e.g. comparing training 

time on different sized samples. Furthermore, because there are two stages to evaluating a 

lemmatiser: training and lemmatisation, it is important to compare the results for each stage. 

Therefore, typical computing resource usage metrics should be KB/word for memory usage and 

ms/word for execution duration and these should be presented for lemmatiser training and 

lemmatiser testing. Juršič et al. (2010) present their work in this format. 

2.2.5.5 Hypothesis Testing 

The t-test (Rasinger, 2013:192; Welman et al., 2005:231) is a widely used hypothesis testing 

metric for comparing two interventions. When comparing more than two interventions, the one-

way Analysis of Variance (ANOVA) is used to check for statistical significant differences in the 

results of the interventions (Welman et al., 2005:237). 

However, for evaluating HLT resources, the Wilcoxon signed-rank test (Wilcoxon, 1945) is the 

most appropriate. The Wilcoxon signed-rank test is recommended by Demšar (2006) who found 

that the widely used t-test was an inappropriate and statistically unsafe comparison test for 

classifiers. The generally accepted threshold for statistical significance is a p-value that is less 

than 0.05 (Rasinger, 2013:174). 

2.2.6 Emerging Techniques 

A number of emerging technologies are being used in HLT, particularly machine learning 

techniques. 

Artificial Neural Networks (ANN) have been used in speech processing for a while (Jurafsky & 

Martin, 2000:267) and are seeing more use in text processing (Collobert et al., 2011).  

Support vector machines (SVM) have been used in language identification (Botha et al., 2007) 

and in morphological analysis and disambiguation (Pasha et al., 2014). 



21 
 

Artificial Evolutionary techniques mimic nature‟s evolution processes in optimisation. One such 

evolutionary technique is the Genetic Algorithm. Some work has emerged using evolutional 

algorithms in grammar inference (Hrnčič et al., 2012). 

2.3 Techniques Used in Lemmatisation 

A number of techniques have been used in lemmatisation. 

The lemmatisation problem can be looked at as a classification problem in that it is the 

classification of an inflectional morphosyntactic paradigm under one distinct class, namely the 

corresponding lemma. A more prevalent approach is to model lemmatisation with transformation 

classes. These classes define the transformation from word to lemma. 

Automated lemmatisation can be done using linguistic rules or a data driven system. A hybrid 

system would be one using both linguistic rules and learning from training data. 

A number of studies on automated lemmatisation have been reviewed, starting with rules based 

systems. 

2.3.1 Rules Based Lemmatisation Work 

Aduris et al. (1996) presented the morphologically based lemmatiser/tagger named EUSLEM for 

Basque. EUSLEM also used a lexical database. Basque is an agglutinative language with rich 

inflectional morphology. This morphological analyser is based on a two level morphology 

(Koskenniemi, 1984). The study, however, does not specify results. 

Jones et al. (2005) cite the use of a lemmatiser in the development of the spelling checker for 

isiXhosa and how that improved the accuracy of the spelling checker from 78.82% to 92.52%. 

Brits et al. (2005) presented work towards a rules based lemmatiser for Setswana. Preliminary 

results showed a 94% accuracy on a set of 500 verbs and a 93% accuracy on a set of 500 

nouns.  

Tamburini (2011) presents, AnIta, a morphological analyser based stemmer and lemmatiser for 

Italian, a morphologically complex language rich in inflection and derivation. Unlike isiXhosa, 

which is primarily prefixing in nature, Italian is predominantly suffixing (Tamburini, 2011). Italian 

is also disjunctive. AnIta uses the Helsinki Finite-State Transducer2 package, and a lexicon of 

                                                

2 The Helsinki Finite-State Transducer software is available at 
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/index.shtml 
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110 000 lemmas. The system recognised 97.2% of the tokens. For disambiguation, AnIta 

chooses the lemma based on prevalence. 

The work of Suhartono et al. (2014) on the Indonesian language, Bahasa, is another 

implementation of a lemma dictionary and ordered rules in lemmatisation. As a language, 

Bahasa has both inflection and derivation. The language is circumfixing, prefixing and suffixing. 

The lemma dictionary was used for cases where the word-form is already a lemma. The rules 

were used to strip off the affixes and were defined from linguistic knowledge. The 

implementation achieved an accuracy rate of 98%; 57261 tokens were used in this study. 

2.3.2 Data Driven Lemmatisation Studies 

One of the earliest works on the automated morphological analysis of South African languages 

is the automatic acquisition of a Directed Acyclic Graph (DAG) by Theron and Cloete (1997) to 

model the two level rules for the morphological analyser and generators. The objective of the 

study was the generation of two level morphotactic rules from source-target word pairs. The 

algorithm used string edit sequences between the source and target pairs to generate the rules. 

Testing was done on English adjectives, isiXhosa noun locatives and Afrikaans noun plurals. All 

of the isiXhosa nouns presented to the system were inflected correctly to noun locatives. 

Afrikaans lemmatisation achieved a 5-fold validation accuracy of 93% for Afrikaans noun plurals 

when trained with 3935 nouns. 

The work presented by Van Eynde et al. (2000) on the lemmatisation of Dutch-Flemish, starts 

by stating the base constraints for finding a lemma for a word. The first constraint is that the 

lemma must be an independently existing word form. The second constraint is that the pairing 

with lemma is performed on a word-by-word basis, meaning that each word must have a 

lemma. The last constraint is that each word has only one lemma. In this study, three existing 

lemmatisers were compared. The lemmatisers evaluated were a finite state transducer, a 

memory-based learning system, and a rule/lexicon-based system. The memory-based learning 

and rule/lexicon-based systems outperformed the other systems when verbs were excluded 

from the study at 3.6% word error rate (WER) compared to 4.8% and 5.8%. However, for all the 

word categories, the memory-based learning system was dismal at 18.2% WER with the 

rule/lexicon-based system excelling at 5.3% WER. The corpus used was 39304 word-lemma 

pairs and the test set was 2388 pairs in size. 

Plisson et al. (2004) introduced the Induced Ripple-Down Rules (RDR) approach to word 

lemmatisation. RDRs were originally used for rule-based systems and resemble If-then-else 

statements with the most general rules appearing first and exceptions branching from them. An 

exception list then branches from each if-then paragraph. In essence, an RDR is part of a 
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hierarchy where the one level contains the rules and the following level contains exceptions to 

each rule, and so on. This work transformed the problem of lemmatisation into a classification 

problem, where the class is the transformation required to convert a word into a lemma. RDR 

takes as input, a lexicon of words with corresponding lemmatisation classes, automatically 

generates lemmatisation rules in the form of Ripple-Down Rules (RDR), and uses the generated 

rules to lemmatise words presented to it. The work was done on Slovene and the feature used 

was the suffix. To improve performance, the ripple-down rules were ordered so that the 

beginning of the list had shorter suffixes; 5-fold cross validation results showed an accuracy of 

77%, which was an improvement at the time, with a training set of 5730 words. 

Erjavec and Dzeroski (2004) conducted work on a machine learning supervised lemmatiser. 

The work was restricted to the Slovene open classes i.e. nouns, adjectives and verbs. Other 

word classes were not considered because they are closed classes. The tools used were 

existing Slovene tools. The work consisted of a Parts-of-Speech (POS) tagger, a morphological 

analyser and a lemmatiser. The tagger used was a trigram tagger, and the lemmatiser was an 

induced first-order decision list. A first order decision list is an ordered list of rules. The system 

induced the decision list from the input word form-lemma-MSD triples, where MSD stands for 

morphosyntactic, a feature structure showing the parts-of-speech and other morphosyntactic 

attributes of the word form (Juršič et al., 2010). To train the trigram tagger, 100 000 instances 

and 15 000 hand annotated word form-lemma pairs were used to train the lemmatiser. The 

lemmatiser achieved an accuracy rate of 92% on out-of-vocabulary (OOV) words. 

Plisson et al. (2004) further modified the algorithm to handle exceptions better by recording 

words covered by a rule under that rule. With an increased corpus size from the previous work 

in Slovene, this study achieved performance levels of 91% accuracy when using only word 

form-lemma pairs for training. This work also included tests where the input included POS tags. 

This increased the 5-fold cross validation accuracy to 97.2%; 5720 word lemma pairs were used 

in training. 

Groenewald (2007) presented a machine learning lemmatiser for Afrikaans named LiA (Lemma-

identifiseerder vir Afrikaans [Lemmatiser for Afrikaans]). LiA is based on memory-based learning 

(MBL) and uses the Tilburg Memory-Based Learner (TiMBL), which was originally designed for 

Dutch. Learning in MBL, also known as instance-based classification algorithm (Mitchell, 

1997:230), involves simply storing the learning instances in memory. The classification of a 

query involves the evaluation of the new query against stored instances in the nearest 

neighbour methods that use weighting of learning instances. TiMBL uses a distance-weighted 

Nearest Neighbour algorithm. LiA achieved over 91% accuracy, thanks to good feature 

selection, i.e. the right-alignment of the input to LiA; 56000 words were used for training. 
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The context sensitive lemmatiser, implemented by Chrupala (2006), is a pure data-driven 

lemmatiser. It used support vector machines (SVM) on the Shortest Edit Script on reversed 

words. For context, the lemmatiser used three preceding words and three following words. This 

lemmatiser assumed suffixal morphology, hence the reversed words. The system was tried on 

various European languages with varying results that correlate with the suffixal morphology 

assumption. The system performed well for out-of-vocabulary (OOV) words. The lemmatiser 

was trained with 70000 word lemma pairs, and was tested on 10000 word pairs. 

The work done by De Pauw and De Schryver (2008) is interesting because it shows that a 

machine learning lemmatiser can be trained with the output of a rules based lemmatiser to 

produce superior results to the rule-based lemmatiser. De Pauw and De Schryver (2008) 

presented the Memory-Based Swahili Morphological Analysers (MBSMA), based on the 

modified memory based learning method of Van den Bosch and Daelemans (2009). It was 

trained using lemmas generated by a rule-based morphological analyser (SALAMA). The output 

of SALAMA, the Helsinki Corpus of Swahili (HCS), consists of word forms, lemmas and MSD. A 

sample of 97000 was extracted from the HCS and 10% was hand annotated to be a gold 

standard evaluation set. Two versions of the MBSMA were developed, one being the original 

character based analyser (MBSMA-c) and the other a syllable based analyser (MBSMA-s). The 

lemmas were generated by the HCS trained MBSMAs and the original HCS lemmas were 

evaluated against the gold standard and another analyser called Morfessor. The syllable based 

MBSMA had the lowest lemmatisation error rate at 11.7% followed by the HCS lemma output at 

12%. The MBSMA-c performed at a word error rate (WER) of 13.6% with the Morfessor being 

the worst performer at 73.6%.  

Jongejan and Dalianis (2009) presented a lemmatiser (CST Lemmatiser) that works with more 

than just suffixes because languages such as Dutch can include prefixing and infixing. The 

paper specifically states that the method used is not an obvious choice for agglutinated 

languages. This study also used a hierarchy of rules. Each rule was represented by the form: 

affix0*affix1*…*affixK->insert0*insert1*…*insert. The hierarchy is 

similar to Ripple-Down Rules in that for a child rule, the parent rule should hold true for 

candidate classes. Conflicts in lemmatisation were not handled, and the first lemma generated 

was accepted as the output. The implementation was compared to the suffix rules for 12 

European languages. The implementation performed exceptionally well for Polish accuracy with 

a 24% improvement from suffix rules, but performed badly for Icelandic, with a drop in accuracy 

of 1.9%. The improvement in Polish is attributed to the inflectional paradigm of Polish being 

prefixal except for the superlative, which accounted for only 3.8% of the data. Also 23% of the 

data consisted of negation, which the prefixal and suffixal rules could not handle correctly. This 
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lemmatiser is openly sourced and freely available. Training was done with 3.8 million words in 

Polish. 

The work of Daelemans et al. (2009) on the lemmatisation of Afrikaans, used the Prototype 

Based Active Learning (PBAC) method with modifications for linguistics. Active learning 

Prototype learning is modelled on human cognition, where it is understood that some words are 

more representative of the grammatical rules than others are. Such words are then prioritised 

over others based on certain criteria. This study used a combination of prevalence/frequency of 

a word, size/length and entropy as the criteria. The learning algorithm used was the memory-

based leaner TiMBL. The modification to the generic PBAC was in the sequencing of training 

data. The generic PBAC sequencing involved starting with prototypical (most representative) 

data items first but, as in Daelemans et al., the less prototypical data items were prioritised. The 

intuition in the study was that "language processing tasks have highly disjunctive instance 

spaces". The study did not concentrate on the overall accuracy of the algorithm as that work 

had been proven by Groenewald (2006), but rather on the effect of prototypical ordering of the 

training data. The study showed that by reversing the sorting regime, one could reduce the 

number of training data instances required in Afrikaans by almost 20% and achieve the same 

accuracy as the non-prototype based learners.  

Groenewald (2009) conducted a study on the technology transfer of LiA to the lemmatisation of 

Setswana. LiA was trained on 2947 lemma annotated Setswana words and achieved an 

accuracy of 64.05% after some minor modifications and additional work. The authors conceded 

that the training data was too small and that there is a possibility of improving the results of the 

lemmatiser if there were more data available. 

Jursic et al. (2010) presented an even more enhanced Ripple-Down Rules lemmatiser called 

LemmaGen that was tested on 12 languages. The LemmaGen lemmatiser is an open source 

software (OSS). The lemmatisation of a new word is done in the same way as the most similar 

word form in the lexicon. The system also used the suffix feature, as it was also meant for 

European languages.  

Ambiguation was done by choosing the most prevalent/frequent class. In a case of equal 

prevalence, the second most similar class was used. The original RDRs form a tree structure 

and are ordered, implying that the first rule to fire is accepted. To improve the efficiency and 

readability of rules, the LemmaGen implementation extends the RDR structure by imposing a 

similarity condition for an exception list, meaning that all the suffixes share the same k-1 

characters, where k can be chosen. The Wilcoxon signed rank test (Wilcoxon 1945), instead of 

the general t-test which is discredited for this kind of work (Demšar 2006), was used to evaluate 
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LemmaGen against RDR and the CST Lemmatiser. LemmaGen outperformed the RDR and the 

CST for highly suffixal languages. It, however, did not provide a significant improvement in 

accuracy against RDR and CST for Italian with a 5-fold validation accuracy of 80.5 ± 0.25 % 

against RDR‟s 80.6 ± 0.27 % when implemented without POS tags. POS tagging improved the 

LemmaGen‟s accuracy beyond the performance of RDR and CST lemmatisers for all the 

languages, even though the accuracy of Italian was still the lowest. Training and Lemmatisation 

speeds improved by at least a factor of three. Romanian seemed odd in this study because it 

was slow in both training and lemmatisation. For Romanian, the CST was the slowest 

lemmatiser for training and the RDR the slowest in lemmatisation. This study presented 

normalised computer resource usage results. 

Gesmundo and Samardzic (2012) present work on the lemmatisation of a number of European 

languages. The study evaluated approaching lemmatisation as a tagging task and the 

integration of context information. The study is conducted on eight European languages, 

including Hungarian and Estonian, which are agglutinative, and Slavic, which is a fusional 

language. The approach uses the transformation required to convert a word form to a lemma as 

the tag. The transformation is encoded as a four-tuple <Ns, Ls, Np, Lp> where Np is a prefix to be 

removed, Lp a prefix to be inserted, Ns a suffix to be removed and Ls a suffix to be inserted. The 

system is trained on word-lemma pairs. For the study, a Bidirectional Tagger with Guided 

Learning (Shen et al., 2007) was implemented. The study achieved an accuracy of 96.5% for 

Hungarian, 95.8% for Estonian, and 96.1% for Slavic for lemmatisation without MSD. When 

MSD was incorporated, the results improved to 97.5% for Hungarian, 97.4% for Estonian and 

98.1%. For Slovene, 110000 tokens were used in the study, and 10% of that was used for 

testing. 

Agic et al. (2013) present work on the lemmatisation and POS tagging of Croatian and Serbian. 

The lemmatisers were trained with manually annotate word form-lemma pairs from the 

SETIMES.HR corpus of Croatian and the evaluation was done on both Croatian and Serbian. 

The intention was to capitalise on the similarity between Serbian and Croatian and the existing 

lemmatisers were trained. The lemmatisers used were the PurePos (Orosz & Novák, 2013), 

Tree-Tagger (Schmid, 1995), BTagger (Gesmundo & Samardžić 2012), all the lemmatisation 

capable of POS tagger, and the CST lemmatiser (Ingason et al., 2008). The CST Lemmatiser 

provided the best performance and achieved accuracy rates of 97.78% for Croatian and 96.30% 

for Serbian; 89 000 tokens were used for training and 8000 formed the test set. 
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2.3.3 Hybrid Lemmatisation Studies 

Perera and Witte (2005) presented an algorithm for lemmatising German nouns depending on 

noun declension classes using an algorithm and a lexicon. This lemmatiser considers the 

context of the word and grammatical features and therefore uses a POS tagger and a noun-

phrases chunker. The algorithm strips the word of affixes depending on the declension class. 

The lexicon is a self-generated lexicon of lemmas and morphological features that is used as a 

lookup table for disambiguation in cases where the algorithm returns two possible lemmas. The 

accuracy rate of the implementation was reported at 50% for the algorithm alone and at 98% for 

the algorithm and the lexicon. 

The Lemmald lemmatiser for Icelandic was developed by Ingason et al. (2008). It achieved 

accuracies of 99.55% because it combines tested methods with a number of innovations. The 

lemmatiser is data-driven, but uses rules to improve performance. Training input to the 

lemmatiser was a triple of word form-lemma-POS tag. For evaluation, the system has a pre-

processing step that guesses the POS tag of the word form and provides that as input to the 

lemmatiser. It also uses a hierarchical POS tagging and the Hierarchy of Linguistic Identities 

(HOLI). POS tagging improves lemmatisation by adding disambiguation. The HOLI innovation 

improves disambiguation. Training was done with 530 000 tokens and 60000 was used for 

testing. 

Yet another hybrid is the Arabic stemming/lemmatiser by Bramhi et al. (2013). Their lemmatiser 

is based on a morphological analyser and root based stemming and has no disambiguation. 

The system uses a support vector machine.  

2.3.4 Summary 

Linguistic rules based systems have been based on finite state automata. The ones reviewed 

have achieved accuracy rates of up to 97%. 

The prevalent data driven lemmatisation techniques primarily follow two technical streams, 

namely memory based learning/classifiers (MBLs) and Ripple-Down Rules (RDRs). Some work 

has used support vector machines (SVM), and efficiencies of up to 98% have been achieved 

with the RDRs; the MBLs have achieved accuracy rates of up to 92%. The features selected 

matter in both the RDR and MBLs, as shown by the improvement achieved in the lemmatisation 

of Afrikaans (Groenewald, 2007), and that shown by the reduction in lemmatisation accuracy of 

Italian for the suffixal LemmaGen lemmatiser (Juršič et al., 2010). 
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Hybrid lemmatisation techniques show the best results, especially for highly inflecting 

languages, as witnessed in the Lemmald lemmatisation of Icelandic (Ingason et al., 2008).  

Most of the lemmatisers modelled the problem to be classification, where the relationship 

between a word and a lemma is characterised by a transformation class (Plisson et al., 2004; 

Groenewald, 2009; Jongejan & Dalianis, 2009) 

For all three techniques, incorporating POS tags and a lexicon improved the results 

substantially, as witnessed in Lemmald (Ingason et al., 2008) and the work by Gesmundo and 

Samardzic (2012). 

2.4 Conclusions 

This chapter states what HLT objectives and techniques are used to achieve objectives. 

Techniques were classified into rule based techniques and stochastic techniques. The rules 

based techniques include Finite State Automata, Context Free Grammars and First-Order Logic. 

Stochastic techniques were divided into supervised and unsupervised techniques based on 

their learning data. The document highlighted Zipf‟s law, a characteristic of language. The 

Stochastic techniques covered were entropy maximisation, n-grams, and Markov Models, 

including Hidden Markov Models. The Hybrid techniques cited included Probabilistic Context 

Free Grammars and Stochastic Definite Clause Grammars. 

The Minimum Description Length, Shortest Edit Distance and the K-Nearest Neighbour were 

cited as techniques that establish and use distance measures in HLT. 

The performance evaluation of models was discussed and the linguistic evaluation methods 

mentioned were perplexity, accuracy and error rate, precision, recall, the F-measure. The 

computing resources evaluation metrics cited were execution duration in ms/word and the 

memory usage in KB/word. The Wilcoxon signed-rank test was specified as the appropriate 

hypothesis testing statistical method for classification systems. 

The Artificial Neural Network, Support Vector Machines and Evolutionary algorithms were cited 

as artificial intelligence technologies that are seeing increased use in HLT. 

Lemmatisation is being conducted using linguistic rules based systems, purely machine learning 

systems and hybrid systems. Rules based systems are primarily implemented using finite state 

automata. Purely machine lemmatisation techniques cover the use of memory-based learning 

(MBL) and Ripple-Down-Rules (RDRs). Incorporating MSD information, linguistic knowledge 

and a lexicon in the lemmatisation process was shown to improve lemmatisation performance. 
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This study suggests a machine learning lemmatiser that implements Ripple-Down-Rules and 

that incorporates a lexicon would provide good results for isiXhosa. This could be enhanced 

with Parts of Speech (POS) tags for better disambiguation. 
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CHAPTER 3: ISIXHOSA LEMMA FORMS IN THE CONTEXT OF 

NATURAL LANGUAGE PROCESSING 

3.1 Introduction 

To build a lemmatiser specifically for isiXhosa, one has to understand lemmatisation aspects of 

the language. In this chapter, the question of what is the appropriate isiXhosa lemma form for 

each category of isiXhosa words in the context of natural language processing (NLP) is 

investigated. According to Bender, "knowledge of linguistic structure leads to better features for 

machine learning … [and] also inform[s] error analysis of NLP systems" (2013:1). The 

understanding of isiXhosa in the context of NLP lemmatisation is therefore important. This 

chapter starts by providing a description of what a lemma actually is in isiXhosa, and because 

lemmas are specific to a word category, the document then enumerates word categories for 

isiXhosa. This is followed by details of what forms should stand as lemmas for the different word 

categories of isiXhosa. 

A summary of the chapter is provided.  

3.2 A lemma in the NLP context 

Gouws and Prinsloo (2005:67) define lemmatisation in a dictionary context as "the selection of a 

specific form from a given paradigm to be used in a dictionary as the starting point for 

information retrieval". If a paradigm is the "systematic form-meaning correspondence between 

words in a language" (Booij, 2012:8), then a lemma in a dictionary context provides for a unique 

form that can be used to find a group of word-forms with similar meanings in a language. 

Lemmatisation, therefore, is the selection of that unique form that can be used to find a group of 

word-forms with similar meaning in a language. Examples are shown in Table 2. 

The above definition of lemmatisation and a lemma is specific to dictionaries, but can also be 

applicable to general information retrieval by meaning. This explains the importance of a 

lemmatiser in natural language processing, and especially in searching through documents. In 

natural language processing lemmatisation is looked at in terms of inflection as "a normalisation 

step on textual data, where all inflected forms of a lexical word are reduced to its common 

headword, the lemma" (Erjavec & Dzeroski, 2004). Gesmundo and Samardžić (2012) clarify 

lemmatisation as “the task of grouping together word forms that belong to the same inflectional 

morphological paradigm and assigning to each paradigm its corresponding canonical form 

called lemma”. 
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Table 2: Paradigm Example 

lemma paradigm translation 

hamba ndiyahamba 
siyahamba 
uyahamba 
bayahamba 
iyahamba 
ziyahamba 
uhambile 
bahambile 
ndihambile 
sihambile 
ihambile 
zihambile 
abahambanga 

I‟m going 
We are going 
He/she is going 
They are going 
Its going 
They (non-human objects) are going 
He/she left 
They went 
I went 
We went 
It went 
They went 
They did not go 

 

A process similar to lemmatisation is stemming. For a particular paradigm, a stemmer simply 

finds the common substring among the paradigm word forms. The lemmatiser looks more for 

meaning. For example, the lemma for "better" and "best" is "good" (Daelemans et al., 2009).  

Jurafsky and Martin (2000:195) explain that in the context of natural language processing, a 

lemma represents a set of lexical forms with the same stem, the same major part-of-speech and 

the same word-sense.  

The issue of a lemma is even more conflated in isiXhosa text because it is a synthetic language. 

IsiXhosa morphology consists of bound and free morphemes, and morphemes from open and 

closed classes.  

A morpheme is the smallest meaning-bearing component of a word. For example, the 

morphemes in the word "boys" has two morphemes, "boy" which means a male child, and "-s" 

which carries the plural meaning. Closed classes are those morpheme classes where all the 

morphemes in a class are known. Open morpheme classes are those that are subject to the 

productive nature of word formation. Bound morphemes cannot exist as words on their own, 

they need to be bound to another morpheme, whilst free morphemes do not need to be bound 

to another morpheme (Kosch 2006:5). In the "boys" example, "boy" is a free morpheme, as it 

can stand on its own, while "-s" is a bound morpheme because it requires something to bind to. 

Morphemes are divided into roots and affixes. The root is the semantic carrying morpheme of a 

word. However, the root of an isiXhosa word is generally syllabically incorrect, e.g. the root of 

babalekile [they ran] is balek, hence the emphasis on the stem, baleka. In isiXhosa, most roots 

are bound morphemes which are not independently meaningful (Kosch, 2006). Stems are word 



32 
 

roots suffixed with a termination vowel (Louw et al., 1984), and hence the use of stems as the 

appropriate lemma for isiXhosa.  

In summary, a lemma in isiXhosa in the context of natural language processing is a "form with 

the same stem, the same major part of speech and the same word-sense" (Jurafsky & Martin 

2000: 195). Even in a synthetic language, this tri-criterion should be maintained.  

3.3 Word Categories of isiXhosa 

Because different categories of isiXhosa words are made up of free or bound morphemes, it is 

better to look at what a lemma would be for each particular word category. For a synthetic 

language, like isiXhosa, word categories are not straightforward. 

Word categorisation in isiXhosa has evolved from the classic Germanic approach introduced by 

Boyce (1844) and later McLaren (1948) to that used in Pahl (1982) and later Louw et al. (1984), 

and the Greater Dictionary of isiXhosa (Pahl et al., 1989; Mini & Tshabe, 2003; Tshabe & 

Shoba, 2006). 

The morphological approach of Louw et al. (1984) provides for 13 word categories for isiXhosa 

i.e. noun [isibizo], pronoun [isimelabizo] (absolute, demonstrative, quantitative, and emphatics 

absolute), adjective [isiphawuli], relative [isibaluli], enumerative relative [isichazi sobalo], 

possessive [isimnini], verbal [isenzi] (auxiliary verb [isenzi esilabalabayo]), copulative 

[isibanjalo], verbal relative [isibaluli esakhiwe kwisenzi], descriptive [isihlomelo], ideophone 

[isifanekisozwi], conjunction [isihlahnganisi] and interjection [isikhuzo]. 

The Greater Dictionary of Xhosa: Volume 3 (Q to Z) (Pahl et al., 1989) provides for a traditional 

nomenclature of isiXhosa word categories i.e. noun, pronoun, verb, qualificative, conjunction, 

adverb and ideophone. 

The Greater Dictionary of isiXhosa: Volumes 1: (A to J) and 2: (K to P) (Mini & Tshabe, 

2003:xxxiv; Tshabe & Shoba, 2006:xxv) list 13 word categories for isiXhosa i.e. noun [isibizo], 

verb [isenzi], relative [isibaluli], adjective [isiphawuli], copulative [isibanjalo], pronoun 

[isimelabizo], qualificative [isichaziI, possessive [isimnini], quantificative [isahluli], enumerative 

[isiquki], ideophone [isifanekisozwi], adverb [isihlomelo], and form word [isikhapi]. 

For the purposes of lemmatising isiXhosa, the following main word categories will be used in 

this document, i.e. noun, pronoun, qualificative, verb, copulative, descriptive, ideophone, 

conjunction and interjection.  
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However, there is sub-categorisation within a word category in isiXhosa, as witnessed in the 

many qualificatives in The Greater Dictionary of Xhosa: Volume 3 (Pahl et al., 1989:xxxvi) and 

parts of speech in Louw et al. (1984:16). This work uses the following hierarchy of isiXhosa 

categories: 

- 

The hierarchy of categories is important, because in each main category there are 

lemmatisation nuances specific to the sub-categories. 

3.4 IsiXhosa Lemmas Details 

This section describes in some detail the appropriate lemma for each word. As nouns are the 

lead words in an isiXhosa sentence (McLaren, 1948:14), they will be addressed first. 

3.4.1 Nouns 

IsiXhosa nouns are characterised by noun prefixes that expose the class of the noun (Pahl, 

1982:9; McLaren, 1948:16; Louw et al., 1984:18). The noun class structure is a system of 

Figure 3: Hierarchy of IsiXhosa Word Categories used 

 Noun (isibizo) 

 Pronoun (isimelabizo) 
o Absolute pronoun (esoqobo) 
o Demonstrative (esokukhomba/ esokwalatha/ isikhombisi/ isalathisi/) 
o Quantitative pronouns 
o Superlative (esobalaselo) 
o Possessive pronoun 

 Qualificative (isichazi) 
o Adjective (Isiphawuli) 
o Relative (Isibaluli) 
o Possessive (Isimnini) 
o Enumerative (esobalo) 

 Predicate (Isivisa) 
o Verb (isenzi) 
o Copulative (Isibanjalo) 

 Indicative copulative (isibayiyo) 
 Qualificative copulative (isibanjani/ isibanjalo sochazo/ isichazi) 
 Locative Demonstrative Copulative (isibandawo/ izibanjalo-

zalathandawo) 
 Possessive copulative (esinesibandakanyi/ isibanayo) 
 Distributive (esinokwaba) 

 Descriptive/Adverb (isihlomelo) 
o Locatives (Descriptive of place) (isalathandawo) 
o Descriptive of Manner (Isihlomelo sobunjani) 
o Descriptive of Time 

 Ideophone (Isifanekisozwi) 

 Conjunction (Isihlanganisi) 

 Interjection (Isikhuzo) 
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classifying Bantu nouns according to noun class prefixes that usually distinguish between 

singular and plural forms. In this study Meinhof‟s (1932) classification is adhered to.  

Table 3: Noun Class Prefixes 

Class Singular  Plural 

Class 1  um- Class 2  aba- 
1a u- 2a oo- 
3 um- 4 imi- 
5 ili- 6 ama- 
7 isi- 8 izi- 
9 in- 10 izin- 
11 ulu- 10 izin- 
14 ubu-   
15 and 17 uku-   

 

This noun class structure permeates isiXhosa as far as other word categories relate to nouns, 

as will be evident in the rest of the document. This is referred to as concordial agreement 

(Mncube, n.d:13; McLaren, 1948:16; Louw et al., 1984:17). McLaren (1948:27) presents the 

base of these concords as the noun prefix proper. Louw et al. (1984:) refers to these base 

concords as the basic prefix. The base prefixes are listed below. 

Table 4: Noun Prefixes Proper/Basic Prefix 

Class Singular  Plural 

Class 1 and 1a  mu- Class 2 and 2a  ba- 
3 mu- 4 mi- 
5 li- 6 ma- 
7 si- 8 zi- 
9 n- 10 zin- 
11 lu- 10 zin- 
14 bu-   
15 and 17 ku-   

 

Other concords in isiXhosa are based on these basic prefixes, e.g. adjective, relative, copulative 

and enumerative. 

Except for class 2a, one can see that the noun basic prefix is simply a drop of the pre-prefix 

from the noun class prefixes. Pahl (1982:9) and Louw et al. (1984: 19) define the pre-prefix as 

the initial vowel preceding the basic prefix, using the following examples:  

u+m(u) > um, in umntu [a person] 

i+li > ili, in ilitye [a stone] 

a+ma > ama, in amanzi [water] 
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i+si > isi, in isitya [a dish] 

Nouns can also be inflected with suffixes for diminution, exaggeration, etc. The only discernible 

common feature in an isiXhosa noun paradigm is a noun stem. Therefore, the appropriate 

lemma for an isiXhosa noun is the noun stem. 

Umntu, abantu -> ntu 

[A person, persons -> person] 

Ilizwe, amazwe, isizwe -> zwe 

[A nation, nations, nationhood -> nation] 

IsiXhosa nouns can take an augmentative suffix -kazi or diminutive suffix, e.g. –ana. The lemma 

in such cases remains the noun stem as shown below. 

Umntu + ana = Umntwana -> ntu 

[A person + <Diminutive suffix> = child -> person] 

Umthi + kazi = Umthikazi -> thi 

[A tree + <augmentative suffix> = large tree -> tree] 

Iindaba + ana = iindatyana -> daba 

[News + <diminutive suffix> = minor news -> news]  

3.4.1.1 Noun Concords 

IsiXhosa words are characterised by their concordial element which specifies the noun class to 

which they refer (Louw et al. 1984: 57). The concordial element is a prefixal morpheme that 

relates the word to a noun class. This referential characteristic allows the word to be used in a 

place of a noun, a pronominal character. 

These concordial morphemes are normally bound to stems of other word categories resulting in 

the word, e.g. “ndi-vile” [I heard], for subject concords, and “u-ndi-vile” [he/she heard me], for 

object concord. These concords are a closed group. Table 5 and Table 6, are lists of subject 

and object concords. 

There are other concords in isiXhosa, but those will be handled in the appropriate word 

category section. Of note is that a word with concordial agreement with a noun in isiXhosa 

allows for the omission of the noun in the use of the language, e.g. 

u-hambile (verb) 

he/she is gone 

ba-hle (adjective) 

they are beautiful 
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ndi-segumbini (locative) 

I am in the room 

Table 5: Subject Concords 

Person/Class Singular  Plural 

1st Person ndi-  si- 

2nd person u-  ni- 

3rd person    
Class 1 and 1a u- Class 2 and 2a ba 
3 u- 4 i- 
5 li- 6 a- 
7 si- 8 zi- 
9 i- 10 zi- 
11 lu- 10 zi- 
14 bu-   
15 and 17 ku-   

 

Table 6: Object Concords 

Person/Class Singular  Plural 

1st Person -ndi-  -si- 

2nd person -ku-  -ni- 

3rd person    
Class 1 and 1a -m- Class 2 and 2a -ba 
3 -wu- 4 -yi- 
5 -li- 6 -wa- 
7 -si- 8 -zi- 
9 -yi- 10 -zi- 
11 -lu-   
14 -bu-   
15 and 17 -ku-   

 

This section does not define lemmas per se, but provides reference material for other sections 

of this chapter. 

3.4.2 Pronouns 

The following sub-categories of isiXhosa pronouns will be dealt with, i.e. absolute pronouns, 

demonstrative pronouns, quantitative pronouns and superlatives. 

3.4.2.1 Absolute Pronouns  

Absolute pronouns are a closed group of full words related to the noun classes they represent. 

According to Pahl (1982:37) and Louw et al. (1984:59) all absolute pronouns have the stem –

na, e.g. thi-na, wo-na, so-na, ko-na, ye-na. The list of absolute pronouns is shown below. 
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Table 7: IsiXhosa Absolute Pronouns 

Person/Class Singular  Plural 

1st Person m-na  thi-na 

2nd person we-na  ni-na 

3rd person    
Class 1 and 1a ye-na Class 2 and 2a bo-na 
3 wo-na 4 yo-na 
5 lo-na 6 wo-na 
7 so-na 8 zo-na 
9 yo-na 10 zo-na 
11 lo-na 10 zo-na 
14 bo-na   
15 and 17 ko-na   

 

Because the absolute pronouns are a closed group, one could use the whole absolute pronoun 

as the lemma for itself or the stem -na. For this study, absolute pronouns will lemmatise to their 

stem -na. 

Absolute pronouns are used as stems in the formation of some locatives, possessives, 

copulatives and adverbs (Pahl, 1982:38). In such cases, the absolute pronoun stem is dropped 

as shown below: 

Na+yena > naye 

Ya+zona > yazo  

Nga+bona > ngabo 

These other word categories will, however, be handled later in the document. 

3.4.2.2 Demonstrative Pronouns 

IsiXhosa also uses demonstrative pronouns. There are three types of demonstrative pronouns, 

i.e. for demonstrating at positions here [this], near [that] and at a distance [that yonder], e.g. lo, 

lowo, lowaa (Louw et al., 1984:60; McLaren, 1948:57; Pahl, 1982:39). These are also a closed 

set depending on the class of the related noun. The full list of demonstrative pronouns is shown 

below.  
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Table 8 : Demonstrative Pronouns from Louw et al. (1984:61) 

Location : this there That yonder 

 
3rd Person 
Class 1 and 1a 
2 and 2a 
3 
4 
5 
6 
7 
8 
9 
10 
11 
14 
15 
17 

lo 
aba 
lo 
le 
eli 
la 
esi 
ezi 
le 
ezi 
olu 
obu 
oku 
apha 
 

lowo/loo 
abo 
lowo/loo 
leyo/loo 
elo 
lawo/loo 
eso 
ezo 
leyo/loo 
ezo 
olo 
obo 
oko 
apho 
 

lowa/laa/lowaa 
abaya/abaa/aabayaa 
lowa/laa/lowaa 
leya/laa/leyaa 
eliya/elaa/eeliya 
lawa/laa/lawaa 
esiya/esaa/eesiyaa 
eziya/ezaa/eeziyaa 
leya/laa/leyaa 
eziya/ezaa/eeziyaa 
oluya/olwaa/ooluyaa 
obuya/obaa/oobuyaa 
okuya/okwaa/ookuyaa 
phaya/phayaa 
 

 

Demonstratives are formed of the demonstrative element la and the class concord. As they do 

not have a stem and they are a closed set, it follows that the full word form should therefore be 

the lemma for demonstrative pronouns. 

3.4.2.3 Quantitative Pronouns 

Quantitative pronouns are characterised by the stems: -nke, -dwa and –numeral (Louw et al., 

1984:68; Pahl, 1982:43). Examples are: 

Table 9: Quantitative Pronouns 

Quantitative stem Examples Translated 

-nke so-nke  
zo-nke: 

all of us 
all of them 

-dwa ye-dwa: 
so-dwa: 

only him 
us alone 

-numeral so-babini: 
zo-mbini: 

the two of us 
the two of them 

 

Quantitative pronouns derived from –nke are known as Inclusive Quantitatives; those derived 

from –dwa are known as Exclusive Quantitatives and those using -numeral are known as 

Inclusive Numerals (Pahl et al., 1989:700). 

For the quantitative pronoun, the lemma should be the stem, e.g. 
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so-nke -> nke 

zo-nke -> nke 

ye-dwa -> dwa 

so-dwa -> dwa 

so-babini -> bini 

zo-ntathu -> thathu 

3.4.2.4 Differentiative Pronouns 

Differentiative pronouns are derived from differentiative qualificatives with stems –mbi [another] 

and –phi, [which of these] (McLaren, 1948:67). The pronoun forms are the same as the 

differentiative qualificatives for those derived from the stem –mbi. However, for those derived 

from the qualificative stem –phi, the prefixes a-, e- and o- are added (Pahl et al., 1989:703). 

e.g.: 

Akukho wumbi[There is no other]. 

Ufuna e-siphi?[which ones do you want?] 

Sobona a-baphi?[which ones will we see?] 

Ubone o-mphi? [which one did you see?] 

The differentiative pronouns are a closed set that is related to the noun class. 

Table 10: Differentiative Pronouns 

Class Singular  Plural 

Class 1 and 1a wumbi owuphi Class 2 and 2a bambi abaphi 
3 wumbi owuphi 4 yimbi eyiphi 
5 limbi eliphi 6 wambi awaphi 
7 simbi esiphi 8 zimbi eziphi 
9 yimbi eyiphi 10 zimbi eziphi 
11 lumbi oluphi 10 zimbi eziphi 
14 bumbi obuphi   
15 and 17 bumbi okuphi   

 

Because differentiative pronouns have distinct stems, they should lemmatise to that stem.  

3.4.2.5 Superlative Pronouns 

Superlatives or emphatic absolute pronouns are formed from absolute pronouns and are for 

emphasis (Louw et al., 1984:74). This pronoun shows that the particular noun is highlighted in 
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some manner (Pahl, 1982:39). The superlatives are specific to a noun class, only exist for third 

person and are shown in the table below: 

Table 11: Superlative Pronouns (Louw et al., 1984:74; Pahl, 1982:39; Pahl et al., 1989:690) 

Person/Class Singular  Plural 

3rd person    
Class 1 and 1a oyena Class 2 and 2a abona 
3 owona 4 eyona 
5 elona 6 owona 
7 esona 8 ezona 
9 eyona 10 ezona 
11 olona 10 ezona 
14 obona   
15 and 17 okona   

 

Because superlative pronouns are a closed set, their lemma could be the full word form, or the 

absolute pronoun stem –na. For this exercise the absolute pronoun stem –na is chosen. 

3.4.3 Qualificatives 

Qualificatives describe or qualify a substantive. The difference in the types of qualificatives is in 

the origin of their stem. Except for adjectives and enumeratives, all the stems of qualificatives 

come from another word category like a verb or pronoun. 

3.4.3.1 Adjectives 

The stem of an adjective carries the characteristic of the substantive e.g. –de [height or length], 

or –hle [beauty or goodness].  

Adjectives are characterised by a noun class concord prefix and a stem, e.g. om-de [tall one] , 

om-futshane [the short one], aba-de [the tall ones], aba-futshane [the short ones].  

Negations adds a circumfix (Louw et al., 1984:81)., e.g.:  

ongam-d-anga [the one who’s not tall],  

ongam-funtshan-anga [the one who’s not short],  

olungelu-d-anga [who is not tall]  
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The table below shows the adjective concords: 

Table 12: List of Adjective Concords (Louw et al., 1984:77) 

Class Singular  Plural 

Class 1 and 1a om- Class 2 and 2a aba- 
3 om- 4 emi- 
5 eli- 6 ama- 
7 esi 8 ezi- 
9 en- 10 ezin- 
11 olu- 10 ezin- 
14 obu-   
15 and 17 oku-   

 

When an adjective is preceded by a demonstrative which precedes the noun being qualified, the 

adjective loses the initial vowel of the adjective concord (Louw et al., 1984:80), e.g.: 

Loo mntu m-hle[that beautiful person] 

Esi sitya si-hle[this nice dish] 

The same happens when the adjective is used with a short negative verb (Louw et al., 1984:81) 

e.g.: 

Andiboni bantu ba-ninzi[I don’t see any people] 

According to Pahl (1982:46) and Louw et al. (1984:78) there are only 19 adjective stems in 

isiXhosa and they are: 

Table 13: isiXhosa Adjective Stems (Pahl, 1982:46; Louw et al., 1984:78)  

-bi [ugly] -de [long] -dala [old] -khulu [big] 
-hle [beautiful] -fuphi/-futshane [near] -tsha[new] -ncini/ 

-ncinane/ 
-ncakane [small] 

-ni? [which] -ngaphi? [how many?] -ninzi/ 
-nintsi/ 
-nintshi/ 
-ninji: [many] 

-nje [only] 

-nye [alone] -nye [one] -bini [two] -thathu [three] 
-ne [four] -hlanu: [five] -thandathu [six]  

 

The lemma for adjectives should therefore be the adjective‟s stem as it is the persistent part in 

an adjective paradigm, e.g.: 

Aba-futshane -> futshane 
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3.4.3.2 Relative 

Relatives serve the same function as adjectives; the difference between the two is in 

morphology. The relative does not have a closed set of stems but may be formed from relative 

stems and from stems of other word categories (Louw et al., 1984:83). Therefore, a relative is a 

noun qualifier that may inherit stems from other word categories. This is done by prefixing a 

stem from another word category with the relative concord. 

The relative concords for the different noun classes are listed below: 

Table 14: Relative Concords (Pahl et al., 1989:685; Louw et al., 1984:84) 

Person/Class Singular  Plural 

1st Person endi-  esi- 

2nd person o-  eni- 

3rd person    
Class 1 and 1a o- Class 2 and 2a aba- 
3 o- 4 e- 
5 eli- 6 a- 
7 esi- 8 ezi- 
9 e- 10 ezi- 
11 olu- 10 ezi- 
14 obu-   
15 and 17 oku-   

 

The relative concord is used to form relatives from: 

 Relative stems, e.g. obu-mnyama [that is black]; 

 Noun stems forming a copulative, e.g. ongu-mthuthi [that is a courier]; 

 Possessive forming a copulative, e.g. ela-bo [theirs]; 

 Descriptive stem as a copulative, e.g. el-apha [that is here]; 

 A connective, also forming a copulative, e.g. endi-nayo [that I possess]. 

For the purposes of a relative, it is best to choose the stem as the lemma. This does mean that 

relatives that derive from other word categories would have the same lemma as the other word 

category, e.g.:  

ongu-mthuthi [who is a courier], aba-thuthi [couriers] > 

thuthi [courier] 
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3.4.3.3 Enumerative  

Louw et al. (1984:89), the Greater Dictionary of Xhosa: Volume 3 (Pahl et al., 1989:xxxvi) and 

Pahl (1982:45) consider that the enumerative is a qualificative that usually follows the 

substantive which it qualifies. However, the same Greater Dictionary of Xhosa lists the stems –

mbi and “-phi?” as both qualificative and pronouns in Addendum 15 (Pahl et al., 1989:702).  

To the two stems listed above, Louw et al (1984) adds two more stems to the list of 

enumeratives, i.e. –nye and “–ni?” 

The stems –mbi and “–phi?” are adequately covered under section 3.4.2.4: Differentiative 

Pronouns, so the only consideration is for the latter two stems. The enumerative stems –nye 

and “-ni?” form words by being prefixed with the basic class prefix. This results in –nye being 

expressed as shown in Table 15, and “-ni?” being expressed as in Table 16. 

Table 15: Enumeratives Based on -nye 

Class Singular  Plural 

Class 1 and 1a omnye mnye Class 2 and 2a abanye banye 
3 omnye mnye 4 eminye minye 
5 elinye linye 6 amanye manye 
7 esinye sinye 8 ezinye zinye 
9 enye nye 10 ezinye zinye 
11 olunye lunye 10 ezinye zinye 
14 obunye bunye   
15 and 17 okunye kunye   

 

Table 16: List of Enumeratives Based on –ni? 

Class Singular  Plural 

Class 1 and 1a omni? mni? Class 2 and 2a abani? bani? 
3 omni? mni? 4 emini? mini? 
5 elini? lini? 6 amani? mani? 
7 esini? sini? 8 ezini? zini? 
9 eni? ni? 10 ezini? zini? 
11 oluni? luni? 10 ezini? zini? 
14 obuni? buni?   
15 and 17 okuni? kuni?   
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Table 17: Enumeratives based on –mbi and “-phi?” 

Class Singular Class Plural 

Class 1 and 1a wumbi owuphi? Class 2 and 2a bambi abaphi? 
3 wumbi owuphi? 4 yimbi eyiphi? 
5 limbi eliphi? 6 wambi awaphi? 
7 simbi esiphi? 8 zimbi eziphi? 
9 yimbi eyiphi? 10 zimbi eziphi? 
11 lumbi oluphi? 10 zimbi eziphi? 
14 bumbi obuphi?   
15 and 17 bumbi okuphi?   

 

Because both stems result in closed sets, enumeratives could either lemmatise to full form or 

the enumerative stem, -mbi, -nye, “-phi?” or “–ni?”. For this study, the enumerative stem is 

chosen. 

3.4.3.4 Possessive  

To Louw et al. (1984:99), the Greater Dictionary of isiXhosa: Volume 3 (Pahl et al., 1989:xxxvi) 

and Pahl (1982:45), the possessive is a qualificative in that it qualifies either a noun or a 

pronoun with regard to possession.  

Possessives modify a substantive with another substantive via a possessive concord. One is 

the possessor, the other the possessed. It is the possessor that is prefixed with the possessive 

concord. 

Table 18: List of Possessive Concords (Louw et al., 1984:100) 

Class Singular  Plural 

Class 1 and 1a wa- Class 2 and 2a ba- 
3 wa- 4 ya- 
5 la- 6 a- 
7 sa 8 za- 
9 ya- 10 za- 
11 lwa- 10 za- 
14 ba-   
15 and 17 kwa-   

 

Examples are: 

Umntu we-nkosi (wa + inkosi)[the chief’s person] 

Umfazi wo-mfundisi (wa + umfundisi)[the minister’s wife] 

Ukutya ko-mntu (kwa + umntu)[the person’s food] 
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Possessives from pronouns are rather unique in that the absolute pronoun loses its stems, -na, 

when it converts to a possessive pronominal stem. 

The possessive pronominal stems are listed in the table below: 

Table 19: Possessive Pronominal Stems (Pahl et al., 1989:690) 

Person/Class Singular  Plural 

1st Person -m  -ithu 

2nd person -kho  -inu 

3rd person    
Class 1 and 1a -khe Class 2 and 2a -bo 
3 -wo 4 -yo 
5 -lo 6 -wo 
7 -so 8 -zo 
9 -yo 10 -zo 
11 -lo 10 -zo 
14 -bo   
15 and 17 -ko   

 

With possessive prefixes and possessive pronominal stems, one is able to generate a list of 

pronominal possessives. Such a list is tabled in Addendum 9: Pronominal Possessives of the 

Greater Dictionary of Xhosa: Volume 3 (Pahl et al., 1989:691). 

With regards to selecting a lemma, the possessives could lemmatise to full form because they 

are a known closed set or possessives stem. The researcher chose the possessive stem in this 

study. Possessives derived from noun stems should be lemmatised to the noun stem, e.g.: 

wenkosi [of the chief] > nkosi [chief] 

yakhe[his/hers] > khe  

yabo [theirs] > bo 

3.4.4 Predicates 

The predicate is the word that carries the central meaning of a sentence. In isiXhosa it “can be 

the statement, the relation or the declaration” (Louw et al. 1984: 111). In isiXhosa there are two 

types of predicates, i.e. verbs and copulatives.  

Predicates are always used in relation to a substantive, be it a subject or an object. In isiXhosa 

this relation is reflected in the concord, the subject concord if related to the subject or object 

concord if related to the object. These are listed in Table 5 and Table 6. 

Examples are: 
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 Subject Concord Object Concord 

Verbs u-tyile [he/she ate] u-yi-tyile [he/she ate it] 
Copulatives ku-kutya [it is food]  

 

Each of the isiXhosa predicates have complex structures and should therefore be handled 

individually. 

3.4.4.1 Verbs 

Verbs in isiXhosa are complex. They contain morphemes for person, number, class, mood, 

tense and form (McLaren, 1948:80), e.g. ndi-khawulez-is-ile [I rushed], be-si-khawulez-is-ana 

[we rushed each other], a-ka-khawuleza [he/she didn‟t rush], ba-ku-khawilez-is-wa [they will be 

rushed].  

IsiXhosa verb inflection can occur as a result of verb extension, conjugation, change in verb 

form, mood, aspect and tense. The paragraphs below give examples of the above. 

3.4.4.1.1 Verb Extensions 

IsiXhosa verbs can be extended to show relationships between the subject and the object and 

the intensity of the action. The isiXhosa extensions are: Applied, Neuter, Causative, Connective, 

Intensive, Passive and Reduplication (Louw et al. 1984: 122; Pahl 1982: 81) 

Table 20: Verb Extension examples 

Extension Type Verb Examples 

Basic verb stem bamb-a [hold] 

With applied extension bamb-el-a [hold for] 

With Neuter extension bamb-ek-a [able to hold to] 

With Causative extension bamb-is-a [hold with] 

With Connective extension bamb-an-a [hold each other] 

With Intensive extension bamb-isis-a [hold tight] 

With Passive extension  banj-w-a [held] 

With Reduplicated stems extension  bamba-bamba [hold many times] 

 

As one can see above, stem is the part that persists among extensions. 

3.4.4.1.2 Conjugation 

The negation of a verb in isiXhosa is expressed with a bound morpheme, e.g. aka-hamb-ang-a 

[he/she did not go]. This is referred to as conjugation (Louw et al. 1984: 132). The positive 

conjugation of the above example would be u-hamb-ile [he/she went]. In verb conjugation the 

verb root persists. 
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3.4.4.1.3 Forms 

IsiXhosa verbs have two forms, the potential and temporal forms (Louw et al. 1984: 133). The 

potential form of a verb indicates an ability, e.g. ndi-nga-hamba [I can go].  The temporal form 

indicated “when the action of the verb takes place”, e.g. sa-ku-hamba [when we go]. Both forms 

have negation, e.g. a-ndi-nge-hamb-i [I cannot go], sa-ku-nga-hamb-i [when we didn’t go]. 

Among the different forms of a verb the root, in the above case hamb-, is the most persistent 

morpheme of the verbs forms. 

3.4.4.1.4 Moods 

Verbs in isiXhosa have five moods. Verb moods express the relationship between the speaker 

and his/her view of the reality expressed by the predicate (Louw et al. 1984: 133). Even though 

mood is a semantic issue, it expresses itself in the morphology of the word. The infinitive and 

imperative moods are considered infinite moods, and the indicative, participial, and 

subjunctive moods are considered finite moods. 

The main characteristic of infinite moods is that they do not have a subject concord and 

therefore do not relate to a subject of a sentence. An example is the infinitive verb, uku-bona [to 

see]. In addition, the infinitive verb has no indication of tense. An infinitive verb can act as both 

a noun and a verb. An imperative verb on the other hand does indicate tense but only the 

present tense, e.g. bona [see].   

All the finite moods have subject concords. The indicative mood simply makes a statement, e.g. 

u-ya-hamba [he/she goes]. The participial specifies the conditions under which the predicate 

occurs ,e.g. uhamba e-cela [he/she goes begging]. The subjunctive shows an imagined reality, 

e.g. uhambela ukuba a-bonakal-e [he/she go to be noticed]. 

In all the verb moods, the root of the verb is the most pervasive morpheme. 

3.4.4.1.5 Aspect 

Aspect is a qualification of tense. It indicates if an action is complete or not, continuous or not or 

progressive or not (Louw et al. 1984: 135). There are two aspects therefore, progressive and 

exclusive.  An example of a progressive verb is u-sa-tya [he/she is still eating], and the example 

of an exclusive verb is se-le-ty-ile [he/she has eaten]. 

The root again is the only morpheme that is unchanged among verbs aspect. 
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3.4.4.1.6 Tense 

IsiXhosa verbs can fall in one of six tenses. The isiXhosa verb tenses are present, future, 

perfect, the remote past, the continuous past and the contingent tense (Louw et al. 1984: 134). 

In most tenses the positive conjugation of the verb ends in the terminative morpheme –a, 

except for the perfect tense which uses the suffix –ile. Examples are u-ya-bon-a [he is seeing] 

and u-bon-ile [he saw] respectively. Most tenses have a negative conjugation which terminates 

with –i. The morphemes –ka- and –nga- are also used in negation.  

IsiXhosa words have two forms per tense, the short form and the long form, e.g. ndi-bona [I 

see] and ndi-ya-bona [I see] respectively. The long form is formed by appending the morpheme 

–ya- to the subject concord. 

The form of an isiXhosa verb in a particular tense is made of prefixes and suffixes that are 

defined by the conjugation, form, mood and aspect of the verb. The table below gives examples 

of isiXhosa verbs for different tenses. 

Table 21: Examples of different isiXhosa tenses 

Tense Positive example Negative example 

Present tense ndi-bon-a [I see], Ndi-ya-bon-a [I see]   a-ndi-bon-i [I don‟t see] 

Future tense ndi-za ku-bon-a [I will see] andi-zi-ku-bon-a [I will not see] 

Perfect tense ndi-bon-ile [I saw] a-ndi-bon-ang-a [I did not see] 

Remote past tense wa-a-bona [I saw] a-ka-bon-ang-a /akazange wa-
bona [I did not see],  

Continuous past 
tense 

ba-be-bona [they used to see] ba-be-nga-bon-i [they did not 
see] 

Contingent tense bendiza ku-bona [I was going to see] Bendingazi ku-bona [I was not 
going to see] 

 

The above table shows a few of the isiXhosa verb tenses. The table is not exhausting of all the 

different combinations of isiXhosa verb tenses, moods, forms etc. However it gives a good 

indication that the verb root is the central and pervasive morpheme in an isiXhosa word across 

the different tenses. 

In Table 21 one should also notice verbs that precede other verbs. These are referred to as 

auxiliary verbs and should be treated the same as other verbs. 
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3.4.4.1.7 Conclusions on Verbs 

As shown above isiXhosa verbs are complex, but are consistent in retaining the root of the verb. 

The common morpheme in a verb paradigm is therefore, the verb root. Therefore, a lemma for 

the isiXhosa verb should be the verb stem as it is the closest word to the verb root.   

3.4.4.2 Copulatives 

Copulatives are non-verbal predicates that specify what nature a substantive is, e.g. yindlu [it is 

a house]. Copulatives are derived from nouns, absolute pronouns, qualificatives, descriptives 

and conjunctions (Louw et al., 1984:216). In isiXhosa, copulatives have the potential to be a 

sentence (Mncube, n.d:59). It is worth noting that copulatives can be formed from quantitatives 

as well, however, these are expressed as word phrases, not as individual words (Louw et al., 

1984:227). Because this study concerns itself with word lemmas, quantitative copulatives will 

not be considered because they are phrases. 

Because copulatives are predicates, they have a positive as well as negative conjugation. 

IsiXhosa copulatives also have a personal and an impersonal form. These forms will be shown 

below for each copulative type. 

Substantively derived copulatives are identificative copulatives (Louw et al., 1984:216), 

identifying the substantive regarding type, status and other qualities. 

This section starts with pronoun-derived copulatives because pronoun derived copulatives are 

used in the negation of other copulatives. 

3.4.4.2.1 Pronoun Derived Copulatives  

Copulatives from absolute pronouns are formed by prefixing the absolute pronoun with the 

copula. The copula is a morpheme which connects a subject with any predicate other than a 

verb (McLaren, 1948:44) . There are different copulas for the different noun class pronouns, as 

shown in Table 22.  

The absolute pronoun stem –na is dropped resulting in the list of absolute pronoun copulatives 

listed in Table 23. 

Copulative negation is done by prefixing the positive copulative with a negation prefix asi- or 

ayi-, depending on the dialect of isiXhosa spoken (Pahl, 1982:167). 
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Table 22: Copula (Louw et al., 1984:220) 

Person/Class Singular  Plural 

1st Person ndi-  si- 

2nd person ngu-  ni- 

3rd person    
Class 1 and 1a ngu- Class 2 and 2a nga- 
3 ngu- 4 yi- 
5 li- 6 nga- 
7 si- 8 zi- 
9 yi- 10 zi- 
11 lu-   
14 bu-   
15 and 17 ku-   

 

Table 23: Absolute Pronoun Derived Copulatives (Pahl, 1982:167; Louw et al., 1984:220) 

Person/Class Singular Plural 
Positive Negative Positive Negative 

1st Person ndi-m asindi-m/ ayindi-m si-thi asisi-thi/ ayisi-thi 

2nd person ngu-we asingu-we/ ayingu-
we 

ni-ni asini-ni/ ayini-ni 

3rd person     
Class 1 and 1a ngu-ye asingu-ye/ ayingu-

ye 
nga-bo asinga-bo/  

ayinga-bo 
3 ngu-wo asingu-wo/ ayingu-

wo 
yi-yo asiyi-yo/ ayiyi-yo 

5 li-lo asili-lo/ ayili-lo nga-wo asinga-wo/ 
ayinga-wo 

7 si-so asisi-so/ ayisi-so zi-zo asizi-zo/ ayizi-zo 
9 yi-yo asiyi-yo/ ayiyi-yo zi-zo asizi-zo/ ayizi-zo 
11 lu-lo asilu-lo/ ayilu-lo zi-zo asizi-zo/ ayizi-zo 
14 bu-bo asibu-bo/ ayibu-bo   
15 and 17 ku-ko asiku-ko/ ayiku-ko   

 

Personal copulative pronouns are derived by prefixing the copulative pronoun with the subject 

concord of the appropriate person, e.g.: 

U+nguye > unguye [you are him] 

Ndi-ndim > ndindim [I am me] 

Ni+nini > ninini [you (Plural) are you] 

Ndi-nguye > ndinguye [I am him/her] 

Impersonal copulatives derived from absolute pronouns are derived by prefixing a subject 

concord (Table 5) to the copulative pronoun. Again the absolute pronoun stem –na is dropped. 
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Table 24: Absolute Pronoun Derived Impersonal Copulatives (Louw et al., 1984:222) 

Class Singular  Plural 
Positive Negative  Positive Negative 

3rd person      
Class 1 and 
1a 

ungu-ye akangu-ye Class 2 and 
2a 

banga-bo abanga-bo 

3 ungu-wo awungu-wo 4 iyi-yo ayiyi-yo 
5 lili-lo alili-lo 6 anga-wo akanga-wo 
7 usi-so akasi-so 8 bazi-zo abazi-zo 
9 ndiyi-yo asiyi-yo/ ayiyi-

yo 
10 sizi-zo asizi-zo/ ayizi-

zo 
11 ulu-lo asilu-lo/ ayilu-

lo 
10 sizi-zo asizi-zo/ ayizi-

zo 
14 ubu-bo asibu-bo/ 

ayibu-bo 
   

15 and 17 iku-ko asiku-ko/ 
ayiku-ko 

   

 

Copulatives are a distinct word category and should therefore have their own lemmas. Absolute 

pronoun derived copulatives are a closed set, albeit a large one and can therefore be 

lemmatised to the full word form. Another alternative is to lemmatise them to the subject 

concord, because they have dropped the pronominal stem -na. This reduces the number of 

lemmas in this category whilst keeping the lemma for absolute pronoun derived copulatives 

distinct from the absolute pronoun lemma. This is the approach this study will take. Therefore, 

absolute pronoun derived copulatives will be lemmatised to their stems, e.g.: 

Nguye, asinguye, ndinguye, singuye, asinguye  > ye 
[It is him/her, it is not him/her, I am s/he, we are s/he, 

we]  

Zizo, asizizo/ayizizo, zizizo, sizizo, ndizizo  > zo 
[It is them, it is not them, we are them, I am them] 

3.4.4.2.2 Nouns Derived Copulatives  

Noun derived copulatives are formed by prefixing the noun stem with a prefix. This prefix is 

derived from the copula (c.f. The absolute pronoun stem –na is dropped resulting in the list of 

absolute pronoun copulatives listed in Table 23. 

Copulative negation is done by prefixing the positive copulative with a negation prefix asi- or 

ayi-, depending on the dialect of isiXhosa spoken (Pahl, 1982:167). 

 

Table 22 on page 49) and the noun prefix (c.f. Table 4 on page 34) (Louw et al., 1984:217; 

Pahl, 1982:167). 
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Table 25: Noun Derived Copulative Prefixes (Louw et al., 1984:220) 

Person Singular  Plural 

1st Person ndi-  si- 

2nd person ngu-  ni- 

3rd person    
Class 1 ngu- Class 2 nga- 
1a ngu- 2a ngoo- 
3 ngu- 4 yi- 
5 li- 6 nga- 
7 si- 8 zi- 
9 yi- 10 zi- 
11 lu- 10 zi- 
14 bu-   
15 and 17 ku-   

 

Personal noun-derived copulatives are derived by prefixing the noun-derived copulative with the 

subject concord. Negation is done by prefixing the noun-derived copulative with the prefix asi- 

e.g.: 

Positive Negative 

Personal Impersonal Personal Impersonal 

ndi-ngumntu (I am 
human) 

ngumntu (It‟s a 
human) 

Andi-ngomntu/andi-mntu (I 
am no human) 

asi-ngomntu/ asi-mntu 
(It‟s not a human) 

Si-zizinja (we are 
dogs) 

yinja (it is a dog) asi-zozinja (we are not 
dogs) 

asi-yonja /asi-nja (it‟s 
not a dog) 

U-yihagu (s/he is 
a pig)  

yihagu (it‟s a pig) aka-yohagu (s/he is not a 
pig)  

asi-yohagu /asi-hagu 
(it‟s not a pig) 

Ba-zizinja (they 
are dogs) 

zizinja (its dogs) aba-zozinja (they are dogs) asi-zozinja/ asi-zinja 
(it‟s not dogs) 

 

Impersonal copulatives are derived by prefixing a subject concord to the noun copulative. 

Impersonal negation is done by preceding a noun with an absolute pronoun derived copulative 

of the related class, e.g. Asinguye umntu [It is not a person]. (Louw et al., 

1984:223; Pahl, 1982:167) This form is also expressed as asingomntu /asimntu [It’s 

no person]. The original extended negation is not shown in the example above, as these 

would be two words that would be lemmatised individually. However, the contracted form is 

shown, as it would need to be lemmatised. The second impersonal negation shown in the 

above example shows an even more contracted impersonal negation noun derived copulative 

form. This second negation contracted form is formed by removing the noun concord. 

To establish what the lemma is for a noun derived copulative, the following three criteria had to 

be used: "the same stem, the same major part-of-speech and the same word-sense". In this 

case, the three criteria lead to the noun stem because it is the only stem available that 
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maintains the word-sense. Therefore, the noun stem is the lemma of a noun-derived copulative. 

Examples are: 
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Personal noun-derived copulatives paradigm lemma 

Bazizinja [they are dogs], abazozinja [they are not dogs], ndiyinja [I am a dog]), 
andiyonja [I am not a dog], uyinja [you are a dog], awuyonja [you are not a dog], 
yinja, asizozinja 
 

nja 
[dog] 

bazihagu [they are pigs], abazohagu [they are not pigs], ndiyihagu [I am a pig], 
andiyohagu [I am not a pig], uyihagu[you are a pig], awuyohagu[you are not a pig] 

hagu 
[pig] 

 

3.4.4.2.3 Demonstrative Derived Copulatives 

Copulatives are also formed from demonstratives by prefixing the demonstrative with the same 

copula used in absolute pronoun derived copulatives (c.f. The absolute pronoun stem –na is 

dropped resulting in the list of absolute pronoun copulatives listed in Table 23. 

Copulative negation is done by prefixing the positive copulative with a negation prefix asi- or 

ayi-, depending on the dialect of isiXhosa spoken (Pahl, 1982:167). 

 

Table 22) (Louw et al., 1984:224) 

Table 26: Demonstrative Derived Impersonal Copulatives from Louw et al. (1984:225) 

 Location: this there that yonder 

Class 1 and 1a 
2 and 2a 
3 
4 
5 
6 
7 
8 
9 
10 
11 
14 
15 

ngulo 
ngaba 
ngulo 
yile 
leli 
ngala 
sesi 
zezi 
yile 
zezi 
lolu 
bobu 
koku 

ngulowo/nguloo 
ngabo 
ngulowo/nguloo 
yileyo 
lelo 
ngalawo/ngaloo 
seso 
zezo 
yileyo 
zezo 
lolo 
bobo 
koko 

ngulowa/ngulaa/ngulowaa 
ngabaya/ngabaa/ngaaabayaa 
ngulowa/ngulaa/ngulowaa 
yileya/yileyaa 
leliya/lelaa/leeliya 
ngalawa/ngalaa/ngalawaa 
sesiya/sesaa/seesiyaa 
zeziya/zezaa/zeeziyaa 
yileya/yilaa/yileyaa 
zeziya/zezaa/zeeziyaa 
loluya/lolwaa/looluyaa 
bobuya/bobaa/boobuyaa 
kokuya/kokwaa/kookuyaa 

 

Negation is achieved by prefixing the impersonal copulative with the prefix asi- (Louw et al. 

1984:226) 

Table 27: Demonstrative Derived Impersonal Negative Copulatives from Louw et al. (1984:226) 

Location  this there that yonder 
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Class 1 and 1a 
2 and 2a 
3 
4 
5 
6 
7 
8 
9 
10 
11 
14 
15 
 

asingulo 
asingaba 
asingulo 
asiyile 
asileli 
asingala 
asisesi 
asizezi 
asiyile 
asizezi 
asilolu 
asibobu 
asikoku 

asingulowo/asinguloo 
asingabo 
asingulowo/asinguloo 
asiyileyo 
asilelo  
asingalawo/asingaloo 
asiseso 
asizezo 
asiyileyo 
asizezo 
asilolo 
asibobo 
asikoko 

asingulowa/asingulaa/asingulowaa 
asingabaya/asingabaa/asingaaabayaa 
asingulowa/asingulaa/asingulowaa 
asiyileya/asiyileyaa 
asileliya/asilelaa/asileeliya 
asingalawa/asingalaa/asingalawaa 
asisesiya/asisesaa/asiseesiyaa 
asizeziya/asizezaa/asizeeziyaa 
asiyileya/asiyilaa/asiyileyaa 
asizeziya/asizezaa/asizeeziyaa 
asiloluya/asilolwaa/asilooluyaa 
asibobuya/asibobaa/asiboobuyaa 
asikokuya/asikokwaa/asikookuyaa 

 

Personal demonstrative copulatives are formed from impersonals by prefixing with the subject 

concord (Louw et al., 1984:226), e.g.: 

Ungulo [he/she this one], ungulowa [you are that one], 

sileli [we are this one] 

Negation of personal demonstrative copulatives is achieved by prefixing the negative a- 

morpheme to the subject concord, e.g.: 

Akangulo [he/she is not this one], awungulowa [you are not 

that one], asileli [we are not this one] 

The lemma of the demonstrative copulatives is the demonstrative itself. This maintains the word 

sense. 

3.4.4.2.4 Quantitative Derived Copulatives 

Quantitatives can be used to form copulatives by prefixing them with the subject concord (Louw 

et al., 1984:9228), e.g.: 

babodwa [they are alone] 

ababodwa [they are not alone] 

For quantitative derived copulatives, the lemma should be the quantitative stem as it maintains 

the word-sense of the paradigm. 

3.4.4.2.5 Qualificative Derived Copulatives  

Copulatives can be formed from three types of qualificatives, i.e. adjective stems, relative stems 

and enumerative stems (Louw et al., 1984:216).  
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3.4.4.2.5.1 Adjective stems derived copulatives 

Copulatives are formed from adjective stems by prefixing the stem with the copula (Louw et al., 

1984:). Personal forms are further formed by prefixing the derived copulative with the subject 

concord when forming the first and second persons. Negation is formed by prefixing the 

negative a- followed by the subject concord and the copula to the adjective stem. The table 

below shows personal adjectival stem copulatives derived from the –khulu [big] adjective stem. 

Table 28: Adjective stem derived copulatives (Pahl 1982: 171; Louw et al. 1984: 220) 

Person/ Class Singular  Plural 
Positive Negative  Positive Negative 

1st Person ndi-m-khulu a-ndi-m-khulu  si-ba-khulu a-si-ba-khulu 

2nd person u-m-khulu a-ku-m-khulu  ni-ba-khulu a-ni-ba-khulu 

3rd person      
Class 1 and 1a m-khulu a-ka-m-khulu Class 2 and 2a ba-khulu a-ba-ba-khulu 
3 m-khulu a-wu-m-khulu 4 mi-khulu a yi-mi-khulu 
5 li-khulu a-li-li-khulu 6 ma-khulu a-ka-makhulu 
7 si-khulu a-si-si-khulu 8 zin-kulu a-zi-zin-kulu 
9 in-kulu a-yin-kulu 10 zin-kulu a-zi-zin-kulu 
11 lu-khulu a-lu-lu-khulu 10 zin-kulu a-zi-zin-kulu 
14 bu-khulu a-bu-bu-khulu    
15 and 17 ku-khulu a-ku-ku-khulu    

 

Impersonal copulatives are formed adjectives by prefixing them with the same copula as used in 

nouns (Louw et al., 1984:230), e.g.: 

Ngo-m-dala [it's the old person] 

Ye-mi-dala [it's the old ones] 

Negation is achieved in the same manner as the noun (Louw et al., 1984:230; Pahl, 

1982:171),e.g.: 

Asi-ng-om-dala [it’s not the old one] 

Asi-ng-aba-dala [It’s not the old ones] 

For a particular adjective, the adjective stem is the only consistent part in the adjective stem 

copulative paradigm, making the adjective stem the lemma. 

3.4.4.2.5.2 Relative stem derived copulatives 

Personal positive copulatives from relative stems are formed by prefixing them directly with the 

subject concord. Personal negative copulatives are formed by prefixing the positives relatives 

stem formed copulative with the negative a- (Louw et al., 1984:230; Pahl, 1982:171). 
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Table 29: Relative Stem Derived Copulatives (Pahl 1982: 171; Louw et al. 1984: 230) 

Person/Cl
ass 

Singular  Plural 
Positive Negative  Positive Negative 

1st Person ndi-banzi a-ndi- banzi  si- banzi a-si- banzi 

2nd person u-banzi a-ku-banzi  ni- banzi a-ni- banzi 

3rd person      
Class 1 
and 1a 

u-banzi a-ka- banzi Class 2 and 
2a 

ba-banzi a-ba- banzi 

3 u-banzi a-wu- banzi 4 i-banzi a-yi-banzi 
5 li-banzi a-li- banzi 6 a-banzi a-ka-banzi 
7 si-banzi a-si- banzi 8 zi- banzi a-zin- banzi 
9 i-banzi a-yi- banzi 10 zi- banzi a-zi- banzi 
11 lu- banzi a-lu- banzi 10 zi- banzi a-zi- banzi 
14 bu-banzi a-bu-banzi    
15 and 17 ku-banzi a-ku-banzi    

  

Impersonal relative copulatives are derived from full relatives using the same copula as that 

prefixed to the noun (Louw et al., 1984:232), e.g.: 

Ngo-bomvu [it’s the red person] 

Ye-mhlophe [it’s the white one] 

Ze-zi-mhlophe [it’s the whine ones] 

Impersonal negative is achieved by prefixing the impersonal relative copulative with asi-, 

e.g.: 

Asi-ngo-mhlophe [it’s not the white person] 

Asi-ye-mhlophe [it’s not the white one] 

Asi-ze-zi-mhlophe [it’s not the white ones] 

From the above, it is clear that the only stable part in the relative stem formed copulative 

paradigm is the relative stem. The relative stem therefore must be the lemma of the copulative 

construction formed from the relative stem. 

3.4.4.2.5.3 Enumerative derived copulatives 

As mentioned before, there are five types of enumerative stems, i.e. –nye, -ni?, -phi, -mbi, and 

numeral stems  (Louw et al. 1984: 232). 

The impersonal copulatives for –nye and the numeral stems are derived by prefixing the 

enumerative stem with the subject concord. The personal copulative is derived by prefixing the 

enumerative stem with the subject concord to the impersonal form.  
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Table 30: Examples of Enumerative Stem Derived Copulatives 

Person/ Class Singular  Plural 
Positive Negative  Positive Negative 

1st Person ndi-m-nye a-ndi-m-nye  si-ba-bini a-si-ba-bini 

2nd person u-m-thathu a-ku-m-thathu  ni-ba-ne a-ni-ba-ne 

3rd person      
Class 1 and 1a m-ni a-ka-m-ni Class 2 and 2a ba-phi a-ba-ba-phi 
3 m-mbi a-wu-m-mbi 4 mi-phi a-yi-mi-phi 
5 li-hlanu a-li-li-hlanu 6 ma-thandathu a-ka-thandathu 

 

The lemma for the enumerative should be the enumerative stem, as it carries the meaning. 

3.4.4.2.6 Descriptive Derived Copulatives  

Descriptives form copulatives by having their stems prefixed with a subject concord. The prefix 

is a subject concord for locative derived positives and the negative a- followed by the subject 

concord for negative locative (Louw et al., 1984:236). 

For descriptives the lemma should be the descriptive stem, as this carries the meaning. 

3.4.4.2.7 Conjunction Derived Copulatives 

Copulatives can also be formed from conjunctions by prefixations (Louw et al., 1984:239). The 

conjunction stem should be the lemma as it maintains the meaning. 

3.4.4.2.8 Conclusions on Copulatives 

Copulatives are derived from a number of word types. For some of the copulatives the root from 

which they are derived from persists. In this case, the stem from the source word category 

should be the lemma. In the case of copulatives derived from absolute pronouns where the 

absolute pronoun stem –na is dropped, the best one can do is carry the subject concord as the 

lemma of the copulative. 

3.4.5 Descriptive 

According to Louw et al. (1984:24), a descriptive is a word that describes a predicate or other 

descriptive in terms of manner, time and place (locatives). 

Descriptive of manner are derived from adjective stems, relative stems, nouns and pronouns by 

prefixing then with the descriptive prefixes, ka- , kaku-, na-, kuna-, nga-, njenga-, and 

nganga-. (Louw et al., 1984:254). Descriptives of manner should be lemmatised to their stem, 

as the stem carries the meaning.  
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Descriptives of time are derived by prefixing the time noun stem with e-. These descriptives 

should also be lemmatised to the meaning carrying stem. 

3.4.6 Adverbs 

The isiXhosa adverb describes the manner, place or time of a noun or another adverb (Mncube, 

n.d:51). 

There are a few simple adverbs in isiXhosa. IsiXhosa mostly uses nouns in the locative case, 

e.g. e-bu-suku [at night], ku-ba-ntu [to the people], e-mthi-ini [to/at the tree] or by preceding 

nouns with the preposition nga- e.g. iya nga-sekunene [go left]. For manner, they are used by 

prefixing ka- to an adjective stem, e.g. ka-de [for long], (McLaren, 1948:142). To describe time, 

the prefixes nge-, ngo- and ku- are used to form adverbs, e.g. nge-Cawa [on Sunday], ngo-

Mvulo [on Monday], ngo-mso [tomorrow], ku-sasa [in the morning], ku-qala [first].  

There is also a set of simple adverbs in a closed set, e.g. phandle [outside] and phesheya 

[across the sea]. 

Simple adverbs should therefore be lemmatised to their word forms, e.g, futhi [again], phakathi 

[inside], but prefixal adverbs should be lemmatised to the stem to which they are bound, e.g. 

ngoMvulo [ on Monday] > Mvulo [Monday]. 

3.4.7 Conjunctions 

Conjunctions are words introducing a sentence or linking up two sentences (Louw et al., 

1984:262).  

IsiXhosa has few primitive conjunctions. Most isiXhosa conjunctions are either verbal forms 

(e.g. ukuze < ukuze [then], ndaye < ukuya [and I], ngokungathi < ukuthi [like], nouns (e.g. xa < 

ilixa [when], mhla < umhla [the day when], and pronouns (e.g. kaloku [by the way] < oku [this], 

okoko < oko [that]  ), especially the pronoun oko (McLaren, 1948:149; Pahl, 1982:205).  

Some conjunctions are phrases, e.g. ngoko ke [therefore] and ke kaloku [when]. 

Even though there seems to be productivity in conjunctions, that productivity is exhausted; 

conjunctions are a closed set, albeit a large set. Because of this, conjunctions should be 

lemmatised to full word form.  

3.4.8 Interjections 

Interjections are isolated words that express exclamation.  
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There are original interjections such as ewe! [yes], hayi bo! [no], and heke! [expressing 

approval]. Pahl (1982:207) provides a substantial list of these that could be considered almost 

as a closed list. 

Interjections can also be derived from other word categories, e.g. nouns, copulatives, 

conjunctions, adverbs and even short sentences. 

For the purposes of this study, original interjections should lemmatise to full word forms as they 

are almost a closed list. Interjections derived from other word categories are a problem because 

it is difficult to identify them without looking at the context. This means that they should simply 

be lemmatised to the source category lemma. 

3.4.9 isiXhosa NLP Lemma in Summary 

It has been shown above that the best lemmas for the natural language processing of isiXhosa 

vary by parts-of-speech.  

Most word categories should be lemmatised to the stem from which they are derived. For the 

few word categories that are not based on stems, the full word form should be chosen. 

As evident in pronouns and words derived from other word categories, affixes used in the 

derivation process are concatenated morphemes. This concatenation of morphemes to form an 

affix is also expressed in negation. 

 

3.5 Conclusions 

In the introduction to this chapter, an explanation is given, in broad terms, of what a lemma in 

isiXhosa is. A classification of isiXhosa words categories is then provided as a structured way of 

deciding on an isiXhosa lemmas. 

Appropriate forms for isiXhosa lemmas are described. More lemmas are made up of stems, and 

words that are not stem derived are kept as full words. There are classes of words that cannot 

be categorised as definitely closed but have stabilised, like original interjections. Such should be 

treated as a closed set and lemmatised to full word forms. 

Therefore word categories that lemmatise to stems are nouns, absolute pronouns, quantitative 

pronouns, differentiative pronouns, superlative pronouns, possessive pronouns, all 

qualificatives, verbs, all copulatives except those demonstrative derived, descriptives and 

prefixal adverbs. Categories that lemmatise to full word forms are demonstrative pronouns, 
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distributive pronouns, demonstrative derived copulatives, simple adverbs, conjunctions and 

interjections. 

It is very important to note that getting to an isiXhosa stem involves the removal of the prefix 

and suffix from the word, and ensuring that the terminal vowel of the stem is corrected. For full 

word lemmas, no removal of affixes is required. 
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CHAPTER 4: FEATURE SELECTION 

4.1 Introduction 

This section reviews the data that was used in the study. The chapter starts by detailing the 

source of the data and then describes the characterisation of the data. The characterisation is 

meant to find some heuristics of the data so that good features can be used. The conclusion 

specifies what the good features for the study could be together with supporting justifications. 

4.2 Source of Data 

The data used in the study is the Lemmatisation Corpus of the IsiXhosa NCHLT Annotated Text 

Corpora (South African Department of Arts and Culture & Centre for Text Technology (CTexT) 

North-West University South Africa 2013), a product of the NCHLT Project on Text Resources 

conducted by the North-West University‟s Centre for Text Technology (CTEXT) and the 

Republic of South Africa‟s Department of Arts and Culture (Eiselen & Puttkammer, 2014). The 

data was generated using rules from a study conducted by Bosch et al. (2006). 

The data is available via the South African Language Resource Management Agency website3. 

4.3 Data Exploration 

The corpus consists of two lemma annotated files, a 50000 word corpus of word form-lemma 

pairs and a 5000 word corpus of word-lemma pairs for testing purposes. The 50000 word 

corpus will be referred to as the general corpus, and the 5000 word corpus will be referred to as 

the testing corpus from this point onwards. The general corpus will be used for training and the 

testing corpus will be used for evaluation. The following analysis was conducted on the general 

corpus. 

On analysis of the general corpus, it was found that it consisted of 44608 tokens. The tokens 

included punctuations and empty lines to separate sentences. Punctuations and empty lines 

had "Null" lemmas.  

After the removal of empty lines and punctuations, 36526 tokens were left.  

                                                

3 Language Resource Management Agency website is http://www.rma.nwu.ac.za. 
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4.3.1 Method 

The data analysed consisted of full word forms and corresponding lemmas. The analysis 

approached the problem of lemmatisation as a classification problem where the classes are 

transformation codes between the words and the lemma. The exercise assumed that a word 

form could be transformed to a corresponding lemma by identifying which affixes should be 

removed and which should be inserted and combined into transformation classes. An 

explanation of transformation classes is detailed below. The affixes identified to be removed 

were prefixes and suffixes, together with the corresponding insertions required if any. 

For each affix type to be removed, the following data analysis was conducted. 

(1) Rank the affix in ascending order of prevalence in the data. 

(2) Calculate the accumulated affix coverage up to a particular rank. Given affixes ranked by 

prevalence in the data, Cumulative Ratio/Coverage for rank k is a fraction of how many 

words are covered by the k most prevalent affixes. This gives an indication of how many 

affixes matter in the design of the lemmatiser. 

(3) Do a percentile statistical analysis. 

(4) Do an estimate of the most significant number of affixes that could be used. 

(5) Make remarks on the significance of the tail affixes. 

The prefixes, suffixes and circumfixes were analysed (see below for the results). 

The word length was also analysed to see if it would matter in the lemmatisation strategy. 

4.3.1.1 Transformation Classes 

A transformation class is a sequence of characters that specifies what should be replaced at the 

beginning and end of the word to reduce it to its lemma. A good, albeit rare, example is the 

reduction of the word, ekuqinisekiseni [when strengthening], to its lemma, 

qina [harden]. The transformation class is Leku>Risekiseni>a. The L denotes the 

transformation to be done at the beginning of the word and R indicates the transformation to be 

done at the end of the word. What follows the "L" or "R" is a sequence of characters that need 

to be removed from the word. The ">" then denotes the beginning of the characters with which 

the sequence of characters will be replaced. In the example, Leku>Risekiseni>a means 

that the sequence of letters eku at the beginning of the word must be replaced with an empty 
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string and the sequence of letters isekiseni at the end of the word must be replaced with the 

letter "a". Below are a few illustrations: 

Table 31: Examples of Transformation Classes 

Word Lemma Transformation class 

esetyenziswayo sebenza Lesety>sebRiswayo>a 

ixesha xesha Li> 

elithatyathwayo thabatha Lelithaty>thabRwayo>a 

azisiwe azisa Riwe>a 

 

4.3.2 Prefixes 

4.3.2.1 Overall Prefix Coverage 

The data consisted of 3020 unique prefixes. The table below (Table 32) shows the top 10 

prefixes, the number of tokens with the prefix, and the cumulative ratio of the coverage of the 

prefixes. 

 

 

Table 33 shows the preffix percentiles of the cumulative coverage. 

Table 32: Top 10 Prefixes, their counts and cumulative coverage 

       Prefix  PrefCount  CumRatio 

1          ku       1635  0.044763 

2           i       1545  0.087061 

3           e        822  0.109566 

4         uku        778  0.130866 

5           u        754  0.151509 

6          um        484  0.164759 

7          ii        430  0.176532 

8         ezi        420  0.188030 

9           a        366  0.198051 

10          o        328  0.207031 
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The maximum coverage of the prefixes is 84.8%. As one can see, half of the prefixes cover 

80.6% of the data, accounting for 95% of the prefix covered data. Figure 4, below, shows the 

cumulative coverage of the prefixes ordered by prevalence.   

 

Figure 4: Prefix coverage 

As one can see from the graph, the graph follows a straight line from the 50% percentile. 

4.3.2.2 Prefix Only Coverage 

From the data characterised by having only prefixes, 2419 unique prefixes were identified. The 

table below (Table 34) shows the top 10 prefixes, the number of tokens with the prefix, and the 

cumulative ratio of the coverage of the prefixes. 

count    3020.000000 

mean        0.772772 

std         0.095234 

min         0.044763 

2.5%        0.491203 

5%          0.588934 

10%         0.672116 

25%         0.756968 

50%         0.806590 

95%         0.843784 

97.5%       0.845850 

max         0.847917 

Table 33: Percentiles of overall prefix coverage 
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Table 35 below shows the prefix percentiles of the cumulative coverage. 

 

 

The maximum coverage of the prefixes in prefix only data is 64%. As one can see, half of the 

prefixes cover 60.7% of the data, accounting for 95% of the prefix covered data. Figure 5, 

below, shows the cumulative coverage of the prefixes for data containing only prefixes.   

 

Figure 5: Prefix coverage in Prefix Only Data 

Table 34: Top 10 Prefixes, their counts and cumulative 
coverage 

       Prefix  PrefCount  CumRatio 

0           i       1252  0.034277 

1          ku       1135  0.065351 

2           u        548  0.080354 

3         uku        519  0.094563 

4          um        469  0.107403 

5          ii        420  0.118902 

6           e        336  0.128101 

7         ama        317  0.136779 

8         isi        272  0.144226 

9          ye        263  0.151426 

count    2419.000000 

mean        0.580038 

std         0.077598 

min         0.034277 

2.5%        0.339399 

5%          0.427271 

10%         0.499485 

25%         0.568718 

50%         0.607348 

95%         0.637138 

97.5%       0.638793 

max         0.64044 

Table 35: Percentiles of Prefix Only Coverage 
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As one can see from the graph, the graph follows a straight line from the 50% percentile. 

4.3.3 Suffixes 

4.3.3.1 Overall Suffixes Coverage 

The data consisted of 311 suffixes. For the entire data containing suffixes, the table below 

(Table 33) shows the top 10 suffixes, the number of tokens with the suffix and the cumulative 

ratio of the coverage of the suffixes: 

 

 

The table below (Table 37) shows the suffix percentiles of the cumulative coverage. 

 

 

The figure below (Figure 6) shows the cumulative coverage of the suffixes. The maximum data 

coverage of the suffixes is 21%. As one can see, half of the suffixes cover 20.5% of the covered 

data, which account for 97.6% of the suffix covered data. 

Table 36: Top 10 Suffix, their counts and cumulative 
coverage 

      Suffix  SufCount  CumRatio 

1          e      1047  0.028665 

2         wa       646  0.046351 

3         yo       435  0.058260 

4        eka       394  0.069047 

5         we       345  0.078492 

6      ileyo       334  0.087636 

7          i       291  0.095603 

8        isa       290  0.103543 

9        eni       217  0.109484 

10       ela       199  0.114932 

 

count    311.000000 

mean       0.195242 

std        0.026620 

min        0.028665 

2.5%       0.107998 

5%         0.141967 

10%        0.173329 

25%        0.196504 

50%        0.204950 

95%        0.209399 

97.5%      0.209611 

max        0.209823 

 

Table 37: Percentiles of suffix coverage 
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Figure 6: Suffix cumulative coverage 

As one can see from the graph, the graph also follows a straight line from the 50% percentile. 

4.3.3.2 Suffix only coverage 

From the data that only had suffixes, 29 suffixes were identified. For the data suffix only data, 

the table below (Table 38) shows the top 10 suffixes, the number of tokens with the suffix and 

the cumulative ratio of the coverage of the suffixes. 

 

 

The table below (Table 39) shows the suffix percentiles of the cumulative coverage. 

Table 38: Top 10 Suffix, their counts and cumulative coverage 

      Suffix  SufCount  CumRatio 

0          e        25  0.000684 

1         be        10  0.000958 

2        isa         6  0.001122 

3        ele         4  0.001232 

4      eleyo         3  0.001314 

5      eleni         3  0.001396 

6         na         3  0.001478 

7        ise         3  0.001561 

8         ye         3  0.001643 

9        eni         2  0.001697 
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The figure below (Figure 7) shows the accumulate coverage of the suffixes. The maximum data 

coverage of the suffixes is 0.24%.   

 

Figure 7: Suffix cumulative coverage for suffix only data 

As one can see, half of the suffixes cover 0.19% of the covered data, which accounts for 79.6% 

of the suffix only covered. The graph then follows a straight line from there. 

4.3.4 Circumfix Coverage 

From the data, 2504 circumfixes were identified. The table below (Table 40) shows the top 10 

circumfixes, the number of tokens with the suffix and the cumulative ratio of the coverage of the 

suffixes. 

count    29.000000 

mean      0.001823 

std       0.000444 

min       0.000684 

2.5%      0.000876 

5%        0.001024 

10%       0.001210 

25%       0.001561 

50%       0.001971 

95%       0.002316 

97.5%     0.002335 

max       0.002354 

 

Table 39: Percentiles of suffix coverage 
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The table below (Table 41) shows the suffix percentiles of the cumulative coverage. 

 

 

As one can see, half of the suffixes cover 17% of the covered data, which account for 82% of 

the suffix only covered. 

The figure below (Figure 8) shows the accumulate coverage of the circumfixes. The maximum 

data coverage of the circumfixes is 20.7%. As one can see from the graph, the graph also 

follows a straight line from the 50% percentile. 

Table 40: Top 10 Circumfixes, their counts and cumulative coverage 

       Prefix   Suffix  CircCount  CumRatio 

15         ku      eka        205  0.005612 

44         si        e        110  0.008624 

51          u        e        101  0.011389 

52        eku      eni         94  0.013963 

53          a        e         94  0.016536 

70        aba        i         76  0.018617 

73          i        e         71  0.020561 

80          e    ileyo         66  0.022368 

85         ku       wa         63  0.024092 

87      ngoku       yo         62  0.025790 

 

count    2504.000000 

mean        0.163584 

std         0.036508 

min         0.005612 

2.5%        0.066999 

5%          0.087290 

10%         0.111605 

25%         0.146895 

50%         0.173205 

95%         0.204042 

97.5%       0.205755 

max         0.207469 

 

Table 41: Percentiles of circumfix coverage 
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Figure 8: Circumfix cumulative coverage for Suffix Only data 

4.3.5 Classes 

The data consisted of 5131 distinct transformation classes. The table below (Table 42) shows 

the top 10 classes, the number of tokens with the class and the cumulative ratio of the coverage 

of the classes. 

 

 

The table below (Table 43) shows the class percentiles of the cumulative coverage 

Table 42: Top 10 Classes, their counts and cumulative coverage 

                Class  ClassCount  CumRatio 

0                   0        5435  0.148798 

1                 Li>        1249  0.182993 

2                Lku>        1135  0.214067 

3                 Lu>         548  0.229070 

4               Luku>         481  0.242238 

5                Lum>         469  0.255079 

6                Lii>         420  0.266577 

7               Lama>         317  0.275256 

8                 Le>         314  0.283853 

9               Lisi>         272  0.291299 
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The maximum data coverage of the classes is 100.%. As one can see, half of the classes 

account for only 93% of the suffix covered data. To achieve coverage of 95% of the data 

covered by the classes, one would use 65% of the classes, which is 3335 classes. 

Figure 9 below shows the cumulative coverage of the classes. As one can see from the graph, 

the graph also follows a straight line from the 50% percentile. 

 

Figure 9: Classes cumulative coverage 

4.3.6 Word Length  

Another feature of the words that is readily available is the word length. An exploration of the 

word lengths in relation to the lemma was done. 

A Pearson correlation of the length of the full word to the combined length of the affixes was 

performed.  

count    5131.000000 

mean        0.896413 

std         0.107256 

min         0.148798 

2.5%        0.587766 

5%          0.683718 

10%         0.768275 

25%         0.866438 

50%         0.929776 

65%         0.950843 

95%         0.992978 

97.5%       0.996489 

max         1.000000 

 

Table 43: Percentiles of class coverage 
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Figure 10: Bubble Plot of Affix Length relative to Word Lengths 

As one can see from the graph in Figure 10, there is a relationship between the affix length and 

word length. The measured correlation was 68.1% correlation between the length of the affixes 

and the word length. This is a strong correlation, and implies that the length of a word can also 

be used to decide on the right transformation class for a word 

4.4 Conclusions 

The data confirms that isiXhosa is a prefixal language with 3020 prefixes active in 84.8% of the 

data. Of this, 64% of the data was characterised by prefixes only. There were 311 suffixes 

overall, active in 21% of the data. Only 0.24% of the data was characterised by suffixes only. 

Some of the prefixes and suffixes combine into 2504 circumfixes that cover 20.7% of the data. 

However, there are 5131 classes overall, covering all of the data. Of that, 14.9% of data 

lemmatised to the full word forms. 

Table 44: Affix counts, and their maximum data coverage 

Affix Count Maximum Coverage 

Prefixes 3020 84.8% 

Suffixes 311 21% 

Circumfixes 2504 20.7% 

All Affix Classes 5131 85.1 % 

 

Because prefixes cover so much of the data, searching for the lemmatisation class could be 

drastically improved by using the prefix as the primary search index, followed by the suffix.  
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The correlation measure of 68.1% of the affix length to word length shows that the length of a 

word can be used in deciding on the right class for a word. This, therefore, shows that the 

{prefix, suffix, word length} set of features will give the best class discrimination when finding the 

right class for a word. 
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CHAPTER 5: ISIXHOSA GRAPHICAL LEMMATISER 

5.1 Introduction 

An overview of the isiXhosa Graphical Lemmatiser (XGL) is provided, followed by an 

explanation of its different components and how they function. The XGL was designed and 

implemented as part of this study. Details on the model are covered in the conclusion and a 

summary of the chapter is provided. 

The isiXhosa Graphical Lemmatiser (XGL) is a machine learning (Mitchell, 1997:2) lemmatiser.  

It is inspired by the Ripple Down Rules (Compton et al. 1991) algorithm. The literature review 

identified the Ripple Down Rules (RDR) algorithms, a form of decision tree learning, to be the 

algorithm producing the best results for morphologically complex languages like isiXhosa. The 

RDR algorithm is explained in section 2.3.2: Data Driven Lemmatisation Studies. 

5.2 XGL Model 

At the centre of the XGL is the lemmatisation model that is used in the lemmatisation process. 

This section explains the model used by the XGL in lemmatisation. This model is generated by 

the XGLTrainClassTree component based on the output of XGLTrainClassesSplit.  

The model consists of three parts: a lexicon of word-lemma pairs that the XGL encountered 

during training, the hierarchy of transformation classes, and a class confidence threshold level. 

This section starts with the lexicon. 

5.2.1 XGL Model’s Lexicon 

Chapter 3 has shown that a number of isiXhosa word classes are a closed set and lemmatise to 

full word-form. The easiest way to handle these words is by refereeing to a look-up list, a 

lexicon. In addition the lexicon of word-lemma pairs ensures that words that have been 

encountered in training are lemmatised to a very high accuracy. All the lemmas for each word 

encountered during training are kept, with a count of how many times a particular lemma was 

encountered. A sample of a lexicon is listed below: 

aliphelise': {   'phelisa': 1}, 

aliqingqelwa': {   'qingqa': 1}, 

aliyi': {   'ya': 1}, 

alo': {   'lo': 2}, 
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Depending on how the training data was generated, it can sometimes not be 100% accurate. 

There is a possibility that more than one lemma can be allocated to the same word in the 

training data. To store that information, a prevalence count for each lemma is kept as shown 

below:. 

aliphelise': {   'phelisa': 1, 'phela':7}, 

In the above example, the lemma with the highest prevalence would be used in deciding on the 

lemma. 

5.2.2 Model’s Hierarchy of Transformation Classes 

The hierarchy of transformation classes is used by the lemmatiser to generate lemmas for 

words that the XGL has not encountered before i.e. Out of Vocabulary (OoV) words. XGL does 

this by finding the most appropriate transformation class for a word. As transformation classes 

were explained in section 4.3.1.1: Transformation Class, this section explains how they are 

generated, how they are structured into a hierarchy, and how they are used. 

5.2.2.1 Generating Transformation Classes 

To generate a transformation class between a word and a lemma, one first finds the longest 

common string (LCS) between the word and its lemma. The differences between the LCS and 

the word are the affixes to be removed. The differences between the LCS and the lemma are 

the affixes to be inserted to create the lemma. In lemmatising ekuqinisekiseni to qina, the LCS is 

qin. The affixes to be removed are eku at the beginning of the word and isekiseni at the end of 

the word. These should be replaced with nothing at the beginning and "a" at the end, hence the 

class Leku>Risekiseni>a. 

The LCS algorithm for XGL was based on a Python implementation that is freely available at 

Wikipedia4. However, this implementation was biased towards suffixing languages. This became 

apparent when the algorithm gave "a" as the longest common string for between asiyi and ya, 

when it actually is y for isiXhosa. This algorithm was modified to be biased towards prefixes 

instead of suffixes.  

An example of a conversion class is shown below: 

Ekuqinisekiseni => qina. :   Leku>Risekiseni>a 

                                                

4 https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Longest_common_substring#Python2 
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5.2.2.2 Structure and Information Related to Transformation Classes 

To be able to decide whether a transformation class is the right one for lemmatising a word, 

some word features need to be used. The section below details the choice of features and the 

information to be captured with a class. This is followed by how the classes are indexed. 

5.2.2.2.1 Choosing Features 

Based on the work done in the data analysis part of the study, the features that characterise a 

word-lemma pair were chosen to be the prefix, suffix and word-length of the word. This 

information is used to find the most appropriate transformation class for the word. 

The training data provides a number of possible prefixes, suffixes and circumfixes that could be 

identified for a word. For the purposes of the study, the prefix and suffix were generalised to a 

circumfix. Using circumfixes showed immense promise in improving the spellchecker for isiZulu, 

a language very similar to isiXhosa (Prinsloo & de Schryver 2004). A prefix was represented as 

a circumfix with an empty suffix, and a suffix was represented as a circumfix with an empty 

prefix. For each circumfix, therefore, the XGL captures the transformation classes, and for each 

class, statistics of the word-length encountered for that class are stored. It is possible for one 

circumfix to be present in more than one transformation class. Because of this, the model can 

store more than one class per circumfix. The statistics stored are the number of encounters, the 

mean word-length, and the standard deviation of the word-length for the words encountered for 

that class. These statistics are used to discriminate between classes. An example of a leaf of 

the model is shown below: 

('be', 'isa'):  

{'CLASSES':  

{'Lbe>Risa>a': {'Count': 1, 'Stats': {'Mean': 

12.0,'Std': 0.0}}, 

'Lbe>Risa>o': {'Count': 1, 'Stats': {   'Mean': 

11.0, 'Std': 0.0} 

} 

}, 

 

The statistics are used to model the probability of the word belonging to the class, 

p(class|word). The simple Gaussian distribution on word length is used as an estimate of the 

probability of the word belonging to the class. 
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5.2.2.2.2 Class Tree Hierarchy 

IsiXhosa affixes are made of concatenated morphemes (Pahl, 1982:2). This is also shown in 

chapter 3, specifically in negation and derivation of words from other word categories. The 

regularity of this concatenation allows for affixes to be structured into a hierarchy. For prefixes, 

the concatenation is left to right and for suffixes the concatenation is right to left (Meinhof, 

1932). An example of a hierarchy of circumfixes is shown in the example below: 

(‘o’,’’) 

('oku', 'na') 

   (‘oku’,’ana’) 

('oku', 'isana') 

('oku', 'nyelwana') 

The hierarchy is determined as follows: a circumfix C1 is a child of another circumfix C2 if the 

prefix of C1 starts with the prefix of C2 and the suffix of C1 ends with the suffix of C2, and the 

circumfix C1 is not the same as C2. 

Arranging possible affixes in a hierarchy allows us to restrict the search for the appropriate class 

to a subset of the class tree. The process of finding the most appropriate transformation class 

will be discussed in the section dealing with how XGL uses transformation classes to generate 

lemmas for unknown words.  

5.2.3 XGL Class Confidence Threshold 

For the XGL to use a class in transforming a word, it must be confident enough that it is using 

the most appropriate class for the word, so the threshold is the minimum confidence that XGL 

will accept for a class to be used. In addition, not all isiXhosa words are transformed, e.g. ngoba 

[because]. Ngoba is a conjunction and conjunctions are lemmatised to full word forms. The XGL 

therefore needs to decide at what point it should transform a word. This is where the confidence 

threshold comes in. If the confidence that a word belongs to a class is high enough, that class is 

used to transform the word, otherwise the word is not transformed. This is to ensure that the 

XGL does not use a wrong lemmatisation strategy to lemmatise a word. 

To choose a particular lemma or transformation class, the XGL calculates the probability that a 

word belongs to a transformation class. As mentioned earlier the class model keeps statistics on 

the length of words encountered during training for each class. The simple Gaussian distribution 
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on word length is used as an estimate of the probability of the word belonging to the class 

p(class|word).  

The class confidence threshold is the minimum acceptable probability that a word belongs to a 

transformation class.  

 

5.3 How does the XGL work? 

This section of the chapter delves into the inner workings of the XGL. An overview of the XGL is 

provided followed by an explanation of its different components and how they function.  

5.3.1 Overview of XGL 

XGL generates a lemmatisation model from word-lemma pairs. This model is then used to 

lemmatise other words.  

The workflow in XGL is shown below: 

Generate 
Transformation 

Classes

Lemma 
annotated 
training file

Training data 
Transformation 

classes file

Generate model
Model

Lemmatiser
Token lemma 

file
Tokens file

Start

End

Document

Process

Process Flow

Documents 
Input/
Output

Legend

 

Figure 11: XGL Workflow 

Each process step in the workflow corresponds to an XGL component. 

The XGL is made up of three components that work in tandem. The first two components are 

used in training the XGL, thereby generating the lemmatisation model, and the third component 
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is used for lemmatisation using the generated model. The components are: 

XGLTrainClassesSplit, XGLTrainClassTree and XGLLemmatise. 

The XGLTrainClassesSplit component is used to generate lemmatisation transformation 

information from the word-lemma pairs in the training data. The details of this lemmatisation 

transformation information are described in section 5.2.2.2.1: Choosing Features. This 

lemmatisation transformation information should be saved to a file for input into the next 

component of the XGL. 

The XGLTrainClassTree component generates the lemmatisation model from the lemmatisation 

transformation information file. This lemmatisation model should also be stored in a file to be 

used as input in the lemmatisation of other isiXhosa words. 

The XGLLemmatise component uses the lemmatisation model generated earlier to lemmatise 

words. 

The next section will go into how each component of the XGL works. 

5.3.2 How does the XGLTrainClassesSplit work? 

The purpose of the XGLTrainClassesSplit is to generate the transformation classes for each 

word-lemma pair in the training file. This component ignores empty lines, and lines with a blank 

lemma. 

For each word-lemma pair, XGLTrainClassesSplit returns the word, the lemma, and the affixes 

used in the transformation class and the transformation class separates them using commas. 

5.3.3 How does XGLTrainClassTree work? 

The XGLTrainClassTree component of the XGL is the heart of this lemmatiser and generates 

the model, as stated earlier. 

This component captures encountered word-lemma pairs into the lexicon with the prevalence 

counts. It then calculates the statistics for each class and structures the class tree. The lexicon, 

the transformation class tree structure, and the threshold of 0.975 are then compiled into the 

model and outputted into a file or standard output. 

The threshold was decided during validation tuning. Threshold tuning was done by executing 

the lemmatiser at different thresholds in the range 0.0 to 1.0. The results are shown in Table 45 

below 
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The graph below shows the trend of the Performance vs. Threshold in graphical form. 

 

Figure 12: XGL validation Performance vs Threshold 

From the graph above one can see that the performance of XGL follows a trend but jumps at 

the threshold of 1.0. This jump is even more visible in the accuracy of the XGL on Out of 

Vocabulary (OoV) words between the thresholds of 0.9999 and 1,0, The accuracy on OoV 

words at a threshold of 0.9999 is 75.03%. However the lemmatiser jumps to 90.82% at 1.0. We 

         Total Acc   OoV Acc  Known Acc  FMeasure  Precision    Recall 

0.00000   0.633211  0.070175   0.992255  0.650100   0.884516  0.633211 

0.00001   0.638991  0.085020   0.992255  0.657961   0.884088  0.638991 

0.00010   0.641093  0.090418   0.992255  0.661123   0.882927  0.641093 

0.00100   0.644246  0.098516   0.992255  0.665615   0.884062  0.644246 

0.01000   0.653705  0.122807   0.992255  0.678835   0.884959  0.653705 

0.10000   0.672622  0.171390   0.992255  0.702836   0.888880  0.672622 

0.20000   0.684708  0.202429   0.992255  0.717159   0.889794  0.684708 

0.30000   0.698371  0.237517   0.992255  0.733469   0.892429  0.698371 

0.40000   0.706779  0.259109   0.992255  0.743298   0.892853  0.706779 

0.50000   0.717814  0.287449   0.992255  0.755407   0.896092  0.717814 

0.75000   0.759327  0.394062   0.992255  0.797968   0.904397  0.759327 

0.85000   0.780347  0.448043   0.992255  0.816394   0.904182  0.780347 

0.90000   0.801892  0.503374   0.992255  0.834146   0.903163  0.801892 

0.95000   0.828692  0.572200   0.992255  0.857219   0.909574  0.828692 

0.97500   0.842880  0.608637   0.992255  0.869208   0.914709  0.842880 

0.98000   0.856017  0.642375   0.992255  0.880274   0.919597  0.856017 

0.98500   0.859695  0.651822   0.992255  0.884190   0.922682  0.859695 

0.99000   0.869154  0.677463   0.991394  0.891001   0.924630  0.869154 

0.99900   0.894377  0.742240   0.991394  0.910963   0.933195  0.894377 

0.99990   0.897530  0.750337   0.991394  0.913887   0.935049  0.897530 

1.00000   0.959012  0.908232   0.991394  0.944452   0.933622  0.959012 

Table 45: XGL Performance vs Threshold 
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could not explain this anomaly, and to be conservative, we chose a threshold of 0.975 to avoid 

overtraining. Overtraining in machine learning is when an artificial intelligence system fits the 

training data very well, but is unable to generalise to unknown data. A threshold of 0.975 implies 

that the lemmatiser is 97.5% confident that the word belongs to the class being evaluated. 

5.3.4 How does the XGLLemmatise work? 

For each word in the tokens file, the process shown in Figure 13 is followed.  

First, the lexicon is searched. If the word is found in the lexicon, the most prevalent lemma is 

returned. If the word is not found in the lexicon, the most appropriate class is then used to 

transform the word to a lemma. 

As mentioned in section 5.2.2.2.2: Class Tree Hierarchy , the class tree is structured according 

to the circumfixes identified in the training data. From the root of the class tree, matching 

circumfixes are found together with matching sub circumfixes and compiled into a candidates 

list. A circumfix matches a word if: 

(1) The word starts with the prefix of the circumfix, if the circumfix has a prefix, 

(2) The word ends with the suffix of the circumfix, if the circumfix has a suffix, and  

(3) The combined length of the circumfix components is less than the word length. 

If there are no candidate classes, the word is returned un-lemmatised, otherwise the probability 

that the word belongs to the candidate classes is calculated. A simple Gaussian distribution on 

word length was chosen to model the probability that a word belongs to a transformation class. 

The statistics that were captured by XGLTrainClassesTree for each class, with the word-length, 

are used in the probability calculation. 

The transformation class with the highest probability is chosen as the transformation class to 

use in reducing the word to its lemma. 



83 
 

Start

Find lemmas 
from the lexicon 
and classes with 
possible affixes 

for word

word

Calculate 
p(class/word) 

for each 
matching class

Select match 
with highest 

p(class/word)

Word in 
lexicon?

No

Return lemma 
from lexicon

Yes

P(class/word) 
>= threshold?

Generate 
lemma using 

class

Yes

Return lemma

End

End

Return wordNo End

Data

Decision

Process

Legend

Word 
Lemma

Word 
Lemma

 

Figure 13: Word Lemmatisation Workflow 

If the probability of the preferred class is less than the threshold, the word is not transformed 

using the class but returned as it is. 

5.4 Using the XGL 

This section details how the XGL should be used. For each of the components, the section 

details how the component is used, what the input should be, and what the output is. 

The XGL was written in Python (van Rossum 2007) version 2.7. Therefore, the components are 

Python files i.e. XGLTrainClassesSplit.py, XGLTrainClassTree.py, and XGLLemmatise.py. 
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The data structures of XGL were not optimised for performance but were structured for 

accuracy.  

5.4.1 How to use XGLTrainClassesSplit 

XGLTrainClassesSplit is executed as follows: 

>python XGLTrainClassesSplit.py lemma_Annotated_file 

[output_file] 

The lemma annotated file is the training file with word-lemma pairs. The requirement is for each 

line to contain a single pair of a word and a lemma separated by a tab character. The lemma 

annotated files is a tab delimited file. Lines containing empty lemmas or blank lines are ignored 

by the XGL. The lemma transformations generated are saved into the output file if specified, 

otherwise this information is written to the standard output, e.g. the computer screen. If the 

output file specified already exists, it is overwritten, otherwise it is created. 

5.4.2 How to use XGLTrainClassTree 

XGLTrainClassTree is used for creating the lemmatisation model. The XGLTrainClassTree is 

executed as follows: 

>python XGLTrainClassTree.py lemma_transformation_training_file 

[output_file] 

The lemma transformations training file is the output from the previous state, the 

XGLTrainClassesSplit component. The model generated by this component is written into the 

output file, if one is specified. If the output file is not specified, the component uses the standard 

output to display the model. If the output file specified already exists, it is overwritten, otherwise 

it is created. 

5.4.3 How to use the XGLLemmatise 

The XGLLemmatise is used to lemmatise words to lemmas based on the already trained model. 

The XGLLemmatise is executed as follows: 

>python XGLLemmatise.py class-tree-file tokens-file [output-

file] [verbose] 

The class-tree-file, the model generated by XGLTrainClassTree, is input to this component. The 

tokens file is a file containing the words to be lemmatised. The tokens‟ file must contain a single 

word per line. The lemmas of the words in the token file are written to the output file, if specified, 

otherwise to the standard output. If the output file already exists, it is overwritten, otherwise it is 
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created. The output is the word followed by the lemma in the same line. The output is tab 

delimited. If the verbose parameter is specified and is "True", the lemmatiser writes as output all 

the possible word lemmas in order of preference, in the same line. This is mainly for 

interrogating the lemmatiser‟s performance.  

5.5 Conclusions 

This chapter explains the design of the XGL and how the XGL works. It starts by giving details 

of the model used by the XGL, including the motivation behind structuring the class model into a 

circumfix tree. The chapter delves a bit into the feature selection, the motivation behind the 

selected features, and the selection of the right word to lemma transformation.  

An overview of the XGL is given together with how each component works and the motivation 

for the design.  

The chapter ends by detailing how to use the three components of the XGL, i.e. the 

XGLTrainClassesSplit, XGLTrainClassTree, and XGLLemmatise. 
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CHAPTER 6: EVALUATION 

6.1 Introduction 

This section details how the experiment was conducted and presents results for the 

experimental work.  

6.2 Experimental Design 

The section starts by giving a summary of the data used in the experiments. It then considers 

how the data was separated and sampled to minimise bias in the setup of the lemmatisers used 

in the experiment. This is followed by an explanation of how the control lemmatisers were 

chosen. The section finishes by giving a description of the experiment and a summary of the 

section.  

As data and data sampling are at the centre of the experiments, this section starts by discussing 

the data. 

6.2.1 Data Source 

The data used in this study was sourced from the South African Language Resource 

Management Agency website5, and was described in the chapter on data analysis. It is the 

lemmatisation corpus of the IsiXhosa NCHLT Annotated Text Corpora. The development of this 

corpus is described by Eiselen and Puttkammer (2014).  

The corpus consists of two lemma-annotated files, a 50000 word corpus of word form-lemma 

pairs and a 5000 word corpus of word-lemma pairs for testing purposes. From this point 

onwards, the 50000 word corpus will be referred to as the general corpus, and the 5000 word 

corpus will be referred to as the testing corpus. According to Eiselen and Puttkammer (2014), 

the general corpus was developed using a finite state lemmatiser (Bosch et al. 2006). The 

testing corpus was initially generated in the same way, but was then quality assured by linguistic 

experts for use as a gold standard. The accuracy of the general corpus in relation to the testing 

corpus was measured at 79.82% by Eiselen and Puttkammer (2014).   

Of importance, is the sequence of tokens within the corpora. The sequence of tokens was kept 

the same as in the original source text i.e. keeping the sequence of sentences and words in a 

                                                

5 Language Resource Management Agency website is http://www.rma.nwu.ac.za. 
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sentence. This is important because different parts of speech are distributed throughout the 

text, as they would be in real use. The corpora are made up of sentences. Each word in the 

sentence occupies a single line in the file. Each punctuation mark also occupies its own line and 

an empty line separates the sentences. Each word or punctuation has its lemma written in the 

same line and separated by a comma. Because punctuations and empty lines lemmatise to 

nothing, this study excludes them. This is reflected in the number of tokens for the datasets 

discussed below. 

6.2.2 Data Setup 

For development and experimental purposes, the data was divided into three sets, i.e. 

development data, validation data, and evaluation data. Each of these three had training data 

and testing data. Training data is used to train the lemmatiser, and testing data is used to 

measure the performance of the lemmatisers. 

In dividing the data, one wanted to ensure that none of the work involved created any bias to 

the ultimate experimental results. The objective was to evaluate the lemmatisers objectively.  

To ensure that the character of the data was not lost, only contiguous chunks of particular sizes 

were extracted during the experimental work. 

6.2.2.1 Development Data 

Development data is data used during the development of a tool. This data is used while one is 

setting up the lemmatisers or checking that the lemmatisers work as intended. The quality of 

this data is not critical, as it is not used in the evaluation. However, it must have the same 

structure as the evaluation data.  

Two development sets of different sizes were extracted from the data: a 2000 line set and a 

1000 line set. This was mainly to check that the system performed differently for different 

training set sizes; a characteristic of machine learning tools (Mitchell 1997: 2). 

For the 2000 line set, the first 2000 lines from the general corpus were extracted as training 

data; the second contiguous 2000 lines of data were extracted from the general corpus as 

testing data.  
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For the 1000 line set, the second last 1000 lines from the general corpus were extracted as 

training data and the last contiguous 1000 lines of data were extracted from the general corpus 

as testing data.  

After cleaning up empty lines and punctuation lines, the sizes of the sets were as follows: 

Table 46: Development Data Set Sizes 

Data Set Size (lines) 

2000 Token development training set 1600 

2000 Token development testing set  1597 

1000 Token development training set  859 

1000 Token development testing set  839 

 

Figure 14: Development Data Sets 
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6.2.2.2 Validation and Evaluation Data 

Whatever system has been implemented, it needs to be tuned for the best performance; this is 

where validation comes in. Validation data is used to tune the system without biasing the 

ultimate results of the experiment. Evaluation is the ultimate run of the experiment. 

6.2.2.2.1 Training Set and 10-Fold Sampling 

Because of the small size of the data, it was decided that the same data would be used for the 

training purposes in validation and evaluation, but that different test sets should be used for the 

two. Thus, the general corpus was used for training the lemmatisers for both validation and 

evaluation. 

On analysis of the general corpus, it was found that it consisted of 44608 tokens. The tokens 

included punctuations and empty lines to separate sentences. Punctuations and empty lines 

had "Null" lemmas.  

After removing the punctuation lines and blank lines, the training set was reduced to 36535 

lines.  

6.2.2.2.1.1 10-Fold Sampling 

Strict k-fold sampling splits the data set into k blocks. Of the k blocks, k-1 blocks are used for 

training and the extra block is used for testing. This is done k times with each block becoming a 

testing block once. Having k results from the same data allows for statistical evaluation of the 

results. The training set sizes are therefore (k-1)/k of the data size, and the test set sizes a kth of 

the data size. Strict k-fold sampling is ideal for where there is only one set of data to use for 

both training and evaluation of the performance of the tool. 

Where a separate testing data set exists, a different approach needs to be taken. A form of 

"leave-one-out-sampling" is performed on the training data and the testing set is used in its 

entirety. 

A 10-fold sampler was developed for this experiment. The 10-fold sampler was developed in 

Python (Van Rossum, 2007) and works as follows: it divides the training set into 10 contiguous 

blocks. Using the contiguous blocks, it maintains the structure of the sentences inherent in the 

data, keeping the data as it would be seen in real life. The sampler also caters for sampling 

different training set sizes. 
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To sample a size s training set, the sampler extracts the first s/9 lines from each of the 10 

blocks. The rest of the lines are not used. Nine of those extracts are saved to a training file and 

one is saved to a testing file. This is done 10 times with each block being used for testing only 

once. 

6.2.2.2.2 Testing Sets 

For testing the lemmatisers, the testing corpus was used. To ensure that the validation 

experiments did not affect the evaluation work, the testing corpus was split into two, a 2368 line 

validation testing set and a 2368 line evaluation testing set was used.  

 

Figure 16: Validation and Evaluation Testing Test 

Figure 15: Sampling for 10 Fold Validation 
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To ensure that the word and sentence sequence structure was maintained, the first contiguous 

half of the testing corpus was made the validation testing set, and the contiguous bottom half of 

the testing corpus became the evaluation testing set. Figure 16 shows the splitting of the testing 

corpus into test sets. 

The test sets also contained empty lines and blank lemmas; these were removed, resulting in 

the test set sizes shows in Table 47.  

Table 47: Validation and Evaluation Testing Set Sizes 

Data Set Size (lines) 

Validation testing 1903 

Evaluation Testing Set  1890 

 

6.2.3 Choice of Lemmatiser 

The study considered the implementations of machine learning lemmatisers for isiXhosa. Two 

publicly available lemmatisers were trained, evaluated, and compared to one built specifically 

for this study i.e. the isiXhosa Graphical Lemmatiser (XGL).  

The freely available lemmatisers chosen were the CST lemmatiser (Jongejan & Haltrup 2013) 

and the LemmaGen lemmatiser (Juršič et al. 2010). These lemmatisers were chosen because 

they implement the Ripple Down Rules (RDR) algorithm which seemed to be suited to highly 

synthetic languages. The CST lemmatiser was also chosen because it was used in many 

studies (Saraswathi & Geetha, 2007; Agic et al., 2013; Ingason et al., 2008) and was therefore 

a good benchmark. The LemmaGen lemmatiser showed superior performance against other 

Ripple Down Rules lemmatisers, including the CST lemmatiser (Juršič et al., 2010), and was 

also a good benchmark. However, the LemmaGen had seen limited use. 

6.2.3.1 CST Lemmatiser 

The CST6 lemmatiser implementation was written in Borland C++ 5 and was compiled using 

Microsoft Visual C++. This lemmatiser uses a hierarchy of rules. Each rule is represented by the 

form: affix0*affix1*…*affixK->insert0*insert1*…*insert. The hierarchy is 

similar to the Ripple-Down Rules in that for a child rule, the parent rule should hold true for 

                                                

6 The CST lemmatiser is open sourced and freely available at http://cst.dk/download/cstlemma/current. 



92 
 

candidate classes. Conflicts in lemmatisation were not handled, and the first lemma generated 

is accepted as the output. The implementation was compared to the suffix rules of 12 European 

languages.  

6.2.3.2 LemmaGen Lemmatiser 

LemmaGen7 is an enhanced Ripple-Down Rules (Plisson et al., 2004) lemmatiser tested on 12 

languages. The lemmatisation of a new word is done in the same way as the most similar word 

form in the lexicon. The system also used the suffix feature, as it was meant for European 

languages as well. Ambiguation was done by choosing the most prevalent/frequent class. 

Where there was equal prevalence, the second most similar class was used. The original RDRs 

form a tree structure and are ordered, implying that the first rule to fire is accepted. To improve 

the efficiency and readability of rules, the LemmaGen implementation extends the RDR 

structure by imposing a similarity condition for an exception list, meaning that all the suffixes 

share the same k-1 characters where k can be chosen. 

The LemmaGen lemmatiser is written in C++ and compiled in Microsoft Visual C++. 

6.2.4 Overview of the Experiment 

Four stages were followed in setting up the experiment i.e., development, experimental setup, 

validation and evaluation.  

6.2.4.1 Development 

The development stage ensures that the lemmatiser runs and generates results. This technical 

stage confirms that the lemmatiser can be trained and tested. At this stage, the technical 

constraints arise and the experiment needs to be adjusted accordingly. 

The major technical constraint encountered at this stage was that the CST lemmatiser did not 

handle null/blank lemmas. As null lemmas are for punctuations, it necessitated the removal of 

all punctuations from the data; hence the reduction in the data size, as will be seen later in the 

chapter.  

It was also noted that the commas separating the lemma from the full-word in a line of a training 

caused problems, so the data set were converted to tab delimited format. 

                                                

7 LemmaGen is open source software available at http://lemmatise.ijs.si/Software. 
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In the development stage, the lemmatisers were installed, configured and tested to see if they 

worked as intended. The systems were trained and tested on development data sets and 

results showing a difference between the two development sets were obtained, thus revealing 

that the lemmatisers work.  

Having confirmed that the lemmatisers work, a proper experimental setup was constructed. 

6.2.4.2 Experimental Setup 

This section describes the experiment setup. The experiments were run on the IPython 

Notebook (Pérez & Granger, 2007) system.  

Start
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Figure 17: Experiment Workflow 
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The experiment starts by doing a 10-fold sampling from the training set file. The sampler 

generates the training file and the testing file. The 10-fold sampler was written in Python (Van 

Rossum, 2007). 

The lemmatiser is then trained using the training sample file. The output of the training 

processes is stored in the model files. 

The model file is used by the lemmatiser to lemmatise the words in the testing files and the 

results are captured. For strict 10-fold validation, the 10-fold validation testing sample is 

lemmatised. Because there is also a testing corpus, the testing corpus is also lemmatised. 

The results are captured to a results file as follows: 

 Accuracy, which is the proportion of words lemmatised correctly 

 The F1-Score 

 Number of training words 

 Memory storage used during training process 

 Memory  storage used during lemmatisation,  

 Training execution time and  

 Lemmatisation duration. 

 

6.2.4.3 Validation and Evaluation 

The validation experiment is a setup of the above experiment where one tunes the systems 

involved for better results. The experiment was set up as above, but the validation testing set 

was lemmatised. The results of the validation experiment are not reported in this study but the 

evaluation of the experiment is reported. 

6.2.5 Conclusions on Experimental Design 

The chapter shows that the data was sourced via the South African Language Resource 

Management Agency (RMA). The data used is the IsiXhosa NCHLT Annotated Text Corpora 

(South African Department of Arts and Culture & Centre for Text Technology (CTexT) North-

West University South Africa 2013) described by Eiselen and Puttkammer (2014). 
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An explanation is given on the choice of the lemmatisers and how the data was split-up for the 

experimental work. This split ensured that there was no bias incorporated into the results of the 

experiment. 

Details of the experiment highlighting the 10-Fold validation sampling method are given. The 

experiment was setup to ensure the validity of the experiment and reliability of the results. 

6.3 Results 

6.3.1 Introduction 

This section details the results of the study. The section starts by doing an accuracy comparison 

of the three systems, followed by an analysis of the computer resources performance and the 

significance of the results. 

The results are presented for two forms of evaluation, i.e. general corpus evaluation and test 

corpus evaluation. The general corpus tests are strictly tenfold sampling tests where the training 

and testing sets come from the general corpus. The second evaluation is on using the testing 

corpus where the general corpus is used for training, but the testing is done using the testing 

corpus. In all the tests, measures taken on the reliance of the results are presented as p-values 

of the Wilcoxon test (Wilcoxon, 1945). 

A summary of the section is provided. The data analysis software, Pandas (McKinney, 2010), 

was used for the statistical analysis. 

6.3.2 Linguistic Performance 

In this study, linguistic performance is measured on accuracy and the F1 Score. The accuracy 

measure gives an overall score while the F1 score measures the technical performance of the 

lemmatisers.  

Accuracy is measured as a ratio of the number of words that were lemmatised correctly to the 

total number of words submitted for lemmatisation. 

The F1-Score is the weighted average of precision and recall, and is defined in section 2.2.5.3: 

F-Measure. 

6.3.2.1 Accuracy 

This section of the document presents the results obtained in measuring the accuracy of the 

lemmatisers. This section starts by stating the overall accuracy results, continues to present the 
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lemmatisation accuracy on Out of Vocabulary (OoV) words, and ends by presenting the 

accuracy on known words. 

6.3.2.1.1 Overall Accuracy 

For accuracy measurements measured on the general set, the CST lemmatiser outperformed 

the XGL and LemmaGen lemmatiser, as shown in Figure 18. The CST lemmatiser achieved an 

average overall accuracy rate of 71.8% compared to XGL‟s 66.88% and LemmaGen‟s 63.89%.  

 

Figure 18: Lemmatisation Accuracy on General Corpus by Training Set Size 

This shows that the CST lemmatiser created a better model from the training data than the other 

two lemmatisers. The Wilcoxon (1945) confidence tests were done between the XGL and the 

CST lemmatiser, and the XGL and LemmaGen, to test the confidence levels on the results. The 

maximum p-value was 0.007, which is below the threshold of 0.05. Therefore confidence can be 

placed on the results.  

The resulting p-values mean that there is a maximum 0.7% chance that the results were caused 

by statistical errors or noise. 

When the lemmatisers were evaluated against the testing corpus, a different picture emerged. 

All the lemmatisers performed better, but in this setting, the XGL lemmatiser performed far 

better than the other two, as shown in Figure 19. 
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Figure 19: Lemmatisation Accuracy on Testing Corpus by Training Set Size 

The XGL‟s peak accuracy was measured at 83.19%, followed by the LemmaGen lemmatiser at 

80.6%, and the CST lemmatiser‟s accuracy measured at 73.14%. 

To get a measure of confidence on the above results, a Pair-wise Wilcoxon test was also done. 

The resultant p-values were all below the threshold of 5%, showing that the accuracy results are 

statistically significant.  

The increase in the overall accuracy rates when the lemmatisers are tested against the testing 

corpus is curious. It could be because the testing corpus is a gold standard and consequently 

has less noise than the general corpus. The accuracy results also suggest that the CST 

Lemmatiser generates a lemmatisation model that reflects the training data better than the other 

lemmatisers. This is evident in the CST lemmatiser‟s superior performance when measured on 

the general set compared to the tested set. On the other hand, the XGL lemmatiser generalises 

to the isiXhosa language better than the other two. This is evident in its superior performance 

when tested against the isiXhosa gold standard, the testing corpus. This makes sense if one 

considers that the XGL lemmatiser was designed with isiXhosa in mind, whilst the other 

lemmatisers were not designed specifically for isiXhosa. 

6.3.2.1.2 Accuracy on Known Words 

One of the performance measures is the accuracy of the lemmatisers on words that it 

encountered during the training process, i.e. known words. Figure 20 shows the accuracy of the 

lemmatisers on known words: 
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Figure 20: Average Accuracy for Known Words Tested on General Corpus by Training Set Size 

As can be seen in Figure 20, the XGL lemmatiser provides very high accuracy on known words 

when trained and evaluated on the general set i.e. close to 100%. The CST lemmatiser 

provided the lowest accuracy of 97.24% at a training set size of 35000 pairs. Table 48 shows 

the pair-wise Wilcoxon p-values for these results at different training set sizes: 

 

 

The Wilcoxon p-values showed some statistical overlap in the 15000 and 20000 training sample 

sizes between LemmaGen and the CST Lemmatiser at 0.0926. These were higher than 5%, 

and are highlighted in Table 48. For the rest of the comparisons the p-values were all below 

0.05, confirming the results to be dependable. This means that for the training set sizes of 

15000 and 20000 word lemma pairs, the difference that shows in the graph cannot be relied on 

statistically.   

The picture is not that different when the lemmatisers are evaluated against the testing set, 

except for an increase in the accuracy of all three lemmatisers. 

       XGL-LemmaGen  LemmaGen-CST   XGL-CST 

5000       0.011719      0.012515  0.005062 

7500       0.011719      0.015156  0.005062 

10000      0.005062      0.020879  0.005062 

15000      0.005062      0.092601  0.005062 

20000      0.005062      0.092601  0.005062 

25000      0.005062      0.016605  0.005062 

30000      0.005062      0.012515  0.005062 

35000      0.005062      0.005062  0.005062 

Table 48: Pair-Wise Wilcoxon p-values for Known Word Lemmatisation on General Corpus by Training set 
size 
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Figure 21: Average Accuracy on Known Words Evaluated on Testing Corpus by Training Set Size 

As can be seen in Figure 21, again the XGL lemmatiser provides for very high accuracy on 

known words when evaluated on the testing corpus again – slightly less than 100%, with CST 

providing the lowest accuracy again, but at of 97.75% at the maximum training set size of 35000 

pairs. The pair-wise Wilcoxon p-values for these results were all 0.005.  

All the result comparisons gave statistically significant p-values that are an order of magnitude 

below 5%, and may therefore be relied upon. 

The high results stated in this section should not come as a surprise because all the 

lemmatisers are lexicalised. 

6.3.2.1.3 Accuracy on Out of Vocabulary Words (OoV) 

An even more important measure of accuracy is the performance of the lemmatiser on Out of 

Vocabulary (OoV) words. OoV words are words that the lemmatiser did not encounter during 

training. This measure of the performance of a lemmatiser shows how well the lemmatiser 

generalises from the training data. 

Figure 22 shows the average accuracy rates on OoV word when the lemmatisers are tested 

against the general corpus: 
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Figure 22: Average Accuracy on OoV Words Validated on General Corpus by Training Set Size 

As can be seen, the CST lemmatiser provided for better accuracy on OoV words when trained 

and evaluated on the general corpus, peaking at 32.36% for 35000 word-lemma pairs. XGL was 

the next best lemmatiser, with an accuracy hovering around 16% throughout the range. 

LemmaGen provided the lowest accuracy of 9.7% at the maximum training set size range of 

35000 word-lemma pairs.  

The pair-wise Wilcoxon p-values for the OoV accuracy rate were all 0.005, implying statistical 

significance of the measures between all the lemmatisers, as they were all below the threshold 

of 5%. This means that the chance that the results are caused by statistical noise is around 

0.5%. 

The picture again changes when the lemmatisers are evaluated against the testing corpus for 

OoV words. The increase in accuracy is curious for all the lemmatisers. It is also important to 

note that the accuracy for all three lemmatisers also increases with the size of the training set. 
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Figure 23: Average Accuracy on OoV Words Evaluated on Testing Corpus by Training Set Size 

As can be seen in Figure 23, the XGL lemmatiser outperformed the other two lemmatisers on 

the accuracy for OoV words when evaluated on the testing corpus, peaking at 57.97% for 

35000 words-lemma pairs, with LemmaGen following at 53.25% and the CST lemmatiser 

providing the lowest peak accuracy of 35.62%. Of interest, was that the CST lemmatiser‟s 

average performance slightly degraded as the training set size increased when evaluated 

against the testing set. 

For this evaluation, the resultant p-values were also an order of magnitude below the threshold 

of 0.05, meaning that one could rely on the results. 

The results presented in this section show that the CST lemmatiser generalises from the 

training data better than the other lemmatisers, as is evident from its OoV accuracy rate on the 

general corpus being higher than the other lemmatisers. However, when the lemmatisers are 

tested against a gold standard, the XGL lemmatiser shows better accuracy than the other 

lemmatisers. This suggests that the XGL lemmatiser generalises to the isiXhosa language 

better than the CST lemmatiser. Again, this is expected, as the lemmatiser was designed with 

isiXhosa in mind, whilst the other lemmatisers were not. Of interest though, is that the CST 

lemmatiser performs very well when tested against the general corpus, which is also the training 

set, but slightly degrades when tested against the separate testing corpus. This again shows 

that the CST lemmatiser models the training data very well, but not necessarily the language 

isiXhosa. This is of course expected, as the CST lemmatiser was not designed for isiXhosa but 

instead it is a general lemmatiser. 
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6.3.2.2 F1-Score results 

The F1-score gives an indication of how well a classifier performed internally with respect to 

balancing precision and recall. The F1-Score gives a balance average between the two. 

When tested against the general corpus, CST Lemmatiser outperformed the XGL and 

LemmaGen with a maximum F1-Score of 0.7 at 35000 word-pairs. The XGL lemmatiser 

followed with the maximum F1-Score of 0.64. The lowest peak F1-Score was attributed to the 

LemmaGen lemmatiser‟s 0.62. 

 

Figure 24: F1-Score for Evaluation on General Corpus by Training Set Size 

The Wilcoxon test done on the F1-Score showed that the results could be relied upon, as the p-

values were all 0.005, which is an order of magnitude below the 0.05 threshold.  

Evaluating the lemmatiser on the testing corpus test gave the set a different set of results. As 

expected from the average accuracy rates, the F1-Score increased for all the lemmatisers. The 

XGL lemmatiser had the best F1-scores, at 0.86, followed by LemmaGen at 0.85. The CST 

lemmatiser had the lowest maximum average F1-score at 0.77. 
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Figure 25: F1-Score Evaluated on Testing Corpus by Training Set Size 

Testing for the statistical significance of the results using the Wilcoxon test showed p-values of 

0.005, proving that the results are dependable. 

These results indicate that the CST lemmatiser does a better model for the training data, but 

that the XGL creates a better model for the language.  

6.3.3 Computing Resources Performance 

In this section, we investigate the computing performance of the lemmatisers, specifically 

memory usage and execution times.  

It is important to note that the CST Lemmatiser and LemmaGen were written in C++ and 

compiled to machine code. The XGL, however, was written in Python 2.7 and ran as an 

interpreted script. This difference is expected to show in the performance of the XGL regarding 

the use of computing resources. The section starts by looking at execution times results. 

6.3.3.1 Execution Duration 

There are two stages to consider when looking at execution: training execution time and 

lemmatisation execution time. This section starts with the training execution duration. 
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6.3.3.1.1 Training Execution Duration 

The graph below (Figure 26) shows the average training times per word-lemma pair of the three 

lemmatisers in relation to training set size: 

 

Figure 26: Training Duration (mS/word) by Training Set Size 

At the maximum training set size of 35000 word-lemma pairs, the CST Lemmatiser was the 

slowest of the lemmatisers at 2.81 ms/word, and the LemmaGen was the fastest lemmatiser 

overall at 10 µs/word. The slowness in the CST lemmatiser is attributed to its rules pruning 

process. The CST lemmatiser does a number of iterations using entropy maximisation in its tree 

pruning process. The duration of this pruning increased with the size of the training set. The 

XGL lemmatiser, at 207 µs/word, was more than an order of magnitude slower than the 

LemmaGen lemmatiser. 

Testing for the statistical significance of the results using the Wilcoxon test showed significant 

statistical differences between the lemmatiser, with p-values of 0.005, which is an order of 

magnitude below the 0.05 required for statistical significance. 

6.3.3.1.2 Lemmatisation Duration 

Lemmatisation duration indicates how fast the lemmatiser generates the lemma for a word. In 

this scenario, it was the XGL lemmatiser that was slow. It was orders of magnitude slower that 

the other lemmatisers. 
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Figure 27: Average Lemmatisation Duration (mS/word) by Training Set Size 

The fastest lemmatiser was the LemmaGen lemmatiser at 5 µs/word, followed by the CST 

lemmatiser at 12 µs/word. The XGL trailed at 332 µs/word. 

Testing for the statistical significance of the results using the Wilcoxon test showed that the 

lemmatisation results were statistically significant as all the p-values were 0.005; orders of 

magnitude were below the threshold of 0.05. 

6.3.3.2 Conclusions on Execution Durations 

The XGL lemmatiser is a slow lemmatiser because it is a Python script and has not been 

compiled to machine code. However, it is not as slow as the CST lemmatiser for the training 

stage. 

LemmaGen could be considered a fast lemmatiser for isiXhosa, as it had the smallest execution 

times for both training and lemmatisation. 

6.3.3.3 Memory Consumption 

Memory consumption is one of the key measures in the performance of a lemmatiser. Again, 

results are presented for training memory consumption and lemmatisation memory 

consumption. 
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6.3.3.3.1 Training Memory Consumption 

The graph below (Figure 28) shows the average memory usage per word-lemma pair for the 

three lemmatisers in relation to training set size. 

 

Figure 28: Average Training Memory (KB/word) by Training Set Size 

The XGL Lemmatiser used the most memory at 2.4 KB/word at 5000 word-lemma pairs, and 

LemmaGen was the most efficient with memory usage starting at 659 bytes/word as compared 

to the CST Lemmatiser‟s 804 bytes/word. As the size of the training set increased, the 

differences reduced dramatically, but they were still visible. For the maximum training set size of 

35000 word lemma pairs, LemmaGen still used the least memory per word at 181 bytes/word, 

followed by the CST at 344 bytes/word. The XGL was still the least economical with memory at 

608 bytes/word. 

Testing for the statistical significance of the results using the Wilcoxon test showed significant 

statistical differences between the lemmatisers. 

6.3.3.3.2 Lemmatisation Memory Consumption 

Lemmatisation memory usage gives an indication of how efficient the lemmatiser is with 

memory during the lemmatisation exercise. As is evident below, the XGL lemmatiser was order 

of magnitude higher in memory consumption than the other lemmatisers. 
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Figure 29: Lemmatisation Memory Usage (KB/word) by Training Set Size 

The most efficient lemmatiser was the LemmaGen lemmatiser at 76 bytes/word at 35000 word-

pairs, followed closely by the CST lemmatiser at 86 bytes/word at the same training set size. 

The XGL lemmatiser was the least memory efficient at 2.5KB/word at the same training set size. 

6.3.3.4 Conclusions on Memory Usage 

For both training and lemmatisation, the XGL lemmatiser proved the least efficient with memory 

usage. The LemmaGen was the most efficient, followed by the CST Lemmatiser. 

6.4 Summary 

The XGL lemmatiser showed superior accuracy to both the CST and the LemmaGen 

lemmatisers when measured against the testing corpus. However, when evaluated against the 

general corpus, the CST lemmatiser was the most accurate followed by the XGL. This showed 

that the XGL lemmatiser generalised to the language of isiXhosa better than the other 

lemmatisers. The CST lemmatiser generalised to the training data better, as seen from its 

superior accuracy against the general corpus. These differences could respectively be 

attributed to the fact that the XGL lemmatiser was designed with isiXhosa in mind, and the CST 

lemmatiser‟s tree pruning step during training was good at refining the model from the data. 

These could be the reasons for the XGL‟s better performance on the gold standard corpus, and 

the CST‟s better performance on the general corpus, which was used for training. The results 

trend on accuracy was also reflected on the F1-Score. 
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The XGL‟s usage of computing resources was orders of magnitude higher than the other two 

lemmatisers on resource usage, except against the CST lemmatiser during training. This was 

expected, as the CST lemmatiser did a number of iterations of tree pruning to maximise the 

entropy of its model, and the XGL was implemented as a Python script. 
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CHAPTER 7: CONCLUDING REMARKS 

7.1 Summary of the work 

IsiXhosa is one of the resource-scarce languages of South Africa when it comes to Human 

Language Technologies (HLT). As it is related to other Nguni languages i.e. isiZulu, Siswati, 

isiNdebele, any work done in isiXhosa could form the basis for work in other Nguni languages. 

A lemmatiser is one of the base components required in an HLT stack. Machine learning allows 

for the quick development of systems, as long as there is existing data from which that system 

could learn. In this case, the Language Resource Management Agency had lemmatisation data 

for isiXhosa. The study therefore was the investigation, implementation and performance 

evaluation of a machine learning lemmatiser for isiXhosa. 

To structure this work, the following objectives were set and followed: 

(1) To define the characteristics of a successful lemmatiser; 

(2) To define the appropriate lemmas for isiXhosa in a Natural Language Processing (NLP) 

environment; 

(3) To determine the best lemmatisation data features for isiXhosa; 

(4) To design and implement a model for an isiXhosa machine learning lemmatiser, and  

(5) To compare the implemented isiXhosa lemmatiser to existing machine learning 

lemmatisers. 

The benchmark linguistic performance for an isiXhosa lemmatiser was the work conducted by 

Eiselen and Puttkammer (2014) in the generation of the data used in this study. That work was 

measured to have a lemmatisation accuracy of 79.82% when measured against a gold 

standard, the same standard that was used for this study. 

To define the characteristics of a successful lemmatiser, a literature review was conducted and 

is detailed in chapter two. The review investigated general prevalent HLT techniques to gain an 

understanding of the field of HLT and the generic tools used in the field. Because the study is 

on automated lemmatisation, the chapter continued to look at lemmatisation studies worldwide, 

taking into consideration the nature of isiXhosa. This work addressed the first objectives of the 

study, which are to define features of a successful lemmatiser. 
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To design a lemmatiser with isiXhosa in mind, it is important to understand the language. 

Chapter three, therefore, dealt with the meaning of lemma for isiXhosa in a natural language 

processing (NLP) context. Because isiXhosa is a morphologically complex language with a 

number of defined word categories, the study had to adopt an approach to word categorisation 

so that the study could consider the nuances for each isiXhosa word category. This chapter 

addressed the second objective: defining the appropriate lemma for each isiXhosa word 

category in the NLP context. 

Armed with this linguistic knowledge on the NLP lemmas in isiXhosa, the data used to train the 

lemmatisers was explored in chapter four using the Lemmatisation corpus of the IsiXhosa 

NCHLT Annotated Text Corpora. The development of these corpora is described by Eiselen 

and Puttkammer (2014). The data was generated from the South African government isiXhosa 

documents, which restricted the study data to a subset of the isiXhosa test. This corpus consists 

of a general corpus of 50000 words and a testing corpus of 5000 words. The general corpus 

was earmarked for training the lemmatisers and the testing corpus was earmarked for 

evaluating the lemmatisers. To maintain the validity of the study, the analysis work was done on 

the training corpus only, i.e. the general corpus. The work consisted primarily of the statistical 

analysis of the affixes identifiable in the data, and how much of the data they covered. The 

study also looked at the length of the word and compared it with the size of the affixes. This 

chapter addressed the third study objective: identifying the best data features for an isiXhosa 

lemmatiser. 

Having identified the features that would work best to identify isiXhosa lemma transformation 

classes, the nature of an isiXhosa lemma, and the characteristics needed for a lemmatiser, an 

isiXhosa machine learning lemmatiser could be designed, modelled and implemented from 

scratch. This work is presented in chapter five: isiXhosa graphical lemmatiser. Chapter five 

addresses the fourth objective of the study, actually designing, modelling and implementing an 

isiXhosa lemmatiser. 

With a working isiXhosa lemmatiser, evaluation against the two control lemmatisers began. The 

experimental design and the results are presented in chapter six. This chapter addresses the 

last objective of the study: an evaluation of the performance of a machine learning lemmatiser 

for isiXhosa.  

7.2 Main Findings 

A lexicalised probabilistic graphical lemmatiser for isiXhosa, the XGL, was investigated, 

designed, implemented, and evaluated.  
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Chapter two of the thesis provides answers to the first question of the study: What 

characteristics do the most successful lemmatisers have? It became apparent from the 

study that the best lemmatisers approach lemmatisation as a classification problem. The 

prevalent class type was that of a word to the lemma transformation class. It was also clear that 

successful machine learning lemmatisers use a lexicon, and that a machine learning lemmatiser 

that is inspired by linguistic rules, provides for better results. The use of word category 

information also was shown to improve results. In addition, this study assisted in identifying 

control lemmatisers that the isiXhosa lemmatiser would need to be benchmarked against. As 

the benchmark lemmatisers had to be freely available, the CST lemmatiser and LemmaGen 

lemmatiser were chosen. The CST lemmatiser was chosen because it has been used 

extensively and the LemmaGen lemmatiser was chosen because it showed good performance 

and had been tested thoroughly, especially for the use of computing resources.  

In chapter three, the answers to the question about the appropriate lemma for isiXhosa in an 

NLP context were provided. The study first confirmed isiXhosa to be a prefixal language with 

the concordial agreement constituting the major part of the language structure and permeating 

almost all the isiXhosa word categories. The study adopted the word categories of Pahl (1982) 

and Louw et al. (1984). The lemmas for many of the isiXhosa word categories were identified as 

word stems; the words that are not inflected from stem, but are free morphemes, were identified 

to lemmatise to the full word form. There are also cases where the words in a category are a 

closed set. In this case, and because the question is on NLP lemmas, a case was made for 

lemmatising those to their full word form as well. It was also noted that certain derivations 

concatenate morphemes to form or extend the function of an affix. 

The question regarding good data features for an isiXhosa lemmatiser was answered in 

chapter four. Because, in this study, lemmatisation is modelled as finding transformation 

classes, it was clear that the affixes would play a pivotal part in the search for the right class. 

The prefix proved to have the greatest coverage of the text, as confirmed by the study on the 

nature of the isiXhosa lemma. Circumfixes also showed the next most prevalent, with suffixes 

playing a small part when they are on their own. The correlation between word length and affix 

length was high enough to suggest that word length should also be used in finding the right 

lemmatisation transformation class for a word.  

Therefore, the features to finding a lemmatisation transformation class were clear. They are 

prefixes, suffixes and word length in order of priority.  

The question of how the features should be structured in a model was answered in chapter 

five. The design of the isiXhosa Graphical Lemmatiser (XGL) showed that the transformation 
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classes should be indexed in a hierarchical manner by circumfix, where a prefix is modelled as 

a circumfix with a blank suffix component and a suffix as a circumfix with a blank prefix 

component. The hierarchical structure was motivated by the fact that affixes are made up of 

concatenated morphemes, and the concatenation is left to right for prefixes and right to left for 

suffixes. The XGL was lexicalised because in the chapter establishing the lemma for isiXhosa it 

was found that some categories of words lemmatise to full wordform. 

The word length statistics were linked to the transformation class as the mean and standard 

deviation of the lengths of the word belonging to the class. Prevalence of a class was also kept. 

The question of the best way to model an isiXhosa lemmatiser with the implementation of an 

isiXhosa Graphical Lemmatiser was also answered in chapter five. The lemmatiser was 

modelled as a lexicalised probabilistic graphical classifier. The XGL lemmatiser was 

implemented as three components; two are used to create the lemmatisation model from 

training data, and the third component is used to lemmatise isiXhosa words. The isiXhosa 

lemmatiser is written in Python programming and has not been compiled or optimised for 

computing resource performance. The model is, however, designed for linguistic performance. 

In chapter six, the question on how the performance of the implemented isiXhosa 

lemmatiser compares to existing similar lemmatisers on the lemmatisation of isiXhosa, is 

answered. To ensure the validity of the study, the experimental design incorporated splitting the 

data into three: development data, validation data and evaluation data. To ensure that the 

development work did not affect validating and evaluating the lemmatisers, all the development 

data came from the general corpus only. The training data for validation and evaluation came 

from the general corpus and the testing data for validation and evaluation came from the testing 

corpus. This meant that the testing corpus had to be split in two to prevent the evaluation tests 

from being tainted by the validation process. When tested against the corpus used in the 

training, i.e. the general corpus, the accuracy rate of the XGL lemmatiser was below that of the 

CST, but not as bad as the LemmaGen lemmatiser.  

At the maximum of 35000 training pairs, the XGL lemmatiser achieved an average overall 

accuracy rate of 66.88%, the CST lemmatiser achieved 71.8% and the LemmaGen achieved 

63.89%. However, when evaluated on a gold standard, the XGL lemmatiser performed better 

that the other lemmatisers. All the lemmatisers had improved results when evaluated against 

the gold standard. The XGL achieved 83.19%, the LemmaGen followed at 80.6%, and the CST 

Lemmatiser trailed at 73.13%. The F1-Score followed a similar trend with the CST Lemmatiser 

outperforming the XGL lemmatisers when evaluated against the general corpus, but the XGL 
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outperformed the other two lemmatisers when evaluated against the gold standard. The results 

were 0.86 for the XGL, 0.85 for the LemmaGen and 0.77 for the CST lemmatiser. 

There was a significant difference in computer resource usage. The LemmaGen lemmatiser 

was fast and efficient with memory usage during both the training and lemmatization phases. 

The CST Lemmatiser was orders of magnitude slower than the other lemmatisers during 

training, but slightly slower than the LemmaGen during lemmatization. The CST‟s memory 

usage was slightly worse than that of the LemmaGen, and the XGL was an order of magnitude 

slower that LemmaGen during training. The XGL was the slowest during lemmatization.  

From the results, one can surmise that the XGL lemmatiser generalized better to the language 

of isiXhosa than the other two lemmatisers, hence the better performance when evaluated 

against the gold standard. This is not a surprise as the lemmatiser was designed with isiXhosa 

in mind. However, the CST lemmatiser did a better model of the training data than the other 

lemmatisers did, hence its better performance when evaluated on the general corpus. 

The XGL lemmatiser was not implemented for optimal computing resource utilisation, thus its 

dismal performance on computing resources. 

7.3 Evaluation of the Hypothesis 

The research hypothesis was that a machine learning lemmatiser specifically designed for 

isiXhosa will perform significantly better linguistically than existing lemmatisers in the 

lemmatisation of isiXhosa. 

Therefore, the null hypothesis was that a machine learning lemmatiser specifically designed for 

isiXhosa will not perform significantly better linguistically than existing lemmatisers in the 

lemmatisation of isiXhosa. 

The linguistic performance metrics used in the study are the accuracy and the F1-Score. The 

linguistic evaluation sample was the testing corpus. The isiXhosa data used in the study was 

extracted from government documents. Although this is not a complete representation of 

isiXhosa text, it suffices for the study.  

The XGL lemmatiser did indeed perform linguistically better than the other lemmatisers. The 

XGL‟s accuracy was 83.19% compared to LemmaGen‟s accuracy rate of 80.6% and the CST 

Lemmatiser‟s rate of 73.13%. On the F1-Score, again the XGL performed better than the other 

lemmatisers with an F1-Score of 0.86 compared with 0.85 for LemmaGen and 0.77 for the CST 

lemmatiser. 
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The study used the Wilcoxon signed rank test to test for significance. The comparative results 

gave p-values of 0.005 in all the comparisons. Because this is below the threshold of 5%, it 

confirmed that the results were significant. 

In conclusion, the null hypothesis is rejected because the XGL lemmatiser performed better 

than the other lemmatisers and the results passed the 95% threshold for significance. 

7.4 Future Work 

This work was restricted to one language (isiXhosa) using a small training set made up primarily 

of government data. Future work could include testing the XGL on a more balanced and 

considerably larger data set, as well as testing XGL‟s performance in other closely related 

languages. 

The data source used in the study does contain parts-of-speech, but this was not used in this 

study. This could be an enhancement to the XGL as incorporating parts of speech tags to 

lemmatisation has been proven to improve lemmatisation accuracy. 

The XGL Lemmatiser‟s implementation was not optimised for computer resource performance. 

Implementing the lemmatiser in a faster programming language using optimal data structures 

could improve the performance of the lemmatiser. 

An enhancement to the XGL could be the automatic selection of the confidence threshold based 

on the data. 

The XGL lemmatiser showed an anomaly at a threshold of 1.0, where the accuracy jumped from 

89.8% at a threshold of 0.9999 to 95.9% a threshold of 1.0. This anomaly needs investigation, 

preferably with a more balanced data set. 

The XGL lemmatiser could be improved with tree pruning, as is used by the CST Lemmatiser, to 

improve the model. 

The XGL lemmatiser is biased toward prefixing languages; however, it could be bootstrapped to 

suffixing languages, or even infixing languages. 

7.5 Conclusions 

The development of the XGL lemmatiser has proved that it is possible to develop HLT 

resources for resource scarce languages.  
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This work is considered another brick towards building resources for resource scarce 

languages. By using the linguistic knowledge of a language in the design and development of a 

machine learning HLT resource, we showed that it is possible to develop tools for resource 

scarce languages that better match language characteristics.  
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