An assessment of the biodistribution, biopersistence and toxicity of gold nanoparticles

C Rambanapasi
24089117
B Pharm (Hons) (UZ), MSc Med Pharmaceutical Sciences (RUG)

Thesis submitted in fulfillment of the requirements for the
Philosophiae Doctor
Degree in Pharmaceutics in the Faculty of Health Sciences at the
Potchefstroom Campus of the
North-West University

Promoter: Anne Grobler
Co-promoter: Jan Rijn Zeevaart

July 2015
“What can be asserted without evidence can be dismissed without evidence”

Christopher Hitchens
Acknowledgements

To my supervisor Anne Grobler, thank you for the opportunity to embark on this journey that has this thesis as the final product. Being at the PCDDP has taught me a lot about science and life in general. I am eternally grateful for the chance you gave me, all the courses and conferences you made available. To my co-supervisor Jan Rijn Zeevaart, thank you for your energy and the time you always had for the many discussions. Your approach to science is really shaping my perceptions and I am happy to have had you as a supervisor. To you both I thank you for the work we have done.

As the old adage goes, no man is an island; this experience has truly validated it. I could not have done this work with all the co-authors, your contributions in terms of the drafting of the manuscript, designing of the experiments, doing analysis or just discussing science. I truly value your inputs and the efforts you made in making this thesis a success. David Jansen, you deserve a special mention, you made my time at Necsa very enjoyable and all the best with your future.

In the course of my experiments I used a number of facilities in different institutions and laboratories. I would like to express my heartfelt appreciation and gratitude to the people I encountered at the following places; DST/NWU/PCDDP Vivarium, NECSA, Westvaal Hospital (Malindi and Charlotte), and Dept. of Nuclear Medicine at the University of Pretoria’s Steve Biko Academic Hospital for your willingness to assist and corporation.
Acknowledgements

All new places come with different set of challenges and making new friends/acquaintances almost always makes the experience worthwhile and memorable. To the people I have met in Potch, Lisa and Mark, Deo, Mpasi, everyone at Global Friends House, Jere and Yolanda, Zeb, Jesper, Desiree, Phuti, Vusi, Lidija, Janke, Melinda, Carole, Kedu, Tshepisho, Seipati, Zim Community in Potch, Matthew, Modiise and Isaac (my comrade in the struggle to earn a PhD) thank you for your friendship and the good times we shared. To Gina and Inga thank you for being good friends over the years. To Bahar and Emma thank you for making time to come visit me during your visits to South Africa. Terrence and family, thank you for being there assisting with everything from the application stages to this date and most important for being a good friend. Last but not least, Nyasha thank you man for being a good buddy I would have been certified if you were not there to share the crazy stories with.

Liezl-Marie, thank you for all your help over the years, it started with making comments on my ethics application, and assisting with this and that thing and most importantly GLP studies. You always had time to talk and you were very understanding when I could not meet deadlines (especially with the study report). Florentine, thank you for your critical comments on my work, you taught me so much and yes I will take the time to master the pivot tables. To Rose, Star and Admire, thank you very much for all your help over the years. Zaan and Erika thank you for all your help.

Last but not least, my family thanks you very much for the support and standing by me over the years. Fats thank you for the visits.
Preface

This thesis is submitted in fulfillment of the requirements of a Doctor of Philosophy in Pharmaceutics using the article format in accordance with the General Academic Rules (A.7.5.7.4) of the North-West University. Each experimental chapter (3-5) was written in accordance with specific guidelines as stipulated by the journals intended for publication. I, Clinton Rambanapasi, the student did the following in the work presented in this thesis;

- Planned and designed the experiments.
- Carried out and participated in all the experiments with the exception of analysis done at independent laboratories.
- Interpreted the results and discussed them with various co-authors.
- Drafted the manuscripts.

Manuscript 1 has been published in the Journal Molecules- Special Issue "Preparation of Radiopharmaceuticals and Their Use in Drug Development", manuscript 2 will be submitted to Nanomedicine: Nanotechnology, Biology and Medicine and manuscript 3 has been submitted to the International Journal of Nanomedicine.

All the co-authors have given permission that the manuscripts may be submitted for degree purposes as stipulated in the Manual for Post Graduate Students of the North-West University.
Abstract

The interest in biomedical applications of gold nanoparticles (AuNPs) has increased dramatically in the last decade due to their ease of synthesis, unique surface and optical properties. The main driver of this surge in research on potential biomedical applications which include *inter alia*; to photothermal therapy, diagnostic aids and drug delivery vehicles was their biocompatibility. Questions on the safety of AuNPs have resurfaced and justifiably due to the increase in the number of reports on their toxicity potential and toxicity. This whole debate on safety must be put to rest before biomedical applications of AuNPs can reach the clinic. Studies were designed to investigate the acute biodistribution, biopersistence, and bioaccumulation of AuNPs using a rodent model using male Sprague Dawley rats. In all the studies, toxicity endpoints were monitored. To fully understand the determinants of toxicity of AuNPs which are a multi-component system, the acute biodistribution of the gold core was determined simultaneously with that of the citrate coating using a novel dual radiolabeled technique. The amount of Au core and citrate surface coating was quantified using gamma spectroscopy and liquid scintillation respectively. The biopersistence was determined after a single intravenous injection over 56 days. The bioaccumulation was assessed over 56 days as well after intravenous administration of multiple (7) doses of AuNPs at 3 different dose levels. In both the biopersistence and bioaccumulation studies, toxicity endpoints were monitored using histopathological analysis of organs and assessment of markers of kidney (creatinine and blood nitrogen urea) and liver (alkaline phosphatase, alanine transferase and total bilirubin) damage. The amount of Au in the tissues was quantified using neutron activation analysis (NAA) in the biopersistence and bioaccumulation studies. The acute
Abstract

biodistribution pattern of the Au core was found to be different to that of the citrate surface coating. In the acute study, Au widely distributed to all the tissues with the highest amount in the liver, spleen, lungs and bones in that descending order. After 56 days, there were considerable amounts of Au in the liver, spleen, lungs and bone. The biopersistence studies revealed that Au does not get cleared completely over eight weeks. The bioaccumulation study results showed that Au accumulates in the liver, spleen, lungs and bones albeit in a non-dose dependent fashion. In all the studies reported in this work, there was no peracute and acute toxicity as a result of exposure to AuNPs. In the biopersistence and bioaccumulation studies no peracute, acute, subacute and subchronic toxicity was observed. There were no differences in the levels of markers of liver and kidney damage. No abnormalities were detected during the histopathological analysis of the heart, kidneys, liver, lungs and spleen during the biopersistence and bioaccumulation studies. The acute biodistribution pattern of the Au core was different to that of the citrate surface coating and the Au core distributed widely in the body. The clearance of Au is low after a single intravenous injection over 56 days and Au has a high bioaccumulation propensity which is not dose dependent. Exposure to AuNPs did not result in peracute, acute, subacute and subchronic toxicity in a rodent model.

Keywords: gold nanoparticles, Sprague Dawley rats, biodistribution, biopersistence, bioaccumulation, acute, subchronic, toxicity, dual radiolabeling, neutron activation analysis, gamma spectroscopy
Table of Contents

Acknowledgements ... ii

Preface ... iv

Abstract ... v

Chapter 1: Problem Statement ... 1

1.1 Background ... 1

1.2 Research questions .. 5

1.3 Aims and objectives ... 6

1.4 References ... 7

Chapter 2: Literature Review .. 18

2.1 Colloidal gold: A brief history ... 18

2.2 Preparation of gold nanoparticles .. 19

2.2.1 Turkevich-Frens method ... 19

2.2.2 Brust Method ... 20

2.2.3 Other methods ... 22
Table of Contents

2.3 Characterization of gold nanoparticles .. 23

2.4 Functionalization of gold nanoparticles ... 26

2.5 Biomedical applications .. 27

2.5.1 Diagnostics .. 27

2.5.2 Therapy ... 29

2.5.3 Delivery vehicles ... 30

2.6 Nanotoxicity ... 32

2.6.1 Are gold nanoparticles safe? .. 33

2.7 References .. 34

Chapter 3: Dual Radiolabeling as a Technique to Track Nanocarriers: The case of Gold Nanoparticles ... 48

3.1. Introduction ... 50

3.2. Results ... 51

3.2.1. Synthesis and Characterization of AuNPs ... 51

3.2.2. Biodistribution of Gold vs. Citrate in the Rat .. 53
3.2.2.1. Dosimetry ..53

3.2.2.2. Biodistribution Profiles ..54

Liver ...55

Spleen ...56

Lungs ...56

Blood ..56

Summary of Biodistribution Profiles ..56

3.3. Discussion ..57

3.4. Experimental Section ..59

3.4.1. Preparation of AuNPs and Dual-Radiolabeled AuNPs59

3.4.2. Characterization of Dual-Radiolabeled AuNPs ...60

3.4.3. In Vivo Study ..61

4.3.1. Animals ...61

4.3.2. Experimental Design ...61

3.4.4. Quantification of Gold and Citrate in Samples ...62
Table of Contents

3.4.4.1. Gold... 62
3.4.4.2. Citrate.. 62
3.4.5. Statistics ... 63
3.5. Conclusions ... 63
3.6 Acknowledgments .. 63
Author Contributions ... 63
Conflicts of Interest.. 64
3.7 References .. 64
Chapter 4: Acute biodistribution, biopersistence and toxicity of 14nm gold nanoparticles after a single intravenous administration.. 69
Abstract.. 70
4.1 Introduction.. 71
4.2 Materials and Methods ... 73
4.2.1 Preparation and Characterization of AuNPs ... 73
4.2.2 In vivo Studies... 74
4.2.3 Calculations and statistical analysis ... 79

4.3 Results .. 80

4.3.1 Synthesis and characterization AuNPs ... 80

4.3.2 Imaging study .. 81

4.3.3 Acute biodistribution of AuNPs ... 82

4.3.4 Biopersistence study .. 84

4.4 Discussion ... 90

4.5 Conclusions ... 93

4.6 Acknowledgements .. 94

4.7 References .. 94

Chapter 5: Bioaccumulation and subchronic toxicity of 14 nm gold nanoparticles .. 102

Abstract ... 103

5.1 Introduction .. 104

5.2 Materials and Methods .. 106

5.2.1 Preparation and Characterization of AuNPs ... 106
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2 Animals and AuNPs treatment</td>
<td>107</td>
</tr>
<tr>
<td>5.2.3 Determination of Au in tissues: Neutron Activation Analysis</td>
<td>108</td>
</tr>
<tr>
<td>5.2.4 Toxicological studies</td>
<td>109</td>
</tr>
<tr>
<td>5.2.4 Calculations and statistical analysis</td>
<td>110</td>
</tr>
<tr>
<td>5.3 Results</td>
<td>110</td>
</tr>
<tr>
<td>5.3.1 Synthesis and characterization AuNPs</td>
<td>110</td>
</tr>
<tr>
<td>5.3.2 Bioaccumulation of Au in tissues after repeated dosing</td>
<td>111</td>
</tr>
<tr>
<td>5.3.3 Toxicological Studies</td>
<td>113</td>
</tr>
<tr>
<td>5.4 Discussion</td>
<td>118</td>
</tr>
<tr>
<td>5.5 Conclusion</td>
<td>120</td>
</tr>
<tr>
<td>5.6 Acknowledgements</td>
<td>121</td>
</tr>
<tr>
<td>5.7 References</td>
<td>121</td>
</tr>
<tr>
<td>Chapter 6: General conclusions and future perspectives</td>
<td>128</td>
</tr>
<tr>
<td>Conclusions</td>
<td>128</td>
</tr>
<tr>
<td>Future perspectives</td>
<td>129</td>
</tr>
</tbody>
</table>
Appendix 1: Guide to authors

130
Chapter 1: Problem Statement

1.1 Background

The potential biomedical applications of gold nanoparticles (AuNPs) had a notable expansion due to recent advances in their wet chemical synthesis and biomolecular functionalization (Khlebtsov & Dykman, 2011). The biomedical applications include inter alia drug and gene delivery (Bergen et al., 2006; Craig et al., 2012; Dobrovolskaia & McNeil, 2007; Donnelly et al., 2005; Ghosh et al., 2008; Kumar et al., 2013; Libutti et al., 2010; Paciotti et al., 2004; Pissuwan et al., 2011; Rana et al., 2012), cancer therapy (Bhattacharya & Mukherjee, 2008; Cai et al., 2008; Jain et al., 2012) and diagnostics (Curry et al., 2014; Huang & El-Sayed, 2010; Lu et al., 2012; Mieszawska et al., 2013). However, despite all the proof of concept studies there is insufficient information (both qualitative and quantitative) with regards to the safety of AuNPs based biomedical applications. Given the current situation (paucity of safety information) it is advisable or generally recommended to have more information to avoid being sorry in the future (Fadeel & Garcia-Bennett, 2010).

The notion and idea that AuNPs were biocompatible, and thus safe, was based on conclusions in early publications stating that they are safe (Connor et al., 2005; Esther et al., 2005; Goodman et al., 2004; Hainfeld et al., 2006; Merchant, 1998; Mukherjee et al., 2007; Mukherjee et al., 2005; Shukla et al., 2005). These studies were mainly executed in vitro. However, more recent studies, both in vitro and in vivo have reported on the potential toxicity of AuNPs (Abdelhalim & Jarrar, 2011; Alkilany & Murphy, 2010;
Balasubramanian et al., 2010; Choi et al., 2012; Fraga et al., 2014; Zhang et al., 2011a; Zhang et al., 2010). Since bulk gold is considered inert, the toxicity observed is thought to be due to the nanoscale, the form in which the gold was administered (Aillon et al., 2009). Due to the conflicting research evidence, a need for more research clearly exists to answer the question of the safety of AuNPs.

Nanotoxicity, the study of the toxicity of nanomaterials, requires a paradigm shift in the approach and manner in which the potential toxicity is evaluated. Indicators have suggested that traditional screening approaches might not be appropriate to nanoscale structures (Oberdörster et al., 2005). Measuring risk (which is a product of hazard, susceptibility and exposure) is the cornerstone of nanotoxicity studies. The hazard of a product/compound is a material property while the susceptibility is a property of the organism investigated. Rodent models have been used to determine susceptibility (Wang et al., 2015). Properties of nanoparticle such as size distribution, shape, agglomeration state, surface area, surface chemistry and surface charge have an influence on the potential toxicity and controlling these properties is critical. The majority of risk assessment studies of AuNPs have varied the exposure and hazard by altering the properties (hazard) of the nanoparticles and route of administration (exposure) (Balogh et al., 2007; De Jong et al., 2008b; Hirn et al., 2011; Lipka et al., 2010; Morais et al., 2012; Schleh et al., 2012; Semmler-Behnke et al., 2008; Wang et al., 2015; Zhang et al., 2009; Zhang et al., 2011a), followed by determination of the biodistribution in rodent models.

In biodistribution and toxicity studies, accurately determining the amount of gold in various tissues and organs is absolutely necessary. The quantification of the other
components of an AuNP drug delivery vehicle such as the surface coating and surface attachments or the cargo, can assist in the elucidation of potential toxicity mechanisms. Several techniques have been used to measure the content of gold in rodents, namely inductively coupled plasma mass spectroscopy (ICP-MS) (Balasubramanian et al., 2010; Cho et al., 2009; De Jong et al., 2008a; Sadauskas et al., 2009; Simpson et al., 2013; Sonavane et al., 2008), atomic absorption spectroscopy (AAS) (Lasagna-Reeves et al., 2010), radioactive analysis (RA) using gamma spectroscopy (Hirn et al., 2011; Lipka et al., 2010; Schleh et al., 2012; Semmler-Behnke et al., 2008) and neutron activation analysis (NAA) (Balogh et al., 2007; Hillyer & Albrecht, 2001). Gamma spectroscopy and NAA are the preferred analytical techniques in biodistribution studies due to the lower limits of detection compared to AAS and ICP-MS. Gamma spectroscopy offers the added advantage of a quick and relatively simple sample preparation which only requires noting the mass of the sample and its activity. However, all these quantification methods lack the ability to simultaneously track and quantify the other components and surface attachments of AuNPs in vivo.

Biopersistence refers to the length of time that a substance, in this case the engineered nanomaterial (AuNPs) remains in a biological system such as a rodent and is a function of the system’s ability to clear the material, in this case gold from the AuNPs. The clearance mechanisms have not been fully elucidated and remain unknown. The few studies reporting on the biopersistence of AuNPs after the administration of a single dose in rodents (Balasubramanian et al., 2010; Fraga et al., 2014; Sadauskas et al., 2009; Zhang et al., 2011b) differ widely in the dosages (mass concentration) of the AuNPs used. Thus the
results of these studies cannot easily be generalized. Further the different time points used in these studies further complicates any attempt at generalizing the results. The rationale used for the selection of dosages, time points and organs to be analyzed for their gold content is also not always clear. The dosages used in nanotoxicity studies tend to mimic accidental exposure (Balasubramanian et al., 2010) or high toxic doses (4 mg Au/kg) are used (Zhang et al., 2011a). It is imperative to have information on the biopersistence of AuNPs when dose levels that resemble intentional use are administered to determine the toxicity at several time points post administration and to assess the quantities of gold in organs that are chosen systematically based on experimental results.

Bioaccumulation occurs when an organism takes up or absorbs any material, chemical, or nanomaterial at a rate higher than its clearance rate. The bioaccumulation propensity of any nanomaterial is dependent on its biopersistence in the organ or tissue; biopersistent materials will have a higher bioaccumulation propensity. The route of exposure or administration has an influence on the organs exposed to the material and thus its eventual clearance and for systemic drug delivery purposes using AuNPs the intravenous route is the most important to study. Few studies report on the biopersistence (Fraga et al., 2014; Sadauskas et al., 2009) or on the bioaccumulation (Buzulukov et al., 2014; Lasagna-Reeves et al., 2010) of AuNPs after intravenous administration. The exposure of an organ to a metal or nanomaterial will increase when bioaccumulation occurs; thus there is a clear need to have more information on the bioaccumulation of AuNPs after repeated intravenous administrations.
Safety assessments of AuNPs include end organ toxicity that can result from acute and subchronic exposure. The influence of bioaccumulation on end organ toxicity must also be investigated in order to gather safety data. Serum enzymes and metabolites serve as good markers for hepatotoxicity and nephrotoxicity. Histopathological examination is a good indicator to assess structural damage. This approach has been used in studies assessing the safety of AuNPs albeit with different results (Abdelhalim & Abdelmottaleb Moussa, 2013; Lasagna-Reeves et al., 2010).

Despite all the unanswered questions with regards to the safety issues surrounding AuNPs, a phase I and pharmacokinetic trial testing the delivery of recombinant human tumor necrosis factor alpha (rhTNF) by AuNPs has been conducted (Libutti et al., 2010). Innovative pharmaceutical companies are also showing interest in AuNP based delivery systems (AstraZeneca, 2012). These developments illustrate a clear need to conduct the research to allow regulators to come up with evidence based positions in assessing any use of gold nanoparticles in humans that will be proposed.

1.2 Research questions

The research presented in this thesis addressed in a systematic manner the biodistribution, biopersistence and bioaccumulation of AuNPs in a rodent model. The basic question that the research sought to answer was: How safe are AuNPs in a rodent model at concentrations which may be used for biomedical applications? This was done through answering the following questions;
1. What is the biodistribution profile of the components of AuNPs (i.e. the gold core and the citrate surface coating)?

2. What is the biopersistence and toxicity of gold after a single dose has been administered to a rodent model?

3. What is the bioaccumulation propensity and toxicity of gold after multiple doses have been administered to a rodent model?

Synthetic methods for preparation of AuNPs are many and varied (Brust *et al.*, 1994; Fent *et al.*, 2009; Frens, 1973; Turkevich *et al.*, 1951; Zhao *et al.*, 2013). They all have one thing in common, the reduction of a salt of gold in solution that with AuNPs being the product. In general AuNPs refers to all structures of gold in the nanosize range, but in this work it only refers to spherical AuNPs. Due to the ease of synthesis and nontoxic nature of their precursors (Connor *et al.*, 2005), citrate coated AuNPs present the simplest form of AuNPs that can easily be functionalized and used in many biomedical applications. Therefore in this study we only used citrate coated AuNPs to answer the research questions using 3 aims (each addressed in the different experimental chapters).

1.3 Aims and objectives

The following aims and objectives were chosen to answer the questions:

1. Determination of the biodistribution profiles the two components of AuNPs, the gold core and the citrated surface, using citrate coated AuNPs after intravenous administration to a rodent model by:

 a. Synthesizing and characterizing dual radiolabeled AuNPs
b. Determining and comparing of the acute biodistribution profiles of gold and the citrate coating

2. Determination of the biopersistence and toxicity of AuNPs after administration of a single intravenous dose by:
 a. Quantifying the amount of gold in organs using NAA
 b. Monitoring the markers of kidney and liver damage

3. Determination and assessment of the influence of the dose on the bioaccumulation and toxicity of AuNPs after multiple intravenous doses by:
 a. Quantifying of the amount of gold in the organs using NAA
 b. Monitoring the markers of kidney and liver damage

1.4 References

Chapter 1: Problem Statement

Chapter 1: Problem Statement

after repeated administration in mice. *Biochemical and Biophysical Research Communications*, 393 (4):649-655.

Chapter 1: Problem Statement

Chapter 1: Problem Statement

Chapter 1: Problem Statement

Chapter 2: Literature Review

2.1 Colloidal gold: A brief history

In ancient times gold was the only metal that did not corrode: this made it valuable and it symbolized immortality. Solutions of gold were recommended for medical use as what was referred to as potable gold or aurum potabile. The origins of the idea that liquid gold could be the “elixir of life” are thought to have originated in China (Kauffman, 1985). Theophrastus Bombastus von Hohenheim or Paracelsus, the father of iatrochemistry, also made some of the earliest forms of colloidal gold in the 16th century for the cure of ailments (Kauffman, 1985). Most preparations of potable gold made during the time of Paracelsus seem to have been colloidal gold which methods for their preparation were well known (Kauffman, 1985). Today it is still common to encounter potable gold preparations being marketed for vitality. These ancient ideas still exist with red colloidal gold being used in Ayurvedic medicine for rejuvenation and revitalization (Mahdihassan, 1971).

Michael Faraday published a paper reporting on the preparation of colloidal gold in the middle of the nineteenth century when a more scientific interest in colloidal systems arose (Faraday, 1857). This paper is now regarded as the foundation of modern colloidal science. Gustav Mie gave the first theoretical description of the formation of colloidal gold (Mie, 1908). While studying the properties of gold sols, Richard Zsigmondy invented the ultramicroscope and also won a Nobel Prize in chemistry.

The invention of the electron microscope at the start of World War II opened up the detailed study of colloidal gold since their particle size was below the resolution of the
optical microscope (Turkevich, 1985). In 1951, John Turkevich and colleagues published a paper reporting on the reduction of a gold salt using sodium citrate. The electron microscope was used as the main tool for characterization of the formed colloidal gold (Turkevich et al., 1951). Frens in 1971 published a paper reporting on controlling the size of colloidal gold particles by varying the concentration of sodium citrate used in the reaction (Frens, 1973). To this date, a combination of these two methods commonly referred to as the Turkevich-Frens method, is used to prepare colloidal gold. The last milestone in the preparation of colloidal gold was the preparation of thiol stabilized gold nanoparticles by the reduction of chloroauric acid using sodium borohydride in the presence of alkane thiols (Brust et al., 1994). The colloidal gold prepared using this method were different from those prepared before as they were stable over long periods of time and could be precipitated, re-dissolved and separated according to size by fractional crystallization.

2.2 Preparation of gold nanoparticles

Gold nanoparticles also known as colloidal gold refers to all nano structures of gold of various shapes. In this work it will only refer to spherical gold nanoparticles. The most common preparation methods are in situ by the chemical reduction of chloroauric acid by reducing agents (Zhao et al., 2013).

2.2.1 Turkevich-Frens method

The Turkevich-Frens method uses trisodium citrate, both as the reducing and stabilizing agent, (Frens, 1973; Turkevich et al., 1951) with a third role; pH mediator being suggested
Chapter 2: Literature Review

(Ji et al., 2007). Figure 1 shows a schematic of the Turkevich-Frens method. A solution of chloroauric acid (HAuCl₄) is boiled under reflux whilst vigorously stirring and the trisodium citrate (Na₃-Cit) is added. A wine red colour signifies the formation of the gold nanoparticles. In this method the size of the gold nanoparticles can be controlled by altering the molar ratio of the chloroauric acid to the trisodium citrate. This method has been extensively researched and shown to be a multi-step process (Kumar et al., 2007). A reversed addition method was also developed and it can yield monodisperse sub 10 nm particles (Sivaraman et al., 2011). Control of temperature and pH has also been shown to give monodisperse particles compared to those without controls (Li et al., 2011). The citrate reduction method also known as the Turkevich-Frens method remains as an important method for preparing gold nanoparticles.

![Figure 1 Turkevich-Frens method for the preparation of gold nanoparticles](image)

2.2.2 Brust Method
The Brust method is one of the major preparation methods for gold nanoparticles (Zhao et al., 2013). The method was developed by Mathias Brust and colleagues (Brust et al., 1994) and is a two phase method (Figure 2). This was the first method to describe the preparation of thiol-stabilized gold nanoparticles via an in situ synthetic process (Zhao et al., 2013). The shapes of the prepared gold nanoparticles are cuboctahedral and icosahedral with a size range of 2 - 5 nm. This method has several advantages over the Turkevich-Frens method namely: easy synthesis under ambient conditions, relatively higher thermal and air stability of the gold nanoparticles, better stability with regards to aggregation and decomposition after repeated isolation and re-dissolution, smaller size yields; 5 nm with narrow dispersity and easier functionalization and modification by ligand substitution. The biggest drawback of this method is the cytotoxicity of tetraoctylammonium bromide, a starting material in the synthesis (Connor et al., 2005). Brust and colleagues improved their method to a procedure that yielded p-mercaptophenol-stabilized gold nanoparticles which were synthesized in a methanol solution without using the cytotoxic phase transfer agent, tetraoctylammonium bromide (Brust et al., 1995). Any thiol that is soluble in the same solvent as chloroauric acid, such as methanol, ethanol, or water, allows the use of a single-phase system for the preparation of gold nanoparticles (Zhao et al., 2013).
Modified methods on the synthesis of thiolate-stabilized gold nanoparticles using a single-phase method have also been published (Di Pasqua et al., 2009; Leontowich et al., 2010; Sardar & Shumaker-Parry, 2009). These modifications widened the range and scope of the applications of gold nanoparticles prepared using the Brust method. The gold nanoparticles prepared using the Brust method are smaller due to the higher strength of the reducing agent (Zhao et al., 2013).

2.2.3 Other methods

In the case of the citrate reducing method, the citrate also serves as the stabilizing agent in addition to being the reducing agent and pH modifier. A wide variety of stabilizing agents
have been reported in literature. Natural materials such as starch and gum arabic have been used as stabilizers (Chanda et al., 2010; Fent et al., 2009; Kannan et al., 2012; Katti et al., 2006). Vitamin C has been used as well in the preparation of gold nanoparticles (Khan et al., 2013). Macromolecules (Thanh & Green, 2010), polymers, microbes and dendrimers have also been used to stabilize gold nanoparticles successfully (Zhao et al., 2013). The seed growth method is also a popular method used in the preparation of gold nanoparticles and usually consists of two steps. The first step involves the preparation of small sized gold nanoparticle seeds followed by the addition of the seeds to a growth solution containing chloroaouric acid, a reducing agent and the stabilizer (Jana et al., 2001; Sau & Murphy, 2004). This method enables the synthesis of particles that have a specific shape and size. Like other nanoparticles, bottom up and top down approaches have been used to synthesis the gold nanoparticles (Zhao et al., 2013).

2.3 Characterization of gold nanoparticles

Similar to other nanoparticles the following physico-chemical properties of gold nanoparticles are important: size distribution, agglomeration state, shape, surface area, surface chemistry, and surface charge. Characterization techniques have been developed to give information on the physico-chemical characteristics mentioned.

Due to the plasmon resonance phenomena, UV/Vis spectroscopy is one of the most powerful techniques to use to characterize gold nanoparticles. It gives information on the size and agglomeration state of dispersions of gold nanoparticles. With surface plasmon absorption, a strong absorption band in the visible region is present when the frequency of the electromagnetic field is resonant with the coherent electron motion (El-Sayed et al.,
Polarization of the electrons with respect to and relative to the ionic core occurs when the nanoparticles interacts with an electric field (Figure 3). The so-called plasmon absorption is because of the dipole oscillations of the free electrons (Link & El-Sayed, 2003).

The peak intensity and position of the surface plasmon absorption bands are dependent on the size, concentration and shape of the nanoparticles; a right shift of the peak is observed as the size increases (Figure 4) (Young et al., 2012). It is also used to determine size and concentration of gold nanoparticles (Amendola & Meneghetti, 2009; Haiss et al., 2007). The absorption spectra also give information on the agglomeration state albeit qualitative; absence of secondary peaks is normally indicative of monodispersity.
Information on the shape and size distributions (primary size) can be obtained using electron microscopy. Transmission electron microscopy is the gold standard as it has the highest resolution but scanning electron microscopy is still valuable in some instances. Size distributions can be obtained using ImageJ, free software of the NIH using at least 200 particles. Another technique that can be used to determine the size distribution of gold nanoparticles is size exclusion chromatography in the case of thiol-stabilized gold nanoparticles.

Dynamic light scattering (DLS) is an analytical technique also used for measuring the size and size distribution of particles in the nanometer size range (Philip, 2008). To obtain the measurement, a suspension of the particle is illuminated by a laser beam, and the
fluctuation of the scattered light is monitored and analyzed, to acquire the velocity of the particles’ Brownian motion which is then used to infer their size.

DLS measures the hydrodynamic size of particles, which includes not only the physical size of the nanoparticle core, but also the surface coating and solvent layer associated with the particle. Aggregation of gold nanoparticles can also be measured with DLS. While non-aggregated monodispersed gold nanoparticles are measured with DLS as a single size population, aggregation of the particles can present a broadening of the peak, increase in the hydrodynamic size, and even multiple populations. The DLS measurement of gold nanoparticles is a very sensitive technique and can be applied to measure the size of the particles, characterizing their surface modification, and monitor the stability of the gold nanoparticles over a period of time.

Surface charge can be determined by measuring the zeta potential of the particles in various media and the charge is usually a property of the surface chemistry. Concentration can be expressed as a mass or number concentration and is usually calculated using the mass of gold used in the synthesis and making assuming that all the gold is reduced to nanoparticles (Liu et al., 2007). For spherical gold nanoparticles the surface area can be calculated using the total number of nanoparticles and the primary size by calculating the surface area of the spheres.

2.4 Functionalization of gold nanoparticles

Gold nanoparticles prepared by the citrate reduction method must be functionalized in order to make use of them in various applications. This is possible due to the weakness of
the Au-citrate bonds. Functionalization occurs via substitution of the citrate ligands by stronger ligands usually functional thiols (Gao et al., 2013; Shenoy et al., 2006; Zhang et al., 2012). The substitution is experimentally very simple and involves reaction of citrate coated gold nanoparticles and the corresponding functional thiols under ambient conditions. This property of citrate coated gold nanoparticles allows them to be versatile compared to thiol-stabilized gold nanoparticles from the Brust method, which are already prepared functionalized. Functionalized citrate coated gold nanoparticles have many biomedical applications. Other non-biomedical applications of functionalized gold nanoparticles include *inter alia* catalysis, electronics, sensors and probes.

2.5 Biomedical applications

The biomedical applications of gold nanoparticles can broadly be categorized into three classes, drug and gene delivery vehicles, diagnostics and therapy (Figure 5).

![Figure 5 Biomedical applications of functionalized gold nanoparticles](image)

2.5.1 Diagnostics
It has been proposed to use gold nanoparticles as biomarkers in the detection and diagnosis of a number of diseases and conditions. They are used as sensors for probing and imaging tumour cells because of their ability to interact strongly with visible light in what is known as the surface plasmon resonance (Figure 3). Tumour cells are often cancerous. Cancer is a global problem that transcends socio-economic classes and needs to be addressed as a matter of urgency. Early diagnosis is one of the cornerstones of successful therapy and in some cases prognosis. When used in cancer diagnosis, gold nanoparticles target and accumulate at sites of interest. Based on their optical scattering properties, they can be visualized thus allowing the region to be studied (Lim et al., 2011). Gold nanoparticles must be conjugated with specific antibodies for antigens that are overexpressed in tumour cells thus allowing targeting and accumulation in the region. Surface-enhanced Raman spectroscopy has been used in imaging human epidermal growth factor receptor 2 (HER2) cancer cells (Lee et al., 2009). However this approach only works when the tumour is close to the skin surface because optical signals have limited tissue penetration abilities (Cai et al., 2008).

Currently there are a number of limitations to contrasting agents for X-ray usage and gold nanoparticles have been proposed as a suitable agent to replace the tri-iodobenzene platform (Hainfeld et al., 2006). The main advantage of gold nanoparticles is that better contrast can be achieved with lower x-ray doses due to gold’s higher absorption and thus less bone and tissue interference compared to the tri-iodobenzene platform (Hainfeld et al., 2006).

Gold nanoparticles have also been incorporated in electrochemical immunosensors. They play a crucial dual role of enhancing the electrochemical signal transducing the binding
reaction of antigens at antibody immobilized surfaces and increasing the amount of immunoreagents in a stable mode (Tang et al., 2006; Wang et al., 2004). Immunosensors using gold nanoparticles have been constructed for the detection of the hepatitis B virus (Tang et al., 2006), diphtheria antigen and diphtherotoxin (Tang et al., 2005), and Schistosoma japonicum (Sj) antigen (Chu et al., 2005; Lei et al., 2003). More recently a rapid dual channel lateral flow assay for the detection of Mycobacterium Tuberculosis antibodies in human blood was developed (Mdluli et al., 2014).

2.5.2 Therapy

The therapeutic properties of gold nanoparticles are mainly applicable in cancer therapy via two main mechanisms: photothermal therapy (Curry et al., 2014; Huang & El-Sayed, 2010; Jain et al., 2012; Melancon et al., 2008) and radiotherapy (Chanda et al., 2010; Fent et al., 2009; Kannan et al., 2012; Katti et al., 2006).

Photothermal therapy is a cancer treatment method in which photon energies are converted to thermal energy to induce cell death. It is a highly selective form of cancer treatment since only the light irradiated areas can be affected and the photosensitizer ideally is nontoxic in the absence of light. Gold nanoparticles can be highly potent photothermal therapeutic agents, due to their strong light absorption and efficient heat conversion characteristics. They can provide sufficient thermal energy to kill cancer cells. Near Infrared light is used in photothermal therapy because it can penetrate deep into live tissue (beyond a few mm below the skin surface) and is relatively not affected by absorption and scattering by biomolecules and water. Gold nanoparticles cause local heating when they are irradiated with light in what is called the water window (800 - 1200 nm). Citrate coated
gold nanoparticles functionalized with an anti-epidermal growth factor receptor to target human oral squamous cell carcinoma cells were studied and the results showed that use of gold nanoparticles enhance photothermal therapy by 20 times (El-Sayed et al., 2005). It was also reported that gold nanoparticles are efficacious in photothermal therapy as well (Rengan et al., 2015; Shao et al., 2013).

The goal of radiation therapy in cancer treatment is to selectively achieve maximum dose intensity at the tumour site so as to minimize side effects (Kannan et al., 2012). This is the biggest drawback for most radiotherapeutic agents. Radioactive gold (^{198}Au) decays via the beta and gamma emission. The range of beta particles in tissue is short enough (11 mm) to allow the delivery of the maximum dose intensity intratumourly. The half-life of ^{198}Au of 2.7 days is also ideal if practical considerations such as preparation times and delivery are taken into account. Use of radioactive gum arabic gold nanoparticles was shown to be possible for radiotherapy because of their high affinity for tumour vasculature (Kannan et al., 2012; Katti et al., 2006). Laminin receptor specific AuNPs have also been used intratumourly to deliver ^{198}Au and showed efficacy in treating prostate cancer (Shukla et al., 2012).

2.5.3 Delivery vehicles

Gold nanoparticles provide an attractive vehicle for delivering drugs, genetic material, proteins and small molecules (Figure 6) due to their ease of synthesis and surface properties. Using gold nanoparticles is ideal since the doses can be reduced and thus also the side effects due to better targeting, uptake into the cells and stability of the cargo
(Bergen et al., 2006; Duncan et al., 2010; Ghosh et al., 2008; Kumar et al., 2013; Papasani et al., 2012; Rana et al., 2012; Vigderman & Zubarev, 2013).

A number of strategies have been employed to attach materials to the surfaces of gold nanoparticles with the different covalent bonds being more popular due to their stability (Vigderman & Zubarev, 2013). Gold nanoparticles have also been used in both passive and active targeting and a number of cancer drugs can be conjugated to gold nanoparticles (Figure 7).
Cisplatin has been conjugated to gold nanoparticles with enhanced reproducibility, drug loading and stability (Craig et al., 2012). Better delivery for Oxaliplatin was shown after conjugation to gold nanoparticles (Brown et al., 2010). A phase I and pharmacokinetic study has been conducted for a nanomedicine using gold nanoparticles to deliver human recombinant tumour necrosis alpha (Libutti et al., 2010).

2.6 Nanotoxicity

Use of nanoscale materials, gold nanoparticles included, has led to a number of questions being asked about safety issues. Assessment of the risk associated with the use of gold
nanoparticles uses methods that are being developed in the new discipline of nanotoxicity, that is the study of the toxicity of nanomaterials. This is important because test methods used for bulk materials have been shown to be insufficient. Governmental organisations such as the National Institute of Standards and Technology and National Cancer Institute: Nanotechnology Characterization Laboratory in the United States of America and supranational organizations such as the European Union’s Organization for Economic Cooperation and Development (OECD) have taken the initiative to standardize or attempt to standardize safety assessment of nanomaterials.

Apart from the scientific aspects of nanomaterial aspects there is a real need for regulatory agencies such as the United States Food and Drugs Agency (USFDA) European Commission’s European Medicines Agency (EMA), World Health Organization (WHO) and the signatories of the International Conference on Harmonization (ICH) to come up with a position on how to regulate nanomedicines. This will create an enabling environment for development of the discipline of nanomedicine (Fatehi et al., 2012). Like most new technologies public acceptance is key and this can be gained through the use of evidence based data to make decisions and (Malsch et al., 2015).

Safety assessment of nanomaterials in general is being done in a number of ways: high-throughput screening, in silico (modelling) approaches, in vitro and in vivo testing (Fadeel et al., 2013). Considering the interesting biomedical applications of gold nanoparticles, the next logical questions are: Are they safe and when are they going to reach the clinic?

2.6.1 Are gold nanoparticles safe?
This question remains unanswered; this is mainly due to the discordance between the in vitro (Connor et al., 2005; Esther et al., 2005; Goodman et al., 2004; Hainfeld et al., 2006; Mukherjee et al., 2007; Mukherjee et al., 2005) and in vivo reports (Abdelhalim & Jarrar, 2011; Balasubramanian et al., 2010; Cho et al., 2009; Zhang et al., 2011; Zhang et al., 2010). Currently what is known is that physico-chemical parameters such as size distribution and surface charge which is a function of surface functionalization and shape, are important determinants of toxicity as they are influence the exposure patterns of gold nanoparticles to tissues (Fadeel & Garcia-Bennett, 2010; Oberdörster, 2010; Oberdörster et al., 2005). A huge challenge associated with attempts to generalize results of studies investigating the toxicity of gold nanoparticles is the different experimental designs. This is a big factor causing delays in answering the question of the safety of gold nanoparticles. Numerous efforts have been made to correlate physico-chemical properties and their interaction with biological systems (Fadeel et al., 2013) but science still has a long way before the toxicity of gold nanoparticles can be assessed in an unquestionable manner (Fratoddi et al., 2015). In the meantime it might be prudent to exercise a bit of caution to avoid being sorry in the future (Fadeel & Garcia-Bennett, 2010).

2.7 References

Chapter 2: Literature Review

Eustis, S. & El-Sayed, M.A. 2006. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative

Chapter 2: Literature Review

Chapter 3: Dual Radiolabeling as a Technique to Track Nanocarriers: The case of Gold Nanoparticles

This manuscript describes the synthesis of dual radiolabeled ([^14]C Citrate coated[^198]Au]AuNPs) and the study to compare the biodistribution profile of the Au core and the citrate surface coating in male Sprague Dawley rats. The manuscript has been published in the Journal Molecules- Special Issue "Preparation of Radiopharmaceuticals and Their Use in Drug Development". The instructions to the authors are attached in Appendix 1: Guide to Authors.
Dual Radiolabeling as a Technique to Track Nanocarriers: The Case of Gold Nanoparticles

Clinton Rambanapasi 1*, Nicola Barnard 1, Anne Grobler 1, Hylton Buntting 1, Molahlehi Sonopo 2, David Jansen 2, Anine Jordaan 3, Hendrik Steyn 4 and Jan Rijn Zeevaart 1

1 DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, Potchefstroom Campus, North-West University, Potchefstroom 2531, South Africa; E-Mails: Nicola.Barnard@nwu.ac.za (N.B); Anne.Grobler@nwu.ac.za (A.G.); 24861820@nwu.ac.za (H.B.); janrijn.zeevaart@necsa.co.za (J.R.Z.)

2 Radiochemistry Department, South African Nuclear Energy Corporation (SOC) Ltd., Pelindaba, Brits Magisterial District, 0240, South Africa; E-Mails: Molahlehi.Sonopo@necsa.co.za (M.S.); david.r.jansen@gmail.com (D.J.)

3 Laboratory for Electron Microscopy, Chemical Resources Beneficiation Group, Potchefstroom Campus, North-West University, Potchefstroom, 2531, South Africa; E-Mail: Anine.Jordaan@nwu.ac.za

4 Statistical Consultation Services, Potchefstroom Campus, North-West University, Potchefstroom 2531, South Africa; E-Mail: Faans.Steyn@nwu.ac.za

* Author to whom correspondence should be addressed; E-Mail: 24089117@nwu.ac.za or crambanapasi@gmail.com; Tel.: +27-18-299-2281; Fax: +27-18-285-2233.

Academic Editor: Svend Borup Jensen

Received: 23 May 2015 / Accepted: 10 July 2015 / Published: 16 July 2015

Abstract: Gold nanoparticles (AuNPs) have shown great potential for use in nanomedicine and nanotechnologies due to their ease of synthesis and functionalization. However, their apparent biocompatibility and biodistribution is still a matter of intense debate due to the lack of clear safety data. To investigate the biodistribution of AuNPs, monodisperse 14-nm dual-radiolabeled [14C]citrate-coated [198Au]AuNPs were synthesized and their physico-chemical...
characteristics compared to those of non-radiolabeled AuNPs synthesized by the same method. The dual-radiolabeled AuNPs were administered to rats by oral or intravenous routes. After 24 h, the amounts of Au core and citrate surface coating were quantified using gamma spectroscopy for 198Au and liquid scintillation for the 14C. The Au core and citrate surface coating had different biodistribution profiles in the organs/tissues analyzed, and no oral absorption was observed. We conclude that the different components of the AuNPs system, in this case the Au core and citrate surface coating, did not remain intact, resulting in the different distribution profiles observed. A better understanding of the biodistribution profiles of other surface attachments or cargo of AuNPs in relation to the Au core is required to successfully use AuNPs as drug delivery vehicles.

Keywords: gold nanoparticles; dual radiolabeling; biodistribution profiles; Sprague Dawley rats

3.1. Introduction

The use of engineered nanomaterials, such as gold (Au) nanoparticles (AuNPs), promises to have a great impact on the field of nanomedicine and nanotechnologies. As a result, AuNPs have become an on-going area of research for a wide range of biomedical applications, such as plasmon-based labeling and imaging, diagnostics and therapeutics [1-3]. AuNPs’ unique surface, electronic and optical properties, as well as their apparent biocompatibility [4] make them ideal drug delivery vectors [5-8]. However, their biocompatibility and toxicity have recently been questioned [9,10], and currently, there is no consensus on their biodistribution [4,11-13]. This can be attributed to the use of different methodologies with a diversity of objectives that do not collate easily into a single general conclusion. The lack of correlation between *in vitro* and *in vivo* toxicity results further complicates matters.

In biodistribution and toxicity studies, it is necessary to accurately determine the amount of Au in various tissues/organs. The quantification of the other components of an AuNP drug delivery vesicle, the surface coating and surface attachments or the cargo, can assist in the elucidation of potential toxicity mechanisms. Several techniques have been used to measure the content of Au in rodents, for example; inductively-coupled plasma mass spectroscopy (ICP-MS) [10,14-18], atomic absorption spectroscopy (AAS) [19], radioactive analysis (RA) using gamma spectroscopy [20-23] and instrumental neutron activation analysis (INAA) [24,25]. Gamma spectroscopy and INAA are preferred analytical techniques in biodistribution studies due to the lower limits of detection compared to AAS and ICP-MS. Gamma spectroscopy offers the added advantage of a
quick and relatively simple sample preparation. However, all of these quantification methods mentioned lack the ability to track and quantify the other components/surface attachments of AuNPs simultaneously in vivo.

Whilst the use of a single radiolabel is common [13,20,23], to the best of our knowledge, there are no published studies using dual radiolabeling to determine the biodistribution profiles of the different components in a multi-component systems for AuNPs. However, dual radiolabeling has been reported before to study the biodistribution of the components of a vaccine system (both adjuvant and antigen) [26] and for AuNPs with two radiolabels for use in single-photon emission computed tomography (SPECT) for bioimaging applications in diagnostics [27]. An approach similar to the one we are taking in this study was done for superparamagnetic iron using 59Fe for the nanoparticle core and labeled surface attachments [28,29].

An understanding of the biodistribution profile of each component (Au core and any surface attachments) would be ideal, as this will enable any observed end organ toxicity to be attributed to the whole system or a part thereof. This can be achieved by radiolabeling each of the desired components; in this case, the Au core and the citrate surface coating. The methods used by Hirn et al. of radiolabeling AuNPs by irradiation of a pellet of AuNPs (197Au (n,γ) 198Au) [20,23] cannot be used for dual radiolabeling of the Au core and the surface coating, as neutron activation only produces 198Au. In this study, the Au was radiolabeled using 198Au, while [14C]citrate was used for the citrate surface coating.

The aim of the present study was to synthesize dual-radiolabeled AuNPs and to determine the biodistribution profiles of the Au core and citrate surface coating, while investigating the influence of the route of administration and the dose level. Well-characterized 14-nm AuNPs that were dual-radiolabeled were administered to healthy male Sprague Dawley rats intravenously and orally. The study served as a proof of principle that dual radiolabeling can be used to determine the biodistribution profiles of the different components of a multi-component system. Therefore, in this study, the acute biodistribution profiles of the Au core and citrate surface coating after oral and intravenous (i.v.) administrations are presented. Future studies must investigate the biodistribution of Au after multiple doses and assess its biopersistence, while focusing more on toxicity endpoints.

3.2. Results

3.2.1. Synthesis and Characterization of AuNPs

AuNPs were synthesized from both radioactive and non-radioactive precursors using the citrate reduction method. The UV spectra peaks in Figure 1 were similar for both radioactive and non-radioactive AuNPs.
Figure 1. UV-Vis spectra of radioactive (continuous line) and non-radioactive (dashed line) AuNPs. The measurements were done after the synthesis of both samples.

The UV peak was around 520 nm as expected for this particle size range, whilst the dispersion quality was confirmed by the absence of absorbance at wavelengths greater than 600 nm [30].

From the TEM images and the particle size distribution plots (see Figure 2), it can be seen that the morphology and primary particles size distribution of 14 ± 1.2 nm and 14 ± 1.5 nm for radioactive and nonradioactive AuNPs, respectively, are similar/comparable. Hydrodynamic sizes of 25 nm for the non-radioactive preparation and 23 nm for the radioactive samples with zeta potentials of −50.9 mV and −48.9 mV were found, respectively.
Figure 2. Morphology and size distribution profiles of the synthesized AuNPs fabricated from natural gold (A) and radioactive gold (B). On the left are TEM images, with the particle size distribution plots on the right.

The specific activity of the ^{198}Au was 108 GBq/g, with an activity concentration of 25.9 MBq/mL and an isotope ratio ($^{198}\text{Au}:^{197}\text{Au}$) of 1.45×10^{-5}. The specific activity of the ^{14}C was 52.43 MBq/g, with an activity concentration of 0.054 MBq/mL and an isotope ratio ($^{14}\text{C}:^{12}\text{C}$) of 0.8.

3.2.2. Biodistribution of Gold vs. Citrate in the Rat

3.2.2.1. Dosimetry

Table 1 summarizes the main dosimetric features of the [14C]citrate-^{198}AuAuNPs used. The surface area and number of nanoparticles were calculated using the initial mass of Au used in the synthesis.
Table 1. Characteristics of the dual-radiolabeled AuNPs used in the study at the 2 dose levels used (high and low). The surface area of the AuNPs was calculated using the primary size determined using TEM.

<table>
<thead>
<tr>
<th></th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Administered radioactivity per rat (MBq)</td>
<td>198Au</td>
</tr>
<tr>
<td></td>
<td>14C</td>
</tr>
<tr>
<td>Administered mass per rat (µg)</td>
<td>Au</td>
</tr>
<tr>
<td></td>
<td>Citrate</td>
</tr>
<tr>
<td>Administered number of AuNPs per rat</td>
<td>3.27×10^{12}</td>
</tr>
<tr>
<td>Administered surface area (cm2) of AuNPs per rat</td>
<td>20.16</td>
</tr>
</tbody>
</table>

3.2.2.2. Biodistribution Profiles

In order to ensure that the signal measured was only from gold and that there were no interferences that may impede the reliability of the results, a gamma spectrum was measured (see Figure 3). The peak at 411 keV is for 198Au; the absence of other peaks shows that the gold used in the experiments did not have impurities, and only gold was quantified in the work.

![Gamma spectrum of the radioactive gold nanoparticles used in the animal study.](image)

The biodistribution profiles of both the nanoparticle core and surface coating were investigated, with the route of administration and dose level as variables. The amount of Au and citrate was determined using γ-spectroscopy for 198Au and liquid scintillation for 14C at 24 h post a single dose administered intravenously and orally. The amounts of 198Au
and 14C in the liver, spleen, lungs and blood were determined in the analysis. Oral administration of AuNPs resulted in no systemic uptake of 198Au; thus, no 14C was measured in the oral group. Activities of the 198Au were only measured/detected in the stomach and other parts of the GI tract, with no measurable activity in all other organs with less than 0.001 % injected dose (ID)/g in the blood, liver, spleen and lungs (results not shown). The inclusion of the oral group was because some measurable systemic uptake was expected, as described in the literature [24]. However, our findings correspond well with the results reported in previous studies and are attributed to the size of the particles used in the study [23,24,31]. Therefore, only results from the two intravenous groups (see Figure 4) are reported here. The results are expressed as the percentage injected dose per gram of organ/tissue (%ID/g) for the Au and citrate. The amounts of 198Au measured in the urine and feces were used to perform a mass balance for Au.

![Figure 4](image)

Figure 4. Amounts of gold and citrate expressed as a percentage of the injected dose per gram of organ/tissue (%ID/g) in the liver, spleen, lungs and blood, 24 h after intravenous administration of dual-radiolabeled AuNPs. Results are expressed as the mean ± SD.

Liver

The liver had the highest %ID/g of gold when administered in both 90-µg (high) and 9-µg (low) doses, with 8.2% and 3.2%, respectively. The %ID/g of citrate was less than 0.5% irrespective of the administered dose. The difference in the %ID/g of the Au was statistically significant using both the Mann–Whitney and Student t-tests; the p-values were calculated to be 0.03 and 0.0004, respectively, at the two dose levels used.
Spleen

The spleen had the second highest %ID/g of gold. However, contrary to the liver, the %ID/g was inverted relative to the administered doses, with 1.8% for ID of 90 µg and 3.2% when 9 µg were administered. The differences were not statistically significant. The values for the citrate were also determined to be under 0.5%.

Lungs

The %ID/g of both the Au and citrate were under 0.25% in the lung tissue. The biodistribution pattern was comparable between the Au and citrate only for the administered dose of 9 µg (low dose). The difference in the %ID/g of the Au was significant using both Mann–Whitney and Student t-tests; p-values of 0.03 and 0.002, respectively, at the two dose levels used.

Blood

The %ID/g of citrate was low (≤0.15%) and that of Au even lower (≤0.02%). There was not a statistically significant difference in the %ID/g of citrate at the two dose levels. The biodistribution profiles of the Au were independent of the dose quantity.

Summary of Biodistribution Profiles

In general, Au and citrate had unique biodistribution profiles, as shown by the differences in %ID/g portrayed in Figure 5 with the exception of the 9-µg administered dose in the lungs, where the %ID/g values were comparable.

![Figure 5](image.png)

Figure 5. Schematic showing the synthesis of dual-radiolabeled AuNPs starting with the stable 197Au isotope of gold. The neutron activation step is unique to the radioactive synthesis.

The biodistribution profile of the Au varied based on the dosing level, 90 µg vs. 9 µg. The ratios of %ID/g of Au between the 90 µg and 9 µg dose were: liver, 2.6; spleen, 0.6; lungs,
0.8; blood, 0.8; whilst for citrate, the ratios were: liver, 0.5; spleen, 0.5; lungs, 0.1; blood, 0.1.

3.3. Discussion

The need for extensive biodistribution studies to assess the safety of AuNPs can never be over emphasized, as this will ensure that AuNPs reach the clinic faster. With no consensus on the toxicity profile of AuNPs, a need to understand the biodistribution profile of each component of the AuNP system becomes apparent. It has been generally accepted that surface functionalization is an important determinant of the in vivo dynamics and toxicity [11,20,32]. In this study, we synthesized AuNPs, both non-radioactive and radioactive, and compared the two formulations to assess the impact of using radioactive precursors on the physico-chemical properties. The dual-radiolabeled AuNPs were used to determine the biodistribution profile of the Au core using 198Au and surface coating using $[^{14}\text{C}]$citrate. The influences of the dose and route of administration were also investigated.

The use of radioactive precursors had no impact on the quality attributes of the synthesized dual-radiolabeled AuNPs. This was shown when the physico-chemical properties of the non-radioactive and radioactive AuNPs were compared. The UV/Vis spectra of the non-radioactive and radioactive batches were comparable and characteristic of the 14-nm size range, which has a defined plasmon resonance peak maxima around 520 nm [19]. The absence of secondary peaks at wavelengths higher than 600 nm also confirms the absence of agglomerates and/or aggregates in the suspensions [30]. The polydispersity index (PDI), a measure of monodispersity obtained with the Zetasizer Nano ZS, also showed that the suspensions were free of agglomerates/aggregates. The zeta potential was as expected: a high negative charge due to the negative charge of the citrate surface coating. This was comparable for both the non-radioactive and radioactive AuNPs. The molar ratio of the hydrogen chloroauric acid:citrate used in the synthesis of the AuNPs yielded nanoparticles with a core diameter around 14 nm, which is consistent with the sizes obtained by other researchers when similar molar ratios were used [15,16,33].

The radiotracers used in the synthesis of the dual-radiolabeled $[^{14}\text{C}]$citrate-$[^{198}\text{Au}]$AuNPs were well controlled and were adjusted to meet the varying requirements. The photons emitted during the decay of ^{198}Au have energies that can be detected by a gamma camera; thus, a change in the activity concentration of the Au during uptake in the various organs can be imaged. The method used in this work solves some challenges that are normally encountered when other ways of incorporating radiotracers into AuNPs are used. Agglomeration and/or aggregate formation when synthesized AuNPs are irradiated to neutrons activate the Au core [20-23]. The activity of both labels was homogenously distributed in the solution. This was shown experimentally when the doses were measured
using both volume and radioactivity. There was a correlation between the expected and determined value for each dose using 198Au.

In this study, the biodistribution profiles observed for the Au core and surface coating were very different. Use of surface attachment as the radiotracer has been done [34] and suffers the disadvantage of misinterpretation of the biodistribution profiles. The radiotracers can be displaced from the core due to the formation of a bio-corona [35,36]. Usually, the biodistribution of the radiotracer is assumed to represent that of the Au core and the whole nanoparticle system. From our results, it is seen that surface attachments will not have to have the same biodistribution profile as that of the core or carrier molecule used to transport it. Caution must therefore be exercised when interpreting the results of biodistribution and toxicity studies of AuNPs with surface attachments that will not be present in those intended for biomedical applications. The addition of different surface attachments will most likely alter the biodistribution and toxicity profile of AuNPs in vivo, as surface chemistry plays an integral part in the toxicity and biodistribution of AuNPs and other nanomaterials [37].

The biodistribution profiles of the Au core and citrate surface coating were different in the organs/tissues used in the analysis. This can be explained by the formation of the bio-coronas around the nanoparticle core [38-43], which results in the dissociation of the surface attachment from the core. These results indicate that during the synthesis and design of therapeutic agents, the type of interaction between the Au surfaces and “cargo” should be carefully considered when surface modifications are made to AuNPs. This is especially important for the delivery of drug molecules to ensure that the cargo is not lost before the intended destination. Electrostatic interactions might be desirable, since covalent bonds require energy for the cargo to dissociate from the surface. A similar dissociation of surface attachments that had electrostatic interactions with the nanoparticle surface has been reported for superparamagnetic iron [28,29].

The effect of the dose was more prominent for the Au compared to the citrate surface coating with the exception of the liver, the %ID/g was higher in the lower dose level in all of the organs/tissues. For citrate, the opposite was observed: the %ID/g was lower in the higher dose level for blood and lung (a blood-rich organ). This can possibly be explained by isotopic exchange between the citrate (which predominates in blood) and its radiolabeled analogue. With higher dose, the amount of 14C citrate will be the same in the blood as that in the lower dose, thus giving a lower %ID/g. The ratios of the %ID/g of the 90 µg:9 µg dosages for Au (liver: 2.6; spleen: 0.6; lungs: 0.8; blood: 0.8) may be an indication of a saturable transport mechanism of the Au into tissues/organs, with the liver taking up excess Au in the case of higher dosing levels. If this can be repeatedly shown, it may be a useful consideration when planning to use AuNPs as a drug delivery vector. To date, there is little evidence that AuNPs lead to histological changes and toxicity [33,44]. Whether this will be the case in an extensive treatment regime, with multiple doses administered over the course of weeks or months remains unknown. It is also not known
whether the systemic/tissue concentrations will be maintained by the prolonged exposure of the repeated doses, unlike in this acute study. The subchronic and chronic use of AuNPs presents another variable and so does the level of biopersistence. All of the above scenarios will need to be investigated.

3.4. Experimental Section

4.1. Preparation of AuNPs and Dual-Radiolabeled AuNPs

Elemental gold (24 carat) was purchased from Cape Precious Metals Holding Pvt. Ltd., Johannesburg, South Africa. 1,5-[14C] citric acid (concentration: 3.7 GBq/mL; specific activity: 2.07 GBq/mmol) was purchased from American Radiolabeled Chemicals, Inc. (St. Louis, MO, USA). Hydrochloric acid (HCl, 37%), nitric acid (HNO₃, 68%) (used to prepare aqua regia using an HCl:HNO₃ in a 3:1 ratio) and trisodium citrate (Na₃C₆O₇H₅O₇·H₂O), were all of analytical grade and purchased from Merck (Billerica, MA, USA). Deionized water (resistance >18 MΩ) was prepared by an in-house ultrapure water system (Merck Millipore, Billerica, MA, USA). All chemicals, except for the 1,5-[14C] citric acid (deprotonated using NaOH to make trisodium citrate), were used as received without purification. All radioactive materials were produced and handled at the South African Nuclear Energy Corporation (Necsa, Pelindaba, South Africa) facilities and laboratories.

Two 5-mg samples of natural gold (197Au) metal were weighed using an analytical balance (5-decimal place Mettler Toledo). One sample was used as natural gold, while the other sample (target) was irradiated in the SAFARI 1 20 MW research reactor situated at Necsa in a hydraulic position with a neutron flux of 0.5 × 10¹⁴ n·cm⁻²·s⁻¹ for 20 min to obtain 198Au. Both Au samples were dissolved in aqua regia (5 mL) dried down (using heat) and reconstituted in 0.5–1 mL 0.005 N HCl to yield HAuCl₄·HAuCl₄ and [198Au]HAuCl₄·[198Au]HAuCl₄ in 0.05 N HCl [45], the starting material in the synthesis of AuNPs. The activity of the [198Au]HAuCl₄·[198Au]HAuCl₄ was measured using a CRC-15R dose calibrator (Capintec Inc., Ramsey, NJ, USA). The radioactive HAuCl₄ sample was used to synthesize the dual-radiolabeled AuNPs. The activity concentration of 1,5-[14C]trisodium citrate was determined by liquid scintillation. Three counting solutions were used to determine the activity concentrations of the 1,5-[14C]trisodium citrate. These solutions were prepared using a standard containing 10 µL (37KBq) of 1,5-[14C]trisodium citrate whose volume was made up to 1 mL (stock solution). Five, then and one hundred microliters of the stock solution were added to 20-mL glass vials containing 15 mL of the liquid scintillation cocktail (Bioscint). The activity measurements in the vials were 8491, 14,420 and 139,818 disintegrations per minute (DPM), respectively.

An adaptation of the method published by Turkevich, et al. [46] and Frens [47] was used to synthesize sterile radioactive and natural AuNPs. The volumes of the prepared solution of radioactive [198Au]HAuCl₄·[198Au]HAuCl₄ in 0.05 N HCl and the non-
radioactive HAuCl$_4$·HAuCl$_4$ in 0.05 N HCl were diluted to 25 mL using deionized water to make 1 mM solutions. Solutions of hydrogen chloroauric acid were heated to the boiling point with vigorous stirring, and the reducing agents were added to the solutions and boiled under reflux for a further 30 min. For the non-radioactive synthesis, 2.5 mL of 38.8 mM trisodium citrate were used as the reducing agent. For the dual radiolabel synthesis, 2.5 mL (38.8 mM) of solution containing 1.5-$[^{14}\text{C}]$trisodium citrate (1.52 MBq: 600 µL, 1.07 × 10$^{-3}$ mmol) and non-labeled trisodium citrate (1.9 mL: 9.743 × 10$^{-2}$ mM) were used as the reducing agent. Figure 4 shows the adapted method used to synthesize dual-radiolabeled $[^{14}\text{C}]$citrate-$[^{198}\text{Au}]$AuNPs.

4.2. Characterization of Dual-Radiolabeled AuNPs

Both the radioactive and non-radioactive AuNPs were characterized using the same techniques to assess the impact of using radioactive precursors in the quality attributes of AuNPs. With the exception of the UV/Vis spectra, the radioactive sample was analyzed after 10 half-lives (27 days), when the radioactivity of the samples was low enough to be safely cleared from Necsa laboratories and analyzed in non-radiological laboratories.

The hydrodynamic size (Z-average size) and polydispersity index (PDI) of the nanoparticles was acquired by dynamic light scattering with a Zetasizer Nano ZS (Malvern Instruments Ltd., Worcestershire, UK) operated in backscattering mode at 173° with a He–Ne laser beam ($\lambda = 632.8$ nm). For the zeta potential measurements, which were performed at 25 °C with a scattering angle of 90°, the particles were dispersed in aqueous solution with an average pH of 6.2. The experiment was done in triplicate, and the results were averaged.

The morphology and primary size distributions of AuNPs were determined using transmission electron microscopy (TEM) (FEI Tecnai G2, Eindhoven, The Netherlands). Specimens were prepared by drop casting of a 10-µL aliquot of a dilute NP solution on an Athene$^\text{®}$ grid (Plano GmbH, Wetzlar, Germany). At least 250 particles were used to determine the primary size distributions using ImageJ software (Version 1.48; National Institutes of Health, Bethesda, MD, USA).

UV/Vis spectra were recorded for both the radioactive and non-radioactive AuNP suspensions using a PerkinElmer LAMBDA 1050 UV/Vis/NIR spectrophotometer (Waltham, MA, USA). The spectra were also used to determine the concentration [48].

4.3. In Vivo Study

4.3.1. Animals

The study was conducted in accordance with the South African National Standard for the Care and Use of Animals for Scientific Purpose. Ethical approval was sought and granted by the North-West University (NWU) Ethical Committee. Twelve (12) male
Sprague Dawley rats, 8–10 weeks old, weighing 200–250 g, were used in the study. The rats were bred and procured from the Department of Science and Technology (DST)/NWU/Preclinical Drug Development Platform (PCDDP) Vivarium (Potchefstroom, South Africa) and housed in stainless steel cages in groups of 4. The rats were kept under standard environmental conditions (23 ± 1 °C, 55% ± 5% humidity and 12/12 h light/dark cycle) with water and food provided ad libitum throughout the study.

4.3.2. Experimental Design

The rats were randomly divided into 3 treatment groups (n = 4 per group; see Figure 6). The dual-radiolabeled $[^{14}C]$citrate-$[^{198}Au]$AuNPs suspensions were administered as a slow intravenous injection using the tail vein in Groups 1 and 2 and orally via gavage in Group 3. The administered doses were 90 µg (high dose) for Group 1 and 9 µg (low dose) for Group 2. The administered doses were within the ranges found in the literature [13]. The volume of all of the administrations was 500 µL. The accuracy of the dose was controlled using both the volume injected and the radioactivity of 198Au. Any activity remaining in the syringe was measured and used to calculate the exact dose injected.

![Figure 6](image.png)

Figure 6. Study design of the animal experiment. Groups 1 and 2 received intravenous doses, while Group 3 got an oral dose.

After each administration, the rats were individually placed in metabolic cages to collect the total amount of urine and feces. All of the administrations were well tolerated with no apparent adverse events being observed during the 24-h study. The 24-h time point was selected based on acute biodistribution studies found in the literature [20,22]. At the termination of the study, the rats were euthanized using an overdose of Euthapent (sodium pentobarbitone 200 mg/mL; Kyron laboratories, Johannesburg, South Africa), administered intravenously. Blood was collected using the cardiac puncture technique and stored without further processing before cutting open the chest cavity and abdomen of the rat to collect the liver, spleen and lungs. Together with the blood, these were used to
determine whether the gold core of the AuNPs is distributed in a similar pattern as the citrate surface coating, which is an indication of whether the NPs remain intact in physiological conditions. The mass of each sample, including the carcass, was measured and used in calculating the percentage of the injected dose per gram of the organ/tissue.

4.4. Quantification of Gold and Citrate in Samples

The quantification of citrate was done after at least 30 days (10 half-lives) of 198Au, to avoid measuring the beta decay of 198Au, as well. The quantities of citrate were determined only in the intravenous groups, since no absorption of Au was seen, thus negligible ($\geq 0.001 \%$ID/g) amounts in the blood, liver, lungs and spleen (results not shown).

4.4.1. Gold

The 198Au radioactivity of the blood, liver, lungs, spleen and the remainder (total remaining carcass) was measured without further sample preparation by γ-spectroscopy using a CRC-15R dose calibrator (Capintec Inc., Ramsey, NJ, USA) and a lead-shielded well-type NaI (TI) scintillation detector using the winTMCA32 software (FLIR Radiation GmbH, Solingen, German). The counts were corrected for physical decay from the time of injection and any background radiation. A 198Au standard prepared in the laboratory was used to correlate 198Au radioactivities to the masses, numbers and surface areas of the AuNP suspension used in the study. To ensure that the entire administered dose was accounted for, the amounts of 198Au in the total urine and feces and the total remaining carcass was measured. A gamma spectrum of the 198Au was also measured to give evidence that the signal measured was only from gold, and there were no interferences that may impede the reliability of the results.

4.4.2. Citrate

To measure the 14C radioactivity in liver, lungs, spleen and blood, a known mass of approximately 200 mg of the liver, lungs and spleen and 500 μL of whole blood were added to a 20-mL glass scintillation vial. To each sample, 1–2 mL of the solubilizer (Biosol, National Diagnostics, Atlanta, GA, USA) were added, and the samples were incubated between 55 and 60 °C until the samples were completely solubilized or had a brown/green color in the case of the blood. The digestion times varied depending on the tissues (up to 5 h for liver). Two hundred microliters of 30% hydrogen peroxide (H_2O_2) were added in 2 aliquots to discolor the dissolved tissues. The samples were allowed to stand for 24 h. Scintillation cocktail (Bioscint, National Diagnostics, Atlanta, GA, USA) was added to fill up the vial to 20 mL. The samples were stored in a cool dark place and counted for 10 min using a Perkin-Elmer Tri-Carb 3100 TR scintillation spectrophotometer (Waltham, MA, USA). All measurements were done in triplicate.
4.5. Statistics

The statistical significance of the differences between the mean %ID/g values in the different groups was assessed by use of the non-parametric Mann–Whitney test and a Student t-test. Statistical probability (p) values less than 0.05 were considered significantly different.

3.5. Conclusions

With the present study, we have shown that the use of radioactive precursors does not have a negative impact on the physico-chemical properties of AuNPs, and dual radiolabeling is a good technique for studying the biodistribution of a multi-component nano-particulate system. The biodistribution profile of the Au core and citrate surface coating are different, and for the Au component, the biodistribution is dose dependent. At both dose levels, the majority of the Au accumulates in the liver and spleen, and an unexpected deposition in the lungs occurs after intravenous administration.

3.6 Acknowledgments

We would like to acknowledge the South African Nanotechnology Initiative for funding. The assistance of Liezl-Marie Scholtz in preparation of the ethics application, Cor Bester in the animal study and Deon Kotze with the liquid scintillation counting is gratefully acknowledged. We thank Jesper Knijnenburg, Florentine Hilty-Vancura and Rose Hayeshi for the assistance in the preparation of this manuscript. We thank Frankline Keter and Hendriette van der Walt from Mintek for discussions on the preparation of AuNPs.

Author Contributions

C.R. was involved in all aspects of the experiments and drafted the manuscript. A.G. and J.R.Z. were involved in the design of all of the experiments and reviewed the manuscript. N.B. was involved in the optimization of the transfer of the synthetic method to the radiochemical method and reviewed the manuscript. M.S. and D.J. were involved the handling of the radioisotopes, 14C and 198Au, respectively, during the preparation of dual-radiolabeled AuNPs and reviewed the manuscript. H.B. was involved in the design and conducting of the animal experiments. A.J. did the TEM analysis. H.S. was involved in the statistical considerations during the design of the animal studies and did the statistical analysis.

Conflicts of Interest

The authors declare no conflict of interest.
3.7 References

nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. *Nanotoxicology* 2012, 6, 36-46.

Sample Availability: Not available.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Chapter 4: Acute biodistribution, biopersistence and toxicity of 14nm gold nanoparticles after a single intravenous administration

Clinton Rambanapasi¹*, Jan Rijn Zeevaart¹, Hylton Buntting¹, Cornelius Bester¹, Deon Kotze², Rose Hayeshi¹, Anne Grobler¹

¹DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa,

²Necsa, South African Nuclear Energy Corporation (SOC) Ltd

To be submitted to:

NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE

* Corresponding author: 24089117@nwu.ac.za/crambanapasi@gmail.com

This manuscript reports on the acute biodistribution and biopersistence of AuNPs after a single dose over 56 days in male Sprague Dawley rats. The amount of gold in the tissues was quantified using neutron activation analysis at Necsa, the only facility with a nuclear reactor and a licence to handle radio isotopes. I did the sample preparation and part of this analysis for this technique. We plan to submit this work to the journal NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE whose instructions to authors are included in Appendix 1.
Abstract

The safety of gold nanoparticles when intentionally administered for drug and vaccine delivery is not yet established and is a requirement for any clinical applications. In this study we synthesized and characterized 14 nm spherical citrated gold nanoparticles and used them to determine their acute biodistribution patterns and biopersistence in male Sprague Dawley rats. The endpoint of the acute biodistribution study was determined experimentally using imaging to reduce the number of rats. Serum metabolites and enzymes were monitored to assess the impact of exposure on organ toxicity together with general health assessments. After a single dose, gold nanoparticles distributed widely in the tissues with the highest percentage injected dose per gram found in the liver, spleen, lungs and femur respectively. In the biopersistence study after a single dose, the clearance from the liver, spleen, lungs and skeletal system was low indicating that gold nanoparticles might be biopersistent. No differences were noticed in the levels of markers of liver and kidney damage in the serum. No overt signs of toxicity were noticed in all the experimental groups. We conclude that gold nanoparticles widely distribute after an acute exposure and are biopersistent while not showing any signs of overt toxicity.

Keywords: Gold nanoparticles, acute biodistribution, Biopersistence, Sprague Dawley rats
4.1 Introduction

The real or perceived risk of engineered nanomaterials when intentionally administered as drug delivery vehicles is not yet established and as such the safety concerns are real. This is mainly because engineered nanomaterials have novel properties in terms of function and form and complex interactions with biological systems (Grainger, 2009). Gold nanoparticles (AuNPs) are versatile drug delivery vehicles (Kumar et al., 2013; Paciotti et al., 2004; Papasani et al., 2012; Rana et al., 2012; Vigderman & Zubarev, 2012) being able to deliver both chemical and biological drugs. Various in vitro studies showed consensus regarding the biocompatibility (and thus safety) of AuNPs (Connor et al., 2005; Esther et al., 2005; Goodman et al., 2004; Hainfeld et al., 2006; Merchant, 1998; Shukla et al., 2005) but more recent evidence from in vivo studies suggests that AuNPs are toxic (Chen et al., 2009; Cho et al., 2009; Zhang et al., 2010). This demonstrates that in vitro results do not always tally with in vivo so there is a clear need for more in vivo studies investigating the safety of AuNPs with clear dosimetry and methodologies that can be replicated.

AuNPs with a number of surface coatings have been used in biodistribution studies (Hirn et al., 2011; Morais et al., 2012; Semmler-Behnke et al., 2008) and it is agreed that the type and charge of the coating have an influence on the biodistribution profile. Particle size also has an influence on the biodistribution profile and toxicity (Semmler-Behnke et al., 2008; Sonavane et al., 2008; Yang et al., 2014; Zhang et al., 2009; Zhang et al., 2011b). The size range 10-20 nm is considered ideal for use as drug delivery vehicles and with regards to the biodistribution of the AuNPs the liver and splenic uptake is typically high (Hirn et al., 2011; Sonavane et al., 2008; Zhang et al., 2011a). There is however a lack of information when one
Chapter 4: Acute Biodistribution, Biopersistence and Toxicity

considers the number of organs being reported in acute biodistribution studies which are relatively simple and much cheaper compared to the chronic and subchronic studies. A number of studies report on less than 12 organs (Cho et al., 2009; Morais et al., 2012; Semmler-Behnke et al., 2008; Sonavane et al., 2008; Yang et al., 2014; Zhang et al., 2011b) and there is limited information when it comes to more than 15 organs (Balasubramanian et al., 2010). Thus there is a clear demand for further data on the acute biodistribution of AuNPs to be able to generalize the findings of these studies. Citrate coated AuNPs due to the ease of synthesis and nontoxic nature of the precursors (Connor et al., 2005) make an ideal candidate to investigate the biodistribution of AuNPs.

Biopersistence refers to the length of time that an engineered nanomaterial (such as AuNPs) remains in a biological system. It is a function of the system’s ability to clear the AuNPs. The few studies reporting on the biopersistence of AuNPs administered as a single dose in rodents (Balasubramanian et al., 2010; Fraga et al., 2014; Sadauskas et al., 2009; Zhang et al., 2011b) differ widely in the dosages of AuNPs used thus the results of these studies are not easily generalized. The different time points further complicate any attempt at generalizing the results. The rationale used during the selection of dosages, time points and organs to be analyzed for the content of Au is also not always clear. The doses used in the nanotoxicity studies also tend to mimic accidental exposure (Balasubramanian et al., 2010) when stated or high toxic dosages (4mg of Au per kg) are used (Zhang et al., 2011a). A clear need thus exists to use dose levels that resemble intentional use and several time points and assessment of quantities of Au in organs that are chosen systematically based on experimental results.
In this study we aimed to determine the endpoint of acute biodistribution using qualitative gamma imaging. This approach eliminated the need for multiple time points in the acute biodistribution study thus reducing the number of rats being used. In addition we aimed to determine the acute biodistribution profiles and biopersistence of AuNPs after a single intravenous injection. The Au content in the acute biodistribution study was quantified using gamma spectroscopy while instrumental neutron activation analysis was used for the biopersistence study. Furthermore we also aimed to assess any potential toxicity of AuNPs by monitoring physiological and behavioural indicators together with markers of kidney and liver damage. Histopathological assessment on organs of interests will also be done.

4.2 Materials and Methods

4.2.1 Preparation and Characterization of AuNPs

All chemicals used were of analytical grade. Spherical citrate coated non-radiolabeled and radiolabeled AuNPs, 14 nm in size were synthesized under sterile conditions using adapted modified Turkevich-Frens method (Frens, 1973; Turkevich et al., 1953). Briefly a known mass (5 mg and 20 mg) of 24 Carat Au with natural isotopic composition was directly irradiated in a SAFARI 1 20 MW research reactor in a hydraulic position with a neutron flux of 0.5×10^{14} n.cm$^{-2}$ s$^{-1}$ for 20 min to obtain 198Au. The radioactive gold (198Au) was dissolved in aqua regia, dried and reconstituted in 0.5-1 mL 0.005 N HCl to yield H198AuCl$_4$.H198AuCl$_4$ in 0.05 N HCl (Katti et al., 2006), the starting material in the synthesis of [198Au]AuNPs. For the non-radioactive AuNPs, gold (III) chloride- ($\geq 99.9 \%$ trace metal basis) (HAuCl$_4$.3H$_2$O) (Sigma, St. Louis, MO, USA) was used as the starting material. A
100 mL solution of hydrogen chloroauric acid (1 mM) was brought to boil and 10 mL solution of trisodium citrate (38.8 mM) was added and the solution was boiled under reflux for 30 min.

The average particle size and morphology of the colloidal suspensions were determined using transmission electron microscopy (TEM) (FEI Tecnai G2, Eindhoven, The Netherlands). At least 250 particles were used to determine the primary size distributions using ImageJ software (version 1.48; National Institutes of Health, Bethesda, MD, USA). The radioactive samples were analyzed after the activity had decayed to non-radiological levels. The UV-vis absorption spectra were obtained using a LAMBDA 1050 UV/Vis/NIR spectrophotometer (PerkinElmer, Massachusetts, USA). Concentrations of the prepared AuNPs; molar, number, mass and surface area were calculated using size determined by TEM, mass of gold salt used and making the assumptions that the reaction goes to completion and the particles are spherical (Liu et al., 2007). The hydrodynamic size and zeta potential were determined using dynamic light scattering (DLS) using a Zetasizer Nano (Malvern Instruments, Worcestershire, UK) at 25°C. The average pH of the colloidal suspensions was 6.2.

4.2.2 In vivo Studies

4.2.2.1 Animals

The studies were conducted in accordance with the South African National Standard for the Care and Use of Animals for Scientific Purpose. Ethical approval was granted by the NWU Animal Ethics Committee and a total 46 male Sprague Dawley rats 8-10 weeks old weighing 250-300g were used. The rats were bred and procured from the DST/NWU/PCDDP
Chapter 4: Acute Biodistribution, Biopersistence and Toxicity

Vivarium (Potchefstroom, South Africa) and housed in stainless steel cages in groups of four. The rats were kept under standard environmental conditions with access to water and food *ad libitum*.

4.2.2.1 Experimental Design

Three studies were conducted; an imaging study (48 h) that served as a pilot study to determine the end point of the acute (24 h) study and the biopersistence (56 days) study. In all the studies the 500 µL of AuNPs was administered using a slow intravenous (*i.v*) injection via the tail vein. The volume is within the acceptable volume range for slow *i.v* injections for rats (Diehl *et al.*, 2001) and the administration was well tolerated with no adverse events being observed during the study.

4.2.2.1.2 Pilot: Imaging study

In the first study, $[^{198}\text{Au}]$AuNPs synthesized using 5 mg of Au (higher activity concentration: 3.92 GBq/mL) were administered to 2 rats as a single *i.v* dose with a mass concentration of 90 μg of Au. A Siemens pinhole collimator (GE Healthcare, Little Chalfont, UK), was used to acquire dynamic and static images. During image acquisition the rats were lightly sedated using Isoflurane administered via inhalation and imaged from the prone position. During the 1st hour, dynamic images were taken followed by static images taken at 1, 2, 4, 6, 24 and 48 hours post administration. Image analysis to obtain the qualitative biodistribution data was done by manual delineation of regions of interests (ROIs). The pilot study was conducted to reduce the number of rats used in the acute biodistribution study. During the experiment the
rats were housed in steel cages and kept under a 12 h night and day cycle with food and water available ad libitum.

4.2.2.1.3 Acute biodistribution study

In the second study [198Au]AuNPs synthesized using 20 mg of Au (lower activity concentration: 0.98 GBq/mL) were administered i.v to 8 rats divided into 2 treatment groups (n=4). Each rat received either 90 µg or 9 µg dose of Au (mass concentration) as [198Au]AuNPs (radiolabeled). After administration of the formulations all rats were housed in metabolic cages where all the urine and feces were collected with food and water available ad libitum. General health assessments were performed by monitoring physiological and behavioral indicators (Clark et al., 1997) on all the rats during the study and after 24 h the rats were heavily anesthetized using pentabarbitalone (Euthapent®). Through the skin blood was collected using the cardiac puncture technique and this lead to the death of the rat. The following organs/tissues were collected and their respective masses noted; esophagus, stomach, small intestines, large intestines, cecum, and rectum, liver spleen, heart, lungs, brain, muscle, bone, tail(site of injection), and skin. The amount of Au in the tissues and organs was determined using gamma spectroscopy using CRC-15R dose calibrator (Capintec Inc., New Jersey, USA) without further sample preparation

4.2.2.1.4 Biopersistence study

In the third study AuNPs synthesized using non-radioactive HAuCl₄ were used to the test rats while the controls received normal saline (see Figure 1). Non-radiolabeled AuNPs were administered in the biopersistence study because the half-life of 198Au is 2.7 days. A total of
36 rats were used; 24 received the test formulation: 90 μg of Au (mass concentration) as AuNPs in 500 μL and 12 received the control: 500 μL of normal saline, both groups received the dose i.v via the tail vein. After administration of the injections the rats were housed in groups of 4 in steel cages and kept under a 12 h night and day cycle with food and water available ad libitum.

Figure 1 Biopersistence study design showing activities done in the study. GA-group assignment; BS-blood sampling and MM-mass measurements

General health assessments were done by monitoring physiological and behavioural indicators twice weekly (Clark et al., 1997) and their masses measured on days 1, 2, 8, 15, 29 and 57. A total of 9 rats were sacrificed (6 tests and 3 control) using an overdose of pentobarbitone on days 8, 15, 29 and 57 and used as described in the sections below.
4.2.2.1.5 Markers of liver and kidney damage

On day 1 before administration of either; the test or control formulation and days, 2, 8, 15, 29 and 57 blood samples were collected. The blood was drawn into tubes with a clot activator and serum separation gel (BD Vacutainer®, New Jersey, USA). The tubes were centrifuged at 2,800 g for 15 min and stored at -80 °C until analysis. Levels of liver enzymes alanine transferase (ALT) and alkaline phosphatase (AST), metabolites creatinine (Creat) and total bilirubin (BIL T) and blood urea (Urea) were measured using the Cobas 6000 (Roche Diagnostics, Basel Switzerland) to assess liver and kidney damage. The long duration of the study (56 days) and frequency of the blood sampling limited the volumes of blood that could be drawn and the tests performed, thus only hepatocellular evaluation was performed. Kidney damage was assessed using the serum metabolites only due to the long duration of the study as well. Glomerular filtrations rates were not possible to measure because use of metabolic cages was not possible.

4.2.2.1.6 Histopathological assessment

Tissues were collected from 3 test and 3 control rats on days 8, 15, 29 and 57; six rats from the test group and three from the control were fixed in 10% formalin and stored at room temperature until histopathological analysis was done by an independent laboratory (IDEXX, South Africa). The heart, kidneys, liver lungs and spleen were used in the analysis and images were taken using an Olympus Light Microscope.

4.2.2.1.7 Neutron Activation Analysis
The liver, lungs, skeleton, spleen and carcass of 3 rats in the test group were collected and weighed and used to quantify the amount of Au using neutron activation analysis (NAA) (Buzulukov et al., 2014; Hillyer & Albrecht, 1998; Hillyer & Albrecht, 2001). Briefly, all the samples were dried in an oven at 65 °C for 48 h, and then ashed over 6 h at 650 °C. The final mass of the total ash was noted for each sample and approximately 200 mg was weighed and placed in a trace element free polyethylene flip-top vial. The vials were sealed by friction welding and placed in bigger vials which were also sealed by friction welding. The samples were irradiated in a SAFARI 1 20 MW research reactor in a RINGAS pneumatic system for 8 s using a neutron flux of 10^{14} n.s$^{-1}$.cm$^{-2}$ triggering the reaction 197Au(n,γ)198Au. Standards with 0.1, 0.5, 1 and 2 µg of Au in containers with the same geometry as the sample holders were run with the experimental samples and used to calculate the amount of Au present in the samples. Blank samples were also irradiated for background correction. The γ decay energies of the samples were counted using a well-type high purity germanium (HPGe) (NATS, Middletown, USA) detector coupled to Genie 2000 program software. Using the activities measured in the standard samples the amount of Au in each sample was calculated.

4.2.3 Calculations and statistical analysis

The statistical significance of the differences between the mean values in the different groups was assessed using mixed linear models which took into account repeated measures (Wang & L. A. Goonewardene, 2004). Statistical probability (p) values less than 0.05 were considered significantly different.
4.4.3 Results

4.3.1 Synthesis and characterization AuNPs

The morphology and size distribution of the prepared AuNPs is shown in Figure 2 which is a representative of both the radioactive and non-radioactive preparations. The UV/Vis spectra showed the characteristic peak around 530 nm with no secondary peaks and low absorbance in the 600-700 nm wavelength region which indicates that the formulation was well dispersed with no agglomerates (Shim & Gupta, 2007). The zeta potential, which was negative because of the citrate surface coating and hydrodynamic size, is shown in Table 1 together with other dosimetric parameters.

Figure 2 TEM image (A), particle size distribution (B) and UV/Vis Spectra (C) of AuNPs representing all the AuNPs used in the studies, both radioactive and non-radioactive
4.3.1.1 Dosimetry

Table 1 Physicochemical properties representative of both the radioactive and non-radioactive AuNPs used measured using the non-radioactive AuNPs

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary particle size</td>
<td>14 nm</td>
</tr>
<tr>
<td>Hydrodynamic particle size</td>
<td>25 nm</td>
</tr>
<tr>
<td>Zeta potential</td>
<td>-47 mV</td>
</tr>
<tr>
<td>Administered mass of AuNPs (µg) per rat</td>
<td>90</td>
</tr>
<tr>
<td>Administered number of AuNPs per rat</td>
<td>3.27×10^{12}</td>
</tr>
<tr>
<td>Administered surface area (cm²)</td>
<td>20.155</td>
</tr>
</tbody>
</table>

All AuNPs used in the studies reported in this paper were synthesized using the same method. The characteristics shown in Table 1 are representative of all the formulations used with regards to the mass and nanoparticle number concentrations as well as the surface area. The particle sizes both primary and hydrodynamic were comparable and can be considered to be 14 nm and 25 nm respectively.

4.3.2 Imaging study

The dynamic images (taken over 1 h) showed rapid translocation of the AuNPs to the liver and spleen area in both test subjects. After manual delineation of the ROIs in the static images (see Figure 3) the qualitative biodistribution data of AuNPs over 48 hours in male Sprague Dawley rats was obtained. The images taken at 24 and 48 h (see Figure 3) show no differences indicating that there were no further translocations of the AuNPs after 24 h. These results were used to select 24 h as the end point of the acute biodistribution study.
Figure 3 Static images showing qualitative biodistribution of AuNPs after intravenous administration over 48 h. The band that ranges from black to orange on the right side of the photo indicates the activity concentration of the Au with orange being more concentrated.

4.3.3 Acute biodistribution of AuNPs

4.3.3.1 Biodistribution profiles

The acute biodistribution profiles of AuNPs after a single dose show wide systemic distribution of the Au at the 2 dosing levels used (see Table 2). However there were
differences in the biodistribution profiles based on the administered dose, (90 µg versus 9 µg) especially in the liver and spleen. The percentage injected dose per gram (%ID/g) was higher at the low dosage (9µg) in all organs/tissues except the liver. Bone and lung deposition at both dose levels was observed.

Table 2 Amounts of Au in tissues/organs 24 h after a single intravenous injection. The amounts are shown as percentage of the injected dose per gram (%ID/g) and mass of Au (µg) per gram of the respective organ/tissue. Each value is a mean of 4 rats. L. Int: Large intestine, S. Int: Small Intestine

<table>
<thead>
<tr>
<th></th>
<th>90 µg</th>
<th></th>
<th>9µg</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%ID/g ± Std</td>
<td>Au µg/g</td>
<td>%ID/g ± Std</td>
<td>Au µg/g</td>
</tr>
<tr>
<td>Liver</td>
<td>8.24 ± 0.91</td>
<td>7.4</td>
<td>3.22 ± 0.58</td>
<td>2.9E-01</td>
</tr>
<tr>
<td>Spleen</td>
<td>1.78 ± 0.61</td>
<td>1.6</td>
<td>3.21 ± 0.68</td>
<td>2.9E-01</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.13 ± 0.03</td>
<td>1.2E-01</td>
<td>0.17 ± 0.04</td>
<td>1.5E-02</td>
</tr>
<tr>
<td>Bone</td>
<td>0.08 ± 0.02</td>
<td>7.1E-02</td>
<td>0.10 ± 0.03</td>
<td>9.1E-03</td>
</tr>
<tr>
<td>Faeces</td>
<td>0.01 ± 0</td>
<td>1.0E-02</td>
<td>0.05 ± 0.02</td>
<td>4.7E-03</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.00</td>
<td>2.7E-03</td>
<td>0.04 ± 0.06</td>
<td>3.6E-03</td>
</tr>
<tr>
<td>Tail</td>
<td>0.02 ± 0</td>
<td>1.4E-02</td>
<td>0.03 ± 0.03</td>
<td>2.7E-03</td>
</tr>
<tr>
<td>Oesophagus</td>
<td>0.01 ± 0</td>
<td>5.3E-03</td>
<td>0.02 ± 0.01</td>
<td>2.1E-03</td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.01 ± 0</td>
<td>1.3E-02</td>
<td>0.02 ± 0.01</td>
<td>1.9E-03</td>
</tr>
<tr>
<td>Heart</td>
<td>0.01 ± 0</td>
<td>6.9E-03</td>
<td>0.01 ± 0</td>
<td>1.1E-03</td>
</tr>
<tr>
<td>Cecum</td>
<td>0.01 ± 0</td>
<td>5.2E-03</td>
<td>0.01 ± 0</td>
<td>7.7E-04</td>
</tr>
<tr>
<td>Blood</td>
<td>0.01 ± 0</td>
<td>5.9E-03</td>
<td>0.01 ± 0</td>
<td>7.5E-04</td>
</tr>
<tr>
<td>S.int</td>
<td>0.00%</td>
<td>1.3E-03</td>
<td>0.01 ± 0</td>
<td>5.1E-04</td>
</tr>
<tr>
<td>L.int</td>
<td>0.00%</td>
<td>2.1E-03</td>
<td>0.00%</td>
<td>4.3E-04</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.00%</td>
<td>2.0E-03</td>
<td>0.00%</td>
<td>3.9E-04</td>
</tr>
<tr>
<td>Skin</td>
<td>0.00%</td>
<td>3.6E-03</td>
<td>0.00%</td>
<td>2.7E-04</td>
</tr>
<tr>
<td>Brain</td>
<td>0.00%</td>
<td>8.5E-04</td>
<td>0.00%</td>
<td>2.6E-04</td>
</tr>
<tr>
<td>Testes</td>
<td>0.00%</td>
<td>8.7E-04</td>
<td>0.00%</td>
<td>2.4E-04</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.00%</td>
<td>7.8E-04</td>
<td>0.00%</td>
<td>2.1E-04</td>
</tr>
</tbody>
</table>
4.3.4 Biopersistence study

4.3.4.1 Amount of Au in tissues

The amount of Au in the tissues was quantified using NAA. Compared to the amount after 24 h there was a steady decrease of the amount of Au in the tissues/organs analyzed (see Figure 4). The Au was cleared from the tissues/organs albeit at different rates with the liver showing the fastest clearance. After 56 days the amount in the liver in terms of mass of Au per gram was still 1.2 µg/g of liver despite the fastest clearance, indicating that Au is biopersistent. The skeleton has a higher amount of Au on day 57 but within the same range and comparable to the preceding time points.
Figure 4 %ID/g of Au in the liver, spleen, lungs and bones after a single intravenous injection over 56 days. The amount on day 1 for each organ/tissues was quantified using γ-spectroscopy (acute biodistribution study) whilst the rest was quantified using NAA.

4.3.4.2 Toxicological Studies

During the study all the rats’ monitored physiological and behavioural indicators did not reveal any signs of overt toxicity. The rats in both groups were alert and feeding normally and no rat had to be prematurely sacrificed due to distress or other ethical considerations. All rats showed a steady weight gain (see Figure 5).
Figure 5 A comparison of the change in mass over time of the test and control groups. The general trend shows a steady increase in mass which is normal for the species used.

4.3.4.2.1 Markers of liver and kidney damage

Alanine transferase (ALT), alkaline phosphatase (ALP) and total bilirubin (BIL T) monitoring showed no differences between the tests and control groups (see Figure 6). Levels of ALP were consistently higher in the test group even though this difference was not statistically significant. Similar trends were observed when markers of kidney damage were monitored; no differences were noted between the test and control groups.
Figure 6 Time dependent serum analysis monitoring markers of liver damage over 56 days. ALP= alkaline phosphatase, ALT= alanine transferase, BIL T= total bilirubin
Figure 7 Time dependent serum analysis monitoring markers of kidney damage over 56 days. CREAT=creatinine and UREA=urea nitrogen.
4.3.4.2.2 Histopathological analysis

No abnormalities were detected in both the test and control groups at the time points used in the study. See Figure 8 for representative images of the liver, spleen, lungs and kidneys used in the study.

Figure 8 Images taken for histopathological analysis of the liver, spleen, lungs and kidneys.
4.4 Discussion

Progress in the use AuNPs for biomedical applications has been slow due to safety concerns. The paucity of information that currently exists with regards to the safety issue, tissue retention and slow elimination have been cited as the major obstacles (Fraga et al., 2014). It is now generally accepted that physicochemical properties of certain engineered nanomaterials (Au included) have an impact on their biological outcomes (Fadeel et al., 2013; Tay et al., 2014; Verma & Stellacci, 2010). A thorough understanding of citrate coated AuNPs, which are extensively used in biomedical applications, will form a good basis of comparison with other AuNPs stabilized or coated with different ligands/materials. This will enable a better understanding of the changes, if any, that will ensue after a change in surface coating or stabilizing material. In this paper we present the qualitative and quantitative biodistribution profiles of Au obtained using synthesized radiolabeled AuNPs \([^{198}\text{Au}]\text{AuNPs}\). The biopersistence patterns over 56 days of Au after a single dose are also presented together with results of toxicological endpoints.

The endpoint of the acute biodistribution study of AuNPs was determined using an imaging study. This was done to reduce the number of rats in the experiments while refining the protocol as well in line with the principle of three Rs (Forni, 2007). Synthesizing \([^{198}\text{Au}]\text{AuNPs}\) starting with \(^{198}\text{Au}\) enabled us to manipulate the activity of concentration of the colloidal dispersion while maintaining a good quality dispersion with no agglomerates/aggregates. The higher activity concentration used in the imaging study compared to the one in the acute biodistribution study allowed images to be obtained thus the determination of the acute biodistribution endpoint. The radioactive doses used in all the
experiments did not have any adverse effects to the rats’ health in the studies as evidenced by the general health indicators monitored.

The acute biodistribution results showed a wide systemic distribution at the 2 dose levels used. This corresponds well with previous studies using AuNPs in the same size range (Hirn et al., 2011; Lipka et al., 2010; Semmler-Behnke et al., 2008; Sonavane et al., 2008; Terentyuk et al., 2009). The liver, spleen, lungs and bones had the highest amount of Au deposition in that order. Translocation of Au to the lungs has previously been reported (Balasubramanian et al., 2010; Cho et al., 2009) and can be explained by the huge number of alveolar macrophages that clear all the foreign materials. Use of AuNPs to passively target the lungs can be further investigated based on these observations however it is important to determine the exact location in the lungs. Determination of the exact location can be difficult considering that the state of the AuNPs (discrete particles versus aggregates) is not known after intravenous administration. Attempts which appear futile have been made to find tissue localizations of Au after i.v administration (Cho et al., 2009). We, as other researchers before (Balasubramanian et al., 2010; Lipka et al., 2010; Saterborg, 1973; Zhang et al., 2011a) noted that there was bone deposition of Au after i.v administration however our results indicate that higher amounts are deposited compared to the previously published data (Balasubramanian et al., 2010). The skeletal system in a mammal accounts for between 35 and 50 % body weight and is the place where stem cells are made. The exact location of the Au in the bone tissue (marrow, cancellous, cortical or poriosteum) is not known and it is crucial that a proper risk assessment be done. Deposition in the different parts will mean exposure to different cell types for instance the impact of bone deposition during periods of
rapid growth is also vital as AuNPs have been proposed for use in the delivery of vaccines which are often given to children. Au was detected in the feces in the acute biodistribution study, this supports the clearance mechanism via biliary route which has been proposed (Fraga et al., 2014; Hirn et al., 2011). The renal system has also been reported as a common pathway for the clearance of AuNPs after intravenous administration (Lipka et al., 2010) even though we did not measure any significant amount in the renal system during the acute biodistribution study.

To assess the biopersistence of AuNPs in tissues/organs after a single dose, the amount of Au in the liver, spleen, lungs and skeletal system was measured over 56 days on day 8, 15, 29 and 57 after administration of a single dose. The amounts in the same tissue/organ were compared to that found 1 day after administration from the acute biodistribution study. There was a steady decrease in the amounts measured and the results indicate that Au is biopersistent in the tissues/organs studied at the dose level used. Other studies that investigated the fate of AuNPs after a single dose, also showed that Au is biopersistent (Balasubramanian et al., 2010; Fraga et al., 2014; Sadauskas et al., 2009; Zhang et al., 2011a) but the analytical methods used to quantify the amount of Au were not as sensitive as NAA and the durations vary. Our selection of the tissues/organs was based on the results of the acute biodistribution study (see Table 2). From Figure 4 the liver had the highest clearance due to the reported hepatobiliary system (Fraga et al., 2014; Hirn et al., 2011) rate compared to other organs/tissues. Faster clearance in the liver has been reported previously (Balasubramanian et al., 2010) and it is important to note that accidental exposure doses were used in the study whilst we used a dose that was mimicking intentional exposure. The several
time points and length of our study give a good indication of the retention times of Au after a single intravenous dose which is within the nontoxic range. As is the case with most nanotoxicity studies of AuNPs our results are not easily comparable to those reported (Fraga et al., 2014) due to limited time points they used, and the low sensitivity of their method of detection.

Histopathology analysis did not reveal any changes in the morphology of the tissues examined (heart, kidney, liver, lungs and spleen). There was no peracute or acute toxicity observed in the study. The control and test groups showed a similar steady rise in body weight with no abnormal physiologic or behavioural activities. Similar trends have been previously observed (Fraga et al., 2014). Indicators of liver and kidney damage were comparable between the 2 cohorts this giving inconclusive information with regards to the organ specific toxicity.

4.5 Conclusions

AuNPs have the potential to be versatile drug delivery vehicles; however they demonstrated prolonged retention in liver, spleen, lungs and skeletal system. Use of citrate coating on AuNPs might limit their use in drug delivery unless the liver is the target organ. At this size range and doses used AuNPs did not cause any overt acute or delayed toxicity and kidney and liver damage. The histopathological results indicated that AuNPs did not cause any alterations in normal function. Gamma spectroscopy and NAA are good sensitive methods to study the biodistribution of Au in vivo as they have high sensitivity.
4.6 Acknowledgements

The technical assistance of; Cor Bester and Antionette Fick in the animal experiment; Edward Motlhlabane, Andrew Sathekge and Ntsoaki Seaga in the sample preparation for the INAA procedure; Charlotte and Malebo Malindi at Westvaal Hospital laboratory for serum analysis; Delene van Wyk and Prof Mike Sathekge at SBAH for the facilities and assistance for the imaging study; Jesper Knijnenburg and Dr. Florentine Hilty-Vancura for the meticulous reading of this manuscript; Dr. Anine Jordaan for the TEM analysis and Prof Hendrik Steyn and Energy Sonono for statistical analysis is gratefully acknowledged.

4.7 References

Chapter 4: Acute Biodistribution, Biopersistence and Toxicity

Chapter 4: Acute Biodistribution, Biopersistence and Toxicity

Chapter 4: Acute Biodistribution, Biopersistence and Toxicity

Toxicologic effects of gold nanoparticles in vivo by different administration routes.

Chapter 5: Bioaccumulation and subchronic toxicity of 14 nm gold nanoparticles

Clinton Rambanapasi1*, Jan Rijn Zeevaart1, Hylton Buntting1, Cornelius Bester1, Deon Kotze2, Rose Hayeshi1, Anne Grobler1

1DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa,

2Necsa, South African Nuclear Energy Corporation (SOC) Ltd, Pelindaba, South Africa

*Corresponding author: 24089117@nwu.ac.za/crambanapasi@gmail.com

Submitted to:

International Journal of Nanomedicine

This manuscript reports on the bioaccumulation and subchronic toxicity of AuNPs after multiple doses over 56 days in male Sprague Dawley rats. The amount of gold in tissues was quantified using neutron activation analysis at Necsa, the only facility which has a nuclear reactor and is licensed to do the analysis in the South Africa. I did all the sample preparation and part of the data analysis for this procedure. This work has been submitted to the International Journal of Nanomedicine (Submission ID: 91512). The guidelines to authors are attached in Appendix 1.
Chapter 5: Bioaccumulation and Subchronic Toxicity Study

Abstract

Colloidal suspensions of 14 nm gold nanoparticles (AuNPs) were repeatedly administered intravenously at 3 dose levels (0.9, 9 and 90 µg) to male Sprague Dawley rats weekly for 7 weeks, followed by a 14 day washout period. After sacrificing, the amount of gold was quantified in the liver, lungs, spleen, skeleton and carcass using Neutron Activation Analysis. During the study, pre- and post (24 h) administration blood samples were collected from both the test and control groups, the latter which received an equal injection volume of normal saline. General health indicators were monitored together with markers of kidney and liver damage for acute and subchronic toxicity assessment. Histopathological assessments were done on the heart, kidneys, liver, lungs and spleen to assess any morphological changes as a result of the exposure to AuNPs. The mass measurements of all the groups showed a steady increase with no signs of overt toxicity. The liver had the highest amount of gold (µg) per gram of tissue after 56 days followed by the spleen, lungs, skeleton and carcass. Markers of kidney and liver damage showed similar trends between the pre and post samples within each group and across groups. The histopathological examination also showed no hepatotoxicity and nephrotoxicity. There was accumulation of Au in tissues after repeated dosing albeit with no observable overt toxicity and kidney and liver damage.

KEYWORDS: gold nanoparticles, bioaccumulation, liver and kidney damage, Sprague Dawley rats
5.1 Introduction

Gold nanoparticles (AuNPs) present a good strategy for drug and gene delivery as they can deliver a wide variety of cargo as described in reviews and proof of concept studies\(^1\)\(^\text{-}\)\(^4\). In addition, a nanomedicine using AuNPs as a delivery vehicle has been assessed in a phase I and pharmacokinetic study for cancer\(^5\). Several features of AuNPs make them well suited for drug delivery and the recent advances in the synthesis and characterization techniques (ENMs)\(^6\) enable the biomedical applications to be exploited easily.

Risk is a function of the product of hazard (a material property), susceptibility of the organism and the exposure. Different models have been used to assess susceptibility\(^7\)\(^,\)\(^8\), however, the bulk of toxicity assessment studies for AuNPs varied mainly the exposure by altering the nanomaterial properties. Nanomaterial properties that can be altered include but are not limited to; shape, size, surface area, surface charge and concentration. The influence of particle size on acute biodistribution and toxicity has been extensively studied\(^7\)\(^,\)\(^9\)\(^-\)\(^{13}\), however, there is a dearth of information when it comes to longer studies. Likewise, surface properties have been investigated mainly in short term studies\(^8\)\(^,\)\(^11\)\(^-\)\(^{14}\)\(^-\)\(^{16}\). From the published acute studies, there is a general agreement that liver and spleen uptake is high\(^12\)\(^,\)\(^{16}\)\(^-\)\(^{18}\). The influence of route of administration has been investigated in acute studies as well\(^19\). Considering what has been done, the information available is still insufficient to draw general conclusions due to differences in the study designs. This is not surprising considering that nanotoxicity is a fairly young discipline\(^20\)\(^,\)\(^21\) with principles of characterization of nanomaterials from the leading voices only a decade old\(^22\).
Bioaccumulation occurs when an organism takes up substances in this case nanomaterials at a rate higher than the clearance rate. The bioaccumulation propensity of any nanomaterial is dependent on its biopersistence in the organ/tissue. The route of exposure/administration has an influence on the organs that come into contact with the nanomaterial \(^\text{22}\). For systemic drug delivery purposes using AuNPs the intravenous route is the most important to study since there is limited oral absorption \(^\text{14}\). The number of studies reporting on the biopersistence of AuNPs after intravenous administration are relatively few \(^\text{17,23}\) and even fewer studies on their bioaccumulation \(^\text{24,25}\). The exposure an organ will have to a metal or nanomaterial will increase due to bioaccumulation, thus there is a clear need to have more information on the bioaccumulation of AuNPs after repeated intravenous administrations.

Safety assessments of AuNPs include end organ toxicity that can result from acute and/or subchronic exposure. The influence of bioaccumulation on end organ toxicity must be investigated to gather safety data. Serum enzymes and metabolites serve as good markers for hepatotoxicity and nephrotoxicity. In addition, histopathological examination is a good indicator to assess structural damage. This approach has previously been used in studies assessing the safety of AuNPs albeit with different results \(^\text{25,26}\).

The aim of this study was to assess and quantify the bioaccumulation of Au in male Sprague Dawley rats after multiple intravenously administered doses of AuNPs. Little is known about the influence of dose (concentration of AuNPs) on the bioaccumulation of AuNPs after repeated administrations over weeks, thus different doses were used in the study. Levels of serum enzymes and metabolites were measured to assess if repeated dosing caused any
kidney or liver damage. General health assessments were routinely done and histopathological assessment of tissues were done to assess for both overt and organ toxicity.

5.2 Materials and Methods

5.2.1 Preparation and Characterization of AuNPs

All chemicals used were of high purity or analytical grade. Spherical citrate coated 14 nm AuNPs were synthesized under sterile conditions using adapted modified Turkevich-Frens method27,28. Briefly 1 mM solution of hydrogen chloroa uric acid (HAuCl\textsubscript{4}.3H\textsubscript{2}O) (Sigma) was brought to boil and 10 mL 38.8 mM of trisodium citrate was added until the solution turned wine red, the solution was refluxed for 30 minutes.

The average particle size and morphology of the colloidal suspensions were determined using transmission electron microscopy (TEM) (FEI Tecnai G2, Eindhoven, the Netherlands). At least 250 particles were used to determine the primary size distributions using ImageJ software (version 1.48; National Institutes of Health, Bethesda, MD, USA). The UV-vis absorption spectra were obtained using a LAMBDA 1050 UV/Vis/NIR spectrophotometer (PerkinElmer, Massachusetts, USA). Concentrations of the prepared AuNPs; molar, number and mass and surface area were calculated using size determined by TEM, mass of gold salt used and making the assumptions that the reaction goes to completion and the particles are spherical29. The hydrodynamic size and zeta potential were determined by dynamic light scattering (DLS) and electrophoretic potential respectively using a Zetasizer Nano (Malvern Instruments, Worcestershire, UK) at 25°C. The average pH of the colloidal suspensions was 6.2.
5.2.2 Animals and AuNPs treatment

Male Sprague Dawley rats, age: 8-10 weeks, weighing 240-300 g were used in the study. The rats were bred and procured from the Vivarium of the DST/NWU/Preclinical Drug Development Platform (Potchefstroom, South Africa). Animals were housed in stainless steel cages in groups of four under standard environmental conditions (22±2°C, 55±15 % RH) with access to water and food ad libitum. The study was conducted in accordance with the South African National Standard for the Care and Use of Animals for Scientific Purpose. Ethical approval was sought from and granted by the ethics committee of AnimCare of the North-West University (NWU-00029-14-A5). The rats were divided into 4 groups (n=9) with each group receiving 90 µg, 9 µg, 0.9 µg or 0µg of Au (mass concentration) in the form of AuNPs, intravenously (see Figure 1). The injection was administered once weekly for seven weeks via the tail vein and had a volume of 500 µL which is within the acceptable range of intravenous injection in rats30.
During the study, physiologic (mass gain over time) and behavioural (feeding habits and cage side behaviour) indicators were monitored twice weekly to assess the general health. After the last dose there was a 14 d washout period before the termination of the study. On the last day of the study, all rats were sacrificed using an overdose of pentobarbitone (Euthapent®).

In each group, the rats were further divided into the 2 groups; biodistribution group (n=4) and the group used to in the histopathological analysis to assess end organ toxicity (n=5).

5.2.3 Determination of Au in tissues: Neutron Activation Analysis

The liver, spleen, lungs, bones and remaining carcass of the rats in the biodistribution group were collected and weighed for the quantification of Au using neutron activation analysis (NAA). Briefly, all the samples were dried in an oven at 65 °C for 48 h, and then ashed
at 650 °C over a 6h period. The final mass of the total ash was noted for each sample and approximately 200 mg of it weighed and placed in a trace element free polyethylene flip-top vial which were sealed by friction welding. The vials were then placed in larger vials making the sample doubly encapsulated. The samples were irradiated in a SAFARI-1 20 MW research reactor in a RINGAS pneumatic system for 8 s using a neutron flux of 10^{14} n.s$^{-1}$.cm$^{-2}$ triggering the 197Au (n, γ)198Au nuclear reaction. Standards with 0.1, 0.5, 1 and 2 µg of Au in containers with the same geometry as the sample holders were run with the experimental samples as reference standards. The reference standards were used to calculate the amount of Au present in the samples. Blank samples were also irradiated for background correction. The γ decay energies of the samples were recorded using a well-type high purity germanium (HPGe) (NATS, Middletown, USA) detector coupled to Genie 2000 program software. The 411 keV (95.6%) line was used to count the 198Au content and used to calculate the amount of Au in each sample.

5.2.4 Toxicological studies

In the toxicity assessment group, pre- and post-dosing blood samples were collected in tubes with a clot activator and gel for serum separation (BD Vacutainer®) and immediately mixed as per manufacturer’s instructions. The tubes were centrifuged at 3000 g for 10 min and the prepared serum samples were stored at -80°C. Analysis to measure levels of alanine transferase (ALT), alkaline phosphatase (ALP) and total bilirubin (BIL T) was performed to assess liver damage. ALT and ALP are enzymes are found intracellularly or anchored on the cell membrane and are induced, leaked and/or shed from hepatocytes in liver injury34,35. Bilirubin, a normal product of heme catabolism, is excreted via conjugation in the liver and its
levels in serum are increased in liver injury and inhibition of its conjugation and transport36,37. Kidney damage was assessed by measurement of the levels of creatinine (CREAT) and blood urea nitrogen (UREA). Both urea and creatinine are products of protein metabolism, which are cleared almost entirely by the kidneys. The serum levels of the enzymes and metabolites were done using the Cobas 6000 (Roche Diagnostics, Basel Switzerland). The kidneys, heart, lungs, liver and spleen were collected and fixed with 10% formalin. All samples were stored at room temperature until histopathological analysis was done by an independent laboratory (IDEXX, South Africa). Micrographic images were captured using an Olympus light microscope (Tokyo Japan).

5.2.4 Calculations and statistical analysis

The statistical significance of the differences between the mean values in the different groups was assessed using mixed linear models which took into account repeated measures 38. Statistical probability (p) values less than 0.05 were considered significantly different.

5.3 Results

5.3.1 Synthesis and characterization AuNPs

The citrate reduction method was used to synthesize 14 nm AuNPs using the Turkevich-Frens method 27,28. The morphology and primary size (14 ±1.2 nm) distribution as determined by TEM (see Figure 2) was as expected due to the careful selection of the ratio of the gold salt to the reducing agent. The AuNPs had the characteristic resonance peak in the 520-530 nm wavelength range attributed to the 14 nm particles. The absence of secondary peaks confirmed the monodispersity of the colloidal suspension39.

110
5.3.2 Bioaccumulation of Au in tissues after repeated dosing

The amount of Au was determined in the liver, lungs, skeleton, spleen and carcass using NAA. The organs were chosen based on results from an acute biodistribution study we conducted (data not shown). The liver and spleen had the highest amount of Au across all dose levels used in the study (see Figure 3). The values are expressed as micrograms of Au per gram of organ. The bioaccumulation in all tissues/organs did not exhibit any dose dependence patterns unlike in a previous report, there was no correlation between the amount in the organs and the dose administered. If the absolute amounts of Au are considered, the bioaccumulation will be in the following order skeleton>carcass>liver>spleen>lungs.
Figure 3 Bioaccumulation of Au in tissues. The rats received 7 intravenous doses weekly at 3 dosing levels of; 0.9, 9 and 90 µg. The Au was quantified using NAA in the liver, spleen, lungs, skeleton and carcass 2 weeks (washout period) after the last dose was administered. The bottom right graph shows a comparison of the levels in the liver, spleen, lungs, skeleton and carcass at the 90 and 9 µg dose levels. Please note that the Y scale is different in all the organs with the liver having the most amount of Au per gram and the carcass having the least.
5.3.3 Toxicological Studies

During the study all the rats monitored physiological and behavioural indicators and the observations did not reveal any signs of overt toxicity. All injections were well tolerated with none of the rats having to be sacrificed before the end of the study due to ethical considerations or distress. All the rats had a comparable steady mass gain (see Figure 4) with no differences between different groups being observed due to the exposure to AuNPs or the dose level.

![Figure 4](image)

Figure 4 Comparison of masses of rats in the 4 treatment groups in the study over the 56 days. All the rats gained mass over time in a similar trend as expected for the species.
5.3.3.1 Markers of liver and kidney damage

The first pre-dose sample served as the baseline measurement and the other 6 samples were obtained before administration of the next dose which was also 7 days after the preceding dose. The post dose samples were obtained 1 day after each dose with the exception of the last one obtained 14 days after the last dose (washout period). The levels of ALT, ALP and BIL T which give an indication of liver damage showed similar trends in all groups in the study (see Error! Reference source not found.). No differences were noticed between the pre- and post-dose levels. Analysis of the levels of creatinine and urea nitrogen, the metabolites that give an indication of kidney damage, showed similar trends in all the groups (see Figure 6). No differences were detected between the pre and post dose levels of these two metabolites.
Figure 5: Similar trend were observed across all groups both for the pre- and post-dose measurements for markers of liver damage. The pre-dose measurements (on the left side) were done at baseline (T=0) and 7 days after the preceding dose. The post dose measurements were done 1 day after dosing and the last one 14 days (washout period) after the last dose. ALP= Alkaline phosphatase, ALT= Alanine Phosphatase and BIL T = Total Bilirubin.
Similar trends were observed across all groups both for pre- and post-dosing measurements for the levels of markers of kidney damage. The pre-dose measurements (on the left side) were done at baseline (T=0) and 7 days after the preceding dose. The post dose measurements were done 1 day after dosing and the last one 14 days (washout period) after the last dose. Urea = Blood Nitrogen Urea, CREAT = Creatinine.
5.3.3.2 Histopathology

Exposure to AuNPs at the different dose levels did not result in any tissue damage as revealed by histopathological assessment of the: heart, kidneys, liver, lungs and spleen (see Figure 7). The assessment showed comparable results between all test groups and the control.
5.4 Discussion

Use of AuNPs for drug delivery can only successfully reach the clinic when all questions with regards to the safety have been satisfactorily answered. The question on bioaccumulation of Au when administered as AuNPs for drug delivery purposes has not been extensively investigated and thus remains unanswered. There is a clear need for multifunctional nanocarriers (which AuNPs can be) with low bioaccumulation propensity40. Bioaccumulation is influenced by the biopersistence of a material which is a result of a biological system’s failure to clear foreign material. In the study described here, the acute and subchronic toxicity and bioaccumulation of AuNPs after repeated dosing and a washout period in Sprague Dawley rats. The amount of Au was quantified using NAA and the toxicity endpoints were general health assessments and the monitoring of markers of kidney and liver damage in serum. The influence of dose on the bioaccumulation and acute and subchronic toxicity of AuNPs was investigated and no correlation was found.

The bioaccumulation patterns followed the order liver>spleen>lungs>skeleton>carcass with the liver having the highest amount in micrograms per gram of the organ/tissue. Contrary to an earlier report25, there was no proportional increase in the amount of Au in all the organs/tissues examined with an increase in the dose administered. It must be noted that the earlier in earlier report the study duration was only 8 days. The amount of Au found in the organs was manifold higher than the background. The lowest amount detected (in all the samples analyzed) was a few times above the limit of detection of our quantification technique, this shows that all the Au was from the administered dose. A control group was not used in the study for quantifying Au because probability of finding natural Au in biological
samples is low as described in literature. Excretion of Au is mainly via the hepatobiliary system and rats are known to eat their feces, therefore the amounts detected in tissues can only be attributed to the administered doses because of the little or no oral absorption we witnessed in our own studies see chapter 3 of this thesis which is also corroborated in literature.

There is a paucity of data on the bioaccumulation of Au and other engineered nanomaterials (ENMs) in general. The studies reporting on bioaccumulation could not be easily generalized due to the vast differences in the doses, study designs and organs used to quantify the ENMs. However in all the studies, the liver and spleen had the highest accumulation levels indicating that the hepatobiliary system is the main clearance mechanism. Just as for biodistribution, bioaccumulation is also thought to be influenced by surface properties of the ENMs.

Based on the general health assessments which focused on monitoring behavioural (cage side behaviour and feeding patterns) and physiological (monitoring of mass gain and alertness) indicators there were no differences between the control and test groups in this study. This was comparable to the results observed when the masses of rats were monitored when magnetite an ENM was administered at different doses in a rodent model. The markers of liver damage, ALP, ALT and BIL T together with histopathological examination of liver tissues showed no differences between the control and tests groups. The same trend was observed for the markers of kidney damage; CREAT and UREA together with histopathological assessment of kidneys which is regarded as the gold standard for the assessment of nephrotoxicity. Histopathological examination of the heart, lungs and spleen
did not show any differences between the different groups. No influence of the dose level or
the actual treatment with AuNPs was detected. The markers of liver and kidney damage were
also similar between the pre and post dose samples indicating that there was no acute and/or
subchronic damage.

Serum enzymes and metabolites are used as biomarkers for the assessment of drug induced
liver injury (DILI) and nephrotoxicity, both acute and subchronic. If one considers the
bioaccumulation levels of Au in the liver for instance, the lack of alteration in the levels of the
markers assessed can be interpreted as a sign of safety or alternatively, that they are not the
appropriate indicators with regards to nanomaterial safety. As with ENMs characterization
techniques, there might be a need to come up with specific markers that can be used to assess
nanomaterial induced liver injury (NILI) in the routine safety assessment of ENMs. The
results of our study however are not in agreement with those of a previous study where they
showed dose dependent detrimental effects on tissue histology changes\(^{44}\). The duration of this
study was however short compared to ours but this highlights the lack of agreement on the
issue of toxicity of AuNPs after repeated dosing.

5.5 Conclusion

There was accumulation of Au in the order liver>spleen> lungs>skeleton>carcass after 7
weekly doses (three dose levels) and a 2 week washout period in Sprague-Dawley rats. There
was no observable acute or subchronic toxicity that can be attributed to the use of AuNPs
after the repeated dosing despite the accumulation in organs/tissues. The absence of indicators
of toxicity maybe an indication sign that that the appropriate parameters with regards to nanomaterial safety testing are not being applied to investigate the safety of AuNPs.

5.6 Acknowledgements

The technical assistance of; Antionette Fick in the animal experiment; Edward Motlhlabane, Andrew Sekgethe and Ntsoaki Seaga in the sample preparation for the NAA procedure; Charlotte and Malebo Malindi at Westvaal Hospital laboratory for serum analysis and Prof Hendrik Steyn and Energy Sonono for statistical analysis is gratefully acknowledged. To Drs. (BVSc). John Chipangura and Varaidzo Mukorera, thank you for the time you took to answer the numerous questions.

5.7 References

Chapter 6: General conclusions and future perspectives

Conclusions

The studies presented in this thesis give further evidence on the question of the safety of gold nanoparticles when intentional intravenously administered for biomedical applications. The conclusions drawn from this work are generally applicable to citrate coated gold nanoparticles in the size of 10-20 nm. There was wide systemic acute distribution of gold. Citrate, a surface attachment with an electrostatic interaction with the gold surface had different biodistribution profile compared to that of the gold core. After a single dose, gold as 14 nm gold nanoparticles were biopersistent over 56 days with the highest amount in the liver, spleen, lungs and bones in that descending order. The biopersistence raised some eyebrows in terms of the impact the Au will have on the tissues/organs over longer periods of time. Gold nanoparticles showed a non-dose dependent bioaccumulation propensity when multiple doses were administered. Despite the biopersistence and bioaccumulation there was no evidence of peracute, acute, subacute or subchronic toxicity due to the exposure of gold nanoparticles at different doses. Histopathological assessments of the heart, liver, spleen, lungs and kidneys showed no structural damage to the organs as a result of exposure to gold nanoparticles. There were no differences in the levels of alkaline phosphatase, alanine transferase and total bilirubin (markers of liver damage) in all groups in the biopersistence and bioaccumulation studies. The same trend was observed when creatinine and blood urea nitrogen (markers of kidney damage) were monitored. Gold nanoparticles do not cause any end organ damage, acute or subchronic toxicity despite being biopersistent and having a high bioaccumulation propensity.
Future perspectives

Our findings add more information on the question: How safe are AuNPs in a rodent model at concentrations which may be used for biomedical applications? As with any research, more questions arose from this inquiry. The exact location of AuNPs in the tissues (intracellular vs. intercellular) after intravenous administrations remains unknown or a matter of intense debate. From our acute biodistribution and biopersistence results, bone deposition was observed. Since adult male Sprague-Dawley rats were used in studies, the question that arose from the findings is: What is the impact of bone deposition on young developing bones and the cellular processes at that stage of development? Depending on the exact location of the gold in the bone tissue, bone deposition can have influences on the bone density and/or maturation of blood cells. When one considers the bioaccumulation propensity of gold when administered as AuNPs, the question on the levels of gold in tissues after chronic administration appears pertinent and with great merit to investigate. These questions can be answered in the future and will add weight to the debate on the safety of AuNPs.
Appendix 1: Guide to authors

This section contains the guide to authors from the following journals which the work from this thesis has been and will be submitted to;

1. Molecules
2. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE
3. International Journal of Nanomedicine
Molecules — Instructions for Authors

Shortcuts

- Manuscript Submission Overview
- Preparation of a Manuscript
- Qualification for Authorship
- Research Ethics Guidelines
- Correct Identification of Components of Natural Products
- Potential Conflicts of Interest
- Editorial Procedures and Peer-Review
- Suggesting Reviewers
- English Corrections
- Publication Ethics Statement
- Supplementary Materials and Data Deposit
- Guidelines for Deposition of Sequences and of Expression Data

Submission Checklist

Please

1) read the Aims & Scope to gain an overview and assess if your manuscript is suitable for this journal;

2) use the Microsoft Word template or LaTeX template to prepare your manuscript;

3) make sure you have appropriately considered issues about publication ethics, research ethics, copyright, authorship, figure formats, and references format;

4) ensure that all authors have approved the content of the submitted manuscript.

Manuscript Submission Overview

Types of Publications

Molecules has no restrictions on the length of manuscripts, provided that the text is concise and comprehensive. Full experimental details must be provided so that the results can be reproduced by other groups. Molecules encourages authors to publish all experimental controls and full datasets as supplementary files (please read the guidelines about Supplementary Materials carefully and references to unpublished data).

The different types of articles published in Molecules are indicated in the first section of the Aims & Scope. The main types are:

- **Articles**: research manuscripts report new evidence or new conclusions which have neither been published before nor are under consideration for publication in another journal. MDPI considers all original research manuscripts provided that the work reports scientifically sound experiments and provides a substantial amount of new information. We strongly recommend authors not to unnecessarily divide their work into several related manuscripts.

- **Reviews**: review manuscripts provide concise and precise updates on the latest progress made in a given area of research.

- **Conference Papers**: Expanded and high quality conference papers are also considered in Molecules if they fulfill the following requirements: (1) the paper should be expanded to the size of a research article; (2) the conference paper should be cited and noted on the first page of the paper; (3) if the authors do not hold the copyright to the published conference paper, authors should seek the appropriate permission from the copyright holder; (4) authors are asked to disclose that it is a conference paper in their cover letter and include a statement on what has been changed compared to the original conference paper.

Submission Process

Manuscripts for Molecules should be submitted online at susy.mdpi.com. The submitting author, who is generally the corresponding author, is responsible for the manuscript during the submission and peer-review process. The submitting authors must ensure that all co-authors have been included in the author list (read the criteria to qualify for authorship) and that they all have read and approved the content of the submitted manuscript. To submit your manuscript, register and log in to this website. Once you are registered, click here to go to the submission form for Molecules. All co-authors can see the manuscript details in the submission system, if they register and log in using the e-mail address provided during manuscript submission.

Accepted File Formats

Authors must use the Microsoft Word template or LaTeX template to prepare their manuscript. Using the template file will substantially shorten the time to complete copy-editing and publication of accepted manuscripts. Accepted file formats are:

- **Microsoft Word**: Manuscripts prepared in Microsoft Word must be converted into a single file before submission. When preparing manuscripts in Microsoft Word, the Molecules Microsoft Word template file must be used. Please insert your graphics (schemes, figures, etc.) in the main text after the paragraph of its first citation.

- **LaTeX**: Manuscripts prepared in LaTeX must be collated into one ZIP folder (include all source files and images, so that the Editorial Office can recompile the submitted PDF). When preparing manuscripts in LaTeX, please use the Molecules LaTeX template files. You can now also use the online application writeLaTeX to submit articles directly to Molecules. The MDPI LaTeX template file should be selected from the writeLaTeX template gallery.

Cover Letter

A cover letter must be included with each manuscript submission. It should be concise and explain why the content of your paper is significant, placing your findings in the context of existing work and why it fits the scope of the journal. Please confirm that neither the manuscript nor any parts of its content are currently under consideration or published in another journal. Any prior submissions of the
molecules to MDPI journals must be acknowledged. The names of proposed and excluded reviewers should be provided in the submission system, not in the cover letter.

Note for Authors Funded by the National Institutes of Health (NIH)

The editors of this journal are able to deposit papers to the NIH Manuscript Submission System (NHMS, http://nhms.nih.gov) on your behalf. If you are funded by NIH, please request this service from our editors after acceptance of your paper.

[Return to top]

Preparation of a Manuscript

General Considerations

- Research manuscripts should comprise:
 - Front matter: Title, Author list, Affiliations, Abstract, Keywords
 - Research manuscript sections: Introduction, Results, Discussion, Experimental Section, Conclusions (optional), Supplementary Materials
 - Back matter: Acknowledgments, Author Contributions, Conflicts of Interests, References.
- Review manuscripts should comprise the front matter, literature review sections and the back matter. The template file can also be used to prepare the front and back matter of your review manuscript. It is not necessary to follow the remaining structure.
- Abstract Graphic: Authors are encouraged to provide a graphical abstract to display on the website alongside the textual abstract. It should be a self-explanatory snapshot of your article giving a view on its rationale, study design, and/or conclusions. The graphic should not exceed 550 pixels. When prepared in Adobe Photoshop or Microsoft PowerPoint, the frame should be 5–15 cm in width and height. The text should be kept to a minimum and the font size comprised between 10 pt and 14 pt to ensure readability. The graphic should be provided as a JPG, PNG or GIF file.
- "Data not shown" should be avoided in research manuscripts. We encourage our authors to publish at observations related to the submitted manuscript as Supplementary Materials. "Unpublished data" intended for publication in a different manuscript, i.e., in a manuscript that is either planned, "in preparation" or that have been "submitted" but not yet accepted, should be cited in the text and a reference should be added in the References section. "Personal Communications" should also be cited in the text and reference added in the References section. (see also the MDPI reference list and citations style guide).
- Abbreviations should be defined in parentheses the first time they appear in the abstract, main text and in figure captions.
- SI Units (International System of Units) should be used for this journal. Imperial, US customary and other units should be converted to SI units whenever possible before submission of a manuscript to the journal.
- Accession numbers of RNA, DNA and protein sequences used in the manuscript should be provided in the Experimental Section section. Please also read the Guidelines for Deposition of Sequences and of Expression Data.
- Equations: If you are using Word, please use either the Microsoft Equation Editor or the MathType add-on in your paper. Equations should be editable by the editorial office and not appear in a picture format.
- Chemical Structures and Reaction Schemes: Chemical structures and reaction schemes should be drawn using an appropriate software package designed for this purpose. As a guideline, these should be drawn to a scale such that all the details and text are clearly legible when placed in the manuscript (i.e., text should be no smaller that 8-9 pt.). To facilitate editing we recommend the use of any of the software packages widely available for this purpose: MDL® ISIS/Draw, Accelrys ChemSketch®, CS ChemDraw®, ChemWindow®, etc. Free versions of some of these products are available for personal or academic use from the respective publishers. If another less common structure drawing software is used, authors should ensure the figures are saved in a file format compatible with one of these products.
- Physical and Spectroscopic Data: Physical and spectroscopic data as well as tables for NMR data should be prepared according to the ACS's Preparation and Submission of Manuscripts standard (page 4).
- Experimental Data: To allow for correct abstracting of the manuscripts all compounds should be mentioned by correct chemical name, followed by any numerals used to refer to them in the paper. The use of the IUPAC nomenclature conventions is preferred, although alternate naming systems (for example CAS rules) may be used provided that a single consistent naming system is used throughout a manuscript. For authors perhaps unfamiliar with chemical nomenclature in English we recommend the use of compound naming software such as AutoNom. Full experimental details must be provided, or, in the case of many compounds prepared by a similar method, a representative typical procedure should be given. The general style used in the Journal of Organic Chemistry is preferred. Complete characterization data must be given for all new compounds. For papers mentioning large numbers of compounds a tabular format is acceptable. For known compounds appropriate literature references must be given.
- X-Ray Crystallographic Data: to avoid publication of extensive compilations of crystallographic data and facilitate the refereeing of manuscripts, Molecules asks authors to deposit the crystallographic data prior to the submission of the manuscript.
 - COD: Preferably, the data should be deposited with the Crystallography Open Database (COD). Please deposit as pre-publication data at http://www.crystallography.net/initiate_deposition.php prior to the submission of the manuscript. COD numbers for structures will be displayed immediately after the data is validated and deposited, and should be included in the manuscript, along with the following text: "COD contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.crystallography.net/search.html". This text may be included in the experimental section or as a suitably referenced endnote.
 - CCDC: Alternatively, the data can be deposited to the Cambridge Crystallographic Data Centre (CCDC). For instructions on doing this, see: http://www.ccdc.cam.ac.uk/conts/depositing.html. The deposition numbers are usually provided by the CCDC within three working days and should be included in the manuscript, along with the following text: "CCDC contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html". This text may be included in the experimental section or as a suitably referenced endnote.
- Supplementary Materials and Research Data: To maintain the transparency and reproducibility of research results, authors are encouraged to make their experimental and research data openly available either by depositing into data repositories or by publishing the data and files as "Supplementary Materials". Large datasets and files should be deposited in specialized data repositories. Small datasets, spreadsheets, images, video sequences, conference slides, software source code, etc. can be uploaded as "Supplementary Files" during the manuscript submission process. The supplementary files will also be made available to the referees during the peer-review process and be published online alongside the manuscript. Please read the information about Supplementary Materials and Data Deposit for additional guidelines.

[Return to top]

Front Matter

These sections should appear in all manuscript types

- Title: The title of your manuscript should be concise, specific and relevant. When gene or protein names are included, the abbreviated name rather than full name should be used.
- Author List and Affiliations: Authors' full first and last names must be provided. The initials of any middle names can be added.
Introduction: The introduction should briefly place the study in a broad context and highlight why it is important. It should define the purpose of the work and its significance. The current state of the research field should be reviewed carefully and key publications should be cited. Please highlight controversial and diverging hypotheses when necessary. Finally, briefly mention the main aim of the work and highlight the main conclusions. As far as possible, please keep the introduction comprehensible to readers outside your particular field of research.

Results: This section may be divided by subheadings. It should provide a concise and precise description of the experimental results, their interpretation as well as the experimental conclusions that can be drawn.

Discussion: This section may be divided by subheadings. Authors should discuss the results and how they can be interpreted in perspective of previous studies and of the working hypotheses. The findings and their implications should be discussed in the broadest context possible. Future research directions may also be highlighted.

Experimental Section: This section should be divided by subheadings. Materials and Methods should be described with sufficient details to allow others to replicate and build on published results. Please note that publication of your manuscript implies that you must make all materials, data, and protocols associated with the publication available to readers. Please disclose at the submission stage any restrictions on the availability of materials or information. New methods and protocols should be described in detail while well-established methods can be briefly described and appropriately cited.

Research manuscripts reporting large datasets that are deposited in a publicly available database should specify where the data have been deposited and provide the relevant accession numbers. If the accession numbers have not yet been obtained at the time of submission, please state that they will be provided during review. They must be provided prior to publication.

Conclusions: This section is not mandatory, but can be added to the manuscript if the discussion is unusually long or complex.

Supplementary Materials: This section should be included when supplementary information is published online alongside the manuscript. Please indicate the name and title of each supplementary file as follows: Figure S1: title, Table S1: title, etc.

Back Matter

Acknowledgments: All sources of funding of the study should be disclosed. Please clearly indicate grants that you have received in support of your research work. Clearly state if you received funds for covering the costs to publish in open access. Note that some funders will not refund article processing charges (APC) if the funder and grant number are not clearly identified in the submission stage. Any restrictions on the availability of materials or information are also to be declared.

Author Contributions: For research articles with several authors, a short paragraph specifying their individual contributions must be provided. The following statements should be used: "X.X. and Y.Y. conceived and designed the experiments; X.X. performed the experiments; X.X. and Y.Y. analyzed the data; W.W. contributed reagents/materials/analysis tools; Y.Y. wrote the paper."

Authorship must be limited to those who have contributed substantially to the work reported. Please read the section concerning the criteria to qualify for authorship carefully.

Conflicts of Interest: Authors must identify and declare any personal circumstances or interest that may be perceived as inappropriately influencing the representation or interpretation of reported research results. If there is no conflict of interest, please state "The authors declare no conflict of interest." Any role of the funding sponsors in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or in the decision to publish the results must be declared in this section. If there is no role, please state "The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results."

References: References must be numbered in order of appearance in the text (including tables and legends) and listed individually at the end of the manuscript. We recommend preparing the references with a bibliography software package, such as EndNote, Reference Manager or Zotero to avoid typing mistakes and duplicated references.

Citations and References in Supplementary files are permitted provided that they also appear in the main text and in the reference list.

References should be described as follows depending on the type of work:

- Journal Articles:
 1. Author 1, A.B.; Author 2, C.D. Title of the title. Abbreviated Journal Name Year, Volume, page range, DOI or other identifier. Available online: URL (accessed on Day Month Year).

- Books and Book Chapters:
 1. Author 1, A.; Author 2, B. Book Title, 3rd ed.; Publisher: Publisher Location, Country, Year; pp. 154–196.

- Conference Proceedings:
 1. Author 1, A.B.; Author 2, C.D.; Author 3, E.F. Title of Presentation. In Title of the Collected Work (if available), Proceedings of the Name of the Conference, Location of Conference, Country, Date of Conference; Editor 1, Editor 2, Eds. (if available); Publisher: City, Country, Year (if available); Abstract Number (optional), Pagination (optional).
Preparing Figures, Schemes and Tables

- All figure files should be separately uploaded during submission.
- Figures and schemes must be provided at a sufficiently high resolution (minimum 1000 pixels width/height, or a resolution of 300 dpi or higher). All figure file formats are accepted. However, TIFF, JPEG, EPS and PDF files are preferred.
- Molecules can publish multimedia files in articles or as supplementary materials. Please get in touch with the Editorial office for further information.
- All Figures, Schemes and Tables should also be inserted into the main text close to their first citation and must be numbered following their number of appearance (Figure 1, Scheme 1, Figure 2, Scheme II, Table 1, etc.).
- All Figures, Schemes and Tables should have a short explanatory title and a caption.
- All table columns should have an explanatory heading. To facilitate the copy-editing of larger tables, smaller fonts may be used, but in no less than 8 pt. in size. Authors should use the Table option of Microsoft Word to create tables.
- For multi-panel figures, the file must contain all data in one file. For tips on creating multi-panel figures, please read the helpful advice provided by L2 Molecules.
- Authors are encouraged to prepare figures and schemes in color (RGB at 8-bit per channel). Full color graphics will be published free of charge.

Qualification for Authorship

Authorship must include and be strictly limited to researchers who have substantially contributed to the reported work. To qualify for authorship, a researcher should have made a substantial contribution to the design of the study, or to the production, analysis or interpretation of the results. Authors should also have been involved in the preparation and have approved the submitted manuscript. Those who contributed to the work but do not qualify for authorship should be listed in the acknowledgments. According to the Committee on Publication Ethics (COPE) standard, to which this journal adheres, "all authors should agree to be listed and should approve the submitted and accepted versions of the publication. Any change to the author list should be approved by all authors including any who have been removed from the list. The corresponding author should act as a point of contact between the editor and the other authors and should keep co-authors informed and involve them in major decisions about the publication (e.g. answering reviewers’ comments)." [1]

Research Ethics Guidelines

1. Research Involving Animals

The editors will require that the benefits potentially derived from any research causing harm to animals are significant in relation to any suffering endured by animals, and that procedures followed are unlikely to cause offense to the majority of readers. Authors should particularly ensure that their research complies with the commonly-accepted ‘3Rs’:
- Replacement of animals by alternatives wherever possible,
- Reduction in number of animals used, and
- Refinement of experimental conditions and procedures to minimize the harm to animals.

Any experimental work must be conducted in accordance with relevant national legislation on the use of animals for research. Authors should follow the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines (http://www.nc3rs.org.uk/page.asp?id=1357) for reporting experiments using live animals. Authors may use the ARRIVE guidelines as a checklist (www.nc3rs.org.uk/ARRIVEchecklist).

An approval from an ethics committee must be obtained before undertaking the research. The project identification code, date of approval and name of the ethics committee or institutional review board should be cited in the Methods section.

Editors reserve the rights to reject any submission that does not meet these requirements.

An example of Ethical Statements:

The animal protocols used in this work were evaluated and approved by the Animal Use and Ethic Committee (CEUA) of the Institute Pasteur Montevideo (Protocol 2009_1_3284). They are in accordance with FELASA guidelines and the National law for Laboratory Animal Experimentation (Law no. 18.611).

2. Research Involving Human Subjects

When reporting on research that involves human subjects, human material, human tissues or human data, authors must declare that the investigations were carried out following the rules of the Declaration of Helsinki of 1975 (http://www.wma.net/en/30publications/10policiess/10DeclarationHelsinkiE.pdf) revised in 2008. According to point 23 of this declaration, an approval from an ethics committee should have been obtained before undertaking the research. As a minimum, a statement including the project identification code, date of approval and name of the ethics committee or institutional review board should be cited in the Methods Section of the article. Data relating to individual participants must be described in detail, but private information identifying participants need not be included unless the identifiable materials are of relevance to the research (for example, photographs of participants’ faces that show a particular symptom). A written informed consent for publication must be obtained from participating patients in this case.

Editors reserve the rights to reject any submission that does not meet these requirements.

Example of Ethical Statements:

The animal protocols used in this work were evaluated and approved by the Animal Use and Ethic Committee (CEUA) of the Institute Pasteur Montevideo (Protocol 2009_1_3284). They are in accordance with FELASA guidelines and the National law for Laboratory Animal Experimentation (Law no. 18.611).
All subjects gave their informed consent for inclusion before they participated in the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of XXX (Project identification code).

3. Research Involving Cell Lines

Methods sections for submissions reporting on research with cell lines should state the origin of any cell lines. For established cell lines the provenance should be stated and references must also be given to either a published paper or to a commercial source. If previously unpublished de novo cell lines were used, including those gifted from another laboratory, details of institutional review board or ethics committee approval must be given, and confirmation of written informed consent must be provided if the line is of human origin.

An example of Ethical Statements:

The HCT116 cell line was obtained from XXXX. The MLH1+ cell line was provided by XXXXX, Ltd. The DLD-1 cell line was obtained from Dr. XXXX. The DR-GFP and SA-GFP reporter plasmids were obtained from Dr. XXX and the Rad51K133A expression vector was obtained from Dr. XXXX.

4. Research Involving Plants

Experimental research on plants (either cultivated or wild) including collection of plant material, must comply with institutional, national, or international guidelines. We recommend that authors comply with the Convention on Biological Diversity and the Convention on the Trade in Endangered Species of Wild Fauna and Flora.

For each submitted manuscript supporting genetic information and origin must be provided. For research manuscripts involving rare and non-model plants (other than, e.g., Arabidopsis thaliana, Nicotiana benthamiana, Oryza sativa, or many other typical model plants), voucher specimens must be deposited in an accessible herbarium or museum. Vouchers may be requested for review by future investigators to verify the identity of the material used in the study (especially if taxonomic rearrangements occur in the future). They should include details of the populations sampled on the site of collection (GPS coordinates), date of collection, and document the part(s) used in the study where appropriate. For rare, threatened or endangered species this can be waived but it is necessary for the author to describe this in the cover letter.

Editors reserve the rights to reject any submission that does not meet these requirements.

An example of Ethical Statements:

Torenia fournieri plants were used in this study. White-flowered Crown White (CrW) and violet-flowered Crown Violet (CrV) cultivars selected from ‘Crown Mix’ (XXX Company, City, Country) were kindly provided by Dr. XXX (XXX Institute, City, Country).

Arabidopsis mutant lines (SALKxxx, SALKxxx, …) were kindly provided by Dr. XXX, institute, city, country.

[Return to top]

Correct Identification of Components of Natural Products

The correct identification of the various components of extracts from natural sources is of key importance, and as publishers we are keenly aware of our responsibility to the scientific community in this area. Consequently, for papers on this topic, we have adopted the recommendations of the Working Group on Methods of Analysis of the International Organisation of the Flavour Industry (IOFI), as published in Flavour Fragr. J. 2006, 21, 185. These recommendations may be summarized as follows:

Any identification of a natural compound must pass scrutiny by the latest forms of available analytical techniques. This implies that its identity must be confirmed by at least two different methods, for example, comparison of chromatographic and spectroscopic data (including mass, IR and NMR spectra) with those of an authentic sample, either isolated or synthesized. For papers claiming the first discovery of a given compound from a natural source, the authors must provide full data obtained by their own measurements of both the unknown and an authentic sample, whose source must be fully documented. Authors should also consider very carefully potential sources of artifacts and contaminants resulting from any extraction procedure or sample handling.

[Return to top]

Potential Conflicts of Interest

It is the authors’ responsibility to identify and declare any personal circumstances or interests that may be perceived as inappropriately influencing the representation or interpretation of clinical research. If there is no conflict, please state here “The authors declare no conflict of interest.” This should be conveyed in a separate “Conflicts of Interest” section preceding the “References” sections at the end of the manuscript.

[Return to top]

Editorial Procedures and Peer-Review

Initial Checks

All submitted manuscripts received by the Editorial Office will be checked by a professional in-house Managing Editor to determine whether it is properly prepared and whether the manuscript follows the ethical policies of the journal, including those for human and animal experimentation. Manuscripts that do not fit the journal or are not fit in line with our ethical policy may be rejected before peer-review. Manuscripts that are not properly prepared will be returned to the authors for revision and resubmission. The Managing Editor will consult the journal’s Editor-in-Chief, the Guest Editor or an Editorial Board member to determine whether the manuscript fits the scope of the journal and whether it is scientifically sound. No judgment on the significance or potential impact of the work will be made at this stage.

Peer-Review

Once a manuscript passes the initial checks, it will be assigned to at least two independent experts for peer-review.

A single-blind peer-review process is applied, where authors’ names are revealed to reviewers. In-house assistant editors generally invite experts recommended by the Editor-in-Chief or identified by literature searches. These experts may also include Editorial Board members and Guest Editors of the journal. Potential reviewers suggested by the authors may also be considered. Reviewers should not have published with any of the co-authors during the past five years and should not currently work or collaborate with one of the institutes of the co-authors of the submitted manuscript.

Editorial Decision and Revision

Based on the comments and advice of the peer-reviewers, an external editor – usually the Editor-in-Chief or a Guest Editor – will make
a decision to accept, reject, or to ask authors to revise the manuscript.

For Minor Revisions the authors will have one week to resubmit their revised manuscript. For Major Revisions the authors will have two weeks to resubmit their revised manuscript. However, authors should contact the editorial office if extended revision time is anticipated.

Author Appeals

Authors may appeal a rejection by sending an e-mail to the Editorial Office of the journal. The appeal must provide a detailed justification, including point-by-point responses to the reviewers’ and/or Editor’s comments. The Managing Editor of the journal will forward the manuscript and relaying information (including the identities of the referees) to an Editorial Board member who was not involved in the initial decision-making process. If no appropriate Editorial Board member is available, the editor will identify a suitable external scientist. The Editorial Board member will be asked to give an advisory recommendation on the manuscript and may recommend acceptance, further peer-review, or uphold the original rejection decision. A reject decision at this stage will be final and cannot be revoked.

Production and Publication

Once accepted, the manuscript will undergo professional copy-editing, English editing, proofreading by the authors, final corrections, pagination, and, publication on the www.mdpi.com website.

[Suggesting Reviewers]

During the submission process, authors are pre encouraged to list five names of potential reviewers with the appropriate expertise to review the manuscript. The editors will not necessarily approach these referees. Please provide detailed contact information (address, homepage, phone, e-mail address). The proposed referees should neither be current collaborators of the co-authors nor have published with any of the co-authors of the manuscript within the last five years. Proposed reviewers should be from different institutions to the authors. You may identify appropriate Editorial Board members of the journal as potential reviewers. You may also suggest reviewers from among the authors that you frequently cite in your paper.

[English Corrections]

This journal is published in English. To facilitate proper peer-reviewing of your manuscript, it is essential that it is submitted in grammatically correct English. If you are not a native English speaker, we strongly recommend that you have your manuscript professionally edited before submission or read by a native English-speaking colleague. Professional editing will mean that reviewers and future readers are better able to read and assess the content of your manuscript. For additional information see the English Editing Guidelines for Authors.

[Publication Ethics Statement]

Molecules is a member of the Committee on Publication Ethics (COPE). We fully adhere to its Code of Conduct and to its Best Practice Guidelines.

The editors of this journal take the responsibility to enforce a rigorous peer-review process together with strict ethical policies and standards to ensure to add high quality scientific works to the field of scholarly publication. Unfortunately, cases of plagiarism, data falsification, image manipulation, inappropriate authorship credit, and the like, do occur. As a member of COPE, Molecules take such publishing ethics issues very seriously and are trained to proceed in such cases with a zero tolerance policy.

Authors wishing to publish their papers in Molecules are asked to abide to the following rules:

- Any facts that might be perceived as a possible conflict of interest of the author(s) must be disclosed in the paper prior to submission.
- Authors should accurately present their research findings and include an objective discussion of the significance of their findings.
- Data and methods used in the research need to be presented in sufficient detail in the paper, so that other researchers can replicate the work.
- Raw data should preferably be publicly deposited by the authors before submission of their manuscript. Authors need to have at least have the raw data ready available for presentation to the referees and the editors of the journal, if requested. Authors need to ensure appropriate measures are taken so that raw data is retained in full for a reasonable time after publication.
- Simultaneous submission of manuscripts to more than one journal is not tolerated.
- Republishing content that is not novel is not tolerated (for example, an English translation of a paper that is already published in another language will not be accepted).
- If errors and inaccuracies are found by the authors after publication of their paper, they need to be promptly communicated to the editors of the journal so that appropriate actions can be taken. Please refer to our policy regarding publication of publishing addenda and corrections.
- Your manuscript should not contain any information that has already been published. If you include already published figures or images, please obtain the necessary permission from the copyright holder to publish under the CC-BY license.
- Plagiarism, data fabrication and image manipulation are not tolerated.
 - Plagiarism is not acceptable in Molecules submissions. Plagiarism includes copying text, ideas, images, or data from another source, even from your own publications, without giving any credit to the original source.
 - Reuse of text that is copied from another source must be between quotes and the original source must be cited. If a study's design or the manuscript's structure or language has been inspired by previous works, these works must be explicitly cited.
 - If plagiarism is detected during the peer review process, the manuscript may be rejected. If plagiarism is detected after publication, we may publish a correction or retract the paper.
 - Image files must not be manipulated or adjusted in any way that could lead to misinterpretation of the information provided by the original image.
 - Irregular manipulation includes: 1) introduction, enhancement, moving, or removing features from the original image; 2) grouping of images that should obviously be presented separately (e.g., from different parts of the same gel, or from different gels); or 3) modifying the contrast, brightness or color balance to obscure, eliminate or enhance some
information.

If irregular image manipulation is identified and confirmed during the peer review process, we may reject the manuscript. If irregular image manipulation is identified and confirmed after publication, we may correct or retract the paper.

Our in-house editors will investigate any allegations of publication misconduct and may contact the authors’ institutions or funders if necessary. If evidence of misconduct is found, appropriate action will be taken to correct or retract the publication. Authors are expected to comply with the best ethical publication practices when publishing with MDPI.

[Return to top]

Supplementary Materials and Data Deposit

In order to maintain the integrity, transparency and reproducibility of research records, and to retain important chemical and structural information, authors are strongly encouraged to make their experimental and research data openly available either by depositing into data repositories or by publishing the data and files as supplementary information in this journal. Additional data and files can be uploaded as “Supplementary Files” during the manuscript submission process. The supplementary files will also be available to the referees as part of the peer-review process, although referees are not specifically asked to review these files. Accepted file formats include (but are not limited to):

- spectral data (NMR, IR, Raman, ESR, etc.) in JCAMP (JDX) format
- 3D coordinate structures (in PDB, MOF, XYZ or other common format)
- crystallographic information (in CIF format)
- data tables and spreadsheets (text files, MS Excel, OpenOffice, CSV, XML, etc.)
- text documents (text files, PDF, MS Word, OpenOffice, etc.; text documents will usually be converted to PDF files for publication)
- images (JPEG, PNG, GIF, TIFF, BMP, etc.)
- videos (AVI, MPG, QuickTime, etc.)
- executables (EXE, Java, etc.)
- software source code

Citations and References in Supplementary files are permitted provided that they also appear in the main text and in the reference list.

Large data sets and files should be deposited to specialized service providers (such as Figshare) or institutional/subject repositories, preferably those that use the DataCite mechanism. For a list of specialized repositories for the deposit of scientific and experimental data, please consult datalab.org or re3data.org. The data repository name, link to the data set (URL) and accession number, doi or handle number of the data set must be provided in the paper. The journal Data (ISSN 2306-5729) also accepts submissions of data set papers, and the publication of small data sets along with the paper, and/or software source codes is encouraged.

Guidelines for Deposition of Sequences and of Expression Data

New sequence information must be deposited to the appropriate database prior to submission of the manuscript. Accession numbers provided by the database should be included in the submitted manuscript. Manuscripts will not be published until the accession number is provided.

- **New nucleic acid sequences** must be deposited in one of the following databases: GenBank, EMBL, or DDBJ. Sequences should be submitted to only one database.
- **New high throughput sequencing (HTS) datasets** (RNA-seq, ChIP-Seq, degradome analysis, …) must be deposited either in the GEO database or in the NCBi’s Sequence Read Archive.
- **New microarray data** must be deposited either in GEO or ArrayExpress databases. The "Minimal Information About a Microarray Experiment" (MIAME) guidelines published by the Microarray Gene Expression Data Society must be followed.
- **New protein sequences** obtained by protein sequencing must be submitted to UniProt (submission tool SPIN).

All sequence names and the accession numbers provided by the databases should be provided in the Materials and Methods section of the article.

[Return to top]
NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE
Nanotechnology, Biology, and Medicine

AUTHOR INFORMATION PACK

TABLE OF CONTENTS

- Description p.1
- Impact Factor p.1
- Abstracting and Indexing p.2
- Editorial Board p.2
- Guide for Authors p.4

DESCRIPTION

The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.

Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases. In addition to bimonthly issues, the journal website (http://www.nanomedjournal.com) also presents important nanomedicine-related information, such as future meetings, meeting summaries, funding opportunities, societal subjects, public health, and ethical issues of nanomedicine.

The potential scope of nanomedicine is broad, and we expect it to eventually involve all aspects of medicine. Sub-categories include synthesis, bioavailability, and biodistribution of nanomedicines; delivery, pharmacodynamics, and pharmacokinetics of nanomedicines; imaging; diagnostics; improved therapeutics; innovative biomaterials; interactions of nanomaterials with cells, tissues, and living organisms; regenerative medicine; public health; toxicology; point of care monitoring; nutrition; nanomedical devices; prosthetics; biomimetics; and bioinformatics.

Article formats include Communications, Original Articles, Reviews, Perspectives, Technical and Commercialization Notes, and Letters to the Editor. We invite authors to submit original manuscripts in these categories. The journal website (http://www.nanomedjournal.com) also presents important nanomedicine-related information, such as future meetings, meeting summaries, funding opportunities, societal subjects, public health, and ethical issues of nanomedicine.

IMPACT FACTOR

2013: 5.978 © Thomson Reuters Journal Citation Reports 2014
ABSTRACTING AND INDEXING

Biotechnology Citation Index
MEDLINE®
EMBASE
SCISEARCH
Biological Abstracts
BIOSIS Previews
Scopus
Journal Citation Reports - Science Edition

EDITORIAL BOARD

Editor-in-Chief
Lajos P. Balogh, PhD, AA Nanomedicine & Nanotechnology Consultants, Boston, Massachusetts, USA

Clinical Editor
Kenneth K.Y. Wong, MD, PhD, The University of Hong Kong, Hong Kong, China

Associate Editors
Mansoor Amiji, PhD, Northeastern University, Boston, Massachusetts, USA
Rutledge Ellis-Behnke, PhD, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
Marianna Foldvari, PhD, University of Waterloo, Waterloo, Ontario, Canada
Marc Hansen, PhD, University of Connecticut Health Center, Farmington, Connecticut, USA
Donald T. Haynie, PhD, University of South Florida, Tampa, Florida, USA
Rod Hill, PhD, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Gregory M. Lanza, MD, PhD, Washington University in St. Louis, St. Louis, Missouri, USA
Yuri Lyubchenko, PhD, DSc, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
Moein Moghimi, PhD, University of Copenhagen, Copenhagen, Denmark
Kuan Wang, PhD, Academia Sinica, Taipei City, Taiwan, ROC
Min Wu, MD, PhD, University of North Dakota, Grand Forks, North Dakota, USA
Yuliang Zhao, PhD, Chinese Academy of Sciences (CAS), Beijing, China

Special Editors
Raj Bawa, PhD, Bawa Biotech LLC, Ashburn, Virginia, USA
Marina A. Dobrovolskaja, PhD, SAIC-Frederick, Inc., Frederick, Maryland, USA
Mark B. Evers, MD, University of Kentucky, Lexington, Kentucky, USA
Adam Friedman, MD, FAAD, Albert Einstein College of Medicine, Bronx, New York, USA
Alexandre M. Seifalian, MD, PhD, University College London Medical School, London, UK
Albert Sinusas, MD, Yale University School of Medicine, New Haven, Connecticut, USA
Wolfgang Wenzel, PhD, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Honorary Editorial Board
James Baker, Jr., MD, University of Michigan, Ann Arbor, Michigan, USA
Mike Eaton, PhD, Nottingham University, Nottingham, England, UK
Mauro Ferrari, PhD, Methodist Hospital Research Institute, Houston, Texas, USA
Hamid Ghandehari, PhD, The University of Utah, Salt Lake City, Utah, USA
Peixuan Guo, MS, PhD, University of Kentucky, Lexington, Kentucky, USA
Rakesh Jain, PhD, Harvard Medical School, Boston, Massachusetts, USA
Chad Mirkin, PhD, Northwestern University, Evanston, Illinois, USA
Andre Nel, MD, PhD, University of California at Los Angeles, Los Angeles, California, USA
Zhifeng Shao, PhD, Shanghai Jiao Tong University, Shanghai, China
Donald Tomalia, PhD, NanoSynthons LLC, Mount Pleasant, Michigan, USA

Editorial Board
Christoph Alexiou, MD, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
Thomas L. Andresen, PhD, Technical University of Denmark, Lyngby, Denmark
Fatemah Attyabi, Pharm.D, PhD, Tehran University of Medical Sciences, Tehran, Iran
Cheryl A. Baker, PhD, MD Anderson Cancer Center Orlando, Orlando, Florida, USA
Elena Batrakova, PhD, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
Roy Bicknell, PhD, University of Birmingham, Birmingham, UK
Michelle Bradbury, MD, PhD, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
Vladimir Chekhonin, MD, PhD, Dsc, Russian State Medical University, Moscow, Russian Federation
Shuk Han Cheng, PhD, City University of Hong Kong, China
Ashutosh Chilkoti, PhD, Duke University, Durham, North Carolina, USA
Saikat Das, MD, M-Tech, Christian Medical College, Vellore, Tamil-Nadu, India
Anjan Kr. Dasgupta, PhD, University of Calcutta, Kolkata, India
Kenneth Dawson, PhD, University College Dublin, Dublin, Ireland
Joseph M. DeSimone, PhD, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
William Dynan, PhD, Medical College of Georgia, Augusta, Georgia, USA
Omid Farokhzad, MD, Harvard Medical School, Boston, Massachusetts, USA
Elias Fattal, PhD, Université Paris-Sud (Paris XI), Châtenay-Malabry, France
Si-Shen Feng, PhD, National University of Singapore, Singapore, Singapore
Robert Freitas Jr, JD, Institute for Molecular Manufacturing, Palo Alto, California, USA
Rogerio Gaspar, PhD, Universidade de Lisboa (Lisbon), Lisboa, Portugal
Howard Gendelman, MD, PhD, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
Gershon Golomb, PhD, Hebrew University of Jerusalem, Jerusalem, Israel
Tayyaba Hasan, PhD, Massachusetts General Hospital, Boston, Massachusetts, USA
Jack Hoopes, DVM, PhD, Dartmouth College, Hanover, New Hampshire, USA
RaghuRaman Kannan, PhD, University of Missouri, Columbia, Missouri, USA
Rangaramanujam M. Kannan, PhD, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Maria Kavallaris, Ph.D, University of New South Wales, Randwick, Australia
Daniel S. Kohane, MD, PhD, Harvard Medical School, Boston, Massachusetts, USA
Manzoor Koyakutty, PhD, Amrita Center, Cochin, India
Dong Soo Lee, MD, PhD, Seoul National University Hospital, Seoul, South Korea
Kyu Back Lee, MD, PhD, Korea University, Seoul, South Korea
Claus-Michael Lehr, PhD, Universität des Saarlandes, Saarbrücken, Germany
Anupam Madhukar, PhD, University of Southern California, Los Angeles, California, USA
Donald Mager, Pharm.D., Ph.D., University at Buffalo, Buffalo, New York, USA
Massimo Masserini, PhD, Università degli Studi di Milano, Milano, Italy
Ravindra Pandey, PhD, Roswell Park Cancer Institute, Buffalo, New York, USA
Dan Peer, PhD, Tel Aviv University, Tel Aviv, Israel
Christine Pham, MD, Washington University School of Medicine, St. Louis, Missouri, USA
Wellington Pham, PhD, Vanderbilt University, Nashville, Tennessee, USA
David Pozo, PhD, Universidad de Sevilla, Seville, Spain
Rajiv R. Mohan, PhD, University of Missouri, Columbia, Missouri, USA
Jan Mollenhauer, PhD, University of Southern Denmark, Odense M, Denmark
Anupama Madhukar, PhD, University of Southern California, Los Angeles, California, USA
Hayat Onyuksel, PhD, University of Illinois at Chicago, Chicago, Illinois, USA
Andrew Owen, PhD, University of Liverpool, Liverpool, UK
Sanjeeb K. Sahoo, PhD, Institute of Life Sciences, Bhubaneswar, India
Mark W. Saltzman, PhD, Yale University, New Haven, Connecticut, USA
Simo Schwartz, Jr., MD, PhD, Hospital Vall d’Hebron, Barcelona, Spain
Youqing Shen, PhD, Zhejiang University, Hangzhou, China
David Sosnovik, MD, FACC, Harvard University, Boston, Massachusetts, USA
Janos Szebeni, MD, PhD, DSc, Med. Habil., Semmelweis University of Medicine, Budapest, Hungary
Istvan Toth, PhD, DSc, FRACI, FQA, University of Queensland, Brisbane, Queensland, Australia
Ernst Wagner, PhD, Ludwig-Maximilians-Universität München (LMU), München, Germany
Andrew C. A. Wan, PhD, Institute of Bioengineering and Nanotechnology, Singapore
Thomas Webster, PhD, Northeastern University, Boston, Massachusetts, USA
Gayle Woloschak, PhD, Northwestern University, Chicago, Illinois, USA
Wutian Wu, MD, PhD, The University of Hong Kong, Hong Kong, China
Lily Yang, MD, PhD, Emory University School of Medicine, Atlanta, Georgia, USA
Chunfu Zhang, Ph.D., Shanghai Jiao Tong University, Shanghai, China
Qiang Zhang, PhD, Peking University, Beijing, China
GUIDE FOR AUTHORS

Aims and scope of the journal
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine. The scope of the journal is publishing medical research related to nanoscience and nanotechnology in the life sciences, with a special emphasis on theoretical, basic, preclinical, and clinical studies addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases. Manuscripts must fit the scope of the journal, i.e., it must be directly or closely related to medicine (diagnosis, treatment, monitoring, prognosis and prevention of diseases) and supporting biology, especially understanding biologic mechanisms related to nanoscience, nano-engineering and nanotechnology research, i.e., research of man-made nanoscale objects, materials, and devices that improve medical outcome.

Preferred topics include mechanistic insight into how nanoparticles influence cellular and sub-cellular mechanisms; improved imaging, diagnostics, and therapeutics; bioavailability, and toxicological assessment of nanomedicines; interactions of synthetic nanomaterials and nanodevices with cells, tissues, and living organisms; tissue- and receptor-specific (targeted) delivery, pharmacokinetics and pharmacodynamics of nanomedicines; regenerative medicine; translational models for nanomedicine research, case studies, and clinical trials in all subfields of human medicine. The journal website also presents important nanomedicine related information, such as future meetings, meeting summaries, Virtual Issues, news, societal subjects, public health, point of care monitoring, and ethical issues of nanomedicine.

Application of nanoscale characterization techniques, such as STM, AFM, TEM, etc., is itself insufficient to qualify a work as ‘nanomedicine’. In vitro testing of materials and procedures in at least two cell lines is required, but in vivo is preferred with statistical evaluation. Case studies are welcome.

Preliminary scope assessment
To ensure that a submitted manuscript fits the scope of the journal, authors may solicit a preliminary scope assessment from the Editor-in-Chief by emailing a brief synopsis (title, topic, authors, and abstract) to both nnbm.editor@yahoo.com and nnbm.editor@gmail.com, and cc their message to nnbm.journaloffice@gmail.com. The purpose is to eliminate those submissions that are undoubtedly out of scope. Only scope is assessed at this stage. This evaluation is merely an advice and neither an invitation nor a rejection. A positive scope assessment does not guarantee acceptance in any way, as adherence to scope is only one of the fundamental requirements.

Article types
Selection of the appropriate article type is very important because requirements do differ.

COMMUNICATIONS: Communications are to disseminate new observations quickly to the scientific community. Length of communications should not exceed 1,500 words (including body text, and figure legends), and the article should have no more than 5 figures. No more than 25 references should be cited. Include an Abstract of 150 words or less without internal subheadings and citations. Upon acceptance, Communications enjoy priority in publishing and are entered into the next available issue.

ORIGINAL ARTICLES: Full-length articles describe a full account about hypothesis-based research or theory in nanomedicine. Length should not exceed 5,000 words (including body text and figure legends), and the article should have no more than 8 figures in the main article. No more than 60 references should be cited. Include an Abstract of 150 words or less without internal subheadings and citations. The body text should include the four separate headings: Background, Methods, Results, and Discussion. Use of supplementary materials is recommended for detailed descriptions (see below).

REVIEWS: Critical reviews of selected important topics in nanomedicine research are solicited from opinion leaders. Length of Reviews should not exceed 12,000 words (including body text, and figure legends), and the article should have no more than 15 figures. No more than 200 references should be cited in the review; additional references should be moved to the supplementary file(s). Include an Abstract of 150 words or less without internal subheadings and citations. Authors wishing to submit an unsolicited Review manuscript should send the title of the planned subject and a tentative Table of contents for the specific topics to be covered along with names of authors and a brief, 250-word synopsis to both nnbm.editor@yahoo.com and nnbm.editor@gmail.com and cc the message to nnbm.journaloffice@gmail.com for pre-submission approval by the Editor-in-Chief.

ART AUTHOR INFORMATION PACK 17 Mar 2015 www.elsevier.com/locate/nanomed 4
PERSPECTIVES IN NANOMEDICINE: Invited articles or brief editorial comments that represent opinions of recognized leaders in nanomedicine research and are written for the general scientific readership. Length should not exceed 3,500 words (including body text and figure legends). Authors wishing to submit an unsolicited Perspective manuscript should send the title of the planned content along with names of authors and a brief, 250-word synopsis to nnbm.editor@yahoo.com and nnbm.editor@gmail.com and cc the message to nnbm.journaloffice@gmail.com for pre-submission approval by the Editor-in-Chief.

LETTERS TO THE EDITOR: Letters to the Editor serve the purpose to comment on research published in Nanomedicine: NBM, including criticism or important comments. Letters may not exceed 500 words with maximum 10 references, one illustration, and one table. Letters and Responses to Letters are published together.

TECHNICAL AND COMMERCIALIZATION NOTES: Information regarding new technologies, crucial business and regulatory issues, commercialization of new products in the field, including intellectual property and patenting, nanotechnology law, etc. Length of technical notes should not exceed 2,000 words (including body text and figure legends), 5 figures, and 10 references. Include an Abstract of 150 words or less without internal subheadings and citations.

CASE STUDIES: These articles are descriptive or explanatory reports on actual clinical events based on an in-depth investigation of a single patient or a small group of individuals, related to use of nanomaterials, nanostructures, or nanomedicines in real-life context. Length of case studies should not exceed 3,500 words (including body text, and figure legends) with a maximum of 6 figures and 25 references. Include an Abstract of 150 words or less without internal subheadings and citations. Accepted case studies enjoy priority in publishing.

For all article types, authors should provide in the manuscript only information essential for the discussion of results and utilize the Supporting Materials file to provide all experimental details and other non-essential supporting information. There are no limitations for length, figures, and references in Supplementary Materials. Communications and Original Articles complete with Supporting Materials must contain sufficient information to reproduce the experiments and data by someone experienced in the art.

Meeting Announcements, Meeting Proceedings, and Meeting Summaries may be published on the Journal website under a different heading and without typesetting.

The Journal may provide templates for material that will not receive typesetting. For questions, please contact Vindra Dass at v.dass@elsevier.com.

BEFORE YOU BEGIN
Ethics in publishing
Nanomedicine: NBM considers research and publication misconduct to be a serious breach of ethics, and will take such actions as necessary to address such misconduct. Plagiarism is defined as unreferenced use of published or unauthorized use of unpublished ideas, and may occur at any stage of planning, researching, writing, or publication. Plagiarism takes many forms, from “passing off” another's paper as the author's own paper, to copying or paraphrasing substantial parts of another paper (without attribution), to claiming results from research conducted by others. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Duplicate submission/publication occurs when two or more papers, without full cross-reference, share the same hypothesis, data, discussion points, or conclusions. All manuscripts submitted to Nanomedicine: NBM are checked by CROSSCHECK, a professional software (http://www.ithenticate.com) before editorial consideration. For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics. Authors may also refer to the Committee on Publication Ethics (COPE) and the International Committee of Medical Journal Editors for full information.
Permissions
If any material has been published previously (figure, tables, etc), please provide written permission from the copyright holder to use such material. Authors are responsible for obtaining permission and payment of any fees associated with reuse. For more information, see the Permissions FAQ for Authors. For assistance, please contact Elsevier's Permissions Helpdesk: +1-800-523-4069 x3808; +1-215-239-3805; permissionshelpdesk@elsevier.com.

Human and animal rights
If the work involves the use of animal or human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans http://www.wma.net/en/30publications/10policies/b3/index.html; EU Directive 2010/63/EU for animal experiments http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm; Uniform Requirements for manuscripts submitted to Biomedical journals http://www.icmje.org. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed. For studies involving human or animal research, indicate approval by the institution's human or animal subject review committee in the Methods section of the manuscript. Include an additional statement of the humane care of the animals with animal studies and a statement of informed consent or exempt classification by the IRB with human studies.

Conflict of interest
Authors are required to acknowledge all funding sources that supported their work as well as all institutional or corporate affiliations of the authors. Each submission must also include a publishable statement on the title page disclosing any commercial associations, current and within the past five years that might pose a potential, perceived, or real conflict of interest. These include grants, patent licensing arrangements, consultancies, stock or other equity ownership, advisory board memberships, or payments for conducting or publishing the study. When no competing interests are present, include a statement on the title page. Further information and an example of a Conflict of Interest form can be found at: http://help.elsevier.com/app/answers/detail/a_id/286/p/7923. See also http://www.elsevier.com/conflictsofinterest.

When no competing interests are present, include a statement on the title page.

Submission declaration and verification
Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/sharingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

Authorship
The corresponding author must certify that all listed authors meet the Authorship and Contributorship criteria of the International Committee of Medical Journal Editors detailed at http://www.icmje.org/ethical_1author.html, according to which each participant:
1) made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data;
2) drafted the article or revised it critically for important intellectual content; and
3) gives approval of the submitted manuscript and subsequent versions.

All authors of a submitted manuscript must sign a form declaring that they meet all of the above criteria for authorship, approve the most recent submitted version of the manuscript, and take full responsibility for the manuscript. This form will be provided to the corresponding author when the Editors reach a decision that the manuscript may be potentially publishable. Those who do not meet all the criteria for authorship may be listed in the Acknowledgments. Examples of contributors listed in acknowledgements include a person who provided purely technical help, writing assistance, assistance with study design, data collection, or a department chairperson who provided only general support.
Changes to authorship
This policy concerns the addition, deletion, or rearrangement of author names in the authorship of accepted manuscripts:

Before the accepted manuscript is published in an online issue: Requests to add or remove an author, or to rearrange the author names, must be sent to the Journal Manager from the corresponding author of the accepted manuscript and must include: (a) the reason the name should be added or removed, or the author names rearranged and (b) written confirmation (e-mail, fax, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Requests that are not sent by the corresponding author will be forwarded by the Journal Manager to the corresponding author, who must follow the procedure as described above. Note that: (1) Journal Managers will inform the Journal Editors of any such requests and (2) publication of the accepted manuscript in an online issue is suspended until authorship has been agreed.

After the accepted manuscript is published in an online issue: Any requests to add, delete, or rearrange author names in an article published in an online issue will follow the same policies as noted above and result in a corrigendum.

Copyright
Upon acceptance of an article, authors will be asked to complete a ‘Journal Publishing Agreement’ (for more information on this and copyright, see http://www.elsevier.com/copyright). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a ‘Journal Publishing Agreement’ form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult http://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases: please consult http://www.elsevier.com/permissions.

For open access articles: Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (for more information see http://www.elsevier.com/OAauthoragreement). Permitted third party reuse of open access articles is determined by the author's choice of user license (see http://www.elsevier.com/openaccesslicenses).

Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. For more information see http://www.elsevier.com/copyright.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies
Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder's open access policies. Some authors may also be reimbursed for associated publication fees. To learn more about existing agreements please visit http://www.elsevier.com/fundingbodies.

After acceptance, open access papers will be published under a noncommercial license. For authors requiring a commercial CC BY license, you can apply after your manuscript is accepted for publication.

Open access
This journal offers authors a choice in publishing their research:

Open access
• Articles are freely available to both subscribers and the wider public with permitted reuse
• An open access publication fee is payable by authors or on their behalf e.g. by their research funder or institution
Subscription

- Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs (http://www.elsevier.com/access).
- No open access publication fee payable by authors.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.

For open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
For non-commercial purposes, let others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

The open access publication fee for this journal is **USD 3000**, excluding taxes. Learn more about Elsevier's pricing policy: http://www.elsevier.com/openaccesspricing.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier's WebShop (http://webshop.elsevier.com/languageediting/) or visit our customer support site (http://support.elsevier.com) for more information.

Submission

Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor's decision and requests for revision, is sent by e-mail.

Submit your article
Please submit your article via http://ees.elsevier.com/nano/.

Referees

Please submit the names and institutional e-mail addresses of several potential referees. For more details, visit our Support site. Note that the editor retains the sole right to decide whether or not the suggested reviewers are used.

General requirements

1) The manuscript must be of INTERDISCIPLINARY nature, representing the overlapping fields nanoscience and nanotechnology with biology, and medicine.
2) NOVELTY and ORIGINALITY are of primary importance. The results presented must significantly advance the field and improve scientific knowledge. Manuscripts with similar approaches that have already been undertaken by other groups should be submitted to appropriate journals. Originality of submissions is routinely checked by the editors using professional software.
3) SIGNIFICANCE: Accounts of research must appeal to a broad readership. In the cover letter, authors should provide a paragraph explaining how the work differs from the knowledge available in the literature and describe how it improves or has the potential to improve medicine.
4) REPRODUCIBILITY: Methods and materials should be reproducible and - in general - results and conclusions must move the field forward. Experimental studies must include at least in vitro results (one of them in an appropriately selected healthy cell line), although in vivo is preferred. Accordingly, synthesis and characterization of nanotechnology-based medicines (i.e., substances that promote healing) must accompany bioavailability and toxicity data and their comprehensive evaluation. Manuscripts that do not satisfy these general requirements will not be sent out for peer review and will be returned to the authors.

PREPARATION
Use of word processing software

It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

NEW: At first submission, manuscripts may be submitted as single Word or PDF files, including references, figure legends, figures, and tables. All manuscript components need to be included to allow for evaluation of your manuscript. Graphical Abstract files are required at initial submission. If the editors determine that the work is potentially publishable, source files of the manuscript, figures, and tables will be required as well as other submission elements such as permissions and the authorship agreement form (see below). Include a cover letter and title page with counts as specified below.

Article structure

Submission items include a cover letter, a list of suggested reviewers, text for the graphical abstract, the manuscript (including title page, abstract, manuscript text [divided into Background, Methods, Results, and Discussion for Original Articles], references, and figure legends), tables, and figures. Authors are advised to upload supporting information in Supplementary Material and permissions (see below) if needed. Revised manuscripts should also be accompanied by a unique file (separate from the cover letter) with responses to reviewers' comments. The preferred order of files is as follows: cover letter, suggested reviewers, response to reviews (revised manuscripts only), graphical abstract files, manuscript file, table(s), figure(s), supplementary material, permission(s), if needed. Files should be labeled with appropriate and descriptive file names (e.g., SmithManuscript.doc, Figure1.eps, Table3.doc, Supplementary.pdf). If a revision is requested, upload text, tables, and figures as separate files. Do not embed figures or tables into the text document. Please upload your revised text as a Word file, and upload text-based Supplementary Materials as a PDF. All manuscripts must conform to Uniform Requirements for Manuscripts Submitted to Biomedical Journals. Cover letter Be sure to state that the manuscript, or any part of it, has not been published and will not be submitted elsewhere for publication while being considered by the journal Nanomedicine: NBM in the cover letter. If there is any overlap between the submission and any other material, published or submitted, detail the nature of and reason for the overlap; as relevant, upload a copy of the other material.

Title page

Essential title page information

• **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible. A title should describe the article's content clearly and precisely and allow the reader to decide whether it would be appropriate to consult the article further. The title is the advertisement for the article; a poorly titled article may never reach its target audience, so be specific. Omit unnecessary words such as “Novel,” “New,” “A study of,” “Investigations of,” “Observations on,” etc. Do not use abbreviations and jargon. Avoid overinflated, bombastic “marketing” titles. Indexing and abstracting services depend on the accuracy of the title and keywords used in cross-referencing are extracted from the title itself.

• **Author names and affiliations.** Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.

• **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. **Ensure that phone numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author.**
• **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes. The title page must include the word count for abstract; complete manuscript word count (including body text and figure legends, but excluding abstract, title page, and references), and number of figures/tables. There is no length limit on Supplementary Material. **Manuscripts with over-the-limit word counts will be returned to the authors without further review.** The title page must include statements of funding or conflicts of interest. Please make note of any prior presentation of abstracts at meetings regarding the research.

Abstract
A concise and factual summary of 150 words or less without internal subheadings and citations is required. The abstract should state briefly the purpose of the research, the principal results, and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, references and abbreviations should be avoided, but, if essential, they must be defined at their first mention in the abstract itself. Insert 3 to 5 key words after the abstract. Be sure to include the abstract in the manuscript file.

Graphical abstracts
Authors are required to submit a graphical abstract for their article containing one image and a short description; both should briefly summarize the essence of the paper in a concise form designed to capture the attention of a wide readership and for compilation of databases. Graphical abstracts should be submitted as a separate file in the online submission system. The image should present the key points of the paper in a concise, pictorial form designed to seize the attention of readers and should not contain more than four panels. Please submit one image (in .tif or .eps format); see below for further resolution requirements. The text component should be ~50-100 words in .doc format, and it should not be the same as the abstract in the manuscript. If a figure in the manuscript is used as the graphical abstract image, please note this at the end of the abstract (i.e.: Graphical Abstract: Figure 2), and refer to the system's instructions for uploading. Examples of successful graphical abstract images and a link to Graphical Abstract Polishing can be found at http://www.elsevier.com/wps/find/authorsview.authors/graphicalabstracts; see also a recent issue of the Journal, particularly Example 1, Example 2, Example 3. Authors can make use of Elsevier's Illustration and Enhancement service to ensure the best presentation of their images also in accordance with all technical requirements: [Illustration Service](#).

Keywords
Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations
Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Structure of text
For Communications and Original Articles, the text should include the headings Background, Methods, Results, and Discussion. Only essential data and descriptions should be provided in the Methods and Results. All experimental details including synthetic and analytical procedures must be provided as SUPPLEMENTARY MATERIALS (see details below). All pages must be numbered. Abbreviations must be parenthetically notated at first mention in the text. Each table and figure must be mentioned in the text. Reports of studies on humans and animals must indicate that each study has been approved by an institutional review committee and the procedures followed are in accordance with institutional guidelines. Provide generic rather than trademarked names of drugs.

Acknowledgements
The acknowledgments section recognizes substantive contributions of individuals who do not meet the criteria for authorship (see below). The Editorial Office must receive written, signed consent from each person recognized in the acknowledgments to be mentioned in the article because acknowledgment
can imply endorsement of data and conclusions. (See a sample of an Acknowledgement.) Upload each permission separately in the online system. Do not include statements of funding, conflicts, or other disclosures in the Acknowledgments; these must appear on the title page.

Units
Follow internationally accepted rules and conventions: use the international system of units (SI). If other units are mentioned, please give their equivalent in SI.

Math formulae
Please submit math equations as editable text and not as images. Present simple formulae in line with normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Footnotes
Do not use footnotes in the text.

Artwork

Electronic artwork
Figures must be of professional quality and suitable for evaluation purposes. Be sure all font is at a readable size. When possible, please use first-generation artwork. If a revision is requested, source files must be provided: Figures must be submitted in electronic figure file format: .tif, .eps, or .jpg format. Figures may be black and white line art, graphs, halftones (photographs), or color. Line art (black lines on a white background) must have a minimum resolution of 1,000 ppi. Combination line art (e.g., line art with gray fill patterns) must be created at 500 ppi. Black and white or color photographs must have a minimum resolution of 300 ppi. Illustrations should be saved at the recommended resolution setting and sized as close to a column width (3 to 4 inches) as possible. Create figures in scale with each other to the extent possible. Avoid background gridlines and other formatting that do not convey information (e.g., superfluous use of 3-dimensional formatting, background shadings). Use uniform lettering and sizing of all original artwork. As a general rule the lettering on the artwork should have a finished, printed size of 7 points. Smaller lettering will yield barely legible text. Recommended font choices include Arial, Helvetica, or Symbol. Labeling of multipart figures (e.g., A, B, C...) should use capital letters only and should be done consistently, preferably using uppercase type (Arial, Helvetica or Universe, 11 or 12 points) in the lower-right corner of the figure. Avoid headings on the figure when possible. Additional information on preparation of electronic artwork can be found in the Artwork Instructions available at http://www.elsevier.com/authors. For best results, please follow these guidelines carefully. There is no charge for publication of color illustrations.

General points
- Make sure you use uniform lettering and sizing of your original artwork.
- Embed the used fonts if the application provides that option.
- Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
- Number the illustrations according to their sequence in the text.
- Use a logical naming convention for your artwork files.
- Provide captions to illustrations separately.
- Size the illustrations close to the desired dimensions of the printed version.
- Submit each illustration as a separate file.

A detailed guide on electronic artwork is available on our website: http://www.elsevier.com/artworkinstructions

Please do not:
- Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
- Supply files that are too low in resolution;
- Submit graphics that are disproportionately large for the content.

Illustration services
Elsevier's WebShop (http://webshop.elsevier.com/illustrationservices) offers Illustration Services to authors preparing to submit a manuscript but concerned about the quality of the images accompanying their article. Elsevier's expert illustrators can produce scientific, technical and medical-style images, as well as a full range of charts, tables and graphs. Image 'polishing' is also available, where our illustrators take your image(s) and improve them to a professional standard. Please visit the website to find out more.
Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Number tables consecutively in accordance with their appearance in the text. Table numbers should be Arabic, followed by a period and a brief title. Upload each table as a separate file. Use the same type size as in the text where possible. Supply a brief heading for each column. Do not use vertical lines between columns. Use horizontal lines above and below the column headings and at the bottom of the table only. Use extra space to delineate sections within the table. Abbreviations used in the table must be defined in a footnote to the table. Indicate footnotes in this order: *, †, ‡, §, ||, ¶, #, **, ††, ‡‡, §§, ||||, ¶¶, etc. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article.

References
Citation in text
Cite references in numeric order according to the first mention in the text. Accuracy of reference data is the responsibility of the author. Verify all references against original sources. “In press” citations must have been accepted for publication and the name of the journal or book publisher must be included; these citations must be updated before publication. Unpublished results and personal communications should not appear in the reference list but may be mentioned in the text. Authors wishing to cite unpublished material must have a letter of permission from the originator of the communication to do so. This letter should be submitted with the manuscript. Please ensure that every reference cited in the text is also present in the reference list (and vice versa).

Reference links
Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, article title, year of publication, volume and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is encouraged.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference style
References can be in any style or format as long as the style is consistent. Author(s) name(s), journal title/book title, article title, year of publication, volume and issue or book chapter and the pagination must be present. The reference style required by the journal will be applied to the published version by Elsevier.

For those who wish to format the references, if using EndNote software, the journal reference style is Embellished Vancouver (Style 3a). Reference format should conform to the examples shown below, and journal abbreviations should conform to the style used in the Cumulated Index Medicus.

The style of citation should be as follows:

Journals: authors' last names and initials; title of article; journal name; date; volume number, and inclusive pages (list all authors when six or fewer; when seven or more, list six and add et al):
Books: authors' last names and initials; chapter title, editor's name, book title, edition, city, publisher, date, and pages:

Journal abbreviations source
Journal names should be abbreviated according to the List of Title Word Abbreviations: http://www.issn.org/services/online-services/access-to-the-ltwa/.

Supplementary materials
Nanomedicine: NBM accepts supplementary data files to accompany the online article, allowing authors to support and enhance their papers. Supplementary materials may include experimental details, additional images, background datasets, video clips, etc. Experiments should be described in such detail that someone trained in the art could repeat the experiment or measurement. Please provide text-based data as a separate PDF file when submitting your manuscript. All supplementary materials are subject to peer review but will not be edited by *Nanomedicine: NBM* and will be posted as provided by the authors. There are no limitations for length, figures, and references in Supporting Materials.

Video data
Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 50 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at http://www.elsevier.com/artworkinstructions. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

AudioSlides
The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available at http://www.elsevier.com/audioslides. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Supplementary material
Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. In order to ensure that your submitted material is directly usable, please provide the data in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions.

Submission checklist
The order of the documents should be as follows:
• Cover letter stating that the manuscript or any part of it has not and will not be submitted or published elsewhere (initial submission)
• Suggestions for potential reviewers (initial submission)
• Point-by-point response to reviewers and editors (revised submissions)
• Graphical Abstract (text in .doc format; image in .eps, .tif, or .jpg format depending on article type)
Manuscript (in .doc format for revised submissions):
• Title page
• Title of article
• Full names(s), academic degree(s), affiliation(s) and titles of author(s)
• Author to whom correspondence, proof, and reprint requests are to be sent, including address and
 business and home telephone numbers, fax number, and e-mail address
• Any conflict of interest statement(s), disclosure(s), and/or financial support information, including
donations
• Word count for the abstract, a complete manuscript word count (to include body text and figure
 legends), number of references, and number of figures and/or tables
• Abstract (double-spaced as part of manuscript file)
• Article proper (double-spaced)
• Acknowledgments, if any
• References (double-spaced on a separate page of the manuscript file)
• Figure legends (double-spaced on a separate page of the manuscript file)
• Tables (uploaded separately as .doc files for revised submissions)
• Figures (uploaded as separate files in .eps, .tif, or .jpg for revised submissions)
• Supplementary Material and/or Videos, properly formatted (uploaded as separate files)
• Signed permission to reproduce any previously published material, in all forms and media (scanned
 in as a file and uploaded as Permission)
• Signed permission from person(s) named in Acknowledgments (scanned in as a file and uploaded
 as Permission)
• Authorship agreement form (revised submissions)
For any further information please visit our customer support site at http://support.elsevier.com.

Editorial decisions and peer review

Editorial decisions
REJECT WITH INTERNAL REVIEW: Manuscripts may be rejected based on an internal editorial
review if the manuscript does not fit the scope of the journal or did not achieve a sufficient score
considering originality, reproducibility, and/or initial quality to be sent to external reviewers.
REVISE: Authors are expected to address the concerns of the Editor and the reviewers in a
constructive way. A request to submit a revised manuscript does not guarantee its acceptance only
that it will be reconsidered by the same editor. Revised manuscripts should be submitted by or before
the deadline specified in the letter; authors may request an extension to the deadline if needed.
REJECT WITH HOPE: The manuscript is promising, but it requires significant modifications and/or
additional experimental work. Authors can decide whether to submit a new version of the topic to the
journal; the new version cannot be resubmitted earlier than 60 days from the date of the decision,
but otherwise there is no deadline for submission. These new manuscripts should be accompanied by
a unique file (separate from the cover letter and the body of the text) addressing previous reviewers'
comments. NOTE: Nanomedicine: NBM does not have minor and major revision categories, only
REVISE. In the case of “REJECT WITH HOPE” decision the copyright goes back to the authors and
they can elect to whether consider the comments and submit a new manuscript of the same topic
to Nanomedicine NBM, or go to another journal. RwH manuscripts of the same topic that are sent to
us again, are new manuscripts and all requirements for a new submission apply including processing
fee. These manuscripts may or may not go back to the same editor and/or to the same reviewers,
although the editors are provided with the responses in your renewed manuscript.
REJECT: Manuscripts may be rejected if it does not fulfill all the requirements of the journal.
Manuscripts with REJECT decisions (except for REJECT WITH HOPE) will not be reconsidered and
should not be resubmitted to the Journal. Generally, these manuscripts are recommended for
submission elsewhere.
ACCEPT: The manuscript is accepted for publication and is sent to production.

Peer review
The purpose of the peer-review is to advise the editors regarding the value, originality, and significance
of the manuscript.
All manuscripts will be first evaluated for adherence to submission guidelines, assessed by the editors
for originality and initial quality, and may then undergo a peer-review process at the discretion of
the editors. Reviewers evaluate strengths and weaknesses of the work, but provide only advice.
Identified weaknesses must be addressed i.e., accepted and corrected, or may be argued by the
authors. Evaluation of any manuscript is based on its actual content, and responding to peer-review may not immediately be sufficient to earn publication. Provisional or final acceptance is based on scope, originality, scientific merit, relevance, reproducibility, clarity, and topical balance of the Journal. Editors may make a justified decision at any point of the review process. However, when peer review is solicited, at least two critiques are required. Final decisions are made by two editors and are communicated to the corresponding author by e-mail.

AFTER ACCEPTANCE

Use of the Digital Object Identifier
The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly 'Articles in press' because they have not yet received their full bibliographic information. Example of a correctly given DOI (in URL format; here an article in the journal *Physics Letters B*):

http://dx.doi.org/10.1016/j.physletb.2010.09.059

When you use a DOI to create links to documents on the web, the DOIs are guaranteed never to change.

Online proof correction
Authors should carefully check all proofs, as it is their responsibility to see that all errors are corrected and queries answered. The authors have final responsibility for the accuracy of the publication. Corresponding authors will receive an e-mail with a link to our ProofCentral system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.

If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF. We will do everything possible to get your article published quickly and accurately - please upload all of your corrections within 48 hours. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility. Note that Elsevier may proceed with the publication of your article if no response is received.

Offprints
The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail (the PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use). For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier's WebShop (http://webshop.elsevier.com/myarticleservices/offprints). Authors requiring printed copies of multiple articles may use Elsevier WebShop's 'Create Your Own Book' service to collate multiple articles within a single cover (http://webshop.elsevier.com/myarticleservices/booklets).

Meeting information
MEETING INFORMATION (announcements regarding upcoming nanomedicine conferences) and MEETING SUMMARIES will be posted on www.nanomedjournal.com separately from the scientific contents of the Journal.

Other resources for authors
How to Get Published: downloadable guide at http://www.elsevier.com/wps/find/authorsauthors/authorpacks

How to Write a Scientific Article:
http://www.elsevier.com/framework_authors/pdfs/2_How_to_write_a_scientific_article_Author_Pack.pdf

AUTHOR INQUIRIES
You can track your submitted article at http://help.elsevier.com/app/answers/detail/a_id/89/p/8045/.
You can track your accepted article at http://www.elsevier.com/trackarticle. You are also welcome to contact Customer Support via http://support.elsevier.com.
The opinions expressed in all articles published here are those of the specific author(s), and do not necessarily reflect the views of Dove Medical Press Ltd or any of its employees.
Author Guidelines

Preparation of Manuscript

Include:
- Forename(s) and surnames of authors (see Authorship section below)
- Author affiliations: department, institution, city, state, country
- Abstract 300 words
- 3–6 keywords
- Running header (shortened title)
- Corresponding author: name, physical address, phone, fax, email
- Reference list
- Double-spacing
- 3-cm margins
- Page numbers
- Clear concise language
- American spelling
- Ensure tables and figures are cited
- The preferred electronic format for text is Microsoft Word
- Manuscripts will be accepted in LaTeX as long as the native LaTeX and a PDF is also supplied
- Use International Systems of Units (SI) symbols and recognized abbreviations for units of measurement
- Do not punctuate abbreviations eg, et al, ie
- Spell out acronyms in the first instance in the abstract and paper
- Word counts are not specified. In general, shorter items range from 1000 to 3000 words and reviews from 3000 to 7,500
- Generic drug names are used in text, tables, and figures
- Suppliers of drugs, equipment, and other brand-name material are credited in parentheses (company, name, city, state, country)
- If molecular sequences are used, provide a statement that the data have been deposited in a publicly accessible database, eg, GenBank, and indicate the database accession number.

While the editors fully understand the extra challenges posed to authors whose native language is not English, we must ask that all manuscripts be reviewed and edited by a native
speaker of English with expertise in that area prior to submission.

Authorship

Authorship credit should be based on:
1) Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data;
2) Drafting the article or revising it critically for important intellectual content;
3) Final approval of the version to be published; and
4) Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Authors should meet conditions 1, 2, 3, and 4.

When a large, multicenter group has conducted the work, the group should identify the individuals who accept direct responsibility for the manuscript (3). These individuals should fully meet the criteria for authorship/contributorship defined above, and editors will ask these individuals to complete journal-specific author and conflict-of-interest disclosure forms. When submitting a manuscript authored by a group, the corresponding author should clearly indicate the preferred citation and identify all individual authors as well as the group name. Journals generally list other members of the group in the Acknowledgments. The NLM indexes the group name and the names of individuals the group has identified as being directly responsible for the manuscript; it also lists the names of collaborators if they are listed in Acknowledgments.

Acquisition of funding, collection of data, or general supervision of the research group alone does not constitute authorship.

All persons designated as authors should qualify for authorship, and all those who qualify should be listed.

Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content.

Increasingly, authorship of multicenter trials is attributed to a group. All members of the group who are named as authors should fully meet the above criteria for authorship/contributorship.

The group should jointly make decisions about contributors/authors before submitting the manuscript for publication. The corresponding author/guarantor should be prepared to explain the presence and order of these individuals. It is not the role of editors to make
authorship/contributorship decisions or to arbitrate conflicts related to authorship.

Changes to authorship: Dove permits the changing/adding/deleting of authors or the order in which they appear in the published paper. In every case where such a change is requested Dove will require signed approval from all cited and new authors before any change can take place. We reserve the right to contact supervisors or colleagues of new or deleted authors to verify identities.

Contributors Listed in Acknowledgments

All contributors who do not meet the criteria for authorship should be listed in an acknowledgments section. Examples of those who might be acknowledged include a person who provided purely technical help, writing assistance, or a department chairperson who provided only general support. Authors should declare whether they had assistance with study design, data collection, data analysis, or manuscript preparation. If such assistance was available, the authors should disclose the identity of the individuals who provided this assistance and the entity that supported it in the published article. Financial and material support should also be acknowledged.

Groups of persons who have contributed materially to the paper but whose contributions do not justify authorship may be listed under such headings as “clinical investigators” or “participating investigators,” and their function or contribution should be described—for example, “served as scientific advisors,” “critically reviewed the study proposal,” “collected data,” or “provided and cared for study patients.” Because readers may infer their endorsement of the data and conclusions, these persons must give written permission to be acknowledged.

Please note: the Authorship and “Contributors Listed in Acknowledgments” sections are reprinted from the ICMJE Uniform Requirements for Manuscripts Submitted to Biomedical Journals. Dove Medical Press prepared this reprint. The ICMJE has not endorsed nor approved the contents of this reprint. The official version of the Uniform Requirements for Manuscripts Submitted to Biomedical Journals is located at http://www.icmje.org/. Users should cite this official version when citing the document.

Related Authors

Where authors of a paper are related this should be disclosed at the time of submission. Please provide details of the family
If you would like your institutional intranet to have access to the Dove Medical Press journals please contact me.

Plagiarism checking now active
Please be aware that Dove Medical Press now checks ALL submitted manuscripts for plagiarism. We use iThenticate, the leading edge CrossCheck system.

Video Abstracts Available
Our Authors use video abstracts to better convey their research beyond reading manuscripts, another unique way to talk to our readers.

Figures and Tables
- Submit as separate files and also as one combined file
- Submit figures as JPG files
- Number consecutively
- Provide a descriptive heading/legend
- Place abbreviations immediately below the table
- Use superscript a, b, c... as identifiers
- Supply Line Art 900 dpi, Combination (Line Art + Halftone) 900 dpi, Halftone 300 dpi
- Graphics downloaded from Web pages are NOT acceptable
- Submit multi-panel figures, ie with parts labeled a,b,c,d, as one file

Supplementary Data
Any supplementary data should be kept to 6 typeset pages or 2,400 words. If you have any more than this you should provide a link to the supplementary data on an external website, your institute’s website for example, and/or Dove Medical Press may be able to upload the raw supplementary data to the http://www.dovepress.com/ website and provide a link in your paper. We welcome video files either as supplementary data or as part of the actual manuscript to show operations, procedures, etc.

Letter to the Editor
Manuscripts submitted as a Letter to the Editor:
- Should relate to a paper previously published in a Dove Medical Press journal and be a concise account of agreement or disagreements with the published paper, or address an issue of wider concern within the scope of the journal;
- Have a word count of no more than 750 words;
- Have references formatted in the Dove Medical Press style.

Photo Essays
Manuscripts submitted as a Photo Essay should focus on the visual aspects of the topic presented. It should be a series of photographs that visually tell the story the author wishes to convey. The photos should be self-explanatory of very high quality. Photographs can be of clinical subjects, laboratory results (eg, slides, scans, magnetic resonance images, ultrasonograms) and therapeutic procedures. A Photo Essay should not exceed 300 words and should have no more than 10 references. The number of photographs is limited to 10, with a limit of 60 words for each legend. Please note that not all...
journals published by Dove Medical Press accept Photo Essays, please ask before submitting.

Submission of Manuscript

- All manuscripts should be submitted via our [website](http://www.dovepress.com/author_guidelines.php).
- By doing so you agree to the terms and conditions of submission.
- Keep a backup and hard copies of the material submitted.

Pre-submissions

- Authors are welcome to send an abstract or draft manuscript to obtain a view from the Editor about the suitability of their paper. Please email here and include which journal you are interested in submitting your manuscript to. Our Editors will do a quick review (not peer review) of your paper and advise if they believe it is appropriate for submission to their journal. This will be based on subject matter vs the aims and scope of the journal. It will not be a full review of your manuscript.

Reference Style

Proofs

- You will receive the typeset page proofs for approval.
- Check amendments made by the editor have not rendered the material inaccurate.
- Check you have answered all the editor's queries.
- Ensure your corrections are minimal and absolutely necessary.
- Mark the adjustments clearly in the text and margins, and keep a copy of what you send to the editor.
- Notify the editorial office of all corrections within 72 hours of your receipt of the material.
- Ensure all authors sign and return the Approval for Publication and final page of Publication Agreement.

All Dove journals are members of and subscribe to the principles of the [Committee on Publication Ethics (COPE)](http://www.dovepress.com/author_guidelines.php).

We also support the [international standards](http://www.dovepress.com/author_guidelines.php) for editors and authors that were developed at the 2nd World Conference on Research Integrity in Singapore in 2010.

Rejection Rate
The current rejection rate to May 2015 across all Dove journals is 43%. This has increased slightly from 37% in 2013.