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Abstract

Mitochondrial DNA (mtDNA) mutations are well recognized as an important cause of inherited

disease. Diseases caused by mtDNA mutations exhibit a high degree of clinical heterogeneity

with a complex genotype-phenotype relationship, with many such mutations exhibiting incom-

plete penetrance. There is evidence that the spectrum of mutations causing mitochondrial dis-

ease might differ between different mitochondrial lineages (haplogroups) seen in different

global populations. This would point to the importance of sequence context in the expression

of mutations. To explore this possibility, we looked for mutations which are known to cause

disease in humans, in animals of other species unaffected by mtDNA disease. The mt-tRNA

genes are the location of many pathogenic mutations, with the m.3243A>G mutation on the

mt-tRNA-Leu(UUR) being the most frequently seen mutation in humans. This study looked for

the presence of m.3243A>G in 2784 sequences from 33 species, as well as any of the other

mutations reported in association with disease located on mt-tRNA-Leu(UUR). We report a

number of disease associated variations found on mt-tRNA-Leu(UUR) in other chordates, as

the major population variant, with m.3243A>G being seen in 6 species. In these, we also

found a number of mutations which appear compensatory and which could prevent the patho-

genicity associated with this change in humans. This work has important implications for the

discovery and diagnosis of mtDNA mutations in non-European populations. In addition, it

might provide a partial explanation for the conflicting results in the literature that examines the

role of mtDNA variants in complex traits.

Introduction

Mitochondria are double membrane-bound organelles found in eukaryote cells. They have a

number of roles within the cells, including providing most of the cells energy through oxida-

tive phosphorylation (OXPHOS). Additionally, they are involved in apoptotic cell death, the

control of calcium concentration and other cellular pathways [1]. Mitochondria operate under
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the dual control of the nuclear genome and mtDNA. The human mitochondrial genome or

mitochondrial DNA (mtDNA) is a 16,569 bp circular strand of DNA. The mitochondrial chro-

mosome contains 37 genes, which encode for 13 proteins, 22 tRNA molecules and 2 ribosomal

RNA molecules. The 13 proteins form the core of four of the five enzymes that carry out

OXPHOS. The mtDNA has several unusual features: mitochondria and mitochondrial DNA

are inherited strictly through the maternal line [2], so the mtDNA does not undergo bi-paren-

tal recombination. MtDNA is found in high copy number ranging from several hundreds to

thousands per cell. Within a single cell, mtDNA copies may all be same (homoplasmic) or dif-

ferent (heteroplasmic) [1]. In humans, pathogenic mutations are normally seen as heteroplas-

mic variants; that is there is a mixture of wild-type and mutant mtDNA [1, 3]. MtDNA

mutations do not exhibit a clinical phenotype until they are present of the majority of the

mtDNA molecules within the cells.

Mutations of mtDNA are an important cause of inherited disease; over 250 pathogenic

mutations, deletions and re-arrangements have been identified in humans [1, 3]. Mitochon-

drial diseases predominantly affect tissues with a high energy demand; so, neurological and

muscular symptoms are common. Mitochondrial diseases are the most common cause of

inherited metabolic diseases within new-borns [4]. In the UK adult population, the minimum

prevalence rate for mtDNA mutations is estimated to be 1 in 5,000 [5]. Despite excellent esti-

mates of disease frequency in some, particularly European, populations [6, 7], the spectrum of

mutations that cause disease is less well understood in others, such as Black Africans. This

leads to less accurate assessment of the impact of mtDNA disease in these populations [8, 9].

With maternal inheritance, mtDNA evolution has resulted in the emergence of distinct lin-

eages called haplogroups. While the high level of mtDNA variation seen within human popula-

tions is useful to study population histories [10], it has made the identification of disease

causing mutations difficult [7, 11]. Mitochondrial variation in humans has been extensively

studied and has been compiled in MITOMAP database (http://www.mitomap.org) [12], Phy-

lotree (http://www.phylotree.org/) [13] and tRNA-MAMIT online resource [14]. tRNA-MA-

MIT provides an online resource comparing single representative mt-tRNA sequences from

150 mammals which have been aligned to the revised Cambridge Reference Sequence (rCRS)

genome [15]. The specific mitochondrial background (or haplogroup) may influence the

expression of a disease causing mutations [16–18]. In human populations, there is some evi-

dence suggesting that additional polymorphisms can either repress or compensate for patho-

genic mutations [19, 20]; this has been proposed as an explanation for how different human

populations differ in both the spectrum of mtDNA mutations and the variable symptoms pres-

ent in patients [16].

Many of the mtDNA point mutations reported to cause disease in humans are located in

one of the 22 mt-tRNA’s, which are encoded by mtDNA. Although mt-tRNA genes make up

just 10% of the mitochondrial chromosome, ~60% of adult patients with mtDNA disease have

a mutation within these genes [3]. Each mt-tRNA gene is approximately 70–75 base pairs in

length. The secondary structure of tRNA molecule is described as clover leaf which is made of

four domains, namely: the acceptor (acc) stem; dihydrouracil (D) stem/loop; the anticodon

(ac) stem/loop; and the T C C (T) stem/loop. The four stems in the tRNA molecule primarily

exist as Watson-Crick base pairs, which maintain the clover leaf structure [21].The clover leaf

structure folds into a 3D L-shaped molecule which, in turn, is held together by long range ter-

tiary interactions. These tertiary interactions between bases stabilise non Watson-Crick base

pairings in the stem regions of the tRNA molecule. mt-tRNA is variable and significantly dif-

ferent to genomic tRNA both in terms of the size of the D and T domains and nucleotide

sequence. Although there are some differences between the mitochondrial encoded and
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nuclear encoded tRNA’s, a detailed study of mammalian mt-tRNA has shown that many gen-

eralisations about the mt-tRNA molecules still apply [21].

The most common point mutation seen in Caucasian European patients with mitochondrial

disease is called m.3243A>G. [22, 23]. Multiple phenotypes are associated with m.3243A>G,

including Maternally Inherited Diabetes and Deafness (MIDD) and Mitochondrial Encephalo-

myopathy, Lactic acidosis, and Stroke-like episodes (MELAS). 80% of MELAS patients carry

the m.3243A>G mutation [24]. The nucleotide at position 3243 within the mtDNA molecule,

equates to nucleotide 14 within the mt-tRNA-Leu(UUR) molecule. This nucleotide is predicted

to have a tertiary reaction with nucleotides at positions 8, 14 and 21 [21]. The mutation there-

fore disrupts the tertiary folding structure of the mt-tRNA-Leu which: reduces the capacity for

amino-acylation [25], prevents the termination of translation by the 16S ribosomal subunit

[26]; and, inhibits the methylation of the U in wobble position of the mt-tRNA molecule [1, 27].

Critically, this variant is rarely reported in Black African patients with mtDNA disease [28]

One way to explore the importance of haplogroup context on the expression of mtDNA dis-

ease is to look for mutations in other animals which are disease-causing in human in the

absence of disease in the animal. Then to look for possible compensating mutations where dis-

ease is not evident in the non-human animal grouping. For this strategy to be valid it is impor-

tant to demonstrate mitochondrial disease in other species. A deletion in the mt-tRNA-Tyr

gene in position 5304, associated with sensory ataxic neuropathy, similar to human myopa-

thies, has been observed in golden retrievers [29] this provides a clinical example that these

variants can have an effect in other mammals. It would be expected that a non-domestic ani-

mal would have severely reduced fitness [30]. Additionally it is important to be able to examine

a substantial number of sequences, some prior work in this area has used limited numbers of

species only considering a single individual per species [31]. Perhaps most importantly clini-

cally validated criteria need to be applied to variants reported as mutations to ensure that they

are truly causative of primary mitochondrial disease [3, 7, 32], such clarity on the criteria for

pathogenicity was not in place at the time of prior publications on this topic [30, 31].

In this investigation, we studied human disease-associated variants of mitochondrial mt-

tRNA-Leu (UUR) gene in other chordates to further the understanding of sequence context in

modulating disease expression. This study looked in detail at mt-tRNA-Leu (UUR) in all chor-

dates, for which there are at least 30 complete mtDNA sequences listed in GenBank. We focused

on the m.3243A>G mutation because this is both the most common point mutation know

cause of mitochondrial disease and the best studied. We have found that this mutation does

occur in quite a few animals and have identified several likely compensatory mutations. We also

present a comprehensive survey of all the mt-tRNA’s variants associated with disease in humans

found to be fixed in other species, then consider those that are clinically proven as pathogenic

[32]. We used publically available sequence resources that have grown massively over the last

decade. This work supports the assertion that the mutational potential of mt-tRNA’s is strongly

contained by sequence context [30]. As such, this study helps us to better appreciate the impor-

tance of haplogroup contexts in the penetrance and expression on disease causing variants. In

the last few years the importance of this type of understanding the variable penetrance of

mtDNA mutations, and its impact the discovery and diagnosis of disease causing mutations,

especially in populations that have been less well studied [8, 9] has become increasing clear.

Material and methods

Reference sequence

The revised Cambridge Reference Sequence (rCRS) [15], was used as a reference sequence

used in this investigation (GenBank record NC_012920.1). The position and order of mt-
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tRNA genes within the mitochondrial chromosome varies between species therefore in this

study, all genome positions refer to the equivalent nucleotide position within the rCRS rather

than the actual nucleotide position for the individual species. Nucleotide positions within the

mt-tRNA molecule itself are also included.

Identification of SNPs associated with disease

A list of known or suspected pathogenic SNPs, a list of SNPs within mt-tRNA-Leu (UUR)

gene, associated with disease, was compiled from the MITOMAP and tRNA-MAMIT

databases.

Additionally, a literature search was performed to look for SNPs which had not been added

to either of the databases. The PubMed search query “Mitochondrial tRNA” was used to look

for any articles published between 2014 and 2015 which reported disease association with

SNPs. The likelihood of a role in pathogenicity of each disease associated SNP was assessed the

scoring algorithm described by Yarham et al was applied [32].

Extraction of mt-tRNA sequences from GenBank files

Complete mitochondrial genome sequences were downloaded from NCBI in GenBank format

[33]. Each record within the file contains the species name and positions of the individual mt-

tRNA genes within the mitochondrial sequences, in the annotation section of the record. Custom

python scripts were used to extract mt-tRNA sequences from GenBank files containing complete

mtDNA sequences. The Biopython SeqIO module was used to extract the gene locations for each

mt-tRNA genes within each individual record. A search for the term "product" within the record

qualifiers object was used executed to capture the start and end locations of all mitochondrial

genes. The mt-tRNA sequences were extracted from the file using the gene locations contained in

the sequence annotations. Each mt-tRNA sequence, for each species studied, was saved in a sepa-

rate FASTA file. The product names given to the sequences correspond to those used within the

rCRS sequence. As there are two mitochondrial mt-tRNA-Leu and tRNA-Ser genes, the sequences

were then compared to the rCRS using the Biopython pairwise module. The pairwise scores were

used to determine which of the two genes were present and separate the genes into the correct file.

When it was not possible to distinguish between the sequences based on pairwise score, the

sequences were placed into a separate temporary file for visual inspection.

Gene alignment

The mt-tRNA sequences from the different species were aligned to the complementary mt-

tRNA sequence from the rCRS and these alignments were then used to look for nucleotide

changes at specific locations associated with disease in humans.

The mt-tRNA gene sequences from the rCRS genome were added to the previously gener-

ated files. ClustalW was used to create the alignments of the sequences [34]. The Biopython

AlignIO module was used to create the alignments for each file.

A Python script was written using the Biopython module AlignIO which was used to detect

polymorphisms at specific positions within the alignments. The script allowed for gaps within

the alignment by converting the nucleotide equivalent in the rCRS mt-tRNA molecule to the

nucleotide position within the alignment.

Sequences were used to study 33 disease associated variants within tRNA-Leu (UUR) gene.

The mitoseq section of MITOMAP provides executable search terms to retrieve all

available mitochondrial genome sequences in GenBank (http://www.mitomap.org/bin/

view.pl/MITOMAP/MitoSeqs). To collect sequence data for study the search "Complete

non-human mtDNA genomes" was executed, to create a file containing all non-human

mtDNA sequence context in the penetrance of mutations: A study with diagnostic implications
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mitochondrial genomes. The contents of this file was analysed using a script, which used

the Biopython SeqIO module to generate a list of species to study. Species were selected if

they met the following criteria:

1. 30 or more complete mitochondrial sequences were available within GenBank for the spe-

cies. This threshold was set to allow the study of variation within species as well as between

the species and humans to be conducted.

2. The species belonged to the phylum Chordata. The majority of mitochondrial diseases are

neuromuscular therefore only species, possessing a central nervous system were chosen for

study. Species which met these criteria are shown in Table 1.

Sequence quality control

GenBank contains both curated and uncurated sequences from a large number of sources,

which are of differing quality. A number of tests were applied to the sequences to assess the

Table 1. The 33 chordate species with greater than 30 complete mtDNA sequences used in the initial phase of the study.

Species Common Name Number of Sequences before QC Number of Sequences after QC

Anguilla anguilla European Eel 55 54

Anguilla rostrata American Eel 51 51

Balaenoptera physalus Fin Whale 154 154

Bison bison Bison 34 34

Bos grunniens Yak 83 83

Bos taurus Cow 275 275

Canis lupus familiaris Dog 391 391

Clupea harengus Alantic Herring 100 100

Coregonus lavaretus European whitefish 81 80

Equus caballus Horse 254 245

Gallus gallus Red Jungle Fowl 66 66

Glyphis glyphis Speartooth Shark 94 94

Hypophthalmichthys molitrix Silver carp 30 29

Hypophthalmichthys nobilis Bighead carp 36 35

Macaca fascicularis Crab-eating macaque 44 44

Mus musculus mouse 53 50

Mus musculus domesticus House mouse 59 59

Myodes glareolus Bank vole 35 35

Orcinus orca Killer Whale 87 87

Ovis aries Sheep 94 94

Pan paniscus Banobo 54 54

Pan troglodytes schweinfurthii Eastern chimpanzee 33 33

Pan troglodytes troglodytes Central chimpanzee 56 54

Pan troglodytes verus Western chimpanzee 30 30

Rattus norvegicus Brown Rat 66 66

Sus scrofa Wild Boar 150 150

Syncerus caffer African buffalo 45 45

Tursiops truncatus Common bottlenose Dolphin 50 50

Urocyon littoralis catalinae Island Fox 41 41

Urocyon littoralis clementae Island Fox 33 33

Urocyon littoralis santacruzae Island Fox 42 42

Ursus arctos Brown Bear 74 74

Ursus spelaeus Cave Bear (extinct) 34 20

https://doi.org/10.1371/journal.pone.0187862.t001
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reliability of the data. (1) Sequence length of the mt-tRNA-Leu (UUR) genes extracted was

compared to the length of the rCRS mt-tRNA-Leu (UUR) gene using the Biopython SeqIO

module. Any sequences that were 5 nucleotides longer or shorter than the length of the rCRS

mt-tRNA-Leu (UUR) gene were manually examined. (2) Unknown/unspecified bases (Ns),

sequences with a high number of Ns are an indication of poor quality sequence data. The

SeqIO module was used to determine the number of Ns with the mt-tRNA sequences. Any

sequences which contained more than 5 Ns were removed from the study. (3) All of the mt-

tRNA genes were aligned using ClustalW for each species and the statistics from these align-

ments was compiled. This file contained information about the number of sequences, the

length of sequences within the file and a summary of the pairwise alignments scores. Pairwise

scores are generated by ClustalW, before the full multiple sequence alignment, by comparing

each pair of sequences to be aligned. They are a measure of the number of sequence identities

divided by the sequence length. Mt-tRNA sequences from the same species should share a

high degree of similarity and low similarity of sequences could be an indication of incorrect

annotation, mislabelling of genes, or poor quality sequence data. The pairwise scores produced

by ClustalW were used to highlight any sequences with a low degree of similarity to other

sequences from the same species.

tRNA secondary structure analysis

Two tools were used to study the secondary structures of tRNA genes. Alignments from this

study were compared to the alignments in the tRNA-MAMIT [14] to determine the functional

regions of the gene. “tRNAscan-SE Search Server” was used to predict the secondary structure

of genes [35]. This software predicts the folding of tRNA molecules. The source was set to

“Mito/ Chloroplast”.

Phylogenetic analysis

Phylogenetic analysis, NETWORK version 4.6.1.3 was used to study the phylogenetic relation-

ship of mt-tRNA-Leu (UUR) sequences [36].

Results

Disease associated mitochondrial m-tRNA-Leu variants found in

vertebrates

The first part of this study considered all disease-associated mutations located on mt-

tRNA-Leu (UUR) using a panel of species. mt-tRNA-Leu(UUR) was chosen, as it contains

a number of clinically significant mutations including the most common mtDNA point

mutation m.3243A>G. Initially 16,992 complete eukaryote (non-human) mitochondrial

DNA genomes were downloaded from the GenBank database, and then all chordate

sequences were extracted. A total of 33 species were selected for use in the study, with the

majority being vertebrates, each with 30 or more complete sequences available (Fig 1).

Details of species selection (Table 1), quality control (QC) applied to the sequences used

and pipeline validation are described in the methods, with the detailed results of the QC

being described in the supplemental data.

The restriction to species with 30 sequences allows us to assess the within-species variation

critical to this study, as disease causing mutations will occur only at low frequencies. In total,

2784 sequences were available from the 33 species selected for use in the study. The sequences

were derived from 406 independent studies. A total of 32 variants located on mt-tRNA-Leu

(UUR) are reported to be associated with disease on either MITOMAP, tRNA-MAMIT or

mtDNA sequence context in the penetrance of mutations: A study with diagnostic implications
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from a literature search. Therefore, we examined each of the 2784 sequences for any of these

32 variants.

One potential problem is that the disease associations in the various online databases may

not all be well supported by clinical and laboratory evidence [37]. So, we conducted an up-to-

date literature search to assess the variants reported as pathogenic in humans using a scoring

system applied widely in the mitochondrial field [32]. This system considers factors such as

the number of times a mutation has been reported and evolutionary conservation. However,

critical to its reliability is the emphasis on laboratory investigation of the proposed mutation.

In particular, experiments that link genotype and phenotype, such as single muscle fibre analy-

sis. After completing the re-evaluation of the mutations reported in the literature for mt-

tRNA-Leu (UUR), 12 of the 32 reported mutations were designated as neutral polymorphisms,

8 were scored possibly pathogenic, 1 was scored probably pathogenic, while 11 scored as defi-

nitely pathogenic. The distribution of the human mutations on the mt-tRNA structure is

shown Fig 2. These results support previous analysis of the data in these public databases [7,

32, 37]. This assessment was used to guide our interpretation of the data that we found in

other species. In other words, to ensure that any disease casing variants seen in other species in

the absence of disease are bona fide disease causing mutations.

Of the 32 known or suspected pathogenic variants located on the human mt-tRNA-Leu

(UUR), 12 out of 32 weremonomorphic in another species. That is present in all sequences

from one (or more) non-human species. In Table 2, the variants considered to be definitely

or probably pathogenic, after the application of the Yarham criteria described above, are

highlighted. Six of these variants were located within stem regions of the mt-tRNA molecule

Fig 1. Species from the phylum Chordata with over 30 complete mitochondrial sequences.

https://doi.org/10.1371/journal.pone.0187862.g001
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and six within the loop or the variable regions. Of the six present in the stem regions, all

showed a corresponding change in the other arm of the stem, so maintaining the Watson-

Crick type pairing; and also the secondary structure. This is important because variants which

disrupt Watson-Crick pairs in mt-tRNA molecules are frequently classed as pathogenic muta-

tions [37]. Interestingly, the m.3251A>G mutation associated with mitochondrial myopathy

seen in the mt-tRNA d-loop [38, 39] was present in all 74 sequences from Ursus arctos (brown

bear) and all 20 sequences from Ursus spelaeus (cave bear). This mutation corresponds to base

22 in mt-tRNA-Leu(UUR); it is involved in a long range tertiary interaction affecting the fol-

lowing triplet (13–22)-46 [21]. The Ursus arctos and Ursus spelaeus sequences also differ at

base 46, with a change of a C to T changing the nature of the tertiary structure [21] and poten-

tially acting as a compensatory change.

We observed a number of the variants associated with specific species or taxonomic groups

such as the m.3264T>C, m.3271T>C, m.3273T>C, m.3275 C>A, m.3302A>G, which were all

confined to species of fish. Other such observations include the occurrence of the m.3271T>C

variant in fish and rodents; similarly, mutations are often seen in parallel branches of the human

phylogeny, probably due to mtDNA’s high rate of mutation [40]. The m.3254C>G SNP was

monomorphic in all species except Pan paniscus (bonobo), which had a C at this position, and

the m.3226A>G SNP was monomorphic in all non-primate species.

We found an additional four disease associated variants in other species, but here there

were two polymorphisms at the sites in sequences of the species in question (Table 3).

Fig 2. Classification of variants with reports of disease association within mt-tRNA-Leu (UUR) gene.

https://doi.org/10.1371/journal.pone.0187862.g002
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• The m.3243A>G located in the d-loop of the mt-tRNA molecule, is the most common point

mutation associated with mitochondrial disease in humans. The m.3243A>G mutation was

seen in 57 out of 391 sequences from Canis lupus familiaris (dog) [29].

• The m.3244G>A mutation also located in the mt-tRNA’s d-loop, was seen in 2 out 72

sequences from Ursus arctos (HQ685945, HQ685940). Both sequences were obtained from a

study of migration patterns among brown bears. The m.3244G>A mutation has been

Table 2. SNPs which are known or suspected to be pathogenic in humans which are seen in 100% of sequences from other species, positions

shown equates to location within rCRS sequence.

Position Region Variant Status Secondary

Structure

Tertiary

Structure

Species

3236 (Bosley

et al., 2008)

acc stem A-G Neutral All non primate species

3250 (Goto et al.,

1992)

d-loop T-C Possibly

Pathogenic

N/A (8–14)-21 Glyphis glyphis, Orcinus orca, Gallus gallus, Tursiops

truncatus

3251 (Sweeney

et al., 1993)

d-loop A-G Possibly

Pathogenic

N/A (13–22)-46G–

A>G–C>T

Ursus arctos, Ursus spelaeus

3254 (Chen

et al., 2000)

d-stem C-T Neutral A-C

mismatchto A-T

pair

(25–10)-45 All species except Pan paniscus

3264 (Suzuki

et al., 1997)

ac-loop T-C Neutral N/A Glyphis glyphis, Coregonus lavaretus, Anguilla anguilla,

Anguilla rostrata, Hypophthalmichthys nobilis,

Hypophthalmichthys molitrix

3271 (Goto et al.,

1991)

ac-stem T-C Definitely

Pathogenic

A-T pairto C-G

pair

Glyphis glyphis, Coregonus lavaretus, Rattus norvegicus,

Gallus gallus, Mus musculus domesticus, Anguilla anguilla,

Anguilla rostrata,Mus musculus, Hypophthalmichthys nobilis,

Hypophthalmichthys molitrix,Myodes glareolus

3273 (Campos

et al., 2001)

ac-stem T-C Definitely

Pathogenic

A-T pairto C-G

pair

26-44No

Change

Clupea harengus

3275(Garcia-

Lozano et al.,

2000)

Variable

Region

C-A Neutral N/A (13–22)-46 Hypophthalmichthys nobilis, Hypophthalmichthys molitrix

3290(Zhu et al.,

2009)

t-loop T-C Neutral N/A Equus caballus, Sus scrofa, Anguilla anguilla, Anguilla

anguilla, Anguilla rostrata, Macaca fascicularis, Urocyon

littoralis santacruzae, Urocyon littoralis catalinae, Urocyon

littoralis clementae

3291(Goto et al.,

202AD)

t-loop T-C Possibly

Pathogenic

N/A Coregonus lavaretus

3302 (Bindoff

et al., 1993)

acc stem A-G Definitely

Pathogenic

A-T pairto C-G Clupea harengus, Coregonus lavaretus, Gallus gallus,

Hypophthalmichthys nobilis, Hypophthalmichthys molitrix

3303(Silvestri

et al.)

acc stem C-T Probably

Pathogenic

A-T pairto C-G Ursus spelaeus, Sus scrofa, Rattus norvegicus, Myodes

glareolus, Mus musculus domesticus, Mus musculus,

Hypophthalmichthys nobilis, Hypophthalmichthys molitrix,

Clupea harengus

https://doi.org/10.1371/journal.pone.0187862.t002

Table 3. The frequency of known/ suspected pathogenic SNPs which are polymorphic in other species (Position shown equates to location within

rCRS genome sequence).

Base Region Variant Status Species No. Sequences

3243 (Goto et al., 1990) D-Loop A>G Definitely pathogenic Canis lupus familiaris 57/391

3244 (Mimaki et al., n 2009) D-Loop G>A Definitely pathogenic Ursus arcto 2/72

3249 (Seneca et al., 2001) D-Loop A>G Possibly Pathogenic Sus scrofa 1/150

3290 (Zhu et al., 2009) T-Loop T>C Neutral Canis lupus familiaris 2/391

3290 (Zhu et al., 2009) T-Loop T>C Neutral Pan paniscus 1/54

https://doi.org/10.1371/journal.pone.0187862.t003
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observed in a patient with MELAS [41] and using the pathogenicity scoring criteria [7] it is

classed as definitely pathogenic in humans.

• The m.3249G>A mutation, which is located in the mt-tRNA’s d-loop, was seen in 1 in 150 Sus
scrofa (Wild boar) sequences (DQ268530). This mutation was first detected in 2001 in one

patient with a clinical phenotype resembling Kearns-Sayre syndrome [42, 43]. However, it was

only designated as possibly pathogenic using the scoring system of Yarham et al 2011 [32].

• The m.3290T>C mutation was seen in 2/391 sequences from Canis lupus familiaris and 1/54

Pan paniscus sequences. When this mutation was investigated, it was also found to be poly-

morphic in humans, being seen in multiple populations, and with limited evidence existed

linking it with disease. It has, therefore, been classified as neutral [32].

Differences in secondary structure of Mt-tRNA-Leu (UUR) with the

m.3243A>G in dog (Canis lupus familiaris)

The largest number of sequences available for a single group was from the dog (Canis lupus
familiari) with a total of 391 sequences. All available sequences from the dog were aligned with

the human mt-tRNA-Leu gene. The resulting alignment was 75bp in length, which corre-

sponds to the entire length of the mt-tRNA-Leu(UUR) gene. The dog mt-tRNA-Leu(UUR)

sequence is divergent from the human reference sequence at eight locations, shown in green

on the alignment (Fig 3A). The m.3243A>G mutation was found in 57 out of 391 alignments

of dog mt-tRNA-Leu(UUR). Prior work has suggested that this variant was fixed in dogs, this

work was conducted when the available sequence data was more limited than today [30] the

availability of clades with and without the m.3243A>G mutation makes for a more powerful

model to investigate possible compensatory changes. In addition to the m.3243A>G mutation,

there are three other positions within the mt-tRNA-Leu(UUR) which where the sequences

were divergent from human mt-tRNA-Leu gene.

As mentioned, the presence of dog sequence with and without the well-studied

m.3243A>G mutation has allowed a more detailed investigation into possible compensatory

effects than was possible previously [30]. The polymorphisms were used to create a phyloge-

netic network that contained six haplogroups (Fig 3B), using NETWORK [36]. The haplotypes

used are shown in (Table 4). The largest group was haplogroup 1 containing 328 sequences,

which was 83% of the total. The other groups most likely evolved from haplogroup 1, as larger

groups are believed to have a higher likelihood of being ancestral [36]. Two deletions were

observed in position 3230 and 3239, seen in groups 4 and groups 2 and 5 respectively. The

m.3290T>A variant was observed in group 2 and m.3290T T>C was observed in group 4. The

m.3243A>G mutation was confined to two haplogroups (haplogroup 6 and haplogroup 5).

We postulated alterations to the secondary structure of the mt-tRNA-Leu(UUR) supress the

pathogenicity of the m.3243A>G mutation. To address this, we analysed the secondary struc-

ture of sequences containing the m.3243A>G polymorphism. Two tools were used to study

the secondary structures of the gene: we compared alignments to those from tRNA-MAMIT

[14] to determine the functional regions of the gene; and “tRNAscan-SE Search Server, was

used to predict the secondary structure of genes [35]. The predicted secondary structures of

the three mt-tRNA-Leu (UUR) dog haplotypes are shown in (Fig 3C).

Two positions, divergent from the human sequence, and within the D-Stem of the dog

sequences are particularly interesting. First, m.3253T>C, as all of the sequences have a C at

position 24 of the mt-tRNA-Leu molecule, whereas the human sequence has T at the same

position. This corresponds to the final base in the D- Stem and changes a wobble pair into a

Watson-Crick pair. This polymorphism was only seen in 8 other sequences included in this
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study, all from Macaca fascicularis (crab-eating macaque). Second m.3254 C>T, as there is T

at position 25 within the molecule instead of a C creating an extra Watson-Crick pair in the d-

stem of the dog mt-tRNA-Leu molecule. Both of these variants change the secondary structure

of the molecule and we hypothesise that they could suppress the pathogenicity of the

m.3243A>G mutation.

The sequences from dog are divergent from the human sequence in six other locations.

Four of these changes are in the acc-stem maintaining Watson-Crick base pairings but

Fig 3. (A) Alignment of 6 unique mt-tRNA-Leu (UUR) sequences from Canis lupus familiaris with the rCRS. Reticulation indicates

one of the variants observed at positions 3239, and 3243 has occurred more than once in Canis lupus familiaris. (B) A phylogenetic

network, created using Canis lupus familiaris mt-tRNA-Leu (UUR) sequences. The first structure shows the positions of

polymorphisms between all of the sequences studied from Canis lupus familiaris and humans. The second two structures show the

tRNA molecule where the 3243 A>G polymorphism was observed in Canis lupus familiaris. (C) The secondary structure of the mt-

tRNA-Leu (UUR) from Canis lupus familiaris.

https://doi.org/10.1371/journal.pone.0187862.g003
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changing the pairs from A-T in humans to G-C in Canis lupus familiaris. A further difference

is located in the variable region, as well as the T- loop. These six variants maintain and do not

alter the secondary structure of the molecule and so were not studied further.

The distribution of predicted compensatory variants, identified in Canis

lupus familiaris, in other vertebrates

One possible reason for the presence of mutations that are human disease-associated, in species

other than humans is that these mutations are compensated for; therefore, we conducted an

extended study of the variants m.3254C>T and m.3253T>C, which may compensate for the

m.3243A>G mutation. The investigation was extended by studying m.3254C>T, m.3253T>C

where it co-occurred with the m.3243A>G in 10,426 GenBank records from vertebrates. The

m.3254C>T and m.3253T>C variants are interesting as they change the secondary structure

of the mt-tRNA molecule and are present in all sequences containing the m.3243A>G in dog.
The deletion m.3239G>- was not studied further because it was only observed in 3.5% of the

sequences, belonging to phylogenetic group 5 (see Fig 3C), which contain the m.3243A>G

mutation and the network analysis suggested that it was acquired after the m.3243A>G. The

m.3254C>T polymorphism was within 97% of the vertebrate species sequences analysed with

an even distribution amongst taxonomic groups. The m.3254C appears to be the most common

genotype in the majority of vertebrate species studied.

Considering next the m.3253T>C polymorphism within other vertebrate, it was observed

within 15 out of 139 orders/suborders/superorders studied (Table 5). It was present with the

highest frequency within the taxonomic order Proboscidea, where it was found in all 37

sequences analysed. Additionally, it was observed with a frequency of 0.436 within the order

Carnivora, which contains canid species. Within the family Canidae, m.3253T>C is present in

421 out of 631 sequences. It is present in 100% of sequences from sub species of Canis lupus
and in 1/5 Canis latrans (coyote) sequences (Table 6).

The m.3253T>C variant is also present in the families Phocidae, Felidae and Urisdae
with frequencies of 25%, 21% and 0.6%. The m.3243A>G mutation was found along with

m.3253T>C mutation in 2 sequences from the species Leptonychotes weddellii (weddell seal),

which belongs to a taxonomic family of earless seals and Phocidae within the order Carnivora
(Fig 4). Only two sequences were available for the species Leptonychotes weddellii. A total of 32

sequences were analysed from the family Phocidae, with the m.3253T>C mutation present in

8 of these sequences. All of species within Phocidae contained the m.3254C>T, which provides

an additional Watson-Crick pairing in the d-stem of the mt-tRNA-Leu(UUR) molecule that is

not seen in humans. An additional polymorphism was present at position m.3256C>T in 2

sequences from Hydrurga leptonyx (leopard seal) and 2 sequences from Lobodon carcinophaga
(crabeater seal); this decreases the number of Watson-Crick pairs in the mt-tRNA-Leu(UUR)

Table 4. The frequency of key SNPs on the Canis lupus familiaris phylogeny (Position shown equates to location within rCRS, human mtDNA ref-

erence sequence).

Character

Sequence 3230 3239 3243 3290 Frequency

Group 1 G G A T 328

Group 2 G - A T 3

Group 3 G G A C 2

Group 4 - G A A 1

Group 5 G - G T 2

Group 6 G G G T 55

https://doi.org/10.1371/journal.pone.0187862.t004
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d-stem in these species. Additionally, a total of 604 mt-tRNA-Leu(UUR) sequences from pri-

mate species were analysed. The m.3243A>G mutation along with m.3253T>C variant were

found in three species of old world monkeys within the family Cercopithecidae. In the species

Mandrillus sphinx, these SNPs were present in all 3 of the sequences available for the species

(KJ434963.1, NC_021956.1, KC757403.1). Both SNPs were also observed in the only sequence

from (KP090062.1) and in the only 2 sequences available for Cercocebus torquatus (white col-

lared mangabey) (NC_023964.1, KJ434959.1).

The m.3243A>G mutation was found in 2 sequences from Scolecomorphus vittatus
(AY456253.1 and NC_006304.1), a legless amphibian. The sequences came from different

sources but are identical. The ClustalW pairwise score between the human and Scolecomorphus
vittatus sequences within the alignment is 73.33 indicating a low degree of similarity between

the gene sequences. The pairwise score is a measurement of the number of identities in a pair

Table 5. The number of sequences containing the m.3253T>C polymorphism and the frequency of the occurrence within vertebrata groupings.

Order Present Total Sequences Frequency

Proboscidea 37 37 1.000

Carnivora 438 1005 0.436

Pholidota 4 11 0.364

Primates 50 604 0.237

Neoteleostei 320 1886 0.170

Acipenseriformes 2 33 0.061

Perissodactyla 9 299 0.030

Chiroptera 2 87 0.023

Cryptodira 3 150 0.020

Squamata 7 379 0.018

Caudata 2 186 0.011

Anguilliformes 2 217 0.009

Ostariophysi 9 1261 0.007

Rodentia 2 454 0.004

Cetartiodactyla 2 1599 0.001

https://doi.org/10.1371/journal.pone.0187862.t005

Table 6. Percentage of sequences carrying the 3243A>G and 3253T>C SNP within the order carnivora.

Family Species 3243A>G 3253A>C

Canidae Canis lupus familiaris 15 100

Canidae Canis lupus 0 100

Canidae Canis lupus campestris 0 100

Canidae Canis lupus desertorum 0 100

Canidae Canis lupus lupus 0 100

Canidae Canis lupus chanco 0 100

Canidae Canis lupus laniger 0 100

Canidae Canis latrans 0 20

Phocidae Lobodon carcinophaga 100 100

Phocidae Hydrurga leptonyx 0 100

Phocidae Leptonychotes weddellii 100 100

Phocidae Mirounga leonina 0 100

Ursidae Ursus thibetanus 0 8

Felidae Puma concolor 0 100

Felidae Felis catus 0 100

Felidae Acinonyx jubatus 0 100

https://doi.org/10.1371/journal.pone.0187862.t006
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Fig 4. (A) The secondary structure of mt-tRNA-Leu molecules carrying the 3243 A>G mutation. (B) Alignments of tRNA’s D-Loop of from

carnivore and primates carrying the 3243 A>G mutation.

https://doi.org/10.1371/journal.pone.0187862.g004
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of sequences divided by the length of the sequence, and is expressed as a percentage. Within

the alignment the Scolecomorphus vittatus sequence differs from the human reference genome

in 20 out of 75 nucleotides, with 13 of these polymorphisms occurring in the stem regions of

the mt-tRNA molecule. The m.3253A>C variant is not present in this sequence. However,

when the secondary structure was examined, the tRNA d-Stem contained four Watson-Crick

pairs as opposed to the two that are found in human mt-tRNA-Leu(UUR). Two sequences

from Xenagama taylori (NC_008065.1 and DQ008215.1) the shield-tailed agama contained the

3243A>G. The two sequences were 73 bp in length and were identical. They were the only

available sequences for this species. The sequences were highly divergent from the rCRS with a

pairwise score of 56.16%. There were a number of changes in the secondary structure: the d-

stem was only 3bp and the ac-stem contained an additional nucleotide and was 5bp in length.

The evidence gathered from current databases shows there are variants that have the poten-

tial to compensate for mutations known to cause disease in humans, and that the spread of

these variants is such that there is unlikely to be a universal list of disease causing variants

across different species, and even within a species.

The distribution of predicted compensatory variants in other humans

Finally, we have investigated directly whether compensatory mutations are present in human

mtDNA present in the public databases. The m3243A>G, m.3253T>C and m.3254C>T vari-

ants were also studied within human mitochondrial sequences present on the public databases.

Out of a total of 30,524 complete human mitochondrial sequences downloaded from Gen-

Bank, the m.3243A>G mutation was observed in 8 sequences. Unsurprisingly, 7 of these

sequences were derived from sequences described as patient data. The 3243A>G mutation

was also present in another human sequence KJ185483.1, which was derived from a popula-

tion study, and there is no evidence to confirm whether or not this individual showed any dis-

ease symptoms. No potential compensatory mutations were observed in this sequence.

Distribution of the putative m.3253 T>C and m.3254C>T putative compensatory variants

in humans was investigated, using the MITOMAP database of mitochondrial sequence vari-

ants derived from 29,867 complete human mitochondrial sequences present in GenBank in

December 2014. Within these sequences, the m.3253T>C occurs in 7 sequences with a fre-

quency of 0.02% and the m.3254C>T variant is present in 9 sequences with a frequency of

0.03%. The sequences that contained the m.3253T>C mutations were derived from 7 indepen-

dent studies. Of these sequences, 3 belonged to the haplogroup M10a1, 3 belonged to hap-

logroup L2 and one belonged to haplogroup U6a3 (Table 7). Using information about

haplogroup frequencies contained within MITOMAP the m.3253T>C variant was found to

occur at the highest frequency within the L2 haplogroup. Although the numbers of human

sequences bearing the m.3253 T>C and m.3254C>T are relatively low, their presence sup-

ports the need to consider sequence context when making decisions about the pathogenicity of

variants in the human mt-tRNA’s. It also suggests that, where known disease causing variant

are seen in novel phylogenetic contexts with unexpected presentations, it would be of interest

to conduct a number of the gold standard laboratory analysis [32] used to link genotype-phe-

notype to ensure the known disease casing mutation is causing disease in this context.

Disease associated variants from all mitochondrial m-tRNA studied in

vertebrates

We concluded the study by determining whether the results we had seen in mt-tRNA-Leu

(UUR) were specific to this tRNA molecule or whether the trend would be replicated in other

mt-RNAs. We selected a total of 246 disease asssociated variants in the remaining 21 m-tRNA
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molecules and looked for their presence or absence in the original panel of 33 species. Only 4%

of these variants were not observed in any species and the remaining 235 mutations were

observed in at least one species. This panel of mutations was compared to data published by

Yarham et al., 62 of these mutations had been previously classified as definitely pathogenic in

humans were studied further [32]. Of the definitely pathogenic mutations 47 were seen to be

monomorphic for at least one species (Fig 5). These numbers differ to those in a prior report

[30] as we applied a clinically validated scoring system [3, 7, 32] to ensure that we look at vari-

ants defiantly associated with clinically manifesting disease this algorithm was not available

prior to the first report being published.

Most of these definitely pathogenic mutations were only monomorphic in less than 10 of

the species studied. However, but there were a number of mutations which were found in the

majority of species studied. Notably, G5703A, G14710A, A7472C, and G14724A, were

observed in more than 75% of the species studied.

Discussion

There have been many discussions about the causes of the variable presentation of mitochon-

drial disease. One possible much discussed explanation for this is the wide sequence context.

The unique inheritance pattern of mtDNA results in the emergence of distinct maternal line-

ages or haplogroups. This has the effect that once a compensatory mutation, has occurred a

subsequent normally pathogenic mutation can occur on the lineage and spread. This leads to

the possibility that some lineages might be more robust than others to the consequences of

mutation. Public databases now contain a wealth of sequence information from individuals,

both human and other species. Prior studies that have considered this question have been lim-

ited by availability of sequence data, with some studies only using a single sequence form each

of the species considered [31]. We have used a greatly expanded sequence database to investi-

gate the prevalence and penetrance of variants located in the gene for mt-tRNA-Leu (UUR).

This is a known location of disease-causing mutations in humans. Supporting the idea out-

lined above, we have found a number of widely recognized human mutations in other species

at high frequencies, and have been able to suggest compensatory mutations.

Observed secondary structure variation in tRNA-Leu(UUR) molecule in

species with 3243A>G mutation

In this study, we show that m.3243A>G mutation occurs at high frequency within sequences

from 6 species Canis lupus familiaris, Mandrillus sphinx, Cercocebus atysatys, Cercocebus tor-
quatus, Leptonychotes weddellii, Scolecomorphus vittatus and Xenagama taylori. This suggests

that the mutation is not pathogenic within these species. This is especially likely with samples

taken from wild animals, which are under intense selection. In Canis lupus familiaris, the

Table 7. Sequences that carry the 3253 point mutation.

Sequence ID Haplogroup Percentage within haplogroup

KP702293.1 U6a3 0.04

KF451676.1 M10a 0.11

KJ446421.1 M10a 0.11

JQ045037.1 L2b 0.35

JQ044890.1 L2b 0.35

JN857060.1 M10a 0.11

DQ112702.2 L2b 0.35

https://doi.org/10.1371/journal.pone.0187862.t007
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m.3243A>G mutation is present in approximately 15% of sequences. While only limited data

is available for Mandrillus sphinx, Cercocebus atysatys, Cercocebus torquatus, Leptonychotes

Fig 5. Mutations which are classified as definitely pathogenic in humans that are found to be fixed in other species.

https://doi.org/10.1371/journal.pone.0187862.g005
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weddellii, Scolecomorphus vittatus and Xenagama taylori, the variant is present in 100% of the

available sequences. Although the m.3243A>G nucleotide is not present within a stem region

of the mt-tRNA-Leu(UUR) molecule, it is involved in a tertiary interaction between bases 8,

14 and 21 of the mt-tRNA-Leu [21]. Disruption to the 3D structure of the molecule is believed

to contribute to the pathogenic effect of the mutation [25].

In the current study, we found possible compensatory mutations, which alter the secondary

structure of the mt-tRNA-Leu(UUR) molecule. These mutations may affect the way the mt-

tRNA molecule folds and negate the negative effects of m.3243A>G. The compensatory muta-

tions, observed in the d-stem of the mt-tRNA-Leu(UUR) molecule, were the m.3253A>C and

m.3254C>T SNPs. They were present along with the m.3243A>G mutation in Canis lupus
familiaris, Mandrillus sphinx, Cercocebus atysatys, Cercocebus torquatus and Leptonychotes wed-
dellii. The d-stem of the human mitochondrial mt-tRNA-Leu(UUR) gene is 4 nucleotides

long. It contains 2 Watson-Crick pairs, two nucleotides which are unpaired and a G-U wobble

base pair in the position adjacent to the d-loop. The two compensatory mutations create a

Watson-Crick base pair in the d-Stem of the mt-tRNA molecule in the position of the Wobble

pair, and an extra Watson-Crick pair in the place of the two unpaired nucleotides. Changes to

the secondary structure may suppress the pathogenic effect of the m.3243A>G mutation by

altering the 3D shape of the mt-tRNA molecule in two ways: (1) Wobble pairs have been

shown to change the 3D structure of mt-tRNA molecules due to the fact that G-U pairs form

different glycosidic pairings to Watson-crick pairs. This alters the angle of the bond with

respect to the backbone of the molecule resulting in changes to the 3D shape of the molecule;

(2) G-U pairs display conformational flexibility. These pairings react more sharply to sequence

context than Watson-Crick pairs. The twisting in the molecule is influenced by the identity of

the base pairs immediately adjacent to the wobble pair. As the m.3243A>G is directly adjacent

to the wobble base pair, it possibly causes the molecule to twist in a way that prevents the cor-

rect 3D structure forming [44]. The tRNA-Leu(UUR) molecule of Xenagama taylori is signifi-

cantly different from the rCRS and other mt-tRNA-Leu(UUR) molecules studied here. The

reduced length position in d-stem means that the base identified as m.3243A>G is actually the

second nucleotide in the d-loop rather than the first. Therefore, it is difficult to make direct

comparisons about the structural importance of this base change.

The m.3254T>C mutation appears to be the most common allele and is prolific throughout

the species studied, whereas the m.3253T>C mutation is confined to specific taxonomic

groups. Within carnivores the m.3253T>C is seen in related species of wolf, dog and dog-like

species, but no other closely related species. This indicates that the mutation was acquired after

divergence of the canids. Variants which occur in regions that are highly conserved across spe-

cies are most likely to be pathogenic and disease is most likely to be associated with rare vari-

ants. The wide distribution of these variants indicates that they are neutral mutations.

Evidence that haplogroup background may suppress expression of

disease

It has previously been reported that mitochondrial diseases from patients belonging to the

African haplogroup L do not show the same phenotypic expression of disease as patients with

European haplogroups [8, 9, 16]. One instance of the m.3243A>G mutation was detected in

human from a population study where no link to disease was reported [45]. The m.3253T>C

variant, which appears to be a compensatory mutation, is seen with the highest frequency in

sequences from the African haplogroup L, and the Asian haplogroup M, was seen on 3

sequences from each haplogroup. Whereas the m.3254T>C is seen with highest frequency in

sequences from the European haplogroup J, and was seen in five sequences from the sub-
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haplogroup J1b. Secondary mutations which are specific to certain haplogroups have been

shown to play a role in the phenotypic expression of mitochondrial disorders [17, 46]. It may

be that some population variants are neutral on their own, but, when combined with a second

mutation they can increase the severity of a disease [47].

The evidence presented here strongly indicates that changes to secondary structure of

the mt-tRNA-Leu(UUR) molecule prevent pathogenic effects of 3243A>G. This supports

the idea that sequence context (haplogroup background) is one of the important factors in

the expression on mtDNA diseases. However, it must be remembered the phenotypes

resulting from the m.3243A>G mutation are varied, and debate still exists as to its mecha-

nism of action. The 3243A>G may impair methylation of mt-tRNA in position 10 of the

molecule [21]. The presence of the mutation decreases the methylation of a uracil molecule

in the first wobble position of the anticodon. This leads to a deficiency in the molecule in

decoding UUG codons. Studying the methylation patterns of mt-tRNA molecules with

additional mutations could provide information about how the mutation affects functional-

ity. Neutral mutations elsewhere in other mitochondrial genes may supress the 3243 A>G

mutation [20]. In humans, the tRNA-Leu(UUR) gene is adjacent to the 16S ribosomal RNA

gene. The m.3243A>G mutation within the tRNA-Leu(UUR) gene may interfere with a

transcription and termination site for the 16S RNA molecule [20], leading to an accumula-

tion of unprocessed RNA. In the Canis lupus familiaris and Leptonychotes weddellii
sequences, including those possessing the m.3243A>G mutation, the locations of mt-

tRNA-Leu(UUR) gene and the16S ribosomal RNA gene are the same as the human mito-

chondrial genome and the transcription termination site is unchanged.

Previous research suggests Watson-Crick pairings are important in correct functioning of

tRNA molecules and SNPs which break these bonds are more likely to be pathogenic [37, 48].

Evidence obtained in this study supports this hypothesis. There were three disease causing var-

iants, with good evidence of pathogenicity within the stem regions of the tRNA molecule that

were observed in 100% of sequences from non-humans, which strongly indicated that these

mutations are not pathogenic within the species in question. In all instances, these mutations

were accompanied by a compensatory change on the other arm of the stem of the tRNA mole-

cule. This observation supports the previous hypothesis that it is not the SNP itself that is

linked to disease but, rather, the disruption to the Watson-Crick pairs in these regions.

We identified a further 47 variants from other tRNA molecules which are classified as

“defintitely pathogenic” in 100% of sequences from other species. Again this provides strong

evidence that variations within the molecules of these species prevent the pathogenic effects

that have been seen in humans.

To conclude, evidence does exist to support the hypothesis that animals can be affected by

mitochondrial disease, and as such they represent a valid system for considering the pene-

trance of mtDNA mutations and the importance of lineage context [29]. Notably, the results

here strongly suggest that the m.3243A>G not seen to be present at high levels in humans in

the absence of disease, is present as a non-pathogenic variant in other species, and that

mtDNA sequence context is key to the modulation of the impact of this mutation. The impor-

tance of sequence context has previously been considered in the context of mutations causing

Leber’s hereditary optic neuropathy (LHON) [17, 18]. As we sequence more, and investigate

disease in more lineages [9], we are likely to find out more about the importance of sequence

context in the expression of mtDNA variants. This knowledge will impact on the study of the

role of mtDNA variants in clinical disease, and how we investigate any role of mtDNA varia-

tion in common complex diseases [49].
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45. Barbieri C, Güldemann T, Naumann C, Gerlach L, Berthold F, Nakagawa H, et al. Unraveling the com-

plex maternal history of Southern African Khoisan populations. Am J Phys Anthropol. 2014; 153

(3):435–48. https://doi.org/10.1002/ajpa.22441 Epub 2013 Dec 9. PMID: 24323467

46. Man PY, Howell N, Mackey DA, Nørby S, Rosenberg T, Turnbull DM, et al. Mitochondrial DNA hap-

logroup distribution within Leber hereditary optic neuropathy pedigrees. J Med Genet. 2004; 41(4):e41.

https://doi.org/10.1136/jmg.2003.011247 PMID: 15060117

47. Chinnery PF, Howell N, Andrews RM, Turnbull DM. Mitochondrial DNA analysis: polymorphisms and

pathogenicity. J Med Genet. 1999; 36(7):505–10. PMID: 10424809

48. McFarland R, Taylor RW, Elson JL, Lightowlers RN, Turnbull DM, Howell N. Proving pathogenicity:

when evolution is not enough. Am J Med Genet A. 2004; 131(1):107–8; author reply 9–10. https://doi.

org/10.1002/ajmg.a.30318 PMID: 15384096

49. Salas A, Elson JL. Mitochondrial DNA as a risk factor for false positives in case-control association stud-

ies. J Genet Genomics. 2015; 42(4):169–72. https://doi.org/10.1016/j.jgg.2015.03.002 Epub Mar 17.

PMID: 25953355

mtDNA sequence context in the penetrance of mutations: A study with diagnostic implications

PLOS ONE | https://doi.org/10.1371/journal.pone.0187862 November 21, 2017 22 / 22

https://doi.org/10.1002/humu.21575
http://www.ncbi.nlm.nih.gov/pubmed/21882289
https://doi.org/10.1093/bioinformatics/btp163
http://www.ncbi.nlm.nih.gov/pubmed/19304878
https://doi.org/10.1093/bioinformatics/btm404
https://doi.org/10.1093/bioinformatics/btm404
http://www.ncbi.nlm.nih.gov/pubmed/17846036
http://www.ncbi.nlm.nih.gov/pubmed/9023104
http://www.ncbi.nlm.nih.gov/pubmed/10331250
https://doi.org/10.1016/j.tig.2004.09.014
http://www.ncbi.nlm.nih.gov/pubmed/15522452
http://www.ncbi.nlm.nih.gov/pubmed/8265770
http://www.ncbi.nlm.nih.gov/pubmed/8786060
https://doi.org/10.1086/339933
https://doi.org/10.1086/339933
http://www.ncbi.nlm.nih.gov/pubmed/11938495
https://doi.org/10.1016/j.mito.2009.01.005
https://doi.org/10.1016/j.mito.2009.01.005
http://www.ncbi.nlm.nih.gov/pubmed/19460299
http://www.ncbi.nlm.nih.gov/pubmed/11448301
https://doi.org/10.1016/j.biochi.2010.02.016
https://doi.org/10.1016/j.biochi.2010.02.016
http://www.ncbi.nlm.nih.gov/pubmed/20171258
https://doi.org/10.1093/embo-reports/kvd001
https://doi.org/10.1093/embo-reports/kvd001
http://www.ncbi.nlm.nih.gov/pubmed/11256617
https://doi.org/10.1002/ajpa.22441
http://www.ncbi.nlm.nih.gov/pubmed/24323467
https://doi.org/10.1136/jmg.2003.011247
http://www.ncbi.nlm.nih.gov/pubmed/15060117
http://www.ncbi.nlm.nih.gov/pubmed/10424809
https://doi.org/10.1002/ajmg.a.30318
https://doi.org/10.1002/ajmg.a.30318
http://www.ncbi.nlm.nih.gov/pubmed/15384096
https://doi.org/10.1016/j.jgg.2015.03.002
http://www.ncbi.nlm.nih.gov/pubmed/25953355
https://doi.org/10.1371/journal.pone.0187862

