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prospect?
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Data from basic science experiments is overwhelmingly supportive of the causal role of immune-inflammatory response(s) at the
core of atherosclerosis, and therefore, the theoretical potential to manipulate the inflammatory response to prevent
cardiovascular events. However, extrapolation to humans requires care and we still lack definitive evidence to show that
interfering in immune-inflammatory processes may safely lessen clinical atherosclerosis. In this review, we discuss key therapeutic
targets in the treatment of vascular inflammation, placing basic research in a wider clinical perspective, as well as identifying
outstanding questions.
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Introduction

Atherosclerosis-related cardiovascular diseases (CVD) are the
leading cause of mortality worldwide (WHO, 2011). Immune
responses play a decisive role in all phases of atherosclerosis
(Galkina and Ley, 2009; Libby and Hansson, 2015), and
inflammation contributes to plaque vulnerability (Hansson
et al., 2015). Atherosclerosis-prone conditions accelerate
immune cell recruitment into the arteries in the early and
advanced stages of the pathology (Galkina et al., 2006; Maffia
etal., 2007; Swirski et al., 2016), and in experimental models,
antigen-presenting cell/T-cell interactions have been shown
in the arterial wall leading to local T-cell activation and
production of pro-inflammatory cytokines (Koltsova et al.,
2012; Macritchie et al.,, 2012; Sage et al., 2014). In the
advanced stages of the pathology, immune responses are
tightly controlled in situ by the formation of artery tertiary
lymphoid organs in the adventitial connective tissue
adjoining arteries. These lymphocyte aggregates control
primary T-cell responses while bypassing secondary lymphoid
organs exerting a protective effect on atherosclerosis in mice
(Hu et al., 2015; Srikakulapu et al., 2016). Therefore, there is a
range of inflammatory  processes  underpinning
atherogenesis, which might be amenable to interventions.

Data from observational epidemiological studies also give
some support to the inflammatory hypothesis of CVD. A host
of prospective cohort data show that elevated circulating
levels of C-reactive protein (CRP), or indeed almost any other
circulating inflammatory marker, are associated with an
increased risk of future CVD events, even after adjusting for
established classical CVD risk factors (Woodward et al.,
2007; Danesh et al., 2008; Welsh et al., 2011; Kaptoge et al.,
2012). These data suggest that low grade systemic inflam-
mation precedes incident cardiovascular events and, as such,
also imply that inflammation might cause vascular diseases
that lead to major CVD events. Indeed, similar epidemio-
logical associations between elevated cholesterol and blood
pressure and risk of CVD have also been established
(Lewington et al., 2002; Sniderman et al., 2011), and we know
these to be causal risk factors due to supporting data from
randomized controlled trials (RCTs) with specific pharmaco-
logical interventions [Cholesterol Treatment Trialists’ (CTT)
Collaborators et al., 2012; Ettehad et al., 2016]. However,
although the association of these inflammatory biomarkers
with CVD appears to be independent of other risk factors,
and the utility of these biomarkers in clinical risk prediction
warrants debate, experience tells us to be cautious with
interpreting even strong associations as causal, given the
potential for residual confounding.

In this review, we will discuss the key potential therapeutic
targets in the treatment of vascular inflammation (Figure 1),
placing basic research in to a wider clinical perspective, as well
as identifying questions yet to be addressed.

Lessons from the antioxidant vitamins

Claims about the efficacy of L-ascorbic acid (vitamin C) in
the prevention of the common cold, cancer, and CVD can be
traced back to the influence of the double Nobel Laureate,
Linus Pauling (Pauling, 1971). Indeed, there is an abundance
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of literature investigating the important issue of whether
localized oxidative stress causes an inflammatory response in
the vasculature, and other organs. Under this hypothesis,
there may be a vicious positive feedback cycle between
inflammation and oxidative stress, causing vascular remode-
lling and plaque development (Montezano et al., 2015). In
support of this idea, basic scientific experiments, and limited
trial data suggest that vitamin C prevents free radical-induced
lipid peroxidation (Huang et al., 2002). Vitamin C induces
proliferation and concomitantly prevents in vivo apoptosis of
endothelial cells (ECs), increasing the recovery of the
endothelial layer following vascular damage (Rossig et al.,
2001; Saeed et al., 2003). In addition, vitamin C is an essential
regulator of collagen synthesis (Murad et al., 1981; Davidson
etal., 1997; Qiao et al., 2009). Both humans and guinea pigs
are unable to synthetize vitamin C due to an inactivating
mutation of the L-gulonolactone oxidase (GULO), and a
supplement of vitamin C in the diet is necessary otherwise
the development of scurvy. Interestingly, chronic deprivation
of vitamin C in diet, produce intimal lesions in guinea pigs
(Willis, 1953). The corresponding KO strain, GULO ™/, fed a
diet without vitamin C, showed extensive vascular impair-
ment including disruption of elastin layers and desquamation
of ECs (Maeda et al., 2000). Apolipoprotein-E deficient mice
(apoE /"), also lacking GULO showed a reduction of 40% in
plaque collagen content (Nakata and Maeda, 2002),
supporting a potential involvement of vitamin C in plaque
stability rather than in plaque formation. It was therefore
thought that vitamin C might ameliorate some of the
downstream effects of an inflammatory response, and there-
fore prevent atherosclerosis.

Indeed, observational studies suggest that low vitamin C
levels might predict CVD outcomes. For example, in the
EPIC-Norfolk study, individuals in the highest quartile for
plasma vitamin C had 33% lower risk of cardiovascular events
(Boekholdt et al., 2006). In a meta-analysis of 15 studies
(375000 participants), those with the highest third of dietary
intake of vitamin C were at 16% lower risk of CVD events (Ye
and Song, 2008). Yet, despite these tantalizing data, meta-
analysis of 50 RCTs not only failed to show any benefit of
supplementation with vitamin C in the prevention of CVD,
but tight confidence intervals also essentially exclude any
possibility of clinically meaningful benefits (Myung et al.,
2013) (Figure 2). This pattern, whereby basic science and
observational data support a protective role of antioxidant
vitamins in CVD, but trials of the relevant supplement
provide no evidence to support the compelling and coherent
theories, has been repeated for other antioxidants (Ye et al.,
2013). It could be argued that supplementations trials are
more likely to fail when many of the participants are not
‘deficient’ in the vitamin in question. For example, 75% of
participants in NHANES took the recommended daily intake
of vitamin C (Fulgoni et al., 2011). However, it is also worth
noting that, similarly, many of the participants in other
observational cohort studies will not be deficient in the
studied vitamin. This does not appear to influence the
observational association between vitamin status and
outcome, and therefore does not offer a satisfactory explana-
tion to resolve the apparent inconsistencies between
observations studies and controlled trials. Further arguments
about optimal delivery route, and dose of vitamin
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Summary of studies investigating the role of vitamin C in CVD risk. Data from Boekholdt et al. (2006), Ye and Song (2008) and Myung

et al. (2013).

supplements in trial settings may be pertinent. However, it is
worth noting that other pharmacological interventions, such
as statins, have a ‘sliding scale’ of biological effects at a wide
range of doses (Weng et al., 2010); it is not clear why very
specific doses of conventionally dietary antioxidants would
be necessary to see any treatment benefit. Therefore, even
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the most rigorous approaches to data analysis struggle to
overcome confounding and the reverse causality inherent in
observational studies. While these data do not directly refute
the inflammatory hypothesis of CVD, they do illustrate the
caution always needed in interpreting observational asso-
ciations as evidence of causality.



Mendelian randomization studies

Mendelian randomization attempts to substantially atte-
nuate or, in some cases, to eliminate the problems of
confounding and reverse causality in classical observational
epidemiology by exploiting the random allocation of genetic
material at conception (Davey Smith and Hemani, 2014).
Within a hypothetical population, one group of people has
genetic variant(s) that lead to lower average circulating
inflammatory markers over their life course, while the other
group does not possess these variants. All other traits (such
as adiposity, smoking and alcohol intake) should normally
be equally distributed in the comparator groups. This
situation can then be viewed as analogous to a RCT, and
consequently, confers a level of stronger evidence of causality
than classical epidemiology. Any differences in health
outcomes between these two groups of people can be attri-
buted to the concentration of inflammatory markers.

Strong evidence based on such data indicates that the
inflammatory marker CRP does not cause CVD. In a meta-
analysis of nearly 200000 participants, the relative risk for
coronary heart disease (CHD) was 1.00 (0.90 to 1.13) per 1
SD higher genetically raised CRP concentration (Wensley
et al., 2011). Whether these polymorphisms might explain
subtleties in the biology of atherosclerosis, such as the
accumulation of monomeric CRP in plaques (Eisenhardt
et al., 2009), is not presently clear. In contrast however,
genetic variants which lead to higher circulating concen-
trations of IL-6 receptors (IL-6R) (and consequently less
IL-6 cell signalling and lower circulating CRP) appear
protective against CHD (IL6R Mendelian randomisation
Consortium, 2012; Sarwar et al., 2012). This has fuelled
interest in the hypothesis that upstream key regulator
cytokines are players in the development of atherosclerosis,
and these two independent studies remain the most relevant
findings to date supporting the inflammatory hypothesis.

Lipid lowering therapies, inflammation
and CVD

Statins, which act by inhibiting 3-hydroxy 3-methyl
glutaryl CoA (HMG-CoA) reductase, are the front-line drug
used for lipid reduction in primary and secondary CVD
prevention. Their efficacy in reducing cholesterol and
preventing CVD events is widely accepted on the basis of a
large body of RCTs (CTT Collaborators et al., 2012). However,
basic science has published evidence over many years to
suggest that statins might have pleiotropic effects (Bellosta
et al., 2000). Specifically of interest for this review, the idea
that statins prevent CVD not only through lipid reduction
but also through a lipid independent, anti-inflammatory
action has been extensively debated (Kinlay, 2007; Babelova
et al., 2013; Sirtori, 2014).

Statins can exert their putative pleiotropic effects through
a broad range of mechanisms. They inhibit Rho-GTPase
isoprenylation through reducing geranyl-geranylpyrophos-
phate production during cholesterol biosynthesis (Liao and
Laufs, 2005; Cai et al., 2015). This is leading to increased
expression of endothelial NOS (eNOS) and NO production
(Liao and Laufs, 2005). Statins have also been shown to
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increase NO production via activation of the PI3K-Akt
pathway through phosphorylation of Akt (Kureishi et al.,
2000). Invivo, a single dose of simvastatin to either wild type
(WT) or apoEf/ ~ mice increased endothelium-derived NO
production (Scalia et al., 2001). Moreover, statins can suppress
the activity of pro-oxidant enzymes (such as NADPH oxidase)
in the endothelium (Margaritis et al., 2014).

Statins also affect leukocyte trafficking at the inflammatory
site. Atorvastatin, simvastatin and cerivastatin reduced
the expression of intercellular adhesion molecule (ICAM)-1 and
lymphocyte function-associated antigen-1 on human ECs and
circulating peripheral blood mononuclear cells stimulated with
TNF-a (Rezaie-Majd et al., 2003). Statins have also been shown
to reduce, in vitro, in human primary cells, the production of
the chemokine CCL2 (Romano et al., 2000), and the secretion
of matrix metalloproteinase (MMP)-9 (Wong et al., 2001; Wang
etal., 2016).

Statins can also directly affect the adaptive immune
response. They have been shown to inhibit the inducible
promoter IV of the transactivator CIITA in several cell types,
such as the human ECs and monocyte/macrophages, and
thereby repress MHC-II mediated CD4" T-cell activation
(Kwak et al., 2000). Moreover, statins reduce the expression
of CD40 in human vascular ECs, smooth muscle cells (SMCs),
macrophages and fibroblasts (Mulhaupt et al., 2003).
Simvastatin and atorvastatin have been shown to reduce the
expression of other costimulatory molecules such as CD83
and CD86 and human leukocyte antigen-DR (HLA-DR)
induced by LPS in human monocyte-derived dendritic cells
(DCs) from healthy patients leading to a reduced capability
of DCs to induce T-cell activation, proliferation and Th1l
differentiation (Yilmaz et al., 2006). Atorvastatin concomi-
tantly induces activation of STAT-6 and inhibition of STAT-4
phosphorylation, leading to secretion of Th2 cytokines (IL-4,
IL-5 and IL-10) and TGF-B and suppression of Th1 cytokines
(IL-2, 1L-12, IFN-y and TNF-a) (Youssef et al., 2002).
Lovastatin also increases the recruitment of regulatory T-
cells in inflamed sites. This effect is dependent on the
expression of CCL1, a chemokine up-regulated by statin
administration (Mira et al., 2008). More recently, statin-loaded
reconstituted HDL nanoparticles have been shown to inhibit
atherosclerotic plaque inflammation in apoE’/ ~ mice,
demonstrating that statins can selectively inhibit vascular
inflammation in situ, directly in the diseased vessel wall,
without any systemic effect such as lipid lowering
(Duivenvoorden et al., 2014).

There is therefore a body of evidence showing how statins
might exert anti-inflammatory effects, although one must
always bear in mind the potential for publication bias
whereby only positive studies fitting a prevailing hypothesis
are published whereas negative studies are not easily
published or not pushed towards publication in the first place.
In epidemiological studies, statin treatment certainly does
lower circulating levels of CRP in RCTs (Ridker et al., 1999,
2009; Albert et al., 2001; Sever et al., 2012, 2013; Soedamah-
Muthu et al.,, 2015), but the underlying mechanism, and
whether apparently decreased systemic inflammation trans-
lates into a reduction of cardiovascular events is highly
controversial. The JUPITER (Justification for the Use of statins
in Prevention: an Intervention Trial Evaluating Rosuvastatin)
trial suggested that the degree of CRP lowering on statin
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treatment may offer insight into CVD risk reduction beyond
LDL-cholesterol (LDL-C) lowering (Ridker et al., 2009).
However, this analysis has not been reproduced in other trial
data (Severet al., 2012, 2013; Soedamah-Muthu et al., 2015);
the vast majority of benefit from statins is predictable from
the extent of LDL reduction alone. One study level meta-
analysis suggested a strong correlation between change in
LDL and change in CRP for a range of lipid lowering agents
including statins, ezetimibe, niacin, fibrates and fish oils
(r=0.80) (Kinlay, 2007), perhaps suggesting that CRP lowering
isdirectly orindirectly related to lipid lowering. More recently,
however, the new class of lipid lowering drugs, proprotein
convertase subtilisin/kexin type 9 inhibitors, have
emerged and it appears these have little or no effect on CRP
despite reducing circulating LDL by more than 50% (Blom
etal., 2014; Cannon et al., 2015). Therefore, CRP reduction is
not an inevitable consequence of LDL-lowering.

The debate about potential pleiotropic effects of statins
will continue. However, it is clear that it will be extremely
difficult to tease apart lipid-lowering effects from anti-
inflammatory effects and thus estimate their relative
importance for CVD events. Statins studies alone will not
prove or disprove the inflammatory hypothesis of CVD. It
should be noted that the degree of LDL-C reduction
explains nearly all the CVD benefit seen in clinical trials of
statins or indeed other agents so that one does not need to
evoke alternative statin effects to explain benefits (Collins
et al., 2016).

Autoimmune disease, biological agents
and cardiovascular disease

It is well established that patients with a range of chronic
systemic autoimmune conditions, including rheumatoid
arthritis (RA), ankylosing spondylitis, psoriasis and irritable
bowel disease, are at modestly increased risk of cardiovascular
events, independent of other traditional risk factors (del
Rincén et al., 2001; Andersen and Jess, 2014; Ogdie et al.,
2015). The mechanisms by which cardiovascular risk is
elevated in RA patients remains unproven, but the primary
candidate pathway is that systemic inflammation drives
vascular dysfunction and atherosclerosis (Sattar et al., 2003).
Indeed, data from the CORRONA database of nearly 25000
RA patients, followed-up for median 2.7 years, shows that
those with low disease activity or in remission (and therefore
with a lower burden of systemic inflammation) have an
approximately 60% decrease in risk of CVD events, compared
with those classified with high disease activity (Solomon
et al., 2015). Use of glucocorticoid treatment has long been
a mainstay to reduce the pain and inflammation associated
with RA, and it has been hypothesized that these anti-
inflammatory interventions might prevent CVD. Indeed,
older studies in animal models suggest dexamethasone
reduces atherosclerosis (Makheja et al., 1989). However, the
longer-term side effects of steroid treatment, including
potential causes of CVD, like diabetes, central obesity and
hypertension, are likely to cause their own cardiovascular
risks (Souverein et al., 2004; Walker, 2007). Indeed, evidence
from the RA field suggests high-dose steroids have a net
adverse association with CVD risk (Agca et al., 2017).
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The availability of a range of specific anti-inflammatory
interventions has revolutionized treatment of patients with
RA and other autoimmune conditions; TNF-o blockers and
IL-6 receptor blockers are now common and efficacious (if
expensive) second or third line treatment options after use
of conventional disease modifying anti-rheumatic drugs.
The availability of these and other biological agents has
opened a world of possibilities with regards to testing the
anti-inflammatory hypothesis of CVD using a variety of
different pathways.

TNF-a and IL-6 in CVD

Experimental data

Several lines of evidence support a pro-atherogenic role for
TNF-0. TNF-a binding to the TNF-a receptors, TNFR1 or
TNFR2, activates NF-«B (Grassia et al., 2010) and p38 MAPK
(Sprague and Khalil, 2009) and therefore the transcription of
proinflammatory genes including those for IL-1, IL-8, CCL2,
ICAM-1, vascular cell adhesion protein (VCAM)-1 and
MMPs in a variety of cell types including lymphocytes,
macrophage, ECs and vascular SMCs (Grassia et al., 2009;
Sprague and Khalil, 2009; Grassia et al., 2010; Kalliolias and
Ivashkiv, 2016). TNF-a/apoE double knockout mice showed
less atherosclerotic plaque formation compared to apoE ™/~
mice (Branén et al., 2004; Ohta et al., 2005), with reduced
aortic expression of ICAM-1, VCAM-1, CCL2 as well as
scavenger receptor class A (Ohta et al., 2005). Treatment with
TNF-a binding protein reduced plaque development in
apoE /™ mice (Elhage et al., 1998). Moreover, chimeric LDL
receptor knockout (LDLr /") mice deficient in pS5 TNF
receptors (TNFR1) in bone marrow-derived cells showed a
reduction in atherosclerosis and reduced vascular recruit-
ment of immune cells (Xanthoulea et al., 2008). Several
immune cells can be a source of TNF-a in murine
atherosclerotic vessels, including macrophages and the pro-
atherogenic B2 cell subset (Tay et al., 2016). Importantly,
TNF-a can strongly influence plaque vulnerability. TNF-o
stimulates MMP production by SMCs as well as SMC
activation, proliferation, and migration (Grassia et al., 2009;
Grassia et al., 2010; Maddaluno et al., 2012). Intriguingly,
TNF-a can concomitantly induce proliferation of human
SMCs and apoptosis of ECs, confirming a scenario in which
TNF-a can alter the fibrous cap composition in the atheroma
(Rastogi et al., 2012).

Experimental data show a potential dual effect of IL-6 on
atherogenesis. In vitro, human macrophages stimulated with
oxLDL produce IL-6 (van Tits ef al., 2011), while stimulation
with IL-6 enhances the expression of adhesion molecules
(ICAM-1, VCAM-1 and E-selectin) in HUVEC (Watson et al.,
1996). IL-6 mRNA is detectable in the aorta of apoE’/ ~ but
not in WT mice (Sukovich et al., 1998). The injection of
recombinant IL-6 increased lesion size in the aorta of apoE '~
and C57Bl/6 mice fed a high-fat diet and increased the
expression of tissutal and circulating pro-inflammatory
cytokines (IL-1p and TNF-a) (Huber et al., 1999). Moreover,
treatment with a fusion protein of the natural IL-6 trans-
signalling inhibitor soluble glycoprotein 130 reduced
atherosclerosis in LDLr '~ mice (Schuett et al., 2012). In
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contrast, however, serum cholesterol levels and subsequent
atherosclerotic lesion formation increased in apoE/IL-6
double knockout mice compared to control animals, showing
a less stable plaque phenotype and reduced circulation levels
of IL-10 (Schiefferet al., 2004).

Biological agents and hard CVD endpoints
Given the strong data on the role of these cytokines in
atherosclerosis, the effect of blockade of these pathways on
CVD risk in people with autoimmune disease is thus clearly
of high interest. Despite this, RCTs of anti-inflammatory
therapies in RA patients and other inflammatory conditions
have been powered to demonstrate improvements in disease
activity rather than CVD endpoints, which requires far
smaller sample sizes. Indeed, even meta-analysis of random-
ized placebo controlled trials yields nowhere near sufficient
power to investigate the effects of these biological agents on
CVD events (Ryan et al., 2011). Given that these drugs are
now a cornerstone of treatment in RA patients, practicalities
aside, a placebo controlled trial large enough to investigate
the impact of these agents on CVD events is unfeasible due
to the ethical implications of restricting some patients to
placebo. The forthcoming ENTRACTE trial results (https://
clinicaltrials.gov/ct2/show/NCT01331837), are  highly
anticipated and will directly compare the IL-6 receptor
blocker tocilizumab with the TNF-a blocker etanercept
in the prevention of CVD events in RA patients for the first
time, but will not be able to test the inflammatory hypothesis
directly. It is notable this study is powered only to rule out an
upper hazard ratio of risk of 1.8 so it may not be powered
sufficiently to provide a robust answer of CVD risk with
tocilizumab, compared with that with etanercept.

Thus, given the lack of hard outcomes in trial data, the
literature has turned to pharmaco-epidemiological studies
to investigate the effect of biological agents on CVD risk in
patients with chronic autoimmune diseases. Meta-analysis
of observational studies and registries in RA, psoriasis and
psoriatic arthritis patients suggest that those receiving TNF-
o blockers are at 30% lower risk (95% CI 0.54-0.90) of CVD
than patients taking non-biological therapies (Roubille
etal., 2015), perhaps offering some support to the notion that
TNF-a blockade is efficacious in reducing CVD events in
people with systemic inflammatory conditions. However,
pharmaco-epidemiological studies are prone not only to
confounding by established risk factors but also to confoun-
ding by indication. In the CORRONA database, for instance,
patients taking TNF-o blockers (compared to patients on
non-biological and non-methotrexate based therapies)
were at substantially lower risk of CVD events (HR 0.39,
95% CI 0.19 to 0.82) (Greenberg ef al., 2011). However, they
were also slightly more likely to be female, were less likely
to be tertiary educated, had higher scores on general health
questionnaires, and were less likely to have had a previous
myocardial infarction (MI). The authors adjust for these
differences in many of the constituent studies of the meta-
analysis, but the fundamental problem remains that
somewhere in the past an informed clinical judgement has
been made; those prescribed biologics have fundamental
differences in their characteristics from those not prescribed
biologics, and these are impossible to fully measure, much
less adjust for.
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Biological agents and surrogates of CVD

Further data on surrogate biomarkers of CVD in RA patients
might be useful to infer the effects of administration of
biological agents on CVD risk. The chronic inflammatory
burden of RA patients depresses circulating total cholesterol
and other lipid concentrations (Myasoedova et al., 2010), a
feature commonly seen in many chronic and acute
inflammatory illnesses. Treatment with biological agents
may be considered to ‘normalize’ total cholesterol, although
some could nevertheless argue that an increase in cholesterol
however achieved could still be potentially harmful. These
drugs also have effects on several other pathways, as we
recently demonstrated (Robertson ef al., 2013). In a post hoc
study of the MEASURE trial of tocilizumab or placebo in 132
RA patients, total-cholesterol, LDL-C and triglyceride levels
all increased in tocilizumab treated patients by week 12
(12.6, 28.1 and 10.6%, respectively), although there was no
increase in small dense LDL or oxidized (ox)LDL (McInnes
et al., 2015). In addition, tocilizumab decreased lipoprotein
(a) and decreased D-dimer (McInnes et al., 2015), a marker
of thrombosis and fibrinolysis as well as CVD risk (Willeit
et al., 2013). Examination of downstream biomarkers of
CVD may also be informative; for instance natriuretic
peptides (such as N-terminal pro B-type natriuretic peptide,
NT-proBNP) are released during cardiac overload and are
strong predictors of CVD risk (Welsh et al., 2013, 2016a,b).
Prospective data from an adalimumab (a TNF-o blocker)
treated cohort suggested that therapy reduced the cardiac
biomarker and strong predictor of CVD risk, NT-proBNP,
but that study lacked a control arm (Peters et al., 2010).
However, this effect was not supported in a post hoc analysis
of a RCT, where cardiac biomarkers were lowered by both
tocilizumab and the standard care comparator (Welsh et al.,
2016a,b). Thus, the net effect of anti-inflammatories on
CVD risk is difficult to interpret from biomarkers alone.

Safety profile of biological agents

Despite the efficacy of biological agents in chronic inflam-
matory conditions, their immunosuppressive properties have
raised safety concerns, and consequently, they have been
carefully evaluated in RCTs and by using registry data.

In a meta-analysis of RCTs and open label studies, the
TNFa blocker infliximab was associated with slightly more
adverse events compared to placebo (OR 1.55, 95% CI
1.01-2.35), although this did not reach statistical significance
for other biologics (Singh et al., 2011). Non-significant trends
towards increases in pulmonary infections and tuberculosis
reactivation were also noted. However, small numbers of
incident malignancies preclude useful analyses and TNF-a
blockers are contraindicated in patients with heart failure.
Attempts to use registry data for long-term follow-up of
patients treated with biologics are likely to be subject to the
same limitations described above.

Despite a predominantly encouraging safety profile in
people with chronic diseases, there is a considerable ethical
difference in giving immunosuppressive drugs to patients
with chronic illness that may limit their quality of life (such
as RA), and giving such drugs for the prevention of CVD, in
which case the subclinical phase has little effect on quality
of life, and a hard clinical event may never occur. For this
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reason, it is unlikely that the present generation of systemic
anti-inflammatory drugs will ever be prescribed in a primary
prevention setting.

PLA,

Experimental data

The PLA, superfamily are enzymes able to specifically
hydrolyse fatty acids at the sn-2 position of glycophos-
pholipids releasing bioactive lipids, most importantly
arachidonic acid and lysophospholipids. There are 15
different groups of PLA, enzymes, each containing subgroups.
Between them, the most studied in atherosclerosis include
group Il secretory PLA, (sPLA;), and PAF acetylhydrolase, also
known as lipoprotein-associated (Lp)-PLA, (Burke and
Dennis, 2009; Rosenson, 2010). Hydrolysis of membrane
phospholipids by PLA2 is a key step in the production of
precursors for eicosanoids and the potent inflammatory agent
PAF. The development of sPLA, inhibitors as possible anti-
inflammatory agents represents an interesting and active
research field.

The proatherogenic activities of sPLA, enzymes include
the modification to circulating LDL, with conformational
changes in apolipoprotein B (apoB)-100 that impairs
clearance by LDLr (Kleinman et al., 1988). Thus, in mice
overexpressing sPLA,, the time spent by LDL in the
circulation increased, along with its susceptibility to oxida-
tion and the loading of arterial macrophages with cholesterol
(Ivandic et al., 1999). Interestingly, phospholipid hydrolysis
by sPLA, causes conformational changes in apoB-100
resulting in increased proteoglycan-binding activity which
facilitates LDL diffusion into the vessel wall (Flood et al.,
2004). In addition to these effects on LDL, the hydrolysis of
phospholipids from cell membranes and lipoproteins increa-
sed local oxidative stress and levels of free arachidonic acid,
lysophospholipids, and non-esterified fatty acids (Rosenson
and Hurt-Camejo, 2012).

The relevance of sPLA, isoforms in atherosclerosis has
been investigated using knockout and transgenic mice.
Transgenic mice expressing the human form of group Ila
SsPLA, exhibited significant atherosclerotic lesions even
when fed a low-fat chow diet (Ivandic et al., 1999). LDLr '~
mice overexpressing group V sPLA, by retrovirus-mediated
gene transfer showed increased atherosclerosis associated
with collagen deposition in plaques (Bostrom et al., 2007).
Moreover, LDLr~’~ chimeric mice deficient in bone marrow
group V sPLA, showed less atherosclerosis compared to
control animals (Bostrom et al., 2007). On the contrary, the
effect of group X sPLA, seems to be protective. The
overexpression of human group X sPLA, in murine bone
marrow cells of the LDLr/~ chimeric mice leads to the
reduction of Th1 response and to a 50% reduction of lesion
formation (Ait-Oufella ef al., 2013). All these results suggest
different effects of the multiple sPLA, isotypes and indicate
the development of selective inhibitors of PLA, isoforms as
new possible compounds for the treatment of atherosclerosis.

Varespladib is an inhibitor of sSPLA, investigated in several
animal models for its anti-atherosclerotic effect. Treatment of
apoE ™/~ mice with varespladib resulted in the reduction of
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atherosclerosis development and a more stable plaque
phenotype (Fraser ef al., 2009; Shaposhnik et al., 2009). In
atherosclerotic guinea pigs, treatment with varespladib was
not effective in reducing atherosclerosis but decreased
cholesterol accumulation in the aorta without changing
serum cholesterol levels (Leite et al., 2009).

Lipoprotein-associated PLA, (Lp-PLA)) is an enzyme
synthesized in macrophages and which travels in the
circulation with LDL-particles. Although the biology is
controversial, several pieces of evidence suggest that Lp-
PLA; is a pro-inflammatory enzyme, due to its mediating role
in the production of oxidized non-essential fatty acids and
lysophosphatidylcholine (Zalewski and Macphee, 200S5),
which are thought to be important in the recruitment and
retention of inflammatory cells within plaques. Unexpec-
tedly, overexpression of Lp-PLA, in apoE_/ ~ mice (Quarck
et al., 2001) or in balloon-denuded rabbits (Turunen et al.,
2005) reduced endothelial damage and lesions formation.
This anti-atherogenic effect could, at least in part, be
explained by the fact that Lp-PLA, hydrolyses PAF, a potent
proinflammatory mediator (Talmud and Holmes, 2015).

Darapladib is a relatively selective inhibitor of Lp-PLA,
(Rosenson and Hurt-Camejo, 2012). Treatment of diabetic
and hypercholesterolemic pigs with darapladib reduced
development of advanced coronary atherosclerosis reducing
the lyso-PC content and necrotic core area of the lesion.
Moreover, darapladib reduced the expression of several genes
associated with macrophage and T lymphocyte activation in
pig atherosclerotic vessels (Wilensky et al., 2008), and
CCL2, VCAM-1 and TNF-a in aortas from apoE’/ ~ mice
(Wang et al., 2011).

Observational epidemiology and trial data
Observational epidemiology supports the notion that sPLA,
and LP-PLA, might be important pathophysiological
pathways. Thus, higher circulating Lp-PLA, mass and activity
was associated with increased CVD risk (Thompson et al.,
2010). In phase 2 trials, darapladib did exactly as predicted;
it reduced IL-6 by 12% and CRP by 13% (Mohler et al.,
2008), and also halted the progression of the necrotic core
of atherosclerotic plaques (Serruys et al., 2008). In contrast,
the phase 3 STABILITY trial (15828 CHD patients, 3.7 year
follow-up) and the SOLID-TIMI 52 trial (13 026 ACS patients,
2.5 year follow-up) disappointingly showed that darapladib
did not reduce risk of a composite CVD endpoint
(O’Donoghue et al., 2014; White et al., 2014). A similar lack
of benefit was reported for varespladib (Nicholls et al.,
2014). Interestingly, Mendelian randomization predicted
the findings for varespladib would show on benefit, ahead
of the publication of the trial results (Holmes et al., 2013).

IL-12 and IL-23

Experimental data

IL-12 and IL-23 are heterodimeric cytokines that share the
subunit p40. The subunit p40 has been detected in foam-
cell-like regions of the aortic plaque of apoE’/ ~ mice (Lee
et al., 1999). IL-12 is expressed by lymphocytes, activated
macrophages and DCs. IL-12 activates the T-bet transcription
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factor, leading to the up-regulation of IFN-y production and
polarisation of CD4" T-cells to the proinflammatory
phenotype Thl (Teng et al., 2015). Recombinant IL-12
accelerates the formation of atherosclerotic lesions in
apoEf/f mice (Lee et al., 1999), while IL-12 deficiency (IL-
127/ ’/apoE’/ ) resulted in reduced atherosclerosis
(Davenport and Tipping, 2003). Interestingly, selective inhi-
bition of IL-12 production in macrophages led to a 50%
decrease in aortic lesions in LDLr~/~ mice (Zhao et al.,
2002). Finally, blockade of IL-12 by vaccination of LDLr /-
mice resulted in a 60% reduction of atherosclerotic plaque,
leading to a stable plaque phenotype (Hauer et al., 2005).

The role of IL-23 in atherosclerosis is poorly studied,
despite the association observed between IL-23 and disease
progression in patients with carotid atherosclerosis. IL-23
serum levels and the plaque mRNA expression levels were
higher in patients with carotid atherosclerosis, compared
with healthy patients (Abbas et al., 2015).

The antibodies wustekinumab and briakinumab,
which bind to the p40 subunit, were developed for the
treatment of psoriasis. Given the arguments set out above,
these biological agents might be expected to have a more
direct anti-inflammatory effect than PLA, inhibitors.

Trial data
Ustekinumab and briakinumab appear efficacious in reducing
chronic inflammatory disease symptoms and perhaps
reducing CRP (Toedter ef al., 2009; Strober et al., 2011), but
questions have been raised about safety, with a combined trial
meta-analysis reporting potentially increased major adverse
cardiac events (OR = 4.23, 95% CI: 1.07-16.75, P = 0.04)
(Tzellos et al., 2013). The confidence intervals around this
estimate are very large, and the nuances of quantifying the
effect size lie in how the statistics for small event numbers in
study arms are handled (sometimes no CVD events occurred).
The question remains as to whether these findings have
any relevance for the inflammatory hypothesis of CVD. They
certainly do illustrate the complex biology underlying
atherogenesis and that an intervention that reduces inflam-
matory biomarkers cannot be presumed to be beneficial
without hard endpoint data to support the findings (Table 1).

Ongoing RCTs

The inflammatory hypothesis of CVD has, so far, never been
directly tested in RCTs. Two major RCTs, powered for reduction
in composite CVD endpoints will now formally test the
inflammatory hypothesis in a secondary prevention setting.
The Cardiovascular Inflammation Reduction Trial (CIRT:
https://clinicaltrials.gov/ct2/show/NCT01594333)  uses a
methotrexate-based intervention and the Camakinumab
Anti-inflammatory Thrombosis Outcomes Study uses a mono-
clonal antibody against IL-p (CANTOS: https://clinicaltrials.
gov/ct2/show/NCT01327846).

Methotrexate experimental data

From a scientific perspective, the mechanisms by which
methotrexate exerts anti-inflammatory effects still need to
be fully elucidated. Originally developed as an antifolate drug
for the treatment of cancer, methotrexate inhibits cell
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division. It also shows a range of anti-inflammatory
mechanisms, independent of its antifolate activity, such as
inhibition of T-cell proliferation by affecting purine and
pyrimidine  metabolism, reduction of intracellular
glutathione levels leading to reduced immune cell
accumulation at inflammatory sites, and increased release of
anti-inflammatory adenosine (Cronstein, 2005). In
TNF-oa-stimulated human ECs, methotrexate down-regulates
pro-inflammatory genes, such as those for TNF-q, IL-1p, CXCL2
and the toll-like receptor 2, and up-regulates the anti-
inflammatory TGF-B1 gene (Bulgarelli et al., 2012). Incubation
with methotrexate prevents the conversion of lipid-loaded
THP-1 cells into foam cells (Reiss et al., 2008). Following
treatment with methotrexate, adipose tissue from obese mice
produced less proinflammatory (TNF-a, IL-6, leptin) and more
anti-inflammatory mediators (adiponectin and IL-10)
associated with reduced macrophage infiltration and
inflammation (DeOliveira et al., 2012). In addition,
methotrexate down-regulates the expression of adhesion
molecules (ICAM-1, E-selectin, VCAM-1) in human biopsies rich
in inflammatory infiltrate (Dahlman-Ghozlan et al., 2004) and
circulating levels of IL-6 in psoriatic patients (Elango et al.,
2012). All these activities support a potential effect of
methotrexate in the treatment of atherosclerosis. Indeed,
methotrexate (4 mg-kg™") intravenously injected four times a
week for 30 days has been shown to reduce by 75%
atherosclerosis formation in rabbits (Bulgarelli et al., 2012).
In addition, administration of methotrexate alone or in
combination with etoposide carried in lipid nanoemulsion
reduced macrophage, MMP-9 and lesional content of
proinflammatory cytokines, again in the atherosclerotic rabbit
model (Bulgarelli et al., 2013; Leite et al., 2015).

CIRT ftrial

CIRT randomizes low dose methotrexate (15-20 mg-week ')
plus folate (1 mg, 6 days week™"), versus placebo plus folate
design. Participants include patients who have had a previous
MI or multi-vessel coronary artery disease, have type 2
diabetes and/or metabolic syndrome, and are therefore
high-risk, secondary prevention patients. As an intervention,
methotrexate has several features to recommend it, including
a long historical safety profile and very low cost. It should be
noted that CIRT is powered to detect a 25% risk reduction in
the methotrexate group; a considerable risk reduction against
a background of gold standard secondary prevention
therapies. If methotrexate fails to lower risk to this level, CIRT
may not exclude the inflammatory hypothesis of CVD. The
anticipated primary completion date of CIRT is presently
the end of 2018.

IL-1 and CVD experimental data

IL-1 is the first identified interleukin and affects virtually all
cells and organs. It is the major pathogenic mediators of
inflammatory and immune diseases (Garlanda et al., 2013;
Schett et al., 2016). IL-1a and IL-1p share the same receptor
(IL-1R) and the same downstream signalling pathway.
Instead, the IL-1R antagonist (IL-1RA) serves as a decoy
receptor, inhibiting the effects of IL-1. Both IL-1a and IL-1B
are produced as precursors and activated by enzymic cleavage
(Dinarello, 2011). IL-1o. mediates the early phases of sterile
inflammation, whereas IL-1p is produced as an inactive

British Journal of Pharmacology (2017) 174 3898-3913 3905


http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6885
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9213
https://clinicaltrials.gov/ct2/show/NCT01594333
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6773
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2623
https://clinicaltrials.gov/ct2/show/NCT01327846
https://clinicaltrials.gov/ct2/show/NCT01327846
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4815
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5015
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3726
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6815
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4973
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4974
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5878

P Welsh et al.

‘1siuobeyue 103dadal |-]] JUBUIQUIODRI VY |-|4 ‘Dseasip A1alie A1euolod ‘qQy) {|0J31sajoyd
|e303 ‘D1 ‘pabueydun ‘> ‘aseasdap ‘T ‘asealdul ‘] {(dAIsnjdpu0d Ul IO ‘seig 0} duoud ‘jews AjpAnesedwod ale sapNys Jey) Ing ‘saipnis paysiignd ou aJe a9y} ueaw Jou Aew siyy ajou) ajgedijdde jou ‘YN

(££€¥6S LOLDN/MOYs/Z32/A0b
‘sjeyediud//:sdny) buiobug

(#1102 [0 12 SIIOYDIN) AAD JO ysiil

(¥ 10T “Ip 12 SUYM ‘10T “I0 12
anybouoq,0) AAD 30 st <
(8007 "0 32 13|YoW) d¥DT ‘9-1T

(98£2€ LOLDN/MOYs/Z12/A0b
“s|etjediuld//:sdny) burobug

(€10z “Ip 32 so|]9z1) AAD!
(6002 “Ip 32 191p30]) dYDT

ASMAND ¢

(5102 “Ip 32 SSUUPIA) “1d1
pazipIxo < Q7 [[ews <>
Jawip-a?t ‘uabounqgyt
‘(e)uryoudodyt 'D-1@7

ASK AAD é
(110z “Ip 12 ybuIs) suondzyull

(CRITEYEYTIT]
Jesned Jo dUIPIAD

pa1yb1am Buo.ys)
s|el1} paziwopuey

VN

dAD JO ysu <

(£10Z “Ip 32 sSW|OH)
9GLE/SL LS NS

dAD Jo s <

(010Z “Ip 12 sesed) L£61501S!
Buipnpul SINS |eJanss
aHD jo sl

‘4¥d1 ‘ot

(S102 ‘wniiosuo)
SJ119USD) | UPN3IAU|)
9/1Z¥SLsi pue

9/€€¥ /951 SANS ey L-1I

VN

aHd jo ysu’?

dydt

(z10Z “Iv 32 Jemies)
S¥18TTTsI pue
62767S/51 SANS ¥9-1I

VN

(3dua43jul jesned

JO DUIPIAI parybram
3jeIpawidlul) saipnis
uoljezjwopue. uelPPUaAl

SJUSAD pue JAD 10 jSH Y} UO SUOIFUSAIDIUI Pale|RJ-uonewweljul A3y JO 123449 ay} bunebisaaul saipnis jo Arewwng

L 2|qel

(L1L0Z "0 12 BYDIN)

AAD Jo dysuT

oSN 9]eXalloYla N

(S00Z "0 12 Iploy3R0g) Jsi
AAD! uonenuaduod
Bunenoud aydsl

(0102 “Ip 32 uosdwoy])

A AAD Anaioe
pue ssew 2yd-d1l

VN

VN

(2102 ‘wniosuod

(4N Y9 I) sishjeuy
uonesiuwopuey uelPpusip
103da23y 9-uNajIAIU]
7102 “Ip 12 Jemies)

Asi dad! 9-11 bunenoa |
(010Z “[p 12 s1313d)
dNgoud-I N T asn jeaibojoig

(L10Z “p 32 BiaquaaID) AAD
Jo sut asn jeaibojolg

3sU aAD | 0-4NL bunenoad |
(CRITEFENTIT]

Jesned Jo 3dUIPIAD
pa1ybram moj) saipnis
Jeuonealdsqo

91eX310YIdN aidiInA
qipejdsauep ay1ds
qipe|deteq 2y1d-d1
(V4 L-T14) eaupjeuy ALl
gewnupjeue) gi-
gewnupjeug
gewnupiaisn ovd €z/z 11l
gewnz|i>o] 4911
pleERIETIZAE|
gewixiju|
qewnuwijepy D-4NL

UOIJUDAII]U]

3906 British Journal of Pharmacology (2017) 174 3898-3913


https://clinicaltrials.gov/ct2/show/NCT01327846
https://clinicaltrials.gov/ct2/show/NCT01327846
https://clinicaltrials.gov/ct2/show/NCT01594333
https://clinicaltrials.gov/ct2/show/NCT01594333

precursor from tissue-resident macrophages and monocytes
and is activated by caspase-1. The system is also regulated
upstream by the cleavage of procaspase-1 by the NLRP3
inflammasome (Dinarello, 2011; Garlanda et al., 2013).
Neutrophils can also trigger IL-1p response independently
of caspase-1 and inflammasome activation (Schett et al.,
2016).

The IL-1 pathway seems to be an important player in
atherosclerosis. IL-lo and/or B induce the expression of
ICAM-1, E-selectin and VCAM-1 in HUVEC (Aziz and
Wakefield, 1996), increasing adhesion of leukocytes
(Bevilacqua et al., 1985), leading to local amplification of
innate and adaptive immunity (Garlanda et al., 2013).
IL-1IRA~/~ C57BL/6] mice fed a high cholesterol and cholate
diet, developed foam cell lesions, whereas LDLr /= mice
crossed with transgenic mice expressing high levels of murine
sIL-1RA, showed less atherosclerosis (Devlin et al., 2002). The
administration of human recombinant IL-1RA in apoE’/ B
mice also reduced plaque formation (Elhage et al., 1998). On
the contrary, apoE /" mice lacking IL-1 receptor type I
unexpectedly showed a vulnerable plaque phenotype inclu-
ding reduced SMC and collagen plaque content (Alexander
etal., 2012).

The specific role of the two IL-1a and IL-1p isoforms in
atherosclerosis development is still under debate. Cholesterol
crystals and oxLDL have been identified as endogenous
triggers of the NLRP3 inflammasome, inducing the secretion
of the active form of IL-1f by plaque macrophages (Duewell
et al., 2010; Rajamadki et al., 2010). This pathway is attractive
as a potential explanation linking the phenotypes of elevated
cholesterol, vascular inflammation and oxidative stress. IL-1a
and B have also been reported to enhance the expression of
matrix enzymes (Schett ef al., 2016). In addition, deletion of
IL-1B (Kirii et al., 2003) or the use of monoclonal antibodies
against IL-1p (Bhaskaret al., 2011) inhibited the development
of atherosclerosis in apoE ~~ mice. These findings may suggest
a primary role for IL-1p in the development of atherosclerosis.
However, apoE ™/~ mice lacking inflammasomes develop
normal atherosclerotic lesions (Menu et al., 2011) and, more
importantly, fatty acid-induced mitochondrial uncoupling
abolished IL-1B secretion, which turned the cholesterol
crystal-elicited response towards selective production of IL-
la, as a potent inducer of vascular inflammation (Freigang
et al., 2013). This may be evidence of redundancy but could
also suggest that IL-lo could be targeted in patients with
CVD. In summary, whether blockade of IL-1f alone is
sufficient to down-regulate vascular inflammation still
remains to be determined.

CANTOS trial and epidemiological data of the
IL-1 pathway

Despite this optimism, Mendelian randomization data have
provided some controversial findings. There are no
established SNPs that can act as proxies for circulating IL-p in
Mendelian randomization studies. This is at least partly due
to the lack of an assay sensitive enough to measure IL-1f in
healthy people. However, one recent study investigating
genetic variants of IL-1RA reported that variants associated
with higher concentrations of IL-1RA had lower concen-
trations of CRP (suggesting a true anti-inflammatory effect),
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but were also puzzlingly associated with increased CHD
(Interleukin 1 Genetics Consortium, 2015). As described
previously, the IL-1 cytokine superfamily signalling system
and its regulation are complex (Herder and Donath, 2015).
However, this study, and the widespread post hoc explanations
of the data, really lays bare our ignorance of the pathways that
underlie the inflammatory causes of CVD.

The randomized design in CANTOS, compares three arms
of the IL-1B blocker canakinumab (50, 150 and 300 mg
administered subcutaneously every 3 months) to placebo.
Participants in the trial are those who have experienced a
recent MI and have a circulating hsCRP of >2 mg-L ™.
CANTOS is powered for a 20% risk reduction in a composite
CVD endpoint in any active arm compared to placebo, and
combining doses will further improve power. The anticipated
primary completion date is in late 2017 with presentation
estimated for September.

Conclusions and proposed next steps

This review highlights the conflict between observational
epidemiology and animal models on the one hand, and
disappointing Phase III trial results on the other. This conflict
remains a major issue, and is one the main difficulties for the
inflammatory hypothesis of CVD. There are important
debates, outwith the scope of this review, on how to make
animal models more relevant to human disease (Libby et al.,
2011), and also whether surrogate markers of CVD risk are
truly useful to assess causality (Weintraub et al., 20135).

Conduct of RCTs is a critical step in translating a wealth of
biological information into tangible benefits for patients. If
successful, the CANTOS and CIRT trials may provide the
rationale for wusing anti-cytokine-based and anti-
inflammatory therapies for secondary prevention of
atherosclerosis-related CVD and may start a new era in the
treatment of chronic vascular disorders. If unsuccessful, these
trials will not conclusively disprove the inflammatory
hypothesis of atherosclerosis, but might make conducting
further trials in this area much more challenging.

Inflammation contributes to atherogenesis and disease
development, and therefore, several other or combined anti-
inflammatory treatments may have the potential for
preventing cardiovascular events. Importantly, evaluation of
risks as well as benefits must drive the development of anti-
inflammatory treatments in CVD. Atherosclerosis is a life-
long process, and it is, therefore, unlikely that the present
generation of systemic anti-inflammatory drugs will ever be
prescribed in a primary prevention setting, particularly given
great gains in risk reduction in recent years with better
treatments of blood pressure, cholesterol and population
lowering of smoking rates via smoking bans.

From a biological perspective, several fundamental
questions still need to be addressed. For instance, is
atherosclerosis in humans a systemic or a local (vascular)
immune disease? Are tertiary lymphoid organs in the
adventitial connective tissue important in human
pathology? The answers to this questions will pave the way
for the design of more atherosclerosis-specific treatments
targeting directly vascular (rather than systemic) immune
mechanisms for therapeutic utility and potentially reducing
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the risk of systemic immune suppression. Existing data
highlight the complex nature of the immune system, and
different signalling pathways may play different roles at
different the stages of the pathology. Therefore, we may need
different immunomodulatory treatments to affect disease
initiation, progression, and/or plaque destabilisation and
rupture. Targeting and inhibiting immune-inflammatory
response(s) may be crucial at the onset of the disease. On
the contrary, enhancing atheroprotective immunity by
expansion of regulatory T-cells may be the best future
therapeutic strategy in secondary prevention. Vaccination
approaches have also been successful in experimental
models. However, translation of these findings in clinical
practice has only just started (Shah et al., 2014; Kimura
etal., 2015).

Any new treatment will require robust safety evaluation
and testing in randomized cardiovascular outcome trials well
before potential adoption in clinical practice. As these studies
progress, we will learn more about whether mechanisms of
vascular inflammation are indeed viable diagnostic,
prognostic and therapeutic targets in atherosclerosis.

Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to
corresponding entries in http://www.guidetopharmacology.org,
the common portal for data from the IUPHAR/BPS Guide to
PHARMACOLOGY (Southan et al., 2016), and are permanently
archived in the Concise Guide to PHARMACOLOGY 2015/16
(Alexander et al., 2015a,b,c).
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