A comparison between the cardiorespiratory responses of motorized and non-motorized treadmill protocols

Jana Storm
21468370

Dissertation submitted in fulfillment of the requirements for the degree Master of Science in Sport Science at the Potchefstroom Campus of the North-West University

Supervisor: Dr. Yolandi Willemse
Co-supervisor: Dr. Martinique Sparks

Oct 2017
I would like to acknowledge the following people for their support and guidance throughout the completion of this dissertation:

Firstly, to our God, thank you for the many blessings and talents you have given me. Thank you for allowing me to spread my wings!

I sincerely thank my study leaders Dr. Yolandi Willemse, and Dr. Martinique Sparks for your guidance throughout this study.

For Jean Verster and your team of distance runners, I thank you for your willingness to take part in this research study.

To my family and loved ones, I truly appreciate your encouragement, and support!

Lastly, I wish to thank my husband André for your endless support! Your continuous encouragement and unconditional love and care made the completion of this dissertation possible.

“The Lord God is my strength—He makes my feet like those of a deer, equipping me to tread my mountain heights.”

Habakuk 3:19

A motivational quote from my Father that has always served me well:

“Ek is so dankbaar dat God nie die beperkinge op ons plaas wat ons dikwels vir onssel stel nie. Gemiddeldheid is nooit Sy visie vir ons nie. Hy roep ons om uittemend te lewe. Hy maak ons meer as wat ons gedink het ons is.”

George Washington Carver (1984-1943)
The principle author of this dissertation is Mrs. Jana Storm. The contribution of the author, supervisor and co-supervisor of this study is summarized in the following table:

<table>
<thead>
<tr>
<th>Author</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mrs. J. Storm</td>
<td>Author. Design and planning of manuscripts, compilation and execution of relevant testing procedures, literature review, data extraction, writing of manuscripts, and interpretation of results.</td>
</tr>
<tr>
<td>Co-authors</td>
<td></td>
</tr>
<tr>
<td>Dr. Y. Willemse</td>
<td>Supervisor. Conceptualizing of project. Co-reviewer, assistance in planning and writing of manuscripts as well as interpretation of results. Critical review of contents, including dissertation and Articles 1 and 2.</td>
</tr>
<tr>
<td>Dr. M. Sparks</td>
<td>Co-supervisor. Co-reviewer, assistance in planning and writing of manuscripts as well as interpretation of results. Critical review of contents, including dissertation and Articles 1 and 2.</td>
</tr>
</tbody>
</table>

The following is a statement of the co-authors confirming their individual role in each study and giving permission that the manuscripts may form part of this dissertation.
I declare that I have approved the above mentioned manuscripts, and that my role in the study, as indicated above is representative of my actual contribution. I hereby give my consent that the above mentioned manuscripts may be published as part of the Masters dissertation of Mrs. Jana Storm.

Dr. Yolandi Willemse
Supervisor

Dr. Martinique Sparks
Co-Supervisor
A comparison between the cardiorespiratory responses of motorized and non-motorized treadmill protocols

Maximal aerobic capacity (\(VO_{\text{2max}}\)) can be considered an important performance determinant of distance runners' performance due to endurance events being performed at high percentages of one's \(VO_{\text{2max}}\). The protocol and running modality incorporated into the graded exercise test (GXT) needs to be considered when performing \(VO_{\text{2max}}\) tests on distance runners. The first objective of this study was thus to determine which motorized treadmill (MT) GXT protocol would allow elite male university-level distance runners to attain the highest cardiorespiratory responses (\(VO_{\text{2max}}\), time to exhaustion (T\(_{\text{lim}}\)), ventilatory threshold (VT), and respiratory compensation point (RCP)). Two GXT protocols were identified for this research study namely, the Adapted Incremental Speed Protocol (AISP) and the Incremental Speed and Incline Protocol (ISIP). The second objective of this research study was to determine which running modality, namely the MT or the Curve non-motorized treadmill (NMT), would elicit the highest cardiorespiratory responses. The AISP was compared to the Adapted Non-Motorized Incremental Speed Protocol (ANMIP). These objectives were achieved through a cross-sectional design by using elite male university-level distance runners.

In order to fulfill these objectives, elite male university-level distance runners were recruited. Twelve runners (age: 21.8 ± 3.0 yrs.; stature: 178.2 ± 6.5 cm; and body weight: 66.7 ± 4.7 kg) from a university of the North West Province in South Africa participated in this research study. For the first objective of this study, results obtained by the two GXT protocols performed on the MT were compared. Maximal cardiorespiratory responses obtained, as well as all cardiorespiratory responses of each corresponding minute, were compared. The \(VO_{\text{2max}}\) values attained by the ISIP (67.6 ± 5.0 vs. 65.0 ± 4.4 ml/kg/min) was statistically significantly higher (p<0.05) than the AISP despite the longer T\(_{\text{lim}}\) (11.4 ± 1.2 vs. 13.6 ± 1.2 min). Consequently the ISIP is recommended to be used for the determination of elite male university-level distance runners' highest cardiorespiratory responses. Furthermore, GXT protocols with 1 km/h increases cannot be directly compared to GXT protocols with 1% increases in gradient and increments are advised to be adapted to enable more accurate comparison.
For the second objective of this study, results obtained by the AISP and ANMIP, performed on the MT and Curve NMT respectively, were compared. Maximal cardiorespiratory responses, as well as all cardiorespiratory responses of each corresponding speed, were compared. From the results obtained, the ANMIP attained statistically significantly higher ($p<0.05$) $\dot{V}O_{2\max}$ values (66.7 ± 4.0 vs. 65.0 ± 4.4 ml/kg/min) than the AISP. These values were also attained within a significantly shorter time (8.31 ± 0.87 vs. 11.42 ± 1.19 min). Unfortunately, when determining the ANMIP’s intensity markers for exercise prescription, unrealistic VT and RCP values were attained. These values are not recommended for exercise prescription owing to the manifestation of the $\dot{V}O_2$ “slow component”.

From results obtained by this study, it is clear that the ISIP is considered the more appropriate GXT protocol for elite male university-level distance runners. Use of the ISIP as standardized sport-specific GXT protocol by future coaches, elite male university-level distance runners and athletes’ supporting staff will make more accurate determination of $V_{O2\max}$ values possible.

Keywords: Graded exercise test; oxygen consumption; Curve non-motorized treadmill; running modalities; physical exertion; running performance.
OPSOMMING

’n Vergelyking tussen die kardiorespiratoriese response van gemotoriseerde en ongemotoriseerde trapmeul protokolle

Maksimale aërobiese kapasiteit (\(\dot{V}O_{2\text{maks}}\)) kan beskou word as ’n belangrike determinant van langafstand-atlete se prestasie aangesien uithouvermoë-items plaasvind teen hoë persentasies van die atleet se \(\dot{V}O_{2\text{maks}}\). Die gegradeerde oefeningtoetsprotokol (GOT) en hardloopmodaliteit moet in ag geneem word wanneer ’n \(\dot{V}O_{2\text{maks}}\) toets gedoen word op langafstand-atlete. Die eerste doelstelling van hierdie studie was dus om om te stel watter gemotoriseerde trapmeul- (GT) protokol elite manlike langafstand-atlete op universiteitsvlak sou toelaat om die hoogste kardiorespiratoriese response te bereik naamlik \(\dot{V}O_{2\text{maks}}\), tyd tot uitputting (\(T_{\text{uit}}\)), ventilatoriese-drempelwaarde (VD), en respiratoriese kompensasiepunt (RKP). Twee GOT is hiervoor geïdentifiseer, naamlik die aangepaste toenemende spoedprotokol (AISP) en die toenemende spoed- en hellingprotokol (ISIP). Die tweede doelstelling van hierdie navorsing was om te bepaal watter hardloopmodaliteit, naamlik die GT of die Curve nie-gemotoriseerde trapmeul (NGT) die hoogste kardiorespiratoriese response tot gevolg sal hê. Die AISP is dus met die aangepaste nie-gemotoriseerde toenemende spoedprotokol (ANMIP) vergelyk. Hierdie doelstellings is bereik deur ’n dwarssnit-ontwerp waarby elite manlike langafstand-atlete op universiteitsvlak betrek is.

Om die doelstellings te bereik, is elite manlike langafstand-atlete op universiteitsvlak genader. Twaalf hardlopers (ouderdom: 21.8 ± 3.0 jr.; lengte: 178.2 ± 6.5 cm; en liggaamsgewig: 66.7 ± 4.7 kg) van ’n universiteit in die Noordwes Provinsie van Suid-Afrika het aan hierdie navorsingstudie deelgeneem.

Om die eerste doelstelling van hierdie studie te bereik, is die resultate van die twee GOT wat op die GT uitgevoer is, vergelyk. Die maksimale kardiorespiratoriese response wat behaal is, sowel as alle kardiorespiratoriese response van elke ooreenstemmende minuut, is met mekaar vergelyk. Die \(\dot{V}O_{2\text{maks}}\)-waardes wat op die ISIP behaal is (67.6 ± 5.0 vs. 65.0 ± 4.4 ml/kg/min) was statisties betekenisvol hoër (\(p<0.05\)) as dié van die AISP ongeag die langer \(T_{\text{uit}}\) (11.4 ± 1.2 vs. 13.6 ± 1.2 min). Die ISIP word gevolglik aanbeveel vir gebruik om elite manlike
 OPSOMMING

langafstand-atlete op universiteitsvlak se hoogste kardiorespiratoriese response te bepaal. Verder kan ’n GOT met 1 km/h-toenames nie direk vergelyk word met ’n GOT met 1%-toenames in helling nie. Daar word aanbeveel dat toenames aangepas moet word om meer akkurate vergelyking moontlik te maak.

Om die tweede doelstelling van hierdie studie te bereik, is resultate wat onderskeideliik op die GT en Curve NGT behaal is, vergelyk. Maksimale kardiorespiratoriese response, sowel as alle kardiorespiratoriese response van elke ooreenstemmende spoed, is vergelyk. Volgens die resultate wat behaal is, het die ANMIP statisties betekenisvol hoër (p<0.05) \(\dot{V}O_{2\text{maks}} \)-tellings (66.7 ± 4.0 vs. 65.0 ± 4.4 ml/kg/min) as die AISP behaal. Hierdie tellings is ook in ’n statisties betekenisvol (p<0.05) korter T\text{uit} (8.31 ± 0.87 vs. 11.42 ± 1.19 min) bereik. Ongelukkig is onrealistiese VD- en RKP-waardes behaal met die bepaling van die ANMIP se intensiteitsmerkers vir oefeningvoorskrifte. Hierdie waardes word nie vir oefeningvoorskrifte aanbeveel nie aangesien die \(\dot{V}O_{2} \) “stadige komponent” teenwoordig is. Die intensiteitsmerkers van die ANMIP wat behaal is, is hoër as die verwagte parameters en mag lei tot ooroefening as dit in ’n oefenprogram toegepas word.

Uit die bevindings van hierdie studie is dit duidelik dat die ISIPmeer toepaslik vir elite manlike langafstand-atlete op universiteitsvlak beskou word. Die gebruik van die ISIP as gestandaardiseerde sport-spesifieke GOT word aanbeveel om meer akkurate \(\dot{V}O_{2\text{maks}} \)-waardes en oefenvoorskrifte aan toekomstige afrigters, elite manlike langafstand-atlete op universiteitsvlak en atlete se ondersteunings personeel te gee.

Sleutelwoorde: Gegradeerde oefeningtoets; suurstofverbruik; Curve nie-gemotoriseerde trapmeul; hardloopmodaliteite; fisieke inspanning; hardloopprestasie.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>iv</td>
</tr>
<tr>
<td>OPSOMMING</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>1.1 INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>1.2 PROBLEM STATEMENT</td>
<td>2</td>
</tr>
<tr>
<td>1.3 OBJECTIVES</td>
<td>5</td>
</tr>
<tr>
<td>1.4 HYPOTHESES</td>
<td>5</td>
</tr>
<tr>
<td>1.5 STRUCTURE OF DISSERTATION</td>
<td>6</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>7</td>
</tr>
</tbody>
</table>
LITERATURE REVIEW: A REVIEW OF CARDIORESPIRATORY RESPONSES ATTAINED USING DIFFERENT RUNNING MODALITIES AND TREADMILL PROTOCOLS TO DIRECTLY DETERMINE AEROBIC CAPACITY

2.1 INTRODUCTION

2.2 AEROBIC CAPACITY

2.3 CARDIORESPIRATORY RESPONSES

2.3.1 Respiratory exchange ratio

2.3.2 Minute ventilation

2.3.3 Oxygen consumption and carbon dioxide production

2.3.4 Heart rate

2.3.5 Ventilatory threshold and respiratory compensation point

2.3.6 Time to exhaustion

2.3.7 Rating of perceived exertion

2.4 MAXIMAL AEROBIC CAPACITY

2.4.1 Criteria for the attainment of maximal aerobic capacity or otherwise peak aerobic capacity

2.5 RUNNING MODALITIES

2.5.1 Non-motorized treadmill

2.5.2 Motorized treadmill

2.5.3 Cardiorespiratory responses and energy cost of motorized versus non-motorized treadmills

2.6 OTHER FACTORS INFLUENCING MEASUREMENT OF AEROBIC CAPACITY

2.7 TREADMILL PROTOCOLS FOR DETERMINATION OF MAXIMAL AEROBIC CAPACITY

2.7.1 Continuous and discontinuous graded exercise test protocols

2.7.2 Starting speed

2.7.3 Speed at which gradient increases commence

2.7.4 Time intervals

2.7.5 Workloads

2.7.6 Speed graded exercise test protocols

2.7.7 Incline graded exercise test protocols with a set speed or gradient with a variance of speed and/or gradient

2.8 GRADED EXERCISE TEST PROTOCOLS AND TRAINING REGIME

2.9 CONCLUSION

REFERENCES
<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>A COMPARISON BETWEEN THE CARDIORESPIRATORY RESPONSES OF A SPEED VERSUS AN INCLINE MOTORIZED TREADMILL PROTOCOL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Title page</td>
<td>61</td>
</tr>
<tr>
<td>Abstract</td>
<td>62</td>
</tr>
<tr>
<td>Keywords</td>
<td>62</td>
</tr>
<tr>
<td>Introduction</td>
<td>63</td>
</tr>
<tr>
<td>Methods</td>
<td>64</td>
</tr>
<tr>
<td>Results</td>
<td>66</td>
</tr>
<tr>
<td>Discussion</td>
<td>71</td>
</tr>
<tr>
<td>Conclusion</td>
<td>72</td>
</tr>
<tr>
<td>Practical implications</td>
<td>73</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>73</td>
</tr>
<tr>
<td>References</td>
<td>74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>A COMPARISON BETWEEN THE CARDIORESPIRATORY RESPONSES OF A NON-MOTORIZED AND MOTORIZED TREADMILL PROTOCOL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Title page</td>
<td>78</td>
</tr>
<tr>
<td>Abstract</td>
<td>79</td>
</tr>
<tr>
<td>Keywords</td>
<td>79</td>
</tr>
<tr>
<td>Introduction</td>
<td>80</td>
</tr>
<tr>
<td>Methods</td>
<td>81</td>
</tr>
<tr>
<td>Results</td>
<td>84</td>
</tr>
<tr>
<td>Discussion</td>
<td>88</td>
</tr>
<tr>
<td>Conclusion</td>
<td>90</td>
</tr>
<tr>
<td>Practical implications</td>
<td>90</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>90</td>
</tr>
<tr>
<td>References</td>
<td>91</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER 5</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY, CONCLUSION, LIMITATIONS AND RECOMMENDATIONS</td>
<td>94</td>
</tr>
<tr>
<td>5.1 SUMMARY</td>
<td>95</td>
</tr>
<tr>
<td>5.2 CONCLUSION</td>
<td>98</td>
</tr>
<tr>
<td>5.3 LIMITATIONS AND RECOMMENDATIONS</td>
<td>99</td>
</tr>
</tbody>
</table>

APPENDICES.. 101

APPENDIX A: RESEARCH METHOD AND PROCEDURE.. 102

APPENDIX B: ETHICAL APPROVAL... 112

APPENDIX C: INFORMED CONSENT ... 114

APPENDIX D: PHYSICAL ACTIVITY AND READINESS QUESTIONNAIRE........................ 125

APPENDIX E: HYDRATION STATUS AND RECOVERY QUESTIONNAIRE.......................... 127

APPENDIX F: EXAMPLE OF DATA SHEET .. 129

APPENDIX G: INSTRUCTIONS FOR AUTHORS FROM THE JOURNAL OF SCIENCE AND MEDICINE IN SPORT... 133

APPENDIX H: PROOF OF LANGUAGE EDITING .. 152
LIST OF TABLES

CHAPTER 2.. 9
Table 2.1: Speed GXT protocols used for male distance runners.. 28

Table 2.2: Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners...................... 33

CHAPTER 3... 59
Table I: Mean cardiorespiratory responses from maximum values attained by AISP and ISIP (n=12)... 68

Table II: Cardiorespiratory response values per minute of the AISP and ISIP.. 70

CHAPTER 4... 76
Table I: Mean cardiorespiratory responses from maximum values attained on the AISP and the ANMIP (n=12) .. 85

Table II: Cardiorespiratory response values per speed of the AISP and the ANMIP... 87
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td><</td>
<td>Smaller than</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td>≤</td>
<td>Smaller than and equal to</td>
</tr>
<tr>
<td>≥</td>
<td>Greater than and equal to</td>
</tr>
<tr>
<td>°</td>
<td>Degree</td>
</tr>
<tr>
<td>ASIP</td>
<td>Adapted Speed Incremental Protocol</td>
</tr>
<tr>
<td>ANMIP</td>
<td>Adapted Non-Motorized Incremental Speed Protocol</td>
</tr>
<tr>
<td>Bla^-</td>
<td>Blood lactate</td>
</tr>
<tr>
<td>BW</td>
<td>Body weight</td>
</tr>
<tr>
<td>bpm</td>
<td>Beats per minute</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeters</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CR10</td>
<td>Category ratio scale</td>
</tr>
<tr>
<td>CR 100</td>
<td>Centimax scale</td>
</tr>
<tr>
<td>CTP</td>
<td>Continuous test protocol</td>
</tr>
<tr>
<td>d</td>
<td>Cohen's d-value</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DTP</td>
<td>Discontinuous test protocol</td>
</tr>
<tr>
<td>EC</td>
<td>Energy cost</td>
</tr>
<tr>
<td>F</td>
<td>Female</td>
</tr>
<tr>
<td>GXT</td>
<td>Graded exercise test</td>
</tr>
<tr>
<td>HR</td>
<td>Heart rate</td>
</tr>
<tr>
<td>ICC</td>
<td>Interclass correlation coefficients</td>
</tr>
<tr>
<td>ISIP</td>
<td>Incremental Speed and Incline Protocol</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>km</td>
<td>Kilometer</td>
</tr>
<tr>
<td>km/h</td>
<td>Kilometer per hour</td>
</tr>
<tr>
<td>L/min</td>
<td>Liter per minute</td>
</tr>
<tr>
<td>M</td>
<td>Male</td>
</tr>
<tr>
<td>HR<sub>max</sub></td>
<td>Maximum heart rate</td>
</tr>
<tr>
<td>MET's</td>
<td>Metabolic equivalent (Metabolic demand)</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml/kg/min</td>
<td>Milliliter per kilogram per minute</td>
</tr>
<tr>
<td>ml/min</td>
<td>Milliliter per minute</td>
</tr>
<tr>
<td>mmol/L</td>
<td>Millimol per Liter</td>
</tr>
<tr>
<td>MT</td>
<td>Motorized treadmill</td>
</tr>
<tr>
<td>n</td>
<td>Number</td>
</tr>
<tr>
<td>NMT</td>
<td>Non-motorized treadmill</td>
</tr>
<tr>
<td>O<sub>2</sub></td>
<td>Oxygen</td>
</tr>
<tr>
<td>O<sub>2</sub>S</td>
<td>Oxygen saturation</td>
</tr>
<tr>
<td>OGR</td>
<td>Over-ground running</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>p</td>
<td>Statistical significance</td>
</tr>
<tr>
<td>r</td>
<td>Correlation</td>
</tr>
<tr>
<td>RCP</td>
<td>Respiratory compensation point</td>
</tr>
<tr>
<td>RE</td>
<td>Running economy</td>
</tr>
<tr>
<td>RER</td>
<td>Respiratory exchange ratio</td>
</tr>
<tr>
<td>RPE</td>
<td>Rating of perceived exertion</td>
</tr>
<tr>
<td>sec</td>
<td>Seconds</td>
</tr>
<tr>
<td>T_{lim}</td>
<td>Time to exhaustion</td>
</tr>
<tr>
<td>\dot{V_{O_2}}_{max}</td>
<td>Maximal aerobic capacity</td>
</tr>
<tr>
<td>\dot{V_{O_2}}_{peak}</td>
<td>Peak aerobic capacity</td>
</tr>
<tr>
<td>\dot{V_E}</td>
<td>Ventilatory equivalent/ minute ventilation</td>
</tr>
<tr>
<td>\dot{V_{CO_2}}</td>
<td>Carbon dioxide production</td>
</tr>
<tr>
<td>\dot{V_{O_2}}</td>
<td>Oxygen consumption</td>
</tr>
<tr>
<td>vs.</td>
<td>Versus</td>
</tr>
<tr>
<td>VT</td>
<td>Ventilatory threshold</td>
</tr>
<tr>
<td>yrs</td>
<td>Years</td>
</tr>
</tbody>
</table>
1.1 INTRODUCTION

The attainment of a high maximal aerobic capacity (\(V_{O_2\text{max}}\)) value is considered an important performance determinant for distance runners (Basset & Howley, 2000:71; Midgley et al., 2006:117), because endurance activities are performed at high percentages of an athlete’s \(V_{O_2\text{max}}\) (Davis, 2006:9; Larsen, 2003:168). However for researchers to obtain \(V_{O_2\text{max}}\) values that are valid and objective, the testing method should closely simulate the competitive environment of an endurance athlete. Consequently the graded exercise test (GXT), and running modality used for determination of a runner’s \(V_{O_2\text{max}}\) are of importance.

1.2 PROBLEM STATEMENT

Maximal aerobic capacity is a concept that has received considerable attention in literature in terms of its relevance to aerobic capacity and performance (Basset & Howley, 2000:70). In order to obtain objective and valid \(V_{O_2\text{max}}\) values during \(V_{O_2\text{max}}\) tests, tests need to simulate the training and competitive environment of an athlete (Davies et al., 1984:78). Specificity in the selection of the test protocol and the use of an appropriate modality are therefore important when assessing athletes’ \(V_{O_2\text{max}}\) values (Bouchard et al., 1979:85; Davies et al., 1984:77). Most \(V_{O_2\text{max}}\) test protocols make use of a motorized treadmill (MT) in a laboratory environment by using a GXT with specific time intervals, and increments in speed and/or gradient as guideline (Billat et al., 1996:314; Davies et al., 1984:75; Haff & Dumke, 2012:211; Hamlin et al., 2012:99). Furthermore, the majority of GXT protocols make use of speed and/or gradient increases and can be categorized as either speed GXT protocols (only speed increases) or incline GXT protocols (set speed or gradient, with speed and/or gradient increases) (Davies et al., 1984:75; Hamlin et al., 2012:97). However, a comparison between these GXT protocols revealed that an incline GXT protocol produced significantly higher (p<0.05) cardiorespiratory responses than a speed GXT protocol (Sloniger et al., 1997:264). The introduction of non-motorized treadmills (NMT), which simulate outdoor running more closely (Davies et al., 1984:74), have also compelled several researchers rather to make use of these running modalities when testing athletes’ \(V_{O_2\text{max}}\) values (Snyder et al., 2010). Comparatively, the NMT
also seems to produce higher cardiorespiratory responses when compared to the MT (Snyder et al., 2010). Despite these findings, to date researchers have not yet proposed a standardized GXT protocol to determine VO_{2max} specifically for elite male university-level distance runners.

The VO_{2max} test assesses an athlete’s maximum endurance ability and is considered an important physiological determinant of aerobic capacity for middle- and long-distance runners (Basset & Howley, 2000:70; Midgley et al., 2006:119). Open-circuit spirometry in a closed laboratory environment is a reliable method to measure VO_{2max} ($r=0.96$) (Davies et al., 1984:76). Cardiorespiratory responses that are also obtained from a VO_{2max} test include heart rate (HR), maximum heart rate (HR_{max}), O_2 consumption (\dot{O}_2), CO_2 production (\dot{CO}_2), minute ventilation (ventilatory equivalent ($\dot{V}\text{e}$)), VO_{2max}, respiratory exchange ratio (RER) and time to exhaustion (T_{lim}) (Kang et al., 2001:292; Vai et al., 1988:1860). Two exercise intensity markers can also be determined from the last-mentioned responses, namely the ventilatory threshold (VT) and the respiratory compensation point (RCP) (Chicharro et al., 2000:453). A separate subjective response can also be obtained namely rating of perceived exertion (RPE) (Borg, 1982:377).

Thus far, researchers have agreed that GXT protocols lasting between 8 and 12/15 minutes (Davis, 2006:13; Haff & Dumke, 2012:211) would elicit the highest VO_{2max} values with the lowest perception of discomfort and difficulty experienced by untrained athletes (Kang et al., 2001:291). However, GXT protocols such as these could underestimate the VO_{2max} values of highly trained athletes because of slow starting speeds, which may be detrimental to running efficiency and cause premature fatigue (Kang et al., 2001:294). On the other hand, GXT protocols that start at faster running speeds (12 km/h for women and 14 km/h for men) may enable trained athletes to reach their VO_{2max} values in a shorter time (Heyward, 1997:47). Then again, GXT protocols with too rapid gradient increases can cause hyperventilation because of greater metabolic demand, causing premature fatigue and early onset of lactate production, which in turn will result in an early rise in \dot{CO}_2 (Davis et al., 1976:548). Hyperventilation may also indicate the appearance of the “slow component” of \dot{O}_2 kinetics (Xu & Rhodes, 1999:324). Furthermore, the manifestation of hyperventilation as a result of extreme, intense exercise occurs because of the body’s attempt to attain effective gas exchange in the lungs by increasing ventilatory work, causing a further increase in the “slow component” (Xu & Rhodes, 1999:320).
As mentioned earlier, both speed GXT protocols and incline GXT protocols seem to be overly used for \(\dot{V}_{\text{O}_2\text{max}} \) test protocols (Davies et al., 1984:75; Hamlin et al., 2012:97), though research suggests that incline GXT protocols lead to statistically significant higher (\(p<0.05 \)) muscle activation percentages (73.1 ± 7.4% vs. 67.0 ± 8.3%) and statistically significant higher (\(p<0.05 \)) peak \(\dot{V}_{\text{O}_2} \) values (49 ± 6 vs. 41 ± 7 ml/kg/min) in active female runners (Sloniger et al., 1997:262) when compared to speed GXT protocols. These differences in results are attributed to the nature of the incline GXT protocols, which leads to the recruitment of more type 2 muscle fibers, more involvement of the anaerobic energy system and higher RER values compared to speed GXT protocols (Hamlin et al., 2012:102; Sloniger et al., 1997:264).

The type of running modality being used during execution of GXT protocols will also influence the cardiorespiratory responses. The development of the NMT, which forces athletes to use their own power to drive the belt and more closely simulate track running than a MT (Davies et al., 1984:78), has led researchers to use this running modality during GXT protocols. Comparisons between the cardiorespiratory responses of a NMT and MT revealed that active recreational sport participants of both genders who habitually use treadmill running as an exercise modality achieved higher \(\dot{V}_{\text{O}_2\text{max}} \) values on a NMT (NMT: 61.4 ± 11.4 ml/kg/min; MT speed GXT protocol: 59.6 ± 10.3 ml/kg/min; and a MT incline GXT protocol: 61.3 ± 11.6 ml/kg/min), however the measured differences were insignificant (Davies et al., 1984:76). These results were confirmed by Snyder et al. (2010) who observed statistically significantly (\(p<0.05 \)) higher \(\dot{V}_{\text{O}_2} \) (60.2 ± 11 ml/kg/min), HR (190 ± 10 bpm), and blood lactate values (11.1 ± 2.9 mM) during 6-minute running bouts on the NMT compared to the MT (49.9 ± 9.2 ml/kg/min; 170 ± 11 bpm; 4.5 ± 1.6 mM). Unfortunately, the study did not compare maximal cardiorespiratory responses between the two types of running modalities.

The two gas exchange points mentioned, namely VT and RCP, are influenced by the gas exchange responses of the \(\dot{V}_{\text{O}_2\text{max}} \) test. The reason for this influence is that changes in \(\dot{V}_{\text{O}_2} \), \(\dot{V}_{\text{CO}_2} \), and \(\dot{V}_E \) will cause a direct increase or decrease in \(\dot{V}_E/\dot{V}_{\text{O}_2} \) and \(\dot{V}_E/\dot{V}_{\text{CO}_2} \) values that are used to calculate VT and RCP (Chicharro et al., 2000:452). However, thus far, researchers have not investigated the possible influence of a GXT protocol on the changes in RCP and VT values.
From the above-mentioned studies it is clear that it is necessary to obtain reliable and valid
\(\dot{V}O_{2\text{max}} \) results by using the most effective GXT protocols and running modality. Considering this
need, the following research questions are posed: Firstly, how do elite male university-level
distance runners’ cardiorespiratory responses (HR\(_{\text{max}}\), \(\dot{V}O_2 \), \(\dot{V}CO_2 \), \(\dot{V}E \), \(\dot{V}O_{2\text{max}} \), RER, T\(_{\text{lim}}\),
RCP, and VT as well as RPE) compare when performing two different GXT protocols on a MT? Secondly, how do elite male university-level distance runners’ cardiorespiratory responses
(\(HR_{\text{max}} \), \(\dot{V}O_2 \), \(\dot{V}CO_2 \), \(\dot{V}E \), \(\dot{V}O_{2\text{max}} \), RER, T\(_{\text{lim}}\), RCP, and VT as well as RPE) compare when
running GXT protocols on a MT and NMT respectively?

Results from this study could enable future coaches, elite male university-level distance runners
as well as supporting staff to determine subjects’ \(\dot{V}O_{2\text{max}} \) values accurately through a
standardized, sport-specific \(\dot{V}O_{2\text{max}} \) protocol.

1.3 OBJECTIVES
The objectives of this study are to:

- Compare the cardiorespiratory responses (HR\(_{\text{max}}\), \(\dot{V}O_2 \), \(\dot{V}CO_2 \), \(\dot{V}E \), \(\dot{V}O_{2\text{max}} \), RER, T\(_{\text{lim}}\),
RCP, and VT as well as RPE) of elite male university-level distance runners when performing
a speed GXT protocol and an incline GXT protocol on a MT (); and

- Compare the cardiorespiratory responses (\(HR_{\text{max}} \), \(\dot{V}O_2 \), \(\dot{V}CO_2 \), \(\dot{V}E \), \(\dot{V}O_{2\text{max}} \), RER, T\(_{\text{lim}}\),
RCP, and VT as well as RPE) of elite male university-level distance runners when performing
GXT protocols on a MT and NMT.

1.4 HYPOTHESES
The study is based on the following hypotheses:

- The MT incline GXT protocol will elicit significantly higher (p<0.05) cardiorespiratory
responses (\(\dot{V}O_{2\text{max}} \), RER, RCP, and T\(_{\text{lim}}\)) in elite male university-level distance runners
compared to the MT speed GXT protocol.

- A NMT GXT protocol will elicit significantly higher (p<0.05) cardiorespiratory responses
(\(\dot{V}O_{2\text{max}} \), RER, RCP, and T\(_{\text{lim}}\)) in elite male university-level distance runners compared to a
MT GXT protocol.
1.5 STRUCTURE OF DISSERTATION

Chapter 1: Introduction: Problem statement and purposes of the study.

Chapter 2: Literature review: A review of cardiorespiratory responses attained using different running modalities and treadmill protocols to directly determine aerobic capacity.

Chapter 3: Article 1 - A comparison between the cardiorespiratory responses of a speed versus an incline motorized treadmill protocol. The article will be submitted to the Journal of Science and Medicine in Sport for possible publication. Although not according to the guidelines of the journal, the tables will be included within the text to ease the reading of the article. Furthermore, the line spacing of the article will be set at 1.5 lines with the exception of table contents which are set at 1.15 instead of the prescribed 2 lines to allow uniformity within the document.

Chapter 4: Article 2: - A comparison between the cardiorespiratory responses of a non-motorized and motorized treadmill protocol. The article will be submitted to the Journal of Science and Medicine in Sport for possible publication. Although not according to the guidelines of the journal, the tables will be included within the text to ease the reading of the article. Furthermore, the line spacing of the article will be set at 1.5 lines with the exception of table contents which are set at 1.15 instead of the prescribed 2 lines to allow uniformity within the document.

Chapter 5: Summary, conclusion, limitations and recommendations.
REFERENCES

Champaign, IL: Human Kinetics.

Physiological comparisons among three maximal treadmill exercise protocols in trained and

Larsen, H. 2003. Kenyan dominance in distance runners. *Comparative biochemistry and

Midgley, A.W., McNaughton, L.R. & Wilkinson, M. 2006. Is there an optimal training intensity
for enhancing the maximal oxygen uptake of distance runners? *Sports medicine*, 36(2):117-
132.

during sub-maximal running on a non-motorized treadmill.

Vai, F., Bonnet, J.L., Ritter, P.H. & Ploger, G. 1988. Relationship between heart rate and
minute ventilation, tidal volume and respiratory rate during brief and low level exercise. *Pacing

LITERATURE REVIEW: A REVIEW OF CARDIORESPIRATORY RESPONSES ATTAINED USING DIFFERENT RUNNING MODALITIES AND TREADMILL PROTOCOLS TO DIRECTLY DETERMINE AEROBIC CAPACITY

2.1 INTRODUCTION

The body’s ability to consume oxygen has been investigated by Hill and Lupton from as early as 1923 (Basset & Howley, 2000:71). Although their work in the field of exercise science has been challenged, their classical notion of maximal aerobic capacity (\(VO_2\max \)) has generally been accepted (Basset & Howley, 2000:72, 80). By using Hill and Lupton’s research into aerobic capacity as foundation, endurance performance is better understood and interpreted by sport and exercise scientists (Basset & Howley, 2000:77-79, 82). Aerobic capacity is considered important to endurance performance, because of activities being performed at high percentages of an athlete’s \(VO_2\max \) (Davis, 2006:9; Larsen, 2003:168). If the \(VO_2\max \) value is low, the level of endurance performance is limited (Davis, 2006:9). In order for researchers to obtain objective and valid \(VO_2\max \) values during tests, they need to simulate the activity/movement of an endurance athlete’s competitive environment closely (Davies et al., 1984:78). Maximal aerobic tests that involve a large group of muscles will ensure exhaustion and higher \(VO_2\max \) values can consequently be obtained (Astrand et al., 2003:273, 280; Haff & Dumke, 2012:211).

To determine \(VO_2\max \) values, treadmill tests were found to elicit higher values compared to other exercise modalities such as step or bicycle tests (Astrand et al., 2003:275-276; Chaterjee & Chakravarti, 1986:153). Past researchers used motorized treadmills (MT) extensively for the measurement of aerobic capacity (Davies et al., 1984:75; Hamlin et al., 2012:99), but neglected their clear rival, the non-motorized treadmill (NMT). According to Davies et al. (1984:74) the NMT is a good alternative to the MT and is proposed to simulate over-ground running (OGR) more closely. Not only is the apparatus used for determining the \(VO_2\max \) important, but the
protocol (graded exercise test) used for attainment of $VO_{2\text{max}}$ also plays an important role (Bouchard et al., 1979:85-86; Davies et al., 1984:77-78). It is recommended that researchers use graded exercise tests (GXT) with equal increases in workload (speed and gradient) and time intervals to allow participants to achieve steady states (plateau in cardiorespiratory responses) by the end of each test level until exhaustion (Haff & Dumke, 2012:211).

On the basis of the above-mentioned literature overview, the first aim of this study is to provide insight into the importance of aerobic capacity and cardiorespiratory responses, as well as the accurate measurement and determination thereof. The second aim is to investigate and discuss the MT and NMT used by previous researchers to determine which treadmill closer simulates OGR by allowing greater cardiorespiratory responses and aerobic capacity values in trained male runners. Furthermore, environmental factors as well as other measured biomechanical factors that influence the attainment of an athlete’s aerobic capacity will be deliberated on briefly. Finally, all literature containing different protocols used to determine the direct aerobic capacity of trained adult male runners for the last two decades on both the MT and NMT will be considered to determine which protocol is most appropriate for the $VO_{2\text{max}}$ test. The number of articles relevant to these aims was limited, and older research that is within the previously mentioned scope was also used.

Aerobic capacity and aerobic power are used interchangeably in literature to represent a person’s ability to use oxygen when exercising. For the remainder of this literature review only the term aerobic capacity will be used to express this phenomenon.

2.2 AEROBIC CAPACITY

Aerobic capacity can be described as the ability of the pulmonary, vascular and muscular system to consume and utilize oxygen to endure physiological work (Boutcher, 1990:236). This phenomenon can be expressed as an absolute value (milliliter per minute (ml/min)) or as a relative value (milliliter per kilogram per minute (ml/kg/min)) (Morrow & Freedson, 1994:316) and represents the amount of oxygen (O$_2$) consumed during exercise (Boutcher, 1990:236). A $VO_{2\text{max}}$ test as determined by a GXT protocol is terminated when a participant feels he/she cannot continue or when the workload increases without subsequent increases in O$_2$ consumption (Basset & Howley, 2000:71). In other words, a plateau in O$_2$ consumption will occur despite increases in workload (Basset & Howley, 2000:71; Wilmore et al., 2008:223). According to Basset and Howley (2000:71), the presence of a plateau in O$_2$ consumption is evident because of an upper limit in $VO_{2\text{max}}$ being reached as well as limited O$_2$ transport to the working muscles.
(Basset & Howley, 2000:71). Attainment of a high \(\dot{V}O_{2\text{max}} \) value is considered an important determinant of distance running performance (Basset & Howley, 2000:71; Midgley et al., 2006:117).

Determining \(\dot{V}O_{2\text{max}} \) by means of direct measurement, through an automated, open circuit spirometry system (Davis, 2006:18) in a closed laboratory environment is found to be a reliable method to measure \(\dot{V}O_{2\text{max}} \) (r=0.96) (Davies et al., 1984:76). Furthermore, by measuring the respiratory gas exchange volume of \(O_2 \) and carbon dioxide (\(CO_2 \)) that enter and exit the lungs within a given time, energy expenditure can be determined (Wilmore et al., 2008:100). For \(O_2 \)-consumption to reflect energy metabolism, energy production needs to be completely oxidative and aerobic in nature (Wilmore et al., 2008:100). The aerobic capacity test intensity should therefore be low enough to limit anaerobic energy use, but high enough to allow complete exhaustion. Cardiorespiratory responses derived from indirect calorimetry have enabled researchers to determine whether aerobic capacity tests are performed maximally or sub-maximally (Wilmore et al., 2008:104).

2.3 CARDIORESPIRATORY RESPONSES

When working with trained populations, cardiorespiratory responses are used to measure the effect acute exercise has on the body (Wilmore et al., 2008:223). To meet the increasing metabolic demand of exercise, the heart pumps more blood to the exercising muscles, and respiratory ventilation increases in direct proportion (Wilmore et al., 2008:174-6). When performing prolonged bouts of exercise, as in the case of distance running, the body’s ability to maintain \(O_2 \) delivery is challenged and therefore develops along with the muscles’ ability to utilize \(O_2 \) (Wilmore et al., 2008:223). Thus, the onset of exercise has an immediate effect on the cardiorespiratory responses of the body and is controlled by neural activation in the respiratory control centers of the brain, as well as the chemical composition of arterial blood (Wilmore et al., 2008:176). These responses are identified by their need to meet the body’s demand during dynamic exercise (Wilmore et al., 2008:162,176). Cardiorespiratory responses obtained from \(\dot{V}O_{2\text{max}} \) tests include heart rate (HR)/ maximum heart rate (HR\(_{\text{max}}\)), \(O_2 \) consumption (\(\dot{V}O_2 \)), \(CO_2 \) production (\(\dot{V}CO_2 \)), minute ventilation/ ventilatory equivalent (\(V_{E} \)), the \(\dot{V}O_{2\text{max}} \) value, the respiratory exchange ratio (RER), and time to exhaustion (T\(_{\text{lim}}\)). From these variables two intensity markers, namely the ventilatory threshold (VT), and the respiratory compensation point (RCP), can be derived (Chicharro et al., 2000:452; Kang et al., 2001:291-292; Vai et al., 1988:1860). Rating of perceived exertion (RPE) is not classified as a cardiorespiratory response, but is a
separate and subjective response to categorize physical strain during tests (Borg, 1982:377). The role of these responses will be discussed in the next section.

2.3.1 Respiratory exchange ratio (RER)

The RER can be determined by expressing the ratio of the measured gases namely, \(\dot{V}CO_2 \) and \(\dot{V}O_2 \) during a \(VO_{2\text{max}} \) test (Wilmore et al., 2008:103, 237). The RER value is of importance, as it provides an indication of the food substrate being oxidized to expend energy (Haff & Dumke, 2012:212; McArdle et al., 2010:190-191). Food substrates such as fat (RER=0.7) and carbohydrates (RER=1.00) attain different RER values (Wilmore et al., 2008:103) because of their different chemical composition of carbon (C) and O2. The expired air’s O2 and C composition can therefore be analyzed to determine the RER value. The gas exchange between O2 and CO2 is directly influenced by the onset of exercise. When the RER reaches 1.00 or exceeds (\(\geq \)) 1.00, the food substrate consumed can no longer be accurately reflected owing to the body’s attempt to deter lactate by dumping CO2 into the blood to counteract acidification (Wilmore et al., 2008:104). The body’s attempt to purify the blood causes lactate accumulation and a slow decline to fatigue will start. When the RER is above (\(\geq \)) 1.00, and continuously increases, athletes are expected to become fatigued shortly thereafter. The highest RER value attained will therefore be used as a \(VO_{2\text{max}} \) criteria point to determine whether the \(VO_2 \) value attained is a \(VO_{2\text{max}} \) or peak aerobic capacity (\(VO_2\text{peak} \)) value (Davis, 2006:15; Haff & Dumke, 2012:210; McArdle et al., 2010:235). Maximal aerobic capacity criteria will be discussed in section 2.4.1

2.3.2 Minute ventilation (\(V_E \))

Minute ventilation can be defined as the amount of air being inhaled (\(VO_2 \)) and exhaled (\(VCO_2 \)) by the lungs per minute and is dependent on the depth and rate of breathing (Vai et al., 1988:1864). Minute ventilation and HR increase linearly until 60% of the \(VO_{2\text{max}} \) is reached, whereafter \(V_E \) increases at a higher rate than HR as the exercise intensity continuously increases (Vai et al., 1988:1865). Higher physical demands set by the GXT protocol will lead to a progressive increase in CO2 production through which the body will attempt to counteract the effect of acidification by increasing \(V_E \) (Chicharro et al., 2000:450). Unfortunately, with an increasing exercise demand, even more CO2 will be produced and respiratory compensation will occur in response to metabolic acidosis (Rossi, 1987:455). Furthermore, \(V_E \) matches the rate of energy
metabolism required and is therefore expressed in terms of the gases being exchanged (e.g. \dot{V}_E/\dot{V}_O_2) (Wilmore et al., 2008:176).

2.3.3 Oxygen consumption (\dot{V}_O_2) and carbon dioxide production ($\dot{V}_C O_2$)

Gas exchange of O$_2$ and CO$_2$ in the lungs is known as pulmonary diffusion (Wilmore et al., 2008:147). In other words, O$_2$ is exchanged from the inhaled air to the bloodstream and CO$_2$ is exchanged from the bloodstream to the air in the lungs. The presence of O$_2$ during energy production implies that it is aerobic in nature (Wilmore et al., 2008:53). The oxidative energy system can supply great amounts of energy, but it takes time to activate (Wilmore et al., 2008:53). Aerobic endurance exercises are mainly fueled by the oxidative system and place great demands on the respiratory and cardiovascular system (Wilmore et al., 2008:53). During periods of mild continuous exercise, ventilation matches the rate of energy metabolism by varying the volume of O$_2$ consumed and CO$_2$ produced. Furthermore, the volume of air expired/ventilated and the amount of O$_2$ consumed (\dot{V}_E/\dot{V}_O_2) in addition to the amount of CO$_2$ produced ($\dot{V}_E/\dot{V}_C O_2$) is expressed through \dot{V}_E in liter per minute (L/min) (Wilmore et al., 2008:177). Both \dot{V}_E/\dot{V}_O_2 and $\dot{V}_E/\dot{V}_C O_2$ are plotted on a graph for further interpretation and are used to determine the VT and RCP as discussed later in this chapter (2.3.5).

2.3.4 Heart rate (HR) and maximum heart rate (HR$_{max}$)

Heart rate is a useful cardiorespiratory response to determine exercise intensity and can be determined by means of a wireless HR monitor (Achten & Jeukendrup, 2003:518). When using HR as a cardiorespiratory response during a $\dot{V}O_2_{max}$ test, a steady state HR is pursued per workload increment (Wilmore et al., 2008:163). As the exercise intensity reaches near maximum effort, HR will deviate from its initial linear increase of steady state per workload increment, and a plateau in HR will form. This plateau is known as HR$_{max}$ and is considered to be the value reached after a maximal exercise effort up to exhaustion (Wilmore et al., 2008:163). This attained value can vary slightly from day to day and will be influenced by an age-related decline of approximately one beat per year from 10 to 15 years of age (Wilmore et al., 2008:163). A theoretical HR$_{max}$ can be determined by using the developed equation to estimate $HR_{max} = 208 - (0.7 \times age)$ (Tanaka et al., 2001:154-155; Wilmore et al., 2008:163).

The HR$_{max}$ of aerobically trained participants is expected to be lower because of higher stroke volumes. Stroke volume can be defined as the amount of blood ejected from the heart’s left
ventricle per beat/contraction (Wilmore et al., 2008:531). Heart rate and stroke volume work in
unison to meet the metabolic demand of the body by an optimum effort to allow maximal exercise
(Wilmore et al., 2008:229). Aerobic training also has a great effect on resting HR, submaximal
exercise and the post-exercise HR recovery period (Wilmore et al., 2008:228). Shorter HR
recovery periods have been measured after an aerobic exercise regime was followed, and as a
result faster recovery periods are expected from trained athletes (Wilmore et al., 2008:229).
Consequently, HR recovery is considered an indirect index of cardiorespiratory fitness and should
return to resting HR after approximately 5 min of rest once a maximal aerobic test is completed
(Wilmore et al., 2008:229).

Test-retest correlation of HR is very high (r=0.872), as reported by Brooke and colleagues (cited
by Achten & Jeukendrup, 2003:530), although a day-to-day change of two to four beats per
minute (bpm) is evident (Achten & Jeukendrup, 2003:530). Numerous factors have been found
to influence HR, including environmental factors (cold and heat), physiological factors
(cardiovascular drift and hydration status) and altitude (Achten & Jeukendrup, 2003:530-532).

2.3.5 **Ventilatory threshold (VT) and respiratory compensation point (RCP)**
The VT and RCP are two exercise intensity markers that are identified from the results obtained
from gas exchange analysis of a $\dot{V}O_{2\text{max}}$ test. These markers are identified by analyzing the
respiration of $\dot{V}O_2$ and $\dot{V}CO_2$ responses to increasing exercise workloads. The first exercise
marker VT occurs when there is an increase in $\dot{V}E / \dot{V}O_2$ values with no change in the
$\dot{V}E / \dot{V}CO_2$ values (Chicharro et al., 2000:452; Meyer et al., 2005:3). The exercise and HR values
below VT are considered to be aerobic in nature, and indicate the point at which exercise variables
of the low intensity zone are separated from the lowest part of the moderate intensity zone (Lucía
et al., 1999:167).

The second exercise intensity marker, RCP, is identified when there is a sudden increase in both
the $\dot{V}E / \dot{V}CO_2$ and $\dot{V}E / \dot{V}O_2$ values in response to a continuous increase in exercise intensity
(Chicharro et al., 2000:452). The RCP separates the moderate intensity zone from the high
intensity zone (Lucia et al., 1999:167) and marks the onset of hyperventilation during incremental
exercise (Meyer et al., 2004:622) in response to the body’s buffering mechanisms failing, causing
metabolic acidosis to occur (Wasserman et al., 1973:237). The manifestation of metabolic
acidosis only takes place in the absence of adequate O_2 and is affected by an increase in lactic
acid production (Wasserman et al., 1973:237). This is followed by increased buffering of lactic
acid, leading to respiratory compensation as a reaction to metabolic acidosis (Wasserman et al., 1973:236-237). From this, one can conclude that RCP is anaerobic in nature.

By applying the VT and RCP intensity markers to cardiorespiratory responses attained, sport scientists can design individualized training programs (Chicharro et al., 2000:451). The measured HR variables are divided into three exercise intensities by applying the VT and RCP markers to prescribe exercise. Heart rate values occurring from the start of the test up to VT are used for low-intensity exercise, between VT and RCP for moderate intensity exercise and above RCP for high intensity exercise (Chicharro et al., 2000:451). When expressing the VT and RCP exercise markers as percentages of $\dot{V}O_{2max}$ between professional (VT: 65% and RCP: 90%) and amateur (VT: 60% and RCP: 80%) cyclists, it demonstrates that these measures are a good performance indicator for endurance events (Chicharro et al., 2000:450) and can therefore be considered to be probably relevant for distance runners.

2.3.6 Time to exhaustion (T_{lim})

Even though endurance runners can tolerate long periods of exercise, T_{lim} as advised by Davis (2006:13) as well as Haff and Dumke (2012:211) research still suggests that a $\dot{V}O_{2max}$ test protocol should be designed to terminate after 8—12/15 minutes. According to Gibson (cited by Davies et al., 1984:77), aerobic capacity tests that yield shorter treadmill endurance times are favored to ensure that a test is not terminated because of premature local muscle fatigue. Protocols starting at a faster running speed may enable athletes to reach their $\dot{V}O_{2max}$ values in a shorter time (Heyward, 1997:47). However, caution is advised when using protocols with rapid gradient increases in view of their tendency to cause hyperventilation because of a greater metabolic demand, causing premature fatigue and early onset of lactate production (Davis et al., 1976:548). If the time to completion of the protocol is too long, great motivation will be required to complete the test and this could be another reason for lower $\dot{V}O_{2max}$ test values or early test termination (Davis, 2006:13). Consequently, T_{lim} plays an important role in whether the value attained is maximal or submaximal.

2.3.7 Rating of perceived exertion (RPE)

According to Borg (1982:377), perceived exertion is the single best indicator of physical strain during exercise or training. Rating of perceived exertion is categorized into a numerical scale that integrates a diversity of responses elicited through exercise by working muscles, joints, cardiovascular and respiratory function, as well as the central nervous system (Borg, 1982:377). Physical exercise can be divided into both objective and subjective responses (Hardy & Rejeski,
Rejeski (cited by Hardy & Rejeski, 1989:304) determined that what people think they are doing (subjectively) may be more important than what they are doing (objectively). Previous research used three RPE scales, namely the Borg RPE scale (6-20), category ratio scale (CR10 scale), and the Borg centiMax scale (CR100) (Borg & Kaijser, 2006:58). The Borg RPE scale (6-20) and the CR10 scale are the two RPE scales well known to researchers (Borg cited by Borg & Kaijser, 2006:57).

Rating of perceived exertion scales require an individual to rate the level of perceived difficulty of the exercise in which he/she is engaged subjectively (Wilmore et al., 2008:464). The CR10 scale is designed to increase linearly in difficulty as exercise intensity increases (Borg, 1982:378,380). The CR10 scale ranges from 0 (feeling nothing at all) to 10 (maximal) (Borg, 1982:380). The RPE scale (6-20) has been used worldwide and high correlations exist when used alongside HR (r=0.8–0.9) (Borg, 1982:378; Hardy & Rejeski, 1989:304). Rating of perceived exertion can assist researchers in the determination of \(\dot{V}O_2_{\text{max}} \) values as well as assessing the quality of a \(\dot{V}O_2_{\text{max}} \) test. Unfortunately a single RPE scale has not yet been specified to use when performing \(\dot{V}O_2_{\text{max}} \) tests (Borg & Kaijser, 2006:68).

2.4 MAXIMAL AEROBIC CAPACITY (\(\dot{V}O_2_{\text{max}} \))

Maximal aerobic capacity is known as the maximal amount of \(O_2 \) utilized by the body and is recorded during exercise that continues until voluntary exhaustion (Wilmore et al., 2008:190).

Average \(\dot{V}O_2_{\text{max}} \) values of untrained females and males (18—22 years old) who are normally active, range between 38 and 42 ml/kg/min and 44 and 50 ml/kg/min respectively (Kenney et al., 2012:122). Values closer to and above 80—84 ml/kg/min are expected for trained male endurance runners (Kenney et al., 2012:122). However, \(\dot{V}O_2_{\text{max}} \) values of 70 ml/kg/min can be considered adequate for distance running if the percentages of \(\dot{V}O_2_{\text{max}} \) used during endurance activities are high (± 86%) (Kenney et al., 2012:122). Trained endurance runners are therefore expected to achieve values almost twice as high as those achieved by sedentary/less active males and females (McArdle et al., 2010:234), and this is supported by the above-mentioned literature.

Maximal aerobic capacity tests for distance runners are performed on a treadmill for specificity (Astrand et al., 2003:257; McArdle et al., 2010:235) by performing a GXT protocol. The highest \(\dot{V}O_2 \) usually occurs in the last minute of a GXT protocol (McArdle et al., 2010:235). Motivational
factors therefore play an immense role, and continuous prodding and urging are required to attain acceptable criteria for either a \(\dot{V}O_{2\text{max}} \) or \(\dot{V}O_{2\text{peak}} \) (McArdle et al., 2010: 235). Previous researchers have given considerable attention to \(\dot{V}O_{2\text{max}} \) criteria; however a single criterion has not been set as the benchmark for \(\dot{V}O_{2\text{max}} \) testing. The following section will consequently clarify the criteria points used by researchers, and how to distinguish between a \(\dot{V}O_{2\text{max}} \) and a \(\dot{V}O_{2\text{peak}} \).

2.4.1 Criteria for the attainment of maximal aerobic capacity or otherwise peak aerobic capacity

The use of \(\dot{V}O_{2\text{max}} \) criteria differs across research and therefore poses a great challenge in identifying criteria that remain valid (Midgley et al., 2007a:1019). In past research, aerobic capacity tests were acknowledged as a \(\dot{V}O_{2\text{max}} \) test if the results attained demonstrated the achievement of a plateau in \(\dot{V}O_2 \) (Davis, 2006:9). This was expected during the later stages of a test when the work rate continued to increase and no further increase in \(\dot{V}O_2 \) occurred (Basset & Howley, 2000:71; Davis, 2006:9). However, the attainment of a plateau in \(\dot{V}O_2 \) was considered a difficult task, where a participant had to achieve a high level of anaerobic energy output near the end of a \(\dot{V}O_{2\text{max}} \) test. This would not be possible for untrained or elderly persons (McArdle et al., 2010:235). Unfortunately, many participants reached their work rate tolerance before a plateau was reached and it was recommended that these results be referred to as a \(\dot{V}O_{2\text{peak}} \) (Basset & Howley, 2000:71; Davis, 2006:9). In addition, research showed that a \(\dot{V}O_2 \) plateau is not a prerequisite for defining a \(\dot{V}O_{2\text{max}} \), and that achieving secondary criteria is adequate to attain a \(\dot{V}O_{2\text{max}} \) (Duncan et al., 1997:277). Attaining two secondary criteria is considered adequate, and combinations of RER and blood lactate (BLa\(^{-}\)) (Duncan et al., 1997:277), RPE and/or RER, and/or HR\(_{\text{max}}\) (Haff & Dumke, 2012:210) are proposed.

However, criteria for the attainment of a \(\dot{V}O_{2\text{max}} \) have not yet been standardized. Therefore more research is needed to establish a criterion that is independent of exercise modality, test protocol and participants’ characteristics (Midgley et al., 2007a:1026). Nonetheless, a variety of criteria has been used by researchers, and can be regarded as adequate secondary criteria for the
attainment of a plateau. The following criteria have been applied in past research to determine if
participants had reached a $\dot{V}O_{2\text{max}}$ or otherwise a $\dot{V}O_{2\text{peak}}$:

- Reaching a plateau of $< 150 \text{ ml/min in } \dot{V}O_2$ despite further increases in work rate (Haff &
 Dumke, 2012:210; Hamlin et al., 2012; Davis, 2006:15);
- RER of > 1.00 at test termination (Davis, 2006:15), > 1.10 (Haff & Dumke, 2012:210), ≥ 1.10
 (Hamlin et al., 2012:99) or > 1.15 (McArdle et al., 2010:235);
- Achievement of age predicted HR$_{\text{max}}$ by using either HR$_{\text{max}} = (220-\text{age})$, HR$_{\text{max}} =$
 $(206.9 - 0.67 \times \text{age})$ (McArdle et al., 2010:235,473), predicted HR$_{\text{max}} = 208 - (0.7 \times \text{age})$
 (Tanaka et al., 2001:154-155; Wilmore et al., 2008:163); HR$_{\text{max}}$ at test termination $> 90\%$ of
 age predicted HR$_{\text{max}}$ (220-age) (Davis, 2006:15; Hamlin et al., 2012:99) or 10 beats/min
 below age predicted HR$_{\text{max}}$ (Haff & Dumke, 2012:210);
- Reaching an RPE > 17 on the Borg Scale (Haff & Dumke, 2012:210). A value of > 17 is
 similar to the CR10 score of 10 (Borg & Kaijser, 2006:58).
- A BLa$^-$ concentration in the first 5 minutes of recovery of $> 8 \text{ mmol/L}$ (Davis, 2006:15;
 McArdle et al., 2010:290);

According to Davis (2006:15), the attainment of two criteria is sufficient for an aerobic capacity
value to be considered a $\dot{V}O_{2\text{max}}$. The combined use of a plateau ($< 150 \text{ ml/min in } \dot{V}O_2$, RER
(≥ 1.15), HR$_{\text{max}}$ $(208 - (0.7 \times \text{age}))$, and the subjective rating of RPE (CR 10 Scale = 10) is
considered sufficient $\dot{V}O_{2\text{max}}$ criteria, as mentioned earlier, and will be used in this research
study.

Although the achievement of two the above-mentioned responses is considered adequate for the
attainment of a $\dot{V}O_{2\text{max}}$, other factors such as the running modality and the protocol used to
determine a $\dot{V}O_{2\text{max}}$ also need to be investigated with respect to the role they play in reaching
the highest cardiorespiratory responses possible. The subsequent section will discuss the
available running modalities and their influence on running performance.

2.5 RUNNING MODALITIES

The running modalities used to evaluate running performance can be considered a significant
environmental factor, influencing a runner’s biomechanical and physiological aspects (Wee,
2015:1). Even though many running modalities have been used to investigate exercise physiology
in the past (McKenna & Riches, 2007:649; Stevens et al., 2015:1141; Cheetham & Williams,
1987:14; Franks et al., 2012:7; Morin & Séve, 2011:1695), the MT and NMT have been used
extensively for aerobic and anaerobic exercise testing respectively. The MT models have improved considerably over the past four decades (Woodway USA, 2013:5), opposed to the NMT. The NMT was only recently improved to a point where a safety harness is no longer required (Snyder et al., 2011).

For $V\text{O}_{2\text{max}}$ values to be considered valid and objective, the running modality needs to simulate OGR, as this is the environment in which the athlete will compete (Davies et al., 1984:78). To this day, a running modality has not yet been identified to simulate OGR without conflicting results. It is in this light that the above-mentioned running modalities are investigated and compared. To indicate the differences between the MT and NMT, the following section will outline the apparent differences, along with the effect these differences have on the energy cost (energy expenditure (EC)), cardiorespiratory responses, and running effort experienced by the endurance athlete. Finally, other factors possibly influencing measurement will be identified.

2.5.1 Non-motorized treadmill

Earlier research studies made use of a flat NMT that had no set gradient (Cheetham & Williams, 1987:14; Davies et al., 1984:75; Funato et al., 2001:169). The Curve NMT was launched in 2010 and has since then received considerable attention because of its improved “bean” shaped geometric design. The Curve NMT’s surface was upgraded from a flat running surface to a concave shape that exposes an athlete to a set resistance resulting from its built-in gradient (Stevens et al., 2015:1142, 1145). The Curve NMT is relatively new to the research environment and research on it is limited. The athlete is in control of the speed of the Curve NMT’s belt and can accelerate and decelerate the belt with each subsequent step (Snyder et al., 2010). Full velocity is attainable on the Curve NMT (23.4 ± 3.6 km/h) (Gonzalez et al., 2013:104) and therefore the Curve NMT is considered a practical and reliable modality (ICC=0.79—0.97) for testing anaerobic power because it allows unrestricted running motion (Gonzalez et al., 2013:104, 107). Running at a higher velocity allows greater sport specificity and is considered an additional benefit of the Curve NMT (Gonzalez et al., 2013:106-107).

The Curve NMT has recently been presented as a valid tool for assessing endurance running performance when compared to OGR performance. This is suggested through a strong correlation reflected in RPE on the Curve NMT compared to OGR ($r=0.82$; ICC=0.86) (Stevens et al., 2015:1141). According to Stevens et al. (2015:1145), the Curve NMT achieved similar cardiorespiratory responses compared to OGR ($\dot{V}\text{O}_{2}$: 51.1 ± 5 vs. 49.2 ± 4 ml/kg/min, respectively; HR: 178 ± 14 vs. 178 ± 13 bpm, respectively; $\dot{V}\text{E}$: 122.5 ± 17.3 vs. 122.4 ± 15.6 L/min, respectively) with the exception of two responses, namely RPE and BLa⁻. These last-mentioned responses were significantly higher on the Curve NMT during a 5 km time trial compared to OGR.
The measured RPE and \(\text{BLa}^- \) responses can be attributed to the natural gradient of the Curve NMT that was perceived to be more difficult (Stevens et al., 2015:1146-1147). These tests results were not performed to complete exhaustion/maximum effort. Even though the Curve NMT is considered a valid tool for measurement of endurance running, these results are obtained from a 5 km time trial and cannot be compared directly to \(\text{VO}_{2\text{max}} \) test results.

From investigating the Curve NMT, the differences between the EC of Curve NMT running and OGR have come to light. The EC of running at certain intensity is known as running economy and is determined by assessing the steady state consumption of \(\text{O}_2 \) as well as the RER (Saunders et al., 2004:465). A runner with good running economy will use less energy at a specific intensity and therefore less \(\text{O}_2 \) than a runner with poor running economy at the same intensity (Saunders et al., 2004:465). Running economy does not differ much among elite runners because repetitive exercise has made them skilled at running, thus a lower EC is needed to sustain the exercise. According to Saunders et al. (2004:465), running economy is a better predictor of performance than \(\text{VO}_{2\text{max}} \) when compared. Consequently EC can be used to compare different running modalities.

Incidentally the Curve NMT has been advocated to provide additional training load (Snyder et al., 2010). The higher EC of the Curve NMT can be explained by the nature of the gradient of the belt that requires the athlete to drive the belt with each subsequent step (Franks et al., 2012:72; Stevens et al., 2015:1141). In many respects the Curve NMT resembles OGR more, actively pulling through each step, requiring self-pacing and self-initiation of movement (Stevens et al., 2015:1141-1142).

2.5.2 Motorized treadmill

As an alternative to OGR, MTs are widely used in laboratories and are considered a valid tool/modality to measure endurance performance regardless of the lack of direct comparison to endurance performance (Stevens et al., 2015:1141). In contrast with the Curve NMT, the MT is controlled by a computer through which its speed and gradient can be specified, and is propelled by a motor (Franks et al., 2012:71; Schache et al., 2001:667-668) whose time and distance can be set accurately (Wank et al., 1998:455). Athletes attempt to match the MT’s speed and slope by manipulating stride rate and length (Franks et al., 2012:71). Pacing is therefore controlled by a computer and any changes in pacing will be made consciously and will therefore allow a runner to maintain a more consistent pace (Stevens et al., 2015:1142; Stevens & Dascombe, 2015:180).
The nature of the MT makes it easy to mimic a specific exercise (Schache et al., 2001:667), and it has consequently become more popular for endurance training (Wank et al., 1998:455). Although Schache et al. (2001:667-668) claim that the MT can be considered a good alternative to OGR, a lot of research contradicts this statement (Fellin et al., 2010; Riley et al., 2008; Schache et al., 2001). Wank et al. (1998:455) too found conflicting results regarding step frequency, step length, foot contact time and EC differences between OGR and MT running because of biomechanical influences on the athlete. From a mechanical point of view OGR and MT running should be similar; however, running style and physiological parameters regarding kinetics differ (Wank et al., 1998:455).

Measurement of $V_{O2\text{max}}$ is independent of the environment in which it is performed, but is rather dependent on the amount of effort spent to complete the task undertaken (Meyer et al., 2003:388). This conclusion was made after a comparative study had been done by Meyer and colleagues (2003:388), who found some similar cardiorespiratory responses for $V_{O2\text{max}}$ tests performed on a MT and OGR. Even though OGR allowed faster running speeds to be reached, the responses from OGR did not exceed those of MT running (Meyer et al., 2003:388-389). No significant differences were measured between OGR and MT running with regard to $V_{O2\text{max}}$ values 63.3 ± 7 vs. 63.5 ± 6.6 ml/kg/min, respectively. The RER obtained (1.07 ± 0.04 vs. 1.06 ± 0.04, respectively) and Bla$^{-}$ values (10.9 ± 3.1 vs. 11.0 ± 2.5 mmol/L, respectively) were also found to be similar between OGR and MT running. Statistically significant differences ($p<0.05$) were, however, measured between MT running and OGR, namely T_{lim} ($11:31 \pm 0:39$ vs. $12:07 \pm 0:42$ min, respectively) and HR_{max} (188 ± 6 vs. 189 ± 6 bpm, respectively). The HR_{max} measures differed by less than 2 bpm and were therefore practically negligible (Meyer et al., 2003:388). Nonetheless, the ventilation measurements from the research of Meyer et al. (2003:389) found different EC between these modalities.

The EC of running on a MT was found to be significantly higher ($p<0.05$) than OGR as measured by increased V_E and V_{O2} at submaximal running stages (Meyer et al., 2003:389). In this light, Jones and Doust (1996:326) recommended running on a 1% gradient to correct for the lack of air resistance during MT running. Small but significant differences were measured between MT running and OGR concerning air stream, ground surface and movement patterns (Meyer et al., 2003:387). In research conducted by Meyer et al. (2003:387), higher V_E was measured when running on a MT compared to OGR, and this was attributed to less efficient RE due to a different muscle activation pattern (McMahon & Green cited by Meyer et al., 2003:389). Modified sensory feedback, caused by different running surfaces, has also been mentioned as an explanation for
differences between OGR and MT running (Wank et al., 1998:455). The running technique on OGR and MT running was found to differ, and this was attributed to the hamstring muscle being used more to create propulsive forces on the MT. Differences in EC between OGR and MT running have also become more noticeable as the running speed increased owing to air resistance (Daniels cited by Saunders et al., 2004:467).

2.5.3 Cardiorespiratory responses and energy cost of motorized versus non-motorized treadmills

When comparing the MT and the Curve NMT, cardiorespiratory responses showed significantly higher results on the Curve NMT than on the MT, specifically a higher $\dot{V}O_2$ (60.2 ± 11 vs. 49.9 ± 9.2 ml/kg/min, respectively), HR (190 ± 10 vs. 170 ± 11 bpm, respectively), and BLa$^-$ values (11.1 ± 2.9 vs. MT 4.5 ± 1.6 mmol/L, respectively) in a group of experienced distance runners (n=9) (Snyder et al., 2010). Even though Snyder et al. (2010) made use of a discontinuous test protocol and only performed the Curve NMT evaluation up to the lactate threshold, the Curve NMT values obtained were significantly higher (p<0.05) in comparison to results obtained from a MT, except for oxygen saturation (O_2S). Snyder’s comparisons were only conducted to a submaximal level and not to complete exhaustion/ maximum effort. According to Snyder et al. (2010), these differences can be clarified by the Curve NMT belt’s higher friction and greater muscle activation, as shown by lower O_2S in comparison with the MT (22 ± 13 vs. 41 ± 21%, respectively).

Smoliga et al. (2015:264,265) compared the Curve NMT to a standard MT at a walking (4.8 km/h) and running speed (8.1 km/h) in a mixed group of healthy active participants (n=10), and found the Curve NMT to elicit greater physiological stimulus than that of a MT. The RPE, EC and metabolic rate demand (metabolic equivalent (METs)) of both modalities were investigated among other variables (Smoliga et al., 2015:264). Rating of perceived exertion, EC, and METs were all found to be significantly (p<0.05) higher using the Curve NMT in comparison with the MT at a walking and running speed. Other measured cardiorespiratory responses were also found to be significantly higher on the Curve NMT, namely HR (p=0.002), $\dot{V}O_2$ (p=0.012), and BLa$^-$ values (p=0.013) (Smoliga et al., 2015:264). The perceived intensity is therefore rated substantially above that of its opponent, the MT (Smoliga et al., 2015:266; Stevens et al., 2015:1145).

In agreement with the above-mentioned findings, the EC of running on a Curve NMT exceeds that of a MT and is caused by higher friction (Stevens et al., 2015:1145) and muscle activation (Snyder et al., 2010). Because of the adaptive nature of the Curve NMT, it is believed that greater neuromuscular control is required to regulate stride rate and length (Smoliga et al., 2015:266). In addition, running on a Curve NMT was found to be similar to OGR uphill (Franks et al., 2012:73;
Smoliga et al., 2015:265). The concave shape of the Curve NMT causes greater muscle activation of the hamstring and quadriceps muscles and in turn causes greater EC when compared to MT running (Franks et al., 2012:74).

From the above-mentioned results one can conclude that running on the Curve NMT is more strenuous regarding its physiological intensity and METs than running on a MT. The higher responses on the Curve NMT in comparison to the MT are partially related to the concave shape of the Curve NMT that has a natural increasing gradient of 5–10° and a MT that has no set gradient. Furthermore, the EC of running on the Curve NMT exceeds that of MT running.

2.6 OTHER FACTORS INFLUENCING MEASUREMENT OF AEROBIC CAPACITY

In the current research study, only cardiorespiratory responses as discussed earlier are of importance. It is, however, important to be aware of factors that may play a role achieving these responses. External factors such as familiarity with the running modality used, visual and auditory surroundings, differences in air resistance (Jones & Doust, 1996:325; Schache et al., 2001:668), mechanical properties of the running surface and energy exchange through inconsistent belt speed may all play a role in differences measured between running modalities (Schache et al., 2001:668).

Other researchers have focused more on kinematic variables (Fellin et al., 2010:407; Riley et al., 2008:1093; Schache et al., 2001:667) such as running technique (McKenna & Riches, 2007:649; Morin & Sève, 2011:1695 ; Sinclair et al., 2013:272), running motion (Fellin et al., 2010:407), running posture (Fellin et al., 2010:407) and foot strike (Snyder et al., 2011) and have measured significant differences on different running modalities. Future studies are advised to investigate the role these variables play in cardiorespiratory responses.

Apparent differences have been pointed out between the running modalities concerning cardiorespiratory responses; however, the running protocol also has an effect on the cardiorespiratory responses during testing. A variety of test protocols exist and a single protocol has not been prescribed to determine the $V_{O_{2\text{max}}}$ of endurance runners. In the light of this, the subsequent section will focus on protocols that can be used to determine the highest $V_{O_{2\text{max}}}$ for endurance runners.
2.7 TREADMILL PROTOCOLS FOR DETERMINATION OF MAXIMAL AEROBIC CAPACITY

From reviewed research it is clear that a vast number of treadmill protocols exist to determine an athlete’s V_O^{max}. In untrained participants, aerobic capacity is not affected by the protocol used and a test of short duration is prescribed to be time-efficient (Kang et al., 2001:294). However, to determine a trained runner’s V_O^{max}, a few guidelines have been recommended by researchers. According to Davies et al. (1984:78), the closer a protocol can simulate a specific population’s sporting activity, the more objective and valuable the V_O^{max} assessment becomes. The protocol used to determine V_O^{max} is vital (Bouchard et al., 1979:85-86; Davies et al., 1984:77-78) and therefore further investigation is required.

A V_O^{max} protocol is considered complex and should be put together with the single purpose of gradually increasing exercise intensity to complete exhaustion (Haff & Dumke, 2012: 211). The combination of workload and time intervals used for GXT protocols is, however, regarded to be of great importance (Haff & Dumke, 2012:211). A GXT protocol with large workload increases should be used with longer time intervals (Astrand et al., 2003:291-292), and when using small workload increases shorter time intervals should be used. Graded exercise tests differ vastly concerning workload and time interval increases. A steady state in cardiorespiratory responses is therefore pursued at the end of each incremental level. It is therefore essential to select the extent of a workload carefully, since the use of a too large workload increase can cause premature fatigue and early onset of lactate production (Davis et al., 1976:548). The extent of a workload increase and the length of a time interval are consequently dependent on one another. Furthermore, two GXT protocol methods have been used throughout research, namely continuous test protocols (CTP) and discontinuous test protocols (DTP). Aforementioned protocols will be addressed in the following section.

2.7.1 Continuous and discontinuous graded exercise test protocols

Previous researchers determined aerobic capacity by using either a CTP method or a DTP method. CTP are known as single exercise bouts that aim to finish within 8—15 minutes, whereas DTP are often performed over a few days and consist of multiple exercise intervals that range between 3 and 5 minutes (Duncan et al., 1997:273). DTP exercise intervals are spaced out to allow measured values to return to baseline for each bout (Snyder et al., 2010). Discontinuous test protocols performed by Snyder et al. (2010) used interval intensities determined from lactate threshold and were expressed as percentages thereof. The DTP were performed as follows: a 50% interval performed along with a 100% interval on the same day followed by a 65% and 80%
interval on the following day (Snyder et al., 2010). These exercise intervals were 6 minutes in duration and were separated by a 5 minute (increasing speed) or 10 minute (decreasing speed) rest interval. However, DTP differ throughout research and can be performed on a single day as well (Midgley et al., 2007b:935), following the same structure of CTP by using exercise intervals of 2 and 3 minutes (Midgley et al., 2007b:935) with repetitive increases in workload but with 30-second passive rest periods (Midgley et al., 2008:444-445).

Duncan et al. (1997:277) found similar \(\dot{V}O_{2\text{max}} \) values attained by CTP and DTP (55.8 ± 4.2 vs. 56.8 ±4.7 ml/kg/min, respectively); however, \(HR_{\text{max}} \) values attained by CTP were found to be higher owing to longer test durations (191.7 ± 6.7 vs. 186.3 ± 7.7 bpm, respectively). Statistically significant higher (p<0.05) RER and \(BLA^{-} \) values were achieved during DTP in comparison with CTP and can be expected in view of the anaerobic energy requirements of these 3–5-minute interval runs (1.28 ± 0.05 vs. 1.22 ± 0.05, respectively; 14.3 ± 2.7 vs. 11.9 ± 2.7 mmol/L, respectively) (Duncan et al., 1997:277). The greatest difference between the CTP and DTP were the \(T_{\text{lim}} \) measured for CTPs (12.3 min) and DTPs (67.3 min) (Davis, 2006:14). To determine the \(T_{\text{lim}} \), DTP exercise interval times were added up without the applied rest periods (Midgley et al., 2008:445). Because of the DTP time period, these tests are considered time-consuming and athletes and researchers prefer the CTP (Davis, 2006:14).

Continuous test protocols are also known as GXT and are recommended to determine \(\dot{V}O_{2\text{max}} \). Continuous test protocols are designed to elicit maximal efforts within a specific time frame by gradually increasing workloads until exhaustion (Haff & Dumke, 2012:211). According to Haff and Dumke (2012:211), CTP should aim to increase progressively by using identical increments in workload and time intervals until the athlete reaches a steady state in cardiorespiratory responses before applying a further increase in workload. Furthermore, only CTP will be discussed in the subsequent section because it is preferred by researchers and athletes (Davis, 2006:14). All relevant protocols will be referred to as GXT protocols.

To establish whether there are similarities in current research, all GXT protocols previously used were investigated. Two types of GXT protocols were identified, namely speed GXT protocols with incremental speed increases and incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases. Only research using a similar population of trained male distance runners was used to compare existing GXT protocols. All relevant GXT protocols on both the MT and NMT are summarized in Table 2.1 and Table 2.2. Table 2.1 is comprised of all speed GXT protocols used for male distance runners and Table 2.2 is comprised of incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners. From the last-mentioned tables the basic incremental nature of
GXT protocols, specifically starting speed, time intervals and workloads, will be defined and briefly discussed. Finally, the GXT protocols used in this research study will be discussed.
Table 2.1: Speed GXT protocols used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed; speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billat et al., 1993</td>
<td>Horizontal treadmill with speed increases</td>
<td>3 min intervals to 80% of 3 km race pace whereafter; 1 min intervals are used.</td>
<td>12 km/h; 2 km/h and 1 km/h increments.</td>
<td>n = 8 M sub-elite runners Age: 29.3 ± 3 yrs.; Stature: 178 ± 4 cm; BW: 69 ± 5.9 kg.</td>
<td>• $\dot{V}O^{2max}$: 69.6 ± 4.2 ml/kg/min; T${lim}$: 404 ± 101 sec.</td>
</tr>
<tr>
<td>Billat et al., 1996</td>
<td>Horizontal treadmill with speed increases</td>
<td>2 min.</td>
<td>17 km/h; 1 km/h increments.</td>
<td>n = 15 M endurance trained runners Age: 24 ± 2 yrs.; Stature: 176.4 ± 5.4 cm; BW: 68.2 ± 5.2 kg.</td>
<td>• $\dot{V}O^{2max}$: 65.98 ml/kg/min; V_E: 139.8 L/min; HR${max}$: 186 bpm; RER: 1.11.</td>
</tr>
<tr>
<td></td>
<td>Horizontal treadmill with speed increases</td>
<td>1 min.</td>
<td>17 km/h; 0.5 km/h increments.</td>
<td></td>
<td>• $\dot{V}O^{2max}$: 65.98 ml/kg/min; V_E: 133.3 L/min; HR${max}$: 183 bpm; RER: 1.10.</td>
</tr>
</tbody>
</table>

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; \dot{V}_O^{2max}: Maximal aerobic capacity; \dot{V}_O^{peak}: Peak aerobic capacity; V_E: Minute ventilation; HR$_{max}$: Maximum heart rate; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; T$_{lim}$: Time to exhaustion.
Table 2.1 (Continues): Speed GXT protocols used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed; speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christie & Lock, 2001</td>
<td>Progressive speed protocol</td>
<td>1 min.</td>
<td>12 km/h; 1 km/h increments.</td>
<td>n = 8 M trained participants Age: 22 ± 1.7 yrs.; Stature: 181.1 ± 4.8 cm; BW: 75.3 ± 8.3 kg.</td>
<td>(\cdot) (\dot{VO}2\max): 70 ± 7.2 ml/kg/min; HR(\max): 196 ± 10 bpm; RER: 1.13 ± 0.09; RPE: 20 ± 0.5; T(_\text{lim}): 9.12 ± 1.4 min.</td>
</tr>
<tr>
<td>Davies et al., 1984</td>
<td>Horizontal treadmill with speed increases</td>
<td>1 min.</td>
<td>12 km/h (F); 14 km/h (M); 1 km/h increments.</td>
<td>n = 5 M and 5 F athletes BW: 60.1 ± 4.76 kg.</td>
<td>(\cdot) (\dot{VO}2\max): 59.6 ± 10.3 ml/kg/min; T(\text{lim}): 8.1 ± 3 min.</td>
</tr>
<tr>
<td></td>
<td>NMT horizontal with speed increases</td>
<td>3 min.</td>
<td>10 km/h; 2 km/h increments.</td>
<td></td>
<td>(\cdot) (\dot{VO}2\max): 61.4 ± 11.4 ml/kg/min; T(\text{lim}): 6.0 ± 2.2 min.</td>
</tr>
</tbody>
</table>

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; \(\dot{VO}_2\max \): Maximal aerobic capacity; \(\dot{VO}_\text{peak} \): Peak aerobic capacity; \(V_E \): Minute ventilation; HR\(_\max\): Maximum heart rate; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; T\(_\text{lim}\): Time to exhaustion.
Table 2.1 (Continues): Speed GXT protocols used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time</th>
<th>Starting speed; speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dittrich et al., 2013</td>
<td>Intermittent treadmill test</td>
<td>3 min.</td>
<td>10 km/h with 1% gradient; 1 km/h increments.</td>
<td>n = 12 M participants
Age: 32 ± 6.3 yrs.;
Stature: 176.7 ± 5.6 cm;
BW: 74.9 ± 5.3 kg.</td>
<td>Lactate steady state % of
• $\dot{V}O_{2\text{max}}$: 82%;
T$_{\text{lim}}$: 66.5 ± 10 min.</td>
</tr>
<tr>
<td>Gibson et al., 1999</td>
<td>Noakes progressive speed protocol</td>
<td>1 min.</td>
<td>12 km/h; 1 km/h increments.</td>
<td>n = 10 M club-level long distance runners
Age: 22 ± 3 yrs.;
Stature: 181.1 ± 8.1 cm;
BW: 69.2 ±7.8 kg.</td>
<td>$\dot{V}O_{2\text{peak}}$: 68.3 ± 4.0 ml/kg/min;
HR${\text{max}}$: 196 ± 4 bpm;
RER: 1.14 ± 0.05;
RPE: 18.6 ± 1.6;
T${\text{lim}}$: 10.06 ± 1.23 min.</td>
</tr>
<tr>
<td>Machado et al., 2013</td>
<td>Short level speed protocol</td>
<td>1 min.</td>
<td>Warm-up of 6 km/h for 3 min followed by initial speed of 8 km/h; 1 km/h increments.</td>
<td>n = 34 M recreational endurance trained runners
Age: 40.1 ± 12.8 yrs.;
Stature: 173.3 ± 7 cm;
BW: 67.7 ± 7.7.2 kg.</td>
<td>HR${\text{max}}$: 181.8 ±12.1 bpm;
RPE: 19.8 ± 0.6;
T${\text{lim}}$: 11.1 ± 1.6 min.</td>
</tr>
</tbody>
</table>

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; $\dot{V}O_{2\text{max}}$: Maximal aerobic capacity; $\dot{V}O_{2\text{peak}}$: Peak aerobic capacity; V_E: Minute ventilation; HR$_{\text{max}}$: Maximum heart rate ; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; T$_{\text{lim}}$: Time to exhaustion.
Table 2.1 (Continues): Speed GXT protocols used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed; speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machado et al., 2013 continues</td>
<td>Intermediate level speed protocol</td>
<td>2 min.</td>
<td>Warm-up of 6 km/h for 3 min followed by initial speed of 8 km/h; 1 km/h increments.</td>
<td>n = 34 M recreational endurance trained runners Age: 40.1 ± 12.8 yrs.; Stature: 173.3 ± 7 cm; BW: 67.7 ± 7.7 kg.</td>
<td>HRmax: 184.8 ±12.7 bpm; RPE: 19.8 ± 0.4; Tlim: 19.4 ± 3 min.</td>
</tr>
<tr>
<td></td>
<td>Long level speed protocol</td>
<td>3 min.</td>
<td>8 km/h; 1 km/h increments.</td>
<td></td>
<td>HRmax: 183.1 ±12.9 bpm; RPE: 19.9 ± 0.4; Tlim: 26.7 ± 4.7 min.</td>
</tr>
<tr>
<td>Meyer et al., 2003</td>
<td>Ramp-like incremental test</td>
<td>30 sec.</td>
<td>Warm-up at 7.2 km/h; speed is increased by 0.54 - 0.72 km/h each increment; with gradient kept at 0.5%.</td>
<td>n = 18 M participants (8 endurance trained athletes, 5 active fit physical education students, and 3 leisure time active students) Age: 28 ± 7 yrs.; Stature: 182 ± 7 cm; BW: 73.0 ± 6 kg.</td>
<td>VO${2\text{max}}$: 63.5 ± 6.6 ml/kg/min; HRmax: 188 ± 6 bpm; RER: 1.06 ± 0.04.</td>
</tr>
</tbody>
</table>

List of abbreviations:
- n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; VO$_{2\text{max}}$: Maximal aerobic capacity;
- VO$_{2\text{peak}}$: Peak aerobic capacity; VE: Minute ventilation; HR$_\text{max}$: Maximum heart rate; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; T$_\text{lim}$: Time to exhaustion.
Table 2.1 (Continues): Speed GXT protocols used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed; speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midgley, McNaughton, Polman et al., 2007</td>
<td>Continuous incremental protocol</td>
<td>1 min.</td>
<td>Warm-up for 5 min at 9 km/h; 1 km/h increments for 5 minutes whereafter increments of 0.5 km/h followed.</td>
<td>n = 9 M distance runners
Age: 38.2 ± 8.8 yrs.; Stature: 174 ± 4 cm; BW: 74.5 ± 10.8 kg.</td>
<td>• (V_{O_{2\text{max}}}): 54.9 ± 7.1 ml/kg/min;
HR({\text{max}}): 176 ± 16 bpm;
RER: 1.08 ± 0.03;
T({\text{lim}}): 10:18 ± 1:42 min.</td>
</tr>
<tr>
<td>Sperlich et al., 2015</td>
<td>Constant speed protocol</td>
<td>30 sec.</td>
<td>Starting speed of 12 km/h; each 30 sec 0.5 km/h speed increments.</td>
<td>n = 14 M well-trained national level participants
Age: 26 ± 4 yrs.; Stature: 184 ± 6 cm; BW: 78.5 ± 6.2 kg.</td>
<td>• (V_{O_{2\text{max}}}): 61.8 ± 4.3 ml/kg/min;
(V_E): 156 ± 18 L/min;
HR({\text{max}}): 190 ± 9 bpm;
RER: 1.19 ± 0.6;
RPE: 18 ± 1;
T({\text{lim}}): 7:18 ± 1:06 min.</td>
</tr>
</tbody>
</table>

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; \(V_{O_{2\text{max}}} \): Maximal aerobic capacity; \(V_{O_{2\text{peak}}} \): Peak aerobic capacity; \(V_E \): Minute ventilation; HR\(_{\text{max}}\): Maximum heart rate; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; T\(_{\text{lim}}\): Time to exhaustion.
Table 2.2: Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed; speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doherty et al., 2003</td>
<td>Continuous incremental treadmill protocol</td>
<td>1 min.</td>
<td>Test began at 0% gradient and 11.5 km/h for M and F. Treadmill speed was increased by 1.1 km/h each 1 min. until a RER value of 1.00 had been reached (16.9 km/h for F and 19.1 km/h for M). 1% gradient increments.</td>
<td>n = 36 M participants (Great Britain squad members, probable Olympic representatives/international and Olympic representatives) Age: 26.4 ± 4.5 yrs.; Stature: 178.4 ± 6.3 cm; BW: 66.6 ± 5.7 kg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2maxOV : 79.1 ± 0.7 ml/kg/min; HRmax: 185 ± 1.2 bpm; RER: 1.11 ± 0.1.</td>
<td></td>
</tr>
<tr>
<td>Gibson et al., 1999</td>
<td>Continuous incremental treadmill protocol</td>
<td>2 min.</td>
<td>Walked on treadmill at 4.8 km/h for 2 min. Gradient was increased by 2.5% gradient until 20% was reached. Speed was increased by 0.4 km/h each 2 min until speed could not be maintained.</td>
<td>n = 10 club level M long distance runners Age: 22 ± 3 yrs.; Stature: 181.1 ± 8.1 cm; BW: 69.2 ± 7.8 kg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2peakOV : 69.6 ± 4.2 ml/kg/min; HRmax: 190 ± 6 bpm; RER: 1.07 ± 0.04; RPE: 18.9 ± 1; Tlim: 33.6 ± 2.7 min.</td>
<td></td>
</tr>
</tbody>
</table>

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; 2maxOV : Maximal aerobic capacity; 2peakOV : Peak aerobic capacity; VE : Minute ventilation; HRmax: Maximum heart rate ; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; Tlim: Time to exhaustion.
Table 2.2 (Continues): Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed and speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Froelicher et al., 1974</td>
<td>Bruce protocol</td>
<td>1 min.</td>
<td>2.52 km/h starting pace for the 1st to 3rd minute along with 10% gradient. During min. 4 to 6, pace is increased to 3.21 km/h and gradient is increased to 12%. Speed and gradient are increased each increment by 1.28 - 1.45 km/h and 2% gradient.</td>
<td>n = 15 M volunteers Age: 32 yrs.; Stature: 177.8 cm; BW: 78 kg.</td>
<td>(\cdot V_{O_2max} : 44.3 \text{ ml/kg/min;}) HR(_{max} : 185 \text{ bpm.})</td>
</tr>
<tr>
<td>Hamlin et al., 2012</td>
<td>Novel Athlete LED Protocol</td>
<td>1 min.</td>
<td>Starting speed of 8-10 km/h with no gradient. (8 km/h for more sedentary and 10 km/h for more athletic participants). Speed was increased by 1 km/h until a comfortable running pace was reached whereafter gradient was increased by 1% each increments.</td>
<td>n = 21 M and 9 F participants Age: 29.9 ± 9.7 yrs.; BW: 175.7 ± 8.6 kg.</td>
<td>(\cdot V_{O_2max} : 47.0 \pm 9.1 \text{ ml/kg/min;}) (\cdot V_{E} : 132 \pm 25.7 \text{ L/min;}) HR({max} : 182.8 \pm 10.5 \text{ bpm;}) T({lim} : 10:18 \pm 1:46 \text{ min.})</td>
</tr>
</tbody>
</table>

List of abbreviations: \(n \): Number of participants; \(M \): Male; \(F \): Female; \(\text{yrs.} \): Years; \(BW \): Body weight; \(\cdot V_{O_2max} \): Maximal aerobic capacity; \(\cdot V_{O_2peak} \): Peak aerobic capacity; \(\cdot V_{E} \): Minute ventilation; \(HR_{max} \): Maximum heart rate ; \(\text{RER} \): Respiratory exchange ratio; \(\text{RPE} \): Rating of perceived exertion; \(T_{lim} \): Time to exhaustion.
Table 2.2 (Continues): Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed and speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamlin et al., 2012</td>
<td>Bruce Protocol</td>
<td>1 min.</td>
<td>2.52 km/h starting pace for the 1st to 3rd minute along with 10% gradient. During min. 4 to 6, pace is increased to 3.21 km/h and gradient is increased to 12%. Speed and gradient are increased each increment by 1.28 -1.45 km/h and 2% gradient.</td>
<td>n = 21 M and 9 F participants Age: 29.9 ± 9.7 yrs.; Stature: 175.7 ± 8.6 cm.</td>
<td>(\cdot \ \overset{\cdot}{V_{O_{2max}}} : 46.8 \pm 10.1 \text{ ml/kg/min; } \cdot \overset{\cdot}{V_{E}} : 131.5 \pm 26.7 \text{ L/min; } \overset{\cdot}{HR_{max}} : 179.7 \pm 8.7 \text{ bpm; } T_{lim} : 10:41 \pm 1:59 \text{ min.})</td>
</tr>
</tbody>
</table>

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BM: BW: Body weight; \(\overset{\cdot}{V_{O_{2max}}} \): Maximal aerobic capacity; \(\overset{\cdot}{V_{O_{2peak}}} \): Peak aerobic capacity; \(\overset{\cdot}{V_{E}} \): Minute ventilation; \(\overset{\cdot}{HR_{max}} \): Maximum heart rate ; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; \(T_{lim} \): Time to exhaustion.
Table 2.2 (Continues): Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed and speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kang et al., 2001</td>
<td>Bruce protocol</td>
<td>3 min.</td>
<td>2.52 km/h starting pace for the 1st to 3rd minute along with 10% gradient. During min. 4 to 6, pace is increased to 3.21 km/h and gradient is increased to 12%. Speed and gradient are increased each increment by 1.28 -1.45 km/h and 2% gradient.</td>
<td>n = 12 M trained participants
Age: 21.3 ± 0.6 yrs.;
Stature: 177.9 ± 1.8 cm;
BW: 68.4 ± 1.6 kg.</td>
<td>T$_{lim}$: 17 ± 0.5 min.;
$\dot{V}O_2$max and measured anaerobic threshold were lower when compared to the Astrand and Costill/Fox protocol (Not specified).</td>
</tr>
<tr>
<td>Saunders et al., 2004</td>
<td>Brief Incremental protocol</td>
<td>1 min.</td>
<td>Starting speed 18 km/h; 1 km/h increments until 20 km/h whereafter 1% gradient increases are applied.</td>
<td>n = 11 M elite middle/long distance runners
Age: 24.3 ± 3.9 yrs.;
BW: 66.6 ± 8.5 kg.</td>
<td>$\dot{V}O_2$max: 70.3 ± 7.3 ml/kg/min.</td>
</tr>
</tbody>
</table>

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; $\dot{V}O_2$max: Maximal aerobic capacity; $\dot{V}O_2$peak: Peak aerobic capacity; V_E: Minute ventilation; HR$_{max}$: Maximum heart rate; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; T$_{lim}$: Time to exhaustion.
Table 2.2 (Continues): Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed and speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
</table>
| Sperlich et al., 2015 | Incremental protocol | 2 min/30 sec. | Starting speed of 8.64 km/h for 2 min; each 30 sec 1.44 km/h speed increments until 14.4 km/h whereafter gradient increases each 30 sec by 0.5% | n = 14 M well-trained national level participants | \(\dot{V}O_{2max} : \)
 62.2 ± 5.2 ml/kg/min;
\(V_E : \) 158 ± 17;
\(HR_{max} : \) 189 ± 11 bpm;
RER: 1.18 ± 0.6;
RPE: 18 ± 1;
T_{lim}: 10:54 ± 1:30 min. |

List of abbreviations:
n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; \(\dot{V}O_{2max} : \) Maximal aerobic capacity; \(\dot{V}O_{2peak} : \) Peak aerobic capacity; \(V_E : \) Minute ventilation; \(HHR_{max} : \) Maximum heart rate; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; T_{lim}: Time to exhaustion.
Table 2.2 (Continues): Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed and speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incline GXT protocols with constant speed and gradient increases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davies et al.,</td>
<td>Constant speed with gradient increases</td>
<td>1 min.</td>
<td>12 km/h for F; 14 km/h for M; 1.5% gradient increments 1 min.</td>
<td>n = 5 M and 5 F athletes BW: 60.1 ± 4.76 kg.</td>
<td>$\dot{V}O_2max$: 59.6 ± 11.1 ml/kg/min; T_{lim}: 7.4 ± 2.5 min.</td>
</tr>
<tr>
<td>1984</td>
<td>Constant speed with gradient increases</td>
<td>2 min.</td>
<td>12 km/h for F; 14 km/h for M; 1.5% gradient increments 2 min.</td>
<td></td>
<td>$\dot{V}O_2max$: 59. ± 11.0 ml/kg/min; T_{lim}: 11.2 ± 3.9 min.</td>
</tr>
<tr>
<td></td>
<td>Constant speed with gradient increases</td>
<td>3 min.</td>
<td>12 km/h for F; 14 km/h for M; 1.5% gradient increments 3 min.</td>
<td></td>
<td>$\dot{V}O_2max$: 61.3 ± 11.6 ml/kg/min; T_{lim}: 12.0 ± 4.9 min.</td>
</tr>
</tbody>
</table>

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; $\dot{V}O_2max$: Maximal aerobic capacity; $\dot{V}O_2peak$: Peak aerobic capacity; V_E: Minute ventilation; HR_{max}: Maximum heart rate; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; T_{lim}: Time to exhaustion.
Table 2.2 (Continues): Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed and speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duncan et al., 1997</td>
<td>Continuous test protocol</td>
<td>3 min/1 min.</td>
<td>11.3 km/h with 0% gradient for 3 min, whereafter 2.5% gradient increments follow each min.</td>
<td>n = 10 M active participants</td>
<td>(\dot{V}O_{2\text{max}}): 55.8 ± 4.2 ml/kg/min; HR_max: 191.7 ± 6.7 bpm; RER: 1.22 ± 0.05; RPE: 19.3 ± 0.7.</td>
</tr>
<tr>
<td>Froelicher et al., 1974</td>
<td>Balke protocol</td>
<td>1 min.</td>
<td>5.4 km/h with 0% initial slope for the first 1 min; gradient increased to 2% whereafter 1% increments followed each min.</td>
<td>n = 15 M volunteers</td>
<td>(\dot{V}O_{2\text{peak}}): 42.8 ml/kg/min; HR_max: 184 bpm.</td>
</tr>
</tbody>
</table>

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; \(\dot{V}O_{2\text{max}} \): Maximal aerobic capacity; \(\dot{V}O_{2\text{peak}} \): Peak aerobic capacity; \(V_{E} \): Minute ventilation; HR_max: Maximum heart rate; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; \(T_{lim} \): Time to exhaustion.
Table 2.2 (Continues): Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed and speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kang et al., 2001</td>
<td>Astrand Protocol</td>
<td>2 min.</td>
<td>Starting speed: 9.7 km/h (speed is kept constant). First increment is 3 min long whereafter increments are 2 min long, with 2% gradient increments each increment.</td>
<td>n = 12 M trained participants Age: 21.3 ± 0.6 yrs.; Stature: 177.9 ± 1.8 cm; BW: 68.4 ± 1.6 kg.</td>
<td>T_{lim}: 14.5 ± 0.5 min; The $\dot{V}O_{2max}$, HR, and measured anaerobic threshold were second to the Costill/Fox protocol in this research study. The Bruce protocol achieved the lowest values among the three testing protocols (Values not specified).</td>
</tr>
</tbody>
</table>

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; $\dot{V}O_{2max}$: Maximal aerobic capacity; $\dot{V}O_{2peak}$: Peak aerobic capacity; V_e: Minute ventilation; HR$_{max}$: Maximum heart rate; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; T$_{lim}$: Time to exhaustion.
Table 2.2 (Continues): Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed and speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kang et al., 2001</td>
<td>Costill/Fox Protocol</td>
<td>2 min.</td>
<td>Starting speed: 14.4 km/h; with 2% gradient increments.</td>
<td>n = 12 M trained participants Age: 21.3 ± 0.6 yrs.; Stature: 177.9 ± 1.8 cm; BW: 68.4 ± 1.6 kg.</td>
<td>T_{lim}: 10.4 ± 0.4 min; The $V_{O_{2max}}$, HR, and measured anaerobic threshold were higher in the Costill/Fox protocol when compared to the Astrand and Bruce protocol (Values not specified).</td>
</tr>
</tbody>
</table>

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; $V_{O_{2max}}$: Maximal aerobic capacity; $V_{O_{2peak}}$: Peak aerobic capacity; V_E: Minute ventilation; HR_{max}: Maximum heart rate; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; T_{lim}: Time to exhaustion.
Table 2.2 (Continues): Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed and speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
</table>
| McConnel & Clark, 1988 | Constant speed with gradient increases | 1 min. | Starting speed 12.8 km/h; 2.5% gradient increments. | n = 10 well-trained M runners
Age: 33.6 ± 8.6 yrs.; BW: 65.2 ± 6.6 kg. | ⋅\(\dot{VO}_{2\text{max}}\): 65.0 ± 5.6 ml/kg/min; HR\(_{\text{max}}\): 183.6 ± 9.2 bpm; RER: 1.25 ± 0.1; RPE: 18.3 ± 1.1; T\(_{\text{lim}}\): 10.1 ± 0.6 min. |
| | Constant speed with gradient increases | 2 min. | Starting speed 12.8 km/h; 2.5% gradient increments. | n = 10 well-trained M runners
Age: 33.6 ± 8.6 yrs.; BW: 65.2 ± 6.6 kg. | ⋅\(\dot{VO}_{2\text{max}}\): 64.5 ± 5.3 ml/kg/min; HR\(_{\text{max}}\): 185.3 ± 9.1 bpm; RER: 1.15 ± 0.10; RPE: 18.9 ± 0.9; T\(_{\text{lim}}\): 13.1 ± 1.2 min. |

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; \(\dot{VO}_{2\text{max}}\): Maximal aerobic capacity; \(\dot{VO}_{2\text{peak}}\): Peak aerobic capacity; \(\dot{VE}\): Minute ventilation; HR\(_{\text{max}}\): Maximum heart rate; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; T\(_{\text{lim}}\): Time to exhaustion.
Table 2.2 (Continues): Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min)</th>
<th>Starting speed and speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>McConnel & Clark, 1988</td>
<td>Constant speed with gradient increases</td>
<td>2 min.</td>
<td>Starting speed was mean reported training pace for each runner: 14 ± 0.8 km/h; 2.5% gradient increments.</td>
<td>n = 10 M well-trained runners Age: 33.6 ± 8.6 yrs.; BW: 65.2 ± 6.6 kg.</td>
<td>(\dot{V}O_{2max}): 66.2 ± 3.9 ml/kg/min; (HR_{max}): 184.6 ± 8.1 bpm; RER: 1.16 ± 0.07; RPE: 19.3 ± 0.7; Tlim: 11.8 ± 1.1 min.</td>
</tr>
<tr>
<td>McLaughlin et al., 2010</td>
<td>Constant speed with gradient increases</td>
<td>1 min.</td>
<td>Starting speed: 10 km run time; 1% gradient increments.</td>
<td>n = 10 M healthy recreational participants Age: 33.7 ± 5.6 yrs.; Stature: 179 ± 6.5 cm; BW: 73.1 ± 6.9 kg.</td>
<td>(\dot{V}O_{2max}): 60.2 ± 5.4 ml/kg/min; (HR_{max}): 183.5 ± 10.7 bpm; RER: 1.14 ± 0.03; RPE: 18.4 ± 2.</td>
</tr>
</tbody>
</table>

List of abbreviations: n: Number of participants; M: Male; F: Female; yrs.: Years; BW: Body weight; \(\dot{V}O_{2max} \): Maximal aerobic capacity; \(\dot{V}O_{2peak} \): Peak aerobic capacity; \(\bar{V}e \): Minute ventilation; \(HR_{max} \): Maximum heart rate; RER: Respiratory exchange ratio; RPE: Rating of perceived exertion; Tlim: Time to exhaustion.
Table 2.2 (Continues): Incline GXT protocols with a set speed or gradient with a variance of speed and/or gradient increases used for male distance runners.

<table>
<thead>
<tr>
<th>Author</th>
<th>Protocol name</th>
<th>Interval time (min.)</th>
<th>Starting speed and speed increment (km/h)</th>
<th>Population (n)</th>
<th>Cardiorespiratory values attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperlich et al., 2015</td>
<td>Constant gradient protocol</td>
<td>2 min.</td>
<td>Starting speed of 14.4 km/h at 0% gradient; each 2 min, 2% gradient increments.</td>
<td>n = 14 M well-trained national level participants</td>
<td>*(VO_{2\text{max}}): 63.1 ± 3.3 ml/kg/min; *(V_E): 161 ± 17 L/min; *(HR_{\text{max}}): 189 ± 9 bpm; RER: 1.24 ± 0.1; RPE: 19 ± 1; T_{\text{lim}}: 7:30 ± 1:12 min.</td>
</tr>
</tbody>
</table>

List of abbreviations:
- \(n \): Number of participants
- M: Male; F: Female
- yrs.: Years
- BW: Body weight
- \(VO_{2\text{max}} \): Maximal aerobic capacity
- \(VO_{2\text{peak}} \): Peak aerobic capacity
- \(V_E \): Minute ventilation
- \(HR_{\text{max}} \): Maximum heart rate
- RER: Respiratory exchange ratio
- RPE: Rating of perceived exertion
- T_{\text{lim}}: Time to exhaustion
2.7.2 Starting speed

The starting speed of a GXT protocol is the speed at which the test is initiated. From research (Table 1 and Table 2), it is clear that the starting speed of a GXT protocol was altered by researchers, depending on the research population. To determine the starting speed of a research population, training background and gender were taken into consideration. Evidently, trained male participants' starting speeds were faster in comparison to female, sedentary or recreational participants (Davies et al., 1984:75; Hamlin et al., 2012:99). This is in line with the findings of Stamford (cited by McConnell & Clark 1988:4) who stipulated that higher running/starting speeds were found to be more appropriate for use with a well-trained population.

When looking at previous research, vast differences in starting speeds have been noticed. Graded exercise tests have used starting speeds ranging from 4.8 km/h up to 18 km/h (Gibson et al., 1999:1227; Saunders et al., 2004:470). From the criteria specified for the attainment of a V_{O2max} as specified earlier in section 2.4.1 as a measure for an adequate cardiorespiratory response, most GXT protocols used, achieved one and in some cases two of these responses. In a GXT protocol that achieved at least two of these criteria, the starting speed ranged from 4.4 km/h (Gibson et al., 1999:1227) to 14 km/h (Davies et al., 1984:75); however, starting speeds of 8 km/h and 12 km/h were found to be more common (Christie & Lock, 2001:20; Davies et al., 1984:75; Gibson et al., 1999:1227; Hamlin et al., 2012:99; Machado et al., 2013:578; McConnell & Clark, 1988:3; Sperlich et al., 2015:387). The above stated starting speeds were used on both the speed GXT protocols and the incline GXT protocols. A secondary point is applicable for an incline GXT protocol and is known as the speed at which gradient increases are initiated. The speeds at which gradient increases commence are discussed in the subsequent section.

2.7.3 Speed at which gradient increases commence

An incline GXT protocol with speed increases makes use of a specific speed from where gradient increases are initiated. Gradient increases are often linked to the attainment of a specific cardiorespiratory response, for example an RER value = 1.00 (Doherty et al., 2003:620). The use of a specified RER response has resulted in large speed differences for gradient increases among male and female participants (19.1 vs. 16.9 km/h, respectively) (Doherty et al., 2003:620). From the investigated incline GXT protocols in Table 2, the gradient was increased at speeds ranging from 5.4—14.4 km/h (Froelicher et al., 1974:513; McConnell & Clark, 1988:3; Sperlich et al., 2015:387). The starting speed specified for speed GXT protocols and incline GXT protocols ranges differed vastly across protocols summarized in Table 1 and 2.
2.7.4 Time intervals

As stated earlier, time intervals used in either speed GXT protocols or incline GXT protocols should be controlled to allow a linear increase in exercise demand (Haff & Dumke, 2012:211). Time intervals of one or two minutes are recommended for both speed and incline GXT protocols, since they will allow a steady state to be reached in cardiorespiratory responses (Haff & Dumke, 2012:211) if the workload applied is appropriate. When using larger increases in workload, 3 min time intervals are advised (Astrand et al., 2003:291).

Time intervals of the protocols listed in Table 1 and Table 2 are very different, ranging from 30 seconds to 3 minutes (Machado et al., 2013:578; Meyer et al., 2003:388; Sperlich et al., 2015:387). However, the majority of protocols that attained two of the criteria specified for \(\dot{V}O_{2\text{max}} \) made use of 1-minute time intervals (Billat et al., 1993:254; Billat et al., 1996:314; Christie & Lock, 2001:20; Davies et al., 1984:75; Dohery et al., 2003:620; Duncan et al., 1997:274; Gibson et al., 1999:1227; Hamlin et al., 2012:99; Machado et al., 2013:578; McLaughlin et al., 2010:992; Midgley, McNaughton, Polman et al., 2007:1024; Saunders et al., 2004:470; Sperlich et al., 2015:387). This is in agreement with the results of McConnell and Clark (1988:3) who found 1-minute intervals rather than 2-minute intervals allowed athletes to finish within a shorter running time with enhanced athlete comfort.

2.7.5 Workloads

Graded exercise tests are designed to increase workload progressively up to exhaustion. Workload is applied to a treadmill modality by increasing speed and/or gradient to progress linearly. It is recommended that the increases in workload and time intervals used should be identical (Haff & Dumke, 2012:211). It is, however, of great significance to select the extent of a workload carefully, in view of the physiological effect these increases may have. A speed or incline GXT protocol with rapid workload increases can ultimately lead to hyperventilation because of greater metabolic demand, causing premature fatigue and early onset of lactate production (Davis et al., 1976:548).

To discuss workload increases further, the specified GXT protocols, namely the speed GXT protocol and the incline GXT protocol, are discussed in the subsequent section.

2.7.6 Speed graded exercise test protocols

Of the 14 GXT protocols with incremental speed increases identified from past research, eight protocols have attained the cardiorespiratory responses expected from a trained endurance runner. This is based on the findings of Kenney et al. (2012:122) who stated that a \(\dot{V}O_{2\text{max}} \) of 70 ml/kg/min can be considered adequate, therefore all aerobic capacity measures of
60 ml/kg/min and above were considered suitable for a trained endurance runner (Billat et al., 1993:254; Billat et al., 1996:314; Christie & Lock, 2001:20; Davies et al., 1984:75; Gibson et al., 1999:1227; Meyer et al., 2003:388). From the speed GXT protocols summarized in Table 1, a few tendencies were evident. The use of 1 km/h speed increments (Billat et al., 1993:254; Billat et al., 1996:314; Christie & Lock, 2001:20; Davies et al., 1984:75; Gibson et al., 1999:1227; Meyer et al., 2003:388; Sperlich et al., 2015:387) and the use of a starting speed ranging from 7.2—17 km/h (Billat et al., 1993:254; Billat et al., 1996:314; Meyer et al., 2003:388) were more common. However, higher starting/running speeds were found to be more suitable for a well-trained population (Stamford cited by McConnell and Clark, 1988:3) and therefore a starting speed of 7.2 km/h can be considered too slow. Of the eight GXT incremental speed protocols, an initial speed of 10 km/h (Davies et al., 1984:75; Dittrich et al., 2013) and 12 km/h (Billat et al., 1993:254; Billat et al., 1996:314; Christie & Lock, 2001:20; Gibson et al., 1999:1227; Sperlich et al., 2015:387) were used.

Unfortunately all speed GXT protocols listed in Table 1 could not be used as part of the summary owing to low \(\text{VO}_{2\text{max}} \) values or incomplete cardiorespiratory responses. Research conducted by Dittrich et al. (2013) and Machado et al. (2013) did not report any aerobic capacity values. These speed GXT protocols were consequently not discussed in this section.

2.7.7 Incline graded exercise test protocols with a set speed or gradient with a variance of speed and/or gradient

A similar comparison as the previous discussion of speed was made regarding incline GXT protocols as summarized in Table 2. By using the same \(\text{VO}_{2\text{max}} \) value of 60 ml/kg/min and above as measure for an adequate GXT protocol, 10 of the 21 protocols thought relevant to this research study attained aerobic capacity values that exceeded 60 ml/kg/min (Davies et al., 1984; Doherty et al., 2003; Gibson et al., 1999; McConnell & Clark, 1988; McLaughlin et al., 2010; Saunders et al., 2004; Sperlich et al., 2015). Even though these incline GXT protocols differed vastly concerning starting speed and the speed where gradient increases occurred, a small increment in speed (0.4—1.44 km/h) was evident for incline GXT protocols (Doherty et al., 2003:620; Gibson et al., 1999:1227; Saunders et al., 2004:470; Sperlich et al., 2015:387). The gradient increases (0.5%, 1%, and 2.5%) used in these protocols differed greatly but were in accordance with the time intervals used (30 sec, 1 min and 2 min) (Doherty et al., 2003:620; Gibson et al., 1999:1227; McConnell & Clark, 1988:3; McLaughlin et al., 2010:992; Saunders et al., 2004:470; Sperlich et al., 2015:387).

Furthermore, incline GXT protocols differed regarding the manner in which workload increases were applied. Some incline GXT protocols increased in speed and gradient interchangeably
(Gibson et al., 1999:1227), others increased speed to a specific point, whereafter only gradient was increased (Doherty et al., 2003:620; Sperlich et al., 2015:387) and others increased gradient from a constant speed (Davies et al., 1984:75; McConnell & Clark, 1988:3; McLaughlin et al., 2010:992). All incline GXT protocols had attained adequate VO_{2max} values and were therefore considered adequate incline GXT protocols.

2.8 GRADED EXERCISE TEST PROTOCOLS AND TRAINING REGIME

According to Davies et al. (1984:78), the GXT protocol used should simulate the activity or movement of an athlete’s competitive environment to obtain objective values. Athletes taking part in both track and cross-country running impose a significant challenge on the GXT protocols used. The training regimes used during both track and cross-country season are therefore important to take note of, for simulation purposes.

Due to limited research regarding training regimes and graded exercise test protocols, Svedenhag (1985) and Vanhoy’s (2012) research were used. Svedenhag (1985:128) conducted a longitudinal research study over a period of one year on middle (800 m to 1 500 m) and long (5 000 m to 10 000 m) distance runners, during which these runners were documented with regard to their weekly training load concerning the total kilometers run, as well as the intensity of these workouts. Svedenhag (1985:128) found that cross-country competitions were preceded by predominantly long, slow distance running along with faster distance running, or long interval workouts. The intensity of these exercises was increased by adding uphill training to the training regime, as well as more intense interval training (Svedenhag, 1985:128) as the competitive cross-country season approached. Training was, however, further intensified as runners neared the track competition season (Svedenhag, 1985:128). From the above-mentioned findings it is clear that the intensity of training during track and cross-country season differs. It is interesting to note that Vanhoy (2012:46) stated that a specific training regime may support better performance results on a specific GXT protocol because of physiological adaptations that manifest in response to following a focused training regime. However, for these adaptations to occur, a single training regime was recommended for a long period of time (Vanhoy, 2012:46). The training regime used to prepare for track and cross-country season should therefore be kept in mind to simulate the GXT protocol used.

2.9 CONCLUSION

Maximal aerobic capacity can be regarded as one of the most researched topics in exercise science. For determination of an objective and sport-specific VO_{2max}, the protocol and running modality used are required to simulate an athlete’s sporting activity closely. However, a single method of determining both the running modality as well as GXT protocol used has not yet been
benchmarked for trained distance runners. In the light of these findings, the first aim of this literature review was to describe aerobic capacity as well as the cardiorespiratory responses necessary to enable researchers to determine $\dot{V}O_{2\text{max}}$ and consequently aid in the identification of a $V_{O2\text{max}}$ criterion. The second aim was to investigate running modalities, namely the Curve NMT and the MT, to determine the effect the possible differences in modality may have on trained distance runners. Both the Curve NMT and the MT were investigated with respect to OGR simulation, EC of running, the effort experienced as well as measured cardiorespiratory responses on the respective running modalities. The last aim of this literature review was to investigate all GXT protocols previously used to test male distance runners to identify the basic incremental building blocks required for a successful GXT protocol for the determination of $\dot{V}O_{2\text{max}}$.

Maximal aerobic capacity determined by means of direct measurement through an automated system in a closed laboratory environment was considered a reliable method. Cardiorespiratory responses were investigated that were considered to be important for aerobic capacity testing to identify a set of criteria to determine $\dot{V}O_{2\text{max}}$. From numerous criteria set by earlier researchers, a set of criteria was identified that was considered adequate, namely a plateau in $\dot{V}O_2$ (<150 ml/min), RER (>1.15), HR$_{\text{max}}$ (208 - (0.7 x age)), as well as RPE (CR10=10). The attainment of any two of these responses was considered adequate for the attained value to be a $\dot{V}O_{2\text{max}}$, otherwise the attained value was graded to be a $\dot{V}O_{2\text{peak}}$ and the results were excluded from the research study.

In an investigation of the running modalities, namely the MT and the Curve NMT, as alternative running modalities to OGR, the Curve NMT was found to resemble OGR closely. The Curve NMT was found to mimic OGR by requiring power to drive the belt with each subsequent step. Because of the non-motorized nature of the belt, running on the Curve NMT requires self-initiation of movement and therefore self-pacing. Measured cardiorespiratory responses on the Curve NMT exceed those of MT and OGR. The Curve NMT was found to be more strenuous regarding physiological intensity and metabolic demand. These findings are partially due to the Curve NMT’s natural increasing gradient of 5—10 degrees. Finally, the Curve NMT is thought to expend more energy than both the MT and OGR. Although the Curve NMT is thought to mimic OGR more closely, it is still important to use the appropriate GXT protocol to obtain valid and reliable $V_{O2\text{max}}$ results.
A vast number of GXT protocols have been used throughout the years, but only GXT protocols performed on trained male distance runners were used for this research study. Speed GXT (speed increases) protocols and incline GXT protocols (with a set speed or gradient with a variance of speed and/or gradient increases) were found to be prominent throughout the literature and were consequently investigated. According to reviewed research, GXT protocols had to be continuous in nature and increase progressively in identical workloads and time intervals for the entire GXT protocol. The relationship between the duration of a workload and size of a time interval was found to be important.

Motorized treadmills were habitually used in past research for the execution of GXT protocols. Reviewed GXT protocols indicate that numerous MT GXT protocols exist; it was, however, clear that limited research into NMT running and GXT protocols had been undertaken previously. Nonetheless, a single GXT protocol was performed on a NMT and was identified for use in this research study. The GXT protocol identified was a speed GXT protocol and was performed on a NMT. Two GXT protocols performed on a MT were also identified from reviewed research. The first GXT was a speed GXT protocol and the second an incline GXT protocol. Of the 14 speed GXT protocols identified from past research, only eight (Billat et al., 1993; Billat et al., 1996; Christie & Lock, 2001; Davies et al., 1984; Gibson et al., 1999; Meyer et al., 2003; Sperlich et al., 2015) attained \(V_{O2max} \) values high enough to be considered successful. These speed GXT protocols still differed with regard to their basic incremental nature. It was, however, evident that 1 km/h speed increments and starting speeds of 10 km/h and 12 km/h were more common among these speed GXT protocols.

Of 21 incline GXT protocols identified from earlier research, ten (Davies et al., 1984; Doherty et al., 2003; Gibson et al., 1999; McConnel & Clark, 1988; McLaughlin et al., 2010; Saunders et al., 2004; Sperlich et al., 2015) were found relevant to this research study by attaining a \(V_{O2max} \) value of 60 ml/kg/min or above. All basic incremental components of the GXT protocols differed vastly concerning incline GXT protocols. In the investigated components, small increments in speed (0.4—1.44 km/h) were found to be favored. Furthermore, a clear relationship between the time interval and workload used was evident, with incline GXT protocols using 30 seconds, 1-minute and 2-minute time intervals alongside 0.5%, 1% and 2.5% gradient increases respectively.

From these MT GXT protocols investigated, guidelines on the incremental nature were identified, namely workload increases of 1 km/h or 1% gradient, and 1-minute time intervals. The starting speeds (10 km/h) of these protocols were limited by the single NMT GXT protocol identified. The following GXT protocols were selected from Table 1 and Table 2 and were adapted slightly to allow comparability in this study:
Adapted Incremental Speed Protocol on a MT (AISP) – The AISP was adapted from the speed GXT protocol of Davies et al. (1984:75). The test started at a starting speed of 10 km/h with increases of 1 km/h each minute until voluntary exhaustion. The starting speed of this GXT protocol was adapted from 14 km/h to 10 km/h to allow comparability between results obtained from the MT and the Curve NMT.

Incremental Speed and Incline Protocol on a MT (ISIP) – The ISIP was adapted from the incline GXT protocol of Hamlin et al. (2012:99). The ISIP started with no gradient and a starting speed of 10 km/h with increases of 1 km/h each minute until a comfortable running pace was attained, whereafter the speed was kept constant. Thereafter the gradient was increased each minute by 1% until voluntary exhaustion (Hamlin et al., 2012:99). The comfortable running pace was set at 15 km/h, which was similar to speeds used in Table 2.

Adapted Non-Motorized Incremental Speed Protocol (ANMIP) – The ANMIP was adapted from the speed GXT protocol on the NMT of Davies et al. (1984:75). The test started at a starting speed of 10 km/h with a 2 km/h increase every 2 minutes until voluntary exhaustion. The time intervals used by Davies et al (1984:75) have been adapted from 3 minutes to 2 minutes, to compare the attained cardiorespiratory responses of the Curve NMT to the corresponding responses of the MT at similar speeds. Longer time intervals (2 min) were selected because the non-motorized nature of the belt required athletes to self-pace the required speed of each increment and consequently allowed athletes to achieve a steady state in cardiorespiratory responses.

In conclusion, current literature contains numerous research studies on $\dot{V}O_{2\text{max}}$ testing; however, a gold standard for determination of $\dot{V}O_{2\text{max}}$ has not been set for distance runners. From reviewed research it is clear that the NMT simulates OGR more closely than the MT and can therefore be considered a better running modality for $\dot{V}O_{2\text{max}}$ testing. Unfortunately, limited research has been done on $\dot{V}O_{2\text{max}}$ testing on the Curve NMT. Furthermore, the GXT protocol used for determination of $\dot{V}O_{2\text{max}}$ is considered important, even though several GXT protocols have been used in past research on trained male distance runners. A single GXT protocol has not yet been standardized for $\dot{V}O_{2\text{max}}$ testing. As result, a need for the standardization of both the running modality and GXT protocol used for determination of the highest $\dot{V}O_{2\text{max}}$ for distance runners exist.
REFERENCES

A COMPARISON BETWEEN THE CARDIORESPIRATORY RESPONSES OF A SPEED VERSUS AN INCLINE MOTORIZED TREADMILL PROTOCOL
Title page

Title:
A comparison between the cardiorespiratory responses of a speed versus an incline motorized treadmill protocol.

Authors:
Mrs Jana Storm;
Dr Yolandi Willemse;
Dr Martinique Sparks.

Affiliations:
Physical Activity, Sport and Recreation Research Focus Area, Faculty of Health Sciences, North-West University, Potchefstroom Campus, South Africa.

Corresponding author:
Dr Yolandi Willemse
+27 18 299 1181 Work
+27 18 299 0222 Fax
Yolandi.Willemse@nwu.ac.za

Word Count
Excluding abstract and references: 2928
Abstract: 245
Number of Tables: 2
Number of Figures: 0

Prepared for submission to: Journal of Science and Medicine in Sport.
Abstract

Objectives: To compare the cardiorespiratory responses attained by elite male university-level distance runners of two maximal aerobic capacity (V_{O_2max}) graded exercise test (GXT) protocols on a motorized treadmill.

Design: A once-off cross-sectional design using elite male university-level distance runners.

Methods: Two GXT protocols were used, namely the Adapted Incremental Speed Protocol (AISP) and the Incremental Speed and Incline Protocol (ISIP). Both protocols commenced from a starting speed of 10 km/h, whereafter the AISP continuously increased by 1 km/h speed increments and the ISIP increased by 1 km/h speed increments up to 15 km/h, after which 1% gradient increases were applied. Both treadmill GXT protocols were performed to complete exhaustion. Cardiorespiratory responses (oxygen consumed, carbon dioxide produced, oxygen utilized, minute ventilation, heart rate, time to exhaustion and respiratory exchange ratio) were used to determine exercise intensity markers, namely ventilatory threshold and respiratory compensation point (RCP). Rating of perceived exertion was measured after completion of each test level.

Results: The V_{O_2max} value (67.6 vs. 65.0 ml/kg/min), as well as the relative RCP value (64.1 vs. 60.7 ml/kg/min) attained by the ISIP, was statistically and practically higher (p<0.05; d>0.8; r<0.5) than those of the AISP despite the longer time to exhaustion (11.4 vs. 13.6 min) and the longer time to the attainment of RCP (11.1 vs. 8.8 min).

Conclusion: The ISIP V_{O_2max} result exceeded that of the AISP and it is consequently considered the more appropriate GXT protocol to attain the highest cardiorespiratory responses in an elite male university-level distance running population.

Keywords

Oxygen consumption; Exercise tolerance; Exercise test; Physical exertion; Running performance.
Introduction

The attainment of a high maximal aerobic capacity (\(\dot{V}O_{2\text{max}}\)) value is considered an important determinant of endurance running performance\(^1\), due to endurance events being performed at high percentages of \(\dot{V}O_{2\text{max}}\)\(^2,3\). Several graded exercise test (GXT) protocols have been developed in the past to determine runners’ \(\dot{V}O_{2\text{max}}\)\(^4\). Regardless of the various existing GXT protocols developed in the past, a single GXT protocol has not yet been standardized for the sport-specific measurement of a distance runner’s cardiorespiratory responses. It should, however, be noted that previously used GXT protocols, such as the standardized Bruce protocol, were put together for a population of participants with coronary heart disease in mind\(^5\). Although this GXT protocol has been used by researchers on healthy trained and untrained participants\(^6\), other GXT protocols have been more specifically designed for trained participants.

Maximal aerobic capacity values are considered more objective and valuable if the GXT protocol used closely simulates the population’s specific activity\(^7\), therefore the GXT protocol used to determine the \(\dot{V}O_{2\text{max}}\) is considered vital\(^7\). Treadmill GXT protocols differ with regard to the basic incremental nature, namely starting speed, time intervals and workload increases (speed and gradient) used to reach the point of exhaustion progressively\(^4\). The use of a continuous GXT protocol\(^8\) with equal increases in workload and time intervals has been prescribed by research\(^8\). The continuous nature of the GXT protocol will allow adequate time for a steady state in cardiorespiratory responses before increasing the workload to the next level of the test\(^8\).

Generally, two GXT protocols were of interest to determine distance runners’ \(\dot{V}O_{2\text{max}}\), firstly a speed GXT protocol with speed increases\(^7,9,10\), and secondly an incline GXT protocol with a set speed with a variance of speed and/or gradient increases\(^6,7,11,12\).

Speed GXT protocols differed greatly among research studies, with starting speeds varying between 8 and 12 km/h\(^10,12\), speed increases ranging from 0.5—1 km/h\(^9,13,14\), and time intervals from 30 seconds to 180 seconds\(^10,14,15\). Incline GXT protocols differed even more, with starting speeds from 2.5—18 km/h\(^16,17\), increases in speed ranging from 0.4—1.4 km/h\(^4,12\), and gradient increases from 0.5—10%\(^17,18\). Time interval changes were also large, ranging from 30 seconds up to 120 seconds\(^12,17\).

According to reviewed research, a specific GXT protocol has not been prescribed to determine distance runners’ \(\dot{V}O_{2\text{max}}\) values. Even more significantly, a GXT protocol has not been prescribed for elite male university-level distance runners who take part in both track and cross-
country running. The previously mentioned background emphasizes the vast differences in past

\[\text{VO}_{2\text{max}} \] GXT protocols and consequently this study was designed to compare two motorized
treadmill GXT protocols to determine which GXT protocol would depict the highest values when
working with elite male university-level distance runners. The aim of this study is to propose a
sport-specific GXT protocol to simplify measurement of \[\text{VO}_{2\text{max}} \] in elite male university level
distance runners.

Methods

Twelve elite male university-level distance runners (age: 21.8 ± 3.0 yrs.; stature: 178.2 ± 6.5 cm;
and body weight: 66.7 ± 4.7 kg) from a university in the North West Province of South Africa
participated in this research study. All participants were training for track and/or cross-country
running and competing for the university team during the 2016 season. All tests were performed
during the track season. After being fully informed of the nature of the study as well as possible
risks and benefits, each participant gave written consent for participation. The testing procedures
were approved by the Health Research Ethics Committee (HREC) of the Faculty of Health
Sciences, North-West University (NWU - 00201- 15 - A1). Furthermore, participants had to be
injury-free and complete all tests involved in this research study. A once-off cross-sectional design
was used.

The following GXT protocols were conducted:

- **Incremental Speed and Incline Protocol (ISIP)** – The ISIP was adapted from Hamlin and
colleagues' athlete-led protocol\(^6\). Hamlin et al.'s\(^6\) GXT began at a starting speed of 10 km/h
with increases of 1 km/h each minute until a comfortable running pace had been reached. The
ISIP’s comfortable running pace was set at 15 km/h. Thereafter the gradient was increased
each minute by 1% gradient until voluntary exhaustion \(^6\).

- **Adapted Incremental Speed Protocol (AISP)** – The AISP was adapted from the speed GXT
protocol of Davies et al.\(^7\). Davies et al.'s\(^7\) GXT began at a starting speed of 14 km/h with
increases of 1 km/h each minute until voluntary exhaustion. The starting speed of the AISP
was adapted from 14 km/h to 10 km/h to enable comparability to the ISIP.

Two familiarization sessions on the motorized treadmill were completed two weeks prior to the
tests. The AISP’s familiarization sessions started at 10 km/h and increased each 1-minute interval
by 1 km/h until a comfortable running pace was reached. The athlete kept running until 10 minutes
had passed. The ISIP’s familiarization sessions started at a running speed of 10 km/h and
increased by each 1-minute interval by 1 km/h until 13 km/h was reached. Gradient was thereafter
applied for 2 minutes (1% gradient increase each 1-minute interval). Athletes kept running for 10 minutes. These familiarization sessions were considered adequate19.

Participants were required to take part in two GXT protocols to determine their $\dot{V}O_{2\text{max}}$ on the Woodway Pro XL motorized treadmill (Woodway, W229 N591, Foster Ct, Waukesha, WI). Both GXT protocols were performed within a time frame of five days at exactly the same time of day. All participants were healthy (Physical Activity Readiness Questionnaire) and well-hydrated (hydration status and recovery questionnaire). They were tested in a temperature-controlled laboratory with temperature ranging between 19 and 21°C. A normal diet throughout the study was required and participants were requested to abstain from food for two hours, alcohol and coffee for 12 hours and vigorous training for 48 hours prior to testing. Stature and body weight were measured on each test day on arrival at the laboratory. The GXT protocols were preceded by a 10-minute warm-up, consisting of treadmill running at 10 km/h for a distance of 1 km, followed by a set of dynamic stretches. After the warm-up, participants were fitted with a heart rate (HR) monitor belt (Polar Electro, Kempele, Finland: T34) for HR measurement and a face mask for breath analysis. The Oxycon Pro static ergo spirometry system (Jaeger Oxycon Pro, Viasys, 22745, Savi Ranch Parkway, Yorba Linda, CA, USA) was used to measure cardiorespiratory responses ((maximum HR (HR$_{\text{max}}$), oxygen consumed ($\dot{V}O_2$), carbon dioxide produced ($\dot{V}CO_2$), minute ventilation ($\dot{V}E$), $\dot{V}O_{2\text{max}}$, oxygen utilized ($\dot{V}O_2$) respiratory exchange ratio (RER), and time to exhaustion (T$_{\text{lim}}$)) every 15 seconds during each GXT. Participants were motivated to continue until voluntary exhaustion. The difficulty of the GXT was rated by the participant in the last 10 seconds of each test level according to the Borg Scale (CR-10 Scale)20 and was visually indicated by a show of fingers to match the perceived difficulty. Communication during the GXT protocol was limited to basic signaling: thumbs up (continue) and thumbs down (stop). HR recovery was taken after completion of the test at 1, 3, and 5 minutes of passive rest.

Other cardiorespiratory responses, namely the ventilatory threshold (VT) and respiratory compensation point (RCP), were determined by two experienced sport scientists using a plotted graph on which the increases and decreases of $\dot{V}E/\dot{V}O_2$ and $\dot{V}E/\dot{V}CO_2$ values were displayed. The VT was identified as the point where the $\dot{V}E/\dot{V}O_2$ increased without a corresponding change in the $\dot{V}E/\dot{V}CO_2$ or departure in the linearity of the $\dot{V}E$ line. The RCP was identified as the point where both the $\dot{V}E/\dot{V}O_2$ and $\dot{V}E/\dot{V}CO_2$ increased dramatically21. If the two sport scientists did not agree, a third sport scientist was consulted. Time to exhaustion was measured from the initiation of the GXT protocol’s starting speed of 10 km/h and ended when exhaustion set in and...
the \(\dot{V}O_{2\max} \) test was terminated. Participants had to attain two of the responses described below for the value to be accepted as a \(\dot{V}O_{2\max} \). The criteria points used to determine the achievement of a \(\dot{V}O_{2\max} \) was an RER value of \(\geq 1.15 \), the attainment of a plateau in \(\dot{V}O_2 \) (<150 ml/min), RPE score of 10 (CR 10 Scale), and the attainment of HR\(\max \) as determined by using the formula of 208-(0.7 x age). In cases where only one criterion was attained, the test was deemed to be a peak aerobic capacity (\(\dot{V}O_{2\text{peak}} \)) value and participants were excluded from this research study.

The statistical data processing package SPSS Statistics (version 21.0.0.0) was used to process the data. A hierarchical linear model was used to determine differences between the AISP and ISIP over time (per minute) to model the dependency of repeated measures for each participant. Variance per person (VPP) was taken into account, as well as unexplained variances (Mean square error (MSE)). Statistical significance (p-values) was set at \(p<0.05 \) and the effect size values (Cohen’s d-value) were reported with guideline values of 0.2 for small, 0.5 for medium, and 0.8 for large. A paired sample t-test was used to determine the statistical significance between the maximal values attained of all repeated measures of the AISP and ISIP (\(p<0.05 \)). Cohen’s d-value was used for the standardized differences in averages. Because of the small sample size, the results were confirmed with the Wilcoxon rank test (p-value) set at \(p<0.05 \) and non-parametric effect size (r-value) with guideline values of 0.1 for small, 0.3 for medium, and 0.5 for large effect size.

Results
The cardiorespiratory responses recorded during both GXT protocols are shown in Table I. Although a small sample size was used for this study, both statistical and practical significant results were obtained. Results of the differences in maximum cardiorespiratory responses for the two protocols in Table I were found to be in agreement with measures of dependent t-test and Wilcoxon’s rank test (p-value) results. Therefore, attention will be paid to the interpretation of parametric and non-parametric effect size (d-value; r-value), and Wilcoxon’s rank test (p-value). Large effect sizes were evident between the AISP and ISIP for both d-values and r-values. Time to exhaustion was statistically (\(p=0.002 \)) and practically (\(d=1.87; r=0.89 \)) lower during the AISP compared to the ISIP (11.4 ± 1.2 vs. 13.6 ± 1.2 min). The practically measured RER values for the AISP significantly exceeded (\(d=0.63; r=0.51 \)) those of the ISIP (1.16 ± 0.05 vs. 1.13 ± 0.05). Furthermore, the time in which the RCP was attained (11.1 ± 1.3 vs. 8.8 ± 1.8 min), as well as the RCP’s relative values (64.1 ± 4.2 vs. 60.7 ± 5.3 ml/kg/min) differed, with both statistical (\(p=0.015 \)) and practical (\(d= 0.64; r= 0.7 \)) significantly higher values attained by the ISIP in comparison to the AISP. The \(\dot{V}O_{2\max} \) responses (67.6 ± 5.0 vs. 65.0 ± 4.4 ml/kg/min) showed statistically significant
measures through the Wilcoxon rank test (p=0.038) in favor of the ISIP compared to the AISP, as well as practical significant (d=0.51; r=0.60) results. The results of the Wilcoxon’s rank test are regarded as more appropriate than the dependent t-test that was found statistically insignificant (p=0.390) because of the small sample size used.
Table I: Mean cardiorespiratory responses from maximum values attained by AISP and ISIP (n=12)

<table>
<thead>
<tr>
<th>Cardiorespiratory Response</th>
<th>Protocol</th>
<th>Mean±SD</th>
<th>t-test (p-value)</th>
<th>Effect size (d-value)</th>
<th>Wilcoxon rank test (p-value)</th>
<th>Non-parametric effect size (r-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T\text{lim}) (min)</td>
<td>AISP</td>
<td>11.4±1.2</td>
<td>0.001 (^c)</td>
<td>1.87(^a)</td>
<td>0.002 (^c)</td>
<td>0.89 (^a)</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>13.6±1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR(_{max}) (bpm)</td>
<td>AISP</td>
<td>192.3±9.0</td>
<td>0.505</td>
<td>0.14</td>
<td>0.350</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>193.8±10.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR 1 min R (bpm)</td>
<td>AISP</td>
<td>145.7±22.1</td>
<td>0.844</td>
<td>0.05</td>
<td>0.875</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>144.6±23.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR 3 min R (bpm)</td>
<td>AISP</td>
<td>107.3±16.7</td>
<td>0.515</td>
<td>0.12</td>
<td>0.505</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>109.6±19.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR 5 min R (bpm)</td>
<td>AISP</td>
<td>98.4±12.8</td>
<td>0.142</td>
<td>0.26</td>
<td>0.142</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>103.4±19.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RER</td>
<td>AISP</td>
<td>1.16±0.05</td>
<td>0.670</td>
<td>0.63 (^b)</td>
<td>0.075</td>
<td>0.51 (^a)</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>1.13±0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\dot{V}O_2\text{max}) (ml/kg/min)</td>
<td>AISP</td>
<td>65.0±4.4</td>
<td>0.390</td>
<td>0.51 (^b)</td>
<td>0.038 (^c)</td>
<td>0.60 (^a)</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>67.6±5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPE</td>
<td>AISP</td>
<td>9.4±1.2</td>
<td>0.210</td>
<td>0.34</td>
<td>0.197</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>9.8±0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT (ml/kg/min)</td>
<td>AISP</td>
<td>49.3±6.3</td>
<td>0.373</td>
<td>0.32</td>
<td>0.239</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>51.5±6.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT (min)</td>
<td>AISP</td>
<td>4.9±1.7</td>
<td>0.282</td>
<td>0.35</td>
<td>0.196</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>5.8±2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP (ml/kg/min)</td>
<td>AISP</td>
<td>60.7±5.3</td>
<td>0.007 (^c)</td>
<td>0.64 (^b)</td>
<td>0.015 (^c)</td>
<td>0.7 (^a)</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>64.1±4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP (min)</td>
<td>AISP</td>
<td>8.8±1.8</td>
<td>0.001 (^c)</td>
<td>1.32 (^a)</td>
<td>0.002 (^c)</td>
<td>0.88 (^a)</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>11.1±1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of (V\dot{O}_2\text{max}) (%)</td>
<td>AISP</td>
<td>75.7±7.8</td>
<td>0.859</td>
<td>0.07</td>
<td>0.48</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>76.5±10.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of (V\dot{O}_2\text{max}) (%)</td>
<td>AISP</td>
<td>93.3±3.9</td>
<td>0.207</td>
<td>0.42</td>
<td>0.209</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>ISIP</td>
<td>94.9±3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AISP – Adapted Incremental Speed Protocol; ISIP – Incremental Speed and Incline Protocol; HR – Heart rate; HR\(_{max}\) – Maximum heart rate; RER – Respiratory exchange rate; RPE – Rating of perceived exertion; R – Recovery; RCP – Respiratory compensation point; \(T\text{lim} \) – Time to exhaustion; \(\dot{V}O_2\text{max} \) – Maximal aerobic capacity; VT – Ventilatory threshold.

n – Number of participants; SD – Standard deviation; a: Large effect (practical significance); b: Medium effect (practical significance); c: Statistical significance.
Cardiorespiratory responses obtained from each time point of the AISP and ISIP GXT protocols were compared using hierarchical linear models. All responses were statistically significant (p<0.05) over time. Furthermore, Cohen's d-values were used to test for differences between the protocols at each time point. Time points 1 to 7 showed no practical significant results and protocols were therefore considered similar and were not reported in Table II. Furthermore, it should be noted that the ISIP lasted significantly longer than the AISP and therefore per minute comparisons could only be made up to minute 14. Both V_E and RER values were higher for AISP compared to ISIP and showed large effect sizes (d>0.8) for all time points. The measured responses for V_O_2 of the AISP surpassed all time points of the ISIP and showed medium effect size (d>0.5) for the majority of time points (8, 9, 10, 11, 12, and 13 min) except for the 14th minute, which showed a large effect size (d>0.8). The measured responses for HR were higher for all measures of the AISP compared to the ISIP and presented medium practical significant values (d>0.5) for the 11th and 12th minutes of the test, of which the 13th and 14th minutes showed a large effect (d>0.8). Furthermore, the measured RPE differences in the early stages of the test presented medium effect sizes (d>0.5) for the 9th minute and large effect sizes (d>0.8) for the 10th, 11th and 12th minutes, with values of the AISP exceeding the ISIP. Rating of perceived exertion showed no further effect size values above d>0.5.
Table II: Cardiorespiratory response values per minute of the AISP and ISIP

<table>
<thead>
<tr>
<th>CR</th>
<th>8 min</th>
<th>9 min</th>
<th>10 min</th>
<th>11 min</th>
<th>12 min</th>
<th>13 min</th>
<th>14 min</th>
<th>MSE</th>
<th>VPP</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per P per min</td>
<td></td>
</tr>
<tr>
<td>AISP</td>
<td>n=(12)</td>
<td>n=(12)</td>
<td>n=(12)</td>
<td>n=(12)</td>
<td>n=(9)</td>
<td>n=(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISIP</td>
<td>n=(12)</td>
<td>n=(12)</td>
<td>n=(12)</td>
<td>n=(12)</td>
<td>n=(5)</td>
<td>n=(10)</td>
<td>n=(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td></td>
</tr>
</tbody>
</table>

- **MSE**: Mean square error; **VPP**: Variance per person; **P-value**: Time x Method; **a**: Large effect (practical significance); **b**: Medium effect (practical significance); **c**: Statistical significance.

AISP – Adapted Incremental Speed Protocol; **ISIP** – Incremental Speed and Incline Protocol; **CR** – Cardiorespiratory responses; **HR** – Heart rate (bpm); **RER** – Respiratory exchange rate; **RPE** – Rating of perceived exertion; **\(\dot{V}_E \)** – Minute ventilation (L/min); **\(\dot{V}_O_2 \)** – Amount of oxygen utilized (ml/kg/min).

MSE – Mean square error; n – Number of participants; P – Protocol; P-value: Time x Method; VPP – Variance per person; a: Large effect (practical significance); b: Medium effect (practical significance); c: Statistical significance.
Discussion
The aim of this research study was to compare two motorized treadmill GXT protocols to determine which protocol would elicit the highest cardiorespiratory responses during the evaluation of elite male university-level distance runners. The main finding of this study was that the ISIP achieved higher cardiorespiratory responses with regard to the $\dot{V}O_{2\text{max}}$ values obtained compared to the AISP.

According to the above-mentioned findings, responses for the AISP were significantly lower compared to those of the ISIP for measures of T_{lim} (11.4 ± 1.2 vs. 13.6 ± 1.2 min), $\dot{V}O_{2\text{max}}$ (65.0 ± 4.4 vs. 67.6 ± 5.0 ml/kg/min), RCP expressed as relative value (60.7 ± 5.3 vs. 64.1 ± 4.2 ml/kg/min), and the RCP time point (8.8 ± 1.8 vs. 11.1 ± 1.3 min). Despite these differences both the AISP and ISIP attained $\dot{V}O_{2\text{max}}$ values within the prescribed time frame of 8—15 min as suggested by researchers2,8. The RCP marks the onset of metabolic acidosis, which takes place in the absence of oxygen27,28 and is therefore considered the anaerobic threshold. In this regard the athletes seemed to convert quicker from the aerobic energy system to the anaerobic energy system during the AISP compared to the ISIP. This is supported by the data showing that the RCP time point (8.8 ± 1.8 vs. 11.1 ± 1.3 min) as well as relative RCP (60.7 ± 5.3 vs. 64.1 ± 4.2 ml/kg/min) is attained earlier in the AISP compared to the ISIP. Even though the AISP is considered more anaerobic than the ISIP, the percentage of $\dot{V}O_{2\text{max}}$ where RCP was attained does not differ significantly (93.3 ± 3.9 vs. 94.9 ± 3.2%). Researchers interested in exercise prescription can therefore use either of the investigated GXTs for exercise prescription since there were no significant differences between the percentages of $\dot{V}O_{2\text{max}}$ where RCP was attained29.

The $\dot{V}O_{2\text{max}}$ value (67.6 ± 5.0 vs. 65.0 ± 4.4 ml/kg/min) attained by the ISIP was measured statistically significantly higher ($p<0.05$) than the values obtained by the AISP. This finding is in agreement with research previously conducted by Sperlich et al.4 (62.2 ± 5.2 vs. 61.8 ± 4.3 ml/kg/min) and Gibson and colleagues12 (69.6 ± 4.2 vs. 68.3 ± 4 ml/kg/min), where incline GXT protocols also attained higher $\dot{V}O_{2\text{max}}$ values than their speed GXT protocols. From previous investigations the higher responses of the ISIP may be due to higher muscle activation from running uphill29,30. According to Sloniger et al.30 higher muscle recruitment and running efficiency are indirectly responsible for higher $\dot{V}O_2$ during GXTs. Although these researchers did
not stipulate the time or season when these tests were conducted, the belief that the competitive environment should dictate the GXT protocol used still exists.

Based on the above-mentioned statement, further investigation is required into which GXT protocol to use when participating in a specific competitive environment, running season or following a specific training regime. According to Vanhoy, physiological adaptations as a result of following a specific training regime may support better performance results on a GXT protocol that is similar to the training regime followed. However, these physiological adaptations are only expected to occur in athletes who have followed a specific training regime for a long time, whereas the current research population takes part in both the track and cross-country running seasons. Differences between training regimes preparing them for both track and cross-country running might cause physiological adaptations to occur, but may perhaps not be specific to either track or cross-country running, rather to a combination of both. The required physiological adaptations that have manifested in each athlete might therefore be rather limiting concerning the GXT protocols that are useable. Therefore, we would not expect the athletes in this study to attain different cardiorespiratory results if the testing protocol should be duplicated during the cross-country season.

Most cardiorespiratory responses measured per minute during the AISP compared to the ISIP were found to be higher, as presented in Table II. From these responses clear evidence exists that when the workload increases above 15 km/h, a 1 km/h speed increase is measured to be more intense than a 1% gradient increase. It can therefore be concluded that GXT protocols with 1 km/h speed increases cannot be compared to GXT protocols with 1% gradient increases. Furthermore, it is interesting to note that the RPE responses attained during testing differed practically significantly between the 9th and 12th minute of the performed protocols, but no practical significant differences were found during the final exhausting stages of the test, implying that the AISP and ISIP were perceived to be similar regarding exhaustion.

Conclusion

The results of this study prove that the ISIP elicits \(\dot{V}O_{2\text{max}} \) values exceeding those of the AISP and is therefore prescribed for the attainment of the highest cardiorespiratory responses. However, for the prescription of exercise intensity markers, both the ISIP and AISP are considered adequate GXT protocols in view of similar RCP percentages of \(\dot{V}O_{2\text{max}} \) values. Furthermore, the effect a training regime can have on athletes’ physiological adaptations is of importance, but by following a single training regimen the physiological adaptations pursued will be more specific. In addition, GXT protocols that are compared by researchers should elicit similar intensity
increments in the workload to enable accurate comparison. Accordingly, GXT protocols with 1 km/h increases in speed are not comparable to GXT protocols with increases of 1% in gradient.

Practical implications

- The use of the ISIP is proposed for athletes taking part in both track and cross-country running.
- Graded exercise test protocols with 1 km/h speed increases are not comparable to 1% gradient increases owing to higher cardiorespiratory responses measured for speed increases. A higher workload in gradient is advised for comparability to a GXT protocol using 1 km/h speed increases.
- The training regime of an athlete can influence the cardiorespiratory responses of a \(V_O^{2\max} \) test attained and should therefore be taken into consideration when selecting an appropriate \(V_O^{2\max} \) GXT protocol.
- Both the AISP and ISIP are prescribed for determination of exercise intensity prescription.

Acknowledgements

The authors wish to thank the coach and participating distance runners for their time and willingness to participate in this research study.
References

A COMPARISON BETWEEN THE CARDIORESPIRATORY RESPONSES OF A NON-MOTORIZED AND MOTORIZED TREADMILL PROTOCOL
Title page

Title:
A comparison between the cardiorespiratory responses of a non-motorized and motorized treadmill protocol.

Authors:
Mrs Jana Storm;
Dr Yolandi Willemse;
Dr Martinique Sparks.

Affiliations:
Physical Activity, Sport and Recreation Research Focus Area, Faculty of Health Sciences, North-West University, Potchefstroom Campus, South Africa.

Corresponding author:
Dr Yolandi Willemse
+27 18299 1181 Work
+27 18 299 0222 Fax
Yolandi.Willemse@nwu.ac.za

Word Count
Excluding abstract and references: 3279
Abstract: 249
Number of Tables: 2
Number of Figures: 0

Prepared for submission to: Journal of Science and Medicine in Sport.
Abstract

Objectives: To determine which running modality, the motorized treadmill (MT) or the Curve non-motorized treadmill (NMT), will allow elite male university-level distance runners to attain the highest cardiorespiratory responses.

Design: A once-off cross-sectional design using elite male university-level distance runners.

Methods: Two GXT protocols were used to compare the above-mentioned running modalities - the Adapted Incremental Speed Protocol (AISP), performed on a MT, and the Adapted Non-Motorized Incremental Speed Protocol (ANMIP), performed on a Curve NMT. Both protocols started at a speed of 10 km/h, whereafter the AISP continuously increased by 1 km/h speed increments each 1 minute, and the ANMIP increased by 2 km/h speed increments every 2 minutes until exhaustion. Cardiorespiratory responses were recorded throughout the test from which the intensity markers, the ventilatory threshold (VT) and the respiratory compensation point (RCP) were determined. Results: The maximal aerobic capacity (VO_{2max}) value of the ANMIP exceeded that of the AISP significantly ($p<0.05$; $d=2.61$; $r=0.89$) and attained these values within a significantly ($p<0.05$; $r>0.5$) shorter time frame (8.31 ± 0.87 vs. 11.42 ± 1.19 min). The percentage of VO_{2max} where VT and RCP were attained, was significantly higher ($p<0.05$; $r>0.5$) on the ANMIP (84.1 ± 4.3 vs. 97.2 ± 2.4%) compared to the AISP (75.7 ± 7.8 vs. 93.3 ± 3.9%).

Conclusion: The ANMIP is perceived as substantially more difficult, both physiologically and psychologically, compared to the AISP. The VT and RCP intensity markers attained by the ANMIP, are not practical for exercise prescription.

Keywords

Oxygen consumption; Physical exertion; Exercise test; Running; Running modalities; Maximal aerobic capacity.
Introduction

Maximal aerobic capacity (\(\dot{V}O_{2\text{max}}\)) is considered one of the fundamental factors for distance running performance\(^1\). However, for a \(\dot{V}O_{2\text{max}}\) value to be considered objective and sport-specific, the running modality needs to simulate over-ground running (OGR) closely, as this is the environment in which the distance runner trains and competes\(^2\). The motorized treadmill (MT) and non-motorized treadmill (NMT) running modalities were used to investigate aerobic and anaerobic exercise testing. Motorized treadmills were extensively used in laboratories as a valid tool for measuring endurance running performance despite the lack of any direct comparison to over-ground endurance performance\(^3\). The Curve, a newly designed NMT, has recently been presented as a valid tool for assessing endurance running performance compared to OGR\(^3\) but comparative research between the Curve NMT and MT is fairly limited.

Motorized treadmills are controlled by a computer, through which speed and gradient are dictated, and then propelled by a motor\(^4\). An athlete attempts to adapt to the set running speed of the MT by manipulating stride rate and length\(^4\). Therefore, any changes in running pace are made consciously, with the MT belt enabling a runner to maintain a more consistent running speed\(^3\). The MT has consequently become popular among endurance runners\(^5\). In contrast with the MT, the Curve NMT’s new “bean” shaped geometric design\(^3\) dictates an increasing gradient of 6—10° that is perceived as similar to uphill running\(^6\). When running on the Curve NMT, the athlete is in control of the speed of the belt by driving through each subsequent step\(^7\). An additional benefit of the Curve NMT is that it allows unrestricted running motion\(^8\) and therefore greater sport specificity\(^8\). The self-pacing nature of the Curve NMT is in agreement with OGR and is therefore regarded as more consistent with OGR\(^3\) than MT running. Based on these mechanical differences, cardiorespiratory responses measured on the MT and Curve NMT were expected to differ.

Cardiorespiratory responses obtained from MT and OGR during a continuous graded exercise test (GXT) protocol were found to be similar, even though OGR allowed athletes to attain higher running speeds\(^9\). No significant differences in MT running and OGR \(\dot{V}O_{2\text{max}}\) values (63.5 ± 6.6 vs. 63.3 ± 7 ml/kg/min) were measured, although statistically significant differences (\(p<0.001\)) were measured for time to exhaustion (\(T_{\text{lim}}\)) (11:31 ± 0:39 vs. 12:07 ± 0:42 min) and maximum heart rate (\(HR_{\text{max}}\)) (188 ± 6 vs. 189 ± 6 bpm). Furthermore, there were significant differences (\(p<0.001\)) in measures of minute ventilation (\(V_E\))\(^9\), and as a result energy cost consequently differed, with the MT energy cost exceeding that of OGR.
During a 5 km time trial, both the Curve NMT and OGR attained similar cardiorespiratory responses with respect to the attained submaximal values, namely, oxygen utilized ($\dot{V}O_2$) (51.1 ± 3 vs. 49.2 ± 4 ml/kg/min), HR (178 ± 14 vs. 178 ± 13 bpm), and $\dot{V}E$ (122 ± 17.3 vs. 122.4 ± 15.6 L/min). However rating of perceived exertion (RPE) (6.5 ± 0.9 vs. 6.1 ± 1) and blood lactate values (9.4 ± 2.3 vs. 7.8 ± 2.1 mmol/L) were significantly (p<0.05) higher on the Curve NMT than for OGR. These responses were attributed to the natural gradient of the Curve NMT that was perceived to be more difficult than OGR. These results led Stevens et al. to regard the Curve NMT as a valid tool for assessing endurance running performance; however, values attained by a 5 km time trail cannot be compared directly to V_{O2max} results.

Early research of Davies et al. compared MT running to NMT running and found similar results for V_{O2max} values attained (59.6 ± 10.3 vs. 61.4 ± 11.4 ml/kg/min). The V_{O2max} value of the NMT exceeded that of all MT tests conducted, but was not statistically significantly higher. Furthermore, the NMT attained V_{O2max} within a shorter running time than all other MT tests (6.0 ± 2.2 vs. 8.1 ± 3.0 min). However, the NMT used in this research study was flat and results obtained by this NMT are therefore not comparable to the Curve NMT. More recently, Snyder et al. compared submaximal cardiorespiratory responses measured on a MT to a Curve NMT by using a discontinuous test protocol. All responses measured, $\dot{V}O_2$ (49.9 ± 9.2 vs. 60.2 ± 11 ml/kg/min), HR (170 ± 11 vs. 190 ± 10 bpm), RPE (4.1 ± 1.6 vs. 8.2 ± 1.1), and blood lactate (4.5 ± 1.6 vs. 11.1 ± 2.9 mmol/L) were significantly higher (p<0.05) on the Curve NMT than on the MT. However, the use of discontinuous test protocols have been found to be time-consuming and the use of continuous GXT protocols was preferred.

From these findings it is clear that a single running modality has not yet been prescribed as the gold standard for V_{O2max} testing, specifically with the use of a continuous GXT protocol. The aim of this research study is therefore to determine which treadmill running modality will enable elite male university-level distance runners to attain the highest cardiorespiratory responses.

Methods

Twelve elite male distance runners (age: 21.8 ± 3.0 yrs.; stature: 178.2 ± 6.5 cm; body weight: 66.7 ± 4.7 kg) from a university in the North West Province of South Africa participated in this research study. All participants competed and trained for the university during the 2016 season and had to participate in both university cross-country and track running. All tests of this research study were performed during the track season. Participants consented to participate in writing
after being fully informed of the nature of this research study. The Health Research Ethics Committee (HREC) of the Faculty of Health Sciences, North-West University (NWU - 00201- 15-A1) approved the testing procedure. Participating distance runners had to be injury-free during the testing period and had to complete all tests involved in the research study. A once-off cross-sectional design was used.

The following GXT protocols were conducted:

- **Adapted Incremental Speed Protocol (AISP)** – The AISP performed on the MT was adapted from the speed GXT protocol of Davies et al.\(^2\). The AISP started at a speed of 14 km/h with increases of 1 km/h each minute until exhaustion. The starting speed of the AISP was adapted from 14 km/h to 10 km/h to allow comparability to the NMT GXT protocol following.

- **Adapted Non-motorized Incremental Speed Protocol (ANMIP)** – The ANMIP performed on the Curve NMT was adapted from the NMT GXT protocol of Davies et al.\(^2\). The ANMIP started at a speed of 10 km/h with a 2 km/h increase every 3 minutes until exhaustion. The time intervals of the ANMIP were adapted from 3 minutes to 2 minutes to allow comparability each 2 minutes with the AISP. Because of pacing difficulty on the NMT, 2-minute rather than 1-minute time intervals were selected.

Two familiarization sessions were completed two weeks prior to the tests on both the MT and NMT. All sessions started at 10 km/h and increased by 1 km/h each 1-minute time interval for the MT and 2 km/h each 2-minute time interval on the NMT for approximately 4 minutes, whereafter a comfortable pace was reached and running continued for 10 minutes. These familiarization sessions were considered adequate\(^1\).

Participants were required to participate in two GXT protocols, of which the earlier AISP mentioned was performed on the Woodway Pro XL MT (Woodway, W229 N591, Foster Ct, Waukesha, WI) and the ANMIP on the Woodway Curve 1 NMT (Woodway, W229 N591, Foster Ct, Waukesha, WI). Both test protocols were performed at exactly the same time of day within a time frame of five days. Participants were healthy (Physical Activity Readiness Questionnaire) and well-hydrated (hydration status and recovery questionnaire) at the time of participation. The laboratory’s temperature was controlled to stay within 19 to 21°C. Participants were requested to follow a normal diet throughout the research period and abstain from food (2 hours), alcohol and coffee (12 hours), and vigorous training (48 hours) before the tests. A profile was created for each participant by measuring his stature and body weight the day of the test on arrival at the laboratory. Each GXT protocol was preceded by a 10-minute warm-up consisting of a treadmill running at 10 km/h for 1 km, followed by a set of dynamic stretches. After completing the warm-up, participants were fitted with a heart rate (HR) monitor belt (Polar Electro, Kempele, Finland: T34) for HR measurement and a face mask for breath analysis. Once the GXT protocol started,
the cardiorespiratory responses HR\textsubscript{max}, oxygen consumed (\dot{V}O\textsubscript{2}), carbon dioxide produced (\dot{V}CO\textsubscript{2}, \dot{VE}, \dot{V}O\textsubscript{2max}, oxygen utilized (\dot{V}O\textsubscript{2}), \dot{VE}, respiratory exchange ratio (RER), and T\textsubscript{lim}, were recorded every 15 seconds during the tests by the Oxycon Pro static ergo spirometry system (Jaeger Oxycon Pro, Viasys, 22745, Savi Ranch Parkway, Yorba Linda, CA, USA). Each participant was motivated to continue the GXT protocol for as long as possible until exhaustion. Rating of perceived exertion was obtained from the participant in the last 10 seconds of each level according to the Borg Scale (CR-10 Scale)12. Participants communicated through a basic signaling system of thumbs up – continue, and thumbs down - stop at the end of the level. The GXT protocols were terminated on reaching complete exhaustion, after which HR recovery was taken at 1, 3, and 5 minutes’ rest.

Two experienced sport scientist determined the ventilatory threshold (VT) and respiratory compensation point (RCP) by using a plotted graph on which the increases and decreases in \dot{VE} / \dot{V}O\textsubscript{2} and \dot{VE} / \dot{V}CO\textsubscript{2} values were presented. The VT was identified as the point where the \dot{VE} / \dot{V}O\textsubscript{2} increased without a corresponding change in the \dot{VE} / \dot{V}CO\textsubscript{2}, or departure in the linearity of the \dot{VE} line. The RCP was identified as the point where both the \dot{VE} / \dot{V}O\textsubscript{2} and \dot{VE} / \dot{V}CO\textsubscript{2} increased dramatically13. In cases where the two sport scientists did not agree, a third sport scientist was consulted. Time to exhaustion was measured from the starting speed of 10 km/h to the point where the GXT protocol was terminated owing to exhaustion. The criterion used to determine the achievement of a \dot{V}O\textsubscript{2max} was an RER value of $\geq 1.15$14, the attainment of a plateau in \dot{V}O\textsubscript{2} (<150 ml/min)10,15,16, RPE (CR 10-Scale) of 1017, and the attainment of HR\textsubscript{max} as determined by using the formula of $208 - (0.7 \times \text{age})$18,19. Participants were required to attain at least two of the specified criteria to be accepted as a \dot{V}O\textsubscript{2max}. If only one criterion was attained, it was graded a peak aerobic capacity (\dot{V}O\textsubscript{2peak}) value and participants’ results were excluded from this study.

The statistical data processing package SPSS Statistics (version 21.0.0.0) was used to process the data. To model the dependency of repeated measures for each participant, a hierarchical linear model was used to determine differences between the AISP and ANMIP for comparative speeds (km/h)20. For statistical significance, the p-value was set at $p<0.05$ and effect size values (Cohen’s d-value) were reported with guideline values of 0.2 for small, 0.5 for medium, and 0.8 for large21. Variance per person (VPP) was taken into account, as well as unexplained variances.
Mean square error (MSE)). A single measure of statistical significance was determined for all corresponding speeds used per measured variable (HR, $\dot{V}O_2$, $\dot{V}CO_2$, $\dot{V}O_{2\text{max}}$, $\dot{V}E$, $\dot{V}O_2$ utilized, RER, and T_{lim}). To determine statistical significance between the maximal values attained of all repeated measures of the AISP and ANMIP ($p<0.05$), a paired sample t-test was used. Cohen’s d-value was used for the standardized differences in averages. Because of the small research population, results were confirmed with the Wilcoxon rank test (p-value) set at $p<0.05$ and non-parametric effect size (r-value) with guideline values of 0.1 for small, 0.3 for medium, and 0.5 for large effect size.

Results
The maximal cardiorespiratory responses documented during this research study are shown in Table I. Even though a small sample size ($n=12$) was used, statistical and practical significant results were obtained by a dependent t-test (p-value) and Wilcoxon’s rank test (p-value) respectively, and are in agreement. Furthermore, attention will be paid to parametric (d-value) and non-parametric (r-value) effect size as well as Wilcoxon’s rank test (p-value). The $\dot{V}O_{2\text{max}}$ measures of Table I attained varying effect size values ($d=0.38; r=0.61$) because the Cohen’s d-value does not take outliers into account; however, non-parametric effect size takes outliers into account and these were consequently corrected for. Large effect sizes were marked between the AISP and ANMIP for parametric effect size (d-value) and non-parametric effect size (r-value). The NMT’s T_{lim} was shorter than the AISP’s T_{lim} and both statistically ($p<0.05$) and practically significant ($d=2.61; r=0.89$). The ANMIP $\dot{V}O_{2\text{max}}$ values attained, exceeded those of the AISP, both statistically ($p<0.05$) and practically, with a large effect size ($r=0.61$). All measures of VT and RCP measures were statistically ($p<0.05$) and practically ($d=0.77-1.34; r=0.56-0.86$) significant.
Table I: Mean cardiorespiratory responses from maximum values attained on the AISP and the ANMIP (n=12)

<table>
<thead>
<tr>
<th>Cardiorespiratory Response</th>
<th>Protocol</th>
<th>Mean±SD</th>
<th>Dependent t-test (p-value)</th>
<th>Effect size (d-value)</th>
<th>Wilcoxon (p-value)</th>
<th>Non-Parametric effect size (r-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tlim (min)</td>
<td>AISP</td>
<td>11.42±1.19</td>
<td>0.00c</td>
<td>2.61a</td>
<td>0.002c</td>
<td>0.89a</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>8.31±0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRmax (bpm)</td>
<td>AISP</td>
<td>192.3±9.1</td>
<td>0.84</td>
<td>0.05</td>
<td>0.754</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>191.8±10.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR 1 min R (bpm)</td>
<td>AISP</td>
<td>145.7±22.1</td>
<td>0.32</td>
<td>0.19</td>
<td>0.479</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>140.4±27.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR 3 min R (bpm)</td>
<td>AISP</td>
<td>107.3±16.7</td>
<td>0.72</td>
<td>0.06</td>
<td>0.844</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>108.5±20.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR 5 min R (bpm)</td>
<td>AISP</td>
<td>98.4±12.8</td>
<td>0.73</td>
<td>0.06</td>
<td>0.894</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>99.5±17.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RER</td>
<td>AISP</td>
<td>1.16±0.05</td>
<td>0.38</td>
<td>0.26</td>
<td>0.398</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>1.17±0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO2max (ml/kg/min)</td>
<td>AISP</td>
<td>65.0±4.4</td>
<td>0.04c</td>
<td>0.38</td>
<td>0.034c</td>
<td>0.61a</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>66.7±4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPE</td>
<td>AISP</td>
<td>9.4±1.2</td>
<td>0.39</td>
<td>0.2</td>
<td>0.334</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>9.7±0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT (ml/kg/min)</td>
<td>AISP</td>
<td>49.3±6.3</td>
<td>0.001c</td>
<td>1.09a</td>
<td>0.005c</td>
<td>0.82a</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>56.19±4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT (min)</td>
<td>AISP</td>
<td>4.92±1.73</td>
<td>0.01c</td>
<td>0.92a</td>
<td>0.011c</td>
<td>0.73a</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>3.33±0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP (ml/kg/min)</td>
<td>AISP</td>
<td>60.7±5.3</td>
<td>0.001c</td>
<td>0.77a</td>
<td>0.003c</td>
<td>0.85a</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>64.8±3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP (min)</td>
<td>AISP</td>
<td>8.75±1.76</td>
<td>0.00c</td>
<td>1.34a</td>
<td>0.003c</td>
<td>0.86a</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>5.92±2.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT% of VO2max (%)</td>
<td>AISP</td>
<td>75.7±27.8</td>
<td>0.003c</td>
<td>1.07a</td>
<td>0.006c</td>
<td>0.56a</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>84.1±4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP% of VO2max (%)</td>
<td>AISP</td>
<td>93.3±3.9</td>
<td>0.01c</td>
<td>1.00a</td>
<td>0.015c</td>
<td>0.70a</td>
</tr>
<tr>
<td></td>
<td>ANMIP</td>
<td>97.2±2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AISP – Adapted Incremental Speed Protocol; ANMIP – Adapted Non-motorized Incremental Speed Protocol; HR – Heart rate; HRmax – Maximum heart rate; R - Recovery; RER - Respiratory exchange ratio; RPE - Rating of perceived exertion; VO2max - Maximal aerobic capacity; RCP - Respiratory compensation point; VT - Ventilatory threshold.

n – Number of participants; SD – Standard deviation; a: Large effect (practical significance); b: Medium effect (practical significance); c: Statistical significance.
A single measure of statistical significance was determined between the AISP and ANMIP’s corresponding speeds by using the measured cardiorespiratory responses (HR, \(\dot{V}O_2 \), \(\dot{V}CO_2 \), \(\dot{V}E \), \(\dot{V}O_2 \) utilized, RER, \(T_{lim} \)). Cardiorespiratory responses obtained were compared by using hierarchical linear models as well as Cohen’s d-values to test for differences between each corresponding speed (presented in Table II). However, it should be noted that the AISP lasted significantly longer than the ANMIP, consequently speed comparisons could only be made up until 18 km/h. All measures of HR, \(\dot{V}O_2 \), \(\dot{V}CO_2 \), \(\dot{V}E \), \(\dot{V}O_2 \) utilized, RER, and HR obtained large effect (d>0.8) for all speeds used (10, 12, 14, 16, and 18 km/h) between the two running modalities, with the ANMIP exceeding those of the AISP. Moreover, the measured RPE responses of the ANMIP predominantly exceeded those of the AISP with large effect (d>0.8) for all speeds used (12, 14, 16, 18 km/h) except for 10 km/h (d=0.61).
Table II: Cardiorespiratory response values per speed of the AISP and the ANMIP

<table>
<thead>
<tr>
<th>Cardiorespiratory response per speed (km/h) of each protocol conducted:</th>
<th>10 km/h</th>
<th>12 km/h</th>
<th>14 km/h</th>
<th>16 km/h</th>
<th>18 km/h</th>
<th>MSE</th>
<th>VPP</th>
<th>P-value (Speed x Method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISP</td>
<td>ANMIP</td>
<td>AISP</td>
<td>ANMIP</td>
<td>AISP</td>
<td>ANMIP</td>
<td>AISP</td>
<td>ANMIP</td>
<td>AISP</td>
</tr>
<tr>
<td>n=(12)</td>
<td>n=(12)</td>
<td>n=(12)</td>
<td>n=(12)</td>
<td>n=(12)</td>
<td>n=(12)</td>
<td>n=(11)</td>
<td>n=(12)</td>
<td>n=(4)</td>
</tr>
<tr>
<td>\dot{V}_E (L/min)</td>
<td>59.6</td>
<td>96.9<sup>a</sup></td>
<td>74.7</td>
<td>120.7<sup>a</sup></td>
<td>91.0</td>
<td>145.2<sup>a</sup></td>
<td>111.3</td>
<td>166.3<sup>a</sup></td>
</tr>
<tr>
<td>RER</td>
<td>0.79</td>
<td>0.87<sup>a</sup></td>
<td>0.86</td>
<td>0.95<sup>a</sup></td>
<td>0.89</td>
<td>1.05<sup>a</sup></td>
<td>0.95</td>
<td>1.12<sup>a</sup></td>
</tr>
<tr>
<td>$\dot{V}O_2$ (ml/min)</td>
<td>2398</td>
<td>3412<sup>a</sup></td>
<td>2834</td>
<td>3868<sup>a</sup></td>
<td>3302</td>
<td>4243<sup>a</sup></td>
<td>3696</td>
<td>4433<sup>a</sup></td>
</tr>
<tr>
<td>$\dot{V}CO_2$ (ml/min)</td>
<td>1890</td>
<td>2984<sup>a</sup></td>
<td>2431</td>
<td>3701<sup>a</sup></td>
<td>2959</td>
<td>4437<sup>a</sup></td>
<td>3530</td>
<td>4948<sup>a</sup></td>
</tr>
<tr>
<td>$\dot{V}O_2$ (ml/kg/min)</td>
<td>36.0</td>
<td>51.1<sup>a</sup></td>
<td>42.4</td>
<td>57.9<sup>a</sup></td>
<td>49.3</td>
<td>63.6<sup>a</sup></td>
<td>55.1</td>
<td>66.4<sup>a</sup></td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>134.1</td>
<td>155.6<sup>a</sup></td>
<td>147.2</td>
<td>168.8<sup>a</sup></td>
<td>158.6</td>
<td>179.8<sup>a</sup></td>
<td>170.4</td>
<td>186.3<sup>a</sup></td>
</tr>
<tr>
<td>RPE</td>
<td>1.4</td>
<td>2.3<sup>b</sup></td>
<td>2.1</td>
<td>4.1<sup>a</sup></td>
<td>3.3</td>
<td>6.9<sup>a</sup></td>
<td>5.1</td>
<td>8.9<sup>a</sup></td>
</tr>
</tbody>
</table>

AISP – Adapted Incremental Speed Protocol; ANMIP – Adapted Non-motorized Incremental Speed Protocol; HR - Heart rate; RER - Respiratory exchange ratio; RPE - Rating of perceived exertion; \dot{V}_E - Minute ventilation; $\dot{V}O_2$ - Oxygen consumed; $\dot{V}CO_2$ - Carbon dioxide produced; $\dot{V}O_2$ - Amount of oxygen utilized.

MSE – Mean square error; n – Number of participants; P-value: Speed x Method; VPP – Variance per person; a: Large effect (practical significance); b: Medium effect (practical significance); c: Statistical significance.
Discussion

The objective of this research study was to compare two running modalities to establish which modality elicits higher cardiorespiratory responses in elite male university-level distance runners. The main finding of this study was that the Curve NMT’s cardiorespiratory responses predominantly exceeded the MT responses within a shorter running time.

According to cardiorespiratory responses in Table I, the $\dot{V}O_{2\max}$ values of the ANMIP exceeded those of the AISP significantly ($p<0.05$; $d=2.61$; $r=0.89$). It is, however, remarkable that the AISP values were attained within a statistically significantly ($p<0.05$; $d=2.61$; $r=0.89$) shorter time frame (8.31 ± 0.87 vs. 11.42 ± 1.19 min) compared to the AISP. These findings are comparable to the results of Davies et al.2 who used a NMT and MT along with similar GXT protocols as used in this study. In the above-mentioned study, the NMT attained higher $\dot{V}O_{2\max}$ values (61.4 ± 11.4 vs. 59. ± 10.3 ml/kg/min) within a shorter running time (6.0 ± 2.2 vs. 8.1 ± 3.0 min) compared to the MT, even though a NMT with a flat running surface was used2. These results indicate higher exercise intensity on the Curve NMT compared to the MT.

Results reported in Table II indicate that the ANMIP’s cardiorespiratory responses exceed those of the AISP for each speed compared over the course of the two GXT protocols. All responses of the ANMIP, namely HR, $\dot{V}O_2$, $\dot{V}CO_2$, $\dot{V}E$, $\dot{V}O_2$ utilized and RER, significantly ($d>0.8$) exceeded responses of the AISP. Consequently it is clear that the physical demands set by the Curve NMT, owing to its mechanical differences, exceed those of the MT, as running on the Curve NMT has been described as similar to running uphill4,6. Furthermore, the energy cost of running on the Curve NMT surpasses that of the MT owing to higher friction of the belt and higher muscle activation4. It thus seems that the Curve NMT is thought to be physically more challenging and exhausting compared to the MT and consequently these modalities should rather not be compared in this manner.

An interesting finding of this study was that the percentage of $\dot{V}O_{2\max}$, where VT and RCP were attained, was significantly higher ($p<0.05$; $r>0.5$) on the ANMIP compared to the AISP (Table I). The reason for this finding is not clear, but the results from Table II might suggest a possible explanation. All measures of the ANMIP exceed those of the AISP and the exercise intensity on the Curve NMT is therefore considered to be higher than that of the MT, probably caused by additional recruitment of type II muscle fibers23. The recruitment of type II muscle fibers and increased ventilation are considered contributing factors to the manifestation of the “slow component” of $\dot{V}O_2$ kinetics and can cause an increase in the oxygen cost of exercise. This component is characterized by a slow increase in $\dot{V}O_2$ during incremental exercises23,24,25.
Furthermore, extremely intense exercises are considered to be so severe that exhaustion intervenes before the kinetics of $\dot{V}O_2$ allows the attainment of a higher $\dot{V}O_2_{max}^{26}$. Intense exercise is also associated with the occurrence of hyperventilation due to the body’s attempt to attain effective gas exchange in the lungs by increasing ventilatory work, causing a further increase in the “slow component”23. These findings are regarded as relevant to this research study in view of the high percentages of VT and RCP (Table I) expressed through $\dot{V}O_2_{max}$ and might have occurred in response to hyperventilation.

For researchers interested in the results of $\dot{V}O_2_{max}$ tests for exercise prescription, the values attained by the ANMIP are unsuitable. From past research, the VT and RCP for endurance trained sportsmen are expected to occur close to 65 and 90% respectively13. The exceptionally high intensity markers attained by the ANMIP are not recommended because of the intense effect these high percentage exercises will have on muscle recruitment and ventilatory work. Training at these extreme intensity markers is bound to have a destructive effect on performance. Nevertheless, training on the Curve NMT might be beneficial to intensify exercise with its added training load.

In accordance with the above-mentioned findings, the perceived exertion measured by the RPE of the ANMIP predominantly exceeded that of the AISP (d>0.8). These findings are similar to the findings of Smoliga et al.6 who compared the Curve NMT to a MT where measured RPE responses were significantly higher (p<0.05) on the Curve NMT at a walking and running speed6. Therefore the Curve NMT was rated to be perceived as substantially more strenuous than the MT3,6. Even though the speeds of the two GXT protocols (ANMIP and AISP) running modalities correspond, the physical demands required from the athlete for the same speed on the respective modalities are not equivalent (see Table II). Furthermore, the measured HR (104.4 vs. 82.7 bpm; 151.6 vs. 120.6 bpm) and $\dot{V}O_2$ (1.39 vs. 0.8 L/min; 2.53 vs. 1.76 L/min) were found to be significantly higher on the Curve NMT6 compared to a MT at walking and running speeds. These findings are also in line with the results from this study.

Even though adequate familiarization sessions were performed on the Curve NMT, more training-oriented exercises on the Curve NMT might be beneficial for minimizing the significant measured differences recorded through cardiorespiratory responses. Further investigation is advised to determine equivalent exercises on the Curve NMT and MT.
Conclusion
The results of this study suggest that the Curve NMT (ANMIP) is perceived as substantially more difficult than MT running (AISP), both physiologically and psychologically. Even though higher cardiorespiratory responses were attained using the Curve NMT (ANMIP), the intensity markers obtained, namely VT and RCP, were not practical for exercise prescription. Nevertheless, the Curve NMT can be considered more time-efficient for \(VO_{2\text{max}} \) testing. It is of importance to familiarize athletes prior to testing to ensure comfort; however, more sessions on the Curve NMT might be advantageous to lessen the effect of the mechanical differences on the cardiorespiratory responses.

Practical implications

- The cardiorespiratory responses of a \(VO_{2\text{max}} \) test performed on a Curve NMT exceed those of a MT.
- Performing \(VO_{2\text{max}} \) tests on the Curve NMT is found to be time-efficient for a distance running population; however, the VT and RCP values obtained are not recommended for exercise prescription.
- Training-oriented exercises on the Curve NMT might be beneficial to minimize recorded differences measured between the two running modalities’ cardiorespiratory responses.
- The Curve NMT can be considered an ideal training tool to intensify the exercise load.

Acknowledgements
The authors wish to thank the coach and participating distance runners for their time and willingness to participate in this study.
References

SUMMARY, CONCLUSION, LIMITATIONS AND RECOMMENDATIONS
5.1 SUMMARY

The attainment of a high maximal aerobic capacity ($\dot{V}O_2\text{max}$) can be considered an important performance determinant for distance runners, since endurance events are performed at high percentages of one’s $\dot{V}O_2\text{max}$. However, to determine distance runners’ $\dot{V}O_2\text{max}$, the running modality and graded exercise test (GXT) used should simulate the demand set by the distance runners’ event closely. Unfortunately a single running modality and GXT have not yet been standardized specifically for the determination of distance runners’ $\dot{V}O_2\text{max}$. Consequently a running modality and GXT protocol need to be standardized to enable researchers to obtain valid and reliable $\dot{V}O_2\text{max}$ results for elite male university-level distance runners.

Consequently, the purpose of this research study was firstly to determine which GXT protocol would allow elite male university-level distance runners to attain the highest cardiorespiratory responses (maximum heart rate (HR_{max}), oxygen consumption ($\dot{V}O_2$), carbon dioxide production ($\dot{V}CO_2$), minute ventilation (ventilatory equivalent (VE)), $\dot{V}O_2\text{max}$, respiratory exchange ratio (RER), time to exhaustion (T_{lim}), respiratory compensation point (RCP), ventilatory threshold (VT), and rate of perceived exertion (RPE)) when performed on a motorized treadmill (MT). Secondly, it was to determine which running modality, MT or non-motorized treadmill (NMT) is most effective in eliciting the highest cardiorespiratory responses.

Chapter 1 provided a brief overview of the problem that was identified in the research questions, objectives and hypotheses, as well as the structure of the dissertation.

Chapter 2 consisted of a literature overview titled: “A review of cardiorespiratory responses attained using different running modalities and treadmill protocols to directly determine aerobic capacity.” The purpose of this chapter was threefold – firstly to define aerobic capacity and the relevant cardiorespiratory responses to identify an appropriate $\dot{V}O_2\text{max}$ criterion for the determination of a $\dot{V}O_2\text{max}$. Secondly to investigate the running modalities, namely the MT and the Curve NMT, to determine what effect the identified differences may have on the attainment of cardiorespiratory responses. Lastly, to investigate all GXT protocols previously used on male distance runners for the attainment of cardiorespiratory responses, specifically $\dot{V}O_2\text{max}$.
To determine which \(\dot{V}O_{2\text{max}} \) criterion to use, all cardiorespiratory responses thought important for aerobic capacity were investigated. The various collective \(\dot{V}O_{2\text{max}} \) criteria points used by earlier researchers differed considerably. Even though similar \(\dot{V}O_{2\text{max}} \) criterion’s existed, the specified values differed from one researcher to the next. From these findings a \(\dot{V}O_{2\text{max}} \) criterion, namely a RER value of \(\geq 1.15 \), the attainment of a plateau in \(\dot{V}O_2 \) (<150 ml/min), and the attainment of HR\(_{\text{max}}\) as determined by \(208-(0.7 \times \text{age}) \), was identified and deemed to be an adequate cardiorespiratory response for the attainment of a \(\dot{V}O_{2\text{max}} \). Rating of perceived exertion was also used as a \(\dot{V}O_{2\text{max}} \) criterion; even though it is not a cardiorespiratory response it is considered a separate yet subjective response to categorize physical strain. The attainment of any two of these criteria were considered sufficient for a \(\dot{V}O_{2\text{max}} \).

Over-ground running (OGR) is considered the golden standard for distance runners, therefore any running modality used should simulate the running environment and physical demands. Consequently the MT and Curve NMT were investigated. The Curve NMT was found to be a closer simulation to OGR than the MT because of self-initiation of movement, self-pacing, and driving the belt with each consecutive step. This is further supported by several cardiorespiratory responses of the Curve NMT exceeding those of the MT. Because of the Curve NMTs increasing gradient of approximately 5—10 degrees, the Curve NMT is also perceived to be physiologically more strenuous and requires a greater metabolic demand than the MT. The apparent mechanical differences of the running modalities used, consequently play an important role in the cardiorespiratory responses obtained. Apart from specifying a running modality for distance runners, a GXT protocol must also be selected to determine a runner’s \(\dot{V}O_{2\text{max}} \).

Even though a vast number of GXT protocols exist, two GXT protocols were prominent among the GXT protocols used for male distance runners, namely an incline GXT protocol (with variances in speed and/or gradient) and a speed GXT protocol. The basic incremental components (starting speed, time intervals and workloads (speed and gradient)) used in GXT protocols were compared to identify any tendencies/similarities among them. Starting speed, time intervals and workloads were used to ultimately exhaust the athletes by increasing the physiological demand required for each level. These GXT protocols were mostly performed on MTs, with a single GXT protocol performed on a NMT with a flat running surface. From the investigated GXT protocols, firstly, two GXT protocols were identified to compare on the MT, namely the Incremental Speed and Incline...
Protocol (ISIP) and the Adapted Incremental Speed Protocol (AISP), to determine which protocol would elicit the highest cardiorespiratory responses. Secondly, to compare the MT to the new “bean”-shaped Curve NMT, a NMT protocol was identified, namely, the Adapted Non-Motorized Incremental Speed Protocol (ANMIP). The ANMIP was compared to the AISP to determine which running modality would elicit the highest cardiorespiratory responses.

Chapter 3 consisted of the first article that was prepared according to the guidelines of *The Journal of Science and Medicine in Sport* and was titled: “A comparison between the cardiorespiratory responses of a speed versus an incline motorized treadmill protocol”. The purpose of this article was to prescribe a GXT protocol performed on a MT for elite male university-level distance runners who take part in both track and cross-country running. The GXT protocols, namely the ISIP and AISP, were compared to determine the most effective protocol in eliciting the highest cardiorespiratory responses. Because the experimental period fell in the track season, the AISP was expected to attain higher cardiorespiratory responses owing to the training regime followed in the track season; however, this was not the case. The ISIP attained significantly higher \(\dot{V}O_{2\text{max}} \) values (67.6 \(\pm \) 5.0 vs. 65.0 \(\pm \) 4.4 ml/kg/min) than the AISP. This might be due to the effect of following two training regimes instead of one, consequently the physiological adaptations required for the specific time of the season are not met because the athlete is participating in two seasons. Furthermore, the VT % (76.5 \(\pm \) 10.3 vs. 75.7 \(\pm \) 7.8%) and RCP% (94.9 \(\pm \) 3.2 vs. 93.3 \(\pm \) 3.9%) of \(\dot{V}O_{2\text{max}} \) did not differ significantly between the ISIP and AISP, consequently both GXT protocols were considered adequate for exercise prescription. Finally, by comparing the ISIP and AISP on the per minute values, it was clear that cardiorespiratory responses obtained from a GXT protocol using 1 km/h increases in speed were not comparable to a GXT protocol with 1% increases in gradient. Finally, for runners taking part in both track and cross-country season, the ISIP is considered more appropriate for the determination of \(\dot{V}O_{2\text{max}} \), and is therefore prescribed.

Chapter 4 consisted of the second article that was prepared according to the guidelines of *The Journal of Science and Medicine in Sport* and was titled: “A comparison between the cardiorespiratory responses of a non-motorized and motorized treadmill protocol”. The purpose of this article was to compare the two running modalities, namely the MT and the Curve NMT, by means of two GXT protocols: the AISP performed on a MT and the ANMIP, which was performed on the Curve NMT. From the results obtained, the ANMIP was perceived as substantially more difficult than the AISP both physiologically and psychologically (RPE). The ANMIP attained significantly (p<0.05) higher \(\dot{V}O_{2\text{max}} \) values (66.7 \(\pm \) 4.0 vs. 65.0 \(\pm \) 4.4 ml/kg/min) in a significantly
Despite these last-mentioned differences in favor of the ANMIP, the VT% (84.1 ± 4.3 vs. 75.7 ± 1.76%) and RCP% (97.2 ± 2.4 vs. 93.3 ± 3.9%) of \(\dot{V}O_2 \text{max} \) attained by the ANMIP were not practical for exercise prescription and rather suggested the manifestation of the \(\dot{V}O_2 \) “slow component”. The higher exercise demand of the ANMIP inherently increases both recruitment of type II muscle fibers as well as ventilation and therefore the oxygen cost of exercise is higher. Nonetheless, the GXT protocol conducted on the Curve NMT can be considered adequate in eliciting the highest cardiorespiratory response if results are not used for exercise prescription.

5.2 CONCLUSION

The conclusions drawn from this research study are presented in accordance with the set hypotheses from Chapter 1:

Hypothesis 1

The MT incline GXT protocol will elicit statistically significantly higher (p<0.05) cardiorespiratory responses (\(\dot{V}O_2 \text{max} \), RER, RCP, and \(T_{\text{lim}} \)) in elite male university-level distance runners compared to the MT speed GXT protocol.

(Incline GXT protocol – ISIP; Speed GXT protocol – AISP)

Hypothesis 1 is partially accepted, since the results obtained for the ISIP is statistically significantly (p<0.05) higher for the majority responses of RCP, \(\dot{V}O_2 \text{max} \) and \(T_{\text{lim}} \) compared to the AISP, but is not statistically significantly higher for the RER value. Also, all values of the intensity markers, namely the VT and RCP attained from the ISIP and the AISP, do not differ statistically significantly.

Hypothesis 2

A NMT GXT protocol will elicit statistically significantly higher (p<0.05) cardiorespiratory responses (\(\dot{V}O_2 \text{max} \), RER, RCP, and \(T_{\text{lim}} \)) in elite male university-level distance runners compared to a MT GXT protocol.

(NMT GXT protocol – ANMIP; MT GXT protocol – AISP)

Hypothesis 2 is partially accepted owing to significantly higher (p<0.05) values obtained by the ANMIP concerning responses of \(\dot{V}O_2 \text{max} \) and RCP as well as a statistically significantly shorter
(p<0.05) T_{lim} than the AISP. No significant (p<0.05) differences were, however, measured between the RER values of the ANMIP and the AISP. Even though the ANMIP performed on the Curve NMT attained significantly higher (p<0.05) VO_{max}, VT, and RCP responses, the ANMIP’s attained intensity markers were too high, and therefore not practical for exercise prescription. Ventilatory threshold and RCP values are expected to occur at approximately 65% and 90% respectively. Training at the attained VT and RCP responses of the ANMIP might cause overtraining.

All GXT protocols performed are considered adequate GXT protocols in attaining high cardiorespiratory responses. More specifically, the highest VO_{max} value was attained by the ISIP, followed by the ANMIP and the AISP. In addition, the cardiorespiratory responses obtained by each GXT protocol were unique to the specific GXT protocol with regard to HR_{max}, VO_{max}, RER, T_{lim}, VT, RCP and RPE attained. However, for determination of the highest cardiorespiratory responses on a MT, the ISIP is recommended. For the determination of intensity markers for use in exercise prescription, both the ISIP and AISP attained VT and RCP values within acceptable parameters. Furthermore, when comparing the cardiorespiratory responses obtained by the ANMIP and AISP, the ANMIP’s values exceeded those of the AISP and were therefore considered superior. However, the ANMIP is not recommended for exercise prescription owing to the attainment of impractically high intensity markers that when used might lead to overtraining.

The Curve NMT ANMIP’s workload and time intervals need to be reconsidered because of the occurrence of extreme exhaustion among participants. All measures of the ANMIP exceed those of the AISP, and therefore the exercise intensity on the Curve NMT is considered to be higher than on the MT, probably caused by additional recruitment of type II muscle fibers as well as increased ventilation, resulting in the manifestation of the $\dot{V}O_2$ "slow component". Extremely intense exercise such as the ANMIP is considered so intense that exhaustion intervenes before higher VO_{max} values are attained. The ANMIP is therefore considered too intense and consequently not suitable for VO_{max} testing of this specific population.

5.3 LIMITATIONS AND RECOMMENDATIONS

To the researchers’ knowledge, this is the first study to investigate GXT protocols on a MT and Curve NMT to determine which running modality and matching GXT protocol to use when evaluating elite male university-level distance runners. Although this research study contributed
valuable information on the use of running modalities as well as the use of GXT protocols, several limitations should be considered, along with recommendations relevant to this area of research:

- The ANMIP’s VT and RCP intensity markers were found impractical for exercise prescription. The attainment of these extremely high values was unexpected. To limit the effect familiarization sessions may have on performance, more familiarization sessions are therefore advised on the Curve NMT.

- The occurrence of the $\dot{V}O_2$ “slow component” could not be confirmed from results because of the lack of blood lactate sampling. The use of blood lactate sampling as part of the VO_2max criterion should consequently be considered strongly for future studies.

- From the MT GXT protocol results obtained, it was clear that 1 km/h and 1% gradient increases per time interval could not be compared, as 1 km/h increases were more intense, as indicated by the cardiorespiratory responses obtained. Future researchers are therefore advised to compare GXT protocols with 1km/h increases to GXT protocols with gradient increases greater than 1% increases for a closer comparison.

- The results of this research study were in favor of the ISIP; however, the population used in this research study participated in both track and cross-country season and therefore followed two training regimens. Future researchers are advised to make use of a population that specifically focuses on a single season to determine the effect of a single training regime on the GXT protocol considered specific to the population.
APPENDIX A: RESEARCH METHOD AND PROCEDURE
RESEARCH METHOD AND PROCEDURE

1. RESEARCH METHOD

1.1. LITERATURE SEARCH

The following databases and search engines were used to compile chapter one: Google Scholar, Science Direct, EBSCOhost, Sabinet References, SAePublications. These electronic databases were used to search for the following key words: Motorized treadmill; non-motorized treadmill; maximum oxygen consumption; protocols; running intensity; incremental incline protocol; incremental speed protocol; graded exercise test.

1.2. EMPIRICAL DESIGN

1.2.1. RESEARCH DESIGN

The research design was a once-off cross-sectional design using convenience sampling.

2. PARTICIPANTS

Twelve elite male university-level distance runners (age: 21.8 ± 3.0 yrs.; stature: 178.2 ± 6.5 cm, body weight: 66.7 ± 4.7 kg) from a university in the North-West Province of South Africa were recruited to participate in this study by using the inclusion criteria to identify eligible participants. The North-West University’s (NWU) middle- and long-distance runners’ coach was approached and he was given a detailed explanation of the study design. The coach indicated his willingness to co-operate and gave permission for his athletes to be used as participants in the study. The study design and purpose of the investigation were explained to all potential participants. Participation in this study was entirely voluntary. Informed consent (Appendix C) was sought from all participants one week before the onset of the familiarization sessions.

The following inclusion criteria were applied for participation in the study:

- Participants had to be male and involved in middle- and long-distance running at senior university level;
- Participants had to participate in track and cross-country competitions at university level;
- Participants had to be free of any injuries at the time of testing;
- Only participants who had completed the proposed familiarization sessions were considered eligible to participate in this study;
- Only participants who provided voluntary consent were allowed to participate in this study;
- Only participants who completed the Physical Activity Readiness Questionnaire (PAR-Q) (Appendix D) and hydration status and recovery questionnaire (Appendix E) (Howley & Franks, 2007:23) on all occasions were allowed to participate in this study; and
- Participants had to indicate their Borg Scale (Borg, 1982:377) level when carrying out the treadmill tests.
Athletes who adhered to the following guidelines were allowed to participate in this study:

- Participants who did not eat for two hours prior to the testing sessions (Haff & Dumke, 2012:211);
- Participants who did not drink alcohol or coffee for 12 hours prior to the testing sessions (Wilmore et al., 2008:360;363); and
- Participants who did not train hard for 48 hours prior to each testing session (Broeder et al., 1992:803) and were well rested (Haff & Dumke, 2012:211).

The following exclusion criteria were applied for study participation:

- All participants who did not adhere to the above-mentioned criteria were excluded from the study.
- Participants were also excluded from the study if they were injured or became ill at any time during the testing period.
- Participants were excluded from the study if they voluntarily withdrew from the study at any time.

To ensure that the participants did not participate in any strenuous training 48 hours prior to the scheduled tests, the coach was requested to provide information on prior training sessions to the research team. The participants had to maintain the same diet during the week of testing and had to arrive at the testing sessions in a rested and fully hydrated state.

3. MEASURING INSTRUMENTS AND EQUIPMENT

3.1. OXYCON PRO STATIC ERGO SPIROMETRY SYSTEM

The Oxycon Pro static ergo spirometry system (OP) (Jaeger Oxycon Pro, Viasys, 22745, Savi Ranch Parkway, Yorba Linda, CA, USA) produces similar respiratory results to those of the Douglas bag (DB) (Carter & Jeukendrup, 2002:438). The OP was a valid system for measuring cardiorespiratory responses such as \(\dot{V}_O_2 \), \(\dot{V}_C_O_2 \) and respiratory exchange ratio (RER) (OP = coefficient of variation (CV): 2.7-4.8%; DB = CV: 1.8-2.3%) (Carter & Jeukendrup, 2002:440). The OP static ergospirometry system was calibrated once on each test day at the beginning of the day. The system was calibrated as instructed by the Viasys Oxcon Pro Manual (Viasys Healthcare, 2004:24-32). A spirometry test was completed before the test according to the Oxycon Pro Static Unit Manual as part of the calibration procedures (Viasys Healthcare, 2004:39-41).

3.2. POLAR HEART RATE MONITOR BELT

A Polar heart rate monitor belt (T34) was used along with the above-mentioned system to record heart rate (HR) data of participants.
3.3. **TREADMILLS**

During this study two different treadmills were used – the motorized Woodway Pro XL treadmill (Woodway, W229 N591, Foster Ct, Waukesha, WI) and the non-motorized Curve 1 treadmill (Woodway, W229 N591, Foster Ct, Waukesha, WI).

3.4. **STATURE AND BODY WEIGHT**

Stature (Stadiometer- AHP001) and body weight (scale - TSCALE RW/BBQ-3040 GYM scale) were determined on the day of the test on arrival at the laboratory at the beginning of each session to create a profile for each participant.

4. **MEASURING PROTOCOLS:**

- **Incremental Speed and Incline Protocol (ISIP)** – The ISIP was adapted from Hamlin and colleagues’ athlete-led protocol (2012). Hamlin et al.’s (2012:99) GXT began at a starting speed of 10 km/h, with increases of 1 km/h each minute until a comfortable running pace was reached. The ISIP’s comfortable running pace was set at 15 km/h. Thereafter the gradient was increased each minute by 1% gradient until voluntary exhaustion (Hamlin et al., 2012:99).

- **Adapted Incremental Speed Protocol (AISP)** – The AISP was adapted from the speed GXT protocol of Davies et al. (1984:75). Davies et al.’s (1984:75) GXT began at a starting speed of 14 km/h, with increases of 1 km/h each minute until voluntary exhaustion. The starting speed of the AISP was adapted from 14 km/h to 10 km/h to allow comparability between results obtained from the MT and the Curve NMT.

- **Adapted Non-Motorized Incremental Speed Protocol (ANMIP)** - The ANMIP performed on the Curve NMT was adapted from the NMT GXT protocol of Davies et al. (1984:75). The ANMIP started at a starting speed of 10 km/h with a 2 km/h increase every 3 minutes until voluntary exhaustion. The time intervals of the ANMIP had been adapted from 3 minutes to 2 minutes to allow comparability each 2 minutes with the AISP. Because of pacing difficulty on the NMT, 2-minute rather than 1-minute time intervals were selected, consequently allowing athletes to achieve a steady state in cardiorespiratory responses.

The ANMIP and AISP were adapted according to the guidelines of Hamlin et al. (2012:99). These GXT protocols had to be adapted to enable the researcher to compare the different GXT protocol responses.

5. **FAMILIARIZATION SESSIONS**

Before the commencement of the study each participant was introduced to the MT, NMT, three different treadmill running GXT protocols, Polar heart rate belt as well as the spirometry system and apparatuses. Two familiarization sessions on both the MT and NMT were completed two
weeks prior to the tests before the study commenced. Only part of each GXT protocol was completed during the familiarization sessions because of the physical strain of each of the GXT protocols. The familiarization session demanded nothing more than a comfortable running pace to which participants were used in regular training. This pace could therefore differ from one participant to the next. The familiarization GXT protocols were completed in the following manner:

- Each session started with a 10 minute warm-up that included a 1 km run on the specified treadmill at 10 km/h, along with specified stretches. After completing the 1 km run, the prescribed stretching exercises were done. The treadmill familiarization GXT protocols were carried out as follow:

1. ISIP simulation - The ISIP’s familiarization sessions started at a running speed of 10 km/h and increased by 1 km/h until 13 km/h was reached. Gradient was applied thereafter until a comfortable running pace was reached. Athletes kept running until 10 minutes had passed.
2. AISP simulation - The AISP’s familiarization sessions started at 10 km/h and increased each 1 minute by 1 km/h until a comfortable running pace had been reached. The athlete kept running for 10 minutes.
3. ANMIP simulation – The ANMIP’s familiarization sessions started at 10 km/h and increased by 2 km/h each 2 minutes until a comfortable running pace had been reached. The athlete kept running for 10 minutes.

During the familiarization sessions, participants were also taught how to self-terminate treadmill tests voluntarily when exhaustion set in. In this regard participants were shown how to jump off the MT and how to decelerate the NMT to a stop.

6. PROCEDURE

At the start of the experimental period (familiarization sessions and tests) each participant completed an informed consent form that was handed to him one week before commencement of the familiarization sessions by the researcher. The informed consent forms were collected by the researcher when the familiarization sessions started. Every day before the start of testing, participants completed the PAR-Q (Appendix D) and hydration status and recovery questionnaire (Appendix E). The three GXT protocols were conducted in a time frame of five days (day 1, 3 and 5) starting with the incline GXT protocol (ISIP) and Speed GXT protocol (AISP), followed by the speed GXT NMT protocol (ANMIP). Each participant performed each test at exactly the same time of day. The temperature of the laboratory was monitored to stay within 19 to 21°C throughout the testing period.

Stature and body weight were determined before commencement of the test, with minimum clothing and without shoes. This was done in a private room. These measurements were used to
describe participants’ anthropometric profiles. A Polar heart rate monitor was also fitted to each participant’s chest.

The participants completed a warm-up of 10 minutes that included a 1 km run at 10 km/h on the specified treadmill on which the test was conducted on that day (Davies et al., 1984:75). One set of dynamic stretches of 10 repetitions was performed for the upper and lower body (McMillian et al., 2006:494), with the focus placed on muscles that were primarily involved during running: hip, knee and ankle flexors and extensors (Faccioni, 2002:8), as well as shoulder extensors and flexors.

After a complete warm-up the following steps were followed:

Before completion of the GXT protocols: The specific GXT protocol was explained in depth with regard to the speed, gradient and specific time intervals, as well as the means of communication (hand signals to indicate participant fatigue and condition). A basic signaling system was used: thumbs up - continue; thumbs down - stop at the end of the running level or “I am exhausted”. Participants were reminded of the way in which the test could be ended when they could no longer continue. Participants were requested to sit down to fit the mask over their nose and mouth. The mask had to fit comfortably but had to be tight enough to ensure that there were no gaps where expired air could escape. The mask was then fitted to the air-flow meter, after which a spirometry test was performed.

While the test loaded, the participant stepped onto the treadmill for test commencement. As soon as the treadmill reached a speed of 10 km/h, the breath-by-breath analysis was activated and data was recorded from the beginning of the test.

During the GXT protocol: Participants were motivated to achieve the highest possible test level. Updates of progress were provided throughout the test. Before a new test level started, the participant was informed and was motivated to continue. At the end of each test level, before progressing to the next level, participants indicated their rate of perceived exertion (RPE) by using Borg’s RPE scale (Borg, 1982:377): This scale ranged from 0 (feeling nothing at all) to 10 (very, very hard). Participants were requested to grade the perceived difficulty of each level. At the end of the test, the final RPE level was also documented.

If participants could not proceed to the next level, the test was terminated manually. The system and MT were stopped. The mask was removed immediately. When the protocol on the NMT was performed, the athlete had to stop the belt by running more slowly and then stopping it themselves.

After the GXT protocol: After completion of the test the participants were asked to sit down and to rest passively on a chair for 5 minutes to record resting heart rate values at 1, 3 and 5 minutes.
7. DETERMINATION OF GAS EXCHANGE POINTS AND $\dot{V}O_{2\text{max}}$

Two members of the research team determined the RCP and VT by using the set guidelines for identification. The VT and RCP were determined by using a plotted graph on which the increases and decreases of $\dot{V}E/\dot{V}O_2$ and $\dot{V}E/\dot{V}CO_2$ values for the different incremental levels were displayed. The VT was identified as the point where the $\dot{V}E/\dot{V}O_2$ increased without a corresponding change in the $\dot{V}E/\dot{V}CO_2$, or departure in the linearity of the $\dot{V}E$ line. The RCP was identified as the point where both the $\dot{V}E/\dot{V}O_2$ and $\dot{V}E/\dot{V}CO_2$ increased dramatically (Chicharro et al., 2000:451). A third sport scientist was consulted if the members of the research team disagreed (Chicharro et al., 2000:453).

The criterion that was applied to determine if participants had reached their $\dot{V}O_{2\text{max}}$ values were the following (Christie & Lock, 2001:19; Hamlin et al., 2012:99):

- The attainment of a plateau where a <150 ml/min increase was observed despite increases in treadmill gradient or speed (Haff & Dumke, 2012:210; Hamlin et al., 2012; Davis, 2006:15);
- The attainment of a RER equal to or greater than 1.15 (Astrand et al., 2003:235);
- The attainment of a maximum heart rate: 208 – (0.7 x age) (Tanaka et al., 2001:154-155; Wilmore et al., 2008:163);
- The attainment of the subjective rating of RPE on the category ratio scale10 (CR10) of 10 (Borg & Kaijser, 2006:58).

The attainment of two of the above-mentioned responses were considered adequate for the attainment of a $\dot{V}O_{2\text{max}}$. In cases where only one criterion was attained, the test was deemed to be a peak aerobic capacity (Christie & Lock, 2001:19) and participants were excluded from this research study.

8. ETHICAL CONSIDERATIONS

Before commencement of the research project ethical approval was obtained from the Health Research Ethics Committee of the Faculty of Health Science of the NWU. All athletes who participated in this study were required to sign an informed consent form that was handed to them by the researcher prior to the familiarization sessions (Appendix A). The researcher collected the consent forms before the familiarization sessions. The risks, precautions and benefits of participation were thoroughly explained in the informed consent form. Participants would benefit by receiving a personal report by e-mail that could help individualize training programs and improve performance. The participants’ coach benefitted by receiving a complete report on all participants’ results. All reports were distributed two weeks after completion of the experimental
period. Other researchers can benefit from broadened knowledge of middle- and long-distance runners’ aerobic ability, including the effect different protocols and different testing apparatus would have on cardiorespiratory responses. This knowledge can be used in other testing facilities to achieve optimal values from middle- and long-distance runners. The study design and purpose of this investigation were explained to potential participants four weeks prior to the testing period and one week later the familiarization sessions started. Anonymity and confidentiality of each participant’s results were ensured by assigning a code to each participant that was only known to the researcher. It would not be possible to identify a participant in the final data set. The potential participants’ coach was informed and permission was granted to use the athletes as participants in the study. Study procedures were explained to the coach and athletes in depth. Participation in this study was completely voluntary. The participants were under no obligation to participate in the study and were free to withdraw if they saw fit to do so.

No other physical, psychological or social stressors than those normally encountered by the athletes when participating in middle- and long-distance events were experienced by the athletes during study participation. Our team of researchers and assisting sport scientists took responsibility for the athlete’s warm-up. Even though the athletes were active and healthy, an accredited level 2 first-aid consultant was present throughout the duration of the study and a medical practitioner was on standby at all times. An automated external defibrillator was also available in case of emergency. Participants might feel nauseous, fatigued, exhausted, light-headed or short of breath or develop a headache during participation in the study. All password-protected electronic data and hard copies of the results will be kept locked in a research office at the NWU Potchefstroom campus for a minimum of seven years and then destroyed.
REFERENCES

ETHICS APPROVAL CERTIFICATE OF PROJECT

Based on approval by Health Research Ethics Committee (HREC), the North-West University Institutional Research Ethics Regulatory Committee (NWU-IRERC) hereby approves your project as indicated below. This implies that the NWU-IRERC grants its permission that, provided the special conditions specified below are met and pending any other authorisation that may be necessary, the project may be initiated, using the ethics number below.

Project title: A comparison between the cardiorespiratory responses of motorized and non-motorized treadmill protocols.

Project Leader: Dr Y Willemsen

Ethics number: NWU - 010120115A1

Approval date: 2015-10-28 **Expiry date:** 2016-11-30 **Risk:** Minimal

Special conditions of the approval (if any): None

General conditions:
While this ethics approval is subject to all declarations, undertakings and agreements incorporated and signed in the application form, please note the following:

- The project leader (principal investigator) must report in the prescribed format to the NWU-IRERC:
 - annually (or as otherwise requested) on the progress of the project;
 - without any delay in case of any adverse event (or any matter that interrupts sound ethical principles) during the course of the project.
- The approval applies strictly to the protocol as stipulated in the application form. Would any changes to the protocol be deemed necessary during the course of the project, the project leader must apply for approval of these changes at the NWU-IRERC. Would there be deviations from the project protocol without the necessary approval of such changes, the ethics approval is immediately and automatically terminated.
- The date of approval indicates the final date that the project may be started. Would the project have to continue after the expiry date, a new application must be made to the NWU-IRERC and new approval received before or on the expiry date.
- In the interest of ethical responsibility the NWU-IRERC retains the right to:
 - withdraw or postpone approval if:
 - any unethical principles or practices of the project are revealed or suspected;
 - it becomes apparent that any relevant information was withheld from the NWU-IRERC or that information has been false or misrepresented;
 - the required annual report and reporting of adverse events was not done timely and accurately;
 - new institutional rules, national legislation or international conventions deem it necessary.

The IRERC would like to remain at your service as scientist and researcher, and wishes you well with your project. Please do not hesitate to contact the IRERC for any further enquiries or requests for assistance.

Yours sincerely,

Linda du Plessis

Prof Linda du Plessis
Chair NWU Institutional Research Ethics Regulatory Committee (IRERC)
Title of the Research Project:
A Comparison Between the Cardiorespiratory Responses of Motorized and Non-Motorized Treadmill Protocols

Reference Numbers: (NWU-00201-01-15-A1)
Principal Investigator:
Mrs Jana Storm

Address:
North-West University
Faculty of Health Sciences
Private Bag X6001
Potchefstroom
2522

Contact Number:
018 299 4441

You are being invited to take part in a research project that forms part of my Masters Study. Please take some time to read the information presented here, which will explain the details of this project. Please ask the researcher any questions about any part of this project that you do not fully understand. It is very important that you are fully satisfied that you clearly understand what this research entails and how you could be involved. Also, your participation is entirely voluntary and you are free to decline to participate. If you say no, this will not affect you negatively in any way whatsoever. You are also free to withdraw from the study at any point, even if you do agree to take part.

This study has been approved by the Health Research Ethics Committee of the Faculty of Health Sciences of the North-West University (NWU-00201-01-15-A1) and will be conducted according to the ethical guidelines and principles of the international Declaration of Helsinki and the ethical guidelines of the National Health Research Ethics Council. It might be necessary for the research ethics committee members or relevant authorities to inspect the research records.

What is this research study all about?

- This study will be conducted in the lab of the Institute for Sport Science and Development at the High Performance Institute of the North West University, Potchefstroom Campus.
This will involve a Sport Scientist measuring your maximal aerobic capacity ($\dot{V}O_{2\text{max}}$) by using three different treadmill protocols. The size of this group will be between at least 20 participants.

The objectives of this research are to:

- Compare the cardiorespiratory responses (RER, VT, RCP, VE, $\dot{V}O_{2\text{max}}$, time to exhaustion) of distance runners when performing two different incremental MT protocols (incremental speed and combined incremental speed and incline protocol).

- Compare the cardiorespiratory responses (RER, VT, RCP, VE, $\dot{V}O_{2\text{max}}$, time to exhaustion) of distance runners when performing an incremental MT and NMT protocol.

Why have you been invited to participate?

You have been invited to participate in this study because you are an elite male university-level distance runner at senior level from the North-West University, Potchefstroom Campus.

You have also complied with the following inclusion criteria:

- You are between 18 and 25 years old;
- You participate in university student track and cross-country competition during the 2015 season;
- You are free of injuries at the time of the study;
- You are willing to complete the proposed familiarization sessions;
- You are willing to provide voluntary consent to participate in this study;
- You are willing to complete the hydration status recovery questionnaire (Appendix E) as well as the Physical Activity Readiness Questionnaire PAR-Q (Appendix D) on all occasions;
- You are willing to indicate your level of perceived exertion by indicating the appropriate Borg Scale level during execution of the treadmill tests as well as answer all questions after execution of each treadmill protocol, and
- You adhere to the following guidelines:
 - Do not eat two hours prior the tests;
 - Do not drink alcohol or coffee 12 hours prior the tests;
 - Maintain the same diet during the week of the tests;
 - Arrive hydrated and fully rested;
 - Do not train hard 48 hours prior the tests (the coach will be asked to provide information regarding the last 48 hours' training sessions); and

You will be excluded if:

- You do not adhere to the above mentioned criteria;
• You become injured or fall ill any time during the study, and
• You voluntarily withdraw from the study.

What will your responsibilities be?

➤ You will be expected to:
• Follow the above mentioned guidelines;
• Complete an Informed Consent Form after being informed of the purpose as well as a detailed explanation of the study design. Complete all familiarization sessions:
• Each familiarization session starts off with a warm-up for 5 minutes at 10 km/h on the specified MT and NMT (Incremental Speed and Incline Protocol (ISIP) and Adapted Incremental Speed Protocol (AISP) on the motorized Woodway treadmill; Adapted Non-Motorized Incremental Protocol (ANMIP) on the non-motorized Curve treadmill). After completing the warm-up continue with the prescribed stretching program. Only part of the protocol will be completed during the familiarization sessions because of the physical strain of each of the protocols. The familiarization session demand nothing more than a comfortable running pace as participants do in regular training. This pace can differ from one participant to the next. Followed by the suited treadmill protocol:
 • ISIP simulation- - the starting speed will be set at 10 km/h after which a speed increase of 1 km/h every minute for 3 minutes will be set. For each minute after the 3 minute duration the incline will be increased by 1 degree until a comfortable pace is reached. The athlete will then be required to maintain this running speed for 10 minutes.
 • AISP simulation - the starting speed will be set at 10 km/h after which a speed increase of 1 km/h every minute will be set until a comfortable pace is reached. The athlete will then be required to maintain this running speed for 10 minutes.
 • ANMIP simulation - the starting speed will be set at 10 km/h after which a speed increase of 2 km/h every 2 minutes will be set until a comfortable pace is reached. The athlete will then be required to maintain this running speed for 10 minutes.
• Learn how to stop the test voluntarily on the MT and how to decelerate the NMT to a stop.
• Complete a hydration status and recovery questionnaire (Appendix E) as well as the activity questionnaire PAR-Q (Appendix D) after each testing day.

Tests:
• On arrival body composition measurements will be taken namely stature and body weight. These measurements will be taken in a private and designated area. You will be requested to wear minimal clothing as is comfortable to you.

• Three maximal aerobic tests will be conducted two days apart. Each test will be explained on the designated days of testing. Tests will be conducted in the following order – 1. ISIP; 2. AISP and 3. NMIP. Each test will be conducted at the same time of day.

• The protocol being tested on the day will be explained in depth (ISIP, AISP, or ANMIP)

• You will complete a 5-min warm-up at a speed of 10 km/h on the specific treadmill on which the test will be conducted for that day (Davies et al., 1984:75). One set of dynamic stretches of 10 repetitions will be performed for the upper and lower body with the focus placed on muscles that are primarily involved during running: hip, knee and ankle flexors and extensors as well as shoulder extensors and flexors. Protocol A and B’s warm-up will be done on the motorized Woodway treadmill and protocol C’s warm-up will be done on the non-motorized Curve treadmill.

• Before the test can start you will be fitted with a breathing mask, Polar S3 stride sensor and Polar heart rate monitor followed by a spirometry test which is part of the calibration.

• The following three protocols will be conducted on designated days:
 ➢ **A Incremental Speed and Incline Protocol (ISIP)** – The test will start at a starting speed of 10 km/h with increases of 1 km/h each minute until a speed of 15 km/h is reached. Thereafter the incline will be increased each minute by 1 degree until voluntary exhaustion (Hamlin et al., 2012:99);
 ➢ **B Adapted Incremental Speed Protocol (AISP)** – The test will start at a starting speed of 10 km/h with increases of 1 km/h each minute until voluntary exhaustion; and
 ➢ **C Adapted Non-motorized Incremental Speed Protocol (ANMIP)** - The test will start at a starting speed 10 km/h with a 2 km/h increase every 2 min until voluntary exhaustion.

• You will be asked to rate the perceived exertion on a Borg scale from one to ten of each completed level as the test is conducted (0 - feeling nothing at all, to 10 - very very hard).

• After each protocol a series of questions will be posed that must be answered truthfully:
 • What caused you to stop the test?
 • Are you cardiovascularly exhausted or is your body tired?
 • At what level did you start to experience difficulty in executing the test?
 • Are you completely exhausted or would you be able to go further?

• After completing all three test protocols, you will then be asked to name the most exhausting test, and

➢ To place them in order from easy to hard.

Will you benefit from taking part in this research?
The direct benefits for you as a participant will be that you will have access to your results by means of a personal report which they will receive two weeks after all tests have been conducted.

The data gathered could enable you as middle and long distance runner, as well as your coach, to individualize and specify your training program accordingly, and help you to improve your performance.

Your coach will also receive a complete report of all participants’ data.

The indirect benefit will be broadening sport science knowledge with regard to middle and long distance runner’s aerobic ability. This includes the effect different protocols have on cardiorespiratory parameters as well as the effect different testing apparatus will have on these parameters. This knowledge could be used in other testing facilities to achieve optimal values from distance runners.

Are there risks involved in your taking part in this research?

The risks in this study are:

Physical discomfort: No more physical discomfort will be encountered than discomfort normally felt by participating in middle and long distance running. Our team of researchers and assisting sport scientists will take responsibility for the warm-up. An accredited level 2 first aid consultant will be present throughout the duration of the study with a medical practitioner on standby at all times (a phone call away: Dr. Koba van der Walt);

Physical exhaustion: The maximal aerobic capacity test is a maximal performance test and needs to be done till complete exhaustion. You are free to stop the test at any time in case of nausea, fatigue, exhaustion, light headedness, shortness of breath or at the presence of a headache. An Automated External Defibrillator (AED) will also be available in case of an emergency;

Social stress: No negative influence due to the presence of other participant’s are anticipated. Each participant will be tested separately and will be motivated to achieve the highest level;

Injury during the experimental period: The participants will not be exposed to additional risk due to the research being conducted, in addition to that related to participating in middle and long distance runners. An accredited level 2 first aid consultant will be present throughout the duration of the study with a medical practitioner on standby at all times; and

Anonymity: Anonymity will be partial to protect the participants as individuals. Confidentiality will be ensured by assigning a code to each participant only known by the researchers. In the final dataset it will not be possible to identify participants. Reporting of findings will be anonymous by not using any individual identifiers in any publications resulting from this study. Only researchers involved in this study will have access to the
data. All data will be locked up in cupboard in the researcher’s office. All electronic data will be erased from all computers and a single copy will be password protected and kept with the hard copies of data in the locked cupboard for 7 years.

- These risks are seen as minimal risks,
- The benefits outweigh the risk.

What will happen in the unlikely event of some form of discomfort occurring as a direct result of your taking part in this research study?

- **Should you have the need for further discussion after the physical or social discomfort which might be experienced after the testing procedure, an opportunity will be arranged for you to consult with the research team.**

Who will have access to the data?

- Anonymity will be partial to protect you as an individual. Confidentiality will be ensured by assigning a code to you only known by the researcher. It will not be possible to identify you in the final data set. Reporting of findings will be anonymous by not using any individual identifiers in any publications resulting from this study. Only researchers involved in this study will have access to the data. All data will be locked up in cupboard in the researcher’s office. All electronic data will be erased from all computers and a single copy will be password protected and kept with the hard copies of data in the locked cupboard for 7 years whereafter it will be destroyed.

What will happen with the data/samples?

- **This is a once off collection that will take place in the 2015/2016 middle and long distance season, data will be analyzed here in South Africa.**

Will you be paid to take part in this study and are there any costs involved?

No, you will **not be paid to take part in the study but water and Energade will be provided during and after the testing. You will receive a report of your testing results and will receive a voucher for a maximal aerobic test valid for the following 6 months to if you complete all aspects of the study project. There will be no costs involved for you as participant if you do take part. You are a NWU students and the ISSD is situated at your training grounds. You will have no additional travel expenses during the testing period, as the test will be the only activity you will have to perform that day.**

Is there anything else that you should know or do?
➢ You can contact Mrs Jana Storm at 018 299 441 if you have any further queries or encounter any problems.

➢ You can contact the Health Research Ethics Committee via Mrs Carolien van Zyl at 018 299 2089; carolien.vanzyl@nwu.ac.za if you have any concerns or complaints that have not been adequately addressed by the researcher.

➢ You will receive a copy of this information and consent form for your own records.

How will you know about the findings?

➢ The findings of the research will be shared with you if you are interested. You are welcome to contact us regarding the findings of the research. We will be sharing the findings with you as soon as it is available by providing you with a personal report of each of the tests conducted by e-mail. You will receive a report of your results by means of a personal report which you will receive two weeks after all tests have been conducted.
Declaration by participant
By signing below, I ………………………………………………… agree to take part in a research study titled: Maximal oxygen consumption during an incremental aerobic test: A comparative study between motorized and non-motorized treadmill protocols

I declare that:

- I have read this information and consent form and it is written in a language with which I am fluent and comfortable.
- I have had a chance to ask questions to both the person obtaining consent, as well as the researcher and all my questions have been adequately answered.
- I understand that taking part in this study is voluntary and I have not been pressurized to take part.
- I may choose to leave the study at any time and will not be penalized or prejudiced in any way.
- I may be asked to leave the study before it has finished, if the researcher feels it is in my best interests, or if I do not follow the study plan, as agreed to.

Signed at (place) ... on (date) 20....

... ...
Signature of participant Signature of witness
Declaration by person obtaining consent

I (name) .. declare that:

- I explained the information in this document to ..
- I encouraged him/her to ask questions and took adequate time to answer them.
- I am satisfied that he/she adequately understands all aspects of the research, as discussed above
- I did/did not use an interpreter.

Signed at (place) ... on (date) 20....

... ...
Signature of person obtaining consent Signature of witness
Declaration by researcher

I (name) …………………………………………………………………. declare that:

- I explained the information in this document to …………………………………
- I encouraged him/her to ask questions and took adequate time to answer them.
- I am satisfied that he/she adequately understands all aspects of the research, as discussed above
- I did/did not use an interpreter.

Signed at (place) ... on (date) 20....

..
Signature of researcher Signature of witness
APPENDIX D: PHYSICAL ACTIVITY AND READINESS QUESTIONNAIRE
Physical Activity Readiness Questionnaire (PAR-Q) and You

Regular physical activity is fun and healthy, and increasingly more people are starting to become more active every day. Being more active is very safe for most people. However, some people should check with their doctor before they start becoming much more physically active.

If you are planning to become much more physically active than you are now, start by answering the seven questions in the box below. If you are between the ages of 15 and 69, the PAR-Q will tell you if you should check with your doctor before you start. If you are over 69 years of age, and you are not used to being very active, check with your doctor.

Common sense is your best guide when you answer these questions. Please read the questions carefully and answer each one honestly:

YES or **NO**

1. Has your doctor ever said that you have a heart condition and that you should only do physical activity recommended by a doctor?
2. Do you feel pain in your chest when you do physical activity?
3. In the past month, have you had chest pain when you were not doing physical activity?
4. Do you lose your balance because of dizziness or do you ever lose consciousness?
5. Do you have a bone or joint problem that could be made worse by a change in your physical activity?
6. Is your doctor currently prescribing drugs (for example, water pills) for your blood pressure or heart condition?
7. Do you know of any other reason why you should not do physical activity?

YES to one or more questions

If you answered: Talk to your doctor by phone or in person BEFORE you start becoming much more physically active or BEFORE you have a fitness appraisal. Tell your doctor about the PAR-Q and which questions you answered YES.
- You may be able to do any activity you want – as long as you start slowly and build up gradually. Or, you may need to restrict your activities to those which are safe for you. Talk with your doctor about the kinds of activities you wish to participate in and follow his/her advice.

NO to all questions

If you answered NO honestly to all PAR-Q questions, you can be reasonably sure that you can:
- Start becoming much more physically active – begin slowly and build up gradually. This is the safest and easiest way to go.
- Take part in a fitness appraisal – this is an excellent way to determine your basic fitness so that you can plan the best way for you to live actively.

Delay becoming much more active:
- If you are not feeling well because of a temporary illness such as a cold or a fever – wait until you feel better; or
- If you are or may be pregnant – talk to your doctor before you start becoming more active.

Please note: If your health changes so that you then answer YES to any of the above questions, tell your fitness or health professional. Ask whether you should change your physical activity plan.

Informed use of the PAR-Q: The Canadian Society for Exercise Physiology, Health Canada, and their agents assume no liability for persons who undertake physical activity, and if in doubt after completing this questionnaire, consult your doctor prior to physical activity.

I have read, understood and completed this questionnaire. Any questions I had were answered to my full satisfaction.

Name _________________________________
Signature ______________________________ Date _________________________________
Signature of Parent ______________________ Witness ______________________________
or Guardian (for participants under the age of majority)
APPENDIX E: HYDRATION STATUS AND RECOVERY QUESTIONNAIRE
Hydration status and recovery questionnaire:

Study Project Title: A comparison between the cardiorespiratory responses of motorized and non-motorized treadmill protocols

Name and Surname: ___

Date: _________________________________

Please complete the following questions that are related to your participation in this study project:

1. Which protocol will you be participating in today?
 Mark correct block

 ISIP
 AISP
 ANMIP

2. How many hours did you sleep during the previous night?
 2 hours 3 hours 4 hours 5 hours 6 hours 7 hours 8 hours 9 hours 10 hours

3. Rate the quality of sleep of the previous night:
 Very Poor Poor Average Good Very Good

4. Are you currently experiencing any muscle soreness?
 None Some A lot

5. How much fluid have you consumed in the last 24hrs:
 500ml 1l 1.5l 2l 3l 3.5l 4l
APPENDIX F

ISIP DATA SHEET

Date of test: ___________________________

Protocol 1

Name and Surname: ___________________________

Birth date: ___________________________

Height: ___________________________

Weight: ___________________________

<table>
<thead>
<tr>
<th>Time</th>
<th>Interval</th>
<th>Speed</th>
<th>Heart rate</th>
<th>RPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:00</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:00</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:00</td>
<td>3</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:00</td>
<td>4</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:00</td>
<td>5</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:00</td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:00</td>
<td>7</td>
<td>15+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:00</td>
<td>8</td>
<td>15+2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00</td>
<td>9</td>
<td>15+3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>10</td>
<td>15+4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>11</td>
<td>15+5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>12</td>
<td>15+6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td>13</td>
<td>15+7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>14</td>
<td>15+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>15</td>
<td>15+9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>16</td>
<td>15+10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td>17</td>
<td>15+11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>18</td>
<td>15+12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td>19</td>
<td>15+13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td>20</td>
<td>15+14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOVERY

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AISP DATA SHEET

Protocol 2

AISP

<table>
<thead>
<tr>
<th>Time</th>
<th>Interval</th>
<th>Speed</th>
<th>Heart rate</th>
<th>RPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:00</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:00</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:00</td>
<td>3</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:00</td>
<td>4</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:00</td>
<td>5</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:00</td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:00</td>
<td>7</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:00</td>
<td>8</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00</td>
<td>9</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>10</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>11</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>12</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td>13</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>14</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>15</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>16</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOVERY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 min</td>
<td></td>
</tr>
<tr>
<td>3 min</td>
<td></td>
</tr>
<tr>
<td>5 min</td>
<td></td>
</tr>
</tbody>
</table>
ANMIP DATA SHEET

Date of test:

Protocol 3

ANMIP

Name and Surname: ________________________________
Birth date: _____________
Height: _____________
Weight: _____________

<table>
<thead>
<tr>
<th>Time</th>
<th>Interval</th>
<th>Speed</th>
<th>Heart rate</th>
<th>RPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:00</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:00</td>
<td>2</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:00</td>
<td>3</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:00</td>
<td>4</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>5</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>6</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>7</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>8</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>9</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td>10</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOVERY

1 min
3 min
5 min
APPENDIX G: INSTRUCTIONS FOR AUTHORS
FROM THE JOURNAL OF SCIENCE AND MEDICINE IN SPORT
INTRODUCTION
The Journal of Science and Medicine in Sport considers for publication manuscripts in the categories of:
• Original Research
• Review Article

The manuscripts must be in one of the following sub-disciplines relating generally to the broad sports medicine and sports science fields: sports medicine, sports injury (including injury epidemiology and injury prevention), physiotherapy, podiatry, physical activity and health, sports science, biomechanics, exercise physiology, motor control and learning, sport and exercise psychology, sports nutrition, public health (as relevant to sport and exercise), and rehabilitation and injury management. Manuscripts with an interdisciplinary perspective with specific applications to sport and exercise and its interaction with health will also be considered.

Only studies involving human subjects will be considered. Authors must declare that manuscripts submitted to the Journal have not been published elsewhere or are not being considered for publication elsewhere and that the research reported will not be submitted for publication elsewhere until a final decision has been made as to its acceptability by the Journal.

PLEASE NOTE: papers which do not meet the criteria below will be rejected immediately:
• Ensure that English is of good standard
• Ensure Ethics Committee details are as complete as possible
• Ensure all headings and subheadings conform to the Guide for Authors
• References, both in-text and reference list, must be formatted according to the Guide for Authors
• Provide the Figure Legends as part of the text file, at the end of the manuscript
• Include Acknowledgements (this is mandatory)

Submission checklist
You can use this list to carry out a final check of your submission before you send it to the journal for review. Please check the relevant section in this Guide for Authors for more details.

Ensure that the following items are present:
One author has been designated as the corresponding author with contact details:
• E-mail address
• Full postal address

All necessary files have been uploaded:

Manuscript:
• Include keywords
• All figures (include relevant captions)
• All tables (including titles, description, footnotes)
• Ensure all figure and table citations in the text match the files provided
• Indicate clearly if color should be used for any figures in print

Graphical Abstracts / Highlights files (where applicable)

Supplemental files (where applicable)

Further considerations
• Manuscript has been 'spell checked' and 'grammar checked'
• All references mentioned in the Reference List are cited in the text, and vice versa
• Permission has been obtained for use of copyrighted material from other sources (including the Internet)
• Relevant declarations of interest have been made
• Journal policies detailed in this guide have been reviewed
• Referee suggestions and contact details provided, based on journal requirements

For further information, visit our Support Center.

Ethics in publishing

Please see our information pages on Ethics in publishing and Ethical guidelines for journal publication.

Declaration of interest

All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. If there are no conflicts of interest then please state this: 'Conflicts of interest: none'. More information.

Submission declaration and verification

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see 'Multiple, redundant or concurrent publication' section of our ethics policy for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written
consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck.

Clinical trial results
In line with the position of the International Committee of Medical Journal Editors, the journal will not consider results posted in the same clinical trials registry in which primary registration resides to be prior publication if the results posted are presented in the form of a brief structured (less than 500 words) abstract or table. However, divulging results in other circumstances (e.g., investors' meetings) is discouraged and may jeopardise consideration of the manuscript. Authors should fully disclose all posting in registries of results of the same or closely related work.

Reporting clinical trials
Randomized controlled trials should be presented according to the CONSORT guidelines. At manuscript submission, authors must provide the CONSORT checklist accompanied by a flow diagram that illustrates the progress of patients through the trial, including recruitment, enrollment, randomization, withdrawal and completion, and a detailed description of the randomization procedure. The CONSORT checklist and template flow diagram are available online.

Registration of clinical trials
Registration in a public trials registry is a condition for publication of clinical trials in this journal in accordance with International Committee of Medical Journal Editors recommendations. Trials must register at or before the onset of patient enrolment. The clinical trial registration number should be included at the end of the abstract of the article. A clinical trial is defined as any research study that prospectively assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects of health outcomes. Health-related interventions include any intervention used to modify a biomedical or health-related outcome (for example drugs, surgical procedures, devices, behavioural treatments, dietary interventions, and process-of-care changes). Health outcomes include any biomedical or health-related measures obtained in patients or participants, including pharmacokinetic measures and adverse events. Purely observational studies (those in which the assignment of the medical intervention is not at the discretion of the investigator) will not require registration.

Copyright
Papers accepted for publication become the copyright of Sports Medicine Australia. Authors will be asked to sign a transfer of copyright form, on receipt of the accepted manuscript by Elsevier. This enables the publisher to administer copyright on behalf of the authors and the society, while allowing the continued use of the material by the author for scholarly communication.
Retained author rights
As an author you (or your employer or institution) retain certain rights. For more information on author rights for:
Subscription articles please see: www.elsevier.com/journal-authors/author-rights-and-responsibilities
Open access articles please see: http://www.elsevier.com/OAauthoragreement

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Open Access
This journal does not ordinarily have publication charges; however, authors can now opt to make their articles available to all (including non-subscribers) via the ScienceDirect platform. To provide open access, this journal has a publication fee which needs to be met by the authors or their research funders for each article published open access.
There is a 20% discount for members of Sports Medicine Australia. Prices are listed below. Full Price USD 3,000
Sports Medicine Australia Member Price USD 2,400
To be eligible for the society member discount the corresponding author must be a member of the Sports Medicine Australia. To claim the discount the author can verify their membership at article submission stage via the online submission system. Elsevier reserves the right to remove or refuse the discount. Discounts are exclusive of each other and will not be accrued.
Learn more about Elsevier’s pricing policy: www.elsevier.com/openaccesspricing.
Please note that you can only make this choice after receiving notification that your article has been accepted for publication, to avoid any perception of conflict of interest. The fee excludes taxes and other potential costs such as color charges. In some cases, institutions and funding bodies have entered into agreement with Elsevier to meet these fees on behalf of their authors. Details of these agreements are available at http://www.elsevier.com/fundingbodies. Authors of accepted articles, who wish to take advantage of this option, should complete and submit the order form (available at www.elsevier.com/locate/openaccessform.pdf). Whatever access option you choose, you retain many rights as an author, including the right to post a revised personal version of your article on your own website. More information can be found here:
www.elsevier.com/authorsrights. Your publication choice will have no effect on the peer review process or acceptance of submitted articles.
Elsevier Publishing Campus

The Elsevier Publishing Campus (www.publishingcampus.com) is an online platform offering free lectures, interactive training and professional advice to support you in publishing your research. The College of Skills training offers modules on how to prepare, write and structure your article and explains how editors will look at your paper when it is submitted for publication. Use these resources, and more, to ensure that your submission will be the best that you can make it.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier's WebShop.

Informed consent and patient details

Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper. Appropriate consents, permissions and releases must be obtained where an author wishes to include case details or other personal information or images of patients and any other individuals in an Elsevier publication. Written consents must be retained by the author and copies of the consents or evidence that such consents have been obtained must be provided to Elsevier on request. For more information, please review the Elsevier Policy on the Use of Images or Personal Information of Patients or other Individuals. Unless you have written permission from the patient (or, where applicable, the next of kin), the personal details of any patient included in any part of the article and in any supplementary materials (including all illustrations and videos) must be removed before submission.

Submission of Manuscripts

All manuscripts, correspondence and editorial material for publication should be submitted online via the Elsevier Editorial System at: www.ees.elsevier.com/jsams. Authors simply need to “Create a new account” (i.e., register) by following the instructions at the website, and using their own e-mail address and selected password. Authors can then submit manuscripts containing text, tables, and images (figures) online. The entire peer-review process will be managed electronically to ensure timely review and publication. Authors can expect an initial decision on their submission within 8 weeks.

Following registration, enter the "Author area" and follow the instructions for submitting a manuscript, including the structured Abstract, suggested reviewers, Cover letter, Tables, Figures, and any supplementary material.
Figures can be published in colour at no extra charge for the online version. If you wish to have figures in colour online and black and white figures printed, please submit both versions. The entire peer-review process will be managed electronically to ensure timely review and publication. Authors can expect an initial decision on their submission within 6 weeks.

Preparation of Manuscripts

- Microsoft Word is the preferred software program. Use Arial or Times New Roman font, size eleven (11) point. • Manuscript is double-spaced throughout (including title page, abstract, text, references, tables, and legends). • Margins are 1 inch or 2.5 cm all around • Include page and line numbers for the convenience of the peer reviewers. • Number the pages consecutively, beginning with the title page as page 1 and ending with the Figure legend page. • All headings (including the Title) should be in sentence-case only, not in capital letters. • Sub-headings are generally not accepted. Incorporate into the text if required. • Footnotes are not acceptable. • Keep the use of tables, figures and graphs to a minimum. • See notes on Tables, Figures, Formulae and Scientific Terminology at the end.

WORD COUNT LIMITS

Original Research papers
- 3000 word count limit (excluding title, abstract, tables/figures, figure legends, Acknowledgements, and References) • Maximum number (combined) of tables and figures is 3 • Long tables should only be included as supplementary material and will be made available online only • Maximum number of references is 30 • A structured abstract of less than 250 words (not included in 3000 word count) should be included with the following headings: Objectives, Design, Method, Results, and Conclusions

Review articles
- 4000 word count limit (excluding title, abstract, tables/figures, figure legends, Acknowledgements, and References) • Maximum number (combined) of tables and figures is 3 • Long tables should only be included as supplemental files and will be available online only • Maximum number of references is 60 • A structured abstract of less than 250 words (not included in 4000 word count) should be included sticking as closely as possible to the following headings: Objectives, Design, Method, Results, and Conclusions

Structure of the Manuscript (in order):
1. Cover Letter - Every submission, regardless of category must include a letter stating:
 - The category of article: Original Research or Review article
 - The sub-discipline: sports medicine, sports injury (including injury epidemiology and injury prevention), physiotherapy, podiatry, physical activity and health, sports science, biomechanics, exercise physiology, motor control and learning, sport and exercise psychology, sports nutrition, public health (as relevant to sport and exercise), rehabilitation and injury management, and
others having an interdisciplinary perspective with specific applications to sport and exercise and its interaction with health.

• Sources of outside support for research (including funding, equipment and drugs) must be named.
• Financial support for the project must be acknowledged, or "no external financial support" declared.
• The role of the funding organization, if any, in the collection of data, their analysis and interpretation, and in the right to approve or disapprove publication of the finished manuscript must be described in the Methods section of the text
• When the proposed publication concerns any commercial product, either directly or indirectly, the author must include a statement (1) indicating that he or she has no financial or other interest in the product or distributor of the product or (2) explaining the nature of any relation between himself or herself and the manufacturer or distributor of the product.
• Other kinds of associations, such as consultancies, stock ownership, or other equity interests or patent-licensing arrangements, also must be disclosed. Note: If, in the Editor's judgment, the information disclosed represents a potential conflict of interest, it may be made available to reviewers and may be published at the Editor's discretion; authors will be informed of the decision before publication.
• The Ethical Guidelines that have been followed must be stated clearly. Provide the Ethics Committee name and approval number obtained for Human investigation.
• Authors must declare that manuscripts submitted to the Journal have not been published elsewhere or are not being considered for publication elsewhere and that the research reported will not be submitted for publication elsewhere until a final decision has been made as to its acceptability by the Journal.

Permission from the copyright holder (typically the publisher) must be submitted to the Editorial Office for the reproduction of any previously published table(s), illustration(s) or photograph(s). Permission must be valid for reuse in both print and electronic formats. Appropriate consents must also be obtained for any patient images appearing in your manuscript. [OPTIONAL: For Elsevier’s patient consent policy, please visit www.elsevier.com/about/company-information/policies/patient-consent.]

2. Title Page (first page) should contain:
a. Title. Short and informative
b. Authors. List all authors by first name, all initials and family name. Institution and affiliations. List the name and full address of all institutions where the study described was carried out. List departmental affiliations of each author affiliated with that institution after each institutional address. Connect authors to departments using alphabetical superscripts.
d. Corresponding author. Provide the name and e-mail address of the author to whom communications, proofs and requests for reprints should be sent.
e. Word count (excluding abstract and references), the Abstract word count, the number of Tables, the number of Figures.

Appropriate consents must also be obtained for any patient images appearing in your manuscript. [OPTIONAL: For Elsevier's patient consent policy, please visit Patient consent.]

2. Title Page (first page) should contain:
a. Title. Short and informative
b. Authors. List all authors by first name, all initials and family name
c. Institution and affiliations. List the name and full address of all institutions where the study described was carried out. List departmental affiliations of each author affiliated with that institution after each institutional address. Connect authors to departments using alphabetical superscripts.
d. Corresponding author. Provide the name and e-mail address of the author to whom communications, proofs and requests for reprints should be sent.
e. Word count (excluding abstract and references), the Abstract word count, the number of Tables, the number of Figures.

3. Manuscript (excluding all author details) should contain: (in order)
a. Abstract - must be structured using the following sub-headings: Objectives, Design, Methods, Results, and Conclusions. Avoid abbreviations and acronyms.
b. Keywords - provide up to 6 keywords, with at least 4 selected via the Index Medicus Medical Subject Headings (MeSH) browser list: Medical Subject Headings. These keywords should not reproduce words used in the paper title.
c. Main body of the text.

For Original Research papers, text should be organised as follows:
i. Introduction - describing the (purpose of the study with a brief review of background
ii. Methods - described in detail. Include details of the Ethics Committee approval obtained for Human investigation, and the ethical guidelines followed by the investigators. This section is not called Materials and Methods, and should not include subheadings. Do not use the term "subjects" - use terms such as "participants", "patients" or "athletes", etc.
iii. Results - concisely reported in tables and figures, with brief text descriptions. Do not include subheadings. Use small, non-italicized letter p for p-values with a leading zero, e.g. 0.05; Measurements and weights should be given in standard metric units. Do not replicate material that is in the tables or figures in the text.
iv. Discussion - concise interpretation of results. Cite references, illustrations and tables in numeric order by order of mention in the text. Do not include subheadings.
v. Conclusion
vi. Practical Implications - 3 to 5 dot (bulleted) points summarizing the practical findings derived from the study to the real-world setting of sport and exercise - that can be understood by a lay audience. Avoid overly scientific terms and abbreviations. Dot points should not include recommendations for further research.

vii. Acknowledgments - this section is compulsory. Grants, financial support and technical or other assistance are acknowledged at the end of the text before the references. All financial support for the project must be acknowledged. If there has been no financial assistance with the project, this must be clearly stated.

viii. References - authors are responsible for the accuracy of references.

ix. Tables - may be submitted at the end of the text file, on separate pages, one to each page.

x. Figure Legends - must be submitted as part of the text file and not as illustrations.

4. Figures - must be submitted as one or more separate files that may contain one or more images.

5. Supplementary material (if any) - tables or figures to be viewed online only.

Peer Review
The journal receives an ever-increasing number of submissions and unfortunately can only publish a small proportion of manuscripts. The journal's Editorial Board does not enter into negotiations once a decision on a manuscript has been made. The Editor's decision is final. The entire peer-review process will be managed electronically to ensure timely review and publication. Authors can expect an initial decision on their submission within 6 weeks.

Use of word processing software
It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the ‘spell-check' and 'grammar-check' functions of your word processor.
Article structure

Introduction
State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and method
Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.

Results
Results should be clear and concise.

Discussion
This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions
The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices
If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.

Essential title page information
• Title. Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
• Author names and affiliations. Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
• Corresponding author. Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that the e-mail address is given and
that contact details are kept up to date by the corresponding author.

- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract

A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

Keywords

Immediately after the abstract, provide a maximum of 6 keywords, using British spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Formatting of funding sources

List funding sources in this standard way to facilitate compliance to funder's requirements:

Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yeee]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa].
It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding. If no funding has been provided for the research, please include the following sentence:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Nomenclature and units

Follow internationally accepted rules and conventions: use the international system of units (SI). If other quantities are mentioned, give their equivalent in SI. You are urged to consult IUPAP: Symbols, Units, Nomenclature and Fundamental Constants in Physics for further information.

Math formulae

Please submit math equations as editable text and not as images. Present simple formulae in line with normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Footnotes

Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors can build footnotes into the text, and this feature may be used. Otherwise, please indicate the position of footnotes in the text and list the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Artwork

Electronic artwork

General points

- Make sure you use uniform lettering and sizing of your original artwork.
- Embed the used fonts if the application provides that option.
- Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
- Number the illustrations according to their sequence in the text.
- Use a logical naming convention for your artwork files.
- Provide captions to illustrations separately.
- Size the illustrations close to the desired dimensions of the published version.
- Submit each illustration as a separate file.

A detailed guide on electronic artwork is available.
You are urged to visit this site; some excerpts from the detailed information are given here.

Formats

If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format.

Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

- EPS (or PDF): Vector drawings, embed all used fonts.
- TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.
- TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi.
- TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:

- Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
- Supply files that are too low in resolution;
- Submit graphics that are disproportionately large for the content.

Color artwork

Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. **For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article.** Please indicate your preference for color: in print or online only. [Further information on the preparation of electronic artwork](#).

Human and animal rights

If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with [The Code of Ethics of the World Medical Association](#) (Declaration of Helsinki) for experiments involving humans; [Uniform Requirements for manuscripts submitted to Biomedical journals](#). Authors should include a statement in the
manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

Illustration services
Elsevier's WebShop offers Illustration Services to authors preparing to submit a manuscript but concerned about the quality of the images accompanying their article. Elsevier's expert illustrators can produce scientific, technical and medical-style images, as well as a full range of charts, tables and graphs. Image 'polishing' is also available, where our illustrators take your image(s) and improve them to a professional standard. Please visit the website to find out more.

Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules and shading in table cells.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference links
Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are
correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is encouraged.

A DOI can be used to cite and link to electronic articles where an article is in-press and full citation details are not yet known, but the article is available online. A DOI is guaranteed never to change, so you can use it as a permanent link to any electronic article. An example of a citation using DOI for an article not yet in an issue is: VanDecar J.C., Russo R.M., James D.E., Ambe W.B., Franke M. (2003). Aseismic continuation of the Lesser Antilles slab beneath northeastern Venezuela. Journal of Geophysical Research, http://dx.doi.org/10.1029/2001JB000884i. Please note the format of such citations should be in the same style as all other references in the paper.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference Style
• References should be numbered consecutively in un-bracketed superscripts where they occur in the text, tables, etc, and listed numerically (e.g. "1", "2") at the end of the paper under the heading "References".
• For Original Research papers, no more than three references should be used to support a specific point in the text.
• All authors should be listed where there are three or fewer. Where there are more than three, the reference should be to the first three authors followed by the expression "et al".
• Book and journal titles should be in italics.
• Conference and other abstracts should not be used as references. Material referred to by the phrase "personal communication" or "submitted for publication" are not considered full references and should only be placed in parentheses at the appropriate place in the text (e.g., (Hessel 1997 personal communication). References to articles submitted but not yet accepted are not encouraged but, if necessary, should only be referred to in the text as "unpublished data".
• Footnotes are unacceptable.
• Journal references: Last name and initials of principal author followed by last name(s) and initials of co-author(s), title of article (with first word only starting in capitals), abbreviated and italicised title of journal, year, volume (with issue number in parenthesis if applicable), inclusive pages. For guidance on abbreviations of journal titles, see Index Medicus at www.nlm.nih.gov/tsd/serials/lji.html.

Example:
• Internet references should be as follows:
• Articles in Press are cited using a DOI: http://www.doi.org. The correct format for citing a DOI is as follows: doi:10.1016/j.jsams.2009.10.104.

Journal abbreviations source
Journal names should be abbreviated according to the List of Title Word Abbreviations.

Video
Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file’s content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 150 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect. Please supply ‘stills’ with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video
Supplementary material
Supplementary material such as applications, images and sound clips, can be published with your article to enhance it. Submitted supplementary items are published exactly as they are received (Excel or PowerPoint files will appear as such online). Please submit your material together with the article and supply a concise, descriptive caption for each supplementary file. If you wish to make changes to supplementary material during any stage of the process, please make sure to provide an updated file. Do not annotate any corrections on a previous version. Please switch off the 'Track Changes' option in Microsoft Office files as these will appear in the published version.

Online proof correction
Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors. If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.
We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail (the PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use). For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier's WebShop. Authors requiring printed copies of multiple articles may use Elsevier WebShop’s 'Create Your Own Book' service to collate multiple articles within a single cover.
Visit the Elsevier Support Center to find the answers you need. Here you will find everything from Frequently Asked Questions to ways to get in touch.

You can also check the status of your submitted article or find out when your accepted article will be published.
APPENDIX H: PROOF OF LANGUAGE EDITING
A comparison between the cardiorespiratory responses of motorized and non-motorized treadmill protocols

- The above dissertation was submitted to me for language editing, which was completed on 7 February 2017.

M.B. BRADLEY (MA) - Language editor
Cell no 072 3695 149