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Abstract—We investigate the application of kernel density approaches to bandwidth selection in pattern recognition.
estimators to pattern-recognition problems. These estintars Section Il we then propose an alternative approach, the
have a number of attractive properties for data analysis in “Maximum leave-one-out Likelihood (MLL)” method, which
pattern recognition, but the particular characteristics of pattern- - ’ .
recognition problems also place some non-trivial requirerents on has a number _Of benefits cqmpared to qurrent ap_proache_s n
kernel density estimation — especia”y on the a|gorithm usk to our doma|n Of interest. Section IV contains eXperImental n
compute bandwidths. We introduce a new algorithm for variade  vestigations into the properties of MLL, including comsanis
bandwidth estimation, investigate some of its propertiesand with several standard methods when applied to both standard
show that it performs competitively on a wide range of tasks, giaristical problems as well as selected tasks from pattern

articularly in spaces of high dimensionality. " . . .
P y insp 9 ¥ recognition. Finally, conclusions are drawn and extersine

. MOTIVATION discussed in Section V.
Kernel density estimators (KDESs) approximate the probabil Il. KDES FORPATTERN RECOGNITION
ity density function of a class characterized by a set of dasp

The standard approach to statistical pattern recogniton i
based on a set of features, which are selected to be deseripti
N of the objects of interest. In most domains — including sheec
p(w) = ZK(x_xi;Hi)/N’ (1) processing, natural language processing, image recogniti
=1 and bioinformatics — the dimensionalities of practicalseful
where thez; are the samples provided is a “smoothing” feature spaces are quite high. For example, 39-dimensional
or kernel function and; is a scale factor (or “bandwidth”) feature spaces, derived from mel-frequency cepstral eoeffi
controlling the extent of the kernel. (Note thdtis defined as cients, are common in speech processing, and proteimfpldi
a variable with units of length — thus, the “standard dewi@li tasks are often addressed with a feature space consisting of
rather than the “variance” for the scalar case. For mul@ter the identities of the amino acids within a window, resulting
tasks, the variance parameter of the kernel is thereforalégu in feature spaces with 140 or more dimensions. It is widely
the “square” ofH, usually defined a#/ H”') Such estimators understood (see, for example [3]) that any usable class of
are considered to be amongst the most powerful tools fgbjects in such a space must be clustered around one or more
data analysis [1], because of their ability to model arbjtra syb-manifolds of a much lower dimensionality. (Otherwise,
functional forms in any number of dimensions, with attraeti would be impossib|e to delineate the objects with a reason-
asymptotic properties. These benefits come at the cost of tile number of samples.) In the non-degenerate case, these
significant issues: dimensions will not align with the coordinate axes (since th
« Since the sum in (1) ranges over all samples, the amowuiperfluous dimensions could simply be discarded othejwise
of computation required to compute a single density eBinally, it is reasonable to expect that the scale of gedmetr
timate is proportional to the number of training samplestructures may vary through feature space: since the mlysic
« The behaviour of the estimator depends strongly on tiphenomena that correspond to these structures may be quite
way that the scale factors are chosen. (The exact shajierent in different regions of feature space — e.g. sfgcu
of the kernel function is much less important in practiceeflection off a smooth surface opposed to diffuse reflection
[2]) from a textured material in vision, or slowly and smoothly
The first of these issues is less important if data analysiser changing formants opposed to the abrupt changes of a plosive
than real-time classification, is the intended applicatibne burst in speech recognition — the characteristic lengtits an
second issue is the main focus of the current paper. directions of variability within feature space are likelg t
In pattern recognition, the vast majority of feature spawes change significantly across various locations in featueesp
multi-dimensional, with dozens to hundreds of featuresigpei These considerations lead us to the following three reguire
quite common. This implies a number of specific requiremeriiéents of a useful bandwidth estimator in pattern recogmitio
on H;, which we review below in Section II. This allows us 1) It must be able to operate successfully in spaces with
to evaluate the strengths and weaknesses of various gxistin  many dimensions.

with the sum



2) It must be able to deal with spatial anisotropy. is by nature spatially variable (‘adaptive’), and lend<lits
3) It must be able to model spatial variability in smoothnege full anisotropy, diagonal bandwidth matrices, or spteri
of the density function (and thus of the length scaldsandwidths, depending on the requirements of the appicati
employed for smoothing). As is typical of Bayesian approaches, however, the selectio
These requirements imply thaf; in (1) must be both stable of appropriate prior probabilities is a major challenge.
and computationally feasible in many dimensions, that it This cursory examination suggests that none of the current
should not be constrained to a multiple of the unit matrix (epproaches to KDE bandwidth estimation is ideally suited
is common practice in conventional KDE), and that it must i@ the analysis of data in pattern recognition. The Bayesian
allowed to vary substantially witk. methods come closest to our requirements, but the need
It is informative to evaluate state-of-the-art approacttes to specify a prior distribution is a significant obstacle. We
KDE (as summarized, for example, in [1]) against thedberefore examine these methods more closely below, and
criteria. We identify four main classes of approaches. derive a related approach which does not require such a prior
Approaches based on cross validation utilize the fact that
the effect of any sampléeon the estimator in (1) can easily be||| T4 MAXIMUM LEAVE -ONE-OUT L IKELIHOOD (MLL)
removed, by simply removing that sample from the summa- METHOD
tion. It is therefore possible to compute the likelihgdd;) at
locationz; as a function of the smoothing matrix efficiently; Two key insights motivated the development of the Bayesian
the expected value of this likelihood over alis a reasonable method of Gangopadhyay and Cheung [6]. Firstly, the optimal
criterion to optimize when searching for an optimal bandtvid adaptive bandwidth should vary relatively slowly througho
Note, however, that this assumes that the same bandwidthhig input (feature) space, which implies that the density
employed everywhere — otherwise, the optimization problefinction in the neighbourhood of a given sample can be
becomes too large and ill-conditioned for practical soluti approximated quite well by using its bandwidth matrix at
Cross validation with fixed bandwidths has indeed been fouedch of the sample points of its neighbours. Since more
to be quite effective in low-dimensional settings [4], bas ( distant sample points are, by definition, those that do not
we show below) becomes less attractive as the dimensignafibntribute much to the density at the selected point, that
is increased. same bandwidth may be associated vathsample points for
Bootstrap-based approaches employ a smoothed bootstrapthe purpose of selecting the bandwidthagt Secondly, the
estimator of the mean integrated square error (MISE) betwegensity function that results from such a convolution of all
the estimated and underlying probability density functicand samples with a selected kern&l(z; H) is closely related to
minimizes this estimator with respect to the bandwidth matr the densityp(z) we wish to estimate: it is a sample estimate
These methods turn out to be quite similar to those basgplp(x) smoothed byK (x; H). If sufficiently many samples
on cross validation: again, efficient computational apphea are available, it can be assumed thétz; H) will be quite
exist, and practical constraints generally limit the usehi |ocalized, thus smoothing(x) to a relatively small degree.
method to constant bandwidths. Because of these SiﬁﬂaritiTherefore, Gangopadhyay and Cheung suggest that thissampl
we do not consider bootstrap-based approaches below.  estimate ofpy (x) = p(z)* K (z; H) be used as representative
Analytic expressions for the MISE are also at the root ff p(z) for analytic purposes.
plug-in estimators. In this case, however, the dependency of For the Bayesian approach, we assume a priéf) on H,

the MISE on the estimated density function are retained exng compute the posterior given a locati#in= = as
plicitly in the form of ‘higher order’ terms, which themsels
pu(x)m(H)

depend on the density function. At a selected point thisrchai
is broken by using values from a reference density function [ pu, (x)n(Hq)dHy'
(typically, a Gaussian), and the resulting values are ‘pady
into’ the cascade of lower-order terms, finally providing eg-or each locationz, the “optimal” bandwidth can thus be
timates of the optimal bandwidths. As with the previous twestimated as that/ which maximizes this expression. This
approaches, it is not practically feasible to derive spigtia elegant formulation leads to computationally feasibleesebs
varying bandwidths in this way, though Duong and Hazeltdh convenient forms are assumed for the prior probabilities
have shown [5] that fully anisotropic bandwidth matrices.(i Unfortunately, those forms are not convincing choices on
more general than a multiple of the unit matrix or a diagon@hysical grounds, and do not lead to particularly good perfo
matrix) can successfully be derived in this fashion. mance in the problems investigated by De Lima and Atuncar
Bayesian approaches model the entries in the bandwidth[7] (possibly because the practical inappropriatenesshef t
matrix as random variables with a presumed prior distribliconvenient” priors selected).
tion, which is combined with evidence from the samples in These complications naturally lead one to consider what
order to estimate the posterior densities of these enffies. happens if we replace the Bayesian formulation with a
approach pioneered by Gangopadhyay and Cheung [6], whidximum-likelihood approach — that is, if one optimizes
was generalized to multivariate problems by De Lima angy(x) rather thanmy(z). This is particularly simple ifK
Atuncar [7], is particularly relevant to our purposes, sint is assumed to be a normal density: by setting the derivafive o

m(H|z) =

)



pu (z) with respect toH (z) equal to zero, we then obtain

(z \/Zﬁez — ;) (@i — ;)T K (zi — 2j; H(z))
0 >z K@i — x5 H () '

(3)

Thus, the optimal bandwidth matrix at under these assump-
tions, equals the weighted variance of the samples suriognd
x. The weight of each sample is the multivariate normal
probability density of the Mahalanobis distance betweexi th
sample and:. In this distance measurH,(x) is used as metric.
For obvious reasons, we call this the “Maximum Leave-one-
out Likelihood” method of bandwidth estimation.

To gain intuition on the implications of this formulationgw
consider the one-dimensional case. In that case, it is ea®et
that (3) always has at least one solution:Fa&:) approaches

0, the right-hand side approaches the squared distance toRige2.
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Example of relationship between, and h, with several maxima,

nearest neighbour af, and asH () goes to infinity, the right- the largest of which occurs at a reasonable valué.of

hand side approximates the mean squared distancedrofm

all data points. Thus, the expectation value is greater thar
H(z) for small values offf (z), and less tharfl () for large
values. Since the expectation value is a continuous fumctio
H(x), this implies that the two curves(fdf (x) and the right-
hand side of (3)) must intersect for at least one valu#/ ¢f).

In fact, the existence of multiple solutions is a common occu
rence in practice. We demonstrate this with several exanple
in Figs. 1 to 3. These figures show the leave-one-out likeliho
pu (z) when evaluated at a number of points in a sample set
drawn from a mixture of two Gaussians. (The parameters of
these Gaussians were the same as those chosen by [6]: ea
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Gaussian had unit variance, and the means viesnd 4,
respectively. The two components have prior probabilities

0.4 and 0.6, respectively.) Fig. 3 also demonstrates that the

global maximum ofpy (z) is not always the best choice for

H(xz) — when data points happen to be particularly close

yFy. 3. Example of relationship between, and h, with several maxima,

spurious (and numerically large) maximum exists for smdlie largest of which corresponds to very sntall
H(z). Thus, a form of regularization is required to eliminate

such maxima.
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Fig. 1. Example of relationship betweep andh: a single maximum exists,
at a reasonable value éf

Analogously to, for example, the Baum-Welch algorithm,
(3) can be used in one of two ways: either in conjunction
with a gradient-based optimizer, or as a direct iterativeeste
where the value found by calculating the right-hand sideafor
given value off (z) is used as the next value féf(z), and so
forth. Both approaches will find local solutions based on the
initial H (z) selected, and direct iteration is generally found to
be somewhat more efficient. Note that the initid(x) itself
serves as a form of regularization: since both local optmsiz
tend to find solutions in the neighbourhood of the starting
point, the process can be guided towards preferable sonfutio
through appropriate selection of this initialization.

It is easy to see that all these findings (existence of a
solution, the possibility of several local extrema, thegiloitity
of spurious and large maxima for sm&if («)|) also hold for
the multivariate case. In fact, in multivariate KDE there ar
invariably (in addition to other local maxima) singulaggi
corresponding to|H(z)] — 0 when one of the non-null
eigenvectors has a component in a direction parallel to the



vector betweenr and one of the other training samples.
Now, however, another option for regularization presetstdf

by restricting the allowed forms off (z) considered during
optimization (e.g. limiting it to multiples of the unit matr

or diagonal matrices), many of the spurious extrema can be
avoided.

IV. EXPERIMENTAL RESULTS

To evaluate the potential of the MLL approach in practice,
we investigate three classes of problems below, namelhhé) t
estimation of one-dimensional densities using samplewsrdra
from known distributions, (b) known distributions in two
dimensions, and (c) selected real-world pattern-recamnit
tasks. For the known distributions, we are able to estimate
the MISE of each estimator, but for the real-world data sets
(for which the underlying distribution is not known) we rely
on leave-one-out entropy estimates as a basis for comparisgg. 4. A typical density estimate with the MLL method comgmith the

We compare the MLL algorithm for bandwidth selection tdpcal LCV estimate, along with the bandwidths selected leyttho methods.
four other methods, as implemented in tBE toolkit [8]: ~ 00 raining samples are employed.

o LCV is the standard leave-one-out cross validation algo-
rithm; 2

o local scales the bandwidth of each sample with the sl
distance to its-th nearest neighbour (whekds typically
the square root of the number of samples, and each
dimension is scaled separately) before applylol@v
bandwidth selection; 1o}

« localp is identical tolocal, except that the data is pre-
sphered (which is only relevant for multivariate tasks);
and

« Hall is the plug-in estimate suggested by Hall, Sheather, os-
Jones and Marron [9].

x10°

——MLL
lev

local {
hall

MISE
-

A. Known one-dimensional distribution o2r

As discussed in Section lIl, regularization is expected to 0 i wo W 0 w00
play an important role in one-dimensional KDE with MLL. We
have not investigated this issue extensively — here, welgimp _ _ _
employ the heuristic that the minimalat any sample is set to Fig- 5. Mean integrated square error of four methods on amesional
. ﬁsk. Error bars correspond to one standard error.
2% of the largest distance between that sample and any other

sample in the data set. Fig. 4 shows a typical density functio

estimated in this way, for the same mixture of Gaussians 8Suation 3 with theHall plug-in estimate. We have exper-
in Section I, and also the density function estimated by,ented with two density functions proposed in [7], which
the locally-adapted LCV methodocal. (The discontinuities \yo call “DeLimaA’ and “DeLimaC”, respectively. Each is
in the MLL bandwidths are quite prominent — these are & niviyre of two components, and, though anisotropic and
consequence of multiple maxima in the likelihood funCt'OQpatially variable, quite smooth. Figs. 6 and 7 show the MISE
and the resultant regularization, with significantly diéBt ¢ resfor the five multivariate methods on these two tasks. A
solutions being found for adjacent data points.) Fig. 5808t seyera| authors have found (see, for example, [4]), LC\éBas
the estimated MISE for the four one-dimensional methods @fhods are highly competitive on this class of problem. The
this task, as a function of the number of training samplggipiiity of the MLL method explains its poor performance
employed. We see that MLL performs competitively on thig,r gma| sample sets; as the number of samples increases, it

task. performance is second to only th€V method on both tasks.

B. Known multivariate distributions C. Pattern-recognition data sets

In the multivariate case, we do not employ explicit reg- As is discussed more comprehensively elsewhere [10], the
ularization: instead, we limit our bandwidth matrices to bdetailed analysis of real-world data sets typically regsiir
diagonal, and initialize («) in the iterative computation of a sequence of processing steps including scaling, prihcipa



‘ dimensional feature set consisting of mel-scale cepstral
T coefficients along with the usual delta and double-delta

lev
local

e | coefficients. We employ0 phonetic classes in our exper-
iments, and report here dnclasses drawn from different
broad phonetic categories.

« Age classification on the Deutsche Telekom (DT) corpus
[12], using a 20-dimensional feature space of “long-term”
features to distinguish betwe&rage-and-gender classes,
as described in [13].

We also experimented with one image-recognition task,
namely the “Vehicle Silhouettes (VS)” [14] task from the UCI
repository. In this data set, each®€tlasses is described using

18 features designed to capture various geometric aspects of

‘ ‘ ‘ ‘ ‘ three-dimensional objects in a two-dimensional image.

’ ” T mberctsanes * ” For each task, we experimented with various numbers
of training samples and numbers of principal components
retained. We compared the leave-one-out entropies olotaine
with the five multivariate methods mentioned above, as well
as a full-covariance Gaussian density. Results are surnetari

MISE

Fig. 6. MISE of five methods on two-dimensional problem “De@A’

o ‘ ‘ ‘ ‘ — in Table I; the “N.A" entries in that Table refer to cases wher
3223: | an estimator did not provide a meaningful bandwidth, and the
nar column labelled “Dimensions” lists the number of principal

components retained.

When interpreting these values, it is important to keep in
mind that entropies correspond to log-likelihoods: thus, a
entropy difference of as little a8.2 implies a difference in
expected likelihoods of more tha20%, and entropy differ-
ences of0.5 or more are highly significant. The results in
Table | (and similar results for experiments not reportecthe
suggest a number of conclusions:

] « With few exceptions, all KDEs outperform the Gaussian
——= density on these tasks, showing the importance of non-
0 500 00 parametric estimation.
« As expected, the scale differences between the various
regions in feature space severely impact on the methods
Fig. 7. MISE of five methods on two-dimensional problem “DalaiC” that employ a fixed bandwidth matrix throughout, namely
LCV andHall.

. . . , , « Of the remaining method8&/ILL generally performs best,
component analysis and dimension reduction. The details of with localp achieving the lowest entropy on one task and

these processes are somewhat problem dependent, and hereloCal on two tasks.
we present results on a variety of data sets after apprepriat The relative outperformance ®ALL is increased as the
prepr(_)cessing has been performed. Since each of the preblem number of dimensions rises.
contains d"%ta from s_everal classes, we present r.esults for 2 The relative performance of the various methods does not
representative sampling of these classes; as mentioneg,abo seem to depend much on the number of training samples
we do not have “ground truth” for any of these classes, and employed, for the ranges investigated here
therefore present our results as leave-one-out estiméatbg o ' ’
entropy for each of these classes. (Despite appearandgs, th V. CONCLUSION AND OUTLOOK
measure is not unduly biased towards the MLL method, whichwe have motivated and derived the MLL algorithm for
also uses a leave-one-out strategy: for the MLL method, tR®E bandwidth estimation. This algorithm has a number of
left-out samplex; occurs within a probability estimate usingattractive properties: it is spatially adaptive, scaleturaly
the same bandwidth/;(x) everywhere, which is distinct from to high dimensions and performs well on a wide set of tasks
the actual estimate used for evaluation. We have confirmed ths summarized in Section 1V, especially for high-dimenalon
all methods experience comparable increases in entropy Wigoblems. The least satisfactory aspect of the curreniarers
the leave-one-out method is used to counter training-set)bi of the algorithm is the ad-hoc fashion in which regulariaati
Our experiments involved two tasks from speech processingperformed. Currently, we rely on the restrictions immbbg
« Phone recognition on the TIMIT corpus [11], using a 39a diagonal bandwidth matrix, and this is certainly not optim

300
number of samples



Task Class | Dimensions| Samples LCV localp local Hall MLL  Gaussian

TIMIT eh 5 500 | 7.5537 7.6381 7.5715 7.8968 7.1809 8.4228
f 5 500 | 8.0834 8.0427 8.0455 8.7798 7.8688 8.0598
m 5 500 | 7.5707 7.5401 7.5382 8.0619 7.2962 8.3426
ay 5 500 | 7.3585 7.3800 7.2856 7.6419 7.0629 8.3153
sil 5 500 | 8.1805 8.1751 8.1451 9.0109 7.9337 8.3599

DT 0 5 500 | 9.4375 9.2581 9.2068 10.3715 8.7871 9.5902
1 5 500 | 9.2841 8.9847 8.9544  10.4290 8.6347 9.4482
2 5 500 | 8.8123 8.6066 8.6213 9.9735 8.1686 9.3996
3 5 500 | 9.6525 9.4852 9.5097 10.4898 9.0139 9.6425
4 5 500 | 9.2758 9.1036 9.0993 10.1581 8.5998 9.4869
6 5 500 | 9.3038 9.1186 9.1455 10.1808 8.6651 9.3935
0 10 500 | 15.0478 15.3535 14.2261 14.996511.7518 14.8114
1 10 500 | 14.8897 15.3749 14.0206 15.292111.6279 14.8711
0 5 1000 | 9.3753 9.1197 9.1358 10.9304 8.8658 9.5986
1 5 1000 | 9.2580 8.9730 8.9839  10.3653 8.7005 9.5069

VS 0 5 297 [ 5.7392 47743 48511 8.5778 5.0618 8.215H
1 5 300 | 8.3679 7.5953 7.3949  13.2202 7.0653 8.8257
2 5 299 | 6.0426 4.0075 4.1183 10.5294 4.0914 8.6148
3 5 300 | 7.1626 5.4190 5.8222 N.A 5.1394 8.7665
4 5 298 | 6.6018 4.3974 4.1763 N.A 4.2539 8.7621
5 5 292 | 6.8485 6.1951 6.5128 6.9231 5.7538 8.6636
6 5 300 | 8.4700 7.7218 7.7265 12.3537 7.5359 8.7661

TABLE |

LEAVE-ONE-OUT ENTROPY ESTIMATES FOR SEVERAL PATTERARECOGNITION TASKS

The derivation in Section Il suggests a more principlefl2] F. Metze, J. Ajmera, R. Englert, U. Bub, F. Burkhardt,Slegmann,

approach: since we apply the bandwidth of sampleat

C. Miller, R. Huber, B. Andrassy, J. G. Bauer, and B. Litt&om-
parison of four approaches to age and gender recognitiotelephone

each of its nelghbou_rs, itis '_‘easonable to insist that the applications,” inl CASSP, Honolulu, Hawaii, April 2007, pp. 1089-1092.
entries of the bandwidth matrix should change reasonalplg] C. Muller, “Automatic recognition of speakers’ agedagender on the
slowly throughout feature space. A model such as a Markoy Pasis of empirical studies,” innterspeech, Pittsburgh, Pennsylvania,

Random Field, defined on the neighbourhood graph, MAY,)

provide an appropriate structure for enforcing this smoesis
requirement; we are currently investigating the develagime
of a regularizer based on this structure.
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