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Abstract—We investigate the application of kernel density
estimators to pattern-recognition problems. These estimators
have a number of attractive properties for data analysis in
pattern recognition, but the particular characteristics of pattern-
recognition problems also place some non-trivial requirements on
kernel density estimation – especially on the algorithm used to
compute bandwidths. We introduce a new algorithm for variable
bandwidth estimation, investigate some of its properties,and
show that it performs competitively on a wide range of tasks,
particularly in spaces of high dimensionality.

I. M OTIVATION

Kernel density estimators (KDEs) approximate the probabil-
ity density function of a class characterized by a set of samples
with the sum

p(x) =

N
∑

i=1

K(x − xi; Hi)/N, (1)

where thexi are the samples provided,K is a “smoothing”
or kernel function andHi is a scale factor (or “bandwidth”)
controlling the extent of the kernel. (Note thatH is defined as
a variable with units of length – thus, the “standard deviation”
rather than the “variance” for the scalar case. For multivariate
tasks, the variance parameter of the kernel is therefore equal to
the “square” ofH , usually defined asHHT .) Such estimators
are considered to be amongst the most powerful tools for
data analysis [1], because of their ability to model arbitrary
functional forms in any number of dimensions, with attractive
asymptotic properties. These benefits come at the cost of two
significant issues:

• Since the sum in (1) ranges over all samples, the amount
of computation required to compute a single density es-
timate is proportional to the number of training samples.

• The behaviour of the estimator depends strongly on the
way that the scale factors are chosen. (The exact shape
of the kernel function is much less important in practice
[2].)

The first of these issues is less important if data analysis, rather
than real-time classification, is the intended application. The
second issue is the main focus of the current paper.

In pattern recognition, the vast majority of feature spacesare
multi-dimensional, with dozens to hundreds of features being
quite common. This implies a number of specific requirements
on Hi, which we review below in Section II. This allows us
to evaluate the strengths and weaknesses of various existing

approaches to bandwidth selection in pattern recognition.In
Section III we then propose an alternative approach, the
“Maximum leave-one-out Likelihood (MLL)” method, which
has a number of benefits compared to current approaches in
our domain of interest. Section IV contains experimental in-
vestigations into the properties of MLL, including comparisons
with several standard methods when applied to both standard
statistical problems as well as selected tasks from pattern
recognition. Finally, conclusions are drawn and extensions are
discussed in Section V.

II. KDE S FORPATTERN RECOGNITION

The standard approach to statistical pattern recognition is
based on a set of features, which are selected to be descriptive
of the objects of interest. In most domains – including speech
processing, natural language processing, image recognition
and bioinformatics – the dimensionalities of practically useful
feature spaces are quite high. For example, 39-dimensional
feature spaces, derived from mel-frequency cepstral coeffi-
cients, are common in speech processing, and protein-folding
tasks are often addressed with a feature space consisting of
the identities of the amino acids within a window, resulting
in feature spaces with 140 or more dimensions. It is widely
understood (see, for example [3]) that any usable class of
objects in such a space must be clustered around one or more
sub-manifolds of a much lower dimensionality. (Otherwise,it
would be impossible to delineate the objects with a reason-
able number of samples.) In the non-degenerate case, these
dimensions will not align with the coordinate axes (since the
superfluous dimensions could simply be discarded otherwise).
Finally, it is reasonable to expect that the scale of geometric
structures may vary through feature space: since the physical
phenomena that correspond to these structures may be quite
different in different regions of feature space – e.g. specular
reflection off a smooth surface opposed to diffuse reflection
from a textured material in vision, or slowly and smoothly
changing formants opposed to the abrupt changes of a plosive
burst in speech recognition – the characteristic lengths and
directions of variability within feature space are likely to
change significantly across various locations in feature space.

These considerations lead us to the following three require-
ments of a useful bandwidth estimator in pattern recognition:

1) It must be able to operate successfully in spaces with
many dimensions.



2) It must be able to deal with spatial anisotropy.
3) It must be able to model spatial variability in smoothness

of the density function (and thus of the length scales
employed for smoothing).

These requirements imply thatHi in (1) must be both stable
and computationally feasible in many dimensions, that it
should not be constrained to a multiple of the unit matrix (as
is common practice in conventional KDE), and that it must be
allowed to vary substantially withi.

It is informative to evaluate state-of-the-art approachesto
KDE (as summarized, for example, in [1]) against these
criteria. We identify four main classes of approaches.

Approaches based on cross validation utilize the fact that
the effect of any samplei on the estimator in (1) can easily be
removed, by simply removing that sample from the summa-
tion. It is therefore possible to compute the likelihoodp(xi) at
locationxi as a function of the smoothing matrix efficiently;
the expected value of this likelihood over alli is a reasonable
criterion to optimize when searching for an optimal bandwidth.
Note, however, that this assumes that the same bandwidth is
employed everywhere – otherwise, the optimization problem
becomes too large and ill-conditioned for practical solution.
Cross validation with fixed bandwidths has indeed been found
to be quite effective in low-dimensional settings [4], but (as
we show below) becomes less attractive as the dimensionality
is increased.

Bootstrap-based approaches employ a smoothed bootstrap
estimator of the mean integrated square error (MISE) between
the estimated and underlying probability density functions, and
minimizes this estimator with respect to the bandwidth matrix.
These methods turn out to be quite similar to those based
on cross validation: again, efficient computational approaches
exist, and practical constraints generally limit the use ofthis
method to constant bandwidths. Because of these similarities,
we do not consider bootstrap-based approaches below.

Analytic expressions for the MISE are also at the root of
plug-in estimators. In this case, however, the dependency of
the MISE on the estimated density function are retained ex-
plicitly in the form of ‘higher order’ terms, which themselves
depend on the density function. At a selected point this chain
is broken by using values from a reference density function
(typically, a Gaussian), and the resulting values are ‘plugged
into’ the cascade of lower-order terms, finally providing es-
timates of the optimal bandwidths. As with the previous two
approaches, it is not practically feasible to derive spatially
varying bandwidths in this way, though Duong and Hazelton
have shown [5] that fully anisotropic bandwidth matrices (i.e.
more general than a multiple of the unit matrix or a diagonal
matrix) can successfully be derived in this fashion.

Bayesian approaches model the entries in the bandwidth
matrix as random variables with a presumed prior distribu-
tion, which is combined with evidence from the samples in
order to estimate the posterior densities of these entries.The
approach pioneered by Gangopadhyay and Cheung [6], which
was generalized to multivariate problems by De Lima and
Atuncar [7], is particularly relevant to our purposes, since it

is by nature spatially variable (‘adaptive’), and lends itself
to full anisotropy, diagonal bandwidth matrices, or spherical
bandwidths, depending on the requirements of the application.
As is typical of Bayesian approaches, however, the selection
of appropriate prior probabilities is a major challenge.

This cursory examination suggests that none of the current
approaches to KDE bandwidth estimation is ideally suited
to the analysis of data in pattern recognition. The Bayesian
methods come closest to our requirements, but the need
to specify a prior distribution is a significant obstacle. We
therefore examine these methods more closely below, and
derive a related approach which does not require such a prior.

III. T HE MAXIMUM LEAVE -ONE-OUT L IKELIHOOD (MLL)
METHOD

Two key insights motivated the development of the Bayesian
method of Gangopadhyay and Cheung [6]. Firstly, the optimal
adaptive bandwidth should vary relatively slowly throughout
the input (feature) space, which implies that the density
function in the neighbourhood of a given sample can be
approximated quite well by using its bandwidth matrix at
each of the sample points of its neighbours. Since more
distant sample points are, by definition, those that do not
contribute much to the density at the selected point, that
same bandwidth may be associated withall sample points for
the purpose of selecting the bandwidth atxi. Secondly, the
density function that results from such a convolution of all
samples with a selected kernelK(x; H) is closely related to
the densityp(x) we wish to estimate: it is a sample estimate
of p(x) smoothed byK(x; H). If sufficiently many samples
are available, it can be assumed thatK(x; H) will be quite
localized, thus smoothingp(x) to a relatively small degree.
Therefore, Gangopadhyay and Cheung suggest that this sample
estimate ofpH(x) = p(x)∗K(x; H) be used as representative
of p(x) for analytic purposes.

For the Bayesian approach, we assume a priorπ(H) on H ,
and compute the posterior given a locationX = x as

π(H |x) =
pH(x)π(H)

∫

pHd
(x)π(Hd)dHd

. (2)

For each locationx, the “optimal” bandwidth can thus be
estimated as thatH which maximizes this expression. This
elegant formulation leads to computationally feasible schemes
if convenient forms are assumed for the prior probabilities.
Unfortunately, those forms are not convincing choices on
physical grounds, and do not lead to particularly good perfor-
mance in the problems investigated by De Lima and Atuncar
[7] (possibly because the practical inappropriateness of the
“convenient” priors selected).

These complications naturally lead one to consider what
happens if we replace the Bayesian formulation with a
maximum-likelihood approach – that is, if one optimizes
pH(x) rather thanπH(x). This is particularly simple ifK
is assumed to be a normal density: by setting the derivative of



pH(x) with respect toH(x) equal to zero, we then obtain

H(xi) =

√

∑

j 6=i(xi − xj)(xi − xj)T K(xi − xj ; H(xi))
∑

j 6=i K(xi − xj ; H(xi))
.

(3)
Thus, the optimal bandwidth matrix atx, under these assump-
tions, equals the weighted variance of the samples surrounding
x. The weight of each sample is the multivariate normal
probability density of the Mahalanobis distance between that
sample andx. In this distance measure,H(x) is used as metric.
For obvious reasons, we call this the “Maximum Leave-one-
out Likelihood” method of bandwidth estimation.

To gain intuition on the implications of this formulation, we
consider the one-dimensional case. In that case, it is easy to see
that (3) always has at least one solution: asH(x) approaches
0, the right-hand side approaches the squared distance to the
nearest neighbour ofx, and asH(x) goes to infinity, the right-
hand side approximates the mean squared distance fromx of
all data points. Thus, the expectation value is greater than
H(x) for small values ofH(x), and less thanH(x) for large
values. Since the expectation value is a continuous function of
H(x), this implies that the two curves(forH(x) and the right-
hand side of (3)) must intersect for at least one value ofH(x).
In fact, the existence of multiple solutions is a common occur-
rence in practice. We demonstrate this with several examples
in Figs. 1 to 3. These figures show the leave-one-out likelihood
pH(x) when evaluated at a number of points in a sample set
drawn from a mixture of two Gaussians. (The parameters of
these Gaussians were the same as those chosen by [6]: each
Gaussian had unit variance, and the means were0 and 4,
respectively. The two components have prior probabilitiesof
0.4 and 0.6, respectively.) Fig. 3 also demonstrates that the
global maximum ofpH(x) is not always the best choice for
H(x) – when data points happen to be particularly close, a
spurious (and numerically large) maximum exists for small
H(x). Thus, a form of regularization is required to eliminate
such maxima.
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Fig. 1. Example of relationship betweenph andh: a single maximum exists,
at a reasonable value ofh.

0 1 2 3 4 5
5

6

7

8

9

10

11

h

p h(x
)

Sample 66

Fig. 2. Example of relationship betweenph and h, with several maxima,
the largest of which occurs at a reasonable value ofh.
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Fig. 3. Example of relationship betweenph and h, with several maxima,
the largest of which corresponds to very smallh.

Analogously to, for example, the Baum-Welch algorithm,
(3) can be used in one of two ways: either in conjunction
with a gradient-based optimizer, or as a direct iterative scheme
where the value found by calculating the right-hand side fora
given value ofH(x) is used as the next value forH(x), and so
forth. Both approaches will find local solutions based on the
initial H(x) selected, and direct iteration is generally found to
be somewhat more efficient. Note that the initialH(x) itself
serves as a form of regularization: since both local optimizers
tend to find solutions in the neighbourhood of the starting
point, the process can be guided towards preferable solutions
through appropriate selection of this initialization.

It is easy to see that all these findings (existence of a
solution, the possibility of several local extrema, the possibility
of spurious and large maxima for small|H(x)|) also hold for
the multivariate case. In fact, in multivariate KDE there are
invariably (in addition to other local maxima) singularities
corresponding to|H(x)| → 0 when one of the non-null
eigenvectors has a component in a direction parallel to the



vector betweenx and one of the other training samples.
Now, however, another option for regularization presents itself:
by restricting the allowed forms ofH(x) considered during
optimization (e.g. limiting it to multiples of the unit matrix
or diagonal matrices), many of the spurious extrema can be
avoided.

IV. EXPERIMENTAL RESULTS

To evaluate the potential of the MLL approach in practice,
we investigate three classes of problems below, namely (a) the
estimation of one-dimensional densities using samples drawn
from known distributions, (b) known distributions in two
dimensions, and (c) selected real-world pattern-recognition
tasks. For the known distributions, we are able to estimate
the MISE of each estimator, but for the real-world data sets
(for which the underlying distribution is not known) we rely
on leave-one-out entropy estimates as a basis for comparison.

We compare the MLL algorithm for bandwidth selection to
four other methods, as implemented in theKDE toolkit [8]:

• LCV is the standard leave-one-out cross validation algo-
rithm;

• local scales the bandwidth of each sample with the
distance to itsk-th nearest neighbour (wherek is typically
the square root of the number of samples, and each
dimension is scaled separately) before applyingLCV
bandwidth selection;

• localp is identical to local, except that the data is pre-
sphered (which is only relevant for multivariate tasks);
and

• Hall is the plug-in estimate suggested by Hall, Sheather,
Jones and Marron [9].

A. Known one-dimensional distribution

As discussed in Section III, regularization is expected to
play an important role in one-dimensional KDE with MLL. We
have not investigated this issue extensively – here, we simply
employ the heuristic that the minimalh at any sample is set to
2% of the largest distance between that sample and any other
sample in the data set. Fig. 4 shows a typical density function
estimated in this way, for the same mixture of Gaussians as
in Section III, and also the density function estimated by
the locally-adapted LCV method,local. (The discontinuities
in the MLL bandwidths are quite prominent – these are a
consequence of multiple maxima in the likelihood function
and the resultant regularization, with significantly different
solutions being found for adjacent data points.) Fig. 5 contains
the estimated MISE for the four one-dimensional methods on
this task, as a function of the number of training samples
employed. We see that MLL performs competitively on this
task.

B. Known multivariate distributions

In the multivariate case, we do not employ explicit reg-
ularization: instead, we limit our bandwidth matrices to be
diagonal, and initializeH(x) in the iterative computation of
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Fig. 4. A typical density estimate with the MLL method compared with the
local LCV estimate, along with the bandwidths selected by the two methods.
100 training samples are employed.
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Fig. 5. Mean integrated square error of four methods on one-dimensional
task. Error bars correspond to one standard error.

equation 3 with theHall plug-in estimate. We have exper-
imented with two density functions proposed in [7], which
we call “DeLimaA” and “DeLimaC”, respectively. Each is
a mixture of two components, and, though anisotropic and
spatially variable, quite smooth. Figs. 6 and 7 show the MISE
curves for the five multivariate methods on these two tasks. As
several authors have found (see, for example, [4]), LCV-based
methods are highly competitive on this class of problem. The
flexibility of the MLL method explains its poor performance
for small sample sets; as the number of samples increases, its
performance is second to only theLCV method on both tasks.

C. Pattern-recognition data sets

As is discussed more comprehensively elsewhere [10], the
detailed analysis of real-world data sets typically requires
a sequence of processing steps including scaling, principal
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Fig. 6. MISE of five methods on two-dimensional problem “DeLimaA”
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Fig. 7. MISE of five methods on two-dimensional problem “DeLimaC”

component analysis and dimension reduction. The details of
these processes are somewhat problem dependent, and here
we present results on a variety of data sets after appropriate
preprocessing has been performed. Since each of the problems
contains data from several classes, we present results for a
representative sampling of these classes; as mentioned above,
we do not have “ground truth” for any of these classes, and
therefore present our results as leave-one-out estimates of the
entropy for each of these classes. (Despite appearances, this
measure is not unduly biased towards the MLL method, which
also uses a leave-one-out strategy: for the MLL method, the
left-out samplexi occurs within a probability estimate using
the same bandwidthHi(x) everywhere, which is distinct from
the actual estimate used for evaluation. We have confirmed that
all methods experience comparable increases in entropy when
the leave-one-out method is used to counter training-set bias.)

Our experiments involved two tasks from speech processing:

• Phone recognition on the TIMIT corpus [11], using a 39-

dimensional feature set consisting of mel-scale cepstral
coefficients along with the usual delta and double-delta
coefficients. We employ40 phonetic classes in our exper-
iments, and report here on5 classes drawn from different
broad phonetic categories.

• Age classification on the Deutsche Telekom (DT) corpus
[12], using a 20-dimensional feature space of “long-term”
features to distinguish between7 age-and-gender classes,
as described in [13].

We also experimented with one image-recognition task,
namely the “Vehicle Silhouettes (VS)” [14] task from the UCI
repository. In this data set, each of7 classes is described using
18 features designed to capture various geometric aspects of
three-dimensional objects in a two-dimensional image.

For each task, we experimented with various numbers
of training samples and numbers of principal components
retained. We compared the leave-one-out entropies obtained
with the five multivariate methods mentioned above, as well
as a full-covariance Gaussian density. Results are summarized
in Table I; the “N.A” entries in that Table refer to cases where
an estimator did not provide a meaningful bandwidth, and the
column labelled “Dimensions” lists the number of principal
components retained.

When interpreting these values, it is important to keep in
mind that entropies correspond to log-likelihoods: thus, an
entropy difference of as little as0.2 implies a difference in
expected likelihoods of more than20%, and entropy differ-
ences of0.5 or more are highly significant. The results in
Table I (and similar results for experiments not reported here)
suggest a number of conclusions:

• With few exceptions, all KDEs outperform the Gaussian
density on these tasks, showing the importance of non-
parametric estimation.

• As expected, the scale differences between the various
regions in feature space severely impact on the methods
that employ a fixed bandwidth matrix throughout, namely
LCV andHall.

• Of the remaining methods,MLL generally performs best,
with localp achieving the lowest entropy on one task and
local on two tasks.

• The relative outperformance ofMLL is increased as the
number of dimensions rises.

• The relative performance of the various methods does not
seem to depend much on the number of training samples
employed, for the ranges investigated here.

V. CONCLUSION AND OUTLOOK

We have motivated and derived the MLL algorithm for
KDE bandwidth estimation. This algorithm has a number of
attractive properties: it is spatially adaptive, scales naturally
to high dimensions and performs well on a wide set of tasks
as summarized in Section IV, especially for high-dimensional
problems. The least satisfactory aspect of the current version
of the algorithm is the ad-hoc fashion in which regularization
is performed. Currently, we rely on the restrictions imposed by
a diagonal bandwidth matrix, and this is certainly not optimal.



Task Class Dimensions Samples LCV localp local Hall MLL Gaussian
TIMIT eh 5 500 7.5537 7.6381 7.5715 7.8968 7.1809 8.4228

f 5 500 8.0834 8.0427 8.0455 8.7798 7.8688 8.0598
m 5 500 7.5707 7.5401 7.5382 8.0619 7.2962 8.3426
ay 5 500 7.3585 7.3800 7.2856 7.6419 7.0629 8.3153
sil 5 500 8.1805 8.1751 8.1451 9.0109 7.9337 8.3599

DT 0 5 500 9.4375 9.2581 9.2068 10.3715 8.7871 9.5902
1 5 500 9.2841 8.9847 8.9544 10.4290 8.6347 9.4482
2 5 500 8.8123 8.6066 8.6213 9.9735 8.1686 9.3996
3 5 500 9.6525 9.4852 9.5097 10.4898 9.0139 9.6425
4 5 500 9.2758 9.1036 9.0993 10.1581 8.5998 9.4869
6 5 500 9.3038 9.1186 9.1455 10.1808 8.6651 9.3935
0 10 500 15.0478 15.3535 14.2261 14.996511.7518 14.8114
1 10 500 14.8897 15.3749 14.0206 15.292111.6279 14.8711
0 5 1000 9.3753 9.1197 9.1358 10.9304 8.8658 9.5986
1 5 1000 9.2580 8.9730 8.9839 10.3653 8.7005 9.5069

VS 0 5 297 5.7392 4.7743 4.8511 8.5778 5.0618 8.2155
1 5 300 8.3679 7.5953 7.3949 13.2202 7.0653 8.8257
2 5 299 6.0426 4.0075 4.1183 10.5294 4.0914 8.6148
3 5 300 7.1626 5.4190 5.8222 N.A 5.1394 8.7665
4 5 298 6.6018 4.3974 4.1763 N.A 4.2539 8.7621
5 5 292 6.8485 6.1951 6.5128 6.9231 5.7538 8.6636
6 5 300 8.4700 7.7218 7.7265 12.3537 7.5359 8.7661

TABLE I
LEAVE-ONE-OUT ENTROPY ESTIMATES FOR SEVERAL PATTERN-RECOGNITION TASKS

The derivation in Section III suggests a more principled
approach: since we apply the bandwidth of samplexi at
each of its neighbours, it is reasonable to insist that the
entries of the bandwidth matrix should change reasonably
slowly throughout feature space. A model such as a Markov
Random Field, defined on the neighbourhood graph, may
provide an appropriate structure for enforcing this smoothness
requirement; we are currently investigating the development
of a regularizer based on this structure.
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