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Abstract 

This study revolves around operators defined by conditional expectations 

and operators generated by random measures. 

Studies of operators in function spaces defined by conditional expecta- 

tions first appeared in the mid 1950's by S-T.C. Moy [22] and S. Sidak [26]. 

N. Kalton studied them in the setting of L,-spaces 0 < p < 1 in [15, 131 and 

in L1-spaces, [14], while W. Arveson [5] studied them in L2-spaces. Their 

averaging properties were studied by P.G. Dodds and C.B. Huijsmans and 

B. de Pagter in [7] and C.B. Huijsmans and B. de Pagter in [lo]. A. Lambert 

[17] studied their relationship with multiplication operators in C*-modules. 

It was shown by J.J. Grobler and B. de Pagter [8] that partial integral oper- 

ators that were studied A.S. Kalitvin et a1 in [2, 4, 3, 11, 121 and the special 

cases of kernel operators that were, inter alia, studied by A.R. Schep in [25] 

were special cases of conditional expectation operators. 

On the other hand, operators generated by random measures or pseudo- 

integral operators were studied by A. Sourour [28, 271 and L.W. Weis [29,30], 

building on the studies of W. Arveson [5] and N. Kalton [14, 151, in the late 

1970's and early 1980's. 



In this thesis we extend the work of J.J. Grobler and B. de Pagter [8] on 

Multiplication Conditional Expectation-representable (MCE-representable) 

operators. We also generalize the result of A. Sourour [27] and show that 

order continuous linear maps between ideals of almost everywhere finite 

measurable functions on u-finite measure spaces are MCE-representable. 

This fact enables us to easily deduce that sums and compositions of MCE- 

representable operators are again MCErepresentable operators. We also 

show that operators generated by random measures are MCE-representable. 

The first chapter gathers the definitions and introduces notions and con- 

cepts that are used throughout. In particular, we introduce Riesz spaces and 

operators therein, Riesz and Boolean homomorphisms, conditional expecta- 

tion operators, kernel and absolute T-kernel operators. 

In Chapter 2 we look at  MCEoperators where we give a definition dif- 

ferent from that given by J.J. Grobler and B. de Pagter in [8], but which we 

show to be equivalent. 

Chapter 3 involves random measures and operators generated by random 

measures. We solve the problem (positively) that was posed by A. Sourour 

in [28] about the relationship of the lattice properties of operators generated 

by random measures and the lattice properties of their generating random 

measures. We show that the total variation of a random signed measure 

representing an order bounded operator T, it being the difference of two 

random measures, is again a random measure and represents ITI. 

We also show that the set of all operators generated by a random measure 



is a band in the Riesz space of all order bounded operators. 

In Chapter 4 we investigate the relationship between operators generated 

by random measures and MCE-representable operators. It was shown by 

A. Sourour in [28, 271 that every order bounded order continuous linear 

operator acting between ideals of almost everywhere measurable functions is 

generated by a random measure, provided that the measure spaces involved 

are standard measure spaces. We prove an analogue of this theorem for 

the general case where the underlying measure spaces are a-finite. We also, 

in this general setting, prove that every order continuous linear operator is 

MCErepresentable. This rather surprising result enables us to easily show 

that sums, products and compositions of MCErepresentable operator are 

again MCE-representable. 

Key words: Riesz spaces, conditional expectations, multiplication con- 

ditional expectation-representable operators, random measures. 



Opsomming 

In hierdie studie word gekyk na operatore gedefinieer deur voorwaardelike 

verwagtings en operatore voortgebring deur stogastiese mate. 

Studies van operatore wat deur voorwaardelike verwagtings in funksie- 

ruimtes gedefinieer is, het hul verskyning in die middel vyftiger jare gemaak 

in publikasies deur S-T.C. Moy [22] en S. Sidak [26]. N. Kalton, [15, 131, 

het 'n studie daarvan gemaak in L,-ruimtes, (0 < p < 1) en in L1-ruimtes, 

[14], terwyl W. Arveson, [5], dit in Lz-ruimtes beskou het. Die vergemid- 

delding eienskappe daarvan is deur P.G. Dodds, C.B. Huijsmans en B. de 

Pagter in [7], en deur C.B. Huijsmans en B. de Pagter in [lo] ondersoek. 

A. Lambert, [17], het die verband van die operatore met vermenigvuldigings- 

operatore in C*-modules ondersoek. J.J. Grobler en B. de Pagter, [8], het 

bewys dat parsiele integraal operatore soos bestudeer deur AS.  Kalitvin et 

al. in [2, 4, 3, 11, 121 en die spesiale geval van kern-operatore, soos onder 

andere bestudeer in [25] deur A.R. Schep, spesiale gevalle is van produkte 

van voorwaardelike verwagtings en vermenigvuldigings operatore. 

Andersyds is operatore voortgebring deur stogastiese mate (ook genoem 

pseudo-integraal operatore) deur A. Sourour [28, 271 and L.W. Weis [29, 
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301, bestudeer voortbouend op studies onderneem deur W. Arveson [5] en 

N. Kalton, (14, 151, in die laat sewentiger en vroeg tagtiger jare. 

In hierdie proefskrif brei ons die werk wat J.J. Grobler en B. de Pagter [8] 

oor vermenigvuldigings voorwaardelike verwagtings representeerbare (vvv- 

representeerbare) operatore gedoen het uit. Ons veralgemeen ook 'n resul- 

taat van Sourour, [27], en toon aan dat orde kontinue line6re afbeeldings 

tussen ideale van byna-oral eindige meetbare funksies op u-eindige maat- 

ruimtes vvv-representeerbaar is. Hierdie feit stel ons in staat om maklik te 

sien dat somme en samestellings van vvv-representeerbare operatore weer 

vvv-representeerbaar is. Ons toon ook aan dat operatore voortgebring deur 

stogastiese mate, vvv-representeerbaar is. 

Die eerste hoofstuk dien as inleiding waarin ons die definisies en begrippe 

wat verder gebruik word saamvat. In die besonder gee ons aandag aan die 

teorie van Rieszruimtes en die operatore wat daarin 'n rol speel, naamlik 

Riesz- en Boole-homomorfismes, voorwaardelike verwagtingsoperatore, kern- 

operatore and absolute T-kern operatore. 

In Hoofstuk 2 bestudeer ons wv-representeerbare operatore en ons gee 

'n definisie daarvan wat verskil van die een wat deur Grobler en de Pagter in 

[8] gebruik word. Ons toon egter aan dat die twee definisies ekwivalent is. 

Hoofstuk 3 bevat die teorie van stogastiese mate en die operatore voort- 

gebring deur stogasiese mate. Ons 10s 'n probleem gestel deur Sourour in 

[28] positief op deur aan te toon dat die totale variasie van 'n betekende 

stogastiese maat wat 'n orde begrensde operator T voortbring en wat die 
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verskil van twee stogastiese mate is, weer 'n stogastiese maat is en dat &it 

die operator IT( voortbring. 

Ons toon ook aan dat die versameling van alle operatore voortgebring 

deur 'n stogastiese maat 'n band is in die Rieszruimte van alle orde begrensde 

operatore. 

In Hoofstuk 4 ondersoek ons die verband tussen operatore voortgebring 

deur stogastiese mate en wv-representeerbare operatore. Sourour het in 

[28, 271 bewys dat elke orde begrensde ordekontinue line6re operator wat 

ideale van byna-oral eindige meetbare funksies afbeeld in ideale van soortge- 

lyke funksies deur stogastiese mate voorgebring word mits die onderliggende 

maatruimtes standaard maatruimtes is. Ons bewys 'n analoog van hierdie 

stelling vir die algemener geval waar die onderliggende maatruimtes u-eindig 

is. In hierdie algemene geval toon ons ook aan dat elke ordekontinue line6re 

operator wv-representeerbaar is. Hierdie verrassende resultaat stel ons in 

staat om sonder moeite te wys dat somme, produkte en samestellings van 

wv-representeerbare operatore weer vvv-representeerbaar is. 

Sleutelterme: Rieszruimtes, voorwaardelike verwagtings, vermenigvuld- 

igings voorwaardelike verwagtings representeerbare-operatore, stogastiese 

mate. 



Acknowledgment 

I would like to express my heartfelt thanks to the following people: 

* My supervisor Prof. J.J. Grobler, for his professional way of supervising 

my studies. From him I learnt more than the mathematics in this thesis. 

* The staff in the Department of Mathematics a t  North-West University 

(Potchefstroom). They were always there to lend a hand when I was 

stuck and for their financial assistance. 

* The Opirif gang, the 19 Meyer gang, the Malherbe gang. Amongst 

whom Mr. Moeketsi D., Mr. Ndiitwani C., Mr. Kgoro C., Mr. Mojake 

S., Dr. Modise S.J., Ms. Mthembu K., Ms. Ditlopo N., Ms. Mtsha- 

tsheni N., immediately come to mind. Those not mentioned are by no 

means less important. 

* Members of the staff of the Department of Mathematics and Applied 

Mathematics a t  University of Venda. 

* My personal friends who pushed me on: Mr. Tshivhandekano T.R., Mr. 

Siphugu M.V. and Mr. Maiwashe K.C., a t  times we suffered together. 



* My brother, January; his wife Sara and the kids. Their house used to 

be my home whilst I was busy with this. 

* My wife, Takalani; my son, Thendo and my daughter Tendani: this 

one is for you all as members of my family. 

* The St. Francis AME Church in Ikageng, Potchefstroom and members 

of the Charles Rathogwa Memorial AME Church, Vuwani Circuit, for 

lending me a spiritual helping hand. 

* GOD Almighy, for His wisdom and strength, part of which He gave me 

to enable me to accomplish this. 



Contents 

1 Preliminaries 1 

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1.2 Riesz spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

1.3 Operators in Riesz spaces . . . . . . . . . . . . . . . . . . . .  13 

1.4 Riesz and Boolean homomorphisms . . . . . . . . . . . . . . .  16 

1.5 Conditional Expectations . . . . . . . . . . . . . . . . . . . . .  26 

1.6 Kernel Operators . . . . . . . . . . . . . . . . . . . . . . . . .  32 

2 MCE operators 40 

2.1 MCE operators on ideals . . . . . . . . . . . . . . . . . . . . .  41 

2.2 MCE-representable operators . . . . . . . . . . . . . . . . . .  48 

3 Operators defined by random measures 62 

3.1 Random measures . . . . . . . . . . . . . . . . . . . . . . . . .  63 

3.2 Operators generated by random measures . . . . . . . . . . . .  67 

3.3 Random measure-representable operators . . . . . . . . . . . .  87 

4 Random measures and MCEOperators 98 



CONTENTS xii 

4.1 Random measures and MCE-Operators . . . . . . . . . . . . .  99 

4.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104 

Bibliography 108 



Chapter 1 

Preliminaries 

1.1 Introduction 

Operators in function spaces defined by conditional expectations were first 

studied by, among others, S - T.C. Moy [22], Z. Sidak [26] and H.D. Brunk 

in the setting of LJ' spaces. Conditional expectation operators on various 

function spaces exhibit a number of remarkable properties related to the un- 

derlying structure of the given function space or to the metric structure when 

the function space is equipped with the norm. P.G. Dodds, C.B. Huijsmans 

and B. de Pagter [7] linked these operators to averaging operators defined on 

abstract spaces earlier by J.L. Kelley [16], while A. Lambert [17] studied their 

link to classes of multiplication operators which form Hilbert C'-modules. 

J.J. Grobler and B. de Pagter [8] showed that the classes of partial integral 

operators which were studied by A.S. Kalitvin and others (see [12], [2], [3] 

and [4]) were a special case of conditional expectation operators. 

In this thesis we are going to discuss the notion of multiplication condi- 

tional expectation operators and extend the work by J.J. Grobler and B. de 



CHAPTER 1. PRELIMINARIES 2 

Pagter [8] to operators that can be represented by multiplication conditional 

expectation operators. 

We also investigate results obtained by, among others, Sourour [28], [27] 

and Weis [29] and [30]. They worked on operators in ideals of almost every- 

where finite measurable functions on standard measures spaces and showed 

that these can be generated by random measures. We generalize their re- 

sults and show that order continuous linear maps between ideals of almost 

everywhere finite measurable functions on u-finite measure spaces are Mul- 

tiplication Conditional Expectation-representable (MCE-representable). 

The first chapter gives the preliminaries and the background where defi- 

nitions, basic concepts and notions that are needed in the sequel are stated. 

Chapter 2 focuses on characterizing conditional expectation operators as or- 

der continuous functions. It also identifies those operators that can be r e p  

resented by conditional expectation operators. Chapter 3 looks at  pseudo- 

integral operators or those operators that can be generated by random mea- 

sures. In this chapter we also look at  operators that are random measure 

representable. In Chapter 4 we investigate the relationship between random 

measure-representable operators and MCErepresentable operators. Here we 

present our main result. 

1.2 Riesz spaces 

In this section we give a short introduction to the theory of Riesz spaces. We 

will concentrate only on definitions, notions and results that will be useful 
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later. For deeper results we refer to W.A.J, Luxemburg and A.C. Zaanen 

[19], H.H. Schaefer [24], P. Meyer - Nieberg [21] and A.C. Zaanen [34]. 

Definition 1.2.1 A binary relation that is reflexive, anti-symmetric and 

transitive is called a partial order. We will denote a partial order by 5 . A 

set in which a partial order has been defined is called a partially ordered set. 

A partially ordered set X with a partial order 5 will be denoted by (X, 5).  

If, however, the partial order 5 is obvious from the context, or if there is 

no fear of confusion, we will write X for a partially ordered set (X, 5).  

For elements x and y in a partially ordered set X we will sometimes write 

y 2 x if x 5 y and x < y to express the fact that x 5 y and x # y ,  similarly 

for y > x. 

Definition 1.2.2 Let X be a partially ordered set. A set Y C X is said to 

be bounded from above if there is an element x E X such that y 5 x for all 

y E Y. The element x is called an upper bound of Y. An upper bound u of 

Y is called the least upper bound or supremum of Y if u 5 x for every upper 

bound x of Y. The supremum of Y will be denoted by supY. The notions 

of bounded from below, lower bound and the greatest lower bound or in f imum 

of the set Y C X are defined similarly with the inequalities reversed. The 

infimum of Y will be denoted by inf Y. 

Definition 1.2.3 Let X be a partially ordered set. For x, y E X with x 5 y, 

the order interval [x, y] is defined as the subset 
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A subset A c X is said to be order bounded if A is contained in an order 

interval. 

From the definition of boundedness it is clear that every order bounded 

set is bounded from above and from below. 

Definition 1.2.4 A partially ordered set X is called a lattice whenever 

sup {x, y )  = x V y  and inf {x, y )  = x A y  exist for all x, y E X. 

Definition 1.2.5 A real vector space E which is partially ordered is called 

an ordered vector space if 

x 5 y implies that x + y 5 y  + z for all x, y ,  z E E 

x 5 y implies that Ax 5 Xy for all x, y  E E and 0 < A E W. 

An ordered vector space is called a Riesz space or vector lattice if it is a 

lattice. 

We list some examples of Riesz spaces which we will use further on. For 

more details on these we refer the reader to 18, 341 

Example 1.2.6 (1) Let (R, C , p )  be a measure space and consider Lo = 

Lo (0, C, p), the set of all real p-a.e. finite measurable functions on R. 

We identify functions which differ only on a set of measure zero, i.e., 

elements of Lo are equivalence classes of functions, two functions being 

in the same equivalence class if and only if they differ only on a set of 

measure zero. If we define for f ,  g E Lo, f 5 g if f (x) 5 g (x) p- a.e. 

on R then Lo is a Riesz space. 
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For 1 5 p < w define LJ' = LJ' (0 ,  C, p) as the subset of Lo consisting 

of all f E Lo such that J, If IPdp < w. If we define the order in LJ' as 

that defined for Lo then LJ' is a Riesz space. 

Define the set of all essentially bounded f E Lo by L" = Lm (0 ,  C, p) ; 

here f E Lo is said to be essentially bounded if there exists a non - 
negative finite number M such that 1 f (x)J < M for palmost every 

x E R. In other words f E Lm if f E Lo and ess sup If (x)1 < w. 

Again, if we define the order in Lm as that in Lo then L" is a Riesz 

space. 

(2) Let X be a compact Hausdorff space and C(X) be a vector space of all 

real continuous functions on X.  Define the order 5 in C(X) by f 5 g 

iff f (x) 5 g(x) for all x E X, this makes C(X) a Riesz space. 

(3) Let 5 be an algebra (a-algebra) of subsets of a non-empty set X .  Let p 

be a bounded finitely additive signed measure on 5, i.e., for A, B E 5 

we have p(A U B) = p(A) + p(B) whenever A is disjoint with B, 

Ip(A)J 5 K for some constant K > 0 and 

Put E to be the set of all bounded finitely additive signed measures 

on 5, if we define the order on E by saying, for p, v E E, that p 5 u 

whenever p(A) 5 v(A) for all A E 5 then E is a Riesz space. 
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Here for p1 and pz in E we have that p1 V pz and p1 A pz are given by 

Definition 1.2.7 The subset E+ = {x E E : x 2 0) is called the positive 

cone of the ordered vector space E,  x E E is said to be a positive element of 

E. 

From this definition, it follows that the positive cone E+ exhibits the 

following properties: 

I f x , y ~  E+ t h e n x + y ~  E+. 

1 f x ~ E + a n d O I X ~ W t h e n X x ~ E + .  

If x E E+ and -x E E+ then x = 0. 

Definition 1.2.8 Let E be a Riesz space. For every x E E we define the 

positive part of x by x+ = x V 0, the negative part of x by x- = (-x) V 0 and 

the absolute value of x by 1x1 = x V (-x) . 

It is immediately clear that x+ and x- are in E+ and that I - X I  = 1x1. 

Also (-2)- = - (-x) V 0 = x V 0 = x+ and (-x)+ = (-x) V 0 = x-. 

The proof of the following properties can be found in Meyer-Nieberg [21]. 

Proposition 1.2.9 Let E be a Riesz space. Then the following hold for 

every x E E 
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(ii) 0 5 x+ 5 1x1. 

(iii) -x- 5 x 5 x+. 

(2v) (Ax)' = Ax+ and (Ax)- = Ax- for A 2 0. 

(Ax)' = -Ax- and (Ax)- = -Ax+ for A 2 0. 

[Ax/ = 1A1lxl for A E R. 

(v) x 5 y i f  and only i f  x+ 5 y+ and x- > y- 

Consider the space e in Example 1.2.6 (3). We have that p+ = p V 0, 

p- = (-p) V 0 and Ipl = (-p) V p. Also 1p1 = p+ + p- 

The above properties can be used to prove the following properties: 

Proposition 1.2.10 If E is a Riest space then 

and 

We state a property of Riesz spaces whose importance is apparent when 

looking at  the space of linear functionals on a Riesz space. It is known as 

the Riesz Decomposition Property, its proof can be found in Zaanen [32]. 

Proposition 1.2.11 Let E be a Riest space and let x, y E ES 
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(2;) If 0 5 z 5 x + y there exist elements 0 5 u 5 x and 0 5 v 5 y such 

that z = u + v. 

(ii) For all x ,  y E E+ we have that [0, x + y] = [O, x] + [0, y]  

Definition 1.2.12 If E is a Riesz space, x and y in E are said to be disjoint 

whenever 1x1 A Iyl = 0 and we write s l y .  

Two subsets A and B in E are called disjoint whenever a l b  for every 

a ~ A a n d b ~ B .  

The set Ad = { x  E E : x l a  for all a E A) is called the disjoint comple- 

ment of A c E. 

A subset S C E is called a disjoint system whenever 0 E S and x l y  for 

every x,  y E S. 

We present the following result, the proof of which can be found in Meyer- 

Nieberg [21]. 

Proposition 1.2.13 If x ,  y are elements of a Riesz space E then the follow- 

ing are equivalent 

The following definitions and notions are adapted from the book of Zaanen 

[34l. 
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Let A be a non-empty set and E be a Riesz space. Assume that for each 

a: E A there exists an element f ,  in E, i.e., there is some mapping a: H f ,  

from A into E. Put A = { f ,  : a: E A). Here A is an indexing set for A. 

Definition 1.2.14 With the notation above, the set A is said to be upwards 

directed if for any a: and B in A there exists a 6 in A such that f~  2 f,V f s  and 

it is said to be downwards directed if there is a 6 E A such that fs 5 f ,  A f s .  

We denote an upwards directed set A by A f and if A is downwards directed 

we denote this by A 4. If A f and supA = a we write A f a. Similarly, we 

writeAJ.aif  AJ.and i n f A = a .  

We give, as a definition, a more specific case of a directed set. 

Definition 1.2.15 A sequence (x,) in a Fiiesz space E is said to be increas- 

ing if XI 5 x2 5 . . . and it is said to be decreasing if XI 2 xz 2 . . . . We 

denote an increasing sequence (2,) by x, t and a decreasing sequence (x,) 

by x, 1. If x, f and x = supx, exists in E we write x, f x and x, J. x 

whenever x, J. and x = inf x, exists in E. In the latter case we sometimes 

say that (x,) converges monotonely to x (as n tends to infinity). 

We introduce a more general notion of convergence, which is convergence 

associated with the order structure of E. This kind of convergence is known 

as order convergence. 

Definition 1.2.16 A sequence (x,) in a Riesz space E is said to converge 

in order to x if there exists a sequence (y,) J. 0 such that lx, - X I  5 y, for all 
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n. We shall denote that (x,) converges in order to x (or is order convergent 

to x )  by x, + (o)x  or by x, -+ x in order. In this case x is called the order 

limit of the sequence (x,). 

We give a remark from [34] that the notion of a downwards directed 

sequence and that of a decreasing sequence are different. For instance, in the 

Riesz space R consider the sequence 

We have that (2,) is not monotone but x, J., in fact x,  J. 0. 

Example 1.2.17 Let ( X ,  C, p) be a measure space and let E = M (X, p) , 

the space of all p-a.e. finite functions on X .  Then a sequence f ,  J. 0 if and 

only if f ,  ( t)  J. 0 for almost every t E X. Therefore, f ,  -+ f in order if and 

only if there exists a positive g E E such that 1 f,,l 5 g and ( f ,  ( t ) )  converges 

to f ( t)  for almost every t E X .  

We also put in a few non-topological properties of vector lattices. In 

particular we look at  some subsets of Riesz spaces that will be encountered 

as we progress. 

Definition 1.2.18 Let E be a Riesz space 

(i) E is called Archimedean if, for all x ,  y E E,  it follows from n x  5 y for 

all n E N that x 5 0. 

(ii) E is said to be laterally complete if every set of pairwise disjoint ele- 

ments has a supremum. 
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(iii) E is said to be Dedekind complete or order complete if every non-empty 

subset of E that is bounded from above has a supremum, or equiva- 

lently, if every non-empty subset of E that is bounded from below has 

an infimum. 

(iv) E is called o-Dedekind complete if every non-empty finite or countable 

subset of E that is bounded from above (bounded from below) has a 

supremum (infimum). 

(v) E is called order separable if every non-empty subset D of E that has 

a supremum contains a subset that is at most countable with the same 

supremum as D. 

(vi) E is called super Dedekind complete if it is Dedekind complete and 

order separable. 

For a-finite measure spaces (X, C, p),  the spaces LO(X, C, p), M ( X ,  C, p) 

and P ( X ,  C, p), with 0 5 p < w, are examples of super Dedekind complete 

spaces. (The space E is Dedekind complete but in general not super Dedekind 

complete, see [19, Example 23.31. LO(X, C, p)  is an example of a laterally 

complete Riesz space. 

Definition 1.2.19 A linear subspace A C E is called a Riesz subspace or a 

sublattice of the Riesz space E if x V y and xA y belong to A for all x, y E A. 

(i) A subset A is called order dense in E whenever for each 0 < x E E 

there exists some y E A that satisfies 0 < y 5 x. 
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(ii) A subset A is called solid if 1x1 < Iyl and y E A implies that x E A. 

(iii) A solid linear subspace of the Riesz space E is called an ideal. 

(iv) An ideal B is a band if for every subset A c E we have supA E B 

whenever supA exists in E. An ideal generated by a singleton set is 

called a principal ideal. 

(v) A band B is called a projection band if there exists a linear projection 

P : E -+ B satisfying 0 5 P x  5 x for all x E E+. P is then called a 

band projection. 

From the definition it follows that the ideal B is a band in E if 0 5 fa t f 
E E with fa E B implies that f E B and that an ideal A is order dense in 

E if the band generated by A is the whole E. 

Example 1.2.20 (1) LJ'(0, C, p) is an ideal in LO(O, C, p) (both in Exam- 

ple 1.2.6). 

(2) Again P(0, C, p) in Example 1.2.6 is an ideal in the space M(R, C, p), 

the space of all p-a.e. finite functions on R, but it is not a band. 

B c M(R, C, p) is a band if and only if there exists a measurable set 

EB c R such that 

B = {f E M(R, C, p) : f (x) = 0 for almost all x $ EB).  

We will, to a great extent, be concerned with ideals of measurable func- 

tions, i.e., ideals L in the Riesz space Lo (Y,A, v) . The collection of all A- 

measurable functions into [0, m] will be denoted by M+ (Y, A, v) . 
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I f  L is an ideal in Lo (Y ,A ,  v ) ,  the set Z E A is called an L-zero set if  

every f E L vanishes v-a.e. on 2. There exists a maximal L-zero set Zl E A 

and the set K = Y\Z, is called the carrier of the ideal L. Also, there exists 

a sequence A, p Yl in A such that v (A,) < m and lA, E L for all n E N. 

For proofs of these see [32]. 

W e  note that i f  the carrier of the ideal L in LO(Y, A, v )  is the whole set 

Y ,  i.e., Y = 6 then L is order dense in LO(Y, A, v ) .  

1.3 Operators in Riesz spaces 

We now look at the basic theory of operators in Riesz spaces. W e  consider 

two Riesz spaces E and F. W e  will denote the set of all linear operators from 

E to  F by L ( E ,  F )  . L ( E ,  F )  is an ordered space i f ,  for T ,  S E L ( E ,  F )  , we 

define S 5 T to  mean T - S 2 0. 

Definition 1.3.1 Let E and F be Riesz spaces and let T E L ( E ,  F ) .  

( i )  T is called order bounded i f  it maps order bounded subsets into order 

bounded subsets. 

(ii) T is called positive whenever T x  2 0 for all x 2 0. I f  T is positive we 

write T 2 0. 

(iii) T is called a Riesz homomorphism or lattice homomorphism whenever 

T (x V y)  = TxVTy.  A bijective Riesz homomorphism is called a Riesz 

isomorphism. 
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( iv)  T is said t o  be order continuous whenever inf{lTxl : x E D )  = 0 in F 

for every set D such that D J. 0 in E .  

( v )  T is said to  be a-order continuow, i f ,  for any monotone sequence x, J. 0 

we have that inf{lTx,l) = 0. 

(vi)  T is said t o  be regular i f  it can be expressed as a difference of  two 

positive linear operators from E into F, i.e., i f  T = TI - Tz where TI 

and T2 are positive linear operators from E into F. 

Note that for a positive T ,  we have that T is order continuous i f  and only 

i f  it follows that T ( D )  J. 0 in F for all sets D J. 0 in E .  In the case of  a-order 

continuity, we have that a positive T is u-order continuous i f  x, J. 0 implies 

that T x ,  J. 0. 

The set o f  order bounded linear operators from E t o  F will be denoted by 

Cb ( E ,  F )  . The bounded order dual o f  E ,  which is Cb ( E ,  R),  will be denoted 

by E". Note that i f  F is Dedekind complete then Cb ( E ,  F )  is Dedekind 

complete. W e  will denote the set o f  order continuous linear operators in 

Cb(E,  F )  by C, ( E ,  F )  and in the case where F = W by E,". The set of  all 

a-order continuous linear operators will be denoted by LC ( E ,  F )  and for the 

case where F = W by E,". 

W e  also note that a positive operator is regular and that i f  F is Dedekind 

complete then every operator T E C ( E , F )  is regular i f  and only i f  it is 

order bounded, i.e., the set o f  regular operators and Lb ( E ,  F )  coincide i f  F 

is Dedekind complete, see 1321. 
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We state a few characteristics of positive operators whose proofs can be 

found in [24] and in [34]. 

Lemma 1.3.2 Let T E &(E,  F ) .  Then T E Cn(E,  F )  if and only if IT1 E 

C,(E, F ) ,  i.e., if T+,  T -  E Cn(E,  F ) .  Similarly T E C,(E, F )  if and only if 

IT1 E Cc(E,F).  

Proposition 1.3.3 (i) Cn(E,  F )  and C,(E, F )  are bands in Cb(E, F) .  

(ii) E," and E," are bands in E". 

Proposition 1.3.4 Let T E C ( E ,  E )  , then 

(2;) T is positive i f  and only if lTxl 5 T 1x1 for all x E E.  

(ii) ( ~ f ) '  5 T f +  

(iii) Every Riesz homomorphism is positive. 

(iv) T is a Riesz isomorphism if and only if T and T-' are positive. 

We will denote the range of T E C ( E ,  F )  b y  ran (T )  and the kernel of T 

by ker ( T )  . Recall that ker ( T )  = { f E E : Tf = 0). 

Definition 1.3.5 For an operator T E Cb ( E ,  F )  the set 

is called the null ideal of T or the absolute kernel of T. 
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We have that the absolute kernel of a positive operator is an ideal and 

that NT C T-I ( 0 ) .  

Definition 1.3.6 The disjoint complement of the absolute kernel of T E 

Lb ( E ,  F )  is called the carrier of T and will be denoted by CT. 

Note that if T E L, ( E ,  F )  then NT is a band and, furthermore, by the 

Riesz decomposition of Dedekind complete Riesz spaces we have that 

The following result implies that every regular operator is norm bounded, 

its proof can be found in 1341. 

Proposition 1.3.7 Let E be a Banach lattice and F a nomed Riesz space. 

Then every positive linear operator from E into F is continuous. 

1.4 Riesz and Boolean homomorphisms 

In this section we insert some remarks concerning Riesz homomorphisms 

that will be used later on. We start by stating some results about order 

convergence and o-order convergence. 

Lemma 1.4.1 If (f,) is a sequence in Lo(X,  C, p) such that for p-a.e. x, 

j, + 0 then f ( x )  = sup, 1 f,(x)I mists in Lo(X,  C, p). 

Proof Each f,(x) is a.e. p-measurable and so f ( x )  is a.e. p-measurable. 

We show that it is p-a.e. finite valued. We have that for p-a.e. x,  



CHAPTER 1. PRELIMINARIES 17 

f ,  -i 0. Let xo be one of these points, then there exists a natural 

number N(,,) such that 1 fn(xo)l 5 1 whenever n > N(,,). Put M = 

sup{l, I f l ( ~ O ) l ,  i f 2 ( ~ 0 ) l ,  ". lf~~,,,(xO)I). Then 

Hence f (so) is finite. Thus f ( x )  is p-a.e. finite valued on X .  0 

I f  ( f , )  is a sequence in LO(X,  C, p) such that f,(x) J. 0 p-a.e., then there 

exists a sequence of positive real numbers a, t oo such that a, f,(x) -+ 0, 

see [19, Theorem 71.41. Putting fo(x) = sup, a, f,(x), and using Lemma 1.4.1, 

we have that fo  E LO(X,C,p) .  But then 0 5 f,(x) 5 $fo(x)  and so ( f n )  

converges fo-uniformly t o  0. 

The above observation can be stated as 

Theorem 1.4.2 Order convergent sequences in L O ( X ,  C, p) are relatively 

uniformly convergent. 

W e  use this in the proof of the following 

Proposition 1.4.3 Let (Y,  A, v )  and ( X ,  C,  p) be a-finite measure spaces. 

Suppose that 4 is a Riesz homomorphism from LO(Y, A, v )  into LO(X ,  C, p). 

Then 

(i) 4 is order continuous; 

(ii) if + is interval preserving, ran(+) is a band in LO(X:  C, p); 
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(iii) ij 4 is surjective, then it is interval preserving and in  particular, i f  

L c (Y, A, Y )  is an ideal, then 4 ( L )  is an ideal in L O ( X ,  C ,  p ) .  

(iu) If L C LO(Y, A, v) and M C LO(X,  C ,  p) are order dense ideals and if 

I$ : L + M is an order continuous Riesz homomorphism, then it can 

be extended uniquely to a Riesz homomorphism from LO(Y,A, v )  into 

L O ( X , C ,  1.1). 

Proof (i) By Theorem 1.4.2 we have that an order convergent sequence in 

LO(X,  C, p) is relatively uniformly convergent. Since q5 is positive 

it is a-order continuous. But LO(X,  C ,  p)  is super Dedekind com- 

plete, and therefore order separable and so 4 is order continuous. 

(ii) Assume that 4 is interval preserving. If G = ran(4), then G is an 

ideal in LO(X,  C ,  p) .  Since LO(Y, A, V )  is laterally complete and 

4 is order continuous, G is laterally complete. We have that for 

every 0 5 w E G ,  Bw = { w ) ~ "  C G.  Indeed, if we let 0 5 f E Bw 

and put 

fn = f lE, where 

En = { t ~  X I nw(t)  < f ( t )  5 ( n + l ) w ( t ) ) ,  

and n = 1 , 2 , .  . . , then f n  is a disjoint system in G and so sup, f ,  

belongs to G. Since this supremum is equal to f E LO(X,  C, p) we 

have that f E G. 

Now, let {w , )  be a maximal disjoint system in G, then 
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and the band generated by w is contained in G. 

On the other hand, if 0 5 u E G,  we write u = U I  + u2 with 

ul E Bw and u2 E B;. Since u2 is disjoint to every w, and since 

w, is a maximal disjoint system in G, we have that u2 = 0. Thus 

G c Bw and so G = Bw is a band in LO(X ,  C, p). 

(iii) Let 4 be a surjective Riesz homomorphism from LO(Y, A, u )  to 

LO(X ,  C ,  p) and let 0 I g I $(u)  for some 0 < u E LO(Y, A, u) .  

Let w E LO(Y, A, u )  be such that 4(w)  = g and consider w+ A u. 

Then 0 I W+AU 5 u and 0 5 +(W+AU) I d(u) .  This gives us that 

0 I 4(w+)Ad(u) I u and so 4(w+Au) = g since d(w+) = g+ = g. 

(iv) Since LO(X ,  C, p) is laterally complete and L c LO(Y, A, A) is 

Dedekind complete we have by Theorem 7.20 in [I], that 4 can 

be extended into a Riesz homomorphism 4' from LO(Y, A, p) into 

LO(X ,  C, ,u) that satisfy the equation 

for all 0 < x E LO(Y,A,p) .  Since every extension satisfies this 

formula it is unique. 0 

Let 4 : LO(Y, A, u )  + LO(X ,  C, p),  be a Riesz homomorphism, we denote its 

null-ideal and carrier by N# and C#, respectively, i.e., 

d N4 = { f  E LO(Y,A,v)  : 4 ( f )  = 0 )  and C+ = N+. 

Since 4 is order continuous, N# is a band and so 
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If Yl E A is the carrier of C6, then 

where Ayl = { A  f l  : A E A) .  

Note that the restriction of q5 to Lo(Yl, Ayl,  v)  is a Riesz isomorphism into 

L O ( X ,  C, p) .  

We will denote by A, the measure algebra of (Y, A, v )  and by C, the 

measure algebra of ( X ,  C, p).  c will denote the equivalence class in either of 

the algebras to which the measurable set C belongs. 

Let : Lo(Y,  A, v )  -+ LO(X,  C, p) be a Riesz homomorphism such that 

4 ( l y )  is an a.e. strict positive function on X .  If A E A then q5(la) = 

q5(ly)ls ,  for some B E C which is uniquely determined modulo p-null sets 

by A. If we put $(A) = B it follows that 

is an order continuous Boolean homomorphism that satisfies $(Y) = X .  Put 

Then C4 is a sub-u-algebra of C and we write C4 = $(A). (In this case we 

do not distinguish between the u-algebra A and the measure algebra A,). 

We show that 4 : Lo(Y,  A, v )  + Lo(X ,  Cb, p) is interval preserving. To 

that end let 0 5 u E LO(Y, A, V )  and let v E LO(X, C4, p) be such that 
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0  < - v  5 $(ti). For every step function f (y)  = C:=, a , l ~ , ( y )  with Bi = 

$ ( A ~ )  E C, we have 

Let (v,) be a sequence of step functions such that 0 5 v, t v  in LO(X, C,, p). 

By the preceding argument there exists a sequence (u,) of step functions in 

LO(Y, A, v )  such that q5(un) = v,. Since q5 is a Riesz homomorphism we may 

assume, without loss of generality, that 0 5 u, t< u [else we can successively 

replace u, firstly by u,+ (to get q5(u$) = q5(un V 0) = q5(un) V 0 = v,+ = v,), 

secondly by u, V u n - ~  (to get q5(un V u,-1) = v, V u,-1 = v,) and lastly by 

u, A u (to get q5(un A u )  = vn A g)(u) = v n ) ]  Let 0 5 un t w. Then 

which shows that q5 is interval preserving. 

By Proposition 1.4.3 (ii) we get that the ran(q5) is a band in LO(X,  CO, p) 

containing the weak order unit q5(ly). This band is the whole of LO(X,  Ed, p) 

and so q5(L"(Y, A, v ) )  = L O ( x, CO, 4. 
On the other hand, if u : A, -+ C, is an order continuous Boolean homo- 

morphism with O ( Y )  = X, then there exists a unique Riesz homomorphism 

q5 : LO(Y, A, v )  -+ LO(X,  C, p) with q5(l) = 1 such that = u. 

Now assume that T : X + Y is a (C, A)-measurable mapping which is 

null preserving (i.e., if B E A and v ( B )  = 0 then p(r- l(B))  = 0). The 
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mapping B I-, T-'(B) defines an order continuous Boolean homomorphism 

T* : A,, -+ ECI1 

with 

T*(Y)  = X. 

The associated Riesz homomorphism from LO(Y, A, v) into LO(X, C, p) will 
A 

be denoted by 4,, i.e., 4, = T, and $,(I) = 1.  It is easily verified that 

for all f E LO(Y, A, v). 

Let L c LO(Y, A, v) be an order dense ideal with order continuous dual 

L;. As usual we identify L; with an ideal L' of functions in LO(Y, A, v) and 

we will assume that L' is again an order dense ideal (which is always the case 

if L is a Banach function space; (see [33], Theorem 112.1 or [Zl], Theorem 

2.6.4). Equivalent to this assumption is that L; separates the points of L. 

The duality relation between L and L' is given by 

(f ,g) =/ fgdvfor f E L a n d g ~  L', 
Y 

(see [33] Section 86). Let T E L,(L, M )  with L and M ideals of functions 

in LO(Y, A, v) and LO(X, C, p) respectively. We define its order continuous 

adjoint T' : M' + L' by (g, T'f) = (Tg, f )  for all f E M' and g E L (see [33], 

Section 97). Then T' E L,(M1, L'). 

The next result is from [8]. In it we gather some results relating to the 

adjoints of homomorphisms. 
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Lemma 1.4.4 Let ( X ,  C ,  p) and (Y, A, v )  be u-Jinite measure spaces and let 

L c LO(Y, A, v )  and M c L O ( X ,  C, p) be order dense ideals for which L' and 

M' are order dense ideals as well. Let 4 : L t M be an order continuous 

interval preserving Riesz homomorphism. Then, 

(a) the adjoint q5' : M' -+ L' is an order continuous interval preserving 

Riesz homomorphism as well and q5' extends uniquely to an order con- 

tinuous interval preserving Riesz homomorphism q5' : L O ( X ,  C, p) -+ 

LO(Y, A, 4; 

(ii) i f  4 ( L )  is order dense in  LO(X ,  C, p),  then 4' is injective; 

(iii) i f  4 is injective, then @(Ix) is strictly positive and q5'(Mf) is order 

dense in  L'; 

(iv) i f  4 is injective and +(L)  is a band in  M then q5' : M' t L' is surjective. 

Proof (i) It follows from [ I ] ,  Theorem 7.7 that q5' is a Riesz homomorphism 

and from [I] Theorem 7.8 that q5' is an interval preserving. By 

Proposition 1.4.3,4' can be extended to an order continuous Riesz 

homomorphism 4' : LO(X ,  C ,  p) t LO(Y, A, v ) .  We show that 4' 

is interval preserving: Let 0 5 u E LO(X ,  C, p) 3 M and v E 

LO(Y, A, v )  > L be such that 0 5 v 5 q5'(u). Since M' is order 

dense in LO(X ,  C, p) there is a sequence 0 5 u,  1. u in M' and 

so 0 5 q5'(un) t @(u).  We have that q5' : M' -+ L' is interval 

preserving. Since 0 5 v A q5'(un) 5 dl(un) there exists, for each 

n = 1,2, .  . . , an element w, E M' such that q5'(wn) = v A @(un).  
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Again, since 4' is a Riesz homomorphism, we may assume without 

loss of generality that 0 5 wn t< v. Let w, 1. w, then 

This proves the assertion. 

(ii) Now assume that 4(L) is order dense in LO(X, C, p). Let 0 5 g E 

Mi be such that $(g) = 0. Then 

and so g = 0 by order denseness of 4(L). Hence 4' is injective. 

(iii) Now assume that 4 is injective. To show that +'(lx) is strictly 

positive, take 0 < g E L such that g A +'(lx) = 0. Take X,, E C 

such that Xn 1. X and lx, E Mi for all n. Then 

for all n, and so J, +(g) dp = 0. This implies that +(g) = 0 p-a.e. 

on X. Hence g = 0, which shows that +'(lx) is strictly positive, 

as L is order dense in LO(Y, A, v). 

In order to see that @(Mi) is order dense in Li, let 0 < h  E L'. 

Since #(lx) is strictly positive, 0 < +'(lx) A h  5 +'(Ix) and as 

4' is interval preserving, there exists 0 < f E LO(X, C, p) such 
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that 0 < f 5 lx  and & ( f )  = 4'(lx) A h. But M' is order dense 

in LO(X ,C ,p )  and so for some g E MI, we have 0 < g 5 f .  By 

injectivity, 0 < 4 ' (g )  5 @ ( f )  5 h and it follows that q5'(M1) is 

order dense in L'. 

(iv) Assume now that 4 is injective and that 4 ( L )  is a band in M. By 

(ii), q5'(lx) is strictly positive and since q5' is interval preserving, it 

follows that q5' : LO(X ,  C, p) + LO(Y, A, v) is surjective. Let XI E 

C be the carrier of 4(L) .  By hypothesis, $(L)  = { f  lxl : f E M ) .  

Furthermore it is easy to see that q5'(g) = 0 for all g E LO(X ,  C, p) 

such that g = 0 on X I .  

Now let 0 < h E L' be given. Then h = &(g) for some 0 5 

g E LO(X ,C ,p ) ,  and we may assume that g = 0 on X\Xl. It 

remains to show that 0 5 g E M', i.e., that Jx g f dp < m for all 

0 5 f E M. To this end, take 0 5 f E M. Then f lxl E 4 ( L ) ,  so 

f lxl = 4(u )  for some 0 5 u E L. Let 0 5 g, E M' be such that 

0 5 g, f g .  We find that 
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Thus 

which shows t h  g  E M'. 0 

1.5 Conditional Expectations 

Let (R,5, IF') be a probability space, i.e., 5 is a u-algebra of subsets of R and 

P a countably additive measure on 5 with P (R) = 1. 

Let 6 be a a-algebra (sub-a-algebra) of subsets of R with @ c 5. For 

every A E @ the equation 

where f E L1 (R, 5, P), defines a countably additive function 4 on @. By 

the Randon-Nikodym theorem there is an extended real valued function g 

defined on R which is measurable with respect to 6 such that 

m ( ~ )  = / g a  A 

for every A E @. If we denote g  by IE (f 16) we get the following 

Definition 1.5.1 Let (R,5, P) be a probability space and let @ be a sub-a- 

algebra of 5. For f E L' (a, 5, P) we denote by IE (f I@) the P-a.e. unique 
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6-measurable function with the property that 

for all A E 6. The function E ( f  16) is called the conditional ezpectation of 

f with respect to (or given) 6. 

Proposition 1.5.2 Let E (. 16) be a conditional mpectation. Then E (. 16) 

can be extended from a mapping of L' (a, 5, P) into itself to a mapping from 

M+ ( R , 5 ,  P) into itself. 

Proof I f  f E M+(R,$,P),  then, (see [23] Corollary 1-2-10), we can, for a 

sequence ( f n )  such that 0 I f ,  E L1(R,  5, P) satisfying 0 5 f ,  -t f P- 

a.e., define E ( f  (6) C M+(R,  5, P) by 

E ( f  16) = suPE(fnl@). 
n 

Next we show that this definition is independent o f  the choice of  the 

sequence ( f , ) .  To that end let (g,) be a sequence in L1(R,  5, P) such 

that 0 5 g, .r f P-a.e. Then grn = supn(fn A g,) and so 

Thus 

On the other hand f n  = supm(fn A g,) and 
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Thus 

s u ~ W f n l 6 )  I su~E(grnI6) ,  
n rn 

Equation 1.5.1 and Equation 1.5.2 together give that 

W e  can use these suprema and write 

W e  list some properties o f  IE (. 16) and refer the reader t o  [23]. 

Proposition 1.5.3 

(i) I f f  E L1 ( R ,  5, P) and g E Lm ( R ,  6 ,  P) , then IE (g f 16) = gE ( f  16). 

(iu) 0s fnt  f P-a.e. i m p l i e s t h a t O I I E ( f n ~ 6 ) ~ E ( f  I6)P-a.e. 

(u) For all f E M+ ( R ,  5, P) and all g E M+ ( R , 6 ,  P) we have E (g f 16) = 

g E ( f  16) 

(ui) If g E M+ ( R ,  6 ,  P) and f E M+ (0,5, P) then S, gdP = S,, f dP for all 

A E 6 if and only if g = E ( f  I6)P-a.e. 
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(vii) If 6 and 4 are sub-u-algeras of 5, such that 6 c fi, then E ( f  16) = 

E ( E ( f  1 4 ) 1 6 ) f o r a l l O S f  E M + ( R , 5 , P ) .  

(viii) If f E M+ (R ,  5, P) is such that E ( f  16) E Lo (R ,5 ,  P) then we also 

have that f E Lo (R ,5 ,  P) . 

Proof We prove (viii) only 

If E (. 16) E Lo (R ,  5, P) then there exists a sequence (R,) c 6 such 

that R, ?. R and Jan IE ( f  16) dP < oo. This implies that Jan f dP < oo, 

so that f E Lo (R, 5, P) . 0 

We remark that the converse of the above does not hold in general. For 

instance, let R = [0,1] and P be a Lebesgue measure. Put 

and f ( x )  = 4, where 0 5 x 5 1. Then E ( f  16) = co on [0, i] . We therefore 

need the following: 

Definition 1.5.4 The domain of IE (. 16) is the set domE (. 16) given by 

It is clear that domE (. 16) is an ideal in Lo (R ,5 ,  P) which contains 

L1 ( R ,  5, P)  and therefore it is order dense in Lo (R ,  5, P) . For an element 

f of do& (. 16) we define 



CHAPTER 1 .  PRELIMINARIES 

This defines a positive linear operator 

Example 1.5.5 Let (01, gl, PI) and ( 0 2 ,  Z1', Pz)be two propability spaces 

a n d R = R 1  x R 2 , 5 = g @ g  andP=Pl@P2 .  Put 6 =  { A x  Rz : A €  8') .  

Then 6 is a sub-a-algebra of 5. An 5-measurable function g : Rl x R2 + IR 
is r-measurable if and only if g(xl,xz) = g(x l ) ,  i.e., if and only if g is 

independent of 22. For f E L1 (R, 5, P) we now have that E (f I@) (XI, 2 2 )  = 

Jn2 f (xl, y) dPz (y) P-a.e. on 0 .  From the way in which IE ( . I @ )  is extended to 

M+ (R,5, P) it then follows that for f E Lo (R, 5, P) we have f E domE (.I@) 

if and only if Jn, 1 f (XI,  y)l dP2 (y) < co P-a.e. on R. In this case we have 

that E (f 16) (x1,x2) = Jn2 f (xi, y) d!P2 (y) P-a.e. on R. We also note that 

Jn2 I f  (21, y)l 0 2  (Y) < co P-a.e. on R is equivalent to Jn2 I f  (XI, Y ) I  @2 (Y) < 

co PI-a.e. on R1. 

We give the following characterization of conditional expectation: 

Proposition 1.5.6 

(i) If f E domE (.I@) and g E Lo (R, 6, P), then g f E do& (.l6) and 

E (gf 16) = gE ( f  I@) 

(ii) If f E Lo (R, 5 ,  P) , then f E do& (.I@) if and only if there is a 

sequence {A , )  in 6 such that A, t R and 
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Moreover, i f f  E do& ( . I @ ) ,  then 

Proof (i) Since lE ( g  f 16) = gE ( f  16) for all f E M+ (R ,5 ,  P) and g E 

M+ ( R ,  6 ,  P) we get that 

This implies that g f E domlE ( . I @ ) .  If we take g = g+ - g- and 

f = f +  - f -  we have that g f  = (g+ - g - )  ( f +  - f - )  and it then 

follows that 

E ( g f  16) = gE ( f  16). 

(ii) We first assume that there exists a sequence A, C 6 such that 

A, T R and JA, 1 f 1 dP < w for n = 1 ,2 , .  . . . We have that if 

f E M+ (R ,5 ,  P) then JA E ( f  (6)  W = JA f W for all A E 6. It 

then follows that 

E ( ) =  f l d P < m f o r n =  l , 2 , . .  . 
A" 

Hence E ( 1  f 1 16) < w P- a.e. on A, for all n = 1 , 2 , .  . . . Since 

A, t R, this implies that E ( 1  f ( 16) E Lo (R ,  5, P) , i.e., f E 

do& ( . I  6 )  . 
Conversely, assume that f E do& (.I6). Then lE ( 1  f 1 16) is in 

Lo ( R , 6 ,  P) and so there is a sequence A, E 6 with A, -t R and 
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Since IE ( l f l@) l ,E ( f+ l6 )  and E ( f - 1 6 )  are allless than or equal 

to E ( 1  f 1 16) it then follows that E  ( f  16) is integrable over A  and 

that 

1.6 Kernel Operators 

In this section we give an introduction into kernel operators and a summary 

of their properties. We will mention only those concepts that will be useful 

later. We refer the reader to [33, sections 93, 94 and 951 as well as [25]. 

Let ( X ,  C, p) and (Y, A, v) be u-finite measure spaces and let t ( x ,  y) be a 

real valued p 8 v-measurable function on X x Y , where p 8 v denotes the 

product measure of p and v. For any f E LO(Y, A, v) the function t ( x ,  y) f ( y )  

is p 8 v-measurable, which implies that for almost every x  6 X the function 

t ( x ,  y) f ( y )  is v-measurable as a function of y. It then follows that 

(1.6.1) 

makes sense for all x  E X such that t ( x ,  y) f ( y )  is v-measurable as a function 

of y. By Fubini's theorem h ( x )  is a pmeasurable function on X .  The set of 

all f E LO(Y, A, v) for which the function h ( x )  is finite valued p-a.e. on X 
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will be called the Y-domain o f t  (x, y) and will be denoted by domy (t) . For 

f E domy (t) the function h is finite p-a.e. on X and so 

where, .Iy [t (5, Y) f (~11' dv (Y) and Sy [t (x, Y) f (Y)I- dv (Y) are, by fibhi 's  

theorem, p-measurable. Equation (1.6.2) then defines a linear operator T : 

f + g from domy (t) into LO(X,C,p). The operator T is called a kernel 

operator or integral operator. The function t (x, y) is called the kernel of T. 

The set of kernel operators with kernel k will be denoted by &(L, M). 

If T is a kernel operator with kernel t (x, y) and if L and M are ideals 

in LO(Y, A, v) and LO(X, C, p), respectively, then T is said to be a kernel 

operator from L into M if L c domy (t) and 1, t (x, y) f (y) dv (y) E M, for 

all f E L. In this case Sy lt(x, y) f (y)ldu(y) E M and 

are also kernel operators from L into M. Hence we have that T = TI - Tz 

and TI and Tz are positive operators. Thus the set of all kernel operators 

from L into M is a linear subspace of Cb (L, M )  . 
We extend this notion to the concept of T-kernel operators. For this we 

refer the reader to [8, Section 51 
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Let ( X ,  C ,  p) , (Y, A, v) and ( Z ,  I?, y) be a-finite measure spaces and s u p  

pose that L C_ Lo (Y, A, v) and M C_ Lo ( X ,  C ,  p) are ideals with carriers 

Y and X respectively. Let r : X x Z -+ Y be a (C 8 I', A)-measurable 

null-preserving mapping with respect to p 8 y and v. 

Definition 1.6.1 A function k E Lo ( X  x Z ,  C 8 I', p 8 y) is called an ab- 

solute r-kernel for L and M if 

for all f E L. 

The collection of all such T-kernels will be denoted by ff ( L ,  M ) .  For 

k E ff (L ,  M )  and f E L the operator 

is p a . e  well defined on X and K f E M. This defines a linear, order bounded, 

order continuous operator K from L into M, i.e., K E C, ( L ,  M) . The opera- 

tor K thus defined is called an absolute r-kernel operator with kernel k(x ,  z). 

We will denote the collection of absolute T-kernel operators by C , k ( L ,  M). 

We have that CT,k(L, M )  2 C,(L, M) and that if k 2 0, p8y-a.e. on X x Z 

then K > 0. 

We note that if ( Z ,  I', y) = (Y, A, v) and we choose T ( X ,  z) = z then the 

absolute r-kernel operator K is an absolute kernel operator. 

As an example of an absolute r-kernel operator we consider the partial 

integral operator as introduced by Kalitvin and Zabrejko in [12] and the 
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previous mentioned authors together with Appell in [4]. The reader is also 

referred to [3], [2], and [ll]: 

Consider 0-finite measure spaces ( X ,  C, p) and (F, A, v ) .  Let L  and M  

be ideals in L"(X x y, C 8 A, p  8 v )  with carrier X x Y. 

Definition 1.6.2 For a function k  E Lo(X x y x x, C @ A  8 C ,  p  8 v  8 p) 

such that 

L Ik(., ., z )  f ( z ,  .)ldp(z) E M for all f E L  

we define the operator K : L  -+ M  by 

K ( f ) ( x . y )  = ] r / k ( x . y , z ) f ( ~ , y ) l d p ( z )  p 8 v  a.e o n X x F f o r  all f t L. 

(1.6.3) 

We call such an operator K an absolute partial integral operator. We will 

denote the collection of all partial integral operators of the form (1.6.3) by 

P A L ,  MI. 

If in the above definition we put X = Y = X x 7, Z = X and T : 

(X x Z -+ Y )  defined by T ( X ,  y, z )  = ( z ,  y) we get that partial integral 

operators defined by (1.6.3) become T-kernel operators. 

Similarly, if t E LO(X  x Y x F ,  C 8 A 8 A, p  8 v  8 v )  is such that 

k It(., ., z )  f (., z)ldv(z) E M for all f E L, 

The corresponding partial integral operator is defined by 

T ( f ) ( x ,  y) = k ~ t ( x ,  y , z ) f (x , z ) ldv(z )  p 8  v  a.e on X x 7 for all f E L. 
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We will denote the collection of all operators of the form (1.6.4) by 

PF(L ,  M) .  Again these operators are 7-integral operators if we take X = 

~ = ~ x ~ , ~ = ~ a n d ~ : X ~ Z + Y d e f i n e d b y r ( x , y , z ) = ( x , z ) .  

We list a number of properties of absolute kernel operators proofs of which 

can be found in [33, Chapter 131 and [25]. 

Theorem 1.6.3 Let (Y, A, v )  and ( X ,  C, p) be o-finite spaces, L and M ide- 

als in LO(Y, A, v )  and LO(X,  C, p), respectively. Denote the carrier of L b y  

YL. If T is a kernel operator from L into M with kernel t ( x ,  y) then the 

following hold: 

(1;) T is positive i f  and only i f  t (x ,  y) 2 0 p @ v-a.e. on X x YL 

(ii) T is the null operator, 0, if and only i f  t ( x ,  y) = 0 p@v-a.e. on X x YL 

(iii) If 0 5 S 5 T in &(L,  M )  then S is a kernel operator. 

(iv) If S and T are kernel operators from L to M with kernels s(x ,  y) and 

t ( x ,  y ) ,  respectively, then sup(T, S )  is a kernel operator with its kernel 

given by  the pointwise a.e. supremum of s(x ,  y )  and t ( x ,  y ) .  

(v) The set &(L,  M )  is a band in &(L, M ) .  

(vi) If Y does not contain any atom then the identity operator I is disjoint 

to the band &(L,  L )  in Cb(L, L).  It then follows that I is not a kernel 

operator. 

Again let (Y, A, v) be a u-finite measure space and L an ideal in LO(Y, A, v )  

such that the carrier of L is Y .  Let L," be the band of order continuous 
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linear functionals on L which we identify, as usual with L' as discussed in 

page 22. Let (X, C , p )  be another a-finite measure space and M be an 

ideal in Lo(X,  C, p). Consider the functions g E L' and h E M ,  then the 

p 8 Y-measurable function t ( x ,  y) = h(x)g(y)  is the kernel of an absolute 

kernel operator from L into M ,  for, for every f E L 

Any finite linear combination of kernel operators of this elementary kind is 

called a kernel operator of finite rank. We will use the notation L," 8 M 

for the set of kernel operators of finite rank. The set L," 8 M is a linear 

subspace of Lb(L, M ) .  The band generated by L," 8 M in Lb(L, M )  equals 

( L f ;  8 M)&. The band (L," 8 M)dd is contained in the band of all absolute 

kernel operators since L," 8 M consists of absolute kernel operators. 

The following is from [33]: 

Theorem 1.6.4 If the carrier of L' is the whole of Y then L k ( L ,  M )  = 

( L f ;  8 M)&, i.e., the set of absolute kernel operators is the band generated 

by the kernel operators offinite rank. 

We now take a look at  continuity of kernel operators. We assume that Y is 

the carrier of both L and L'. Given a sequence f ,  of measurable functions 

in L and a measurable subset E of Y .  Let 6 > 0 be given and put := { y  E 

E : I fn(y)I 2 E ) .  We say that (f,,) converges in measure on E to 0 if 

lim v(E) = 0 
n+m 
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for every > 0. It is said that (f,) star-converges to 0 if every subsequence 

of (f,) contains a subsequence that converges pointwise to 0 a.e. on Y. We 

will denote this by fn 4 0. We state the following theorem, taken from 

[33, 251, that shows the connection between convergence in measure and 

st ar-convergence. 

Theorem 1.6.5 Let 0 5 u, 5 u in L. Then the following are equivalent. 

(a) u, A 0 as n -t m. 

(b) (u,) converges to 0 i n  measure on every subset of Y of finite measure. 

(c) For every E c Y such that lE E L' we have 

We note that the conditions (a), (b) and (c) in the previous theorem are 

weaker than the condition that u,(y) + 0 a.e. on Y. We state the following 

result that relates kernel operators to star-convergence, again see [33, 251 

Theorem 1.6.6 (Bukhvalov) For a positive linear operator T : L + M 

and a sequence 0 5 un 5 u in L the following are equivalent: 

(a) T is a kernel operator 

(b) u ,  A 0 implies that Tu,(z) -t 0 a.e. on  X 

The condition (b) in the above theorem can be weakened further. We state 

the following as in [25]. 
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Theorem 1.6.7 For a positive linear operator T : L t M ,  a sequence 

0 < u, < u in  L and a sequence of sets (A,) in  Y we have that T is a kernel 

operator i f  and only if 

(i) un(y) + 0 for almost every y in  Y implies that Tu,(x) + 0 for almost 

every x in X .  

(ii) 0 < < u in  L and v(A,) + 0 implies that Tla,(x)  -t 0 for every 

x in  X .  



Chapter 2 

MCE operators 

In this chapter we explore the notion of Multiplication Conditional Expec- 

tation operators (MCE operators) and their characteristics. We will look at  

those operators that can be represented as Multiplication Conditional Ex- 

pectation operators or (MCE-representable operators). We will show that 

Riesz homomorphisms and Conditional Expectation operators are the most 

fundamental operators in the theory of Riesz spaces mainly because a large 

class of operators can be expressed as products of Riesz homomorphisms and 

Conditional Expectation operators. 

Grobler and de Pagter in [8] defined MCE-representable operators using 

Riesz homomorphisms that operate between u-finite measure spaces. We 

give an alternate definition of MCE-representable operators, thus in a way, 

giving necessary and sufficient conditions for Riesz homomorphisms and ide- 

als in those u-finite measure spaces to be used to define MCE-representable 

operators. 

We first have a look at  these operators and their properties on ideals of 
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measurable spaces. The bulk of this is from [8]. 

2.1 MCE operators on ideals 

Let (R ,5 ,  P)  be a probability space, let and 5,+4 be sub-o-algebras of 5 

and let L c LO(R, sL, P) and M C LO(R, 5,+4, P) be ideals, both with carriers 

R. Put 

For all m E m ( L ,  M )  and f E L we have that mf E domE(.IsM) since 

M c LO(X ,  C, p) .  For any m in m ( L ,  M )  define an operator Sm : L -t M 

by 

smf = E ( m f  1 8 ~ )  v f  E L. 

We have that m ( L ,  M )  is an ideal in LO(R, 5, P) since d0mE(.1ZM) is an ideal 

in L0(R,5,1P). Indeed i f ,  0 5 Ipl 5 Iml, m E Dt(L, M )  then 

thus E(lpf llZM) E M,  so p E m ( L ,  M) .  Thus m ( L ,  M )  is solid and hence 

an ideal. 

W e  have that Sm is a well defined operator. I f  0 5 m E m ( M ,  L )  then 

S, 2 0 and i f  m E m ( M ,  L)  then 
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Hence S, is order bounded. 

Define L,(L, M )  = { S ,  I m E m ( L ,  M ) ) .  We have thus constructed a 

space of functions m ( L ,  M )  c L0(R,5,P) such that for an m E m ( L ,  M )  

there exists an operator S,  which is order bounded and order continuous, 

hence S, E Lm(L, M )  c L i ( L ,  M) .  The mapping m H Sm is positive, i.e., 

rnLO+S,>O. 

The following property is from Grobler and de Pagter, [8]. 

Proposition 2.1.1 Let go = u (gM,  3 ~ )  be a-algebra generated by T M  and 

gL. Let % ( L ,  M )  = Lo (a, &, P) n !Ut (L ,  M ) .  Then  we have 

Proof It will suffice to show that given 0 5 m E 5 ( M ,  L )  there exists 

0 5 mo E %(L,  M )  such that 

Sm f = Sm, f for all 0 5 f E L,  

Let 0 5 m E S ( M ,  L )  be given and set 

For 0 5 f E L we have 
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Note that f is gM measurable and EM C go. Thus f is 30 measurable 

and so IE(m f 130) = IE(ml&) f. This gives us that 

In particular, E(mo f lgM) E Lo(@ EM, P) and thus mo f E Lo(R, 30, P) 

for all 0 5 f E L. Since the carrier of L is 0, this implies that 

0 5 mo E L0(R,30,P). We then have that 0 5 mo E %(L, M) and 

S, f = S,, f for all 0 5 f E L. 0 

This result shows that, for the study of the space &, we may assume, 

without loss of generality, that 5 = u ( ~ M ,  5 ~ ) .  

Consider a probability space (R,5, P) and two sub-algebras of 5, s1 and 

$2, such that 5 = u(&, 52). Let 

Since 51,52 c r, we have that u (r) = 5 and r is a semi-ring. Therefore 

5 is a monotone class generated by the finite union of sets in r. Thus if 

f E L1 (R,5, P) such that S, f dP 2 0 for all G E r it follows that SE f a  2 0 

for all E E 5 since = {C E 5 1 Jc fdP >- 0) is a monotone class which 

contains all finite disjoint unions of sets in r .  Therefore, if J,,, f W  >- 
0, for all A E g1 and B E 5 2 ,  then f 2 0 P-a.e. on I?. 

The following result is also from [8]. 
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Lemma 2.1.2 Let (R ,  5, P)  be a probability space, let L C LO(R, EL, P )  and 

M c LO(R, 5 ~ ,  P)  be order dense ideals of measurable functions and suppose 

that 5 = u ( F L ,  T M ) .  For m E m ( L ,  M )  we have 

( i )  if S, 2 0 then m 2 0 P-a.e. o n  R, 

(ii) if S, = 0 then m = 0 P-a.e. on R. 

Proof (i) Put A. E 3~ such that 1~~ E L .  Let Bo E 5~ be such that 

JBo ImlAoldlP < cm, this is possible since the carrier of L is the 

whole of R. 

We show that m 2 0 P-a.e. on A0 n Bo. For A E & with A C A. 

and B E gM with B C Bo we have that 

Thus 

This shows that JA,, mdlP 2 0 for all such A and B. 

Now define the following u-algebras of subsets of A. n Bo 
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We have that o(pM, pL) = 9 and SAnB mdP 2 0 for all A E 8 
and B E pM. 

From the remarks preceeding this lemma, it follows that S, mdP 2 

0 for all C E p, i.e., m 2 0 P-a.e. on A. n Bo. Now fix A. E gL 

such that la, E L. Since mlA,  E domlE(.IzM), by Proposi- 

tion 1.5.6 on page 30, there is a sequence B, E 3~ with B, t R 

such that S, Irnl~,JdP < w. We have that m > 0 P-a.e. on B,n 

A. for each n = 1 , 2 , .  . . . Thus m 2 0 P-a.e. on R n A. since 

UB, = R. Hence m > 0 P-a.e. on Ao. Since the carrier of L is R 

there exists a sequence A, E 5~ such that A, t R and la, E L. 

Therefore m 2 0 P-a.e. on A,, and hence, m 2 0 P-a.e. on R. 

(ii) From m ct S, we get that -m ct S-,. Thus E(-m f ISM) = 

-E(mf 1 3 ~ ) .  We already have that if S, > 0 then m > 0. Now 

let Sm = 0, then -S, > 0. This implies that S-, 2 0 and so 

-m > 0, which gives that m 5 0. Thus m = 0. 0 

We also look at  this result which is also from [a]: 

Lemma 2.1.3 Let (R, 5, P) be a probability space and let L c LO(R, zL,  P) 

and M c LO(R, 3M, P) be ideals of measurable functions. If S, E Cn(L, M) 

is an upwards directed net and i f  0 5 S, t S in Lb(L, M )  then S E Lm(L, M). 

Proof Without loss of generality, we may assume that 5 = o(sL,  gM). Write 

S, = Sm, with m, E 9X(L, M). By the preceeding proposition we 

have that 0 5 m, ?. in M+(R,z,P).  Then m := supam, exists in 
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M+(R,g,P) and there exists a sequence (m,) composed of terms of 

(m,) such that mn t m (this is a slight variation of Lemma 94.4 in [33]). 

For each 0 5 f E L we have 

Now, Sf E M c L0(R,5M,P) implies E(mf ISM) E LO(R, 5MjP) and 

consequently, m f E LO(R, 5, P). Since L has carrier R, this implies that 

m E L0(R,5,P) and hence m E m(L,  M). By Proposition 1.5.3 (iv), 

m, m in LO(R,S,P) implies that Sm, Sm in &(L, M )  and hence 

Sm 5 S. On the other hand, m 2 m, and so Sm 2 Sm, for all cu and 

thus Sm > S. Hence, S = S,,, E Lm(L, M). 

The following result is also found in [8] 

Lemma 2.1.4 Let (R, 5, P) be a probability space and let L c LO(R, ZL, P) 

and M C LO(R,TM, P) be ideals of measurable functions. If S E &,(L, M )  

such that 0 < S 5 Sm for some m E m(L,  M),  then S E Cm(L, M). 

Proof We first prove the proposition under the additional assumption that 

5~ = 5 .  Then L is an ideal in LO(R, 5 ,  P) and the operator Sm is interval 

preserving (i.e., it has the Maharam property). Indeed, if f E L and 

0 5 g 5 S, f in M, define the function u by 

glsmf if s m f  # 0 
0 otherwise. 
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Since 0 5 a < 1 and a E LO(R, 5~4, P) we have 0 5 a f 5 f in L and 

It follows from the Luxemburg-Schep Radon-Nikodym theorem (see 

(181) that S = Sma for some 0 5 a < Z in the centre Z ( L )  of L. Now 

a is multiplication by some function 0 5 p < 1 on R (see [33] Example 

141.3) and, since m ( L ,  M )  is an ideal in LO(R,S ,P) ,  it follows that 

S = Spm E Lm(L,  M) .  

For general L,  let Z(L) be the ideal generated in LO(R, 5, P) by L. We 

have that m ( Z ( L ) ,  M )  = m ( L ,  M ) .  Indeed, if m E m ( Z ( L ) ,  M )  then 

E(lmgll&) E M for all g E I (L ) .  But, since Z(L) > L, E(lrngl l8~)  E 

M holds for all g E L; hence m E m ( L ,  M ) .  On the other hand, if 

m E m ( L ,  M )  then E(1mf llzM) E SM for a11 f E L. Let g E z (L) ,  

then there is some f E L such that 191 5 If 1 .  This then gives us 

that E ( l m g l l 8 ~ )  < E(lm f llzM) E M. Thus m E m ( z ( L ) ,  M ) .  Define 
- 
S, : I ( L )  -+ M by 3,f = E(mf 13~)  for all f E I (L ) .  Then 3, 

is an extension of Sm and 3, E Lm(Z(L), M ) .  It follows from the 

Kantorovich extension theorem (see [ I ]  Theorem I.2.2), that there exists 

an extension 0 < 3 E Cb(Z(L), M )  of S such that 0 5 3 5 sm. By 

the first part of the proof 3 E Cm(Z(L), M ) .  Since m ( I ( L ) ,  M )  = 
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m ( L ,  M ) ,  the restriction of 3 to L belongs to Lm(L, M ) ,  i.e., S E 

Lm(L, M ) .  This completes the proof. 0 

We combine the three previous results to prove the following, as was done 

by Grobler and de Pagter in [8]. 

Proposition 2.1.5 Consider a probability space (0,5, P) and ideals of mea- 

surable functions L C LO(O, 5 ~ ,  P) and M C L 0 ( 0 , 5 ~ ,  P). Then Lm(L, M )  

is a band in L,(L, M ) .  Moreover, assuming that 5 = u ( z L ,  SM) ,  the mapping 

m -t Sm is  a Riesz isomorphism from the ideal m ( L ,  M )  onto &(L, M ) .  

Proof First we show that Lm(L, M )  is a Riesz subspace of L,(L, M ) .  Take 

S, E Lm(L, M ) .  As observed earlier, IS,,,[ 5 Slml By Lemma 2.1.4 

this implies that ISrn[ E Lm(L, M ) .  Hence, &(L, M )  is a Riesz sub- 

space. Using the above Lemma 2.1.4 once more, we see that &(L, M )  

is actually an ideal in L,(L, M ) .  Moreover, Lemma 2.1.3 yields that 

Lm(L, M )  is a band in L,(L, M ) .  Assuming that 5 = U ( ~ L , ~ M ) ,  it 

follows from Lemma 2.1.2 that the mapping m H Sm is a bi-positive 

bijection from m ( L ,  M )  onto Lm(L, M ) ,  consequently this mapping is 

a Riesz isomorphism. 

2.2 MCE-representable operators 

We now investigate a class of operators which factorizes through MCE opera- 

tors. Our aim is to extend the MCE operators to the case of u-finite measure 
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spaces. This class of operators includes operators such as kernel operators, 

order continuous Riesz homomorphisms as well as T-kernel operators. 

We consider a-finite measure spaces (X, C, p) and (Y A, v). Let L G 

Lo(Y, A, v) be an ideal with carrier Y and M C Lo(X, C, p) be an ideal with 

carrier X .  

Definition 2.2.1 A linear operator T : L + M is called Multiplication Co- 

nditional Expectation representable or (MCErepresentable) if there exist 

(i) a probability space (R,5, B) and sub-a-algebras ZL and ZM such that 

5 = 4 5 ~ ~  SM), 

(ii) order dense ideals Ln G Lo(R, &, P) and Ma 2 LO(R, 5 ~ ,  P) and order 

continuous Riesz homomorphisms q 5 ~  : L + Ln and $M : Mn -+ M 

with h surjective and $M a Riesz isomorphism onto an ideal in M and 

(iii) m E !M(Ln, Mn) 

such that 

i.e., such that the following diagram commutes 

@ = ((R, 3, P), q 5 ~ ,  $M) is called a representation triple for the operator T 

and m a @-kernel of T. The set of all linear operators T : L + M which 
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are MCErepresentable via a fixed triple @ will be denoted by &(L,  M )  and 

we will also say that @ is a representation triple for the class &(L,  M ) .  An 

operator T E &(L, M )  will be called @-representable. 

Consider a a-finite measure space ( X ,  C, p)  and let (R ,  5, P) be a proba- 

bility space. If q5 is a u-order continuous Riesz isomorphism from LO(X,  C, p) 

into LO(R,  5, P) such that q5(1) = 1 then the restriction of 4 to the character- 

istic functions of elements of C gives a Boolean u-homomorphism $ : C + 5 

such that P(&A)) = 0 if and only if p(A) = 0 for A E C. Such a mapping is 

called a bi-null preserving mapping or non-singular. If 5~ = q5(C), then 5~ 

is a sub-u-algebra of 5 and ran(q5) = LO(R, SL,  P) LO(R, 5, P). 

Lemma 2.2.2 Let L be an ideal in LO(X ,  C ,  p) with carrier of L being X and 

q5 a u-order continuous Raesz isomorphism from LO(X ,  C ,  p )  into LO(R, 5, P) 

such that q5(1) = 1. Put 

Ln = 4(L)  C LO(R, ~TL ,  P) C LO(R, 5, P). 

Then La is order dense. 

Proof Since q5 is a Riesz isomorphism from L O ( X ,  C, p) onto LO(R, zL, P), 
we have, by Proposition 1.4.3 (iii), that Ln is an ideal in LO(R, gL,P). 

We have that the carrier of L is X and therefore there exists a sequence 

of sets X ,  t X such that l x ,  E L and so q5(lx,) E Ln. We have that 

I X ,  1' l x  and since q5 is u-order continuous we get that q5(lxn) t $(lx). 

If we write q5(1xn) = q5(lx)ln, E L, we have that 

n,, = $(x,) t ?(XI  = R. 
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This implies that the carrier of Ln is R and so Ln is order dense. 

Grobler and de Pagter in [El gave a somewhat different definition which 

is as follows 

Definition 2.2.3 Let ( X ,  C ,  p) and (Y, A, v )  be u-finite measure spaces and 

let L  LO(Y, A, v )  and M C LO(X ,  C ,p )  be ideals with carriers Y and X 

respectively. A linear operator T : L  -t M is called Multiplication Condit- 

ional Eqectat ion representable or MCE-representable if there exist: 

(1) a probability space ( R , 5 ,  P); 

(2) a Riesz homomorphism q 5 ~  : LO(Y, A, v )  -t LO(Q 5, P) with q5~(1) P- 

a.e. strictly positive on R; 

(3)  a sub-u-algebra 5~ C 5 and an interval preserving Riesz isomorphism 

$M : L0(fl,5M,P) L0(X,C,p) ;  

(4) a function m E im(Ln, Ma), 

such that: 

T = $ M S ~ ~ L ,  

where Ln = q5~(L) ,  Mn = $ G ( M )  and S,,, : Ln -+ Mn is given by 

According to this definition the following diagram commutes 
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In the next two results we show that Definition 2.2.1 and Definition 2.2.3 are 

equivalent. 

Proposition 2.2.4 Consider a probability space (R ,  5, P), sub-u-algebras gL 

and ZM such that 5 = a(ZL,  S M ) .  Let Ln and Mn be order dense ideals in 

LO(R, EL, P) and LO(R, S M ,  P), respectively, 4~ : L C LO(Y, A, u )  -+ Ln and 

$M : Mn -t M 2 LO(X ,C ,p )  be order continuous Riesz homomorphisms 

with q5L sulJective and $M a Riesz isomorphism onto an ideal in M. Then 

(i) ijL and $M can be extended to order continuous Riesz homomorphisms 

that respectively map LO(Y, A, u)  into Lo@, EL, P) and LO(R, g M ,  B) 

into L O ( X ,  R, p). 

(ii) For the extended 4~ we have that + ~ ( 1 )  is P-a.e. strictly positive on 

R. 

(iie) The extended $M is an interval preserving Riesz isomorphism. 

Proof (i) Since the carrier of the ideal L C LO(Y, A, u )  is Y we have that 

L is order dense in LO(Y, A, u) .  Similarly M is order dense in 

LO(X ,  C, p). Also, 4~ and $M are order continuous Riesz homo- 

morphisms. So by Proposition 1.4.3 (iv) 4~ and $M can be ex- 

tended, uniquely, to order continuous Riesz homomorphisms that 

respectively map LO(Y, A, u)  into LO(R, SL,  P) and LO(R,  gM,  P) 

into LO(X ,  52, p). 

(ii) Suppose that 4L(1) is not strictly positive. Then there exists some 

B c R such that lg # 0 in L 0 ( R , 5 ~ , B )  and 18 A 4 (1 )  = 0. Ln 
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is order dense in LO(R, TL,P)  and so there exists 0 < h E Ln such 

that 0 < h 5 lg. NOW q 5 ~  is a surjection from L to Ln and so 

there is some 0 # f E L such that + ~ ( f )  = h. Since r$L is a Riesz 

homomorphism we have 

Thus we have that there is 0 < f E L such that q 5 ~ ( f )  = h. 

From f A n l  T f we get, by order continuity of c#JL, that 

On the other hand, for all n 

Therefore d ~ ( 1 )  is P strictly positive on R. 

(iii) We first show that the extended $M is a 1 - 1 and thus a Riesz 

isomorphism. Let f E LO(R,TM,P) be such that $ ~ ( f )  = 0. 

This gives us that 0 = I $ ~ ~ ( f ) l  = $ ~ ( l  f l ) .  We may assume that 

f 2 0. Since Mn is order dense there exists a sequence ( f , )  in 

Mn such that f,, T f .  Since $M is order continuous we have that 

0 5 $ ~ ( f ~ )  f $ ~ ( f )  = 0. Thus $ ~ ( f , )  = 0 for all n. Since $M 

is injective we get that f ,  = 0 for all n. Thus f = 0. Hence $M is 

a Riesz isomorphism of Lo(R, Z M ,  P) into L O ( X ,  C, p).  
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Next we show that $M is interval preserving. We want to show 

that if [u, u] is an interval in L0(R, E M ,  P) and f E [$M(u) ,  $ M ( u ) ]  

in LO(X ,  C, p) then there exists some t E [u, u] such that $ ~ ( t )  = 

f .  To that end, we first consider the interval [ O ,  u] in LO(R, E M ,  P) 

and let f E [O,  $ M ( u ) I .  
Since Mn is order dense there exists a sequence (u,) in Mn such 

that 0 5 u, t u. We have that $M(M*) is an ideal and so there 

exists a sequence (g,) in Mn such that $ ~ ( g ~ )  = f A qhM(un) for 

each n. $M is a homomorphism and so $~(g,+Vu,)  = $ ~ ( g , ) .  We 

may therefore assume that 0 5 g, 5 u,. Also, for m 2 n, $ ~ ( g ,  V 

gm) = $ ~ ( g ~ )  and so we may assume that g, t . Let g = supg,. 

Then 0 5 g 5 u ,  which implies that g E LO(R,EM,P).  By the 

order continuity of $M we get that $ ~ ( g , )  t $ ~ ( g ) ;  but 

Hence $ ~ ( g )  = f .  Thus for the interval [O,  u] C LO(R,  E M ,  P) and 

f E [ O ,  $ M ( u ) ]  there exists a g E (0, u] such that $ ~ ( g )  = f .  

Now let us consider the interval [u, u] in LO(R, E M ,  P) with u < u. 

Put f E [ $ M ( U ) ,  $ M ( v ) ] ,  thus f - $ M ( U )  E [o, $ M ( U  - u)] .  BY 

the preceding argument there exists a g E [O,u - u] such that 

$ ~ ( g )  = f - $ M ( u ) .  But g E [O,  u  - u] implies that g + u E [u, u]. 

The proof is completed by putting t = g + u. 0 

Proposition 2.2.5 Consider a  probability space ( R , 5 ,  P), sub-a-algebras 

and EM such that 8 = u ( z ~ ,  E M )  and ideals L C LO(Y, A, V) and M C 
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LO(X ,  C, V )  with carriers Y and X respectively. Let +L : LO(Y, A, V )  + 
LO(R, 5, P) be a Riesz homomorphism such that + ~ ( 1 )  is P-a.e. strictly pos- 

itive on 0 and y!JM : LO(R, T M ,  P) + LO(X,  C, p)  be an interval preserving 

Riesz isomorphism. Let Ln = +L(L) and Mn = @;'(M). Then 

(i) +L and ~ ! J M  can be restricted to order continuous Riesz homomorphisms 

mapping L to Ln c LO(R, 3L, P)  and Mn c LO(R, gM, P) to M ,  respec- 

tively, with the restricted 4~ surjective and the restricted $M a Riesz 

isomorphism onto an ideal in M. 

(ii) The restricted $M is injective. 

(iii) Ln and Mn are order dense. 

Proof ( i )  W e  have that cPL is a Riesz homomorphism from LO(Y, A, V )  into 

LO(R, ZL, P) (which are a-finite measure spaces) and so it is order 

continuous by Proposition 1.4.3 ( i ) .  Its restriction to  a mapping 

from L to  La will be an order continuous Riesz homomorphism 

as well, which is, moreover, surjective. 

W e  show that gM(Mn)  is an ideal. Let 0 5 f E gM(Mn) and 

0 5 191 5 f. Now f = $ M ( v )  for some v E M z .  Since qM is 

interval preserving, there exists some t E Mn with 0 5 t 5 v 

such that 191 = gM(t) .  Thus J g l  E $ J M ( M ~ ) .  Similar argument 

shows, since, g+ 5 191 and g- 5 lgl, that g+ E $ M ( M ~ )  and 

g- E $ M ( M ~ ) .  We then have that g = g+ - g- E ~ ! J M ( M ~ ) .  
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(ii) Since $M is a Riesz isomorphism, it is injective and so its restric- 

tion will be injective as well. 

(iii) L is an ideal in LO(Y,A,  p) and q 5 ~  is a Riesz homomorphism 

from L O ( X ,  C ,  p) to LO(R, zL, P) with carrier of L being Y .  By 

Lemma 2.2.2 we then have that La = $L(L)  is order dense. 

Let 0 < f E L O ( R , $ ~ , P ) .  Since $M is 1 - 1 ,  we have that 

0 < G M ( f )  E LO(X,  C ,  p) .  But M is dense in LO(X,  C , p )  and so 

there exists an element g E M such that 0 < g 5 $ ~ ( f ) .  Also, 

since $M is interval preserving, there is an element 0 < f l  such 

that $ ~ ( f l )  = g and 0 < f l  <_ f. Hence, since $ ~ ( f l )  E M ,  

we have that f l  E $;l(M) = Ma. Hence, Ma is order dense in 

Lo@ Z M ,  P) .  0 

We note that Proposition 2.2.4 and Proposition 2.2.5 give necessary and 

sufficient conditions that Riesz homomorphisms 4~ and and ideals L,  La,  

M and Ma should satisfy for them to be used in defining MCE-representable 

operators. 

We conclude by showing that order continuous Riesz homomorphisms, 

kernel operators and T-kernel operators are amongst the class of operators 

that are MCErepresentable. 

Example 2.2.6 ( 1 )  Let L C LO(Y, A, v )  be an ideal of measurable func- 

tions on the u-finite measure space (Y ,  A, v )  and M c L O ( X ,  C ,  p) be 

an ideal of measurable functions on the u-finite measure space ( X ,  C, p)  
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such that L and M have carriers Y and X respectively. Let T : L + M 

be an order continuous Riesz homomorphism. We want to show that 

T is MCErepresentable. We first use Proposition 1.4.3 (iv) to extend 

T into an order continuous Riesz homomorphism q5L : LO(Y, A, v )  -t 

L O ( X ,  C, p). We have that {q5L(ly))dd is a band and so there exists 

some XT E C such that {q5L(ly))dd = { ( I ~ ~ ) ) ~ .  Let WM be a strictly 

positive function on XT such that JXT wMdp = 1 .  Such a function 

exists, indeed, let Xn f XT with Xn E C and p(Xn)  < co since C is 

u-finite. Let WM be given by Cz=, &&lx,. For x E XT we have 

and 

P u ~ R = X T , I P = W M ~ , ~ = { A ~ X ~ : A E E ) ~ ~ ~ ~ ~ = ~ .  Let$M 

be the canonical embedding of Lo(R, 5, I P )  into LO(X,  C, p) .  We have 

that is a Riesz homomorphism from LO(Y, A, v )  into Lo(R, 5, I P )  and 

is such that q5~(1)  is strictly positive on R. Let m = 1 .  Then for all 
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f E L we have 

(2) We show that kernel operators are MCErepresentable. Consider u- 

finite measure spaces ( X ,  C, p) and (Y, A, v) and let L c Lo(Y, A, v) 

and M C Lo(X,  C, p) be ideals with carriers Y and X respectively. Let 

K : L -+ M be the absolute kernel operator from L into M defined by 

where k E Lo(X x Y ,  C @ A, p @ v) is such that 

We show that K is MCE-representable: 

Let wl E L 1 ( X ,  C, p) and wz E L1(Y, A, v) be strictly positive and 

satisfy j-, wl d p  = j-, wz dv = 1. 

Taking R := X x Y, 5 := C @ A, and putting IP := w l p @  wzv, we have 
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that ( R ,  5, P) is a probability space, for, 

Define (h f ) ( x ,  y) := f ( y ) l x ( x )  for all f E L and zM = { A  x 

Y : A E C).  Then L 0 ( R , 5 ~ , P )  = { f  E L0(R,3 ,P)  : f ( x , y )  = 

g ( x ) l y ( y )  for some g E LO(X,C,p) ) .  If f = g l y  E L0(R ,5M,P)r  de- 

fine $ ~ ( f )  = g. We have & ( I )  = 1 and $M is a bijection from 

LO(R, 5, P) onto LO(X,  C, p) and therefore interval preserving. Taking 

m := w;'k we get that, for all f E L, 

Hence, the triple @ := ( ( R , S ,  P), q5L, $ M )  represents K with @-kernel 

m := w;'k. 

(3) Let ( X ,  C ,  p), (Y, A, v )  and (Z ,  r, A) be u-finite measure spaces and sup- 

pose that L LO(Y, A, v )  and M LO(X,  C, p) are ideals with carriers 
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Y and X respectively. Suppose that T : X x Z -b Y is a (C €3 I', A)- 

measurable null-preserving mapping. We want to show that every abso- 

lute T-kernel operator T E &(L, M )  is MCErepresentable via a fixed 

representation triple a. We first introduce the following sub-o-algebras 

of C €3 r: 

(a) Ao:={r- l (A)  : A E A ) = { T , ( A )  : A E A ) ;  

(b) Co : = { A x Z : A E  C}. 

Let 0 5 wl E L 1 ( X ,  C ,  p) be such that wl (x )  > 0 p-a.e. and S, wl dp = 

1 and let 0 5 w2 E L1(Z ,  I', A )  be such that wz(z)  > 0 A-a.e. and 

Sz w2 dA = 1. Define R := X x Z ,  5 = C €3 I' and B = (wlp)  8 (wzA). 

Then ( R , 5 ,  P) is a probability space and P is equivalent to the product 

measure p @ A. Define 

Then 4L is a Riesz homomorphism satisfying d L ( l )  = 1 and T L  = A. 

in the notation defined above. Let 8M = Co and note that f E 

LO(R, E M ,  P) if and only f = g l z  with g E LO(X ,  C,  p). Define qM : 

LO(R, E M ,  P) + LO(X ,  C,  p) by $ ~ ( f )  = $ ~ ( g l z )  = g. Then $M is a 

Riesz isomorphism which is interval preserving (in fact it is a surjec- 

tion). We will use = ( ( R , 5 ,  P), 4L, @ M )  as a representation triple of 

a T-kernel operator. 

Since Ln = {f o T : f E L} ,  it follows from the result in Example 1.5.5 
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on Page 30 that m E DT(Ln, Mn) if and only if 

p-a.e. on X, and 

W m f  l I zo)(., 4 = 114.. 4 f  (T(.. z ) )w~(z) ldA(z )  E M )I f E L. 
z 

L 

Consequently, m E DT(L0, Mn) if and only if m. wz E % ( L ,  M ) .  More- 

over, if m E DT(Ln, Mn) then 



Chapter 3 

Operators defined by random 
measures 

In this chapter we look at operators generated by a class of measures known 

as random measure. We start by introducing random measures as studied 

by Sourour [28, 271 and Weis [29, 301. We then look at  operators that these 

random measures generate which are sometimes called pseudo-integral oper- 

ators. In addition to Sourour and Weis who studied these operators in the 

setting of ideals of measurable functions over standard spaces, they were also 

studied in Lz by Aweson [5] and in L, (0 < p < 1) by Kalton in [14, 15, 131. 

Sourour in [27] showed that the lattice properties of operators generated 

by random measures are closely related to the properties of the generating 

(signed) measures in standard measure spaces, where a Borel space X is 

called standard if X is Borel isomorphic to a Borel subset of a separable 

complete metric space (see [20] or [5]). He assumed that the total variation 

of a random measure that generates an order bounded operator is again 

a random measure and showed that it generates the absolute value of that 
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operator. We show that for an order bounded operator that can be expressed 

as a difference of two positive operators there exists a signed random measure 

which is a difference of two measures and that the total variation of that 

random measure generates the absolute value of that operator in more general 

measure spaces. In order to do this we make use of the Luxemburg-Schep 

Radon-Nikodym theorem [18] and the Kantorovich extension theorem [I]. 

We also develop the concept of random measure-representable operators 

analogous to MCE-representable operators that were introduced by Grobler 

and de Pagter in [8]. 

3.1 Random measures 

Sourour in [27] studies operators generated by random measures. He called 

random measures kernels and the operators that they generate pseudo-integ- 

ral operators. Weis in [29] called them operators represented by random 

measures. We will call them operators generated by random measures. Both 

Sourour and Weis use the same implicit assumption that u(x, .) and lu/(x, .) 

are Bore1 functions, see [28, Definition 1.1 (ii)] and [29, Remark 2.2 (i)]. Our 

results give a more general setting than those of Sourour and Weis as we 

do not make use of their assumption but actually show that the mapping 

x ct lu((x, B) is a measurable function for each B E A. 

We consider measure spaces (Y, A, A) and (X, C, p) with (X, C, p) com- 

plete o-finite, i.e., subsets of pa.e .  zero sets in C are also p-a.e. zero sets. 

Definition 3.1.1 A class of measures u(x, .) defined on A for each x E X 
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such that v(x ,  B )  is C-measurable as a function of x for each fixed B E A, is 

called a random measure on Y .  

Definition 3.1.2 A random measure v(x,  .) is called uniformly o-finite on 

Y if Y = U Yn with Y, E A and v(x ,  Y,) < k, < co for all x E X ,  where k, 

is a sequence of positive real constants. 

For a uniformly o-finite random measure v(x, . )  on Y ,  there exists (see [6] 

Theorem 2.6.2) a unique measure v on C @ A such that 

v ( A  8 B)  = u(x,  B)dp(x)  for all A E D and B E A. (3.1.1) 

This measure is given by 

v ( E )  = v(x ,  E(x))dp(x) for E E C 8 A. L 
This measure is u-finite on C@A and is a probability measure if p and v(x ,  .) 

are probability measures. 

We will make use of the following weaker condition. 

Definition 3.1.3 A random measure v(x ,  .) is said to be o-finite on Y if 

Y = U Y, and v(x ,  Yn) < cc p-a.e. on X. 

We can use a-finite random measure v(x,.)  to construct a unique a-finite 

measure v as in (3.1.1). 

We will use the notation F = C 8 A. 

Lemma 3.1.4 Let v(x ,  . ) be a a-finite random measure. Then the function 

x H v(x ,  C ( x ) )  belongs to M+(X,  C, p) for every C E F. 
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Proof Let Xo be such that p(X - Xo) = 0 and v(x,Y,) < co for every 

x  E Xo and n E N. Put C  = A  x B with A E C and B  E A. Then 

u(x ,  C ( x ) )  = l a ( x ) v ( z ,  B ) ,  which, by definition, is in M + ( X ,  C, p). 

L e t Z n = X x Y , , C n = Z n n C f o r e v e r y n ~ N a n d C c X x Y .  Put 

Then Vn contains the measurable rectangles A x B  E 7. Also, if B 

and C are in Vn with B  c C,  we have, from the fact that v(x;)  is 

finite on subsets of Yn, for every x  E Xo, that 

Hence v ( x ,  (2, n (C  - B ) ) ( x ) )  is equal to  a measurable function ex- 

cept possibly on a subset of a p-null set. By the completeness of 

p, v ( x ,  (2, n ( C  - B ) ) ( x ) )  is in M+(X,  C, p). Thus C  - B E V,. 

If Ck t C  with Ck E Vn then ~ ( x , C k , ~ ( x ) )  t k  v (x ,C,(x)) ,  and so 

C  E Vn. Thus, by the Dynkin principle, Vn contains the a-algebra 

7. From the fact that v (x ,  Cn(x ) )  t v ( x ,  C ( x ) ) ,  we then have that 

V ( X ,  C ( X ) )  E M+(X,  P) .  0 

Theorem 3.1.5 Let v ( x ,  .) be a a-finite random measure on (Y, A) and let 

p  be a u-finite measure on X .  For every C  E T define 

4 C )  = 4 x ,  C ( 4 ) d p .  
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Then v is a u-finite measure on ( X  x Y, F), moreover, it is a unique u-finite 

measure that satisfies 

for all A E C and B E A. 

Proof The proof that v is a measure on 7 is exactly as for the case of 

a uniformly u-finite measure (see [6]). We have that v ( A  x B )  = 

JAv(x ,  B )dp  for all A E C and B E A. We now show that it is a 

u-finite measure. Let Xo = { x  E X : v(x ,Yn)  < w for all n). We 

therefore have, by assumption, that p(X - XO) = 0. Let Xn f X and 

Yn Y be such that p(Xn)  < w and p(Yn) < w p-a.e. on X .  Let 

Xn,k = {x E Xn n Xo : v ( x ,  Yn) 5 k) for n, k = 1 . . . . Then for each n 

we have that Xn,k f k  Xn n XO, and so, 

Furthermore, 

and v(X," x Y )  = Jx6 v(x ,  Y )dp .  The uniqueness of v follows from the 

fact that it is a u-finite measure. 0 
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Corollary 3.1.6 For every p E M+(X x Y,  T )  the integral 

exists and is in M + ( X ,  C, p). Moreover, 

For a proof the reader may consult the relevant part of the proof of Fubini's 

theorem in [6]. 

Definition 3.1.7 The set B c Y is a null set with respect to the random 

measure v ( x ,  .) if v ( x ,  B )  = 0 p-a.e. on X .  This is equivalent to saying that 

JA V ( X ,  B)dp(x)  = 0 for all A E C. 

A subset of a null set is also a null set. This follows from the fact that 

if A c B then v ( x ,  A )  5 u(x ,  B ) .  The union of a countable number of null 

sets is again a null set. 

3.2 Operators generated by random measu- 
res 

We now take a closer look at  operators that are generated by random mea- 

sures. 

Definition 3.2.1 Let L C LO(Y, A, A )  and M C LO(X ,  C ,  p) be order dense 

ideals of measurable functions. We say the positive operator T E &(L, M )  

is generated b y  the random measure v ( x ,  . )  if 

T f (r)  = L f ( Y ) ~ ( ~ ,  dy) for almost every x E X .  
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The space of the differences TI - TZ ,  where TI and T2 are positive operators 

from L to M with Tl generated by the random measure y ( x ,  .) and Tz 

generated by the random measure vZ(x,  .), will be denoted by C,,(L, M ) .  It 

is obvious that this is a subspace of order bounded linear operators from L 

to M ,  i.e., C,,(L, M )  c &(L, M ) .  

We give examples of operators generated by random measures (taken from 

P11). 

Example 3.2.2 (1) Let (Y, A, A)  and ( X ,  C ,  p )  be a-finite measure spaces 

and L C LO(Y, A, A) and M c LO(X,  C ,  p )  be ideals with carriers 

Y and X, respectively. Let T : L + M be a positive, or, more 

generally, a regular operator. If T is a kernel operator defined by 

T f  (x) = J, f ( y ) t (x ,  y)dA(y) for all f E Y with kernel t ( x ,  y )  then 

if we put uT(x,  .) = t X ( . ) ,  i.e., ~ ( x ,  B)  = Je t ( x ,  y)dA(y) for all B E A. 

Then T is an operator generated by the random measure ~ ( x ,  .) 

(2) Let Kl and K z  be locally compact Hausdorff spaces and T : C(K2) + 
C ( K l )  be a lattice homomorphism of the form Tf  ( x )  = g(x)  f ( ~ ( x ) ) ,  

with u : K1 + K z  a continuous map and g E C ( K l ) ,  see [21][Theorem 

3.2.101. Then T is an operator generated by the random measure 

~ ( x ,  .) = g(x)6+), where, for B E Kz, we have 

i.e., ~ ( x ,  B )  is a point measure on K2. 
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(3) Let 11 be a measure on a locally compact group G and T be the convo- 

lution by the measure 7 given by T f  ( x )  = J, f ( x  - y)dq(y). Then T 

is an operator generated by the random measure vT(x,  A )  = q ( A  - x )  

for A a Bore1 subset of G. 

(4) If Tt is a semi group generated by the transition probabilities Pt of a 

Markov process, with Tt f ( x )  = Jy f (y)dPt(x, dy) ,  then 57 is an opera- 

tor generated by the random measure % ( x ,  .) = Pt(x, .). 

We give an example of an operator that is not generated by random 

measures (see [27]) 

Example 3.2.3 Let r be the unit circle with normalized Lebesgue measure, 

L2 = L 2 ( r )  and H2 the usual Hardy spaces. The projection P of L2 onto 

( H 2 ) I  is not a operator generated by random measure. Suppose, to the 

contrary, that ( P f ) ( w )  = S f  ( z )p(w,dz)  almost everywhere. Let en(z) = zn, 

and remove a set ro of measure zero such that 

for every w E r - ro. Choose one w 6 Po and let u(dz)  = p(w, dz). Therefore 

the Fourier transform 6 of u is given by 

The theorem of F. and M. Riesz in [9, Page 471 implies that 6 is absolutely 

continuous and the Riemann-Lebesgue lemma (see [13, Page 131) &(n) -+ 0, 

i.e. 1 = Iwnl + 0, which is a contradiction. 
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Proposition 3.2.4 Let L C LO(Y, A, A )  and M c Lo ( X ,  C, p) be order dense 

ideals of measurable functions, let A be a o-finite measure on A and let T : 

L -t M be a linear operator that is generated by a random measure v (x ,  .). 

T is well defined af and only if A(B) = 0 implies that v ( x ,  B )  = 0 u-a.e. on 

X .  

Proof Let T be well defined and let (Y,) be a sequence in A with Yn f Y 

and lyn E L. Let B be a A-null set. Then B, = B n  Yn is also a A-null 

set. T is well defined and so 0 = TIB,,(x) = v ( x ,  B,) since is, = 0 for 

almost every x.  Thus Bn is a u(x ,  .)-null set for every n. Now B, f B 

and so B is also a v (x ,  .)-null set. 

On the other hand, suppose that for B E A, A(B) = 0 implies that 

v (x ,  B )  = 0 almost everywhere on X .  It then follows that i f f  is any 

positive A-measurable function then JB f ( y ) v ( x ,  dy) = 0, p-a.e. on X .  

Let f,g E L be positive functions with f ( y )  = g(y) A-a.e. on Y .  Then 

for the set B = { y  E Y : f ( y )  # g(y ) )  we have that 

Tf ( x )  = i-B f (Y)u(X, dY) + f ( Y I ~ ( ~ ~  d ~ )  

and 

Therefore Tf = Tg ,  and so T is well defined. 0 

Lemma 3.2.5 If two random measures v ~ ( x ,  .) and vz(x, .) generate the sa- 

me positive operator T ,  then y , ( ~ ,  .) = v ~ ( x ,  .) for p almost every x E X .  
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Proof Let Y, be a sequence in A with Y, f Y and ly, E L. Let B E A and 

put B,  = B n Y,. We have that B,  t B and so v l (x ,  B,) -t y ( x ,  B )  

and v2(x,  B,,) f vz(x, B )  for every x E X .  But y ( x ,  B,) = Tl*,,(x) = 

v2(x, B,) for almost every x. Hence v l (x ,  B )  = v2(x, B )  for almost 

every x.  0 

Let T : L + M be a positive operator generated by the random measure 

v (x ,  .). If C Y is such that lyo E L and if A. is the o-algebra induced 

by A on Yo, then the random measure defines a vector-valued measure 'ii on 

(Yo, A01 by 

E(B) = v (x ,  B )  E M for all B E Ao. 

In particular, if Lm(Y, A) C L then the random measure defines an M-valued 

measure in (Y, A). 

Let Tl be generated by the random measure y ( x ,  .) and T2 be generated 

by the random measure vz(x ,  .). Then the operator TI + T2 is generated by 

the random measure T := V I ( X ,  .) + V Z ( X ,  .). We have that TI  + T2 maps L 

into M, and since L is an order dense ideal, there is a sequence Y, f Y such 

that l y ,  E L and so r(x,Y,) is finite pa.e.  on X .  Let Xo be a subset of X 

such that T ( X  - X o )  = 0 and ~ ( x ,  Y,) < cn for all n and all x E Xo. Let 

AQ be the ideal in A consisting of all B E A with B C Y, for some n. For 

B E AQ, define 
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Then v ( x ,  .) is a signed random measure defined on A0 and is u-additive on 

Ao. Now define 

for all f E L. Then T f  ( x )  = Jy f ( y )v (x ,  dy) and we say that T is generated 

by the signed measure v (x ,  .). 

Proposition 3.2.6 If L c LO(Y, A, A) and M C L'(x, C, p) are ideals of 

measurable functions and T E L,,(L, M ) .  Then 

(i) The operator T is order continuous. 

(ii) If 0 5 S 5 T E L,,(L, M )  then S E L,,(L, M ) .  

(iii) L,,(L, M )  is a Riesz subspace of &(L, M )  

(it,) L,,(L, M )  is an ideal in &(L, M ) .  

Proof (i) Let T E L,,(L, M )  with T = Tl -Tz. In order to show that T is 

order continuous we have to show that Tl and Tz are order contin- 

uous. We may therefore assume that T is positive and is generated 

by the random measure v(x ,  .). Since L is super Dedekind com- 

plete it is sufficient to show that T is u-order continuous. Let {f,) 

be a sequence in L such that f ,  J. 0 v-a.e. There exists a set Yo 

such that X(Y - Yo)  = 0 and f,(y) J. 0 for all y E &. But then 

Y -& is, by Proposition 3.2.4, a v(x ,  .)-null set, and so, for almost 

every x ,  fn(y)  J. 0 v (x ,  .)-a.e. on Y and Sy f ~ ( y ) v ( x ,  d y )  < oo p- 

a.e. By the Lebesgue theorem ly fn(y)v(x,dy) .J 0 for almost 
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every x ,  i.e., Tf,,(x) J 0 for almost every x. Thus T f ,  $ 0  and so 

T is order continuous. 

(ii) Let T be generated by the random measure u(x,  .) and let u be the 

o-finite measure on 3 generated by u(x,  .) and p as constructed 

in Theorem 3.1.5. Consider the map f ( y )  -t f ( x ,  y) = l x ( x )  f ( y ) ,  

f E L. This map is well defined, for, if f ( y )  = 0 A-a.e., then, if 

C = { ( x ,  y) : l X ( x )  f ( y )  # 0) we have that C = X x N ,  with 

N = { y  : f ( y )  # 0). Hence C ( x )  = N for all x.  Since A(N) = 0, 

we have, by assumption, that u(x ,  N )  = 0 p-a.e. on X and so 

Taking C = { ( x ,  y) : l x ( x )  f ( y )  = co}, a similar argument shows 

that this map maps L into LO(X x Y, C 8 A, u) .  It is also clear 

that this map is a Riesz homomorphism. Let z be the image of L 

in LO(X x Y, C 8 A, u )  under this Riesz homomorphism. Put I ( z )  

to be the ideal generated in LO(X x Y, C 8 A, u )  by z. We extend 

the operator T to T o n  I@) by 

Now is well defined, since if h(x ,  y)  = 0 u-a.e. and if C = 

( ( 2 ,  y)  : h(x ,  y)  # 0 ) ,  it follows from 0 = u(C)  = Sy u(x ,  C(x ) )dp ,  

that u ( x , C ( x ) )  = 0 p-a.e. on X .  Hence, for p-almost every x ,  

the set C ( x )  is a u(x,  .)-null set. It then follows that h(x ,  y) = 0 
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v(x,  .)-a.e. on Y for p-almost every x. This then gives that 

1, h(x, y)v(x, d y )  = 0, i.e., Th(x)  = 0 for almost every x in X. 

We can use a similar argument to show that for g ,  h E I@) with 

g(x, y) 5 h(x, y) v-a.e. we have 

holds p-a.e. on X. In particular, if h E I@),  then lh(x, y)l 5 

lx f ( y )  for some f E L. Therefore 

Which shows that T : I@) -t M 

Now, if hn(x, y )  J. 0 v-a.e., we have that 

This implies that 1, h,(x, y)v(x, dy)dp J. 0 for p-almost every x, 

which shows that T is order continuous. 

Let S be an operator such that 0 5 S 5 T and for J ( x ,  y) E 

define the operator S J ( x )  = Sf ( x )  E M .  Let ?(x, y) = 0 v-a.e., 

then I37(x)I = J S f ( x ) J  < S J f l ( x )  5 T l f l ( x ) = T I J l ( x )  =o,  thus 
- 
S is well defined. We show that 0 5 3 5 T. Let 7 ( x ,  y) 2 0 v-a.e. 
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and let C = { ( x ,  y) : f ( x ,  y)  < 0). We again have that C = X x N 

with C ( x )  = { y  : f ( y )  < 0 )  = Nand v(x ,  N)  = 0 for almost every 

x  E X. We thus have that T ( l N l  f l)(x) = SNl f l(y)v(x, d y )  = 0 

for almost every x. From 0 5 S 5 T we get that S ( 1 ~ l  f l ) (x)  = 0 

for almost every x. Therefore S ( ~ N  f ) ( x )  = 0 for almost every x. 

We have that lNc f ( x )  is positive for all y  and so it is a positive 

function in L and 0 5 S ( l N C  f ) ( x )  5 T ( 1 p  f ) ( x )  for almost every 

x. Putting these together we see that 0 5 S J ( x )  5 T T ( x )  p-a.e. 

on X .  

We use the theorem of Kantorovich to extend 3 as a mapping on 
- 
L to a mapping 3 : I@) + M such that 0 5 3 5 T.  Now T 

is interval preserving, i.e., it has the Maharam property, for, if 

0 s g 5 T h p u t  

u(x )  = { ; / T ~ ( x )  if (Th)  # 0 
otherwise. 

We have 0 5 u (x )  5 1 and it is C-measurable, i.e., u(x)h(x,  y) E 

I@),  and 

By the Luxemburg-Schep Radon-Nikodym theorem we have that 
- 
S = T?r for some orthomorphism 0 5 T 5 I,(Zv But it is known 
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that ah  = p(x, y)h(x,  y) for some v-measurable function p(x, y )  

satisfying 0 5 p(x, y )  5 1 v-a.e. So, 

- 
S(h (x ) )  = T ( P ~ ) ( x )  

= /, h(x ,  ~ ) p ( x ,  ~ ) v ( x ,  dy) for all h E ~(z). 
Therefore, 

Now define vs(x,  B )  = S,p(x, y)v(x ,  d y ) .  This is a random mea- 

sure which generates 3 and so it also generates S .  

(iii) Let T I ,  T2 E L,,(L, M) .  For T = TI - T2 we have that IT1 5 TI  + 
Tz. But Tl+T2 E L,,(L, M ) .  Thus by (ii) above (TI E L,,(L, M) .  

Hence L,,(L, M )  is a Riesz subspace of Lb(L,  M) .  

(iv) Let 0 5 IS/ 5 T E L,,(L, M )  c &(L, M ) .  Then by (ii), 

1st E L,,(L, M ) .  Again from (ii) and the fact that S+ 5 IS/ E 

L,,(L, M )  and S -  5 IS( E L,,(L,M), we get that S+,S- E 

L,,(L, M ) .  Therefore S = S+ - S-  E L,,(L, M ) .  0 

From the proof of the proceeding result we obtain the following: 

Corollary 3.2.7 Let 0 5 S 5 T and let T be generated by  the random 

measure * (x ,  .). Then there exzsts a measurable function 0 5 p(x, y) 5 1 

such that S is generated by  the random measure V S ( X ,  .) = p(x, y ) v ~ ( x ,  .), 
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In particular it follows that there exists a generating measure vs(x, .) for S 

satisfying vs(x, B)  5 ~ ( x ,  B) for all B E A and all x E X .  

The following result characterizes the random measures which generate the 

operators T+, T- and IT1 in terms of the random measure which generates T. 

We first look at the following case: If L C LO(Y, A, A) and M c LO(X, C, p) 

are ideals of measurable functions and if T is generated by v(x, .), then 

we show that for every x E X the total variation lv1(x, .) is also a random 

measure which generates the operator IT/. This result was proved by Sourour 

in the special case where the measure spaces in question are standard measure 

spaces and in which it is assumed, a priori, that IvI(x, B) is a measurable 

function of x for every B E A. (see [28, Remark 1.3 (ii)]). Without this 

assumption one would almost be tempted to use the following reasoning: 

Let B C Y be such that lB E L. For a signed measure u we have that 

Thus for a fixed x we have 

for p-a.e. x E X. 
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The problem with this is that the first supremum is a pointwise supremum 

which holds A-a.e. and the second supremum is a supremum taken in Riesz 

space LO(X ,  C, p) and, in general, for uncountable families these two suprema 

need not be equal as the following well known example shows: For a E [0, 11 

let 

We have that f ,  = 0 A-a.e. on [O, 11 for a Lebesgue measure X and so 

sup, f ,  = 0 in LO([O, 11, A). On the other hand, the pointwise supremum of 

{ f a )  is 1. 

We present a different approach to show, among others, that if v (x ,  .) 

generates an operator T then /ul(x, .) generates the operator ITI. 

Theorem 3.2.8 Let L c LO(Y, A, A) and M C L O ( X ,  C, p) be ideals of mea- 

surable functions and let T E L,,(L, M ) .  Then there exists a random signed 

measure ~ ( x ,  .) that generates T ,  svch that [TI, T+ and T- are generated by 

the mndom measures IwI(x, .), v$(x, .) and v&(x, .) respectively. Moreover, 

S E L,,(L, M )  has a generating mndom signed measure vs (x ,  . )  svch that 

(us V w ) ( x , .  ) and (us A vT)(x , .  ) are random signed measures that generate 

S V T and S A T respectively. 

Proof Assume that T = Tl - Tz E L,,(L, M )  with q ( x ,  .) and u2(x;) 

random measures which generate Tl and Tz respectively. Let u(x ,  .) = 

v l (x ,  .) + v2(x,  .). This is a random measure which generates Tl + 
Tz. We have that T+ 5 TI + Tz and T-  5 Tl + Tz, therefore, from 
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Corollary 3.2.7 there exist functions 

0 I m+(x, y) 5 1 such that m+(x, y)u(x, .) generates T +  

and 

0 5 m- (x, y) < 1 such that m- (x, y)u(x, .) generates T -  

Define m(x, y) = m+(x, y) - PT- (2, Y). Then V T ~ ,  .) = m(x, Y)~(x, .) 

generates T, for 

holds p-a.e. on X. Let C = {(x, y) : m(x, y) < 0). Then C is C x A 

measurable and so is C(x) for almost every x E X. For all B E A we 

have that 

Therefore 

and 
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This shows that u; and us are random measures. We now show that 

they generate T-  and T+ respectively. Suppose p$(x, y)u(x, .) gener- 

ates Sl and P;(x, y)u(x, .) generates S2. We then have, since p~ = 

m+ (x ,  y) - p ~ -  ( x ,  y )  and consequently p: I m+ and that pi  5 m- , 
that 

~ + f ( x )  = Jv f (y)m+(x,  y)v(x. dy) 

2 Jv f (Y)Ps(x, Y ) U ( X ,  dY) 

= Slf (4. 

for all f E L+. Hence T+ > S1. Similarly, T- > S2. Since T = SI - S2 

we have that T+ 5 S1 and T -  5 S2. Therefore T+ = Sl and T-  = Sz. 

By putting 

Iul(x, .) = u+(x, .) + u-(2, .) 

= 24% Y ) V ( X ,  .) +PAX, Y ) ~ x ,  .) 

= IpT(x, Y ) I + ,  

we see that lvl(x, B )  is measurable for all B E A, therefore it is a 

random measure and, moreover, it generates (TI. 0 

From the preceding proof we see that we have a useful "functional calcu- 

lus" for the generating random measures: Let { q )  be a finite set of elements 

of L,,(L, M )  and let u(x,  .) be a generating measure for sup, /TI. Then, 

for every T in the ideal generated by {T,) in C,,(L, M )  there exists a u- 

measurable function h ~ ( x ,  y) such that h ~ ( x ,  y)u(x,.) is a random signed 

measure which generates T and the map T H hT is a Riesz homomorphism. 



CHAPTER 3. OPERATORS DEFINED BY RANDOM MEASURES 81 

W e  can apply this to  derive the following result: 

Proposition 3.2.9 Let 0 <_ T E L,,(L,M) be generated by the random 

measure e ( x ,  .) and let 0 5 S E L,,(L, M ) .  The following statements are 

equivalent: 

( i )  S E {TIdd;  

(ii) there exists a C 8 A-measureable function 0 5 p : X x Y + W such 

that for any generating measure us(x, .) for S,  us(%, B )  = p w ( x ,  B )  

for almost every x E X for all B E A. 

(iii) S has a generating measure uS(x,  .) satisfying us(x,  .) 44 ~ ( x ,  .) for 

palmost every x E X ;  

(iv) S has a generating measure us(x,  .) satisfying us +< e on C 8 A; 

Proof ( i )  + (ii): Let S E {TIdd and define Sn := S A nT;  then Sn -t S and 

Sn 5 nT, the latter operator generated by the random measure n e .  I t  

follows from Corollary 3.2.7 that there exists a C x A-measureable func- 

tion qn such that 0 I qn 5 1 such that Sn is generated by the random 

measure qn(x, ~ ) n e ( x ,  .) := P ~ ( x ,  Y ) W ( X ,  .), with 0 I P ~ ( x ,  Y )  5 n e- 
a.e on X x Y. Since Sn 5 Sn+l we may assume that pn(x, y )  5 pn+~(x,  y) 

holds u-almost everywhere on X x Y. Define p(x, y) := sup,pn(x, y )  in 
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the space M+(X x Y, C 8 A, w ) .  We then have for every B E A that 

This holds for every A E C and hence, VS(X, B) = SBp(x, Y ) V T ( X , ~ Y )  

for p-almost every x E X. This proves (ii). 

(ii) =+ (iii): If +(x, B) = 0 for some B E A, then, SBp(x, y)y.(x, dy) = 

0. It follows that the measure vS(x, .) := PQ-(X, .), is a generating 

measure for S for which we have vs(x, .) ++ w(x ,  .) for every x E X 

and so (iii) holds. 

(iii) j (iv): Let N E C be such that p(N) = 0 and vs(x, .) ++ VT(X, .) 

for all x E X - N. Take C 6 C 8 A such that w(C) = 0. Then there 

exists a set M E C such that p(M) = 0 and ~ ( x ,  C(x)) = 0 for all 

x E X - M. Hence, if x E X - ( N U  M), then vs(x,C(x)) = 0, so 

vs(x, C(x)) = 0 p-almost everywhere on X. This implies that vs(C) = 

S, vs(x, C ( x ) ) d ~  = 0. 

(iv) + (ii): Applying the Radon-Nikodyrn theorem there exists some 
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0 5 p(x, y) such that US = p*. In particular, for every A E C we have 

from which it follows that us(x, B) = SBp(x, y)*(x,dy) for p-almost 

every x E X and we are done. 

(ii) + (i): 

Let pn(x, y) := nAp(x, y) and set S,f (x) := Sy f (Y)P,(x, Y)VT(X, dY) It 

then follows that 0 5 S,, 5 n T  and so each Sn is in the ideal generated 

by T in C,,(L, M). But, since pn(x, y) f p(x, y) we have for every 

0 5 f E L that 

holds p-almost everywhere on X. Thus Sn f S which proves that S E 

{TIdd. 0 

Note that the equivalence of (ii), (iii) and (iv) in the above theorem still 

holds if we replace *(x, .) by A ,  although A may not generate an operator 

from L into M. Therefore, taking @(x, .) = A, we have the following result in 

which condition (ii) translates into the assertion that S is a kernel operator. 

Proposition 3.2.10 Let 0 5 S : L + M be generated by the random mea- 

sure vs(x, .). Then the following are equivalent. 



CHAPTER 3. OPERATORS DEFINED BY RANDOM MEASURES 84 

(9 S is a kernel operator, 

(ii) us(x, .) ++ X for almost e u e y  x E X .  

Proof (i) + (ii): Let S be a kernel operator with kernel 0 5 p(x, y). 

So S f  ( x )  = S, f (y)p(x,  y)dX(y) for all f E L showing that S has a 

generateng measure us(%,.) = PA(.). If X(B) = 0 for some B E A  

then SBp(x,  y)dX(y) = 0 for almost every x E X. It follows that 

uS(x,  .) ++ X for almost every x E X. 

(ii) + (iii): Let N E C be such that p ( N )  = 0 and U S ( X ,  .) ++ X for all 

x E X - N. Take C E C @ A  such that p @ X(C) = 0. Then, by Fubini, 

there exists a set M E C such that p(M)  = 0 and X(C(x))  = 0 for all 

x E X - M with C ( x )  the section of C at x. Hence if x E X - (NU M ) ,  

then X(C(x)) = 0 and so uS(x,  C ( x ) )  = 0 p-a.e. on X. This implies 

that us(C) = Sx us(x, C(x) )dp(x)  = 0 and therefore us ++ p 8 A in 

C @ A  for every x E X. 

(iii) + (i): By the Radon-Nikodym theorem there exists a function 

0 5 p(x, y) such that us = p(p @ A).  Thus, for A E C we have 
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from which it follows that vs(x,  B) = S,p(x, y ) d A ( ~ )  for p-almost every 

x E X, i.e., vs(x, .) = Since S is generated by the random 

measure vs(x,  .) we have 

for almost every x E X and for all f E L. So S is a kernel operator 

with kernel p(x, y ) .  0 

For the proof of the following result we will make use of the following 

order separable condition: 

Lemma 3.2.11 Let L and M be two Archimedean Riesz spaces with M order 

separable. Let (u,) be a sequence in L+ such that {u, : n = 1,2,. . . )dd = L. 

Then the space L,(L, M )  is order separable. 

Proof Let (T,) be an upward directed net in L,(L, M )  such that 0 < T, ?. 

T E L,(L, M ) .  We have that 0 5 Taun t Tun. Also, from the fact 

that M is order separable there exists a sequence (an,,) such that 

sup, T,,,,u, = Tun. Put S = Tan,, in L,(L, M) .  We then have 

that 0 < Tan,, 5 S < T for all n, k. In particular, for any n we have 

0 5 Ta,,,un 5 Sun < Tun for all k and so Sun = Tun. Now 0 5 T - S 

and so T - S = 0 on the ideal generated by {u, : n = 1 , 2 , .  . . ). 

Since T - S is order continuous we get that T - S = 0 on L. Thus 

T = SUPn,k TQ,,~. 
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Theorem 3.2.12 Lr,(L, M)  is a band in Lb(L, M).  

Proof The space Ln(L, M) is order separable since the underlying measure 

spaces are assumed to be cr-finite. It is therefore sufficient to show that 

if (T,) is a sequence in L,,(L, M) such that 0 5 T, t T in Ln(L, M),  

then it follows that T E L,,(L, M).  Put To = 0 and let Sn = Tn-Tn-l 

for all n = 1,2,. . . . We have that 0 5 Sn 5 Tn and since L,,(L, M)  is 

an ideal in Ln(L, M),  it then follows that 0 5 Sn 6 L,,(L, M)  and so 

Sn is generated by some random measure rn(x, .). 

Let vn(x, .) = CF=, rk(x, .), then vn(x;) is a generating measure for 

Tn for all n = 1 , 2 , .  . . . By definition, vn(x, B)  tn for all B E A and all 

x E X. Define, for all B E A and all x E X 

v(x,  B )  = SUP vn(x, B ) .  
n 

The function x H v(x, B )  is C-measurable on X for every B E A and 

v(x, .) is a random measure on X. 

Lastly we show that v(x, .) is a generating measure for T .  

Let B E A be such that f = lg E L. Then 

T f  ( x )  = supTnf ( x )  
n 

= supvn(x, B)  
n 

= v(x, B)  

= /, f (y)v(x, d y )  p - a.e. on X. 
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This then implies that Tf ( x )  = Sy f ( y ) v ( x ,  dy) holds p-a.e. on X for 

the step function f given by 

where 0 5 a, E B and Bj E A for j = 1,2,. . . , k. Let 0 5 f E L 

be arbitrary, then there exists a sequence ( f , )  in L such that each fn 

is of the form (3.2.1) and 0 5 fn f holds A-a.e. on Y. Since T is 

order continuous, we also have that T fn t T f p-a.e. on X .  Using the 

monotone convergence theorem we then get that 

Thus for each n we have that Tf,(x)  = Sy f,(y)v(x,dy)p-a.e. on X. 

We therefore conclude that Tf (x) = Sy f ( y ) v ( x ,  dy) holds p-a.e. on 

X and the proof is complete. 0 

3.3 Random measure-representable operato- 
rs 

Here we develop a theory of random measure-representable operators analo- 

gous to the theory of MCE-representable operators. Our main theorem will 

be that every order continuous operator is random measure-representable. 

This gives us an extension of the theorem by Sourour [28] to a more general 

setting. 
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Consider measure spaces (Y, A, A )  and ( X ,  C, p)  with ( X ,  C, p) complete 

a-finite and let L C LO(Y, A, A)  and M C LO(X ,  C, p)  be order dense ideals 

of measurable functions. 

Definition 3.3.1 We say that a linear operator T : L + M is random 

measure-representable if there exist a-finite measure spaces (R1 ,  g l ,  r l )  and 

(R2,32, m) , order dense ideals Ln, c L0(R2, 3 2 ,  n2) and Mnl C LO(R1, & ,  n l )  

and order continuous Riesz homomorphisms +L : L -t Ln, and $JM : Mnl -+ 
M with h surjective and $JM a Riesz isomorphism onto an ideal in M ;  such 

that 

T = $ J M o T " o + L ,  

with T, E L,,(Ln2, Mnl ) ,  i.e., such that the following diagram commutes 

As in the case of MCE-representable operators the following also holds. 

Proposition 3.3.2 Let ( X ,  C ,  p )  and (Y, A, v )  be o-finite measure spaces 

and let L C LO(Y, A, v )  and M C LO(X ,  C, p) be ideals with carriers Y and 

X respectively. Then the linear operator T : L -+ M is random measure- 

representable if and only if there exist a-finite measure spaces (R1 ,  & ,  r l )  

and (R2 ,  3 2 ,  n2), Riesz homomorphisms 4~ : LO(Y, A, v )  -+ L0(R2, 3 2 ,  7 ~ 2 )  and 

$JM : LO(R1, 51, nl) -+ LO(X ,  C ,  p) with + ~ ( 1 )  strictly positive and $JM 1 - 1 

and intervalpreserving and T,, E L,,(Ln,, Ma,) with Ln, = 4 ( L )  and Mnl = 
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$;l(M) order dense ideals such that 

i e . ,  such that the following diagram commutes 

Proof The proof of the corresponding result for MCErepresentable operai 

tors (Proposition 2.2.4 and Proposition 2.2.5) involve only properties 

of the ideals and Riesz homomorphisms that are used there, which are 

similar to those in this theorem. We can, therefore, apply the same 

argument replacing S ,  with T,. 0 

As in the case of MCErepresentable operators, putting R = R1 x R z ,  3 = 

51 832, and ?r = a1 @a2 We call @ = ((0, 5, a), dL ,  l / l M )  a representing triple 

for the operator T. We will denote the set of all linear operators T : L -+ M 

which are random measure-representable via the triple @ by &(L, M )  and 

the operator T E Lo(L, M )  will be called @-representable. 

The following are examples that show that operators generated by random 

measures and kernel operators are amongst the class of operators that are 

random measure-representable. 

Example 3.3.3 (1) Let (X, C, p)  and (Y, A, A )  be 5-finite measure spaces 

and let L C LO(Y, A, A )  and M C LO(X, C, p) be ideals with carriers Y 



CHAPTER 3. OPERATORS DEFINED BY RANDOM MEASURES 90 

and X respectively. Let T E C,,(L, M). If we take q 5 ~  and 7/IM to be 

identity operators then T is Random measure-representable. 

(2) Consider cr-finite measure spaces (X, C, p) and (Y, A, A) and let L c 

LO(Y, A, A) and M c LO(X, C, p)  be ideals with carriers Y and X 

respectively. Let K : L + M be the absolute kernel operator from L 

into M defined by 

with kernel k. We have that the k(w, .)A(.) is a random measure that 

generates K (see Example 3.2.2 (1) on Page 68). By (1) above K is 

random measure-representable. 

Proposition 3.3.4 Co(L, M) is a band in C,(L, M).  

Proof Let the carrier of 4~ be denoted by C+, and put L1 := L n C+,. We 

have that C+, is a band in LO(Y, A, A) and so L1 is a band in L. Let 

be the restriction of q 5 ~  to L1, then is a Riesz isomorphism from 

L1 to La,. By Proposition 1.4.3 (ii) we get that ran($M) is a band in 

LO(X, C, p). If we put MI := M f l  ran(7/IM) then Ml is a band in M.  

let the restriction of $M to MI be denoted by 7/11. Then $1 is a Riesz 

isomorphism from Ma, onto MI. Using these Riesz isomorphisms the 

space Cn(L, M) can be identified with the band in C,(L1, MI) consist- 

ing of all operators T E Cn(L, M) for which the carrier of T, denoted 

by CT, is in L1 and ran(T) is contained in MI. From Proposition 3.3.2 
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we get that L*(L, M )  C Ln(L1, M I ) .  It will therefore suffice to show 

that L*(L, M )  is a band in Ln(Ll ,  MI ) .  To that end we define 

for all S E Ln(Lnl ,  Mn2). Note that T is bipositive and therefore a 

Riesz isomorphism from Ln(Lnl ,  Mn2) onto Zn(L1, M I ) .  We can now 

express the relation T = + M ~ T v ~ d L  in Proposition 3.3.2 by T  = T(S,,) 

and so 

&(L, M )  = T(Lrm(Ln1, Mn2)). 

By Theorem 3.2.12 Lrm(Ln1, Mn2) is a band in Ln(Lnl ,  Ma,). It there- 

fore follows that Lo(L,  M )  is a band in Ln(Ll ,  M I ) ,  and hence a band 

in Ln(L, M ) .  

The main result of this section is that every order continuous operator 

is random measure-representable. As in the last section we consider order 

dense ideals L and M of almost everywhere finite measurable functions on 

measure spaces (Y, A, A) and ( X ,  C, p) respectively. We note firstly that for 

an operator from L into M we may assume without loss of generality that its 

range is in LO(X ,  C, p ) ,  for if it is a random measure representable operator 

from L into the latter space, then it is also representable as an operator from 

L into M. For the same reason we can consider T  defined on its natural 

domain, which is defined to be {f E LO(Y, A, A) : TI f 1 E L o ( X ,  C, p)) .  From 
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this observation we infer that we may assume without loss of generality that 

L has a weak order unit. This is a consequence of the next lemma which was 

communicated to us by A.R. Schep. 

Lemma 3.3.5 Let 0 < T : L -+ M and let 0 5 fn be disjoint in L. 

Then there exists 0 5 gn I fn such that {gnIdd = { f n ) d d  and such that 

C:=l T g n ( x )  < w p-a.e. on X .  

Proof Fix n .  Then ( l / k ) T f n ( x )  + 0 p-a.e. as k  -+ w. It follows that 

there exists some kn such that p { x  : ( l / k n ) T f n ( x )  > 2-") < 2-". 

Let gn := fn /kn .  Let c > 0 and choose N such that 2-N < c. Then 

p { x  : T g n ( x )  > 2-") < 2-" for all n 2 N + 1 implies 

Since T g l , .  . . , T g N  are finite p-a.e., we get that 

Since this holds for arbitrary E > 0, we have that C,"==, T g n ( x )  < co 

holds p-a.e. on X. 0 

In our case we apply the lemma to the disjoint functions ly,+,\y,, with 

Yn Y as sequence such that l y ,  E L. The function g  := En gn constructed 



CHAPTER 3. OPERATORS DEFINED BY RANDOM MEASURES 93 

in the lemma is then strictly positive and belongs to the natural domain of 

T. 

Let 0 5 u E L be a weak order unit for L. The principal ideal generated 

by u, denoted by L,, normed by the gauge function of [-u,u] is an AM- 

space with unit u. By the Kakutani-Krein theorem (see [21, Theorem 2.1.31 

or [24, Theorem 11.7.4, Corollary I]), L, is Riesz and isometric isomorphic 

to a space C(R) with R a compact HausdorfT space. If q5 denotes this Riesz 

isomorphism, then $(u) = In. Since L, is Dedekind complete, so also is C(R) 

and this implies that R is an extremally disconnected topological space (i.e., 

the closure of each open set is open). 

Since our results are measure theoretic a few facts on the a-algebra of sub- 

sets of R inherited from A are recalled. Since u is a strictly positive function, 

its Boolean algebra of components are in one-to-one correspondence with the 

elements of the measure algebra associated with A (we will not distinguish 

between the elements of A and the elements of the measure algebra). On 

the other hand q5 establishes a one-to-one correspondence between the com- 

ponents of u and those of lo. The latter components are of the form ic and 

we have that such a C is both open and closed (clopen). Conversely, for 

each clopen set C C 0 ,  lc is a continuous function and hence a component 

of In in C(R). It follows that there is a one-to-one correspondence between 

the measure algebra associated with A, and the set of clopen subsets of R. 

From this it follows already that in our case the set C of clopen subsets of 

R is a a-algebra (a fact which can also be proven directly using the fact 
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that C ( R )  is a-Dedekind complete in this case). For every clopen set C ,  

we have C = and so C is trivially an open F, set. Since the a-algebra 

A ( R )  o f  Baire subsets o f  R is generated by the open F, sets, we have that 

C c A ( R ) .  Conversely, since every positive f E L, can be approximated 

u-uniformly by linear combinations of  components o f  u (Fkeudenthal), and 

since 4 is order continuous, every positive element of  C ( R )  can be uniformly 

approximated by C-step functions and so f is C-measurable. However, the 

smallest a-algebra of  subsets o f  R with respect t o  which all continuous func- 

tions on R are measurable is A (R) .  Therefore, A ( R )  c C. Thus, the image 

of  A is the a-algebra A ( R )  of  Baire subsets o f  R. 

I t  follows from the characterization of  A ( R )  as C, that every A ( R )  step 

function is continuous and so every positive, bounded Baire-measurable func- 

tion is continuous. Denoting the image o f  the measure A on A ( R )  by 5, it 
follows from this that LO"(R, A(R), 5) = C ( R ) .  

Theorem 3.3.6 Let (Y, A, A )  and ( X ,  C, p) be a-finite measure spaces and 

let L and M be order dense ideals in LO(Y,A,  A )  and L O ( X ,  C, p) respectively. 

If T : L -+ M is an order continuous linear operator then T is random 

measure-representable. 

Proof W e  assume, without loss o f  generality that L has a weak order unit, 

i.e., assume that there exists a strictly positive function u on Y such 

that u E L. Furthermore it is sufficient to  prove the theorem for a pos- 

itive T. Therefore, let 0 5 T E &(L,  M ) ,  i.e., T is an order continuous 

operator from L to  M ,  and let v = T u  E M .  Denote the principal 
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ideals generated by u and v in L and M respectively by Lu and Mu. 

Then T : L, -+ M, is also order continuous. 

Let R, and Q, be compact Hausdorf spaces such that L, and M, are 

Riesz isometric isomorphic to C(Q,) and C(R,), respectively, via the 

Riesz isomorphisms 4, : L, t C(R,) and +v : M, t C(R,). The 

Riesz isomorphisms 4, and 4, are surjections. It follows that they are 

order continuous Riesz isomorphisms. Indeed, for $,, if we let fn t f 
in L we have that 4,(fn) 1. and 4,(fn) I d,(f).  Since L, is Dedekind 

complete, so is $,(LU) and hence there exists a g E C(R,) such that 

4u( fn )  t g in C(au) ,  and g I 4,( f) .  This implies that 4;'(4,(f,,)) t 
a d  4 1 4 u ( f n )  I 4 Hence fn I 4 i 1 ( g )  and so f 5 4i1(g) .  

Thus & ( f )  5 g. Therefore & ( f )  = g ,  i.e., 4,(f,) t & ( f )  and this 

proves our assertion. (This actually holds for any Riesz isomorphism 

which is onto, and so for 4;' as well). Note that 4,(u) = In, and 

&(v) = ln ,  and that A(R,) and A(Rv) are images of A and C under 

4, and 4,, respectively. We also have that Lm(Ru, A(QU),  x) = C(R,) 

We define the positive linear map T : C(R,) + C(R,) by Fg = 4" oTo 

&'(g)  for g E C(R,). Since 4, and 4;' are Riesz isomorphisms onto, 

it then follows that T is order continuous. Furthermore, TIn, = In,, 

so T is a continuous map from the Banach space C(R,) into C(Rv) and 

IITII = 1. 

Let T' : C(0,)' t C(R,)' be the adjoint of T mapping the dual of 

C(R,) into C(R,)', the dual of C(R,). For each x E R, let F, E C(Qu)' 
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be defined by F, = ?6, where 6,(g) = g(x)  is a continuous linear 

functional in C(R, ) .  Then 

F , ( f )  = (T16 , ) ( f )  = 6 , ( T f )  = ( F f ) ( x )  and F z ( L , )  = 1. 

By the Riesz Representation theorem (see [6, Theorem 4.3.91) F, can be 

represented by a unique probability measure v ( x ,  .) defined on A(R,)  

such that 

for all f 6 C(R, )  = L m ( R , , A ( R , ) , i ) .  Thus, for each f E L, we have 

that 

and since T f  = d;'(Td, f )  we have that 

From Equation (3.3.1) it follows that v ( x ,  C )  is A(R,)-measurable for 

every G E A(&). Therefore v ( x ,  .) is a random measure on A(R,) .  

Thus T : L ~ ( R , , A ( R , ) , ~ )  -t Lm(R,,A(R,)c,j2) is generated by the 

random measure v ( x ,  .), i.e. the following diagram commutes 

Note that the Riesz homomorphism 4, can be extended to an order 

continuous Riesz homomorphism dr, from LO(Y, A, A) into L0(R2, z2, s2) 
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and similarly 4;' can be extended to  an order continuous Riesz homo- 

morphism $M from LO(R1,  &, ax) into L O ( X ,  C, p).  Since L, is order 

dense in L we have, for 0 _< g E L,  that there exists a sequence 0 5 (gn) 

in L, such that g, t g. So 4 ~ ( g ~ )  t $ ~ ( g ) .  Let f ,  = h ( g n )  We have 

that fn  t 4 ~ ( g )  := f, so that Jnu fn(y)v(x ,  d y )  t f ( Y ) ~ ( x ,  d ~ ) .  But, 

$L So, f n ( y ) v ( x ,  dy )  = Tg,, and since T is order continuous we have 

that Tgn t T g ,  so that 

This holds for all 0 5 g E Land so for all g E L. Thus T = $ L ~ T ~ 4 L .  

This completes the proof of the theorem. 0 



Chapter 4 

Random measures and 

There seems to be a strong connection between conditional expectation op- 

erators and operators generated by random measures. By investigating the 

relationship between these operators, we prove the main theorem of this the- 

sis, which is that every order continuous operator is MCE-representable. 

We also forge a link amongst order continuous operators, MCE-represent- 

able operators and random measure-representable operators. 

This solves many open problems involving MCErepresentable opera- 

tors. For instance, it  becomes easy, almost trivial, to show that the sum, 

composition, product, etc of MCE-representable operators are again MCE- 

representable operators. Direct proofs of these results are not trivial. 

Note that if we put R ( L ,  M )  to be the set of all random measures v (x ,  .) 

such that S, f (y )u(x ,  dy) E M for all f E L then C,,(L, M )  is Riesz isomor- 

phic to %(L, M ) .  Thus R ( L ,  M )  is a Riesz space since C,,(L, M )  is a Riesz 

space. 
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4.1 Random measures and MCE-Operators 

Before we embark on a proof of the main result we first show that operators 

generated by random measures are MCE-representable, i.e., we want to show 

that if L c LO(Y ,  A, A) and M C L O ( X ,  C, p) are ideals of measurable func- 

tions and T : L + M a positive operator generated by the random measure 

v ( x ,  .), then T is MCE - representable. 

The case where v ( x ,  .) is a probability measure for each x E X and p is 

also a probability measure on X is trivial. 

To show this let R = X x Y .  Since v ( x ,  .) and p are probability measures, 

there exists, by the Product of Measures theorem see [6, Theorem 2.6.21, a 

unique probability measure P on C €4 A defined by 

The operator T is given by Tf ( x )  = Sy f ( z ) v ( x ,  d z )  for almost every x E X .  

For f E L define the homomorphism & by h(f)  = f ( z ) l x ( x )  and for 

g E M define the homomorphism +M by $n;r'(g) = g ( x ) l y ( y ) .  Let f E L ,  

put SM = {B x Y, such that B E C} = C €4 Y. We have that 

which by the theorem of Fubini (see (6, Theorem 2.6.61) we get 
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Since Sy v(x ,  d y )  = 1 we then have that 

= Lxy f ( 4 l x i ) f l .  

Since ( T f ) ( x ) l y ( y )  is SM-measurable, this shows that 

Thus $iil(Tf 1 = E ( ~ L ( ~ ) I S M ) ,  and so * M E ( ~ L ( ~ ) I ~ M )  = ~ f .  

We present a formal proof for the general case. We will use the following 

convention: 

Convention(A) If h : R c-t B is a measurable function we define 

The function is thus again a measurable function. 

Theorem 4.1.1 If L C Lo(Y, A, A) and M C LO(X, C, p )  are ideals of mea- 

surable functions and T : L + M a positive operator generated by the random 

measure v(x,  .), then T is MCE-representable. 

Proof Since L is order dense, there exists a sequence Yn Y such that 

l y ,  E L and Tly ,  = v(x,Yn) E M for each n. For B E A put 

v,(x, B )  = v(x ,  B n Y,). Following convention (A) ,  we define 
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Let 2 = { x  E X : v(x ,  Y )  # 0). Since v(x ,  B )  = 0 for all x E 2' we 

have that O(x, .) = 0 for all x E *. Also, since v(x,  Yn) 1. v(x ,  Y )  > 0, 

we have that O(x, .) 2 0 for all x E 2. Therefore 

v(x,  Y n Yn) 
n=l 

This holds for every x E 2. Put, using convention (A), 

Note that S(x,  .) is non-zero for all x E 2. Also, c ( x ,  Y )  = 1 for all 

x E 2, i.e., it is a probability measure on Y for all x E 2 and so 
- 
O(x,Y)  = l z ( x ) .  It follows that E(x, .) is uniformly a-finite (in fact 

uniformly finite). 

We have that p restricted to 2 is a a-finite measure and it can be nor- 

malized to be a probability measure on 2 as we did with the measure v. 

We denote this normalized measure by p. Hence there exists a unique 

product measure P on C x A such that P(A x B) = S, F(x, B)p(A)  for 
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Put, using convention (A), 

It follows that 

g(z)T(x,  dz) = h(x ,  z)g(z)v(x ,  dz) (4.1.1) 

for every step function g and so it holds for arbitrary positive functions 

g E LO(Y, A, A). 

For an arbitrary A in ZM = { A  x Y  : A E C) and 0 < f E L we have, 
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that 

We thus have shown that E(&f(z)(x)lSM) = Tf ( x ) l y ( y ) .  Putting 

m(x;) = - we get that $ M E ( m $ ~ ( f ) J S ~ )  = T f .  This holds for 
h ( v )  

positive f E L and consequently for all f E L. This completes the 

proof. 0 

4.2 Main result 

We are now in a position to prove the main result of this thesis. 
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Theorem 4.2.1 Let (Y, A, v )  and ( X ,  C, p) be a-finite measure spaces and 

let L and M be order dense ideals i n  LO(Y, A, v )  and LO(X ,  C, p )  respectively. 

If T : L -+ M is  an  order continuous linear operator then T is MCE repre- 

sentable. 

Proof From Theorem 3.3.6 we get that the operator T is random measure- 

representable. Therefore there exist a-finite measure spaces (R1, &, a1) 

and ( 0 2 ,  52, az),  order dense ideals La, C L0(R2, 52, az) and Ma, C 

LO(R1, fjl, a l )  and order continuous Riesz homomorphisms qYL : L -+ 

La, and qM : Ma, -+ M with qYL surjective and $h a Riesz isomor- 

phism onto an ideal in M; such that 

with T, E Lm(Ln, ,  Ma,), i.e., such that the following diagram com- 

mutes 

From Theorem 4.1.1 we get that the operator T, E Crm(Ln2, Ma,) 

is MCErepresentable. Thus there exist a probability space (R ,  5, P), 

order dense ideals La c LO(R,gL,P) and Ma C L O ( R , z M , P ) ,  order 

continuous Riesz homomorphisms 4; : La, -+ La and $11, : Ma -t 

Ma,, with 4: surjective and @(, a Riesz isomorphism onto an ideal in 

Ma, and a measurable function m E LO(R, 5, P) such that 
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i.e., such that the following diagram commutes 

If we take cPL := gL o 4: and qM := t+5$ o $JL then 4~ and t+5M are 

order continuous Riesz homomorphisms with cPL surjective and GM a 

Riesz isomorphism onto an ideal in M and we have that the following 

diagram commutes. 
L A M  

and the proof is complete. 

The following result now follows from the fact that the sum and the 

composition of order continuous operators are also order continuous. 

Corollary 4.2.2 Let (Y, A, v), ( X ,  C, p) and ( Z ,  r, y) be u-finite measure 

spaces and let L, M and N be order dense ideals in LO(Y, A, v), LO(X, C, p) 

and ( Z ,  r, y), respectively. 

(a) If Tl and Tz are order continuous linear operators that map L into M 

then T = Tl + Tz is MCE-representable. 

(b) If TI : M -t N and Tz : L -t M are order continuous linear operators 

then T = Tz o Tl is MCE-representable. 
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Theorem 4.2.3 Let (Y, A, v) and (X, C, p) be u-finite measure spaces and 

let L and M be order dense ideals in Lo(Y, A, v) and LO(X, C, p) respectively. 

For a linear operator T : L -t M the following are equivalent 

(i) T is order continuous; 

(ii) T is random measure-representable; 

(iii) T is MCE-representable. 

Proof (i) + (ii) 
See Theorem 3.3.6 on Page 94. 

(ii) + (iii) 
See Theorem 4.1.1 on Page 100. 

(iii) + (i) 
If T is MCErepresentable then by Definition 2.2.1 on Page 49 there is 

a representation triple @ = ((R, 5, P) ,  d L ,  $M) for the operator T and 

a @-kernel rn of T such that 

Since d L ,  Sm and $M are all order continuous we have that T is order 

continuous. 0 

We remark that if T is generated by a random measure then T is random 

measure-representable (and therefore MCE-representable). The converse is 

true if the measure spaces (Y, A, v) and (X, C, p) are standard Bore1 measure 

spaces see 1271. 
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