An investigation of indanone derivatives as inhibitors of monoamine oxidase

E Aucamp

Dissertation submitted in fulfilment of the requirements for the degree Master of Science in Pharmaceutical Chemistry at the Potchefstroom Campus of the North West University

Supervisor: Prof. A. Petzer
Co-supervisor: Prof. J.P. Petzer
Co-supervisor: Prof. L.J. Legoabe

Graduation May 2018
Student number: 23401338
The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF.
# TABLE OF CONTENTS

ACKNOWLEDGEMENTS .................................................................................................................. V

ABSTRACT ..................................................................................................................................... VI

KEYWORDS ....................................................................................................................................... VII

LIST OF ABBREVIATIONS ............................................................................................................... X

LIST OF TABLES ............................................................................................................................. XIII

LIST OF FIGURES ........................................................................................................................... XIV

CHAPTER 1: INTRODUCTION ........................................................................................................... 1

1.1 Introduction and overview ........................................................................................................ 1

1.2 Rationale .................................................................................................................................... 3

1.3 Hypothesis .................................................................................................................................. 7

1.4 Objectives .................................................................................................................................. 7

CHAPTER 2: LITERATURE STUDY ................................................................................................. 9

2.1 MAO ........................................................................................................................................... 9

2.1.1 General background .............................................................................................................. 9

2.1.2 Tissue distribution ................................................................................................................ 13

2.1.3 The mechanism of action of MAO ....................................................................................... 14

2.2 MAO-A ...................................................................................................................................... 17

2.2.1 Biological function of MAO-A ............................................................................................ 17

2.2.2 Potential role of MAO-A in PD ........................................................................................... 19

2.2.3 Inhibitors of MAO-A ........................................................................................................... 19

2.2.3.1 Non-selective, irreversible MAO inhibitors .................................................................... 19

2.2.3.2 Reversible inhibitors of MAO-A (RIMAs) .................................................................... 20

2.2.4 Three-dimensional structure of MAO-A ............................................................................. 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 MAO-B</td>
<td>25</td>
</tr>
<tr>
<td>2.3.1 Biological function of MAO-B</td>
<td>25</td>
</tr>
<tr>
<td>2.3.2 Potential role of MAO-B in PD</td>
<td>26</td>
</tr>
<tr>
<td>2.3.3 Inhibitors of MAO-B</td>
<td>26</td>
</tr>
<tr>
<td>2.3.4 Irreversible inhibitors</td>
<td>27</td>
</tr>
<tr>
<td>2.3.5 Reversible MAO-B inhibitors</td>
<td>31</td>
</tr>
<tr>
<td>2.3.6 Three-dimensional structure of MAO-B</td>
<td>32</td>
</tr>
<tr>
<td>2.4 In vitro measurements of MAO activity</td>
<td>35</td>
</tr>
<tr>
<td>2.5 Copper-containing amine oxidases</td>
<td>36</td>
</tr>
<tr>
<td>2.5.1 General background and classification</td>
<td>36</td>
</tr>
<tr>
<td>2.6 Substrates and known inhibitors of CuAOs</td>
<td>37</td>
</tr>
<tr>
<td>2.6.1 Biological function and mechanism of action of the SSAOs</td>
<td>40</td>
</tr>
<tr>
<td>2.6.2 The three-dimensional structure of SSAO</td>
<td>41</td>
</tr>
<tr>
<td>2.7 Conclusion</td>
<td>45</td>
</tr>
</tbody>
</table>

CHAPTER 3: SYNTHESIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>46</td>
</tr>
<tr>
<td>3.2 Materials and instrumentation</td>
<td>49</td>
</tr>
<tr>
<td>3.3 General method for the synthesis of indanone derivatives</td>
<td>50</td>
</tr>
<tr>
<td>3.3.1 Detailed synthesis of 4-, 5- and 6-hydroxy-1-indanone (2a-c)</td>
<td>51</td>
</tr>
<tr>
<td>3.3.2 Detailed synthesis of substituted indanone derivatives (1a-h)</td>
<td>51</td>
</tr>
<tr>
<td>3.3.3 Detailed synthesis of the alcohol derivatives (1i-n)</td>
<td>52</td>
</tr>
<tr>
<td>3.4 Physical characterisation</td>
<td>53</td>
</tr>
<tr>
<td>3.4.1 NMR analysis and data</td>
<td>53</td>
</tr>
</tbody>
</table>
Acknowledgements

First and foremost, I would like to thank Jesus Christ, my Lord and personal saviour, for granting me the opportunity to pursue this degree. Thank You for always listening to my prayers and graciously leading me in life.

I would like to sincerely thank the following people for the support they offered to me during this study. Without them, it would surely not have been completed.

- My first point of call, Douw Steyn. Thank you for your unconditional support and love. Without your calmness, faith in the Lord and good sense of humour, the pursuit of this degree would have been far more stressful.
- Hercu and Linda Aucamp, my loving parents. Thank you for always believing in me and encouraging me to pursue my dreams. Above all, thank you for enabling me to do so.
- My wonderful sister and grandparents, thank you for the support, patience and encouragement you always offered me even though you don’t understand chemistry.
- Close friends and colleagues, especially Stefan, Cornel, Franciska, Hernus and Estaleen. Thank you for all the laughs and emotional support during the pursuit of this degree.
- Professors Jacques and Anél Petzer. Thank you for always understanding and offering the guidance and expertise needed to obtain this degree.

“Little science takes you away from God but more of it takes you to Him.”

~Louis Pasteur, founder of microbiology and immunology
ABSTRACT

MAO-A and MAO-B are two isoforms of mitochondrial monoamine oxidase (MAO) that are responsible for the deamination of various monoamine substrates. For example tyramine and dopamine are metabolised by both MAO isoforms. MAO-A specifically metabolises noradrenaline and serotonin, while MAO-B metabolises exogenous amines such as benzylamine and 2-phenylethylamine. MAO-B is the dominant isoform in the striatum and hypothalamus of the human brain and inhibitors of this isoform are mainly indicated in Parkinson’s disease, while MAO-A dominates the periphery with depression as the main indication for MAO-A inhibitors. Irreversible inhibition of MAO-A may lead to the “cheese reaction” (when taken with tyramine rich foods) or serotonin syndrome (when administered with serotonin-elevating drugs). It is therefore essential to develop highly selective MAO-B inhibitors to eliminate these potentially fatal side effects of irreversible MAO-A inhibition.

Investigation of 1-indanone derivatives is suggested for this purpose as it is structurally similar to previously tested α-tetralones and 1-indanones that exhibited potent and selective MAO-B inhibition. Potent MAO-B inhibition was particularly displayed by α-tetralone inhibitors that were substituted on C6 and C7. In this study 1-indanone was substituted on C5 and C6 (the analogous positions to C6 and C7 of α-tetralone) with the anticipation that this will yield highly potent and specific inhibitors of MAO-B. The structure of 1-indanone is also similar to that of rasagiline, a highly potent MAO-B inhibitor which is used in the treatment of Parkinson’s disease. It is postulated that even higher selectivity for the MAO-B isoform may be obtained when rasagiline is substituted on C4 of the indan phenyl ring. It is hypothesised that the entrance and substrate cavities will fuse as the substituent occupies the entrance cavity and rasagiline the substrate cavity of MAO-B. Inhibitors that display this cavity-spanning mode of inhibition generally do not inhibit MAO-A, which would make C4 substituted rasagiline analogues highly specific for MAO-B. Such compounds would possess a low risk of the cheese reaction and serotonin syndrome. Since 1-indanone is similar in structure to rasagiline, this theory was investigated by substitution of 1-indanone on the C4 position with relatively large substituents. The synthesised 1-indanone derivatives were reduced to the corresponding 1-indanol derivatives in order to compare MAO inhibition potencies of the carbonyl and alcohol derivatives.

The structures of the synthesised 1-indanone and 1-indanol derivatives were elucidated by nuclear magnetic resonance (NMR) and mass spectrometry (MS). Purity of the compounds were estimated by high pressure liquid chromatography (HPLC). All compounds were evaluated as inhibitors of human MAO-A and MAO-B by recording their IC_{50} values.
Chlorobenzylxyloxy)-1-indanone exhibited the highest MAO-B inhibition potency with an IC$_{50}$ value of 0.000076 μM. This study concluded that 1-indanone derivatives are generally more potent inhibitors of human MAO-B than the corresponding 1-indanol derivatives. The most potent 1-indanol derivative, 5-(4-chlorobenzylxyloxy)-1-indanol, exhibited an IC$_{50}$ value of 0.007 μM for the inhibition of human MAO-B.

Reversibility studies were conducted with the selected 1-indanol derivative that exhibited the highest MAO-B inhibition potency. Previous studies have already shown that 1-indanone derivatives are reversible MAO inhibitors. In addition, the reversibility of MAO-A inhibition of 4-hydroxy-1-indanone (IC$_{50} = 2.15$ μM) was also examined since this compound displayed the most potent MAO-A inhibition of the series. The results obtained showed that both compounds are reversible inhibitors of MAO.

**KEYWORDS**

Monoamine oxidase (MAO); MAO-A; MAO B; cheese reaction; serotonin syndrome; α-tetralone; 1-indanone; indanol; rasagiline; reversibility.
UITTREKSEL

Monoamienoksidase (MAO)-A en -B is twee isovorme van mitochondriale MAO wat vir die deaminering van verskeie monoamiensubstrate verantwoordelik is. Beide isovorme van MAO metaboliseer tiramien en dopamien. MAO-A metaboliseer spesifiek noradrenalien en serotonien, terwyl MAO-B eksogene amiene soos bensielamien en 2-fenieletielamien metaboliseer. MAO-B is die mees algemene isovorm in die striatum en hipotalamus van die menslike brein en inhibeersers van hierdie isovorm word hoofsaaklik aangewend vir die behandeling van Parkinson se siekte. MAO-A is die belangrikste isovorm in die periferie en MAO-A-inhibeerders word aangewend vir die behandeling van depressie. Onomkeerbare inhibisie van MAO-A kan tot die "kaasreaksie" (wanneer dit saam met tiramienryke voedsel ingeneem word) of die serotoniensindroom (wanneer dit saam met middels wat serotonienvlakke verhoog toegediend word), lei. Dit is dus noodsaaklik om hoogs selektiewe MAO-B-inhibeersers te ontwikkel om sodoende hierdie gevaarlike newe-effekte van onomkeerbare MAO-A-inhibisie te vermy.

Vir die doel van hierdie studie is die MAO-inhiberende eienskappe van 1-indanoonderivate ondersoek aangesien dit structureel verwant is aan α-tetraloon- en 1-indanoonderivate wat in vorige studies potente en selektiewe MAO-B-inhibisie getoon het. Die α-tetraloononderivate wat op die C6- en C7-posisies gesubstitueer is, het veral potente MAO-B-inhibisie getoon. In hierdie studie is 1-indanoon op C5 en C6 gesubstitueer (wat ooreenstem met C6 en C7 op α-tetraloon) met die verwagting dat dit potente en spesifieke MAO-B-inhibeerders sal lewer. Die struktuur van 1-indanoon is ook verwant aan dié van rasagilien, ’n potente MAO-B-inhbieerder wat vir die behandeling van Parkinson se siekte gebruik word. Daar is voorgestel dat die selektiwiteit van rasagilien vir die MAO-B-isoform verbeter kan word deur rasagilien op C4 van die indaanfenielring te substitueer. Die hipotese is dat die ingangs- en substraaltholtes van die aktiewe setel sal saamsmelt omdat die substituent die ingangsholte beset terwyl rasagilien in die substraatholte van MAO-B bind. Verbindings wat beide bindingssetels beset, tree oor die algemeen nie as MAO-A-inhibeersers op nie en dus sal rasagilien-analoë, wat op C4 gesubstitueer is, baie spesifiek vir MAO-B wees. Hierdie verbindings behoort ’n lae risiko vir die kaasreaksie en serotoniensindroom in te hou. Dié teorie is ondersoek deur 1-indanoon ook met relatiewe groot substituente op C4 te substitueer aangesien 1-indanoon se struktuur soortgelyk is aan dié van rasagilien. Die gesintetiseerde 1-indanoononderivate is tot die ooreenstemmende 1-indanolderivate gereduseer ten einde die potensie van MAO inhibisie van die karboniel- en alkoholbevattende derivate te vergelyk.
Die strukture van die gesintetiseerde 1-indanoon- en 1-indanolderivate is deur kernmagnetieseresonans (KMR) en massa spektrometrie (MS) opgeklaar. Die suikerheid van die verbinding is met hoë-prestasie vloeistofchromatografie (HPVC) bepaal. Alle verbinding is as inhibeerders van menslike MAO-A en MAO-B geëvalueer deur die IC<sub>50</sub>-waardes daarvan te bepaal. 6-(4-Chlorobensieloksie)-1-indanoon het die mees potente MAO-B-inhibisie getoon met 'n IC<sub>50</sub>-waarde van 0.000076 µM. Hierdie studie kom tot die gevolgtrekking dat 1-indanoononderivate oor die algemeen meer potente inhibeerders van menslike MAO-B is as die ooreenstemmende 1-indanolderivate. Die mees potente 1-indanolderivaat, 5-(4-chlorobensieloksie)-1-indanol, het 'n IC<sub>50</sub>-waarde van 0.007 µM vir die inhibisie van menslike MAO-B getoon.

Omkeerbaarheidstudies is met die 1-indanolderivaat uitgevoer wat die mees potente MAO-B-inhibisie getoon het. Vorige studies het getoon dat 1-indanolderivate omkeerbare MAO-inhibeerders is. Die omkeerbaarheid van MAO-A-inhibisie van 4-hidroksie-1-indanoon (IC<sub>50</sub> = 2.153 µM) is ook ondersoek aangesien hierdie verbinding die mees potente MAO-A-inhibisie van die reeks verbindingen getoon het. Die resultate het aangedui dat beide hierdie verbinding omkeerbare inhibeerders van MAO is.

**SLEUTELWOORDE**

Monoamienoksidase; MAO-A; MAO-B; kaasreaksie, serotoniensindroom, α-tetraloon; 1-indanoon; indanol; rasagilien; omkeerbaar.
# LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-HQ</td>
<td>4-Hydroxyquinoline</td>
</tr>
<tr>
<td>5-HT</td>
<td>5-Hydroxytryptamine / serotonin</td>
</tr>
<tr>
<td>A</td>
<td>Adrenaline</td>
</tr>
<tr>
<td>ADAGIO</td>
<td>Attenuation of disease progression with azilect given once-daily</td>
</tr>
<tr>
<td>ADHD</td>
<td>Attention-deficit hyperactivity disorder</td>
</tr>
<tr>
<td>Ala</td>
<td>Alanine</td>
</tr>
<tr>
<td>APCI</td>
<td>Atmospheric-pressure chemical ionisation</td>
</tr>
<tr>
<td>APP</td>
<td>Amyloid precursor protein</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginine</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>B</td>
<td>Bovine serum amine oxidase</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>C-terminal</td>
<td>Carboxy terminal</td>
</tr>
<tr>
<td>CuAO</td>
<td>Copper-containing amine oxidase</td>
</tr>
<tr>
<td>Cys</td>
<td>Cysteine</td>
</tr>
<tr>
<td>DA</td>
<td>Dopamine</td>
</tr>
<tr>
<td>F</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>G</td>
<td>GABA</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinal tract</td>
</tr>
<tr>
<td>Gln</td>
<td>Glutamine</td>
</tr>
<tr>
<td>Glu</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>H</td>
<td>His</td>
</tr>
<tr>
<td>HMRS</td>
<td>High resolution mass spectra</td>
</tr>
<tr>
<td>HPLC</td>
<td>High pressure liquid chromatography</td>
</tr>
<tr>
<td>I</td>
<td>Ile</td>
</tr>
<tr>
<td>L</td>
<td>L-DOPA</td>
</tr>
<tr>
<td>Leu</td>
<td>Leucine</td>
</tr>
<tr>
<td>Lys</td>
<td>Lysine</td>
</tr>
<tr>
<td>M</td>
<td>MAO</td>
</tr>
<tr>
<td>MAO-A</td>
<td>Monoamine oxidase type A</td>
</tr>
<tr>
<td>MAO-B</td>
<td>Monoamine oxidase type B</td>
</tr>
<tr>
<td>MPP⁺</td>
<td>1-Methyl-4-phenylpyridinium</td>
</tr>
<tr>
<td>MPTP</td>
<td>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>N</td>
<td>NA</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitric oxidase synthase</td>
</tr>
<tr>
<td>P</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>PE</td>
<td>2-Phenylethylamine</td>
</tr>
<tr>
<td>Phe</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>RIMA</td>
<td>Reversible inhibitor of MAO-A</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure-activity relationship</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SI</td>
<td>Selectivity index</td>
</tr>
<tr>
<td>SNpc</td>
<td>Substantia nigra pars compacta</td>
</tr>
<tr>
<td>SSAO</td>
<td>Semicarbazide-sensitive amine oxidase</td>
</tr>
<tr>
<td>SSRI</td>
<td>Selective serotonin reuptake inhibitor</td>
</tr>
<tr>
<td>STS</td>
<td>Selegiline Transdermal System</td>
</tr>
<tr>
<td>TK</td>
<td>Tyrosine kinase</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TPQ</td>
<td>Topa-quinone</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>VAP-1</td>
<td>Vascular adhesion protein-1</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1.1 The indanone (1a–h), indanol (1i–n) and hydroxy-1-indanone (2a, c) derivatives that will be synthesised in this study. ................................................................. 5

Table 3.1 The structures of the 1-indanone (1a–h) and 1-indanol (1i–n) derivatives that were synthesised in this study. The indanone derivatives are depicted in the shaded entries and the alcohol derivatives in the unshaded entries. ................................................................. 47

Table 3.2 The calculated Rf values of the 1-indanone (1a–h), 1-indanol (1i–n) and hydroxyl-1-indanone (2a, c) derivatives. ......................................................................................................................... 63

Table 3.3 The calculated and experimentally determined molecular weights of the 1-indanone (1a–h), 1-indanol (1i–n) and hydroxy-1-indanone (2a, c) derivatives. ................................................................. 65

Table 3.4 The purities of the 1-indanone (1a–h), 1-indanol (1i–n) and hydroxy-1-indanone (2a, c) derivatives as estimated by HPLC analysis. ................................................................. 67

Table 4.1 The IC50 values for the inhibition of human MAO-A and MAO-B by indanone derivatives 1a–h. .............................................................................................................. 75

Table 4.2 The IC50 values for the inhibition of human MAO-A and MAO-B by 1-indanol derivatives 1i–n. .............................................................................................................. 77

Table 4.3 The IC50 values for the inhibition of human MAO-A and MAO-B by hydroxy-1-indanone derivatives 2a and 2c. .............................................................................................................. 79

Table 5.1 The synthesised 1-indanone derivatives (1a–h) and their corresponding IC50 values for the inhibition of human MAO-A and MAO-B. ................................................................. 93

Table 5.2 The synthesised 1-indanol derivatives (1i–n) and their corresponding IC50 values for the inhibition of human MAO-A and MAO-B. ................................................................. 95

Table 5.3 The synthesised hydroxy-1-indanone derivatives (2a, c) and their corresponding IC50 values for the inhibition of human MAO-A and MAO-B. ........................................... 96
LIST OF FIGURES

Figure 2.1 A representation of the reaction pathway of the metabolism of monoamines by oxidative deamination (facilitated by the MAO enzymes).................................... 9

Figure 2.2 A representation of the Fenton reaction, the mechanism through which iron and hydrogen peroxide (H$_2$O$_2$) induces neurotoxicity.................................................. 11

Figure 2.3 The polar nucleophilic mechanism of MAO catalysis. ........................................ 15

Figure 2.4 The general schematic pathway of MAO catalytic activity. ................................. 16

Figure 2.5 A representation of the potentiation of cardiovascular effects due to the simultaneous administration of tyramine and indirectly acting sympathomimetic amines together with irreversible MAO inhibitors. ................................................................. 17

Figure 2.6 The structures of non-selective, irreversible MAO-A inhibitors phenelzine (left) and tranylcypromine (right)................................................................................................................... 20

Figure 2.7 The structures of reversible MAO-A inhibitors moclobemide (left) and brofaromine (right). ......................................................................................................................... 21

Figure 2.8 The structure of methylene blue.............................................................................. 22

Figure 2.9 A cartoon representation of the structure of human MAO-A........................................ 23

Figure 2.10 A cartoon representation of the structure of rat MAO-A............................................. 24

Figure 2.11 The structures of (R)-Deprenyl, on the left, and its main metabolite, L-methamphetamine, on the right. .................................................................................................................... 29

Figure 2.12 The structures of rasagiline, on the left, and its main metabolite, 1-(R)-aminooindan, on the right. ..................................................................................................................... 31

Figure 2.13 The structure of the reversible MAO-B inhibitor safinamide. ................................. 32

Figure 2.14 A cartoon representation of the crystal structure of human MAO-B......................... 34

Figure 2.15 The structure of topa-quinone (TPQ). ....................................................................... 37

Figure 2.16 The structures of α-methyl substituted monoamines ............................................. 38
Figure 2.17 The structures of hydrazine derivatives ........................................ 39
Figure 2.18 The structures of allylamine derivatives ........................................ 39
Figure 2.19 The structures of selective inhibitors of SSAO activity, propargylamine (left) and hydroxylamine (right) ............................................................. 40
Figure 2.20 A proposed mechanism of action for the SSAOs, which exhibits the Schiff base formation ................................................................. 41
Figure 2.21 A representation of the overall topology of the BSAO monomer. .......... 42
Figure 2.22 A cartoon representation of a monomer for the BSAO structure. .......... 44
Figure 3.1 The structure of α-tetralone (left) compared to that of 1-indanone (right). .... 46
Figure 3.2 The reaction pathway for the synthesis of 4-, 5- and 6-hydroxy-1-indanone. . 51
Figure 3.3 The reaction pathway for the synthesis of 4-, 5- and 6- substituted 1-indanone derivatives (1a-h). ........................................................................ 52
Figure 3.4 The reaction pathway for the synthesis of alcohol derivatives of 1-indanone, compounds (1i-n). ........................................................................ 53
Figure 3.5 Examples of TLC sheets obtained in this study .................................. 64
Figure 4.1 The reaction pathway for the oxidation of kynuramine by MAO-A and MAO-B to produce 4-hydroxyquinoline ................................................................. 70
Figure 4.2 Example of a calibration curve constructed in this study. ................. 73
Figure 4.3 Sigmoidal curves for the inhibition of MAO-A by 2a (filled circles) and the inhibition of MAO-B by 1l (open circles), respectively ......................... 73
Figure 4.4 A summary of preparation required before performing the MAO inhibition assay ........................................................................................................ 74
Figure 4.5 Process-flow for the determination of IC50 values for MAO inhibition (4-HQ, 4-hydroxyquinoline). ................................................................. 75
Figure 4.6 Comparison of the structures of the most potent indanone (1f) and indanol (1l) derivatives ................................................................. 81
Figure 4.7 Comparison between the MAO-B inhibition potencies of unsubstituted and chlorine substituted indanone derivatives 1c (left) and 1f (right). .................................................. 81

Figure 4.8 Comparison between the MAO-B inhibition potencies of unsubstituted and chlorine substituted indanol derivatives 1i (left) and 1l (right). ................................................................. 82

Figure 4.9 Comparison between the MAO-B inhibition potencies of indanone derivatives with meta and para chlorine substitution on the benzyloxy phenyl ring. Compound 1g (left) and 1f (right) are provided as examples. ................................................................. 82

Figure 4.10 Comparison between the MAO-B inhibition potencies of indanol derivatives with meta and para chlorine substitution on the benzyloxy ring. Compound 1n (left) and 1m (right) are provided as examples. ................................................................. 83

Figure 4.11 Comparison between MAO-B inhibition potencies of indanone derivatives substituted with 4-chlorobenzyloxy on C4, C5 and C6. .............................................................................. 84

Figure 4.12 Comparison between MAO-B inhibition potencies of 1-indanol derivatives substituted with the 4-chlorobenzyloxy on C4, C5 and C6. .............................................................................. 85

Figure 4.13 Comparison between the MAO-B inhibition potencies of 1-indanone derivatives with different substituents, i.e. 2-phenoxyethoxy (left), benzyloxy (middle) and 4-chlorobenzyloxy (right). .............................................................................. 86

Figure 4.14 Comparison between MAO inhibition potencies of 4-hydroxy-1-indanone (left) and 6-hydroxy-1-indanone (right). .............................................................................. 86

Figure 4.15 Summary of the buffer and dialysis conditions for the reversibility studies. ... 88

Figure 4.16 Process-flow of the reversibility studies (4-HQ= 4-hydroxyquinoline). ......... 88

Figure 4.17 Reversibility of inhibition of MAO-A and MAO-B by compounds 2a and 1l, respectively.......................................................... 90

Figure 4.18 Chemical structures of the MAO-A inhibitor, toloxatone (left) and the MAO-B inhibitor, lazabemide (right). .............................................................................. 91
CHAPTR 1: INTRODUCTION

1.1 Introduction and overview

The monoamine oxidase (MAO) enzymes are flavin adenine dinucleotide (FAD) containing proteins located on the outer mitochondrial membrane that function as catalysts for the deamination of a variety of monoamine substrates. The MAO enzymes are present in two isoforms, MAO-A and MAO-B, which differ in substrate and inhibitor specificity as well as distribution in the human body (Youdim & Bakhle, 2006). These two isoforms exhibit a sequence identity of ~70% and are encoded by different genes on the X chromosome (Grimsby et al., 1991; Bach et al., 1988). MAO-A is responsible for the metabolism of noradrenaline (NA), serotonin (5-hydroxytryptamine; 5-HT), dopamine (DA) and tyramine, and is selectively inhibited by clorgyline. MAO-B catalyses the metabolism of the exogenous amines, benzylamine and 2-phenylethylamine (PE), as well as DA and tyramine, and is specifically inhibited by (R)-deprenyl (Youdim & Bakhle, 2006). Research shows that DA is equally well metabolised by both isoforms and in the event of complete inhibition of one isoform, DA will still be sufficiently metabolised by the other isoform. The steady-state level of DA will therefore not change when either isoform is inhibited although the release of DA in the synaptic cleft may be affected (Riederer & Youdim, 1986).

Regional differences between MAO-A and MAO-B exist in the human body. MAO-B exhibits the highest activity in the striatum (basal ganglia) and hypothalamus (Youdim et al., 2006). The dominant isoform in the periphery is MAO-A, the isoform implicated in the so-called “cheese reaction”, which occurs upon irreversible inhibition of MAO-A. Indirect acting sympathomimetic amines, such as tyramine present in wine and beer, are able to induce the “cheese reaction”. Dietary tyramine is usually inactivated by MAO-A during “first pass” metabolism in the gastrointestinal tract (GIT) and liver. The tyramine uptake from the GI tract increases when MAO-A is irreversibly inhibited, which leads to increased noradrenaline release from the peripheral adrenergic neurons. This leads to an increase in blood pressure which may prove to be fatal (Youdim & Bakhle, 2006).
Research indicates that only MAO-A inhibition leads to the potentiation of tyramine-related pharmacological effects. This is supported by the localisation of MAO-A in the GI tract while MAO-B activity is absent or very low in the GI tract (Lader et al., 1970; Finberg & Tenne, 1982).

MAO-A inhibitors are indicated for the treatment of depression since these drugs elevate the brain levels of NA and 5-HT (Pletscher, 1991). To obtain raised levels of amines in the human brain, the inhibition of MAO enzymes should exceed 90% (Fowler et al., 2015). MAO inhibition leads to an altered amine balance with effects on patients’ mood after approximately three weeks of treatment (Fowler et al., 1996). Since 5-HT is metabolised by MAO-A in the brain, MAO-A inhibitors may promote the life-threatening serotonin syndrome when administered together with 5-HT-elevating drugs such as selective serotonin reuptake inhibitors (SSRI’s). MAO-B selective inhibitors, however, increase DA levels without affecting MAO-A activity and is therefore a viable option for the treatment of Parkinson’s disease (PD). A second reason for using MAO-B inhibitors in PD is linked to the possibly that MAO-B inhibitors may be neuroprotective and have the potential to modify disease progression (Fernandez & Chen, 2007). MAO-B activity increases with age and potentially harmful products of the MAO-B catalytic cycle may contribute to neurodegeneration in PD. MAO-B inhibitors may reduce the central levels of these metabolic by-products and therefore protect the dopaminergic system from degeneration due to an age related increase in MAO-B activity (Fowler et al., 1997).

Most of the MAO-B inhibitors under investigation are irreversible inhibitors. An example is (R)-deprenyl, also known as selegiline, the first selective MAO-B inhibitor to be used in the clinic. MAO-B inhibitors can be divided into two classes, reversible and irreversible inhibitors. The structures of reversible, competitive inhibitors are related to MAO substrates and these drugs therefore bind to the active site of the MAO-B enzyme. Irreversible (“suicide”) inhibitors initially bind in the same way (reversible and competitive) as reversible inhibitors with subsequent oxidation to the active inhibitor. The active inhibitor then binds covalently to the enzyme via the cofactor (FAD) and therefore the enzyme is permanently unable to metabolise amines (Foley et al., 2000). For the completion of the catalytic cycle, the FAD cofactor reacts with oxygen to produce the oxidised flavin and hydrogen peroxide (H₂O₂). An increase in hydrogen peroxide
levels as a result of MAO-B activity may lead to apoptosis of dopamine-producing cells and, as mentioned above, may be responsible for neurodegeneration in PD (Edmondson et al., 2009). Hydrogen peroxide is also a source of hydroxyl radicals which contribute to oxidative stress. MAO inhibitors are therefore also valuable in the treatment of oxidative stress related tissue damage as in the case of a stroke (Youdim et al., 2006). The inhibition caused by the irreversible inhibitors is more persistent than that of reversible inhibitors. Treatment with reversible inhibitors provides the option of immediately regaining enzyme activity after elimination of the inhibitor from the tissue, while enzyme activity is only regained after several weeks following withdrawal of an irreversible inhibitor. After irreversible inhibition, de novo synthesis of the enzyme is required to overcome the effects of inhibition (Foley et al., 2000). It is considered safer to use a reversible inhibitor (in comparison with an irreversible inhibitor) as potential side effects, that may occur due to MAO inhibition, can be terminated immediately when drug treatment is stopped (Van den Berg et al., 2007).

1.2 Rationale

The MAO inhibition properties of a series of 1-indanones were determined by Mostert and colleagues (2015), and it was concluded that, similar to α-tetralones studied by Legoabe and colleagues (2014), various substituted 1-indanones exhibit good potency MAO inhibition. Indanone is the 5-membered ring analogues of α-tetralone. This study will expand on the previous study by Mostert et al. (2015) by attempting to discover new indanone and indanol derivatives as MAO-B inhibitors by substitution on C4, C5 and C6 of the indanone ring system. For this study, the benzyloxy moiety will be considered as first substituent, since it was shown that substitution with the benzyloxy moiety at C6 or C7 of α-tetralone leads to potent MAO-B inhibition. It is therefore expected that indanones substituted with the benzyloxy moiety on C4, C5 or C6 will produce highly potent MAO-B inhibitors. The previous study on the MAO inhibition properties of indanones concluded that substitution on C6, and to a lesser extent C5, produces selective, potent inhibitors of MAO-B and it is expected that the results obtained in this study will be similar and thus support the previous study (Mostert et al., 2015). Three other substituents, 3-chlorobenzyloxy, 4-chlorobenzyloxy and 2-phenoxyethoxy were also selected as substituents for this study, and will be compared to benzyloxy substitution. In particular, Legoabe and colleagues (2014) have shown that substituents
that contain a halogen atom lead to increased MAO inhibition potency of α-tetralones compared to homologues that do not contain a halogen on the side chain phenyl ring. It is therefore expected that the inhibitors that possess substituents with a halogen (e.g. 3-chlorobenzyloxy, 4-chlorobenzyloxy) will be more potent MAO inhibitors than the inhibitors with a benzyloxy or 2-phenoxyethoxy side chains. However, it has to be noted that side chain length may also determine MAO-B inhibition potency, and it has been shown that the caffeine derivatives substituted with the 2-phenoxyethoxy side chain are particularly potent MAO-B inhibitors, possibly because the longer side chain protrudes deeper in the entrance cavity of MAO-B where it establishes productive interactions with hydrophobic residues (Strydom et al., 2010).

A major objective of this study will be to reduce the 1-indanones to the corresponding 1-indanol derivatives. The MAO inhibition properties of 1-indanol derivatives have not yet been investigated and this study will provide the opportunity to compare 1-indanones to the corresponding 1-indanol derivatives.

A crystal structure of rasagiline, a highly potent MAO-B inhibitor, bound to MAO-B was published by Hubálek and colleagues (2004). The structure shows that rasagiline binds in the substrate cavity of MAO-B and therefore leaves the entrance cavity unoccupied. Rasagiline may, however, lose selectivity at high dosages and inhibit MAO-A irreversibly. This is of concern since irreversible inhibition of MAO-A may induce the “cheese reaction”. This is also of significance to the present study since rasagiline possess a similar structure to the 1-indanone and 1-indanol derivatives of this study. Substitution on C4 of rasagiline may increase the selectivity of rasagiline for MAO-B and thus reduce the possibility of interaction with MAO-A and the cheese reaction. An appropriate substituent on C4 of rasagiline will project into the entrance cavity so that the entrance and substrate cavities of MAO-B may fuse. Such larger cavity-spanning inhibitors of MAO-B are in general selective for MAO-B and do not bind to MAO-A. Phe208 of MAO-A prevents the binding of large inhibitors to MAO-A. It is therefore expected that C4 substituted 1-indanone and 1-indanol derivatives may produce inhibitors that are selective for MAO-B with poor affinity for MAO-A. The liability of the “cheese reaction” will therefore be avoided.
**Figure 1.1** The structures of α-tetralone (left), 1-indanone (middle) and rasagiline (right).

**Table 1.1** The indanone (1a-h), indanol (1i-n) and hydroxy-1-indanone (2a, c) derivatives that will be synthesised in this study.

<table>
<thead>
<tr>
<th>Substitution at C4</th>
<th>Substitution at C5</th>
<th>Substitution at C6</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="1a" /></td>
<td><img src="image" alt="1b" /></td>
<td><img src="image" alt="1c" /></td>
</tr>
<tr>
<td><img src="image" alt="1d" /></td>
<td><img src="image" alt="1e" /></td>
<td><img src="image" alt="1f" /></td>
</tr>
<tr>
<td><img src="image" alt="1g" /></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitution at C4</td>
<td>Substitution at C5</td>
<td>Substitution at C6</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td><img src="image1" alt="Chemical Structure" /></td>
<td><img src="image2" alt="Chemical Structure" /></td>
<td><img src="image3" alt="Chemical Structure" /></td>
</tr>
<tr>
<td><img src="image4" alt="Chemical Structure" /></td>
<td><img src="image5" alt="Chemical Structure" /></td>
<td><img src="image6" alt="Chemical Structure" /></td>
</tr>
<tr>
<td><img src="image7" alt="Chemical Structure" /></td>
<td><img src="image8" alt="Chemical Structure" /></td>
<td><img src="image9" alt="Chemical Structure" /></td>
</tr>
<tr>
<td><img src="image10" alt="Chemical Structure" /></td>
<td><img src="image11" alt="Chemical Structure" /></td>
<td><img src="image12" alt="Chemical Structure" /></td>
</tr>
<tr>
<td><img src="image13" alt="Chemical Structure" /></td>
<td><img src="image14" alt="Chemical Structure" /></td>
<td><img src="image15" alt="Chemical Structure" /></td>
</tr>
<tr>
<td><img src="image16" alt="Chemical Structure" /></td>
<td><img src="image17" alt="Chemical Structure" /></td>
<td><img src="image18" alt="Chemical Structure" /></td>
</tr>
</tbody>
</table>
1.3 Hypothesis

Based on the finding that α-tetralone and 1-indanone derivatives are highly potent MAO-B inhibitors, it is postulated that the 1-indanone and 1-indanol derivatives synthesised in this study will also exhibit high potency MAO-B inhibition. It may also be postulated that substitution on the C5 and C6 positions will produce particularly potent MAO-B inhibitors since substitution of α-tetralone on C6 and C7 (the analogous positions to C5 and C6 on 1-indanone) yield high potency MAO-B inhibitors. It is postulated that substitution of 1-indanone and 1-indanol on C4 will yield highly selective inhibitors due to possibility that the entrance and substrate cavity will be occupied by the inhibitors. It is also postulated that the compounds substituted with halogen-containing side chains will exhibit higher MAO inhibition potencies compared to compounds that do not contain halogens in their side chains. 1-Indanone and 1-indanol may therefore prove to be promising scaffolds for the design of MAO-B inhibitors with high potencies.

1.4 Objectives

- Eight 1-indanone derivatives will be synthesised that are substituted with the benzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy and 2-phenoxyethoxy moieties on C4, C5 or C6.
• Six 1-indanol derivatives will be synthesised through the reduction of the appropriate 1-indanone derivatives.

• The indanone and indanol derivatives will be evaluated as potential inhibitors of human MAO-A and MAO-B, and the inhibition potencies will be presented as the IC$_{50}$ values.

• The reversibility of MAO-B inhibition of a selected 1-indanol derivative will be determined by dialysis experiments.
CHAPTER 2: LITERATURE STUDY

2.1 MAO

2.1.1 General background

Mary Hare-Bernheim was the first person to give account of the enzyme responsible for the oxidative deamination of tyramine in 1928. She named it tyramine oxidase. Hugh Blaschko later discovered that tyramine oxidase is in fact the same enzyme as those previously described, noradrenaline oxidase and aliphatic amine oxidase, which is responsible for the metabolism of primary, secondary and tertiary amines. Diamines such as histamine are not metabolised by tyramine oxidase. Eventually the enzyme was named mitochondrial monoamine oxidase (MAO) by Zeller (Youdim & Bakhle, 2006).

The MAOs are flavin-containing proteins found on the outer mitochondrial membrane that catalyse the deamination of a range of monoamine substrates and follow the overall oxidative deamination reaction represented in the following figure:

Figure 2.1 A representation of the reaction pathway of the metabolism of monoamines by oxidative deamination (facilitated by the MAO enzymes).
The primary product of this reaction is the corresponding aldehyde which is usually quickly further oxidised by aldehyde dehydrogenase to a carboxylic acid (the final excreted metabolite). The FAD-FADH$_2$ cycle produces hydrogen peroxide that needs to be inactivated by catalase or glutathione peroxidase in the brain. Figure 2.1 was adapted from Youdim & Bakhle (2006) with permission from John Wiley and Sons, British Journal of Pharmacology.

The most important substrates for the MAO enzymes are neurotransmitters in the central nervous system (CNS). These are DA, adrenaline (A), NA, 5-HT and PE (Foley et al., 2000). Hydrogen peroxide, the corresponding aldehyde and ammonia (from a primary amine) or a substituted amine (in the case of a secondary amine) are produced through the oxidative deamination reaction. Hydrogen peroxide is a source of hydroxyl radicals and MAO inhibitors may therefore be of use in the management of oxidative stress related tissue damage such as in a stroke (Youdim et al., 2006). The dopaminergic neurons in the substantia nigra pars compacta (SNpc) are densely packed and have a high tonicity, hence they are susceptible to oxidative stress. The extent to which oxidative stress influences these neurons increases in early PD as some of the neurons have been destroyed and the others are increasing in activity to compensate for those lost (Aluf et al., 2011; Finberg & Rabey, 2016). An increase in the hydrogen peroxide levels may lead to apoptosis of dopaminergic cells and, as mentioned above, may be responsible for neurodegeneration in PD (Edmondson et al., 2009).

The metabolism of monoamines by MAO yields a significant amount of hydrogen peroxide in the brain. As mentioned in the text, glutathione peroxidase usually inactivates hydrogen peroxide, but hydrogen peroxide is also chemically converted to highly reactive hydroxyl radicals through the Fenton reaction (facilitated by Fe$^{2+}$). Hydroxyl radicals have various damaging effects that can lead to neuronal injury or death. The possibility that hydrogen peroxide will act as a substrate for the Fenton reaction increases when glutathione peroxidase levels are low and the levels of MAO and Fe$^{2+}$ are higher than usual. This will lead to neurons being damaged by oxidative stress to a greater extent. MAO inhibitors are therefore used to reduce the generation of hydrogen peroxide and Fe$^{2+}$ ions are removed through iron chelation, which results in a reduction of the formation of hydroxyl radicals and consequently oxidative stress (Youdim & Bakhle, 2006). This figure was adapted from
Figure 2.2 A representation of the Fenton reaction, the mechanism through which iron and hydrogen peroxide (H$_2$O$_2$) induces neurotoxicity.

Two isoforms of MAO exist, namely MAO-A and MAO-B, which differ in substrate and inhibitor specificity as well as distribution in the human body. They also differ in sensitivity to heat inactivation and in pH optima. MAO-A is inhibited by clorgyline and metabolises NA, 5-HT, tyramine and DA, whereas MAO-B is inhibited by benzylamine and metabolises tyramine and DA. DA is equally well metabolised by both forms of the enzyme (Youdim & Bakhle, 2006). The oxidation of different substrates takes place at very different rates. The kinetic parameters that were measured indicate that MAO-A and MAO-B are equally efficient at metabolising DA with $K_{cat}/K_M$ values greater than those values for other physiological substrates (Youdim et al., 2006; Edmondson et al., 2009; Ramsay et al., 2011). Research suggests that in the case of complete inhibition of one of the MAO isoforms, DA would still be adequately metabolised by the other isoform. The steady-state level of DA will therefore not change with selective inhibition of either one of the isoforms, but the release of DA into the synaptic cleft will be affected (Riederer & Youdim, 1986). Furthermore, the metabolism of 5-HT by MAO-A is 40-fold better than by MAO-B, whereas
the metabolism of PE by MAO-B is about 35-fold better than by MAO-A as can be seen in the $k_{cat}$ and $k_M$ differences. These kinetic measurements indicate that DA and NA are metabolised by both MAO-A and MAO-B, but 5-HT is metabolised selectively by MAO-A. Serotonergic neurons contain mainly MAO-B, which functions to protect the mitochondria and the nerve terminals from the other neurotransmitters (Youdim et al., 2006; Edmondson et al., 2009; Ramsay et al., 2011).

In order to obtain raised levels of brain amines in humans, the inhibition of MAO should exceed 90% (Fowler et al., 2015). The inhibition of MAO leads to an altered amine balance, and the effects on mood can be detected after approximately three weeks. Most of the MAO inhibitors are irreversible and recovery from inhibition is therefore slow (Fowler et al., 1996; Zajecka & Zajecka, 2014).

MAO has a unique ability to modulate the neurotransmission of monoamines and may be a target for drugs used to modulate brain functions. These drugs could therefore be used in the treatment of various mental diseases such as mood disorders (Rivera et al., 2009; Shulman et al., 2013), schizophrenia (Samson et al., 1995; Siever and Coursey, 1985; Sun et al., 2012), anxiety (Tyrer & Shawcross, 1988; Tadic et al., 2003), anorexia nervosa (Urwin & Nunn, 2005), attention-deficit hyperactivity disorder (ADHD) (Jiang et al., 2001; Wargelius et al., 2012), migraine (Filic et al., 2005; Merikangas & Merikangas, 1995) and neurodegenerative disorders (Cai, 2014; Youdim et al., 2004). MAO inhibitors may also find application in the treatment of Alzheimer’s disease (Saura et al., 1994).

Isoniazid, an anti-tuberculosis drug, was the first drug to exhibit potent MAO inhibitory activity. The first compound to be successfully used as a MAO inhibitor in depression, was iproniazid (a compound related to isoniazid). In the late 1950’s it was discovered that iproniazid exhibits significant antidepressant action, but due to serious side effects its clinical value was undermined. It was established that its hydrazine structure was responsible for liver toxicity and hepatitis in patients. Most of the other developed non-selective, irreversible MAO inhibitors with a hydrazide structure, such as iproclozide, mebanazine, nialamide, octamoxin and safrazine have also been taken off the market due to hepatotoxicity and only a few are still in use (Fišar, 2016). This problem was resolved by developing new MAO inhibitors that did not have a hydrazine structure, such as
tranylcypromine. Unfortunately, these new MAO inhibitors were responsible for another serious side effect, the “cheese reaction”.

2.1.2 Tissue distribution

In the early stages of investigation of the distribution of human MAO enzymes, experiments were based on measuring enzyme activities in crude tissue and cell homogenates by using the favoured substrates for the enzymes, NA and 5-HT as substrates for MAO-A and PE as substrate for MAO-B. Low concentrations of enzyme-specific inhibitors were also used, clorgyline inhibited MAO-A and (R)-deprenyl inhibited MAO-B (Glover & Sandler, 1986). These experiments provided evidence that lymphocytes and platelets in the blood contain only MAO-B (Bond & Cundall, 1977).

The MAO enzymes are mainly bound to the outer mitochondrial membrane and are present in most tissues including the brain. MAO-A is mainly present in the catecholaminergic neurons, whereas MAO-B is mainly found in serotonergic and histaminergic neurons and astrocytes (Saura et al., 1996a; Saura et al., 1996b; Shih et al., 1999; Tong et al., 2013). In the brain, MAO-A is mainly expressed in the noradrenergic perikarya of the locus coeruleus, whilst MAO-B is expressed in the glial cells, ependyma and perikarya of the 5-HT neurons of the raphé nucleus. MAO-B’s localisation in 5-HT neurons created controversy seeing that 5-HT acts as an in vitro and in vivo selective substrate of MAO-A. Studies also indicated that MAO-A is selectively localised in the raphae projection fields of the hypothalamus (Fagervall & Ross, 1986). This selective localisation was studied further and results indicated that MAO-A and MAO-B are expressed in the embryonic and early-postnatal raphe neurons, although the MAO-A component seems to disappear during development. An explanation for this altered expression may be due to selective trafficking of the mitochondria expressing MAO-A to axon terminals (Denney & Denney, 1985). Controversy also exists over the expression of the MAO isoform by the dopaminergic neurons of the substantia nigra. Immunohistochemical studies indicated that only a few neurons in the substantia nigra express MAO-A (Westlund et al., 1993) and very low levels of MAO activity were detected by histochemical techniques (Arai et al., 1998). Microdialysis studies revealed that MAO-A mainly metabolises DA in the rat striatum in vivo (Wachtel & Abercrombie, 1994). The $^{11}$C-harmine brain imaging technique has led to the discovery of raised brain MAO-A levels in the cortical, striatal and midbrain sections of guinea pigs that
suffer from major depressive disorder (Meyer et al., 2006). The highest levels of MAO-B activity is observed in the striatum (i.e. basal ganglia) and hypothalamus (Youdim et al., 2006). MAO-B levels in the brain are low in mice and human neonates, but increase swiftly after birth (Holschneider et al., 2001; Nicotra et al., 2004).

The MAO-A and MAO-B enzymes are encoded by separate genes that are located on the X chromosome. Each gene is composed of fifteen exons and has similar intron-exon composition. This suggests that these enzymes are derived from the same ancestral gene (Grimsby et al., 1991). MAO-A and MAO-B have an amino acid identity of 70% and is made up of 527 and 520 amino acids, respectively (Bach et al., 1988). Studies on the transcriptional regulation of the MAO-A and MAO-B genes indicate that different supporting organisations may underlie different cell- and tissue-specific expressions of the MAO subtypes (Shih et al., 2011). The regulation of MAO-A and MAO-B expressions are also influenced by different transcription factors, components of intracellular signalling pathways and hormones. Transcription factor Sp1 activates MAO-A expression, whereas transcription repressor R1 suppresses it (Chen et al., 2005).

2.1.3 The mechanism of action of MAO

The means of transfer of two hydrogens from the amine to the flavin is a controversial question and three possible mechanisms for the chemical mechanism of MAO have been proposed, seeing as there is no base in the active sites of the MAOs to accept a proton. These mechanisms are the hydride mechanism, the radical mechanism and the polar nucleophilic mechanism. It is assumed that the catalytic rate-limiting step involves heterolytic H-abstraction (hydride mechanism), homolytic H-abstraction (radical mechanism) or deprotonation of a H+ (polar nucleophilic mechanism) from the substrate’s α-carbon atom. The N5 atom on the flavin performs the activating stage in all the mechanisms (Borštnar et al., 2011).

The polar nucleophilic mechanism proposed by Miller and Edmondson for human MAO-catalysis, is most generally accepted as the mechanism by which MAO catalysis occurs and will be discussed in this chapter. The polar nucleophilic mechanism is proposed to occur via nucleophilic attack at the oxidised flavin 4a position by the amine. Proton abstraction from the α-carbon of the amine is proposed to occur by the N5 atom of the flavin which
becomes nucleophilic. Formation of the iminium product results from the elimination of the reduced flavin. Deprotonated amines do not appear to exhibit the required nucleophilicity, and thus the isoalloxazine ring of the flavin needs to exist in a bent conformation relatively to the planarity in the oxidised state of the enzyme. This allows the carbon at position 4a to be electrophilic and the N5 to be more nucleophilic (Edmondson et al., 2009).

![Diagram of the polar nucleophilic mechanism of MAO catalysis.](image)

Figure 2.3 The polar nucleophilic mechanism of MAO catalysis.

The transfer of a single electron followed by proton transfer is the mechanism that is well supported by studies on the inactivation of MAO by cyclopropylamines. Importantly, no radical intermediate has been discovered during turnover, even when slow substrates were used (Silverman, 1995). The polar nucleophilic mechanism hypothesises that a short-term adduct to the C4a atom of the FAD cofactor forms where the N5 acts as a base in order to remove the proton. Quantitative structure-activity relationships for a series of substituted benzylamine substrates of MAO-B support this mechanism (Walker & Edmondson, 1994). Although there is no positive evidence to support the simple hydride transfer mechanism, it cannot be ruled out (Kay et al., 2007). A synthetic chemical model successfully reproduced
the catalytic properties of MAO-B in a novel approach. Evidence was provided for proton abstraction after a tyrosyl radical cation facilitated an initial charge transfer. Due to the system being an artificial one, it cannot be concluded that it would necessarily follow the mechanism optimised in the protein (Murray et al., 2015).

All irreversible MAO inhibitors combine with the N5 atom of the enzyme flavin moiety. The inhibitor molecule can be described as having a substrate-like part that determine the affinity and a “killing group” which binds covalently with the enzyme (Youdim & Finberg, 1983; Youdim et al., 1988).

The slowest step in the MAO-A reaction is the breaking of the bond between the α-carbon and the hydrogen in the amine substrate. The re-oxidation of the reduced MAO-B may be slower than the bond-breaking step in the MAO-B reaction. The rate constant for the reduction of MAO-B by PE at 543 s⁻¹ clearly indicates this, seeing as it is 500 times faster than the re-oxidation of reduced MAO-B (1 s⁻¹) (Ramsay et al., 1987). The hydrogen abstraction is energetically the most difficult step of the reaction as indicated by a deuterium isotope effect of 8.2 on the turnover (5.3 on $k_{cat}/K_M$) of benzylamine (Walker & Edmondson, 1994).

![Figure 2.4 The general schematic pathway of MAO catalytic activity.](image)

Figure 2.4 The general schematic pathway of MAO catalytic activity.
The top loop of the pathway is followed when PE is used as substrate and the bottom loop when benzylamine is used as substrate. Figure 2.4 was adapted from Edmondson, 1995.

2.2 MAO-A

2.2.1 Biological function of MAO-A

Tyramine and indirect acting sympathomimetic amines that are present in food, such as cheese and fermented drinks (for example wine and beer), are able to induce the “cheese reaction”. Normally, dietary tyramine is inactivated via “first pass” metabolism through MAO in the GIT and then the liver. The remaining tyramine is further metabolised by the MAO present in the lung and vascular endothelial cells (Bakhle, 1990).

Figure 2.5 A representation of the potentiation of cardiovascular effects due to the simultaneous administration of tyramine and indirectly acting sympathomimetic amines together with irreversible MAO inhibitors.

Figure 2.5 was adapted from Youdim & Bakhle (2006) with permission.
Irreversible inhibition of MAO-A leads to increased tyramine uptake from the GIT and the resulting increased systemic levels of tyramine leads to the release of NA, thus causing the sympathomimetic cardiovascular effects of tyramine. This may lead to a potentially fatal increase in blood pressure. RIMAs, in turn, are displaced from the MAO enzyme by tyramine which leads to normal metabolism of tyramine. The tyramine in the systemic circulation, therefore, never reaches the high levels which result from irreversible MAO-A inhibition (Youdim & Bakhle, 2006). Preclinical and clinical studies indicated that the potentiation of tyramine-related pharmacological effects is a result of MAO-A inhibition only as it is the dominant isoform in the periphery. Due to localisation in the brain, MAO-B inhibition does not lead to the cheese reaction. This can be explained by the localisation of MAO-A in the gut (Lader et al., 1970; Finberg & Tenne, 1982; Finberg & Gilman, 2011). The appropriate diet, however, can avoid the cheese reaction and taking this into consideration, it can be argued that MAO inhibitors are exceptional drugs for the treatment of drug-resistant and atypical depression. For this reason, non-selective inhibitors, especially tranylcypromine, are increasingly being used (Finberg & Rabey, 2016).

Due to the metabolism of 5-HT by MAO-A, inhibitors of MAO-A may also promote the life-threatening serotonin syndrome when administered together with serotonin-elevating drugs such as SSRIs. Serotonin syndrome is caused by a toxic build-up of 5-HT and is characterised by fever, hallucinations, tachycardia and gastrointestinal symptoms (Panisset et al., 2014). MAO-B selective inhibitors, however, increase levels without affecting MAO-A activity and is therefore considered suitable drugs in treating PD (Fernandez & Chen, 2007). A study carried out by the Parkinson Study Group indicated that only a small fraction of patients (0.24%) treated with (R)-deprenyl together with a SSRI developed symptoms that could possibly relate to that of serotonin syndrome. Only 0.04% of the patients experienced a serious reaction with no fatalities recorded (Panisset et al., 2014). It is therefore relatively safe to administer MAO-B inhibitors together with a SSRI. This is an important observation because, due to the high likelihood of co-morbidity of depression and PD, a SSRI will most probably be added to the existing therapy during the course of the disease (Reijnders et al., 2008; Richard et al., 2012; Weintraub et al., 2003).
Interestingly, studies have indicated that insufficient MAO-A levels in humans is responsible for a phenotype of aggressive behaviour (Brunner et al., 1993; Caspi et al., 2002).

2.2.2 Potential role of MAO-A in PD

PD can be defined as a common progressive neurological disorder that currently affects approximately 2% of the American population over the age of 60 years. The pathology of this disease can be described as a loss of dopaminergic cells in the substantia nigra that results in a dopamine deficiency in the striatum. It is characterised by disturbances of the motoric nerve system, primarily bradykinesia, rigidity and tremor at rest. Pre-symptomatic non-motor systems may be involved and include autonomic dysregulation, sleep problems, anxiety, depression and debilitating cognitive changes. These symptoms may also only occur during late stages of the disease (De Lau & Breteler, 2006). While MAO-B inhibitors are normally used in the treatment of PD, MAO-A inhibitors may have a twofold role. Firstly, MAO-A inhibitors may be used to treat depression, which is often a co-morbidity of PD. Secondly, MAO-A metabolises DA in the brain, and it may be postulated that nonspecific MAO inhibitors may lead to a more effective enhancement of dopaminergic neurotransmission compared to the inhibition of MAO-B alone (Youdim & Bakhle, 2006).

2.2.3 Inhibitors of MAO-A

MAO-A inhibitors are indicated for the treatment of depression since these drugs elevate the brain levels of NA and 5-HT (Pletscher, 1991). Since 5-HT is metabolised by MAO-A in the brain, inhibitors of MAO-A may promote the life-threatening serotonin syndrome when it is administered together with serotonin-elevating drugs such as SSRIs (Fernandez & Chen, 2007). Reversible MAO-A inhibitors that are still being used clinically include moclobemide, befloxatone and toloxatone (Gareri et al., 2000) as well as some non-selective irreversible MAO inhibitors such as tranylcypromine and phenelzine. These compounds will be discussed in the following paragraphs.

2.2.3.1 Non-selective, irreversible MAO inhibitors

Phenelzine:

Besides inhibiting both MAO-A and MAO-B irreversibly, phenelzine blocks gamma-aminobutyric acid (GABA) and alanine transaminases which leads to additional antidepressant activity (Baker et al., 1991; Todd & Baker, 2008). Phenelzine is also the drug
of choice for the treatment of social phobia and refractory social anxiety disorder (Aarre, 2003). Cocaine abuse is also treated with high success with phenelzine as its use is contraindicated upon administration of phenelzine. Phenelzine also reduces patients’ craving for cocaine (Golwyn, 1988).

Tranylcypromine:

Tranylcypromine is safe and effective in treating bipolar depression when the appropriate dietary restrictions are applied, particularly when considering that the cheese reaction is a possibility. The limitations it causes, however, have been exaggerated since the quantities of tyramine contained in food are quite low and only a serious deviation from a normal, healthy diet is likely to cause long-term damage or a fatal reaction. The management of such a reaction has been well documented, should it occur (Gillman, 2011). The manufacturers recommend a wash-out period of 7-10 days for tranylcypromine although normal pressor response to an oral tyramine challenge is only regained 30 days after the cessation of tranylcypromine administration (Gahr et al., 2013; Bieck & Antonin, 1988).

![Figure 2.6](image)

**Figure 2.6** The structures of non-selective, irreversible MAO-A inhibitors phenelzine (left) and tranylcypromine (right).

### 2.2.3.2 Reversible inhibitors of MAO-A (RIMAs)

Da Prada and colleagues (1984) prepared a series of selective RIMAs in the 1980s. They based the design of these compounds on the theory that enzyme inhibition will lead to an increase in substrate levels and that an increase in the displacement of the inhibitor from the active site by the substrate will reverse the degree to which the enzyme is inhibited. A reversible inhibitor will therefore not lead to the cheese reaction when tyramine is ingested as reversibility of inhibition possesses a built-in safety mechanism (Da Prada et al., 1984; Finberg, 2014).
Moclobemide and brofaromine:

Moclobemide has shown activity as an antidepressant (Lotufo-Neto et al., 1999) as well as an antiparkinsonian drug (Sieradzan et al., 1995; Youdim & Riederer, 2004). It is believed to regulate neuroplasticity in the hippocampus and is therefore responsible for the improvement in attention, memory and vigilance in patients taking the drug (Allain et al., 1992). Moclobemide is currently the only RIMA that is used clinically. Clinical studies carried out directly after its general release, indicated that its effectiveness is equal to that of tricyclic antidepressants in treating depression. However, the studies indicated that its effectiveness is lower than those of irreversible MAO inhibitors (Lotufo-Neto et al., 1999; Shulman et al., 2013).

Apart from being a RIMA, brofaromine is also a SSRI and is primarily indicated in the treatment of depression and anxiety. It was also found to be equally effective to tricyclic antidepressants (Lotufo-Neto et al., 1999).

![Chemical structures of moclobemide and brofaromine](image)

**Figure 2.7** The structures of reversible MAO-A inhibitors moclobemide (left) and brofaromine (right).

Methylene Blue:

The use of this drug in depression can be attributed to its various pharmacological activities, such as inhibition of MAO-A, nitric oxidase synthase (NOS) and guanylate cyclase (Naylor et al., 1987; Ramsay et al., 2007; Harvey et al., 2010). Methylene blue is an inhibitor of MAO-A with an *in vitro* IC$_{50}$ value of 0.07 µM, while MAO-B is inhibited with an IC$_{50}$ value of IC$_{50}$ = 4.37 µM (Harvey et al., 2010).
Figure 2.8 The structure of methylene blue.

2.2.4 Three-dimensional structure of MAO-A

Comparison between structures of rat and human MAO-A:
The X-ray structures of rat MAO-A were determined at 3.2 Å (Ma et al., 2004) and human MAO-A at 3.0 Å (De Colibus et al., 2005). The active site of human MAO-A consists of 5 aromatic and 11 aliphatic residues, which indicates that the cavity is fairly hydrophobic. Despite the fact that human and rat MAO-A display a sequence identity of 92%, MAO-A in rats exhibits a 10-fold higher affinity for the selective irreversible inhibitor, clorgyline, than MAO-A in humans. Important to note is that both rat and human enzymes have single substrate binding cavities with protein loops at the entrances of these cavities. The binding cavity in human MAO-A includes the flavin ring and extends to the cavity-shaping loop which consists of residues 201-216. Two cysteine residues, Cys-321 and Cys-323, are situated close to the entry of the catalytic site. When bound to clorgyline, the side chain of Cys-323 is in contact with the aromatic ring of the inhibitor through van der Waal forces (De Colibus et al., 2005). MAO-A has a monopartite cavity in humans and, although having a monomeric crystal structure, it is dimeric in its membrane-bound form (Binda et al., 2011; Son et al., 2008, De Colibus et al., 2005). This contrasts to rat MAO-A which is dimeric after crystallisation (Edmondson et al., 2007b). Differences between the two enzymes can be seen in two important components of the active site, the loop conformations of residues 108-118 and 210-216. This results in a bigger active site cavity volume in human MAO-A (~550 Å³) than in rat MAO-A (~450 Å³). When clorgyline is bound to MAO-A, a conformational change results so that Glu-216 is in direct contact with clorgyline while Gln-215 is projected out of the active site. This altered shape of the active site cavity leads to clorgyline binding in a folded conformation in human MAO-A, whereas it binds in an extended conformation in rat MAO-A (Edmondson et al., 2007a; De Colibus et al., 2005).
**Figure 2.9** A cartoon representation of the structure of human MAO-A.

The FAD-binding domain consists of residues 13–88, 220–294, and 400–462, the substrate-binding domain of residues 89–219 and 295–399 and the C-terminal membrane of residues 463–506. FAD and clorgyline are respectively portrayed as magenta and orange ball-and-stick models. Figure 2.9 was adapted from De Colibus et al. (2005). Copyright (2005) National Academy of Sciences, U.S.A.
Figure 2.10 A cartoon representation of the structure of rat MAO-A.

FAD and clorgyline are respectively portrayed as magenta and orange ball-and-stick models. Figure 2.10 was adapted from De Colibus et al. (2005). Copyright (2005) National Academy of Sciences, U.S.A.
Comparison between human MAO-A and MAO-B:

The overall chain-folds of MAO-A and MAO-B are more or less the same, but there are differences and similarities in the active site cavities. The structure of the “aromatic cage” in the active site, which consists of two tyrosines as well as the structure of the FAD coenzyme, are identical in both enzymes. Considerable differences between the two enzymes can be found in the proximity of the active sites on the opposite sides of flavin, which controls the recognition of substrates. A further difference is the shapes and sizes of the active site cavities with human MAO-A consisting of a short and wide single cavity of ~550 Å³, whereas human MAO-B consists of a long, narrow cavity of ~700 Å³. Upon entering human MAO-B, an entrance and substrate cavity can be found which are fused together when an inhibitor is bound. The MAO-B active site is therefore bipartite. As already mentioned, MAO-A has a monopartite cavity. The amino acid residues of the enzymes that are displaced by inhibitors, also differ. In MAO-A the conformations of residues Phe-208 and Ile-335 are altered, whereas the conformations Ile-199 and Tyr-326 are altered in MAO-B (De Colibus et al., 2005). Human MAO-A also has a unique, selective Glu-151-Lys mutation. Lys-151 is located on the protein surface, away from the active site cavity and near a group of charged residues that is involved in the contact between two monomers when a dimer is formed, as in the case of human MAO-B and rat MAO-A. It is suggested that this unique mutation is responsible for the destabilisation of the dimeric state of human MAO-A, which then results in the monomeric form of the enzyme (De Colibus et al., 2005; Andres et al., 2004).

2.3 MAO-B

2.3.1 Biological function of MAO-B

The therapeutic effects of MAO inhibitors are due to lowered metabolism of monoamine neurotransmitters and decreased production of hydrogen peroxide. The neuroprotective effects of MAO inhibitors can be attributed to their anti-apoptotic nature and modulation of gene expression, which leads to increased neuroplasticity and neuronal survival (Naoi et al., 2016).
Monoaminergic neurotransmitters, of which most are affected by MAO, are involved with processes associated with neuropsychiatric disorders, chronic stress and the aftermath of using many psychotropic drugs. Various drugs can have an effect on the neurotransmission of monoamines through the regulation of neurotransmitter synthesis (Moranta et al., 2004), the regulation of the catabolism of neurotransmitters (Fišar et al., 2012), the inhibition of the uptake or release of the neurotransmitters, changes in the activity of components associated with intracellular signalling pathways (Fišar & Hroudová, 2010) and neuroplasticity.

2.3.2 Potential role of MAO-B in PD

MAO-B activity in the human brain increases with age and is raised in several neurodegenerative diseases. A range of experimental techniques were recently used to show that MAO-B activity in Huntington’s, Alzheimer’s and PD are increased (Kennedy et al., 2003; Zellner et al., 2012; Woodard et al., 2014; Ooi et al., 2015).

It is proposed that MAO-B plays a primary role in neurodegenerative disorders through generating reactive oxygen species (ROS) and possibly by activating neurotoxins (Naoi et al., 2012; 2016). MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a neurotoxic compound and is converted by MAO-B to the active compound 1-methyl-4-phenylpyridinium (MPP+). This compound is a substrate for the DA transporter, which after being taken up into dopaminergic neurons, can lead to neurotoxicity in humans. MPTP-induced neurotoxicity can be prevented by pre-treatment with MAO-B inhibitors such as (R)-deprenyl and pargyline (Heikkila et al., 1984; Langston et al., 1984).

2.3.3 Inhibitors of MAO-B

MAO-B selective inhibitors increase DA levels without affecting MAO-A activity and is therefore suitable to treat PD. A second reason for using MAO-B inhibitors in PD is linked to the possibility that MAO-B inhibitors may be neuroprotective and may potentially modify disease progression (Fernandez & Chen, 2007). MAO-B activity stays unchanged until the patient’s 60th year and then increases nonlinearly. Most enzymes are believed to have decreased activity with advancing years (Delumeau et al., 1994; Dostert et al., 1989). Potentially harmful products of the MAO-B catalytic cycle may contribute to neurodegeneration in PD. MAO-B inhibitors may reduce the central levels of these
metabolic by-products and thus protect the dopaminergic system from degeneration, particularly at advanced ages (Fowler et al., 1997). Selective MAO-B inhibitors thus not only decrease the oxidation of substrates, but also prevent the production of ROS (Naoi et al., 2012; 2016).

The MAO-B inhibitors currently used in the clinic are irreversible inhibitors. An example is (R)-deprenyl, the first selective MAO-B inhibitor to be used. MAO-B inhibitors can be divided into two classes: reversible and irreversible inhibitors. The structures of reversible, competitive inhibitors are related to MAO substrates and these drugs therefore bind to the active site of the MAO-B enzyme. Irreversible (“suicide”) inhibitors bind in the same way initially (reversible and competitive) after which they are metabolised by the MAO enzyme to the active inhibitor. The active inhibitor then binds covalently to the N5 atom of FAD and the enzyme is permanently unable to metabolise amines. The inhibition caused by irreversible inhibitors is more persistent than that of reversible inhibitors, with the latter lasting only a few hours, rather than weeks (Foley et al., 2000). Another difference between reversible and irreversible inhibitors, is that reversible inhibitors can be displaced from the binding site when the concentration of the enzyme’s substrate increases. It is impossible for irreversible inhibitors to be displaced by another molecule and new enzymes need to be produced to restore the enzyme’s activity. This process takes 2-3 weeks (Fišar, 2016). Where irreversible MAO inhibitors are used in practice, it is administered daily at a dose that only provides partial enzyme inhibition. After several days of daily administration, it will lead to a cumulative inhibition of more than 90% of the enzyme in the brain. Continued administration of the drug ensures inhibition of de novo-synthesised enzyme and therefore the activity of the enzyme remains at a constant low (Finberg & Rabey, 2016). Examples of reversible and irreversible MAO-B inhibitors will be discussed in the following paragraphs.

### 2.3.4 Irreversible inhibitors

**(R)**-**Deprenyl:**

The synthesis of (R)-deprenyl and similar compounds were first described by Knoll and co-workers in Hungary in 1965 (Knoll et al., 1965). (R)-Deprenyl was established as a selective inhibitor of MAO-B. It was found that (R)-deprenyl does not induce the cheese reaction (Knoll & Magyar, 1972). (R)-Deprenyl was found to possess antiparkinsonian effects
(Birkmayer et al., 1975; Birkmayer et al., 1977) which can be explained by the well-defined amphetamine-like catecholamine releasing effect. This effect describes (R)-deprenyl’s ability to release catecholamines at extremely low concentrations (Yoneda et al., 2001). MAO-B is irreversibly inhibited by (R)-deprenyl as it forms a covalent bond at the N-5 position of the isoalloxazine moiety of the FAD cofactor (Maycock et al., 1976; Riederer et al., 1982; Youdim, 1978). The action of (R)-deprenyl in PD thus also entails an increase in the availability of dopamine at central synapses and the consequential lengthening of DA activity (Fišar, 2016). (R)-Deprenyl is a propargyl-derivative of methamphetamine and is metabolised by cytochrome P-450 enzymes. Although (R)-deprenyl does not possess amphetamine-like properties, it is similar in structure to methamphetamine and is metabolised to major potentially toxic metabolites, L-amphetamine or L-methamphetamine. (Reynolds et al., 1978; Fišar, 2016).

(R)-Deprenyl was tested as monotherapy and auxiliary treatment to levodopa (L-DOPA) in PD (DeMaagd & Philip, 2015). No effects with regards to the delay of the progression of the disease could be established but (R)-deprenyl appears to have a positive effect on motor fluctuations (Macleod et al., 2005). Other MAO-B inhibitors were developed because the prevention of MPTP-induced nigrostriatal dopaminergic neurodegeneration by (R)-deprenyl suggests that this compound may indeed possess neuroprotective properties. This suggestion, however, is not apparent in clinical trials (Fišar, 2016).

(R)-Deprenyl also possesses a significant antidepressant effect in treatment-resistant depression when administered at a high dosage of 30-60 mg daily. At a lower dosage of 10 mg daily, (R)-deprenyl is ineffective in treating depression (Mann et al., 1989; Sunderland et al., 1994). This indicates that (R)-deprenyl is only MAO-B selective at low dosages and non-selective towards MAO inhibition in higher dosages (Magyar, 2011). These positive results led to the development of the Selegiline Transdermal System (STS) which allowed a greater measure of the administered dose to penetrate the CNS. This gives drug tissue levels that result in non-selective MAO inhibition while inactivation of the gastro-intestinal and hepatic MAO enzymes is avoided (Mawhinney et al., 2003). STS was confirmed to be a success in humans seeing that it was indicated to be an effective antidepressant and does not cause the cheese effect in antidepressant dosages (Azzaro et al., 2006; Blob et al., 2007).
MAO inhibitors have also been proposed in the treatment of depression caused by cocaine addiction. The reasoning behind this is based on the fact that chronic administration of cocaine diminishes the activity of monoamine neurotransmitter systems, which is increased by the use of MAO inhibitors (Ho et al., 2009). Dosages of (R)-deprenyl and pargyline that are adequate to inhibit both MAO enzymes have been evaluated in clinical trials, but only modest responses were recorded (Elkashef et al., 2006).

A placebo-controlled study done on children suffering from ADHD indicated that (R)-deprenyl significantly improves attention but not impulsivity. In three other studies, (R)-deprenyl was compared to methylphenidate, the prescribed treatment for ADHD, and it was established that these two drugs are equally efficient (Akhondzadeh et al., 2003; Niederhofer, 2003; Rubinstein et al., 2006; Mohammadi et al., 2004).

![Figure 2.11](image.png)

**Figure 2.11** The structures of (R)-Deprenyl, on the left, and its main metabolite, L-methamphetamine, on the right.

*Rasagiline:*

Another highly potent propargylamine MAO-B selective inhibitor, rasagiline (N-propargyl-1-(R)-aminoindan), was introduced (Youdim et al., 2001; Finberg & Youdim, 2002; Weinreb et al., 2010). It does not exhibit significant pharmacological activity other than MAO inhibition, and is a more selective MAO inhibitor than (R)-deprenyl (Finberg & Youdim, 2002). These two compounds are relatively selective for MAO-B inhibition but only at high dosages, and therefore high concentrations, MAO-A inhibition may also occur. Rasagiline is used as monotherapy in patients with early and late PD, while it is used as auxiliary therapy to L-dopa in patients in the moderate to advanced stages of the disease (Oldfield et al., 2007; Youdim, 2003). Patients with early and advanced PD both described rasagiline to be effective in the treatment of motor as well as non-motor symptoms. It was also
recorded to have a placebo-like tolerability profile. Rasagiline is thus deemed effective in the treatment of all stages of PD (McCormack, 2014; Pistacchi et al., 2013; Stocchi et al., 2015). A phase III clinical study, ADAGIO (Attenuation of Disease Progression with Azilect Given Once-daily), recently indicated that rasagiline is the first drug that could potentially slow the progression of PD (Olanow et al., 2008; 2009). Rasagiline was also established to be effective in the treatment of depression associated with PD at a dosage of 2 mg/day (the normal dose for PD treatment is 1 mg/day). The reason for the higher dosage is that a greater inhibitory effect on MAO-A is achieved (Korchounov et al., 2012). Rasagiline is also used to restore behavioural activity once lost. In a recent study, the drug was tested on aged animals and their learning ability together with their performance in the forced-swim test, were equal to those of young animals (Weinreb et al., 2015).

It is important to note that, unlike (R)-deprenyl, rasagiline is not metabolised to yield a neurotoxic methamphetamine derivative. Rasagiline prevents mitochondrial permeability transition pores from opening and thus improves cell viability. Rasagiline and its metabolite, as well as other propargylamines, may therefore control apoptosis and have neuroprotective effects. It is also believed to regulate Bcl-2 family proteins and through the stabilisation of the permeability transition of the mitochondria, the functionality thereof is supported (Naoi et al., 2003; Weinreb et al., 2004). Another neuroprotective effect of rasagiline and propargylamines is linked to the regulation of the non-amyloidogenic conversion of the amyloid precursor protein (APP), present in Alzheimer’s disease (Bar-Am et al., 2004a; Yogev-Falach et al., 2002; 2003).

Neurorestorative activity is induced in vivo in the SNpc in the human midbrain, when rasagiline is administered in post-MPTP-induced parkinsonism. This is linked to the activation of the tyrosine kinase (TK) receptor as well as the stimulation of diverse transduction pathways related to cell signaling (Sagi et al., 2007).

Rasagiline is predominantly metabolised by cytochrome P-450 isoenzyme 1A2 in the liver where it undergoes N-dealkylation to produce 1-(R)-aminoindan, a non-toxic compound (Chen & Swope, 2005; Chen et al., 2007). Laboratory experiments indicate that 1-(R)-aminoindan is a weak reversible inhibitor of MAO and therefore not suitable as a substrate for MAO (Sterling et al., 1998; Binda et al., 2005). It was recently revealed that 1-(R)-
aminoidan has neuroprotective effects. This suggests that it possibly contributes to the overall neuroprotective and anti-apoptotic effects of its mother compound, rasagiline (Bar-Am et al., 2004b; Bar-Am et al., 2007; 2010). When the administration of rasagiline is discontinued, the activity of MAO-B in platelets returns to baseline levels within two weeks after cessation. Enzyme activity in the brain, however, takes significantly longer to return to baseline levels (Thebault et al., 2004).

![Figure 2.12 The structures of rasagiline, on the left, and its main metabolite, 1-(R)-aminoidan, on the right.](image)

### 2.3.5 Reversible MAO-B inhibitors

**Safinamide:**

Safinamide is a α-aminoamide derivative that possesses dopaminergic as well as non-dopaminergic/glutamatergic properties (Kulisevsky, 2016) and is the only new compound that has been approved to treat PD in the last decade. In the European Union, safinamide is approved to treat fluctuations in mid- to late-stage PD and is combined with a stable dose of L-DOPA or another antiparkinsonian medication. In a 24-week, placebo-controlled clinical trials, the administration of a fixed or flexible dose of safinamide remarkably increased daily 'on' time in patients who suffered from PD (in the mid- to late-stages) and experienced motor fluctuations. Other outcomes that were improved by safinamide administration include motor function and quality of life due to improved health as well as the overall clinical status of patients (Borgohain et al., 2014a; Schapira et al., 2016). Long-term safinamide administration sustained the treatment benefits of these other outcomes (Borgohain et al., 2014b).

Safinamide’s principal mechanism of action involves potent and highly selective, reversible inhibition of MAO-B, which results in increased DA levels in the brain (Rascol et al., 2015).
With the glutamatergic mechanism of action, voltage-gated sodium channels are blocked and N-type calcium channels are modulated, which led to the inhibition of glutamate release (Caccia et al., 2006). In animal models, safinamide was established to possess neuroprotective (Caccia et al., 2006; Podurgiel et al., 2013; Sadeghian et al., 2016), neurorescuing (Caccia et al., 2006), tremorolytic (Podurgiel et al., 2013) and anti-inflammatory (Sadeghian et al., 2016) effects. Studies on parkinsonian monkeys also revealed a reduction in the duration and intensity of dyskinesia as a result of L-DOPA treatment, after safinamide administration (Gregoire et al., 2013). Safinamide also does not result in the cheese effect when oral or intravenous tyramine is administered at therapeutic or supratherapeutic dosages (Cattaneo et al., 2003; Di Stefano & Rusca, 2011; Marquet et al., 2012). It is therefore not necessary to restrict dietary tyramine following safinamide administration.

![Figure 2.13](image_url) The structure of the reversible MAO-B inhibitor safinamide.

### 2.3.6 Three-dimensional structure of MAO-B

The three-dimensional structure of MAO was elucidated by the groups of Binda, de Colibus and Son by crystallising the enzymes and modelling the proteins and their active sites in a three-dimensional manner (Binda et al., 2002, 2007; De Colibus et al., 2005; Son et al., 2008). They proposed that human MAO-B consists of a long and narrow two-site cavity having entrance and active site cavities, respectively (De Colibus et al., 2005). The active site in human MAO-B consists of FAD, situated at the back of the cavity, and tyrosines, Tyr-398 and Tyr-435, forming an aromatic cage with FAD for substrate recognition (Binda et al., 2002). The human MAO-B enzyme is dimeric meaning it consists of two monomers that each has a globular domain and is anchored to the membrane by means of a C-terminal
transmembrane polypeptide segment (Mitoma & Ito, 1992). Each subunit of the homo-dimer contains one FAD that is covalently bound and linked to Cys-397 (Edmondson et al., 2009). The MAO enzyme, in an ATP-dependent process, is inserted in the membrane by means of ubiquitin (Zhuang et al., 1988; 1992). The binding of an inhibitor to the enzyme does not lead to a noteworthy change in the conformation of the overall enzyme structure. As mentioned, the active site of MAO-B consists of two cavities, located relatively deep inside the protein. The highly hydrophobic substrate cavity, exhibits a volume of 390 Å$^3$ and is situated in front of the flavin, whereas the similarly hydrophobic entrance cavity exhibits a volume of 290 Å$^3$, is situated under the protein surface and is closed by a loop which consists of residues 99-112 (Binda et al., 2007). A substrate has to cross this protein loop at the entrance cavity first before it can bind to the enzyme (Edmondson et al., 2007b). The entrance cavity functions as the passageway for diffusion of the substrate into the catalytic site (Binda et al., 2002). Furthermore, the Ile-199 side chain functions as a gate that opens and closes the space between the two cavities. The opened and closed conformation of the side chain depends on the substrate or bound inhibitor and is important in determining the enzyme’s specificity for the inhibitor (Edmondson et al., 2007b; Hubálek, et al., 2005). In the case of a closed conformation, Ile-199 physically separates the cavities, whilst the presence of bulky ligands causes the residue to rotate into an open conformation and therefore allows the ligand to expand into the entrance cavity. The substrate cavity space has the shape of an ellipsoidal disk where Leu-171, Cys-172 and Tyr-398 are positioned on the one side and Ile-198, Ile-199 and Tyr-435 on the opposite side. The floor of the cavity is formed by the Tyr-188 side chain and the roof is made up of the aromatic residues Tyr-60, Tyr-326 and Phe-343 (Binda et al., 2003). As mentioned, the FAD coenzyme is situated at the end of the substrate cavity and forms a covalent bond to Cys-397 in an 8α-thioether linkage (Kearney et al., 1971). The flavin ring exists in a distorted nonplanar conformation which is observed in all known MAO-B crystal structures (Binda et al., 2003).

Three distinct domains, with regards to functionality, can be distinguished in the following figure. The entrance cavity is located in the outer space and leads to the substrate binding cavity in the inner space. The substrate cavity is therefore closer to the flavin cofactor. The FAD molecule is presented as a magenta and safinamide as an orange ball-and-stick molecule. Figure 2.14 was adapted with permission from Binda et al., 2007.
Figure 2.14 A cartoon representation of the crystal structure of human MAO-B.
2.4 *In vitro* measurements of MAO activity

The first heterologous expression of human MAO to be successful, was announced in 1990 when *Saccharomyces cerevisiae* was used as the host system for expression (Urban *et al*., 1991). Further studies indicated that it is possible for *S. cerevisiae* to function as an adequate source of human MAO-A as its levels of expression is sufficient for the isolation of tens of milligrams of purified enzyme. This unfortunately does not hold true for large quantities of human MAO-B expression (Weyler *et al*., 1990). A breakthrough came when it was established that it is possible to use the methylotrophic yeast, *Pichia pastoris*, for the heterologous expression of human MAO-B in large quantities (Newton-Vinson *et al*., 2000). The same was later discovered for human MAO-A (Li *et al*., 2002). This expression system of MAO-A and MAO-B is reliable and convenient and also permits site-directed mutants to be produced which is of importance in structural and mechanistic investigations (Edmondson *et al*., 2007b). Another discovery regarding the successful expression of the MAO-A and MAO-B enzymes in the baculovirus insect cell, was made. This system leads to the development of active enzymes situated on the outer membrane of the mitochondria (Rebrin *et al*., 2001). Unfortunately, the reported specific activities of this system was established to be lower than those of the *Pichia pastoris* system (Edmondson *et al*., 2007b). During the mid-1990s, however, bovine liver was most commonly used as a source of MAO-B, being the most convenient (Salach, 1979; Edmondson *et al*., 2007b), whereas human placental mitochondria was the best available source of MAO-A (Weyler & Salach, 1985).

In recent years, human platelets became the most used biological markers to be used in MAO-B associated psychiatric disorders since it contains almost exclusively MAO-B (Bongioanni *et al*., 1997; Wirz-Justice, 1988). Platelet MAO-B and MAO-B in the human brain are similar seeing that their amino acid sequences are identical (Chen *et al*., 1993). A useful peripheral model to indirectly assess MAO-B activity in the brain, is therefore provided by the platelets. Numerous sources are available to measure platelet MAO-B activity, including whole blood (van Kempen *et al*., 1985), platelet homogenate (Donnelly & Murphy, 1977; Kruk *et al*., 1980), platelet rich plasma (McEntire *et al*., 1979) and the purified platelet mitochondrial fraction (Collins & Sandler, 1971). The screening of MAO-B inhibitors on platelet rich plasma and whole blood may however lead to faulty values, as MAO-B substrates generally are also substrates of plasma amine oxidases (Boomsma *et al*., 2000). The measure of purity of the enzyme preparation is indirectly correlated to the risk of
incorrect results ascribed to contaminants and the higher the purity, the lower the risk of incorrect results. MAO-B is located on the outer membrane of the mitochondria and therefore provides an opportunity for an altered enzyme with a very low specific activity to be produced, if the micro-environment where the enzyme is inserted is not closely controlled. The preferred MAO-B isolation method is therefore simple separation of platelets from plasma. This avoids further purification and the opportunity for contamination or altering of the mitochondrial environment where MAO-B is attached (Novaroli et al., 2005).

In recent years it has become possible to produce large quantities of purified human MAO-B via expression systems. MAO-B is expressed from human MAO-B-cDNA by using different transferring vectors such as Baculovirus (Geha et al., 2001) and plasmids (Newton-Vinson, et al. 2000), and using a variety of expression systems such as Pichia pastoris (Newton-Vinson, et al. 2000). Until 2005, the depiction of the catalytic behaviour of recombinant MAO-B was generally carried out by comparing its kinetic constant values with those of MAO-B obtained from tissue preparations. The interaction of the recombinant MAO-B with different substrates was also commonly investigated for this purpose (Newton-Vinson, et al. 2000).

2.5 Copper-containing amine oxidases

2.5.1 General background and classification

According to Goding and Howard (1998) an increasing amount of enzymes are being acknowledged as proteins on the cell surface where they catalyse enzymatic reactions in the immediate vicinity, and by that monitor the concentration and functions of their often biologically active substrates and end-products. A class of ubiquitous enzymes, namely copper-containing amine oxidases (CuAOs) or semicarbazide-sensitive amine oxidase (SSAO), have been described. These enzymes catalyse the oxidation of primary amines to the corresponding aldehydes, with the reduction of molecular oxygen to hydrogen peroxide. This catalytic cycle releases ammonia in the process (Knowles & Dooley, 1994; Klinman & Mu, 1994; Wertz & Klinman, 2001).

SSAOs are present in various organs and organisms, from mammals to bacteria. In mammals it is present in, amongst other, the vascular smooth cells, adipocytes, placenta, kidney, liver, spleen and plasma, and are expressed tissue specific in different species (Boomsma et al., 2000). The SSAOs are present in two forms, one form being soluble and
found in the plasma and the other membrane-bound (Lyles et al., 1996). It is presumed that the soluble form emerges from the proteolytic cleavage of the membrane-bound enzyme (Stolen et al., 2004) of which vascular adhesion protein-1 (VAP-1) is an example (Salminen et al., 1998; Smith et al., 1998). The SSAOs contain a cofactor that appears to be topaquinone (TPQ) in most cases (Klinman & Mu, 1994; Klinman, 1996; Lyles, 1996). TPQ is produced via a self-processing event that entails bound copper ion and molecular oxygen and involves an intrinsic tyrosine molecule as starting material (Mu et al., 1992).

![Figure 2.15](image.png)

**Figure 2.15** The structure of topa-quinone (TPQ).

### 2.6 Substrates and known inhibitors of CuAOs

**α-Methyl substituted monoamines:**

Primary aromatic monoamines which contain a methyl substituent on the α-carbon atom, which is attached to the amine group, are recognised inhibitors of SSAO activity and also present with MAO inhibition. Examples are mexiletine (an anti-arrhythmic drug) and amphetamine (a psychostimulant). Both drugs are competitive inhibitors of SSAO activity and possess a reversible mode of inhibition (Callingham, 1977; Garret et al., 1976). MD 780236 is a selective MAO-B inhibitor, which is also able to inhibit SSAO activity in rat tissue (Kinemuchi et al., 1986). Examples of MAO-A inhibitors which also inhibit SSAO activity are the dextro and levo forms of α-methylbenzylamine. The (+)-compound exhibits greater potency than the corresponding (-)-form, which indicates that optical isomerisation plays a role in inhibition of SSAO activity (Kinemuchi, et al., 2004).
Various carbonyl reagent compounds, specifically those that are hydrazine derivatives, are known to inhibit SSAO activity (Lyles, 1995; 1996; Andree & Clark, 1982). Semicarbazide is another example of a hydrazine derivative which is able to inhibit SSAO, hence the name SSAO. Semicarbazide is also useful in distinguishing between the SSAO and MAO enzymes in human tissue (Kinemuchi et al., 1982). Other hydrazine derivatives have recently come into focus, some compounds being irreversible, non-selective MAO inhibitors, such as phenelzine, iproniazide (antidepressants), hydralazine (peripheral vasodilator), isoniazide (anti-tuberculant), benzerazide and carbidopa (PD drugs). It is speculated that these drugs inhibit SSAO activity through the formation of covalent bonds with the prosthetic group, TPQ, the enzyme’s cofactor (Kinemuchi et al., 2004).

Figure 2.16 The structures of α-methyl substituted monoamines

Hydrazine derivatives:
Allylamine derivatives:

Allylamine is an unsaturated aliphatic amine and a SSAAO substrate. Its enzymatic product by SSAAO, acrolein, is however toxic for the human cardiovascular system and the cytotoxic effects of this metabolite can be observed on cultured vascular smooth muscle cells (Boor et al., 1990; Hysmith & Boor, 1988). Studies have identified dual MAO-B and SSAAO inhibitors (Lyles et al., 1987). Among these, MDL 72145 [(E)-2-(3',4'-dimethoxyphenyl)-3-fluoro allylamine] was established to be a selective, irreversible MAO-B inhibitor (Zreika et al., 1984) as well as an irreversible SSAAO inhibitor (in vivo and in vitro) with equal potency against both enzymes (Lyles et al., 1987). The irreversibility of MDL 72145 is useful in determining the half-life and turnover rates of SSAAO molecules (Fitzgerald et al., 1998).

Selective inhibitors of SSAAO activity:

No notable membrane-bound SSAAO inhibition can be observed by propargylamine inhibitors of MAO-A and MAO-B such as clorgyline, (R)-deprenyl and pargyline. It has, however, been established that propargylamine selectively inhibits SSAAO activity at low...
concentrations. Hydroxylamine is another example of a potent, selective SSAO inhibitor with little effect on MAO activity (Kinemuchi et al., 2004).

![Chemical Structures](image.png)

**Figure 2.19** The structures of selective inhibitors of SSAO activity, propargylamine (left) and hydroxylamine (right).

### 2.6.1 Biological function and mechanism of action of the SSAOs

SSAOs have a well-defined role in the metabolism of prokaryotes such as bacteria. The organism uses the proper amine as sources of carbon and nitrogen to support growth. The enzyme reduces toxic amines produced during exposure to stress conditions and is involved in the process of alkaloid biosynthesis. An interesting hypothesis was made that amine oxidase may also serve as a cytokinin oxidase (Hare & Van Staden, 1994). These enzymes are possibly involved in the catabolism of putrescine, spermine and spermidine and play important roles in a wide variety of processes such as tissue differentiation, cell proliferation, tumor growth and the transformation of cultured cells, programmed cell death, apoptosis, cell signaling and wound healing (McIntire & Hartmann, 1992). It is also suggested that SSAOs are key components in complicated processes such as the trafficking of leukocytes that involves VAP-1 (Salmi & Jalkanen, 2002).

Recent biochemical studies in different laboratories have led to proposals regarding the mechanism of action for the reactions catalysed by the SSAOs. The SSAOs catalyse three different reactions via a ping-pong mechanism: (i) the biogenesis of 2,4,5-trihydroxyphenylalanine quinone (TPQ), (ii) the reductive half-reaction and (iii) the oxidative half-reaction (Mure et al., 2002; Dooley, 1999). The second step involves TPQ being reduced to an aminoquinol form and the amine substrate being oxidised to an aldehyde. The third step involves the re-oxidation of the organic cofactor at the expense of molecular
oxygen. It is ultimately reduced and produces hydrogen peroxide (Mure et al., 2002).

**Figure 2.20** A proposed mechanism of action for the SSAOs, which exhibits the Schiff base formation.

### 2.6.2 The three-dimensional structure of SSAO

The molecular characterisation of the SSAOs started with the isolation of the enzymes based on its amine oxidase activity and physiochemical properties. These enzymes are mostly dimeric glycoproteins that contain two copper atoms per dimer (Klinman & Mu, 1994; Lyles, 1996; Klinman 1996).

**Structure of amine oxidase retrieved from Bovine Serum:**

Bovine serum amine oxidase (BSAO) was the first mammalian structure of a CuAO to be solved and was found to be rather conserved in comparison to other CuAO structures (Lunelli et al., 2005).

The overall topology and secondary structure of the BSAO monomer consists of three domains, namely D2, D3 and D4. D2 (residues 57-161) is the smallest and consists of a four-stranded antiparallel β-helix connected to a α-helix and forming a N-terminal. Ten residues connect domain D2 to D3 (residues 171-282). The overall folding of D3 is similar to that of D2. D3 consists of a five-stranded antiparallel β-helix connected to a long bipartite
\(\alpha\)-helix. Domains D3 and D4 are connected by residues 283-321. Domain D4 is located at the C-terminal and is the largest of the domains, consisting of about 400 residues. It contains the active site and is seen as the molecule’s core. The structure of D4 is the most conserved and consists of two extended \(\beta\)-sheets, packed together as a \(\beta\)-sandwich, and a smaller sub-domain consisting of three \(\beta\)-strands and a helix-turn. The structure is completed by a few small loops and peripheral \(\alpha\)-helices (Lunelli et al., 2005).

In the following figure, D2 to D4 represents the domains of the BSAO monomer. The beginning and end of the secondary structure’s residues are numbered. The location of TPO is indicated by an asterisk (*) and the His residues coordinating Cu(II), are indicated by X. Red arrows represent the two long arms that extend from domain D4 of one monomer and wrap around the other. The two \(\beta\)-sheets appear anti-parallel in the topology but are, in reality, heavily bent with the two arms extending in the same direction. The two large sheets respectively consist of nine and ten \(\beta\)-strands. Figure 2.21 was adapted from Lunelli et al. (2005).

**Figure 2.21** A representation of the overall topology of the BSAO monomer.

The quaternary organisation of BSAO resembles that of the already determined structures of other amine oxidases. It is a parallel-piped homodimer and consists of two monomers.
linked by a large contact area, which is a product of the β-sandwich of domain D4. A 2-fold axis connects the two sandwiches and leads to the formation of a disk that represents the core of the structure. The two active sites as well as a large portion of the residues involved in the catalytic mechanism are situated in the disk. Domains D2 and D3 are situated opposite the 2-fold axis and have no interaction with the dimer. Between the monomers, a spacious internal cavity, which contains about twelve H₂O molecules to strengthen the interaction between the monomers, is situated symmetrically along the axis of the dimer. Three small channels linked to a wide external mouth along the 2-fold axis of the dimer, connect the internal cavity to the external solvent. The mouth is situated between residues Gly-579 and Arg-584 of the subunits. The central of the three channels is small and has hydrophobic walls lined by the side-chains of Val-607 and Phe-609. Residues Arg-584, Tyr-585, Arg-603 and Gln-605 of the one subunit forms a lateral side channel and residues Phe-609, Ala-620, Phe-681 and Leu-682 of the other subunit, forms the other lateral side channel. This enzyme has a reduced buried surface area in comparison with the other CuAOs and can be explained by the large external mouth as well as the monomer’s unique shape (Lunelli et al., 2005). The internal cavity connects with the copper site which is defined by residue His-683. It is therefore possible that this could serve as a pathway for the substrate, molecular oxygen and the reaction product, hydrogen peroxide, as has been suggested for other CuAOs (Li et al., 1998).

The active site of the molecule is situated between the two sheets of the β-sandwich and consists of two well-defined components with unique functions, a Cu(II) ion as well as cofactor TPQ. Three histidine residues, His-519, His-521 and His-683, coordinate the Cu(II) ion, with two of them located on the same strand and the third near the terminal C-atom. Only one H₂O molecule, located between the Cu(II) ion and TPQ, forms a hydrogen bond with the ion. The inactive enzyme is switched to the active formation when the TPQ side-chain rotates around its X₁ torsion angle. This results in the cofactor facing away from the Cu(II) ion, a state which is termed “off copper”. TPQ was found to be “off copper” in both subunits in its crystal form. It was also discovered that the most reactive carbonyl atom located at the quinone ring, is carbonyl 5. When the TPQ ring is in its productive orientation, carbonyl 5 is able to give access to the substrate by pointing to the base of the active site. A nucleophilic attack by the amine is then possible due to the abstraction of the hydrogen (Lunelli et al., 2005).
In the following figure, the cyan sphere represents the copper ion. The ball-and-stick models represent TPQ (orange), aspartic acid as proton acceptor (green) and the three histidine residues which coordinate the Cu(II) ion (yellow). Figure 2.22 was adapted from Ernberg et al. (2010) with permission from IUCr. 

https://doi.org/10.1107/S1744309110041515

**Figure 2.22** A cartoon representation of a monomer for the BSAO structure.
2.7 Conclusion

This chapter includes a brief background on the MAOs followed by a detailed discussion on both isoforms of the enzyme. The biological function of the MAOs, their potential role in PD and known MAO inhibitors were discussed. More detail on MAO-B was provided as the main aim of this study is to synthesise reversible 1-indanone derivatives as selective MAO-B inhibitors. A detailed discussion of the three-dimensional structures of MAO-A and MAO-B is also provided as this offers insight on the interactions between inhibitors and the MAO enzymes, which is important for future drug design. A discussion on the in vitro measurements of MAO activity was given as background to the enzymology section of this study (Chapter 4). This chapter also provides an overview of copper containing amine oxidases, especially those derived from bovine serum, as these enzymes are closely linked in function to the MAOs, and certain SSAO inhibitors also exhibit MAO inhibition.
CHAPTER 3: SYNTHESIS

3.1 Introduction

Recent discovery of the high potency MAO inhibition exhibited by α-tetralones (Legoabe et al., 2014), led to the search for structurally similar compounds which may also exhibit high potency MAO inhibition. 1-Indanones are the 5-membered ring analogues of α-tetralones. Based on structural similarity to α-tetralones, 1-indanones were postulated to act as a potential scaffold for the design of MAO inhibitors. A subsequent study therefore explored the MAO inhibition properties of a series of 1-indanone derivatives and found that, similar to α-tetralones, various substituted 1-indanones are good potency MAO inhibitors (Mostert et al., 2015).

![Figure 3.1](image)

**Figure 3.1** The structure of α-tetralone (left) compared to that of 1-indanone (right).

This study is a continuation of the published study and aims to compare the MAO inhibition properties of a small series of 1-indanones with their corresponding reduced alcohol derivatives. For the present study, the benzyloxy moiety was substituted on positions C4, C5 and C6 of 1-indanone. The selection of the benzyloxy moiety was based on the observation that this substituent leads to high potency MAO inhibition when substituted on either C6 or C7 of α-tetralone. Furthermore, the benzyloxy is present in various MAO-B inhibitors such as safinamide (Binda et al., 2007). It is therefore expected that 1-indanones substituted on C6 with the benzyloxy moiety will yield highly potent inhibitors. In support of this, the previous study which investigated the MAO inhibition properties of 1-indanones found that that substitution on C6 and to a lesser extent C5, leads to selective, potent inhibition of MAO-B (Mostert et al., 2015). Legoabe and colleagues (2014) also reported that substituents containing a halogen atom lead to increased MAO-A and MAO-B inhibition.
potencies compared to the unsubstituted homologues. For this reason the 3-chlorobenzyloxy and 4-chlorobenzyloxy moieties were also considered as substituents for the 1-indanones in the present study. As mentioned, all 1-indanone derivatives prepared in this study were reduced to the corresponding 1-indanol derivatives for comparison.

Hubálek and colleagues (2004) recently published a X-ray crystal structure of rasagiline bound to MAO-B which indicated that rasagiline binds in the enzyme’s substrate cavity and leaves the entrance cavity vacant. This is noteworthy as rasagiline and the 1-indanone possess similar structures. Upon inspection of the complex between rasagiline and MAO-B, the observation can be made that substitution on C4 would yield compounds that occupy both cavities, where rasagiline will occupy the substrate cavity and the substituent will extend into the entrance cavity. It is expected that such a compound will display a high degree of selectivity towards MAO-B. The two cavities of MAO-B may fuse together after rotation of the Ile-199 side chain, which enables large inhibitors to bind to MAO-B. Contrary to this, Phe-208 (residue equivalent to Ile-199 in MAO-A) in MAO-A impedes the binding of large inhibitors to MAO-A. For this reason, a C4 substituted rasagiline analogue as well as substituted 1-indanones may likely exhibit poor binding to MAO-A and should thus act as highly selective MAO-B inhibitors without the possibility of causing the cheese reaction.

**Table 3.1** The structures of the 1-indanone (1a-h) and 1-indanol (1i-n) derivatives that were synthesised in this study. The indanone derivatives are depicted in the shaded entries and the alcohol derivatives in the unshaded entries.
<table>
<thead>
<tr>
<th>Substituted at C4</th>
<th>Substituted at C5</th>
<th>Substituted at C6</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="1d.png" alt="Image" /></td>
<td><img src="1e.png" alt="Image" /></td>
<td><img src="1f.png" alt="Image" /></td>
</tr>
<tr>
<td><strong>1d</strong></td>
<td><strong>1e</strong></td>
<td><strong>1f</strong></td>
</tr>
<tr>
<td><img src="1g.png" alt="Image" /></td>
<td><img src="1h.png" alt="Image" /></td>
<td></td>
</tr>
<tr>
<td><strong>1g</strong></td>
<td><strong>1h</strong></td>
<td></td>
</tr>
<tr>
<td><img src="1i.png" alt="Image" /></td>
<td><img src="1j.png" alt="Image" /></td>
<td><img src="1k.png" alt="Image" /></td>
</tr>
<tr>
<td><strong>1i</strong></td>
<td><strong>1j</strong></td>
<td><strong>1k</strong></td>
</tr>
<tr>
<td><img src="1l.png" alt="Image" /></td>
<td></td>
<td><img src="1m.png" alt="Image" /></td>
</tr>
<tr>
<td><strong>1l</strong></td>
<td></td>
<td><strong>1m</strong></td>
</tr>
<tr>
<td></td>
<td>Substituted at C4</td>
<td>Substituted at C5</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td><img src="image1.png" alt="Structure" /></td>
<td><img src="image2.png" alt="Structure" /></td>
<td><img src="image3.png" alt="Structure" /></td>
</tr>
<tr>
<td><img src="image4.png" alt="Structure" /></td>
<td><img src="image5.png" alt="Structure" /></td>
<td><img src="image6.png" alt="Structure" /></td>
</tr>
<tr>
<td><img src="image7.png" alt="Structure" /></td>
<td><img src="image8.png" alt="Structure" /></td>
<td><img src="image9.png" alt="Structure" /></td>
</tr>
</tbody>
</table>

### 3.2 Materials and instrumentation

**Materials:** All the solvents and reagents used in the synthesis were purchased from Sigma-Aldrich, and were used without further purification.

**Thin-layer chromatography (TLC):** TLC was used to establish if reactions proceeded to completion. Silica gel 60 (Merck) TLC sheets containing UV\textsubscript{254} fluorescent indicator were used for TLC. The mobile phase consisted of ethyl acetate and petroleum ether in a ratio of 3:7. The developed TLC sheets were observed under a UV-lamp at a wavelength of 254 nm. The R\textsubscript{f} values of the indanone derivatives were calculated and can be found in the results section of this chapter.

**Melting Points:** The melting points of the synthesised compounds were determined with a Buchi B-545 melting point apparatus. None of the melting points were corrected.

**Mass Spectra:** A Bruker micrOTOF-Q II mass spectrometer was used to record nominal mass spectra (MS) and high resolution mass spectra (HMRS). This was done in the atmospheric-pressure chemical ionisation (APCI) mode.
Nuclear magnetic resonance (NMR): A Bruker Avance III 600 spectrometer was used to record proton (1H) and carbon (13C) spectra. Proton spectra were recorded at a wavelength of 600 MHz and carbon spectra at 151 MHz. CDCl₃ was used as solvent for the NMR spectra of derivatives 1a-h, 1i-n and DMSO-d₆ for derivatives 2a-c. The signals of tetramethylsilane, which was added to the deuterated solvent, was used as reference and the chemical shifts of the synthesised compounds are reported in parts per million downfield from tetramethylsilane. Spin multiplicities are given as s (singlet), d (doublet), dd (doublet of doublets), t (triplet), qn (quintet) and m (multiplet). The coupling constants (J) of multiplets are given in Hertz (Hz).

High pressure liquid chromatography (HPLC):

HPLC was used to determine the purity of the synthesised indanone derivatives. An Agilent 1100 HPLC system equipped with a quaternary pump and diode array detector was used for the analyses. HPLC grade acetonitrile (purchased from Merck) and Milli-Q water (Millipore), were used to prepare the mobile phase for the chromatography. Separation was carried out with a Venusil XBP C18 column (4.60 x 150 mm, 5 μm) with acetonitrile and Milli-Q water serving as mobile phase in a ratio of 3:7. The flow rate was set to 1 ml/min. A solvent gradient program was initiated at the beginning of each run in which the percentage acetonitrile in the mobile phase was increased linearly to 80% over a 5 min period. Each run was completed within 15 min and an equilibration time of 5 min between runs was allowed. The synthesised compounds were prepared in concentrations of 1 mM and 100 μM in acetonitrile and injected at a volume of 20 μl into the HPLC system. The eluent was monitored at a wavelength of 254 nm.

3.3 General method for the synthesis of indanone derivatives

In the first step of the synthetic route, 4-, 5- and 6-hydroxy-1-indanone (2a-c) were synthesised by reacting the corresponding methoxy-1-indanone derivatives (3a-c) with anhydrous AlCl₃ (aluminium chloride). In the subsequent steps the hydroxy-1-indanones were alkylated with benzyl bromide, 3-chlorobenzyl bromide, 4-chlorobenzyl bromide or 2-phenoxyethoxy β-bromophenethole to yield the substituted 1-indanone derivatives (1a-h). The alcohol derivatives (1i-n) were synthesised by reduction of the 1-indanone derivatives with NaBH₄ (sodium borohydride).
3.3.1 Detailed synthesis of 4-, 5- and 6-hydroxy-1-indanone (2a-c)

Legoabe and colleagues described the synthesis of hydroxy-1-tetralones from the corresponding methoxy derivatives (Legoabe et al., 2014). In this study, 4-, 5- and 6-hydroxy-1-indanone (2a-c) were synthesised according to this published protocol. The methoxy-1-indanone derivatives (3a-c) (10 mmol) were placed in a round bottom flask and AlCl₃ (25 mmol) and toluene (50 ml) were added. The reaction was heated to 140 ºC under reflux for 2 h. With time, the reaction underwent a colour change from bright yellow to dark yellow-brown. TLC was carried out to establish if the reaction has proceeded to completion. Upon completion the reaction mixture of each derivative was cooled on ice and added to distilled water (50 ml), also precooled on ice. The crude products were extracted with ethyl acetate (3 x 75 ml) and each organic phase was dried over anhydrous MgSO₄ (magnesium sulphate) at room temperature for 15 min. A clear and transparent light yellow solution was obtained after removal of the MgSO₄ by filtration. The organic phase of each derivative was removed under reduced pressure and the analytical pure samples were obtained after recrystallization from ethyl acetate.

![Figure 3.2](image)

**Figure 3.2** The reaction pathway for the synthesis of 4-, 5- and 6-hydroxy-1-indanone.

Key: (a) AlCl₃, toluene, reflux, 2 h. Substitution: C4 = a; C5 = b; C6 = c.

3.3.2 Detailed synthesis of substituted indanone derivatives (1a-h)

4-, 5- or 6-Hydroxy-1-indanone (2a-c) (10 mmol), anhydrous K₂CO₃ (potassium carbonate; 20 mmol) and acetone (80 ml) were added to a round bottom flask. Using a glass syringe, the appropriate alkyl bromide (11 mmol) was added. The reaction mixture of each derivative was heated to 80 ºC under reflux for 20 h. The reaction colour changed from orange-brown to creamy white. TLC was carried out to establish if the reaction has proceeded to completion. Upon completion the reaction mixture of each derivative was allowed to cool to room temperature and the K₂CO₃ was removed by filtration. Acetone, the solvent in the
reaction mixture of each derivative, was removed under reduced pressure and the crude product of each derivative was recrystallized from cyclohexane to obtain analytical pure samples. The resulting products were the substituted 1-indanone derivatives (1a-h).

![Chemical structures](image)

**Figure 3.3** The reaction pathway for the synthesis of 4-, 5- and 6- substituted 1-indanone derivatives (1a-h).

Key: (a) K₂CO₃, acetone, reflux, 20 h. Substitution: C4 = 1a, 1d; C5 = 1b, 1e, 1h; C6 = 1c, 1f, 1g.

### 3.3.3 Detailed synthesis of the alcohol derivatives (1i-n)

The 4-, 5- and 6-substituted indanone derivatives (1a-h) (10 mmol) were dissolved in 80 ml ethanol in a round bottom flask. The reaction mixture of each derivative was heated to 90 °C and NaBH₄ (20 mmol) was added. The reaction mixture of each derivative was then heated under reflux for 18 h during which the colour changed from creamy white to colourless. TLC was carried out to establish if the reaction has proceeded to completion and the reaction was allowed time to cool to room temperature. The ethanol solvent was removed under reduced pressure and water (70 ml) was added to the crude residue of each derivative. The reaction mixture of each derivative was extracted with dichloromethane (3 x 50 ml) and the organic phase was subsequently dried over anhydrous MgSO₄ for 15 min.
The MgSO₄ was removed by filtration and the organic phase of each derivative evaporated under reduced pressure. The obtained crude product of each derivative was recrystallized from cyclohexane to yield the alcohol derivatives 1i-n.

![Reaction pathway](image.png)

**Figure 3.4** The reaction pathway for the synthesis of alcohol derivatives of 1-indanone, compounds (1i-n).

Key: (a) NaBH₄, ethanol, reflux, 18 h. Substitution: C4 = 1k; C5 = 1i, 1l; C6 = 1j, 1m, 1n.

### 3.4 Physical characterisation

The 1-indanone and 1-indanol derivatives that were synthesised in this study was characterized by ¹H NMR, ¹³C NMR and HRMS, and the purities were estimated by HPLC analyses. Also provided in this section are the yields obtained for the final reactions, melting points and Rᵣ values for the TLC. The obtained ¹H NMR and MS data of each compound correspond with the proposed structure although some of the ¹³C NMR signals overlap. As an example, the NMR spectra of a selected 1-indanone and 1-indanol derivative will be discussed, thereafter the physical data will be presented in table format.

#### 3.4.1 NMR analysis and data

**1-Indanone derivative 1b:** On the ¹³C NMR spectra, 10 signals are observed in the aromatic region (165>δ>110 ppm) which corresponds to the 10 aromatic C atoms of this compound. The carbonyl carbon yields a signal at 205.30 ppm. In the aliphatic region (δ<70 ppm), 3
signals are observed, which corresponds to the three aliphatic carbons of this compound, including the benzylic CH₂. On the ¹H NMR spectrum, the aromatic protons (δ>6 ppm) integrate for 8 protons as expected for this compound. Unfortunately the multiplets for aromatic protons of the 1-indanone moiety are not clearly seen. The benzyloxy CH₂ was observed as a singlet at 5.06 ppm. The remaining aliphatic protons (4H) are represented by signals at 1.53-3.03 (4H in total).

1-Indanol derivative 1i: On the ¹³C NMR spectra, 10 signals are observed in the aromatic region (δ>110 ppm) which corresponds to the 10 aromatic C atoms of this compound. In the aliphatic region (δ<76 ppm), 4 signals are observed, which corresponds to the four aliphatic carbons of this compound, including the secondary alcohol carbon. The absence of a signal for a carbonyl carbon indicates the successful reduction to the alcohol. On the ¹H NMR spectrum, the aromatic protons (δ>6 ppm) integrate for 8 protons as expected for this compound. Unfortunately the multiplets for aromatic protons of the 1-indanol moiety are not clearly seen. The benzyloxy CH₂ was observed as a singlet at 4.98 ppm, while the aliphatic proton at C1 of the ring corresponds to the triplet at 5.10 ppm (1H). The multiplicity of signal is the result of coupling with two protons on C2, which are not equivalent due to the chiral center at C1. The remaining aliphatic protons (4H) are represented by signals at 1.82-3.01 (4H in total). Since this compound is chiral and represents two enantiomers, the multiplicities of the aliphatic signals are rather complex, indicating non-equivalence of protons attached to the same carbons and complex splitting patterns.
### 4-Benzylxy-1-indanone (1a)

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>![Structure Image]</td>
</tr>
<tr>
<td>Melting point</td>
<td>75.0 – 78.0 ºC</td>
</tr>
<tr>
<td>Purity</td>
<td>98.6% (1 mM); 99.1% (100 µM)</td>
</tr>
<tr>
<td>Rf</td>
<td>0.47</td>
</tr>
<tr>
<td>Yield (final step)</td>
<td>87.5%</td>
</tr>
</tbody>
</table>

**1H NMR:**

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.38 – 7.31</td>
<td>4H</td>
</tr>
<tr>
<td>7.30 – 7.22</td>
<td>3H</td>
</tr>
<tr>
<td>5.09</td>
<td>2H</td>
</tr>
<tr>
<td>3.06 – 2.98</td>
<td>2H</td>
</tr>
<tr>
<td>2.67 – 2.53</td>
<td>2H</td>
</tr>
</tbody>
</table>

**13C NMR:**

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>207.25</td>
<td></td>
</tr>
<tr>
<td>156.23</td>
<td></td>
</tr>
<tr>
<td>144.52</td>
<td></td>
</tr>
<tr>
<td>138.80</td>
<td></td>
</tr>
<tr>
<td>136.60</td>
<td></td>
</tr>
<tr>
<td>128.83</td>
<td></td>
</tr>
<tr>
<td>128.70</td>
<td></td>
</tr>
<tr>
<td>128.15</td>
<td></td>
</tr>
<tr>
<td>127.24</td>
<td></td>
</tr>
<tr>
<td>116.28</td>
<td></td>
</tr>
<tr>
<td>115.68</td>
<td></td>
</tr>
<tr>
<td>70.08</td>
<td></td>
</tr>
<tr>
<td>36.19</td>
<td></td>
</tr>
<tr>
<td>22.71</td>
<td></td>
</tr>
</tbody>
</table>

APCI-HRMS m/z calcd for C_{16}H_{15}O_2 (MH^+), found 239.1076, calcd. 239.1067

### 5-Benzylxy-1-indanone (1b)

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>![Structure Image]</td>
</tr>
<tr>
<td>Melting point</td>
<td>105.2 – 106.7 ºC</td>
</tr>
<tr>
<td>Purity</td>
<td>99.8% (1 mM); 99.6% (100 µM)</td>
</tr>
<tr>
<td>Rf</td>
<td>0.27</td>
</tr>
<tr>
<td>Yield (final step)</td>
<td>92.6%</td>
</tr>
</tbody>
</table>

**1H NMR:**

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.63 – 7.60</td>
<td>1H</td>
</tr>
<tr>
<td>7.37 – 7.31</td>
<td>4H</td>
</tr>
<tr>
<td>7.30 – 7.26</td>
<td>1H</td>
</tr>
<tr>
<td>6.91 – 6.89</td>
<td>2H</td>
</tr>
<tr>
<td>5.06</td>
<td>2H</td>
</tr>
<tr>
<td>3.03 – 2.96</td>
<td>2H</td>
</tr>
<tr>
<td>2.64 – 2.53</td>
<td>2H</td>
</tr>
</tbody>
</table>

**13C NMR:**

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>205.30</td>
<td></td>
</tr>
<tr>
<td>164.38</td>
<td></td>
</tr>
<tr>
<td>158.14</td>
<td></td>
</tr>
<tr>
<td>136.10</td>
<td></td>
</tr>
<tr>
<td>130.66</td>
<td></td>
</tr>
<tr>
<td>128.70</td>
<td></td>
</tr>
<tr>
<td>128.15</td>
<td></td>
</tr>
<tr>
<td>127.48</td>
<td></td>
</tr>
<tr>
<td>125.43</td>
<td></td>
</tr>
<tr>
<td>115.92</td>
<td></td>
</tr>
<tr>
<td>110.82</td>
<td></td>
</tr>
<tr>
<td>70.32</td>
<td></td>
</tr>
<tr>
<td>36.47</td>
<td></td>
</tr>
<tr>
<td>25.92</td>
<td></td>
</tr>
</tbody>
</table>

APCI-HRMS m/z calcd for C_{16}H_{15}O_2 (MH^+), found 239.1081, calcd. 239.1067
### 6-Benzylxy-1-indanone (1c)

![Chemical Structure]

**Melting point:** 48.9 – 55.0 °C  
**Purity:** 98.3% (1 mM); 98.1% (100 μM)  
**Rf:** 0.41  
**Yield (final step):** 92.7%

<table>
<thead>
<tr>
<th>1H NMR:</th>
<th>13C NMR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H NMR (600 MHz, CDCl₃) δ 7.36 (d, J = 7.3 Hz, 2H), 7.34 – 7.29 (m, 1.3 Hz, 3H), 7.28 – 7.24 (m, 1H), 7.21 – 7.18 (m, 2H), 5.01 (s, 2H), 3.04 – 2.96 (m, 2H), 2.69 – 2.60 (m, 2H).</td>
<td>13C NMR (151 MHz, CDCl₃) δ 207.00, 158.49, 148.25, 138.26, 136.45, 128.67, 128.16, 127.57, 127.50, 124.63, 106.15, 70.32, 37.03, 25.17.</td>
</tr>
</tbody>
</table>

APCI-HRMS m/z calcd for C₁₆H₁₅O₂ (MH⁺), found 239.1089, calcd 239.1067

### 4-(4-Chlorobenzylxy)-1-indanone (1d)

![Chemical Structure]

**Melting point:** 101.9 - 122.8 °C  
**Purity:** 83.0% (1 mM); 83.0% (100 μM)  
**Rf:** 0.48  
**Yield (final step):** 93.5%

<table>
<thead>
<tr>
<th>1H NMR:</th>
<th>13C NMR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H NMR (600 MHz, CDCl₃) δ 7.34 – 7.27 (m, 5H), 7.24 (t, J = 7.7 Hz, 1H), 6.99 (dd, J = 7.9, 0.9 Hz, 1H), 5.05 (s, 2H), 3.05 – 2.97 (m, 2H), 2.72 – 2.51 (m, 2H).</td>
<td>13C NMR (151 MHz, CDCl₃) δ 207.13, 155.98, 144.41, 138.87, 135.06, 133.99, 128.90, 128.86, 128.58, 116.19, 115.90, 69.32, 36.16, 22.68.</td>
</tr>
</tbody>
</table>

APCI-HRMS m/z calcd for C₁₆H₁₄ClO₂ (MH⁺), found 273.0682, calcd 273.0677
### 5-(4-Chlorobenzyloxy)-1-Indanone (1e)

<table>
<thead>
<tr>
<th>Melting point:</th>
<th>115.5-117.6 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity:</td>
<td>99.1% (1 mM); 99.5% (100 μM)</td>
</tr>
<tr>
<td>Rf:</td>
<td>0.56</td>
</tr>
<tr>
<td>Yield (final step):</td>
<td>85.0%</td>
</tr>
</tbody>
</table>

**1H NMR:**

\[ \text{δ 7.34 – 7.26 (m, 5H), 7.21 – 7.15 (m, 2H), 4.98 (s, 2H), 3.03 – 2.99 (m, 2H), 2.67 – 2.62 (m, 2H).} \]

**13C NMR:**

\[ \text{δ 206.91, 158.21, 148.41, 138.28, 134.95, 133.96, 128.85, 127.58, 124.56, 106.13, 69.50, 37.02, 25.17.} \]

APCI-HRMS m/z calcd for C\(_{16}\)H\(_{14}\)ClO\(_2\) (MH\(^+\)), found 273.0671, calcd 273.0677

### 6-(4-Chlorobenzyloxy)-1-Indanone (1f)

<table>
<thead>
<tr>
<th>Melting point:</th>
<th>98.5 – 138.8 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity:</td>
<td>85.4% (1 mM); 84.4% (100 μM)</td>
</tr>
<tr>
<td>Rf:</td>
<td>0.57</td>
</tr>
<tr>
<td>Yield (final step):</td>
<td>84.6%</td>
</tr>
</tbody>
</table>

**1H NMR:**

\[ \text{δ 7.33 – 7.24 (m, 4H), 7.19-7.14 (m, 2H), 7.16 (s, 1H), 4.98 (s, 2H), 3.00 – 2.91 (m, 2H), 2.66 – 2.62 (m, 2H).} \]

**13C NMR:**

\[ \text{δ 206.91, 158.21, 148.41, 138.28, 134.96, 133.96, 128.84, 127.58, 124.55, 106.14, 69.57, 37.02, 25.17.} \]

APCI-HRMS m/z calcd for C\(_{16}\)H\(_{14}\)ClO\(_2\) (MH\(^+\)), found 273.0678, calcd 273.0677
### 6-(3-Chlorobenzyloxy)-1-indanone (1g)

![Structure of 6-(3-Chlorobenzyloxy)-1-indanone (1g)](image)

**Melting point:** 81.5 – 93.2 °C  
**Purity:** 97.2% (1 mM); 81.3% (100 μM)  
**Rf:** 0.41  
**Yield (final step):** 58.0%

<table>
<thead>
<tr>
<th><strong>1H NMR:</strong></th>
<th><strong>13C NMR:</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1H NMR</strong> (600 MHz, CDCl₃) δ 7.36 (s, 1H), 7.33 (dd, J = 8.3, 0.9 Hz, 1H), 7.27 – 7.21 (m, 3H), 7.19 (dd, J = 7.4, 2.5, 1H), 7.17 (d, J = 2.6 Hz, 1H), 4.99 (s, 2H), 3.06 – 2.97 (m, 2H), 2.68 – 2.61 (m, 2H).</td>
<td><strong>13C NMR</strong> (151 MHz, CDCl₃) δ 206.91, 158.17, 148.48, 138.52, 138.29, 134.61, 129.94, 128.27, 127.62, 127.45, 125.41, 124.55, 106.09, 69.41, 37.02, 25.18.</td>
</tr>
<tr>
<td><strong>APCI-HRMS m/z</strong> calcd for C₁₆H₁₄ClO₂ (MH⁺), found 273.0689, calcd 273.0677</td>
<td></td>
</tr>
</tbody>
</table>

### 5-(2-Phenoxyethoxy)-1-indanone (1h)

![Structure of 5-(2-Phenoxyethoxy)-1-indanone (1h)](image)

**Melting point:** 135.0 – 137.4 °C  
**Purity:** 99.6% (1mM); 99.5% (100 μM)  
**Rf:** 0.66  
**Yield (final step):** 65.0%

<table>
<thead>
<tr>
<th><strong>1H NMR:</strong></th>
<th><strong>13C NMR:</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1H NMR</strong> (600 MHz, CDCl₃) δ 7.63 (d, 9.2 Hz, 1H), 7.24 (t, J = 8.0 Hz, 2H), 6.95 – 6.85 (m, 5H), 4.35 – 4.31 (m, 2H), 4.31 – 4.27 (m, 2H), 3.11 – 2.92 (m, 2H), 2.71 – 2.48 (m, 2H).</td>
<td><strong>13C NMR</strong> (151 MHz, CDCl₃) δ 205.29, 164.28, 158.47, 158.10, 130.77, 129.59, 125.44, 121.32, 115.70, 114.69, 110.61, 66.91, 66.20, 36.47, 25.91.</td>
</tr>
<tr>
<td><strong>APCI-HRMS m/z</strong> calcd for C₁₇H₁₇O₃ (MH⁺), found 269.1177, calcd 269.1172</td>
<td></td>
</tr>
</tbody>
</table>
5-Benzyloxy-1-indanol (1i)

![Chemical structure]

**Melting point:** 82.2 – 90.1 °C  
**Purity:** 98.6% (1 mM); 97.5% (100 μM)  
**Rf:** 0.34  
**Yield (final step):** 92.2%

<table>
<thead>
<tr>
<th>¹H NMR:</th>
<th>¹³C NMR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.33 (d, J = 7.1 Hz, 2H), 7.31 (t, J = 7.1 Hz, 2H), 7.27 – 7.21 (m, 2H), 6.83 – 6.71 (m, 2H), 5.10 (t, J = 6.9 Hz, 1H), 4.98 (s, 2H), 3.01 – 2.90 (m, 5.4 Hz, 1H), 2.76 – 2.64 (m, 1H), 2.45 – 2.31 (m, 1H), 1.92 – 1.82 (m, 1H).</td>
<td>¹³C NMR (151 MHz, CDCl₃) δ 159.46, 145.31, 137.66, 137.09, 128.61, 127.96, 127.44, 125.11, 113.87, 110.89, 75.89, 70.17, 36.29, 30.02.</td>
</tr>
</tbody>
</table>

APCI-HRMS m/z calcd for C₁₆H₁₆O₂ (M⁺), found 240.1156, calcd 240.1150

6-Benzyloxy-1-indanol (1j)

![Chemical structure]

**Melting point:** 74.3 – 83.7 °C  
**Purity:** 98.9% (1 mM); 98.2% (100 μM)  
**Rf:** 0.21  
**Yield (final step):** 83.3%

<table>
<thead>
<tr>
<th>¹H NMR:</th>
<th>¹³C NMR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹H NMR (600 MHz, CDCl₃) δ 7.35 (d, J = 7.3 Hz, 2H), 7.30 (t, J = 7.3 Hz, 2H), 7.27 – 7.15 (m, 1H), 7.06 (d, J = 8.2 Hz, 1H), 6.95 (d, J = 2.2 Hz, 1H), 6.82 (dd, J = 8.2, 2.4 Hz, 1H), 5.10 (s, 1H), 4.98 (s, 2H), 2.93 – 2.84 (m, 1H), 2.73 – 2.59 (m, 1H), 2.46 – 2.36 (m, 1H), 1.90 – 1.80 (m, 1H).</td>
<td>¹³C NMR (151 MHz, CDCl₃) δ 158.28, 146.42, 137.19, 135.45, 128.59, 127.93, 127.48, 125.57, 115.91, 110.00, 76.64, 70.32, 36.59, 29.00.</td>
</tr>
</tbody>
</table>

APCI-HRMS m/z calcd for C₁₆H₁₆O₂ (M⁺), found 240.1153, calcd 240.1150
**4-(4-Chlorobenzyloxy)-1-indanol (1k)**

![Chemical Structure](Image)

**Melting point:** 120.7 – 122.6 °C  
**Purity:** 98.3% (1 mM); 96.9% (100 μM)  
**Rf:** 0.34  
**Yield (final step):** 84.2%

<table>
<thead>
<tr>
<th><strong>1H NMR:</strong></th>
<th><strong>13C NMR:</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>1H NMR (600 MHz, CDCl₃) δ 7.31 – 7.25 (m, 4H), 7.13 (t, J = 7.8 Hz, 1H), 6.99 (d, J = 7.5 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 5.27 – 7.17 (m, 1H), 4.99 (s, 2H), 3.03 – 2.95 (m, 1H), 2.76 – 2.67 (m, 1H), 2.47 – 2.38 (m, 1H), 1.93 – 1.84 (m, 1H).</td>
<td><strong>13C NMR</strong> (151 MHz, CDCl₃) δ 155.00, 147.14, 135.75, 133.65, 131.65, 128.76, 128.50, 128.39, 116.89, 111.14, 69.11, 35.65, 26.63.</td>
</tr>
</tbody>
</table>

APCI-HRMS m/z calcd for C₁₆H₁₅ClO₂ (M⁺), found 274.0766, calcd 274.0755

**5-(4-Chlorobenzyloxy)-1-indanol (1l)**

![Chemical Structure](Image)

**Melting point:** 130.3 – 132.8 °C  
**Purity:** 99.8% (1 mM); 98.4% (100 μM)  
**Rf:** 0.25  
**Yield (final step):** 73.6%

<table>
<thead>
<tr>
<th><strong>1H NMR:</strong></th>
<th><strong>13C NMR:</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>1H NMR (600 MHz, CDCl₃) δ 7.32 – 7.16 (m, 5H), 6.78 – 6.72 (m, 2H), 5.11 (s, 1H), 4.95 (s, 2H), 3.00 – 2.91 (m, 1H), 2.74 – 2.65 (m, 1H), 2.45 – 2.34 (m, 1H), 1.94 – 1.83 (m, 1H).</td>
<td><strong>13C NMR</strong> (151 MHz, CDCl₃) δ 159.19, 145.38, 137.87, 135.60, 133.73, 128.78, 128.73, 125.17, 113.85, 110.92, 75.89, 69.40, 35.27, 26.04.</td>
</tr>
</tbody>
</table>

APCI-HRMS m/z calcd for C₁₆H₁₅ClO₂ (M⁺), found 274.0759, calcd 274.0755
6-(4-Chlorobenzyloxy)-1-indanol (1m)

| Melting point: 109.9 – 114.2 °C |
| Purity: 99.2% (1 mM); 97.7% (100 μM) |
| Rf: 0.33 |
| Yield (final step): 40.0% |

### 1H NMR:

1H NMR (600 MHz, CDCl₃) δ 7.30 – 7.24 (m, 4H), 7.07 (d, J = 8.2 Hz, 1H), 6.93 (d, J = 2.0 Hz, 1H), 6.79 (dd, J = 8.2, 2.3 Hz, 1H), 5.08 (s, 1H), 4.94 (s, 2H), 2.95 – 2.84 (m, 1H), 2.73 – 2.58 (m, 1H), 2.48 – 2.38 (m, 1H), 1.91 – 1.79 (m, 1H).

### 13C NMR:

13C NMR (151 MHz, CDCl₃) δ 157.97, 146.46, 135.67, 135.66, 133.70, 128.77, 125.63, 115.85, 109.97, 76.62, 69.50, 36.61, 29.00.

APCI-HRMS m/z calcd for C₁₆H₁₅ClO₂ (M⁺), found 274.0760, calcd 274.0755

6-(3-Chlorobenzyloxy)-1-indanol (1n)

| Melting point: None - oil |
| Purity: 97.3% (1 mM); 97.1% (100 μM) |
| Rf: 0.44 |
| Yield (final step): 68.9% |

### 1H NMR:

1H NMR (600 MHz, CDCl₃) δ 7.30 – 7.17 (m, 5H), 6.76 (d, J = 6.3 Hz, 2H), 5.11 (s, 1H), 4.95 (s, 2H), 3.00 – 2.91 (m, 1H), 2.74 – 2.65 (m, 1H), 2.45 – 2.34 (m, 1H), 1.94 – 1.83 (m, 1H).

### 13C NMR:

13C NMR (151 MHz, CDCl₃) δ 157.93, 146.48, 139.26, 135.73, 134.52, 129.87, 128.05, 127.41, 125.35, 115.84, 109.96, 69.45, 36.58, 29.01.

APCI-HRMS m/z calcd for C₁₆H₁₅ClO₂ (M⁺), found 274.0766, calcd 274.0761
### 4-Hydroxy-1-indanone (2a)

![Structure of 4-Hydroxy-1-indanone (2a)](image)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point</td>
<td>244.8 – 247.3 °C</td>
</tr>
<tr>
<td>Purity</td>
<td>98.0% (1 mM); 97.0% (100 μM)</td>
</tr>
<tr>
<td>Rf</td>
<td>0.16</td>
</tr>
<tr>
<td>Yield (final step)</td>
<td>47.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NMR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1H NMR</td>
<td>13C NMR</td>
</tr>
<tr>
<td>6H NMR (600 MHz, DMSO-d6) δ</td>
<td>13C NMR (151 MHz, DMSO-d6) δ</td>
</tr>
<tr>
<td>9.75 (s, 1H), 7.05 (t, J = 7.7 Hz, 1H), 6.89 (d, J = 7.5 Hz, 1H), 6.85 (dd, J = 7.8, 1.0 Hz, 1H), 2.78 – 2.69 (m, 2H), 2.45 – 2.36 (m, 2H).</td>
<td>155.60, 142.31, 138.88, 129.08, 120.23, 113.79, 36.25, 22.76.</td>
</tr>
</tbody>
</table>

APCI-HRMS m/z calcd for C₉H₉O₂ (MH⁺), found 149.0593, calcd 149.0597

### 6-Hydroxy-1-indanone (2c)

![Structure of 6-Hydroxy-1-indanone (2c)](image)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point</td>
<td>101.1 – 102.7 °C</td>
</tr>
<tr>
<td>Purity</td>
<td>99.6% (1 mM); 98.6% (100 μM)</td>
</tr>
<tr>
<td>Rf</td>
<td>0.25</td>
</tr>
<tr>
<td>Yield (final step)</td>
<td>51.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NMR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1H NMR</td>
<td>13C NMR</td>
</tr>
<tr>
<td>6H NMR (600 MHz, DMSO-d6) δ</td>
<td>13C NMR (151 MHz, DMSO-d6) δ</td>
</tr>
<tr>
<td>10.48 (s, 1H), 7.48 (d, J = 8.3 Hz, 1H), 6.85 (d, J = 2.1 Hz, 1H), 6.80 (dd, J = 8.4, 2.1 Hz, 1H), 3.03 – 2.95 (m, 2H), 2.57 – 2.51 (m, 2H).</td>
<td>204.48, 164.10, 158.73, 129.08, 125.36, 116.20, 112.52, 36.39, 25.65.</td>
</tr>
</tbody>
</table>

APCI-HRMS m/z calcd for C₉H₉O₂ (MH⁺), found 149.0605, calcd 149.0597
3.4.2 TLC

During this study, thin-layer chromatography was used to establish if reactions have proceeded to completion. The mobile phase that was used for this purpose was petroleum ether and ethyl acetate in a ratio of 7:3. The R$_f$ (retention factor) value can be used to indicate the position of a spot of a compound on a TLC sheet. Equation 3.1 was used to calculate the R$_f$ value of each synthesised indanone derivative.

\[
R_f = \frac{\text{Distance travelled by analyte on TLC plate}}{\text{Distance travelled by solvent on TLC plate}}
\]

3.1. The equation for the calculation of R$_f$ values.

**Table 3.2** The calculated R$_f$ values of the 1-indanone (1a-h), 1-indanol (1i-n) and hydroxyl-1-indanone (2a, c) derivatives.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R$_f$ values</th>
<th>Compound</th>
<th>R$_f$ values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>0.47</td>
<td>1i</td>
<td>0.34</td>
</tr>
<tr>
<td>1b</td>
<td>0.27</td>
<td>1j</td>
<td>0.21</td>
</tr>
<tr>
<td>1c</td>
<td>0.41</td>
<td>1k</td>
<td>0.34</td>
</tr>
<tr>
<td>1d</td>
<td>0.48</td>
<td>1l</td>
<td>0.25</td>
</tr>
<tr>
<td>1e</td>
<td>0.56</td>
<td>1m</td>
<td>0.33</td>
</tr>
<tr>
<td>1f</td>
<td>0.57</td>
<td>1n</td>
<td>0.44</td>
</tr>
<tr>
<td>1g</td>
<td>0.41</td>
<td>2a</td>
<td>0.16</td>
</tr>
<tr>
<td>1h</td>
<td>0.66</td>
<td>2c</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Figure 3.5 Examples of TLC sheets obtained in this study.

On the left is shown an image of a TLC sheet obtained in the first step of synthesis, the preparation of 4-hydroxy-1-tetralone (2a). In the centre, a TLC sheet of the second step of synthesis, the preparation of 5-benzyloxy-1-indanone (1b) is shown, and on the right, a TLC sheet of the third, and last, step of synthesis is shown, the preparation of 5-benzyloxy-1-indanol (1i). The observation can be made that the reactions were complete in each instance as no starting material was present where only the product was spotted. Petroleum ether and ethyl acetate was used as mobile phase in a 7:3 ratio. Key: (sm) = starting material; (co) = starting material + product; (p) = product.

3.4.3 Mass spectrometry

High resolution mass spectrometry was used to characterise the indanone derivatives. Protonated molecular ion (MH⁺) was used to ionize the indanone compounds 1a-h and 2a,c as the ketone functional group of these compounds is able to receive a H⁺ through the breaking of the double bond. Molecular ion (M⁺) was used for the ionization of the indanol derivatives (1i-n) as these compounds possess an alcohol functional group (-OH). It is impossible for the indanol derivatives (1i-n) to also be ionized by MH⁺ as it is not possible for H⁺ to bind to the alcohol functional group. The estimated and experimentally determined molecular weights of the derivatives are given in table 3.3. The difference between the calculated and experimentally determined molecular weights are expressed in parts per million (ppm) and were calculated according to equation 3.2. A ppm difference of <5 is regarded as acceptable and indicates that the calculated and experimental masses are in agreement. As shown in table 3.3, the results of the mass spectral analysis of this study indicated that the calculated and experimentally determined molecular weights
corresponded well and thus provides evidence that the structures of the synthesised compounds are those depicted in table 3.1.

\[
ppm = \frac{[\text{Experimentally determined mw} - \text{Calculated mw}]}{[\text{Calculated mw}]} \times 10^6
\]

**Equation 3.2.** The equation for the calculation of the difference between the calculated and experimentally determined molecular weights. This difference is expressed in parts per million (ppm)

**Table 3.3** The calculated and experimentally determined molecular weights of the 1-indanone (1a-h), 1-indanol (1i-n) and hydroxy-1-indanone (2a, c) derivatives.

<table>
<thead>
<tr>
<th></th>
<th>Experimental (found)</th>
<th>Calculated</th>
<th>Chemical formula</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>239.1076</td>
<td>239.1067</td>
<td>C(<em>{16})H(</em>{15})O(_2) (MH(^+))</td>
<td>3.76</td>
</tr>
<tr>
<td>1b</td>
<td>239.1081</td>
<td>239.1067</td>
<td>C(<em>{16})H(</em>{15})O(_2) (MH(^+))</td>
<td>5.86</td>
</tr>
<tr>
<td>1c</td>
<td>239.1089</td>
<td>239.1067</td>
<td>C(<em>{16})H(</em>{15})O(_2) (MH(^+))</td>
<td>9.20</td>
</tr>
<tr>
<td>1d</td>
<td>273.0682</td>
<td>273.0677</td>
<td>C(<em>{16})H(</em>{14})ClO(_2) (MH(^+))</td>
<td>1.83</td>
</tr>
<tr>
<td>1e</td>
<td>273.0671</td>
<td>273.0677</td>
<td>C(<em>{16})H(</em>{14})ClO(_2) (MH(^+))</td>
<td>-2.19</td>
</tr>
<tr>
<td>1f</td>
<td>273.0678</td>
<td>273.0677</td>
<td>C(<em>{16})H(</em>{14})ClO(_2) (MH(^+))</td>
<td>0.37</td>
</tr>
<tr>
<td>1g</td>
<td>273.0689</td>
<td>273.0677</td>
<td>C(<em>{16})H(</em>{14})ClO(_2) (MH(^+))</td>
<td>4.39</td>
</tr>
<tr>
<td>1h</td>
<td>269.1177</td>
<td>269.1172</td>
<td>C(<em>{17})H(</em>{17})O(_3) (MH(^+))</td>
<td>1.86</td>
</tr>
<tr>
<td>1i</td>
<td>240.1156</td>
<td>240.1150</td>
<td>C(<em>{16})H(</em>{16})O(_2) (M(^+))</td>
<td>4.58</td>
</tr>
<tr>
<td>1j</td>
<td>240.1153</td>
<td>240.1150</td>
<td>C(<em>{16})H(</em>{16})O(_2) (M(^+))</td>
<td>3.33</td>
</tr>
</tbody>
</table>
### 3.4.4 Purity estimation by HPLC

HPLC analyses were used to determine the purity of the indanone derivatives. The indanone derivatives were dissolved in acetonitrile at concentrations of 1 mM and 100 µM, and were subsequently injected into the HPLC system. The eluent was monitored at a wavelength of 254 nm. The results obtained from these analyses are tabulated in table 3.4.

A purity of >95% for the synthesised compounds is considered adequate for further biological evaluation. The results indicated a high degree of purity and a low percentage of impurities for most of the synthesised compounds, which indicate that these compounds may be evaluated as potential inhibitors of the MAO enzymes. Compounds 1d, 1f and 1g exhibited purity of <95% but was also screened for MAO activity. It is important to note that the determination of the purity of the compounds by HPLC is only an estimation of the purity and not an absolute measure. The reason for this is that the indanone derivatives and potential impurities (being organic compounds) possess different molar extinction coefficients at 254 nm. For example, even though two compounds are present in an equal molar concentration, the peak areas would differ if the two compounds possess different molar extinction coefficients.

<table>
<thead>
<tr>
<th></th>
<th>Experimental (found)</th>
<th>Calculated</th>
<th>Chemical formula</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1k</td>
<td>274.0766</td>
<td>274.0755</td>
<td>C₁₆H₁₅ClO₂(M⁺)</td>
<td>4.01</td>
</tr>
<tr>
<td>1l</td>
<td>274.0759</td>
<td>274.0755</td>
<td>C₁₆H₁₅ClO₂(M⁺)</td>
<td>2.19</td>
</tr>
<tr>
<td>1m</td>
<td>274.0760</td>
<td>274.0755</td>
<td>C₁₆H₁₅ClO₂(M⁺)</td>
<td>1.82</td>
</tr>
<tr>
<td>1n</td>
<td>274.0766</td>
<td>274.0761</td>
<td>C₁₆H₁₅ClO₂(M⁺)</td>
<td>4.01</td>
</tr>
<tr>
<td>2a</td>
<td>149.0593</td>
<td>149.0597</td>
<td>C₉H₉O₂(M⁺)</td>
<td>-2.68</td>
</tr>
<tr>
<td>2c</td>
<td>149.0605</td>
<td>149.0597</td>
<td>C₉H₉O₂(M⁺)</td>
<td>5.37</td>
</tr>
</tbody>
</table>
Table 3.4 The purities of the 1-indanone (1a-h), 1-indanol (1i-n) and hydroxy-1-indanone (2a, c) derivatives as estimated by HPLC analysis.

<table>
<thead>
<tr>
<th></th>
<th>Purity</th>
<th></th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>98.6% (1 mM)</td>
<td>1i</td>
<td>98.6% (1 mM)</td>
</tr>
<tr>
<td></td>
<td>99.1% (100 µM)</td>
<td></td>
<td>97.5% (100 µM)</td>
</tr>
<tr>
<td>1b</td>
<td>99.8% (1 mM)</td>
<td>1j</td>
<td>98.9% (1 mM)</td>
</tr>
<tr>
<td></td>
<td>99.6% (100 µM)</td>
<td></td>
<td>98.2% (100 µM)</td>
</tr>
<tr>
<td>1c</td>
<td>98.3% (1 mM)</td>
<td>1k</td>
<td>98.3% (1 mM)</td>
</tr>
<tr>
<td></td>
<td>98.1% (100 µM)</td>
<td></td>
<td>96.9% (100 µM)</td>
</tr>
<tr>
<td>1d</td>
<td>83.0% (1 mM)</td>
<td>1l</td>
<td>99.8% (1 mM)</td>
</tr>
<tr>
<td></td>
<td>83.0% (100 µM)</td>
<td></td>
<td>98.4% (100 µM)</td>
</tr>
<tr>
<td>1e</td>
<td>99.1% (1 mM)</td>
<td>1m</td>
<td>99.2% (1 mM)</td>
</tr>
<tr>
<td></td>
<td>99.5% (100 µM)</td>
<td></td>
<td>97.7% (100 µM)</td>
</tr>
<tr>
<td>1f</td>
<td>85.4% (1 mM)</td>
<td>1n</td>
<td>97.3% (1 mM)</td>
</tr>
<tr>
<td></td>
<td>84.4% (100 µM)</td>
<td></td>
<td>97.1% (100 µM)</td>
</tr>
<tr>
<td>1g</td>
<td>97.2% (1 mM)</td>
<td>2a</td>
<td>98.0% (1 mM)</td>
</tr>
<tr>
<td></td>
<td>81.3% (100 µM)</td>
<td></td>
<td>97.0% (100 µM)</td>
</tr>
<tr>
<td>1h</td>
<td>99.6% (1 mM)</td>
<td>2b</td>
<td>99.6% (1 mM)</td>
</tr>
<tr>
<td></td>
<td>99.5% (100 µM)</td>
<td></td>
<td>98.6% (100 µM)</td>
</tr>
</tbody>
</table>
3.5 Conclusion

In this chapter the syntheses of 4-, 5- and 6-hydroxy-1-indanone from commercially available 4-, 5-, and 6-methoxy-1-indanone and AlCl₃ are described. These compounds served as key starting materials and were reacted with appropriately substituted alkyl bromides in the presence of K₂CO₃. In this manner, eight 1-indanone derivatives were synthesised in this study. In the subsequent step, the indanone derivatives were reacted with NaBH₄ to yield six alcohol derivatives. The structures of the synthesised compounds were elucidated and confirmed by NMR and MS. The ¹H NMR and ¹³C NMR spectra correlated well with the proposed structures of the compounds. The experimentally determined (through MS) and calculated molecular weights also correlated well and therefore provided further evidence for the structures of the synthesised compounds. The Rᵣ value of each compound was determined as well as the yields of the products that were obtained in the final steps of the synthetic routes. HPLC was used to estimate the purity of the synthesised compounds. It was concluded that the structures of the indanone and alcohol derivatives are those given in this chapter and the majority of compounds are of adequate purity to undergo further biological evaluation.
CHAPTER 4: ENZYMEOLOGY

4.1 Introduction

The ability of the synthesised indanone (1a-h) and alcohol (1i-n) derivatives to inhibit human MAO-A and MAO-B, will be explored in this chapter. IC$_{50}$ values for the synthesised compounds will be determined by fluorescence spectrophotometry with kynuramine as the substrate. MAO-A and MAO-B oxidise kynuramine to generate 4-hydroxyquinoline (4-HQ), a metabolite that fluoresces when dissolved in an alkaline medium. The fluorescence measurements will be carried out at an excitation wavelength ($\lambda_{ex}$) of 310 nm and an emission wavelength ($\lambda_{em}$) of 400 nm (Strydom et al., 2010). The MAO catalysed generation of 4-hydroxyquinoline may be accurately measured in the presence of the indanone (1a-h) and alcohol (1i-n) derivatives with the use of fluorescence spectrophotometry since these derivatives do not fluoresce under the specific assay conditions of this study. Sigmoidal dose-response curves will be constructed and IC$_{50}$ values, as an indication of the inhibition potencies of the synthesised compounds, will be estimated from the curves.

In the second section of this chapter, an alcohol derivative will be selected for further enzymatic evaluation. In this respect, the reversibility of MAO inhibition will be determined by dialysis and sets of Lineweaver-Burk plots will be constructed to determine if the mode of MAO inhibition is competitive or non-competitive. These studies will focus on the alcohol derivatives since the reversibility of MAO inhibition by indanones has previously been investigated (Mostert et al., 2015).

4.2 MAO activity measurements

4.2.1 General background

Kynuramine, a mixed MAO-A/B substrate, was used as the enzyme substrate to evaluate the inhibition potencies of the synthesised compounds. The fact that certain MAO substrates are oxidised to generate products that fluoresce, served as the basis for the biological evaluations. In this respect, kynuramine undergoes oxidation by MAO-A and
MAO-B to yield 4-hydroxyquinoline (Fig 4.1.), a compound that fluoresces when dissolved in alkaline medium. In this reaction, kynuramine is oxidatively deaminated by the MAO enzyme in the first step to yield an aldehyde intermediate. In the second step of the reaction, the aldehyde can either undergo condensation which generates 4-hydroxyquinoline, or it can undergo further oxidation to generate 2,4-dihydroxyquinoline via an acid intermediate. However, the aldehyde is condensed much faster than it is oxidised in vitro since the MAO enzymes are not involved in the process while condensation is spontaneous. Therefore, in vitro oxidation of kynuramine by the MAO enzymes generates fluorescent 4-hydroxyquinoline as a product. Weissbach and colleagues (1960) observed that 4-hydroxyquinoline can be accurately measured and quantitated by a fluorescence spectrophotometer, as it fluoresces in alkaline media. This finding resulted in the development of a swift and dependable assay for the evaluation of MAO activity, which will be applied during this study to investigate the MAO-A and MAO-B inhibition properties of the indanone (1a-h) and alcohol (1i-n) derivatives.

Figure 4.1 The reaction pathway for the oxidation of kynuramine by MAO-A and MAO-B to produce 4-hydroxyquinoline
4.2.2 Materials and instrumentation

The following materials were purchased from Sigma-Aldrich:

- Kynuramine dihydrobromide
- 4-Hydroxyquinoline
- (R)-Deprenyl
- Microsomes of insect cells that contain recombinant human MAO-A and MAO-B at a concentration of 5 mg/ml

The following materials were purchased from Merck:

- White polypropylene 96-well microtiter plates
- Potassium phosphate (K$_2$HPO$_4$ and KH$_2$PO$_4$)
- Potassium chloride (KCl)
- Sucrose
- Sodium hydroxide (NaOH)
- Dimethyl sulfoxide (DMSO)

The following materials were purchased from Thermo Scientific:

- Slide-A-Lyzer dialysis cassettes with a 0.5 to 3 ml sample volume capacity and molecular weight cut-off of 10 000

The fluorometric evaluations were performed with a Varian Cary Eclipse fluorescence spectrophotometer. IC$_{50}$ values of the synthesised products were determined and sigmoidal dose-response curves constructed with the use of the Graphpad Prism 5 software package. All buffers were prepared in Milli-Q deionised water (Millipore).

4.2.3 Experimental determination of IC$_{50}$ values

IC$_{50}$ values give an indication of the MAO-A and MAO-B inhibition potencies of test compounds. The IC$_{50}$ values of the indanone (1a-h) and alcohol (1i-n) derivatives were determined in this study. MAO activities were recorded in the absence and presence of various concentrations of the test inhibitors and sigmoidal activity-concentration curves were created for the IC$_{50}$ values employing the Prism software package. The compounds that present with low IC$_{50}$ values are the most potent MAO-A and MAO-B inhibitors of the series.
4.2.3.1 Method

Recombinant human MAO-A and MAO-B, at a concentration of 5 mg/ml, were purchased from Sigma-Aldrich. The enzymes were pre- aliquoted and stored at –70 °C. White polypropylene 96-well microtiter plates were used to carry out all enzymatic reactions, which contained the following:

- 92 µl Potassium phosphate (K₂HPO₄/KH₂PO₄) buffer (100 mM; pH 7.4; made isotonic with the addition of 20.2 mM KCl)
- 50 µl Kynuramine – to produce a final concentration of 50 µM for the MAO-A and MAO-B inhibition studies
- 8 µl of each indanone (1a-h) or alcohol (1i-n) derivative to produce final concentrations of 0–100 µM. Stock solutions of the compounds were prepared with DMSO as solvent.

The reactions were incubated at 37 ºC for 30 min. A volume of 50 µl of the enzyme was subsequently added to initiate the reactions. The final concentration of the enzymes in the reactions were 0.0075 mg protein/ml for MAO-A and 0.015 mg protein/ml for MAO-B. The reactions were incubated for a further 20 min and were subsequently terminated with the addition of 80 µl NaOH (2 N). The concentration of 4-hydroxyquinoline in the microtiter plate wells were measured with fluorescence spectrophotometry. The fluorescence was measured at an λₑₓ of 310 nm and an λₑₘ of 400 nm. The PMT voltage of the fluorescence spectrophotometer was set to the medium setting, with an excitation slit width of 5 nm and an emission slit width of 10 nm.

Quantitative estimations of 4-hydroxyquinoline in the enzymatic reactions were made by using a linear calibration curve. In order to make these estimations, known quantities of 4-hydroxyquinoline (0.047 – 1.50 µM) were dissolved in K₂HPO₄/KH₂PO₄ buffer (100 mM, pH 7.4, made isotonic with 20.2 mM KCl) to a final volume of 200 µl. To each calibration standard, 80 µl NaOH (2 N) was added. Control samples were incorporated into the assay procedure to ensure that the synthesised compounds do not fluoresce themselves or otherwise quench the fluorescence of 4-hydroxyquinoline. The control samples, comprising of a volume of 200 µl, contained the test inhibitor (100 µM) and 4-hydroxyquinoline (1.50 µM). To each control sample, 80 µl NaOH (2 N) was added. The fluorescence values of the calibration standards used in this assay should bracket those recorded in the inhibition studies. A linearity of 0.999 should be displayed by the calibration curve to be acceptable.
Figure 4.2 Example of a calibration curve constructed in this study.

The graph represents the fluorescence of 4-hydroxyquinoline versus the concentration of authentic 4-hydroxyquinoline.

Figure 4.3 Sigmoidal curves for the inhibition of MAO-A by 2a (filled circles) and the inhibition of MAO-B by 1I (open circles), respectively.
Figure 4.4 A summary of preparation required before performing the MAO inhibition assay.

Concentrations of the solutions are indicated in brackets.
Figure 4.5 Process-flow for the determination of IC$_{50}$ values for MAO inhibition (4-HQ = 4-hydroxyquinoline).

4.2.3.2 Results – IC$_{50}$ values

Table 4.1 The IC$_{50}$ values for the inhibition of human MAO-A and MAO-B by indanone derivatives 1a–h.

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC$_{50}$ MAO-A (μM)</th>
<th>IC$_{50}$ MAO-B (μM)</th>
<th>SI$^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>25.5 ± 3.69</td>
<td>6.35 ± 1.39</td>
<td>4</td>
</tr>
<tr>
<td>Compound</td>
<td>IC$_{50}$ MAO-A (μM)</td>
<td>IC$_{50}$ MAO-B (μM)</td>
<td>SI$^a$</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>1b</td>
<td>No inhibition$^b$</td>
<td>0.048 ± 0.0069</td>
<td>&gt;2083</td>
</tr>
<tr>
<td>1c</td>
<td>No inhibition$^b$</td>
<td>0.00033 ± 0.00010</td>
<td>&gt;303030</td>
</tr>
<tr>
<td>1d</td>
<td>No inhibition$^b$</td>
<td>0.351 ± 0.059</td>
<td>&gt;285</td>
</tr>
<tr>
<td>1e</td>
<td>33.5 ± 4.62</td>
<td>0.00013 ± 0.00002</td>
<td>257692</td>
</tr>
<tr>
<td>1f</td>
<td>No inhibition$^b$</td>
<td>0.000076 ± 0.00003</td>
<td>&gt;1315789</td>
</tr>
</tbody>
</table>
Table 4.2 The IC<sub>50</sub> values for the inhibition of human MAO-A and MAO-B by 1-indanol derivatives 1i–n.

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC&lt;sub&gt;50&lt;/sub&gt; MAO-A (μM)</th>
<th>IC&lt;sub&gt;50&lt;/sub&gt; MAO-B (μM)</th>
<th>SI&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>1i</td>
<td>No inhibition&lt;sup&gt;b&lt;/sup&gt;</td>
<td>0.075 ± 0.0073</td>
<td>&gt;1333</td>
</tr>
</tbody>
</table>

<sup>a</sup> Selectivity index (SI) = IC<sub>50</sub>(MAO-A)/ IC<sub>50</sub>(MAO-B). This value indicates the extent to which the test inhibitor is specific for MAO-B compared to MAO-A.

<sup>b</sup> No inhibition was observed at the maximum tested concentration (100 μM).
<table>
<thead>
<tr>
<th>Compound</th>
<th>IC$_{50}$ MAO-A (μM)</th>
<th>IC$_{50}$ MAO-B (μM)</th>
<th>SI$^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1j</td>
<td>No inhibition$^b$</td>
<td>0.030 ± 0.037</td>
<td>&gt;3333</td>
</tr>
<tr>
<td>1k</td>
<td>22.3 ± 6.75</td>
<td>0.648 ± 0.093</td>
<td>34</td>
</tr>
<tr>
<td>1l</td>
<td>No inhibition$^b$</td>
<td>0.007 ± 0.0011</td>
<td>&gt;14286</td>
</tr>
<tr>
<td>1m</td>
<td>No inhibition$^b$</td>
<td>0.074 ± 0.0021</td>
<td>&gt;1351</td>
</tr>
<tr>
<td>1n</td>
<td>No inhibition$^b$</td>
<td>0.063 ± 0.0023</td>
<td>&gt;1587</td>
</tr>
</tbody>
</table>

* All IC$_{50}$ determinations were conducted in triplicate and values are expressed as mean ± SD.

$^a$ Selectivity index (SI) = IC$_{50}$(MAO-A)/ IC$_{50}$(MAO-B). This value indicates the extent to which the test inhibitor is specific for MAO-B compared to MAO-A.

$^b$ No inhibition was observed at the maximum tested concentration (100 μM).
Table 4.3 The IC₅₀ values for the inhibition of human MAO-A and MAO-B by hydroxy-1-indanone derivatives 2a and 2c.

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC₅₀ MAO-A (µM)</th>
<th>IC₅₀ MAO-B (µM)</th>
<th>SI¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>2.15 ± 0.319</td>
<td>63.5 ± 5.95</td>
<td>0.034</td>
</tr>
<tr>
<td>2c</td>
<td>No inhibitionᵇ</td>
<td>No inhibitionᵇ</td>
<td>-</td>
</tr>
</tbody>
</table>

* All IC₅₀ determinations were conducted in triplicate and values are expressed as mean ± SD.

¹ Selectivity index (SI) = IC₅₀(MAO-A)/IC₅₀(MAO-B). This value indicates the extent to which the test inhibitor is specific for MAO-B compared to MAO-A.

ᵇ No inhibition was observed at the maximum tested concentration (100 µM).

Tables 4.1, 4.2 and 4.3 provide the IC₅₀ values for the inhibition of human MAO-A and MAO-B by the 1-indanone (1a-h), 1-indanol (1i-n) and hydroxy-1-indanone derivatives (2a-c). All IC₅₀ determinations were conducted in triplicate and the values are expressed as the mean ± SD. Low IC₅₀ values are indicative of potent MAO inhibition. The SI value is indicative of the selectivity of the inhibitor for MAO-B compared to MAO-A. Only 4 compounds inhibited MAO-A while no MAO-A inhibition was observed with the remaining 12 compounds, even at the maximum tested concentration (100 µM). The lowest possible SI value was given to the 12 compounds that exhibit no MAO-A inhibition with the assumption that IC₅₀ = 100 µM.

The following observations and comparisons may be made from the tables:

- Several indanone and indanol derivatives are human MAO-A and MAO-B inhibitors, exhibiting IC₅₀ values in the micromolar range. All compounds, except 2a, a hydroxy-1-indanone derivative, are specific inhibitors of the MAO-B isoform with SI values ranging from 4 to 1315789. It can therefore be concluded that all the indanone and indanol derivatives of this study are specific MAO-B inhibitors.
Examination of the inhibition potencies of the indanone derivatives reveals that compound 1f exhibits the highest potency MAO-B inhibition (IC<sub>50</sub> = 0.000076 μM) and compound 1a exhibits the highest potency MAO-A inhibition (IC<sub>50</sub> = 25.5 μM). Compound 1f is 1315789-fold more selective for MAO-B compared to the MAO-A isoform.

Examination of inhibition potencies of the indanol derivatives reveals that compound 1l exhibits the highest potency MAO-B inhibition (IC<sub>50</sub> = 0.007 μM). Compound 1k is the only indanol derivative that exhibits MAO-A inhibition (IC<sub>50</sub> = 22.3 μM). Compound 1l is 14286-fold more specific for MAO-B compared to the MAO-A isoform.

Compound 1f is the most potent MAO-B inhibitor of all the tested compounds and exhibits an IC<sub>50</sub> value of 0.000076 μM. It should be noted that impurities may have possibly contributed to the MAO inhibition activity of compound 1f with an estimated purity of 85.4% (1mM).

Compound 2a is the most potent MAO-A inhibitor of all the tested compounds, exhibiting an IC<sub>50</sub> value of 2.15 μM. It is also the only compound with a SI value <1 which indicates selectivity for MAO-A over the MAO-B isoform. It is noteworthy that this compound does not contain an alkyloxy substituent.

Of all compounds, compound 1f exhibits the highest selectivity for MAO-B with an SI value of >1315789.

The indanone derivatives are in general more potent MAO-B inhibitors than the indanol derivatives. This is supported by the observation that four indanone derivatives (compounds 1c, 1e, 1f and 1g) exhibit MAO-B inhibition with IC<sub>50</sub> values in the sub-nanomolar range (0.000076–0.00033 μM) while the MAO-B inhibition potencies of the indanol derivatives are in the micromolar range (IC<sub>50</sub> > 0.007 μM). It may thus be concluded that the 1-indanone scaffold is more suitable for the design of potent MAO-B inhibitors than the 1-indanol scaffold.
Evaluation of the effect of halogen (Cl) substitution on the inhibition properties of the indanone and indanol derivatives indicates that chlorine substitution on the benzyloxy ring yields more potent MAO-B inhibitors. For example, the chlorine substituted indanone derivative 1f (IC$_{50}$ = 0.000076 μM) is 4.3-fold more potent than its unsubstituted derivative 1c (IC$_{50}$ = 0.00033 μM). A similar observation was made with regards to the chlorine substituted indanol derivatives. The chlorine substituted indanol derivative 1l (IC$_{50}$ = 0.007 μM) is 11-fold more potent than the unsubstituted derivative 1i (IC$_{50}$ = 0.075 μM).

**Figure 4.6** Comparison of the structures of the most potent indanone (1f) and indanol (1l) derivatives.

**Figure 4.7** Comparison between the MAO-B inhibition potencies of unsubstituted and chlorine substituted indanone derivatives 1c (left) and 1f (right).
Figure 4.8 Comparison between the MAO-B inhibition potencies of unsubstituted and chlorine substituted indanol derivatives 1i (left) and 1l (right).

- Evaluation of the effect of chlorine substitution at different positions of the substituent ring reveals that, for the indanone derivatives, chlorine substitution on the para position of the benzyloxy side chain produces more potent MAO-B inhibition than substitution on the meta position. For example, compound 1f which is substituted with chlorine on the para position of the benzyloxy phenyl ring (IC$_{50}$ = 0.000076 μM), is 3-fold more potent than compound 1g (IC$_{50}$ = 0.00023), which is substituted with chlorine on the meta position of the benzyloxy phenyl ring.

Figure 4.9 Comparison between the MAO-B inhibition potencies of indanone derivatives with meta and para chlorine substitution on the benzyloxy phenyl ring. Compound 1g (left) and 1f (right) are provided as examples.

- Evaluation of the effect of chlorine substitution at different positions reveals that, for the indanol derivatives, chlorine substitution on the meta position of the benzyloxy side chain produces more potent MAO-B inhibitors than substitution on the para position. For example, compound 1n (IC$_{50}$ = 0.063 μM), which is substituted with chlorine on the meta position of the benzyloxy ring, is 1.2-fold more potent than compound 1m.
(IC\textsubscript{50} = 0.074), which is substituted with chlorine on the \textit{para} position of the benzyloxy phenyl ring.

\begin{align*}
\text{IC}_{50} \text{ MAO-B} &= 0.063 \ \mu\text{M} \\
\text{IC}_{50} \text{ MAO-B} &= 0.074 \ \mu\text{M}
\end{align*}

\textbf{Figure} 4.10 Comparison between the MAO-B inhibition potencies of indanol derivatives with \textit{meta} and \textit{para} chlorine substitution on the benzyloxy ring. Compound 1n (left) and 1m (right) are provided as examples.

- Evaluation of the effect of substitution with 4-chlorobenzyloxy on different positions of 1-indanone reveal that substitution on C6 yields the highest MAO-B inhibition potency (e.g. 1f, IC\textsubscript{50} = 0.000076 \ \mu\text{M}), substitution on C5 yields second best MAO-B inhibition (e.g. 1e, IC\textsubscript{50} = 0.00013 \ \mu\text{M}) and substitution on C4 yields the weakest MAO-B inhibition (1d, IC\textsubscript{50} = 0.351 \ \mu\text{M}). Compound 1f is thus 2-fold and 4618-fold more potent than compounds 1e and 1d, respectively.

\begin{align*}
\text{IC}_{50} \text{ MAO-B} &= 0.351 \ \mu\text{M}
\end{align*}
IC$_{50}$ MAO-B = 0.00013 μM

IC$_{50}$ MAO-B = 0.000076 μM

Inhibition potencies: C4 < C5 < C6

Figure 4.11 Comparison between MAO-B inhibition potencies of indanone derivatives substituted with 4-chlorobenzyloxy on C4, C5 and C6.

- Evaluation of the effect of substitution with 4-chlorobenzyloxy on different positions of 1-indanol reveals that substitution at C5 yields the highest potency MAO-B inhibition (1l, IC$_{50}$ MAO-B = 0.007 μM), C6 substitution yields the second highest inhibition (1m, IC$_{50}$ = 0.074 μM) and C4 substitution yields the weakest MAO-B inhibition (1k, IC$_{50}$ = 0.648 μM). Compound 1l is thus 11-fold and 92-fold more potent than compounds 1m and 1k, respectively. Compound 1k, the weakest MAO-B inhibitor, is also the only compound of these three that exhibit MAO-A inhibition with an IC$_{50}$ value of 22.3 μM.

IC$_{50}$ MAO-B = 0.648 μM
IC$_{50}$ MAO-B = 0.007 μM  IC$_{50}$ MAO-B = 0.074 μM

Inhibition potencies: C4 < C6 < C5

**Figure 4.12** Comparison between MAO-B inhibition potencies of 1-indanol derivatives substituted with the 4-chlorobenzylxylo on C4, C5 and C6.

- Evaluation of the MAO-B inhibition potencies of 1-indanone derivatives with different substituents, i.e. benzyloxy and 2-phenoxyethoxy, reveals that benzyloxy substitution produces compounds with higher potencies. For example, a compound substituted with benzyloxy on C5 (1b, IC$_{50}$ = 0.048 μM) is 1.5-fold more potent than a compound substituted with 2-phenoxyethoxy (1h, IC$_{50}$ = 0.070 μM). As mentioned, substitution with 4-chlorobenzylxylo (1e, IC$_{50}$ = 0.00013 μM) produces inhibitors with higher inhibition potencies than compounds with benzyloxy as substituent (1b, IC$_{50}$ = 0.048 μM). It can therefore be concluded that substitution with the 2-phenoxyethoxy side chain (1h, IC$_{50}$ = 0.070 μM) produces compounds with lower inhibition potency than substitution with 4-chlorobenzylxylo (1e, IC$_{50}$ = 0.00013 μM).
Figure 4.13 Comparison between the MAO-B inhibition potencies of 1-indanone derivatives with different substituents, i.e. 2-phenoxyethoxy (left), benzyloxy (middle) and 4-chlorobenzyloxy (right).

- Evaluation of the MAO inhibition potencies of 4-hydroxy-1-indanone and 6-hydroxy-1-indanone reveals that 4-hydroxy-1-indanone is a potent MAO-A inhibitor (2a, IC\textsubscript{50} = 2.15 μM) and a weak inhibitor of MAO-B (2a, IC\textsubscript{50} = 63.5 μM). In contrast, 6-hydroxy-1-indanone (2b) exhibits no inhibition of either MAO isoform at the maximum tested concentration of 100 μM.

Figure 4.14 Comparison between MAO inhibition potencies of 4-hydroxy-1-indanone (left) and 6-hydroxy-1-indanone (right).
4.3 Method – Reversibility of inhibition by dialysis

For the reversibility studies, compounds 2a and 1l were selected as representative test inhibitors since 2a is the most potent MAO-A inhibitor of all compounds evaluated, and 1l is the most potent MAO-B inhibitors among the alcohol derivatives. The reversibility studies were conducted by dialysis with Slide-A-Lyzer dialysis cassettes (Thermo Scientific). The cassettes have a sample volume capacity of 0.5 to 3 ml and a molecular weight cut-off of 10 000. Compounds 2a and 1l, at concentrations of 4 x IC₅₀, were pre-incubated with recombinant human MAO-A or MAO-B (0.03 mg protein/ml) at 37 ºC for 15 min. The buffer used for the enzyme-inhibitor incubations was potassium phosphate buffer (100 mM, pH 7.4, made isotonic with KCl) containing 5% sucrose. Control incubations were performed without inclusion of an inhibitor (negative control) and with inclusion of the irreversible inhibitors pargyline (IC₅₀(MAO-A) = 13 μM) or (R)-deprenyl (IC₅₀(MAO-B) = 0.079 μM) (positive controls). The dialysis mixtures consisted of a final of volume of 0.8 ml and DMSO (4%) served as co-solvent in all pre-incubations. The dialysis of the enzyme-inhibitor complexes were carried out for 20 to 25 h at 4 ºC in 80 ml outer buffer (100 mM potassium phosphate, pH 7.4, 5% sucrose). The sucrose buffer was replaced at 3 and 7 h following the start of dialysis. The residual MAO-A and MAO-B activities were determined after two-fold dilution of the reactions with the addition of kynuramine as the substrate. The final MAO concentration after dilution was 0.015 mg protein/ml and final kynuramine concentration, 50 μM. The reactions were incubated for 20 min and subsequently terminated by addition of 1000 μl deionised water and 400 μl NaOH (2 N). The concentrations of 4-hydroxyquinoline generated by MAO catalysis were measured by fluorescence spectrophotometry at λₑₓ = 310 nm and λₑₘ = 400 nm. The reactions were performed in triplicate and the residual catalytic rates are given as mean ± SD. For comparison, enzyme-inhibitor complexes that did not undergo dialysis were maintained at 4 ºC for the same amount of time and the residual MAO activity subsequently measured as above.

Quantitative estimations of 4-hydroxyquinoline in the enzymatic reactions were made by using a linear calibration curve. In order to make these estimations, known quantities of 4-hydroxyquinoline (0.047 – 1.560 μM) were dissolved in K₂HPO₄/KH₂PO₄ buffer (100 mM, pH 7.4, made isotonic with 20.2 mM KCl) to a final volume of 200 μl. To each calibration standard, 80 μl NaOH (2 N) was added.
**Figure 4.15** Summary of the buffer and dialysis conditions for the reversibility studies.

**K₂HPO₄/KH₂PO₄ buffer**
- Prepare as follows:
  - [100 mM]
  - pH 7.4
  - 5% sucrose
  - Use [20.2 mM] KCl to acquire isotonicity

**Incubation mixtures**
- Prepare dialysis mixtures as follows:
  - [0.03 mg/ml] MAO-A or MAO-B
  - [4 x IC₅₀] of the test inhibitor
  - Conduct incubations in final volume of 0.8 ml
  - Conduct control incubations in the absence of inhibitor, and presence of [4 x IC₅₀] pargyline or (R)-deprenyl
  - Pre-incubate for 15 min at 37 ºC
  - Dialyse for 24 h

---

**Figure 4.16** Process-flow of the reversibility studies (4-HQ = 4-hydroxyquinoline).
4.3.1 Results of reversibility studies

After dialysis of mixtures of compound 2a and 1l and MAO-A and MAO-B, respectively for 24 h, complete recovery of MAO-A and MAO-B activity could be observed (Figure 4.17). Inhibition of MAO-A and MAO-B by compounds 2a and 1l, respectively, are therefore completely reversible with the catalytic activity of MAO-A and MAO-B recovering to 85% and 96% of the control value (recorded without the presence of the inhibitor). Contrary to this, non-dialysed mixtures of MAO-A and MAO-B and the test inhibitors yielded residual activities of 72% and 74%, respectively. Dialysis of mixtures of MAO-A and pargyline, and MAO-B and (R)-deprenyl (both irreversible MAO inhibitors) resulted in almost no recovery of MAO-A and MAO-B activity, with residual enzyme activities of only 1.9% and 3%, respectively, of the control value. The conclusion may be made that 2a and 1l are reversible inhibitors of human MAO-A and MAO-B, and that all the other indanol derivatives (1i-n) synthesised in this study, are most likely also reversible MAO-B inhibitors.
Figure 4.16 Reversibility of inhibition of MAO-A and MAO-B by compounds 2a and 1l, respectively.

MAO-A was pre-incubated in the absence of inhibitor (2a = 0) and presence of 2a (2a = 4.3 µM) and pargyline (top), and MAO-B was pre-incubated in the absence of inhibitor and presence of 1l (1l = 0.014 µM) and (R)-deprenyl (bottom). After dialysis, the residual enzyme activities were measured. For comparison, the MAO-A [2a = 4.3 µM (ND)] and MAO-B [(1l = 0.014 µM (ND)] activities of non-dialysed mixtures of the MAOs and the test inhibitors were also measured.

4.4 Conclusion

The in vitro biological evaluation of the 1-indanone (1a-h), 1-indanol (1i-n) and hydroxy-1-indanone (2a, c) derivatives are presented and discussed in this chapter. The IC$_{50}$ values of all compounds were determined as a measure of enzyme inhibition potency. For the determination of IC$_{50}$ values, MAO activity measurements were performed with the use of recombinant MAO-A and MAO-B enzymes and the non-selective MAO-A/B substrate, kynuramine. Kynuramine is oxidised to yield 4-hydroxyquinoline, a fluorescent compound, by MAO. Sigmoidal dose-response curves were constructed from the MAO activity measurements in the presence of different concentrations of the synthesised compounds.
These curves were used for the estimation of IC$_{50}$ values. The conclusion can be made that the indanone derivatives, in general, are potent inhibitors of MAO-B, with compound 1f (IC$_{50}$ = 0.000076 μM) exhibiting the highest potency inhibition of the series of indanone derivatives. Although not as potent as the indanones, the indanol derivatives are also considered to be potent MAO-B inhibitors, with 1l (IC$_{50}$ = 0.007 μM) exhibiting the highest potency of the series of indanol derivatives. Compared to the reference MAO-B inhibitor, lazabemide which exhibits an IC$_{50}$ value of 0.091 μM (Petzer et al., 2013), most indanone and indanol derivatives are more potent MAO-B inhibitors. It was also determined that chlorine substitution on the substituent phenyl ring yields more potent MAO-B inhibition. For the indanone derivatives, substitution on the para position of the side chain phenyl ring yields more potent inhibitors while substitution on the meta position yields more potent inhibition for the indanol derivatives. Compounds 2a and 1l were selected for reversibility studies that were performed by dialysis. It was concluded that these compounds are reversible inhibitors of MAO-A and MAO-B, respectively. For a relatively small compound, 2a exhibits a high inhibition potency for human MAO-A with an IC$_{50}$ value of 2.15 μM. In comparison with a MAO-A inhibitor used in practice, toloxatone which exhibits an inhibition potency of 3.92 μM for MAO-A (Petzer et al., 2013), 2a is considered highly potent with regards to human MAO-A inhibition.

Figure 4.17 Chemical structures of the MAO-A inhibitor, toloxatone (left) and the MAO-B inhibitor, lazabemide (right).
CHAPTER 5: CONCLUSION

The focus of this study is the design of inhibitors for the MAO enzymes that are located on the outer membrane of the mitochondria. As discussed, two isoforms of the MAOs exist, namely MAO-A and MAO-B. MAO-A catalyses the deamination of NA, 5-HT, DA and tyramine, while MAO-B is responsible for the deamination of exogenous amines such as benzylamine, PE, DA and tyramine. MAO-A is selectively inhibited by clorgyline and MAO-B is selectively inhibited by (R)-deprenyl (Youdim & Bakhle, 2006). The two isoforms also differ with regards to regional distribution in tissues with MAO-A being the dominant isoform in the periphery while MAO-B exhibits the highest activity in the striatum and basal ganglia in the brain (Youdim et al., 2006). An important factor in the biology of the MAOs is the “cheese reaction”. The “cheese reaction” is induced when indirect acting sympathomimetic amines, such as tyramine present in food and wine, are consumed and MAO-A is irreversibly inhibited. Tyramine uptake from the GI tract increases which leads to an increase in NA release and ultimately a potentially fatal increase in blood pressure (Youdim & Bakhle, 2006). The MAOs are important drug targets. Inhibitors of MAO-A are indicated for depression and results in raised levels of 5-HT in the human brain (Pletscher, 1991). It is important to notice that MAO-A inhibitors may induce the life-threatening serotonin syndrome when co-administered with SSRI’s. MAO-B specific inhibitors, in turn, serve as treatment for PD as it increases DA levels in the human brain with no effect on MAO-A. Inhibitors of MAO-B may also be possibly neuroprotective and possess the potential to modify disease progression (Fernandez & Chen, 2007).

The most noteworthy MAO-B inhibitors are (R)-deprenyl and rasagiline, which are used in the treatment of PD. These inhibitors are irreversible inhibitors and initially bind in the same manner as reversible inhibitors but is subsequently oxidised to the active inhibitor, which binds covalently to the FAD cofactor. The MAO enzyme is therefore permanently unable to metabolise amines (Foley et al., 2000). Reversible inhibitors are thus considered a safer treatment option as potential side effects that may occur with MAO inhibition can be terminated immediately when administration of the drug is discontinued (Van den Berg et al., 2007).
The main objective of this study was to synthesise a series of 1-indanone and related 1-indanol derivatives as potential MAO inhibitors. The compounds were substituted at C4, C5, and C6 of the 1-indanone and 1-indanol rings with the benzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy and 2-phenoxethoxy moieties. Some of these moieties have previously been substituted on α-tetralone, which led to compounds with high MAO-B inhibition potency (Legoabe et al., 2014). Furthermore, a series of 1-indanones previously synthesised also presented with good MAO-B inhibition potencies (Mostert et al., 2015). It was proposed that substitution on C4 of the 1-indanone ring would yield highly selective MAO-B inhibitors without the liability of the “cheese reaction”. This hypothesis was made based on the observation that rasagiline binds in the substrate cavity of MAO-B and leaves the entrance cavity empty as shown in a crystal structure of the rasagiline-MAO-B complex published by Hubálek and colleagues (2004). Substitution with an appropriate substituent on C4 of rasagiline is hypothesised to extend into the entrance cavity and result in the fusion of the MAO-B cavities, which would yield highly selective “cavity-spanning” inhibitors of MAO-B. This theory was evaluated with 1-indanones of the present study since 1-indanone resembles the structure of rasagiline.

4-Hydroxy-1-indanone (2a) and 6-hydroxy-1-indanone (2c) were synthesised from commercially available 4-methoxy-1-indanone and 6-methoxy-1-indanone, respectively, and used as starting materials to synthesise five 1-indanone derivatives (1a, c, d, f, g). Commercially available 5-hydroxy-1-indanone, in turn, was used to synthesise a further three 1-indanone derivatives (1b, e, h). In total, eight 1-indanone derivatives (1a-h) were successfully synthesised. Six of the 1-indanone derivatives were successfully reduced to the corresponding alcohol derivatives (1i-n) as the reductions of 1a and 1h were unsuccessful even though various attempts were made. The structures of all synthesised compounds were elucidated with NMR and MS analysis and the purity of the compounds were estimated by HPLC analysis. The structures of the synthesised compounds corresponded well to the proposed structures and the compounds was of adequate purity for biological evaluation. The structures of the synthesised compounds and the corresponding IC\textsubscript{50} values obtained from MAO inhibition studies are tabulated underneath.

**Table 5.1** The synthesised 1-indanone derivatives (1a-h) and their corresponding IC\textsubscript{50} values for the inhibition of human MAO-A and MAO-B.
<table>
<thead>
<tr>
<th>Compound</th>
<th>IC$_{50}$ MAO-A (μM)</th>
<th>IC$_{50}$ MAO-B (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>25.5 ± 3.69</td>
<td>6.35 ± 1.39</td>
</tr>
<tr>
<td>1b</td>
<td>No inhibition$^b$</td>
<td>0.048 ± 0.0069</td>
</tr>
<tr>
<td>1c</td>
<td>No inhibition$^b$</td>
<td>0.00033 ± 0.00010</td>
</tr>
<tr>
<td>1d</td>
<td>No inhibition$^b$</td>
<td>0.351 ± 0.059</td>
</tr>
<tr>
<td>1e</td>
<td>33.5 ± 4.62</td>
<td>0.00013 ± 0.00002</td>
</tr>
<tr>
<td>1f</td>
<td>No inhibition$^b$</td>
<td>0.000076 ± 0.00003</td>
</tr>
</tbody>
</table>
* All IC$_{50}$ determinations were conducted in triplicate and values are expressed as mean ± SD.

b No inhibition was observed at the maximum tested concentration (100 μM).

**Table 5.2** The synthesised 1-indanol derivatives (1i-n) and their corresponding IC$_{50}$ values for the inhibition of human MAO-A and MAO-B.

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC$_{50}$ MAO-A (μM)</th>
<th>IC$_{50}$ MAO-B (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1g</strong></td>
<td>No inhibition$^b$</td>
<td>0.00023 ± 0.00002</td>
</tr>
<tr>
<td><strong>1h</strong></td>
<td>No inhibition$^b$</td>
<td>0.070 ± 0.0022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC$_{50}$ MAO-A (μM)</th>
<th>IC$_{50}$ MAO-B (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1i</strong></td>
<td>No inhibition$^b$</td>
<td>0.075 ± 0.0073</td>
</tr>
<tr>
<td><strong>1j</strong></td>
<td>No inhibition$^b$</td>
<td>0.030 ± 0.037</td>
</tr>
<tr>
<td><strong>1k</strong></td>
<td>22.3 ± 6.75</td>
<td>0.648 ± 0.093</td>
</tr>
</tbody>
</table>
Table 5.3 The synthesised hydroxy-1-indanone derivatives (2a, c) and their corresponding IC<sub>50</sub> values for the inhibition of human MAO-A and MAO-B.

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC&lt;sub&gt;50&lt;/sub&gt; MAO-A (μM)</th>
<th>IC&lt;sub&gt;50&lt;/sub&gt; MAO-B (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>2.15 ± 0.319</td>
<td>63.5 ± 5.95</td>
</tr>
<tr>
<td>2c</td>
<td>No inhibition&lt;sup&gt;b&lt;/sup&gt;</td>
<td>No inhibition&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

* All IC<sub>50</sub> determinations were conducted in triplicate and values are expressed as mean ± SD.

<sup>b</sup>No inhibition was observed at the maximum tested concentration (100 μM).
In order to determine the IC\textsubscript{50} values for the inhibition of MAO by the test compounds, recombinant human MAO-A and MAO-B were used as enzyme sources and kynuramine served as non-selective MAO-A/B substrate. The oxidation of kynuramine by MAO produces 4-hydroxyquinoline, a metabolite which fluoresces. By measuring the MAO catalytic rates at different inhibitor concentrations, sigmoidal dose-response curves were constructed and used to estimate the IC\textsubscript{50} values. From the results, it was concluded that the 1-indanone (1a-h) and 1-indanol (1i-n) derivatives are potent inhibitors of MAO-B, with 1a, 1e and 1k also exhibiting MAO-A inhibition, although with low potency. The 1-indanone derivatives in general exhibit higher inhibition potency than the 1-indanol derivatives with compound 1f (IC\textsubscript{50} = 0.000076 μM) possessing the highest inhibition potency of the indanones. Compound 1l (IC\textsubscript{50} = 0.007 μM) exhibits the highest inhibition potency of the indanol derivatives, although it is 92-fold weaker than compound 1f. It was interesting to note that 4-hydroxy-1-indanone (2a; IC\textsubscript{50} = 2.15 μM) is a good potency inhibitor of MAO-A and approximately equipotent to the known MAO-A inhibitor, toloxatone (IC\textsubscript{50}= 3.92 μM). 6-Hydroxy-1-indanone (2c), in turn, is not a MAO-A inhibitor.

Compounds 2a and 1l were selected for the reversibility studies. Compound 1l exhibits the highest MAO-B inhibition activity of the 1-indanol derivatives. The results showed that dialysis of mixtures of MAO-A and 2a, and MAO-B and 1l restored enzyme activity and it was concluded that these inhibitors are reversible MAO inhibitors. It may thus be concluded that 1-indanol derivatives act as reversible inhibitors of MAO-B. Reversibility studies have previously been carried out with 1-indanone derivatives and the conclusion was made that 1-indanones are also reversible inhibitors of MAO-B (Mostert \textit{et al.}, 2015).

This study proved the hypothesis that 1-indanone and 1-indanol derivatives are promising leads for the design of potent MAO-B inhibitors. Substitution on C6 and C5 proved to yield highly potent MAO-B inhibitors. However, the proposal that substitution on C4 of 1-indanone and 1-indanol derivatives would yield highly selective and potent MAO-B inhibitors, was not substantiated. The C4-substituted 1-indanone and 1-indanol derivatives, compounds 1a (IC\textsubscript{50} = 6.35 μM), 1d (IC\textsubscript{50} = 0.351 μM) and 1k (IC\textsubscript{50} = 0.648 μM), exhibit relatively weaker MAO-B inhibition compared to the C5- and C6-substituted derivatives. The conclusion can therefore be made that 1-indanone and 1-indanol are promising scaffolds for the future design of MAO-B inhibitors with high inhibition potency, especially when substitution takes place on C5 or C6.
Based on the above, the following recommendations can be made for the future design of MAO-B inhibitors:

- 1-Indanone and 1-indanol proved to be suitable scaffolds for the design of potent MAO-B inhibitors in this study. It is recommended to expand the series with a wider variety of substituents on C5 and C6. This would yield more useful SAR.

- Compound 1f was the most potent MAO-B inhibitor of the 1-indanone derivatives and compound 1l the most potent MAO-B inhibitor of the 1-indanol derivatives in this study. These could be used as lead compounds in the future design of MAO-B inhibitors. Different halogens and alkyl groups may be substituted on the phenyl ring of the substituent to determine which yields the most potent MAO-B inhibition.

- Compound 1f also exhibited the highest selectivity for MAO-B inhibition in this study and may be used as lead compound to improve the selectivity of MAO-B inhibitors.

- Compound 2a exhibited the best MAO-A inhibition potency and can be used as a lead compound in the future design of potent MAO-A inhibitors. It is recommended to use small substituents as this study indicated that large substituents does not lead to potent MAO-A inhibition.

- Since compounds 1a, 1d and 1k did not display the selectivity and high MAO-B inhibition potency that were anticipated, this study shows that substitution on C4 is not a viable option for the design of potent and selective MAO-B inhibitors. It is, however, recommended that the structural basis for the low MAO-B inhibition potency of the C4-substituted 1-Indanone and 1-indanol derivatives be investigated to identify key residues in the MAO-B active site that may restrict the binding of inhibitors. This would assist in the design of inhibitors that avoid interactions with these residues.
Bibliography


113


astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. 


ANNEXURE A: $^1$H-NMR and $^{13}$C-NMR spectra

4-Benzylxy-1-indanone (1a)

$^1$H NMR (600 MHz, CDCl$_3$) δ 7.38 – 7.31 (m, 4H), 7.30 – 7.22 (m, 3H), 7.00 (d, $J = 7.8$ Hz, 1H), 5.09 (s, 2H), 3.06 – 2.98 (m, 2H), 2.67 – 2.53 (m, 2H).
4-Benzylloxy-1-indanone (1a)

\[
\begin{align*}
\text{\textsuperscript{13}C NMR (151 MHz, CDCl\textsubscript{3})} & \delta 207.25, 156.23, 144.52, 138.80, 136.60, 128.83, 128.70, 128.15, 127.24, 116.28, 115.68, 70.08, 36.19, 22.71.
\end{align*}
\]
5-Benzylxy-1-indanone (1b)

$^1$H NMR (600 MHz, CDCl$_3$) $\delta$ 7.63 – 7.60 (m, 1H), 7.37 – 7.31 (m, 4H), 7.30 – 7.26 (m, 1H), 6.91 – 6.89 (m, 2H), 5.06 (s, 2H), 3.03 – 2.96 (m, 2H), 2.64 – 2.53 (m, 2H).
$^{13}$C NMR (151 MHz, CDCl$_3$) δ 205.30, 164.38, 158.14, 136.10, 130.66, 128.76, 128.32, 127.48, 125.43, 115.92, 110.82, 70.32, 36.47, 25.92.
6-Benzylloxy-1-indanone (1c)

$^1$H NMR (600 MHz, CDCl$_3$) $\delta$ 7.36 (d, $J = 7.3$ Hz, 2H), 7.34 – 7.29 (m, 1.3 Hz, 3H), 7.28 – 7.24 (m, 1H), 7.21 – 7.18 (m, 2H), 5.01 (s, 2H), 3.04 – 2.96 (m, 2H), 2.69 – 2.60 (m, 2H).
6-Benzylxy-1-indanone (1c)

\[ \text{13C NMR (151 MHz, CDCl}_3\text{) } \delta 207.00, 158.49, 148.25, 138.26, 136.45, 128.67, 128.16, 127.57, 127.50, 124.63, 106.15, 70.32, 37.03, 25.17. \]
4-(4-Chlorobenzyloxy)-1-indanone (1d)

\[ \text{O} \]
\[ \text{Cl} \]

\[ \text{O} \]
\[ \text{Cl} \]

\(^1\)H NMR (600 MHz, CDCl\textsubscript{3}) \( \delta \) 7.34 – 7.27 (m, 5H), 7.24 (t, \( J = 7.7 \) Hz, 1H), 6.99 (dd, \( J = 7.9, 0.9 \) Hz, 1H), 5.05 (s, 2H), 3.05 – 2.97 (m, 2H), 2.72 – 2.51 (m, 2H).
4-(4-Chlorobenzyloxy)-1-indanone (1d)

$^1$C NMR (151 MHz, CDCl$_3$) $\delta$ 207.13, 155.98, 144.41, 138.87, 135.06, 133.99, 128.90, 128.86, 128.58, 116.19, 115.90, 69.32, 36.16, 22.68.
5-(4-Chlorobenzyloxy)-1-indanone (1e)

\[ \text{Cl} \quad \text{O} \quad \text{N} \quad \text{O} \quad \text{Cl} \]

$^1$H NMR (600 MHz, CDCl$_3$) $\delta$ 7.34 – 7.26 (m, 5H), 7.21 – 7.15 (m, 2H), 4.98 (s, 2H), 3.03 – 2.99 (m, 2H), 2.67 – 2.62 (m, 2H).
5-(4-Chlorobenzyloxy)-1-indanone (1e)

$\text{O} \quad \text{Cl}$

$^{13}$C NMR (151 MHz, CDCl$_3$) $\delta$ 206.91, 158.21, 148.41, 138.28, 134.95, 133.96, 128.85, 127.58, 124.56, 106.13, 69.50, 37.02, 25.17.
6-(4-Chlorobenzyloxy)-1-indanone (1f)

$^1$H NMR (600 MHz, CDCl$_3$) $\delta$ 7.33 – 7.24 (m, 4H), 7.19-7.14 (m, 2H), 7.16 (s, 1H), 4.98 (s, 2H), 3.00 – 2.91 (m, 2H), 2.66 – 2.62 (m, 2H).
6-(4-Chlorobenzyloxy)-1-indanone (1f)

$\text{Cl}$

$\text{O}$

$\text{C}$

$\text{O}$

$\text{C}$

$\text{NMR (151 MHz, CDCl}_3\text{)} \delta 206.91, 158.21, 148.41, 138.28, 134.96, 133.96, 128.84, 127.58, 124.55, 106.14, 69.57, 37.02, 25.17.$
6-(3-Chlorobenzyloxy)-1-indanone (1g)

\[
\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{O} \\
\text{C}l
\end{array}
\]

\[\text{H NMR (600 MHz, CDCl}_3\text{)} \delta 7.36 (s, 1H), 7.33 (dd, J = 8.3, 0.9 Hz, 1H), 7.27 - 7.21 (m, 3H), 7.19 (dd, J = 7.4, 2.5, 1H), 7.17 (d, J = 2.6 Hz, 1H), 4.99 (s, 2H), 3.06 - 2.97 (m, 2H), 2.68 - 2.61 (m, 2H).\]
6-(3-Chlorobenzyloxy)-1-indanone (1g)

$\text{Cl}$

$^{13}$C NMR (151 MHz, CDCl$_3$) $\delta$ 206.91, 158.17, 148.48, 138.52, 138.29, 134.61, 129.94, 128.27, 127.62, 127.45, 125.41, 124.55, 106.09, 69.41, 37.02, 25.18.
5-(2-Phenoxyethoxy)-1-indanone (1h)

$^1$H NMR (600 MHz, CDCl$_3$) $\delta$ 7.63 (d, 9.2 Hz, 1H), 7.24 (t, $J = 8.0$ Hz, 2H), 6.95 – 6.85 (m, 5H), 4.35 – 4.31 (m, 2H), 4.31 – 4.27 (m, 2H), 3.11 – 2.92 (m, 2H), 2.71 – 2.48 (m, 2H).
5-(2-Phenoxyethoxy)-1-indanone (1h)

$^{13}$C NMR (151 MHz, CDCl$_3$) δ 205.29, 164.28, 158.47, 158.10, 130.77, 129.59, 125.44, 121.32, 115.70, 114.69, 110.61, 66.91, 66.20, 36.47, 25.9
5-Benzylloxy-1-indanol (1i)

$^1$H NMR (600 MHz, CDCl$_3$) $\delta$ 7.36 – 7.33 (d, $J = 7.1$ Hz, 2H), 7.31 (t, $J = 7.1$ Hz, 2H), 7.27 – 7.21 (m, 2H), 6.83 – 6.71 (m, 2H), 5.10 (t, $J = 6.9$ Hz, 1H), 4.98 (s, 2H), 3.01 – 2.90 (m, 5.4 Hz, 1H), 2.76 – 2.64 (m, 1H), 2.45 – 2.31 (m, 1H), 1.92 – 1.82 (m, 1H).
5-Benzylxy-1-indanol (1i)

$\mathrm{\text{O}}$ $\mathrm{O}$

$\mathrm{13C \text{ NMR (151 MHz, CDCl}_3) \delta 159.46, 145.31, 137.66, 137.09, 128.61, 127.96, 127.44, 125.11, 113.87, 110.89, 75.89, 70.17, 36.29, 30.02.}$
6-Benzyleoxy-1-indanol (1j)

$^1$H NMR (600 MHz, CDCl$_3$) $\delta$ 7.35 (d, $J = 7.3$ Hz, 2H), 7.30 (t, $J = 7.3$ Hz, 2H), 7.27 – 7.15 (m, 1H), 7.06 (d, $J = 8.2$ Hz, 1H), 6.95 (d, $J = 2.2$ Hz, 1H), 6.82 (dd, $J = 8.2, 2.4$ Hz, 1H), 5.10 (s, 1H), 4.98 (s, 2H), 2.93 – 2.84 (m, 1H), 2.73 – 2.59 (m, 1H), 2.46 – 2.36 (m, 1H), 1.90 – 1.80 (m, 1H).
6-Benzylxy-1-indanol (1j)

$\begin{align*}
\text{C NMR (151 MHz, CDCl}_3) \delta & 158.28, 146.42, 137.19, 135.45, 128.59, 127.93, 127.48, 125.57, 115.91, 110.00, \\
& 76.64, 70.32, 36.59, 29.00.
\end{align*}$
4-(4-Chlorobenzyloxy)-1-indanol (1k)

\[
\text{O} \quad \text{O} \quad \text{Cl}
\]

\[
\begin{align*}
{^1}H \text{ NMR (600 MHz, CDCl}_3) & \delta 7.31 - 7.25 (m, 4H), 7.13 (t, J = 7.8 \text{ Hz, 1H}), 6.99 (d, J = 7.5 \text{ Hz, 1H}), 6.72 (d, J = 8.1 \text{ Hz, 1H}), 5.27 - 7.17 (m, 1H), 4.99 (s, 2H), 3.03 - 2.95 (m, 1H), 2.76 - 2.67 (m, 1H), 2.47 - 2.38 (m, 1H), 1.93 - 1.84 (m, 1H). 
\end{align*}
\]
4-(4-Chlorobenzyloxy)-1-indanol (1k)

$^{13}$C NMR (151 MHz, CDCl$_3$) $\delta$ 155.00, 147.14, 135.75, 133.65, 131.65, 128.76, 128.50, 128.39, 116.89, 111.14, 69.11, 35.65, 26.63.
5-(4-Chlorobenzyloxy)-1-indanol (1I)

$\text{H NMR (600 MHz, CDCl}_3 \delta 7.32 - 7.16 \text{ (m, 5H), 6.78 - 6.72 \text{ (m, 2H), 5.11 \text{ (s, 1H), 4.95 \text{ (s, 2H), 3.00 - 2.91 \text{ (m, 1H), 2.74 - 2.65 \text{ (m, 1H), 2.45 - 2.34 \text{ (m, 1H), 1.94 - 1.83 \text{ (m, 1H).)}}}}}$
5-(4-Chlorobenzyloxy)-1-indanol (1l)

$\text{Cl} \quad \text{O} \quad \text{OH}

^{13}C\text{ NMR (151 MHz, CDCl}_3) \delta 159.19, 145.38, 137.87, 135.60, 133.73, 128.78, 128.73, 125.17, 113.85, 110.92, 75.89, 69.40, 36.32, 30.04.$
6-(4-Chlorobenzyloxy)-1-indanol (1m)

$\text{\textsuperscript{1}H NMR (600 MHz, CDCl}_3$} \delta 7.30 – 7.24 (m, 4H), 7.07 (d, $J = 8.2$ Hz, 1H), 6.93 (d, $J = 2.0$ Hz, 1H), 6.79 (dd, $J = 8.2$, 2.3 Hz, 1H), 5.08 (s, 1H), 4.94 (s, 2H), 2.95 – 2.84 (m, 1H), 2.73 – 2.58 (m, 1H), 2.48 – 2.38 (m, 1H), 1.91 – 1.79 (m, 1H).
6-(4-Chlorobenzyloxy)-1-indanol (1m)

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
\text{O} & \quad \text{C} & \quad \text{H}
\end{align*}
\]

\[\delta 157.97, 146.46, 135.67, 135.66, 133.70, 128.77, 125.63, 115.85, 109.97, 76.62, 69.50, 36.61, 29.00.\]
6-(3-Chlorobenzyloxy)-1-indanol (1n)

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
\text{O} & \quad \text{C}l
\end{align*}
\]

\[^1H\text{ NMR (600 MHz, CDCl}_3\text{)} \delta 7.30 – 7.17 (m, 5H), 6.76 (d, J = 6.3 Hz, 2H), 5.11 (s, 1H), 4.95 (s, 2H), 3.00 – 2.91 (m, 1H), 2.74 – 2.65 (m, 1H), 2.45 – 2.34 (m, 1H), 1.94 – 1.83 (m, 1H).\]

\[
\begin{array}{c}
\text{1H NMR (600 MHz, CDCl}{}_3\text{)} \delta 7.30 – 7.17 (m, 5H), 6.76 (d, J = 6.3 Hz, 2H), 5.11 (s, 1H), 4.95 (s, 2H), 3.00 – 2.91 (m, 1H), 2.74 – 2.65 (m, 1H), 2.45 – 2.34 (m, 1H), 1.94 – 1.83 (m, 1H).
\end{array}
\]
6-(3-Chlorobenzyloxy)-1-indanol (1n)

$\text{C H NMR (151 MHz, CDCl}_3 \delta 157.93, 146.48, 139.26, 135.73, 134.52, 129.87, 128.05, 127.41, 125.66, 125.35, 115.84, 109.96, 69.45, 36.58, 29.01, 14.10.$
4-Hydroxy-1-indanone (2a)

\[
\begin{align*}
\text{OH} & \quad \text{O} \\
\text{H} & \quad \text{N} & \quad \text{M} & \quad \text{E} & \quad \text{O}
\end{align*}
\]

$^1$H NMR (600 MHz, DMSO-d$_6$) $\delta$ 9.75 (s, 1H), 7.05 (t, $J$ = 7.7 Hz, 1H), 6.89 (d, $J$ = 7.5 Hz, 1H), 6.85 (dd, $J$ = 7.8, 1.0 Hz, 1H), 2.78 – 2.69 (m, 2H), 2.45 – 2.36 (m, 2H).
4-Hydroxy-1-indanone (2a)

\[ \text{OH} \]

\[ \text{C} \]

\[ \text{H} \]

\[ \text{N} \]

\[ \text{O} \]

\[ \text{O} \]

$^{13}$C NMR (151 MHz, DMSO) δ 155.60, 142.31, 138.88, 129.08, 120.23, 113.79, 36.25, 31.14, 22.76.

6-Hydroxy-1-indanone (2c)
1H NMR (600 MHz, DMSO-\textit{d}_6) \delta 10.48 (s, 1H), 7.48 (d, \textit{J} = 8.3 \text{ Hz}, 1H), 6.85 (d, \textit{J} = 2.1 \text{ Hz}, 1H), 6.80 (dd, \textit{J} = 8.4, 2.1 \text{ Hz}, 1H), 3.03 – 2.95 (m, 2H), 2.57 – 2.51 (m, 2H).

6-Hydroxy-1-indanone (2c)
$^{13}$C NMR (151 MHz, DMSO) $\delta$ 204.48, 164.10, 158.73, 129.08, 125.36, 116.20, 112.52, 36.39, 25.65.

**ANNEXURE B: MASS SPECTRA**
4-Benzyloxy-1-indanone (1a)

5-Benzyloxy-1-indanone (1b)

6-Benzyloxy-1-indanone (1c)
4-(4-Chlorobenzyloxy)-1-indanone (1d)

5-(4-Chlorobenzyloxy)-1-indanone (1e)
6-(4-Chlorobenzyloxy)-1-indanone (1f)

6-(3-Chlorobenzyloxy)-1-indanone (1g)
5-(2-Phenoxyethoxy)-1-indanone (1h)
5-Benzyloxy-1-indanol (1i)

6-Benzyloxy-1-indanol (1j)
4-(4-Chlorobenzyloxy)-1-indanol (1k)

5-(4-Chlorobenzyloxy)-1-indanol (1l)
6-(4-Chlorobenzyloxy)-1-indanol (1m)

6-(3-Chlorobenzyloxy)-1-indanol (1n)
4-Hydroxy-1-indanone (2a)

6-Hydroxy-1-indanone (2c)
ANNEXURE C: HPLC

4-Benzylxy-1-ctananone (1a) – 1 mM

4-Benzylxy-1-ctananone (1a) – 100 μM
5-Benzyloxy-1-indanone (1b) – 1 mM

5-Benzyloxy-1-indanone (1b) – 100 μM
6-Benzylxy-1-indanone (1c) – 1 mM

6-Benzylxy-1-indanone (1c) – 100 μM
4-(4-Chlorobenzyloxy)-1-indanone (1d) – 1 mM

4-(4-Chlorobenzyloxy)-1-indanone (1d) – 100 μM
5-(4-Chlorobenzyloxy)-1-indanone (1e) – 1 mM

5-(4-Chlorobenzyloxy)-1-indanone (1e) – 100 μM
6-(4-Chlorobenzyloxy)-1-indanone (1f) – 1 mM

6-(4-Chlorobenzyloxy)-1-indanone (1f) – 100 μM
6-(3-Chlorobenzyloxy)-1-indanone (1g) – 1 mM

6-(3-Chlorobenzyloxy)-1-indanone (1g) – 100 μM
5-(2-Phenoxyethoxy)-1-indanone (1h) - 1 mM

5-(2-Phenoxyethoxy)-1-indanone (1h) - 100 μM
5-Benzylxy-1-indanol (11) - 1 mM

5-Benzylxy-1-indanol (11) - 100 μM
6-Benzylxy-1-indanol (1j) - 1 mM

6-Benzylxy-1-indanol (1j) - 100 μM
4-(4-Chlorobenzyloxy)-1-indanol (1k) - 1 mM

4-(4-Chlorobenzyloxy)-1-indanol (1k) - 100 μM
5-(4-Chlorobenzyloxy)-1-indanol (11) - 100 mM

5-(4-Chlorobenzyloxy)-1-indanol (11) - 1 μM
6-(4-Chlorobenzyloxy)-1-indanol (1m) - 1 mM

6-(4-Chlorobenzyloxy)-1-indanol (1m) - 100 μM
6-(3-Chlorobenzyloxy)-1-indanol (1n) - 1 mM

6-(3-Chlorobenzyloxy)-1-indanol (1n) - 100 μM
4-Hydroxy-1-indanone (2a) - 1 mM

4-Hydroxy-1-indanone (2a) - 100 μM
6-Hydroxy-1-indanone (2c) - 1 mM

6-Hydroxy-1-indanone (2c) - 100 μM
**ANNEXURE D: PERMISSION**

**JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS**

Oct 04, 2017

This Agreement between Ms. Elani Aucamp ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>4196401028093</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Sep 26, 2017</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>John Wiley and Sons</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>British Journal of Pharmacology</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>Monoamine oxidase: isoforms and inhibitors in Parkinson's disease and depressive illness</td>
</tr>
<tr>
<td>Licensed Content Author</td>
<td>Moussa B H Youdim, Y S Bakhle</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>Feb 2, 2009</td>
</tr>
<tr>
<td>Licensed Content Pages</td>
<td>1</td>
</tr>
<tr>
<td>Type of use</td>
<td>Dissertation/Thesis</td>
</tr>
<tr>
<td>Requestor type</td>
<td>University/Academic</td>
</tr>
<tr>
<td>Format</td>
<td>Print and electronic</td>
</tr>
<tr>
<td>Portion</td>
<td>Figure/table</td>
</tr>
<tr>
<td>Number of figures/tables</td>
<td>3</td>
</tr>
<tr>
<td>Original Wiley figure/table number(s)</td>
<td>Figures 1, 3 and 7</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>No</td>
</tr>
<tr>
<td>Title of your thesis / dissertation</td>
<td>An investigation of indanone derivatives as inhibitors of monoamine oxidase</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>Oct 2017</td>
</tr>
<tr>
<td>Expected size (number of pages)</td>
<td>130</td>
</tr>
</tbody>
</table>
| Requestor Location    | Ms. Elani Aucamp  
P.O. Box 413  
Park South  
Vanderbijlpark, Gauteng 1910  
South Africa  
Attn: Ms. Elani Aucamp |
| Publisher Tax ID      | EU026007151    |
| Billing Type          | Invoice        |
| Billing Address       | Ms. Elani Aucamp  
P.O. Box 413  
Park South  
Vanderbijlpark, South Africa 1910  
Attn: Ms. Elani Aucamp |
| Total                 | 0.00 USD       |

Terms and Conditions
This Agreement between Ms. Elani Aucamp ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>4196450698462</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Sep 26, 2017</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>Journal of Molecular Biology</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>Crystal Structure of Amin Oxidase from Bovine Serum</td>
</tr>
<tr>
<td>Licensed Content Author</td>
<td>Michele Lunelli, Maria Luisa Di Paolo, Marianna Blandine, Vito Calderone, Roberto Battistutta, Marina Scarpa, Adelio Rigo, Giuseppe Zanotti</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>Mar 4, 2005</td>
</tr>
<tr>
<td>Licensed Content Volume</td>
<td>346</td>
</tr>
<tr>
<td>Licensed Content Issue</td>
<td>4</td>
</tr>
<tr>
<td>Licensed Content Pages</td>
<td>14</td>
</tr>
<tr>
<td>Start Page</td>
<td>991</td>
</tr>
<tr>
<td>End Page</td>
<td>1004</td>
</tr>
<tr>
<td>Type of Use</td>
<td>reuse in a thesis/dissertation</td>
</tr>
<tr>
<td>Intended publisher of new work</td>
<td>other</td>
</tr>
<tr>
<td>Portion</td>
<td>figures/tables/illustrations</td>
</tr>
<tr>
<td>Number of figures/tables/illustrations</td>
<td>1</td>
</tr>
<tr>
<td>Format</td>
<td>both print and electronic</td>
</tr>
<tr>
<td>Are you the author of this Elsevier article?</td>
<td>No</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>No</td>
</tr>
<tr>
<td>Original figure numbers</td>
<td>Figure 1</td>
</tr>
<tr>
<td>Title of your thesis/dissertation</td>
<td>An investigation of indanone derivatives as inhibitors of monoamine oxidase</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>Oct 2017</td>
</tr>
<tr>
<td>Estimated size (number of pages)</td>
<td>130</td>
</tr>
</tbody>
</table>
| Requestor Location | Ms. Elani Aucamp  
P.O. Box 413  
Park South  
Vanderbijlpark, Gauteng 1910  
South Africa  
Attn: Ms. Elani Aucamp |
| Publisher Tax ID | ZA 4110266048 |
| Total | 0.00 USD |

Terms and Conditions
PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

If credit is given to another source for the material you requested, permission must be obtained from that source.
Louise Jones <lj@iucr.org>

Dear Elani

Thank you for your message.

Permission is hereby granted, on behalf of the IUCr, for you to reproduce the material specified below, subject to the following conditions:

1. The original article in which the material appeared is cited.

2. IUCr's copyright permission is indicated next to the figure in print. In electronic form, this acknowledgement must be visible at the same time as the article, and must be hyperlinked to the articles in Crystallography Journals Online <a href="https://doi.org/10.1107/S1744309110041515">Acta Cryst. (2010). F66, 1572-1578</a>.

Best wishes
Louise