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Abstract: Shot boundary detection is an integral part of multimedia, be it video management or video
processing. Multiple boundary detection techniques have been developed throughout the years, but
are only applicable to very specific instances. The Jensen-Shannon divergence (JSD) is one such
a technique that can be implemented to detect the shot boundaries in digital videos. This paper
investigates the use of the JSD algorithm to detect shot boundaries in streaming media applications.
Furthermore, the effects of the various parameters used by the JSD technique, on the accuracy of the
detected boundaries, are quantified by the recall and precision metrics all the while keeping track of
how they affect the execution time.
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1. INTRODUCTION

Throughout the years, humanity has made advances in
every field of research and brought forth new technologies.
One example of this technological progression is the
advancement from film-based videos to the digital age
where videos are no longer confined to film. Along with
the physical progression between the media, the techniques
associated with videos had to adapt as well.

One of the core techniques that is encountered when
working with video analysis software; video storage
and management systems; or the on-line video indexing
systems, is called a shot boundary detector [5].

As the technology has progressed and processing
capabilities became readily available, a multitude of
techniques could be implemented without worrying too
much about the processing requirements.

There are however still applications that require the same
detection capabilities, but where processing time is of the
utmost importance. A further constraint arises for these
techniques if they are to be implemented on streaming
digital media - only current and historic data is available
to the algorithm. Both of these constraints are addressed
by the real-time criterion as discussed in Section 3.2.

Due to the varying nature of videos, each available
technique will perform differently based on the input data.
In this investigation the sensitivity of one such technique,
the Jensen-Shannon divergence, is evaluated for a generic
set of test videos. The knowledge gained from this analysis
provides a set of seed parameter values, as well as an
understanding of the various parameters’ effects on the

algorithm when used in conjunction with streaming media.

2. LITERATURE OVERVIEW

Although a literature study of the latest video segmentation
literature produced multiple documents pertaining to video
segmentation, it was met with some confusion. While
the term is technically applicable to all instances, it does
cause some confusion with regards to the focus of the
segmentation. Within the context of this article, the term
video segmentation refers to segmentation of a video into
the various segments from which it is comprised, by
employing a shot boundary detector. There are however
other forms of video segmentation used to segment the
video in other contexts.

One such a video segmentation method is focused on the
regions within frames - e.g. to generate a binary mask
for a given target object in each frame [25]. While some
of these masking-video segmentation methodologies can
be employed to measure the consistency or presence of
a target in a frame, which can be evaluated to detect a
possible shot boundary, it generally comes at a price as
it is computationally expensive. Similarly Caelles et al.
discusses the semi-supervised video object segmentation
regarding the separation of an object from the background
in a video [7].

These masking-video segmentation methodologies face
the same issues as the proposed shot boundary detector
methodology - the efficiency of a segmentation technique
may vary with the category or genre of the video being
analysed [4]. Although the area of segmentation differs
from what is addressed in this article, both are affected
by the genre of the video being analysed. In order to
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mitigate this sensitivity as far as possible, the sensitivity of
the proposed algorithm in this article is evaluated by using
a multi-genre data set.

In some instances the term video segmentation is more
focused on the physical data representing the video.
Kalaiselvi et al. used the term video segmentation to
describe the segmentation techniques pertaining to the data
segmentation for cloud storage in [14].

While there are multiple techniques that are able to
detect the various boundary frames between scenes, many
of them rely on the whole video being available for a
recursive analysis. One such an algorithm is employed by
Sakarya et al. where the most reliable solution is evaluated
with the first pass while other solutions are exploited in
subsequent recursive steps [21]. While this approach can
produce accurate results, it is in violation of the real-time
constrains.

Similarly the term video temporal segmentation is used by
e Santos et al. in [10] to refer to a video transition detection
method. While the video segmentation method pertains to
the detection of transitions, it does however also require
the whole video to be available as they normalize their
dissimilarity vector as well as employing a double-sided
moving average window - i.e. using future frames.

Although the aforementioned video segmentation lit-
erature might be focussed on different segmentation
contexts, many of them still share common shortfalls
such as requiring the whole video to be available or
the genre-sensitivity. While these shortcomings were
taken into account, it was noticed that the majority of
available literature does not expand on the sensitivity
of the parameter values they employ. One such an
example is the work presented by Widiarto et al. in [28]
where they implemented a histogram based approach for
video segmentation by calculating histograms for each
of the RGB (Red-Green-Blue) color components of the
video. There is however no information, nor justification
provided as to the chosen threshold used in conjunction
with the Euclidean distance metric which is calculated
from the histograms. While the work presented in [28]
utilises a video segmentation algorithm, the focus seems
to be on subsequent processing of the video, with no
useful information pertaining to the video segmentation
algorithm.

Mentzelopoulos et al. also proposed an entropy based
algorithm for key-frame extraction in [18]. While the
algorithm performed very well when the background
image was easily distinguishable from the objects,
the performance dropped when transient changes were
encountered.

While it is clear from the latest literature sources that
there is still a need for video segmentation in all its
variable contexts, the lack of parameter justification and
the sensitivity thereof, makes it difficult to apply or predict
the outcome of these algorithms on different types or sizes
of videos. The aim of this paper is to provide parameter

justification and a sensitivity analysis thereof to aid in
the application of this video segmentation algorithm in
different implementations and various video sets.

3. BACKGROUND

In order to understand and appreciate the functionality of
a shot boundary detector (SBD), one has to understand the
basic underlying structure of video files. Automatic shot
boundary detection plays a pivotal role in completing tasks
such as video abstraction and keyframe selection [8]. The
ambiguous term video has its origin from the Latin word
videre meaning ‘to see’ combined with the English word
audio which refers to the process of hearing, ultimately
forming a word that describes a coalesced union of audio
and visual material known as video. For the purpose of this
investigation, the term video will semantically refer to the
visual aspect thereof.

3.1 Video structure

A generic video file V can be defined as a collection of
various smaller sections called shots s:

V = {s1,s2, . . . ,sn−1,sn}, n ∈ Z. (1)

These shots are defined as video segments that are visually
contiguous and generally captured during a single take.
This implies that although the visual content might be
varying as is the nature of videos, the inter-frame variances
φ should be small compared to the inter-shot variances
Φ. The underlying structure of a shot consists of multiple
sequential static frames f :

s = { f1, f2, . . . , fn−1, fn}, n ∈ Z. (2)

Each of these static frames can be represented by a
M × N matrix where each picture element (pixel) pi, j
can be addressed by its relative position in the frame
by its co-ordinates i and j. In colour frames, each
pixels has a multi-chromaticity value (RGB or CMYK
(Cyan-Magenta-Yellow-Key (black)) color space) that
defines the colour thereof. Similarly for grayscale frames,
each pixel has a monochromatic value. This generic
breakdown of the video structure is illustrated in Figure 1.

3.2 Shot Boundary Detection

Human beings are able to detect the boundaries between
various shots due to cognitive analysis. However,
computers lack the cognitive analysis capabilities of
humans and thus need to analyse the video in a different
manner.

A shot boundary can be defined as the break in visual
continuity between two sequential shot sequences. In
the simplest form, this boundary can be depicted as two
sequential frames that contain drastically different visual
content. This break in visual continuity can thus be
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Figure 1: Video structure breakdown

detected by measuring the inter-frame variance between
sequential frames. When the inter-frame variance between
two frames is sufficiently larger than the preceding
inter-frame variances, it can be an indication of a shot
boundary. This variance will then be called an inter-shot
variance.

Following this simple premise, a computer can then
analyse videos and based on the results thereof, infer
possible shot boundary locations. There are however
numerous contributing factors that hamper the detection of
boundaries.

Transitions: The transition between shots describe the way
in which the shot boundary is implemented. There are two
main categories of transitions used in videos: abrupt and
gradual transitions. In the simplest form, a shot transition
can be described as the visual manifestation of an abrupt
change in visual content, hence called an abrupt transition.

In order to soften the visual discontinuity caused by a
shot boundary, techniques can be employed to alter the
frames surrounding the shot boundary. A basic gradual
transition technique is called fading where the opacity or
luminosity of sequential frames in the one shot is gradually
decreased while the inverse is done on the following shot.
A common example of such a fade is commonly referred
to a as fade-to-black where the current shot is faded to a
black frame.

The progress of video editing techniques have brought
forth multiple transition techniques to create visually
appealing shot transitions, but which tend to complicate
the automatic detection thereof. These include transitions
like:

• additive dissolve;
• cross dissolve;

• fade-to-black and fade-from-black;
• zoom in or out;
• slide;
• page peal;
• iris box.

and many other interesting transitions.

With the exception of dissolves and fade-to-black or
fade-from-black, the other transitions are not generally
encountered in general video sources such as television
programs and movies. It is more commonplace in
advertisements or presentation videos.

Detection Methodologies: The simplest method that
can be employed with the goal of detecting shot
boundaries is the comparison of successive frames. This
can be accomplished by comparing the value of each
corresponding pixel in both frames and calculating the
difference thereof. In this case the difference Dn,n+1 will
be the aforementioned inter-frame variance φn,n+1.

Dn,n+1 =
N

∑
i=1

M

∑
j=1

| fn+1(pi, j)− fn(pi, j)| (3)

If the total difference between the two frames are above
a certain threshold τ, it might be possible that a shot
boundary has been detected:

Dn,n+1 =

{
Possible Shot Boundary, if Dn,n+1 ≥ τ
No Boundary, otherwise.

(4)

It is easy to see how this pixel based method can become
computationally expensive as well as very susceptible to
noise since each pixel is evaluated as a singular entity
[26]. Alternatively the pixels can be analysed as groups
of entities, allowing for a reduced impact due to noise and
camera motion [12].

Lefévre et al. reviewed multiple video segmentation
techniques in [15], concluding that inter-frame difference
is indeed one of the fastest methods although it may
be characterised by poor quality. On the other end of
the spectrum are feature or motion based methodologies
which are more robust, but are computationally expensive.
Furthermore, some of the more robust techniques not
only require the video as a whole to detect peaks in
analysis outputs, but require training for the statistical
learning methods. Since training can alter the output of
the results depending on the training set used. Hence
different instantiations could be subject to different results
while using the same algorithm if trained using a different
set. Thus the aforementioned arguments reinforce the
notion to opt for a fast procedure based technique. One
such a technique is the histogram based Jensen-Shannon
divergence. A previous investigation by De Klerk et al.
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[19] revealed the viability and usefulness of this technique
as a boundary detection algorithm.

Real-time: The concept of real-time is a fairly relative one.
In this context the term does not refer to the validity of
time, but rather to a relational expression. For the purpose
of this investigation, the term real-time will be defined as
the analysis time domain where the time required for all
computations t, is equal to or preferably less than the actual
playback duration tduration of the video being analysed

tcalculations ≤ tduration. (5)

Another constraint imposed on the analysis techniques
pertaining to the streaming media aspect, is that the
analysis technique will only have historic data available
to perform the analysis. This becomes a notable factor
when calculating the aforementioned threshold, as some
traditional techniques rely on a global threshold calculated
from the whole composite video which is now unavailable.

3.3 Jensen-Shannon Divergence

The Jensen-Shannon Divergence algorithm provides a
means to determine the inter-frame variance φ between
consecutive frames. This in turn can be used to detect
if these frames constitute a shot boundary. Thus, a
generalised form of equation 4 can be given as:

φn,n+1 =

{
Possible Shot Boundary, if φn,n+1 ≥ τ
No Boundary, otherwise.

(6)

As the name suggests, the JSD algorithm is a combination
of the Shannon’s entropy and the Jensen inequality.

In 1984, Claude Shannon defined information measures for
instance, mutual information and entropy. The Shannon
entropy [23] is a method used in information theory to
express the information content, or the diversity of the
uncertainty of a single random variable, i.e. a measure of
information choice and uncertainty [11].

The Shannon entropy function H of the probability
distribution P = (p1, p2, p3, . . . , pn) consisting of n
possibilities in the distribution is calculated by:

H(P) =−K
N

∑
i=1

pi logb pi (7)

where K is a positive constant [17] and b denoting the
logarithmic base [22]. In essence, this entropy measure
can be explained as the measure of uncertainty to predict
which probability in occurrence will be encountered.

The other part of this technique relies on the Jensen’s
inequality measure as was proposed by Johan Jensen
in 1905 in the paper Sur les fonctions convexes et les
inégalités entre les valeurs moyennes [13]. Fundamentally,

the Jensen-inequality states that if a given function g is
convex on the range of a random variable Y , then the
expected value E of the function will be greater than or
equal to the function of the expected value:

E [g(Y )]≥ g(E [Y ]) (8)

where the variance will always be positive. This property
can be illustrated by evaluating the Jensen-inequality
for the convex function g(y) = y2. This will always be
positive since E

[
Y 2

]
− (E [Y ])2 ≥ 0, ∀y ∈ Y .

In order to understand the relevance of the
Jensen-inequality to the functionality of boundary
detection, a specialised version of the Shannon entropy
is however required, namely relative entropy. Relative
entropy is a further application of Shannon’s entropy
which can be used to quantify the distance between
two probability distributions. This relative entropy, also
referred to as the Kullback-Leibler distance, is denoted
by DKL(p,q) and calculates the distance between two
probability distributions p and q that are defined over the
alphabet χ:

DKL(p,q) = ∑
x∈X

p(x)log
p(x)
q(x)

(9)

where x ∈ χ. By following the conventions, as used by [11]
and [24] that

0log
(

0
0

)
= 0 and xlog

( x
0

)
= ∞ (10)

if x > 0, it becomes apparent from equation 9 that the
relative entropy satisfies the information inequality or
divergence:

DKL(p,q)≥ 0 (11)

if and only if p = q. This implies that only when both
distributions are identical, the Kullback-Leibler distance
can be zero. For all other instances it will be greater
than zero. This information inequality or divergence, is
sometimes referred to as the information divergence [11]
and is later used with the Jensen inequality, hence
becoming the Jensen divergence.

The integration of the entropy measures from Shannon
with the inequality measure of Jensen, in effect, enables
the measuring of the expected entropy of the probability,
which will be greater than or equal to the entropy of the
expected probability.

Thus, by combining Shannon’s entropy with Jensen’s
inequality, one is left with a commonly used index of
the diversity of a multinomial distribution. Consider a
multinomial distribution p = (p1, . . . , pn), where each pi ≥
0 and the total sum of the distribution is ∑ pi = 1. Burbea
et al. expressed the concavity of the Shannon entropy
provides a decomposition of the total diversity in a mixed
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distribution (p+q)
2 as :

Hn

(
p+q

2

)
=

1
2
[Hn(p)+Hn(q)]+ J n(p,q) (12)

in [6]. The average diversity within the distributions is
represented by the first component 1

2 [Hn(p)+Hn(q)] in
equation 12, while the latter component is called the Jensen
difference.

The Jensen difference J n(p,q) corresponds to the Shannon
entropy Hn(p) and can be expressed as:

J n(p,q) = Hn

(
p+q

2

)
− 1

2
[Hn(p)+Hn(q)] . (13)

The Jensen difference is non-negative and vanishes if p= q
and thus provides a natural measure of divergence between
the two distributions [6] as with the relative entropy in
equation 11.

Thus, by combining the entropy calculation with the
Jensen inequality measure between two consecutive
frames’ histograms as derived by Qing Xu [27], the JSD
equation is produced:

JSD( fi−1, fi) = H
(

Pfi−1 +Pfi

2

)
− H

(
Pfi−1

)
+H (Pfi)

2
(14)

where fi−1 is the previous frame and fi the current frame.
A measure is created as to how far the probabilities
are from their likely joint source, equalling zero only if
all the probabilities are equal. The probabilities of the
frames are respectively Pfi−1 and Pfi . The aforementioned
probabilities are calculated from the applicable frames’
histograms as expressed in equation 15:

P( fi) =
Histogram( fi)

Height ( fi)×Width( fi)
(15)

where the histogram of each color component is divided
by the number of pixels in that frame fi. The total
number of pixels is calculated by multiplying the number
of horizontal pixels by the number of vertical pixels in the
frame.

3.4 Threshold

The Jensen-Shannon divergence, as expressed in equa-
tion 14, provides a unique inter-frame variance measure.
In order to ascertain if the inter-frame variance constitutes
a shot boundary, we refer back to equation 4. In order for
a metric to be effective in detecting a shot boundary, it has
to be evaluated against a representative threshold τ.

Some existing techniques calculate the inter-frame
variance between each frame in the video and then

calculate the average thereof:

τ =
1
N

[
N

∑
i=1

φi

]
=

1
N

[
N

∑
i=1

JSD( fi−1, fi)

]
(16)

where N ∈ Z represents the total number of frames within
the video and the inter-frame variance φ is the JSD( fi−1, fi)
calculated by equation 14. It is important to note that if the
inter-frame variance φi = JSD( fi−1, fi) where i = 1 will
result in a very large value as the zero-frame f0 does not
exist and is generally represented by a black frame. This is
however not the case when encountering a fade-from-black
transition at the start of the video due to the gradual change
- low inter-frame variance.

Although this type of global thresholding allows for a
well-represented threshold, it does however not conform
to the real-time criteria as set forth in subsection 3.2.
This short fall can be overcome by calculating a moving
average from a selection of the last preceding frames
against which the inter-frame variances can be evaluated.
This auto-adjusting threshold τ̄ can be represented by:

τ̄i =
1
ω

[
ω

∑
j=1

JSD( fi− j−1, fi− j)

]
(17)

where ω is the number of preceding frames to be evaluated
for the moving average. The value of ω will be evaluated
in section 5.1.

4. METHODOLOGY

4.1 Simulation Platform

A simulation platform was created in Visual Basic that
allows various video formats to be analysed. At the
core of this simulation platform is EMGU CV (version
3.0.0.2158). EMGU CV is a cross platform .Net wrapper
for OpenCV (Open source computer vision). This is a
library consisting of a multitude of programming functions
aimed at computer-vision applications [1].

In order to simulate the channel used by streaming media
applications, the simulation platform loads a video and
supplies the algorithm currently being evaluated with a
sequential stream of video frames. Once the frames have
been evaluated, they are discarded to free up memory.
Research has shown that the compression and encoding
properties of certain video streams and files can be
exploited to further increase the processing speed of the
algorithm in certain instances [9]. Despite this advantage,
it was decided that the algorithm being evaluated in
this platform, be evaluated at face value when supplied
with the sequential frames excluding any accompanying
compression and encoding information.

In order to evaluate the processing duration of the
algorithms, the logical flow, as illustrated in figure 2, was
implemented to run linearly as a single thread. In doing
so, the efficiency of the technique is evaluated and not
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Table 1: Technical specifications of the simulation
hardware

COMPONENT SPECIFICATION
CPU Intel Core i7-4470 3.4GHz
RAM 16GB DDR3 1600MHz
Motherboard MSI Z87-GD65
Storage SSD 850 EVO SATA III 250GB
Operating System Windows 8.1 x64

merely the multi-threading capabilities of the hardware
platform. Specifics of the hardware used in the analysis
is summarised in table 1.

Figure 2: High-level flow chart of the simulation setup

4.2 Simulation setup

Lienhart et al. performed a comparison of a few automatic
shot boundary detection algorithms in [16]. The main
focus of the algorithms in this comparison was the
accuracy thereof with no mention of the processing speed
or duration. Due to the real-time criteria, the execution
duration of the technique has to be considered alongside
the accuracy thereof.

It is clear from equation 14 that Jensen-Shannon
divergence has limited parameters for optimisation. The
only variable aspects are the probabilities calculated from
the frames. Hence the best area for evaluation and
optimisation of the technique can be identified as the
manner in which this inter-frame variance is compared
- i.e. the threshold. Thus the evaluation of the
Jensen-Shannon divergence technique’s efficiency, as a
shot boundary detection technique, is accomplished by
performing a basic sensitivity analysis of the following
parameters pertaining to the threshold:

• Auto-adjusting threshold frame count (ω);
• Minimum threshold scalar (η);
• Average threshold scalar (α);
• Resize factor.

During the threshold comparison, the auto-adjusting
threshold expressed by equation 17 is multiplied by the
average threshold scalar α allowing the operator to dictate
how much greater the inter-frame variance must be to be
classified as a shot boundary. This evaluating threshold
ϒ has a further constraint imposed where a minimum
threshold is used to evaluate the inter-frame variance if the
evaluating threshold was too low:

ϒ =

{
ατ̄, if ατ̄ > η
η, otherwise.

(18)

Thus the final outcome of the boundary detection test is
given by:

DetectedBoundary =

{
Yes, if JSD( fn−1, fn)≥ ϒ
No, otherwise.

(19)

4.3 Data

Due to the infinite video possibilities that can be
encountered, a diverse collection of videos were chosen to
evaluate the video segmentation technique. These videos
encompasses various transitional effects as well as various
sizes and frame rates. In order to establish a baseline, a few
test videos were created in Adobe Premier where the same
two shots were joined using various transitions. Two video
segments created from the Windows 7 sample video named
Wildlife was subjected to various transitions as mentioned
in section 3.2. The videos were encoded using the Flash
Video format (.flv), using a framerate of 29.97 frames per
second (FPS) with a resolution of 1280× 720. The shot
boundary between the two segments was created with the
second segment starting on frame 60, hence a hardcut shot
boundary. All the other transitions started on frame 49 and
ended on frame 73. Some actual advertisements containing
rapid moving scenes, multiple transitions and lens flares
were also evaluated such as The World of RedBull TV
Commercial [3].

4.4 Video Modifications

The video modifications mentioned in figure 2 pertains
to the colorspace as well as the size of the video.
All the videos used in the analysis are natively
colour videos in the RGB domain. This specific
implementation of the Jensen-Shannon divergence utilises
only a single representative information source to calculate
the inter-frame variance. This implies that all input videos
frames are converted or flattened to the monochrome
colorspace. This allows the grayscale luminescence to be
used as the basis for the probability distribution.

The resize factor (RF) represents the scalar according to
which the original frame is resized using bilinear inter-
polation with the help of the Inter.CV INTER LINEAR
function [2].
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4.5 Evaluation Metrics

Various metrics were employed to evaluate the effective-
ness of the shot boundary detection algorithm that was
evaluated.

Recall:

Recall rates provides a ratio of the number of relevant
shot boundaries (correct detection) to the total number
of relevant shot boundaries in the video, as expressed in
equation 20.

Recall =
Correct

Correct +Missed
(20)

Precision: The precision rates of the algorithm provides
the ratio of relevant shot boundaries to the total number of
irrelevant shot boundaries (false detections) retrieved, as
expressed in equation 21 [20].

Precision =
Correct

Correct +FalsePositive
(21)

Execution time: The execution time of each analysis will
be recorded alongside the recall and precision rates thereof.
This will help to justify a trade-off analysis between
the technique parameters in terms of accuracy versus
the execution time required. This becomes particularly
important for ”real-time” applications.

The execution time includes the following:

• Opening the video and reading the frames as they are
required;

• Converting from RGB to monochrome where
required;

• Resizing of the incoming frames where required.

5. RESULTS

The analysis results in this section is grouped according to
the parameter under investigation. The majority of all the
graphs in this section is representative of the average values
produced by each of the 31 test videos. The influences of
video resizing is incorporated in the other analysis.

5.1 Auto-adjusting threshold frame count

The first parameter that was investigated is the number
of frames used by the auto-adjusting threshold as this
outcome was used as an input parameter for the subsequent
analyses.

While most of the test videos resulted in very good recall
and precision rates, other, especially some videos with

abnormal gradual transitions, performed poorly. In order
to provide a representative sample, the average recall rates
were calculated of all 31 videos with an accompanying
standard deviations. The same was done with the precision
values. Further investigation indicated that there were 5
specific test videos which exhibited poor recall values,.
This was due to the slow changing nature of the videos
e.g. an advert with a static background where the
biggest changes were contributed by some animated text
(small percentage of the frame). These results were still
incorporated into the analysis.

The average recall response of the system for a resize
factor (RF) equal to 1 is illustrated in figure 3 which seems
to be increasing fairly linearly with regards to an increase
in the number of frames.

Auto-Adjusting Threshold count

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
e
c
a
l
l
 
%

0

10

20

30

40

50

60

70

80

90

100

Mean - StdDev
Video Mean
Mean + StdDev

Figure 3: Auto-adjusting threshold analysis recall values for
RF=1

This is however not the case for the accompanying
precision response as seen in figure 4. An initial increase in
the precision rate is observed but then followed by a steady
decline. A maximum precision response was observed at a
frame count of 5.

Auto-Adjusting Threshold count
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Figure 4: Auto-adjusting threshold analysis precision values for
RF=1

Similarly the recall behaviour for the other resize factors
follow the same trend seen in figure 5 with increasing
linear patterns but lower average values.

Logic infers that the precision values will also follow suit.
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Auto-Adjusting Threshold count
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Figure 5: Auto-adjusting threshold analysis recall values for all
RF

Generally this assumption is correct - all the resize factors
follow a steady decline, however the concave form with a
local maximum is not as clear. There is an anomaly with
regard to RF = 75% as shown in figure 6. The precision
rates for this RF is noticeably higher than the other RF
values. The possible cause for this might be attributed to
the bilinear resizing algorithm that is applied to the frame.
By resizing the frame, the image is condensed, but at
RF=75% still retains a large amount of unique information
for an inter-frame variance to be calculated.

Auto-Adjusting Threshold count
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Figure 6: Auto-adjusting threshold analysis precision values for
all RF

The ideal frame count will result in maximum recall and
precision values, hence the intersection of the two graphs
as seen in figure 7, which represents the average recall an
precision values across all RF values. The intersection is
visible at a frame count ω = 15 with an average recall
and precision rate of approximately 39%. Due to the
aforementioned anomaly at the 75% resize factor, the
intersection point for this RF was specifically evaluated.
Although not indicated on figure 7, the raw data indicated
that the point of intersection for RF=75% was found to
be at a frame count ω = 21 with an average recall and
precision rate of approximately 35%. These rates are
however deemed too low. The recall and precision rates
for RF=100% is shown in figure 8 with a recall rate of 67%
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Figure 7: Auto-adjusting threshold analysis recall and precision
values for the average RF

and a precision rate of 40% at a frame count ω = 5.
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Figure 8: Auto-adjusting threshold analysis recall and precision
values for RF=1

5.2 Average threshold sensitivity

The second parameter to be evaluated was the average
threshold sensitivity while using the previously calculated
frame count ω = 5. The recall rates obtained show a quick
decline before appearing to stabilise as seen in figure 9.
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Figure 9: Average threshold analysis recall rates for all RF
values
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The precision rates present with a large initial increase that
appears to level off at higher threshold levels shown in
figure 10. The intersecting point for RF=75% is situated
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Figure 10: Average threshold analysis precision rates for all RF
values

at α ≈ 1.2 which results in recall and precision rates of
approximately 49%. The best rates are obtained where
RF=100% where α = 5.7 resulting in recall and precision
rates of 51%. The intersecting point when evaluating the
average for all RF values is located at α = 2 with recall
and precision rates of approximately 41% as illustrated in
figure 11.
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Figure 11: Average threshold analysis recall and precision rates
for the average RF values

5.3 Minimum threshold sensitivity

The sensitivity of the detection technique to variations
in the minimum threshold was analysed while using an
average threshold α = 3.5 and a frame count ω = 5.
This analysis indicated that any variations in the minimum
threshold 0 ≤ η ≤ α does not relate to any change in the
recall and precision rates for any RF as shown in figures 12
and 13.

5.4 Analysis duration

The analysis durations for the auto-adjusting threshold
frame count analysis is illustrated in figure 14 from which
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Figure 12: Minimum threshold analysis recall rates for all RF
values
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Figure 13: Minimum threshold analysis precision rates for all
RF values

it is evident that the analysis duration follows a fairly linear
pattern, where ω > 2, with the exception of the initial
threshold value of RF=1.
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Figure 14: Auto-adjusting threshold analysis duration times for
all RF values

The same linear behaviour is encountered during all the
other investigations. The general trend for all parameter
analyses, as seen in figure 15, indicates that the RF = 75%
actually took the longest to complete.
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With regard to the real-time component, the maximum
average duration encountered at RF = 75% at approxi-
mately 3435ms. When comparing this maximum to the
average duration of the test video 9985ms, it is clear that
the real-time criteria will be met as the analysis duration is
at least 2.9 times faster than the playback duration. In order
to ensure that unbiased timing was achieved, each value for
each parameter under investigation was analysed 10 times
with the average thereof taken as the analysis duration for
that instance.
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Figure 15: Average analysis duration times for all RF values

6. CONCLUSION AND RECOMMENDATION

The Jensen-Shannon divergence proved to be a technique
capable of detecting shot boundaries with fairly good recall
and precision rates. The analysis duration of the technique
more than satisfied the real-time requirements while using
only the historic (received) data for calculations.

It is important to note that the average CPU usage was, on
average 35%, as well as the average RAM usage at 33%
throughout the analysis. This indicates that the timing for
the analysis is representative of the actual execution and
not perplexed by the system bottlenecking by e.g. caching
to a page file if the RAM was filled.

The results indicate that the RF = 75% has some outliers
with regards to the α- and ω precision rates as well as
longer execution times.

A finer resolution analysis of the resize factor would be
beneficial to pinpoint the optimal RF in terms of optimal
recall and precision rates while keeping the analysis
duration as low as possible.

The optimal parameters based on the simulation results
contained in this article is as follow:

• ω = 5;
• α = 5.7;
• η =No-effect ∴ η = 0.

Throughout the analysis a noticeable abrupt decline in
precision rates was observed at ω = 5, which warrants
some further investigation.
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