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Abstract

The objective of solving the unit commitment and environmental economic load dispatch problem
(UCEELD) for power utilities is to minimise the overall operational cost associated to power gener-
ation, while optimising the utilisation of natural resources. Power generation scheduling is however
not a simplistic process as a multitude of aspects needs to be considered such as aging infrastructure,
stringent emissions legislation, operational limitations and aligning base load with peaking station’s
scheduling. Apart from the financial objective, the optimisation problem is also focused on meet-
ing the forecasted load demand of the power grid in an attempt to prevent grid instabilities. The
intricacy of the scheduling and resource allocation process is significantly increased when a large
power grid such as South Africa’s grid is considered. Given the magnitude and complexity of the
problem, a mathematical optimisation model was developed in this thesis applying mixed integer
linear programming (MILP) as formulation technique and a commercial solver known as Cplex to
obtain a proven global optimal solution to the mentioned problem. Specific emphasis was applied in
using MILP instead of literature defined heuristic methods as these methods are not able to guaran-
tee proven optimal solutions. Provided the nonlinearity of the UCEELD problem, the technique of
piecewise linear approximation using binary variables were applied to linearise the nonlinear aspects
of the problem with the aim of applying the MILP formulation. For the purpose of this thesis, only
thermal, hydro and pumped storage generating technologies were considered for optimisation.

The contributions of this thesis were towards developing a realistically sized UCEELD model using
MILP with the aim of incorporating the model into the production environment. Modeling con-
tributions include the addition of thermal generation water consumption into the model objective
function and incorporating stochasticity to the production model. The computational results pro-
vided in the thesis are based on the data obtained from a realistically sized power generation utility
containing 98 thermal, 8 hydro and 6 pumped storage generating units. The model verification re-
sults confirmed that the proposed model is able to solve the optimisation problems accurately with
the model response being as expected. From the validation results, it is observed that the proposed
UCEELD MILP model is able to solve a realistically sized model to proven optimality within 44
minutes. A data handling tool comprising of a graphical user interface is also proposed to improve
data acquisition, processing and incorporation into the optimisation model as well as interpretation
thereof. The development of the UCEELD MILP model allows power utility management to ef-
fectively perform strategic decision-making within a short time frame to allow the optimisation of
overall operational costs.
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Chapter 1

Introduction

1.1 Background and rationale
Power utilities are companies in the electric power industry which engages in the generation and
distribution of electricity. These utilities may include public or investor-owned entities. Such an
entity which exists within South Africa is known as Eskom. This utility is the largest publicly
owned power utility in South Africa and not only supplies electricity to the South African grid, but
also distributes electricity to neighboring countries. The total installed capacity of this utility is
approximated at 45 389 MW (Downs, 2012). Eskom uses a variety of methods for power genera-
tion with the aim of satisfying the grid demand. These methods include base load stations such
as coal fired and nuclear units as well as peaking stations which include, but are not limited to,
gas turbines, hydro, and pumped storage units. Base load stations refer to units that are used to
maintain the minimum level of demand with uninterrupted supply. Peaking stations denote to units
that are only occasionally utilised when the grid is either constrained or during peak hours of the day.

A general problem faced by power utilities in an effort to optimise resources and lower costs given
a grid demand, is to decide which generating units to commit and the output load they should
be dispatched at. This problem is known as the unit commitment scheduling and load dispatching
process. The schedule development process is further complicated by factors such as:

1. Aging infrastructure that results in reduced operating efficiencies;

2. progressively stringent emissions legislation; and

3. operational limitations preventing unit loading adjustments (Hadji et al., 2015).

Another factor to consider is when to commit peaking stations, in conjunction with base load stations,
during scheduling and dispatching (Salama et al., 2014). In order to comprehend the complexity of
this decision-making process, a detailed discussion is provided on the challenges faced and how it
influences resource utilisation and capital expenditure for a power utility such as Eskom.

1.1.1 Aging infrastructures

When generating unit commitment schedules for base load stations, such as coal fired units, the
power utility needs to focus on each unit’s operating efficiency in order to obtain the optimal utili-
sation of the available resources, at the lowest possible cost. The operating efficiency is governed by
the unit’s design envelope and determines the amount of coal (kg/s) consumed per megawatt gen-
erated (Li et al., 2008). Depending on the design methodology used, a coal fired station’s operating
efficiency can range from anything between 30% - 37%. Note however that a units’ operating effi-
ciency can be reduced significantly as a result of aging infrastructure causing a decline in equipment
performance. This reduction in efficiency is directly related to an increase in coal consumption (and
possibly water utilisation), and subsequently a rise in the utilities’ capital expenditure. The rate of
deterioration of each coal fired unit is independent from one another as it is influenced by factors
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such as the quality and frequency of maintenance execution per unit. Long term solutions to reduce
a power utilities’ coal consumption and increase the operating efficiency include an improvement of
the aforementioned maintenance aspects. This will, however, be a costly initiative and is not always
practical due to financial and time constraints. An alternative approach entails the commitment and
dispatch of coal fired units by considering each unit’s operating efficiency. Commitment of the most
efficient units prior to the less efficient units can result in a significant decrease in coal consumption
and consequently a reduction in the utilities’ overall capital expenditure (Gunda & Acharjee, 2011).
Another factor to consider independent from a unit’s efficiency is the coal cost.

Due to aging infrastructure, coal fired units are also prone to increased water consumption. Each
unit’s water consumption increases with its individual rate of equipment deterioration (i.e. pipe
leakages and passing valves). Although the cost of water usage does not have as large an impact
as coal consumption, it still contributes to the overall operating costs incurred by the utility. In
conjunction with the cost element of increased water consumption, another aspect that needs to
be emphasized is the fact that South Africa is a semi-arid, water stressed country. It is stipulated
by Wassung (2010) that South Africa has a limited fresh water supply of 13 227 million m3 with a
current water demand of 12 871 million m3. When referring to the industrial sectors of South Africa,
the quantity of water used by Eskom (excluding Medupi and Kusile) is estimated at approximately
273 million m3 per annum. This accounts for 2% of the total fresh water available in South Africa
(Vasanie, 2004). Water demand is constantly increasing due to the growth in human population and
the expansion of industrial sectors. Still et al. (2008) stated that to meet the increasing demand
of water supply in 2050, alternative methods will be required to reduce the commercial demand for
water and to become more efficient in the use of available water resources. This can be addressed by
implementing alternative water saving methods such as deciding which coal fired units to schedule
depending on its water usage. This can reduce the water consumption and will enable the utility to
manage its water resources more effectively and ensure that a reduction in water usage is realised.
In turn, it will also assist the South African community with the management of its scarce resources.
When implementing such a decision-making method the units with low water consumption will be
committed prior to scheduling units with high water consumption.

1.1.2 Stringent emissions legislation

An additional factor which needs attention when developing commitment and dispatch schedules
for coal-fired units; is the environmental impact. Electricity generation by a coal-fired power utility
results in the production of emissions which has a negative impact on the environment. Depending
on the plant conditions and the load at which each unit is loaded, it can result in either a decrease
or increase in emission production. The maximum emission rates (Particulate matter, SOx and
NOx) for a solid biomass combustion installation (i.e. a thermal power station) is governed by
the Atmospheric Emissions License (AEL). The emission limits are provided in Section 43 of the
National Environmental Management Act, Act number 39 of 2004 which is summarised below:

1. Particulate matter (PM): 50 mg/Nm3

2. SO2: 500 mg/Nm3 and

3. NOx: 750 mg/Nm3.

As per the AEL, all coal-fired power stations (existing and newly built) must comply with the
above-mentioned limits. Eskom has obtained postponement for existing power stations to comply
to these legislative regulations for PM and NOx emissions until the end of 2020, and until 2050 for
SO2 emissions (South-Africa, 2004). Myllyvirta (2014) reported that due to the postponement of all
existing stations within Eskom’s fleet in meeting the required emission limits, Eskom is allowed to
emit an excess of 560000 tons of PM, 28 million tons of SO2 and 2.9 million tons of NOx. In allowing
Eskom this leeway, it negatively affects the agricultural environment, health of humans and other
living organisms and results in the degradation of the structural integrity of metals and buildings
(Rall, 1974; Treshow, 1980; Winner et al., 1985). This margin was granted to Eskom since it will
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take some years to improve the existing stations to meet the new emission targets. It will require
stations to improve ESP and bag filter performance, construction of FGD systems, switching fuel
qualities and optimising SO3 injection rates.

Until the above-mentioned has been achieved by Eskom, the power utility can make use of opti-
mal commitment and load dispatch units scheduling as an alternative method in an attempt to
reduce the effect of the current emissions (Mandal et al., 2015). By committing units with the best
emission performance prior to committing bad performing units, Eskom can minimize its environ-
mental impact and ensure that the AEL is adhered to at all times. Implementing the foregoing will
assist with optimising the utilisation of the natural resources for power generation (reducing water
and coal usage), while minimizing the production of undesirable by-products.

1.1.3 Operational limitations

When developing a dispatch and commitment schedule for coal fired units, it is the responsibility of
the system operator to not only consider the aspects as mentioned throughout Sections 1.1.1 and
1.1.2, but to also take into consideration operating limitations. This include, but is not limited to,
factors such as the minimum-up and downtime of each unit, the rate at which each unit can respond
to load change instructions, prohibited operating zones at which a unit might not be allowed to
operate within, due to reduced component reliability, as well as outage schedules preventing units
from being committed to the grid (Jadoun et al., 2015; Li et al., 2008; Norouzi et al., 2014; Yang et
al., 2012). Each one of these aspects has a significant influence on the unit commitment and load
dispatch scheduling process and therefore cannot be omitted by the system operator. By including
the mentioned constraints in the decision-making process, will not lead to any financial gain or
improved resource utilisation as mentioned in the above sections, but will ensure that no unit is
operated outside its allowable operating envelope. If however any of these aspects are omitted, it can
lead to unsafe and unstable operating conditions, augmented mechanical wear on already damaged
components and in worst case might lead to multiple unit trips. It is therefore apparent that by
including these aspects into the system operator’s decision-making process, significant financial losses
may be prevented.

1.1.4 Aligning base load and peaking stations’ scheduling

In addition to the above-mentioned aspects, the system operator needs to align the commitment
and dispatch schedule of peaking stations, such as hydro and pumped storage stations, with that
of the base load stations (Chen, 2008). Although peaking technologies are more cost efficient in
comparison to base load stations it has a limited power capacity which can be supplied to the grid
(Salama et al., 2013) and cannot be schedule uninterruptedly. Restricted power capacity in the case
of hydro stations is governed by the department of water affairs. The amount of water discharged
in a certain period is limited in order to reduce the effect it has on the downstream ecosystem. For
pumped storage stations, limited power capacity is a result of the upper reservoir design volume
constraints. Though these limitations exist, it is still beneficial for a power utility to incorporate
these technologies into the generation schedule for the period at which the peaking stations’ capacity
is available, as it will result in significant financial gain (i.e. substantial saving in coal consumption).

The inclusion of peaking stations into the generation schedule does, however, increase the com-
plexity of the decision-making process significantly. The reason being is that the system operator
needs to decide when to commit and dispatch each peaking unit at a time where the most financial
gain will be obtained. In addition, the system operator also has to ensure that each peaking unit
contains enough capacity to supply the grid with sufficient power at the time of commitment. If the
power capacities supplied by the peaking stations are not enough due to poor decision-making and
capacity management, and the base load stations cannot be deployed timeously due to operating
constraints, it may result in grid instabilities and even lead to a grid collapse. This will not only
affect the power utility negatively but will also have an irreversible financial impact on the South
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African economy.

1.1.5 Power generation schedule

To develop an optimal generation schedule where the available units are committed and dispatched
with minimal operational cost, and optimal resource utilisation, the aspects mentioned in Sections
1.1.1 to 1.1.4 need to be considered. Failing to include one of the mentioned factors into the schedule
development process, will result in an unrealistic and impractical operating schedule being obtained.
Using an incorrect schedule for unit commitment and load dispatch decision-making, will either lead
to suboptimal utilisation of the available resources or it can lead to substantial financial losses being
incurred by the utility. It is therefore imperative that the system operator, when developing the
generation schedule, incorporate all necessary factors in order to obtain a realistic and representative
schedule.

1.2 Research scope
In the subsequent section, specific focus is set on the problem statement that needs to be investi-
gated, a discussion is provided on the purpose of the study and a summary is given regarding the
research objectives to be addressed during the development of the thesis.

As motivated in the previous sections, effective unit commitment and load dispatch scheduling
is essential in, ensuring the minimisation of a utilities capital expenditure, as well as optimising
the utilisation of natural resources. Power generation scheduling is however not a simplistic process
as a multitude of aspects (as mentioned throughout Section 1.1) needs to be considered, prior to
deciding which unit to commit and at what load the unit needs to be dispatch at. The intricacy of
the scheduling and resource allocation process is significantly increased when a large power grid such
as South Africa’s grid is considered. This is due to the exponential increase in the data acquisition
and computing power which is required to solve such a power generation scheduling problem. The
magnitude of the problem and the complexity associated with the scheduling process will make it
practically impossible to create a power generation schedule using manual computations. This pro-
cess will be time-consuming as well as labor-intensive and will have a high probability of obtaining
sub-optimal solutions.

1.2.1 Research problem statement

To address the above concerns, the researcher will need to develop a mathematical model capable
of deciding which units to commitment and at what load each unit needs to be dispatched at, as
to minimise capital expenditure and improve resource utilisation. The model will also need to be
capable of automatically generating an excel based generation schedule from the obtained results,
to provide the system operator with a consolidated tool when performing strategic decision-making.
A graphical example of the above statement is provided in Figure 1.1.

Figure 1.1: Computational process diagram

The aim of the consolidated excel generation schedule is to save time and provide users who are
not proficient with Cplex, the capability of utilising and interpreting the generated schedule. By
implementing such a model, it will promote the reduction of capital expenditure and workforce re-
quirements, prevent unnecessary scheduling errors, and guarantee the satisfaction of the grid demand
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in an optimal and efficient manner within the power utility production environment.

In practice, as well as in the literature, the application of heuristic approaches is very popular
towards solving the unit commitment and load dispatch scheduling problem. These approaches typ-
ically generate random solution populations which at times only give the local maxima or minima
as results. This is not ideal, as the definite optimal point of the solution needs to be obtained
(Ashfaq & Khan, 2014) to prevent significant capital losses. The solution algorithms associated with
heuristic methods are generally intertwined with the mathematical model which prevent the method
from being applied to any problem instance without requiring some programming alterations. This
leads to majority of the heuristic methods being incapable of accurately solving variations of the
original problem instances it was designed for. Given the foregoing reasons, mixed integer linear
programming (MILP) will be applied in this study in an attempt to solve the mentioned scheduling
problem and obtain a global optimal solution for the different scenarios.

1.2.2 Research purpose

The purpose of this study is to solve the unit commitment and load dispatch problem by employing
MILP technology for computing optimal generation schedules, aimed in reducing a power utilities’
capital expenditure and improving its resource utilisation. In addition, aspects such as, aging infras-
tructure, environmental legislation, and operational constraints, as well as base load and peaking
commitment co-ordination will be incorporated into the model formulation, as to guarantee its rele-
vancy to real power generation applications. The study is, however, limited to coal fired, hydro and
pumped storage power generation and do not take into consideration technologies such as nuclear,
gas and wind turbines, and photovoltaic plants.

The anticipated contributions that will be made throughout this study will include the following:

1. Follow a linearisation model approach when formulating the UCEELD problem in order to
simplify the nonlinear model complexity. By implementing the preceding, it will allow the
researcher to easily incorporate stochastic scenarios into the optimisation model.

2. Develop a comprehensive UCEELD model which incorporate thermal, hydro and pumped
storage generating units simultaneously. Throughout literature, it could not be identified that
such a comprehensive model already exist. Literature models include either one or two of
the above generation technologies and seldom include all three technologies in such extensive
detail.

3. Applying the linearisation methodology to the UCEELD problem allows the researcher to
determine the integrality gap obtained from the solution. By evaluating the aforementioned,
one can determine if an exact global solution has been obtained. Using heuristic methods to
solve similar problems does not allow the user to evaluate the integrality gap, and could lead
to local optimums.

4. Adding demineralised water consumption rates to the thermal generating units’ objective func-
tion, allows the model to not only optimise fuel cost or emissions production as was done in
literature, but also allows the reduction of water usage in thermal power stations.

5. Adding outage constraints to the UCEELD problem allows the model to discount the units
that are on outage and provides the user with an interactive and dynamic model. Throughout
literature, the preceding constraints were not added to the proposed committment and load
dispatch models.

1.2.3 Research objectives

The study objectives entail the following:
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1. Provide a thorough survey of i) the mechanics associated to both exact and heuristic solu-
tion algorithms, and ii) a review of the mathematical advances stated in literature pertaining
to the solution of the unit commitment and environmental, economic load dispatch problem
(UCEELD) for power utilities.

2. Develop a data handling tool comprising a graphical user interface (GUI), to allow for ease of
data acquisition, processing, and incorporation of user defined data inputs into the optimisation
model.

3. To formulate a unit commitment and load dispatch MILP model in an interactive development
software platform, which will be capable of reducing a power utilities’ capital expenditure and
improving its resource utilisation.

4. Verify the correctness and validate the effectiveness of the MILP model in obtaining optimal
results when applied to realistic problem instances derived from real power generation data.
Also evaluate the influence that different parameters, data inputs and modeling constraints
might have on the solution time (i.e. model complexity) and modeling results.

5. Suggest follow-up work related to the work completed in this dissertation, worth being inves-
tigated when conducting future studies associated with UCEELD problem optimisation.

1.3 Research methodology
The research methodology provides an overview of the important literature topics which needs to be
reviewed and the methods to be applied by the researcher in order to address the research objectives.
The research methods are systematically outlined in order to address each of the objectives as stated
in Section 1.2.3. Details regarding the foregoing is provided throughout Sections 1.3.1 and 1.3.2.

1.3.1 Literature review

In this dissertation, the literature review is presented in two parts and is covered by both Chapters 2
and 3. In Chapter 2, the focus is set on exact solution methods such as linear and integer program-
ming. A detailed analysis is provided regarding the standard formulation of a linear programming
problem and the primal simplex solution method is discussed. The mathematical approach to the
simplex method is investigated with a detailed elaboration of the theory behind the method. The
simplex method forms the basis from which many solution algorithms are derived from (Winston
& Goldberg, 2004; Corneujols & Tutuncu, 2007). In addition, the standard formulation of both
integer and mixed integer programming problems are provided, and the methodology of linearising
optimisation problems by using logical modeling with binary variables are discussed. An overview
of the branch-and-bound method applied to mixed integer problems is also provided in this section,
with specific focus on the mathematics behind the solution method (Winston & Goldberg, 2004;
Corneujols & Tutuncu, 2007). In Chapter 2, a section on heuristic solution methods where alter-
native approaches, specifically used to solve the UCEELD problems, are included with only a brief
discussion of each (Mandal et al., 2015; Senthil & Manikanda, 2010; Basu, 2005).

In Chapter 3, a detailed discussion is provided regarding the power generation operational overview
and design considerations for coal-fired (Govidsamy, 2013), hydro (Ferreres & Font, 2010), and
pumped storage stations (Antal, 2004). This entails a brief introduction to each power generation
technology, an overview of the mechanical components utilised for power generation and challenges
that are experienced daily, which contribute to unit commitment and load dispatch scheduling diffi-
culties. In addition to the preceding, a literature review of the UCEELD problem is provided with
a comprehensive analysis on the solution methods applied by other researchers to solve this prob-
lem. The literature review is utilised as a means of analyzing the research advances made in this
field of study, and to provide insight into the application of MILP to power generation scheduling
optimisation (Borghetti et al., 2008; Norouzi et al., 2014).
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1.3.2 Research method(s)

To address the project objectives as outlined above, the subsequent research methodology is applied:

1. To gain fundamental knowledge of the subject matter under consideration, a comprehensive
literature and theoretical background study are performed, regarding optimisation solution
methods and its applicability to UCEELD problems. By investigating the foregoing, a de-
tailed understanding can be obtained concerning the advances made in the specific field of
study. The study will also assist in identifying which technical aspect needs to be considered
when developing a MILP UCEELD solution model, as to obtain satisfactory results, which is
comparable to existing models.

2. After identifying the solution methodology to be applied to the UCEELD problem, a data
handling tool will be developed by means of using the software package Microsoft Excel (visual
basics). This tool will be used to filter, process, and arrange input data in such a manner as
to ensure compatibility to the optimisation software. The data handling tool will be equipped
with a GUI to improve the efficiency of the data handling process. Design data obtained from
realistic power generation scenarios will be used as inputs to this tool.

3. The software package, Cplex (IBM Corp, 2015), will be used as a solver to solve the UCEELD
problem. Aspects identified throughout the literature review will be included into the problem
formulation so as to ensure the comprehensiveness of the model. The model will be structured
in a dynamic manner to allow the inclusion and/or exclusion of different constraints (param-
eters) to identify the effect each one has on the outcome of the model results. The optimised
results obtained from each problem instance will be made available to the data handling tool
to enable further processing and interpretation.

4. The results obtained from each model scenario will be compared and a conclusion drawn to
determine the effect different scenarios will have on a utilities’ power generation schedule.
Finally, a comprehensive model will be proposed which can be utilised for optimising the
commitment and dispatch decision-making process of coal-fired, hydro, and pumped storage
stations to reduce capital expenditure and improve resource utilisation.

1.4 Provisional chapter division
The introduction is followed by five chapters, a bibliography, and several appendixes. In Chapter 2,
a discussion is provided regarding general optimisation solution algorithms with focus on both exact
and heuristic solution methods. In this chapter, a literature review pertaining to the mathematical
reasoning and the theory behind exact methods such as linear and integer programming models as
well as heuristic methods which include alternative programming models is provided. Simplistic
examples are included to gain a fundamental understating of the computational dynamics behind
each method.

An introduction to the fundamentals of power generation is depicted in Chapter 3, with an overview
explaining the essence of the UCEELD problem as well as its applicability. Information is provided
regarding the terminology and the technical aspects associated with coal fired, hydro and pumped
storage power generation. The preceding is included to gain an understanding of the dynamics as-
sociated with each technology, and to provide insights into the problem to be solved. A literature
review of the optimisation techniques generally applied to the UCEELD problem is presented. In
addition, focus is set on the application of MILP and how it can be applied in solving power gener-
ation scheduling problems.

Chapter 4 presents the proposed mathematical construction of the MILP model applied to the
UCEELD problem in order to minimise the operational cost of a power utility. In this chapter a
number of basic notations are discussed in order to ensure the simplicity of the model derivation. The
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model objectives and constraints are also defined with descriptive reasoning behind each constraint,
clarifying why it was added to the optimisation model. Examples are provided on the mechanics
which exist between the different constraints and how each contributes to the computation of an
optimal solution.

Computational results obtained from the MILP model are provided in Chapter 5 as a means of
validating and verifying the effectiveness of the proposed model in solving different arrangements
of the UCEELD problem. Different UCEELD problem instances are considered for the purpose of
the dissertation with focus on how the model results and solution time vary with the addition of
constraints and or data set sizes. The applicability of the proposed mathematical MILP model to
solve realistic instances of the UCEELD problem is also discussed. The model input data required
to solve the UCEELD problem arrangements are elucidated, and a brief overview is provided on the
GUI designed to simplify data acquisition and processing.

The dissertation ends in Chapter 6 with a final summary of the work conducted, a conclusion
on important findings and an overview of the contributions made to the field of study. Suggested
future work related to UCEELD problems is also proposed.
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Chapter 2

Optimisation Solution Approaches

Numerous mathematical optimisation approaches are employed by researchers in solving different
variations of the UCEELD MILP problem. These approached can be characterized as either exact
or heuristic solution algorithms. Depending on the prerogative of the researcher and the aim of
the research study, either one of these approaches can be applied. There are however some distinct
differences between the two approaches that need to be considered prior to implementation, with
the specifics of each approach being summarised in Table 2.1.

Table 2.1: Solving the MILP Problem

Exact Approaches Heuristic Approaches
Implemented as branch-and-bound/cut

algorithms within commercial solvers such as
Cplex, Gurobi, etc.

Custom build algorithms based on
mathematical techniques such as particle
swarm optimisation, neural networks, etc.

Able to solve problems up to proven
optimality

Optimality of solution cannot be proven

Comprise on the ability to compute the
distance of intermediate solutions from

optimal solutions

Capable of comparing intermediate solutions
to bound from exact relaxation

Computationally expensive when applied to
medium to large scale problems

Able to provide relatively accurate solutions
within a short time period.

Distinct separation between the model and
solver

Model changes might necessitate solver
changes as well

When evaluating the differences between the two approaches, it becomes apparent that the exact
solution approach will be more suitable to implement with the aim of satisfying the research objec-
tives as stated in Section 1.2.3. In this study, focus is set in obtaining a proven optimal solution
within a reasonable time frame using a commercial solver known as Cplex. Although exact solution
approaches will be the emphasis for the remainder of the study, a brief overview of the heuristic ap-
proaches is also provided in this chapter as to ensure that the reader obtains a broad understanding
of the available literature.

Exact solution methods
Exact solution approaches are algorithms utilised to solve optimisation problems to proven opti-
mality. In the case of linear programming, an example of an exact approach is the primal simplex
method, and in the case of integer or mixed integer programming, the branch-and-bound method
applies. Although a multitude of exact solution methods exists within the optimisation domain,
the focus of this literature review is limited to the simplex and brand-and-bound methods, since
the commercial solver used to generate the results in this study are based on these two solution
approaches.
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2.1 Linear programming methods
Linear programming (LP) is an optimisation method, developed during the 19 hundreds, aimed at
providing optimal solutions to problems, where the objectives and constraints of the problems are
linear functions of the decision variables. The development of the linear programming theory was to
enable users to make optimal decisions when faced with complex situations. The initial recognition
of the linear programming type of problem was made by economists in the 1930s while developing
methods to allocate available resources to reduce financial expenditure. Significant progress was
made since then to improve the practical applications and theoretical development of the solution
methodology. One of these advances was made in 1939 by L.V. Kantorovich a member of the so-
viet Union together with T.C. Koopmans from the US. They obtained a Nobel Prize in the field
of economics for their contribution to the economic interpretation of linear programming focused
on resource allocation. During the 1940s, L. Kantrovich, Johan von Neumann and George Dantzig
created the mathematical subfield of linear programming which layed the foundation for Dantzig to
invent the primal simplex method while working at the US Air Force (Dantzig, 2002). Although
many other LP solution methods had been developed over the past few years, the primal simplex
method still remains the most popular and effective method in solving LP problems. Additionally,
the primal simplex solution method also forms the basis from which majority of the LP solution
methods as well as integer and mixed integer solution methods were derived from. During the early
ages linear programming application was primarily focused on solving problems in the petroleum
refineries, manufacturing, food-processing and engineering design industries. However, this method-
ology has developed to such an extent that it can be applied to any industry imaginable to solve
complex strategic decision-making problems (Rao, 2009).

In mathematical terms, a LP problem entails the optimisation of an objective function cTx by
means of finding a vector x ∈ Rn where constraints Ax ≤ b are satisfied. The column vectors can
be defined as c ∈ Rn, b ∈ Rm and matrix A ∈ Rm×n. A feasible solution to such a problem can
be defined as a solution where vector x∗ ∈ Rn whereas an optimal solution would be where vector
x∗ results in cTx∗ ≥ cTx for all x ∈ Rn. Note that the preceding is defined as an optimal solution
for a maximisation problem. When considering a minimisation problem, vector x∗ would result in
cTx∗ ≤ cTx for all x ∈ Rn. In order to apply a solution method such as the primal simplex method
to obtain an optimal solution to cTx, it is required to rewrite the LP problem in its standard form.

2.1.1 LP standard form formulation

The standard form of the linear programming problem can be portrayed by using two methods that
include both the scalar or matrix forms. For more in-depth information regarding the LP standard
forms and transformation rules, technical information complied by researcher such as Rao (2009),
Corneujols & Tutuneu (2007), Lewis (2008), Winston & Goldberg (2004) and Feige (2011) can be
sited. The scalar standard form is portrayed below using equations (2.1) - (2.3).

Minimise objective function

f(x1, x2, ..., xn) = c1x1 + c2x2 + ...+ cnxn (2.1)

subjected to constraints:

a11x1 + a12x2 + ...+ a1nxn = b1 (2.2)
a21x1 + a22x2 + ...+ a2nxn = b2

.

.

aw1x1 + aw2x2 + ...+ awnxn = bw
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x1 ≥ 0 (2.3)
x2 ≥ 0
.

.

xn ≥ 0

where aij , bi and cj (i = 1,2,...,w; j = 1,2,...,n) are known constants, and xj are defined as the
decision variables with x ∈ Rn. Simplified to matrix form, the LP problem can be depicted as follow:

Minimise objective function

f(x) = cTx (2.4)

subjected to constraints:

Ax = b (2.5)
x ≥ 0

where

x =


x1
x2
.
.
xn

 ; b =


b1
b2
.
.
bw

 ; c =


c1
c2
.
.
cn


and

A =


a11 a12 ... a1n
a21 a22 ... a2n
.
.
aw1 aw2 ... awn



Alternatively, a condensed notation of the linear programming standard matrix form could be rep-
resented by min{cTx : Ax ≤ b,x ∈ Rn}.

If faced with a linear programming problem which is not stated in standard form, there are some
transformation rules which needs to be applied in order to convert the problem to standard form.
When referring to standard from, it entails the adherence of the LP problem to the following re-
quirements:

1. An objective function which is of the minimisation type;

2. All decision variables are non-negative; and

3. All constraints are of the equality type.

To express any non-standard linear programming problem in the standard form as mentioned above,
the subsequent transformation rules can be applied:

1. A linear programming maximization function, can be transformed to a minimisation function
by means of multiplying the maximization function with a negative value throughout (i.e. -1).
Refer to the below example:

The maximization function

f(x) = −cTx
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is equivalent to the minimisation of

f(x) = cTx

Consequently, any linear programming problem in non-standard form can be written in stan-
dard form (minimisation type) by applying the preceding principle.

2. If an optimisation constraint is stated as an inequality constraint of the "greater than or equal
to" type such as:

Ax ≥ b

the constraint can be transformed to its equality form by means of subtracting a non-negative
slack variable as depicted below:

Ax− s = b

If however, the optimisation constraint is stated as an inequality constraint of the "less than
or equal to" type such as:

Ax ≤ b

the constraint is required to be converted to its equality form by means of adding a non-negative
slack variable:

Ax + s = b

By applying a slack variable to an inequality constraint, the user is able to transform the
constraint to its standard form. Note however that the type of inequality constraint present in
the LP problem will determine if a slack variable needs to be subtracted or added to facilitate
the transformation.

3. When considering optimisation problems within the engineering field, it is apparent that the
decision variables usually represent some physical dimensions of the non-negative type. How-
ever, there are cases where decision variables may be unrestricted in sign (can either take on
positive, negative or zero values). In such cases, these unrestricted variables needs to be writ-
ten as the difference between two non-negative decision variables. In example, if variable xn is
unrestricted in sign, it can be converted to standard form by means of applying the following:

xn = x′n − x′′n

where

x′n ≥ 0 and x′′n ≥ 0

Implementing variables x′n and x′′n, the user is able to convert the unrestricted decision variables
into bounded non-negative decision variables that correspond to the prerequisites for the LP
standard form formulation.

After applying the LP standard form transformations to non-standard form LP problems, the user is
able to utilise a multitude of LP solution methods to obtain an optimal solution. One such method
is the Primal Simplex algorithm.
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2.1.2 Primal simplex method

Literature regarding the primal simplex method, compiled by researchers such as Corneujols &
Tutuneu (2007), Winston & Goldberg (2004), Hua (1990) and Gartner (1995) were investigated
with the aim of ascertaining knowledge regarding the mathematical derivation behind the simplex
method. In these references the initialization point of the simplex method starts with a set of
equations which includes the objective function and problem constraints portrayed in canonical
form. Therefore, let us consider a general LP problem in standard form, focused on minimising
objective function f(x) subjected to constraints:

a11x1 + ...+ a1nxn + 1s1 + 0s2 + 0sw = b1 (2.6)
a21x1 + ...+ a2nxn + 0s1 + 1s2 + 0sw = b1

.

.

aw1x1 + ...+ awnxn + 0s1 + 0s2 + 1sw = bw

x1...xn, s1...sw ≥ 0, x ∈ Rn, s ∈ Rw

The standard scalar LP problem as depicted above is converted to matrix form in order to derive
the simplex solution method. By rewriting the LP problem in matrix form , the variables depicted
in equation (2.6) can be represented as vectors and matrices (similar to what was mentioned in the
LP standard form formulation section). Additional to the already defined vectors and matrices, the
slack variables added to the LP problem can be denoted by variable s which is a w-dimensional
column vector:

s =


s1
s2
.
.
sw


Let I signify a w×w identity matrix. Considering the preceding, the LP problem equality constraints
can be condensed to the subsequent:

[
A, I

] [
x
s

]
= b,

[
x
s

]
≥ 0

Alternatively, the equality constraints for the LP problem can be written as

[
B,N

] [
xB
xN

]
= BxB + NxN = b,

with the subscripts "B" and "N" referring to the basic and nonbasic variables respectively. In order
to solve the equality constraint in terms of xB, both sides of the equation is multiplied with B−1 to
obtain the following:

xB + B−1NxN = B−1b

Solving for variable xB, a simplified equation to calculate the basic variables are formulated. The
subsequent equation is the first step in the simplex algorithm which is used to choose an initial basis.

xB = B−1b−B−1NxN

The same principle can be applied to the objective function by means of using the basis partitioning.
Prior to partitioning, the objective function is set equal to zero, to obtain an equivalent representation
of the initial objective function used for the derivation of the simplex method:

Z = cx⇔ Z− cx = 0
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By setting variable c = [cB, cN], and substituting it into the above equation, the objective function
is altered in order to obtain:

Z−
[

cB, cN
] [

xB
xN

]
= 0

Multiplying the two matrices and substituting variable xB into the above equation, the following
sequence of equations are obtained:

Z− cBxB − cNxN = 0
Z− cB(B−1b−B−1NxN)− cNxN = 0

By applying mathematical factorization to solve for cBB−1b, a solution is obtained of the form:

Z− (cN − cBB−1N)xN = cBB−1b

Vector (cN − cBB−1N) stated in the objective function is know as the reduced cost, due to the
fact that the cost coefficients (cN) are reduced by the cross effect induced by the basic variables
(cBB−1N). Using the above equation, the effect of adjusting a nonbasic variable on the objective
function can be determined. The answer obtained from the vector calculation after substituting the
matrix values into the equation, the user is able to determine which non-basic variable needs to
enter the basis. The variable to enter is the one for which the value (cN − cBB−1N), is the most
negative (for maximization problem it is the most positive). This calculation process forms part of
the second step of the simplex method.

Additional to the foregoing, vector (cN − cBB−1N) is also utilised as a stop criteria for the pri-
mal simplex method. Meaning, when considering a linear maximization problem where

(cN − cBB−1N) ≤ 0

the solver will abort as it will be indicative of an optimal solution. If however a minimisation problem
is considered, the algorithm will continue until the subsequent is satisfied:

(cN − cBB−1N) ≥ 0

where after the simplex method will terminate to provide the user with an optimal solution. If
however these stop criteria has not yet been satisfied, the user will need to perform a ratio test in
order to select which existing basic variable will be required to leave the basis. This is done by
implementing the following:

Ratio = B−1b
B−1NxN

The variable that will be selected to leave the basis is the one for which B−1b
B−1NxN

is the minimum after
the matrix values have been substituted into the equation and an answer has been obtained. Note
however that only positive values are considered to leave the basis as negative values are indicative of
extreme points. Also take into consideration that if the ratio test delivers only negative values, the
system is unbounded. The preceding forms the third and final step in the primal simplex algorithm.
After calculating the variable which is required to leave the basis, the simplex calculation process is
re-initiated using the newly obtained bases as inputs. The solution algorithm then iterates through
the mentioned steps until an optimal solution is obtained. Refer to Figure 2.1, for a detailed flow
diagram of the complete primal simplex algorithm applied to a minimisation problem.
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Figure 2.1: Iterative flowchart for the primal simplex algorithm applied to a minimisation LP problem

Considering the flow diagram and the primal simplex method derivation depicted above, the algo-
rithm can be summarised in four steps which entails:

1. Covert the linear programming problem to standard form and chose an initial basis. Compute
the basic feasible solution from the standard form (if not infeasible).

2. Evaluate the basic feasible solution and determine whether it is optimal. If optimal, terminate
the computational process. If however the basic feasible solution is not optimal, then compute
the nonbasic variable which will become a basic variable.

3. Thereafter, compute the basic variable which will become the nonbasic variable. These vari-
ables then need to be used to compute a new basic feasible solution which might provide a
better solution.
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4. Evaluate the new basic feasible solution to determine if it is optimal. If not optimal refer to
step 2 and iterate through the above algorithm until an optimal solution has been obtained.

2.2 Integer programming methods
In the linear optimisation technique considered throughout Section 2.1.1, the decision variables were
assumed to be continuous. The former refers to the capability of the variables to take on any real
value. In many optimisation problems, using continuous variables are entirely appropriate and the
problem is allowed to have fractional solutions. For example, if one considers engineering problems
such as boiler lengths, plate thickness or even project timelines, each of the preceding may be al-
lowed to take on fractional values such as 90.7 m, 2.30 mm and 3.25 hours respectively. However,
there are practical applications where fractional solutions might not be physically meaningful or
neither practically interpretable. Such solutions would entail for example 1.3 workers on a project,
1.8 boilers in a thermal plant or 1.5 tires on a motor vehicle. The fractional solutions would not bear
any meaning, and the solution would need to be rounded off to the nearest integer value in order to
provide clarity to the solution. Although rounding off a solution might be possible, in the majority of
cases some constraints will be violated and the solution obtained from the objective function might
be very far from the original solution. In order to avoid such difficulties, the optimisation problem
can be formulated and solved as an integer programming problem (Rao, 2009). By constraining
variables to only take on integer values, the solutions obtained by solving the optimisation problem
will be practically meaningful and interpretable. Solution algorithms developed to address such
problems were the branch-and-bound algorithms proposed by Land and Doig in 1960, as well as
the cutting plane algorithm which was formulated by Gomory in 1958 (Genova & Guliashki, 2011).
Integer programming (IP) problems can be divided into a multitude of categories of which include
all-integer, binary integer and mixed integer programming problems. Note that these categories can
also be subdivided into linear and nonlinear problems.

In mathematical terms, an IP problem entails the optimisation of an objective function cTx by
computing an integer vector x ∈ Zn where constraints Ax ≤ b are satisfied. By dropping the in-
tegrality restrictions, the IP problem is again formulated as a LP problem which is known as the
LP relaxation of the IP problem. A feasible solution to an IP problem can be represented by xIP

∈ Zn with the objective function value being zIP = cTxIP whereas the optimal solution to a LP
relaxation problem would be xLP ∈ Z with associated objective function zLP = cTxLP. When
considering a maximization problem, zIP and zLP refers to the lower bound (LB) and upper bound
(UB) respectively. The opposite is true for a minimisation problem. In order to apply an integer
solution method such as the branch-and-bound algorithm to obtain an optimal solution to cTx, the
IP and or MIP problem needs to be written in standard form.

2.2.1 Integer programming standard form formulation

As discussed in the introduction to Section 2.2, an integer programming problem can take on various
forms, for instance, all-integer, binary integer and mixed integer programming problems. In this sec-
tion only a technical summary is provided. Studies done by Chen et al.(2010), Mallach (2015) and
Galati (2010) can be sited for a more detailed explanation regarding the standard forms. For the
purpose of defining the standard forms, the objective function and constraints are expressed as linear
functions. As an introduction to the branch-and-bound solution algorithm, the standard forms for
each of these problems are stated below in matrix form. The IP problem is stated in standard form
by using vectors c ∈ Rn, b ∈ Rm and a matrix A ∈ Rn×m. The aim of the problem is to find an
optimal solution by identifying a vector x ∈ Rn which will:

Minimise the objective function

f(x) = cTx (2.7)
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subjected to constraints:

Ax = b (2.8)
x ∈ Zn+

Note that in this form, the optimisation problem may only assign discrete positive values to vari-
ables x. If in the preceding IP problem, all the variables are constrained to binary values of type B
= {0, 1} then the IP problem is transformed to a binary integer programming problem (BIP).

In a MIP problem, variables (x) are allowed to take on either real or integer values. A MIP problem
may also include variables (y) of the binary type to allow for decision making modeling. Considering
the above, it is apparent that a MIP problem can take on a multitude of forms depending on the
nature of the problem. Consequently, the standard formulation of the MIP problem can be portrayed
as a combination of the LP, IP and BIP problems as depicted above. In the standard MIP form,
vectors c ∈ Rn and p ∈ Rn are used to represent the objective function whereas vectors b ∈ Rm and
c ∈ Rm in combination with matrices A ∈ Rn×m and D ∈ Rn×m represent the equality constraints.
The aim of the MIP problem is to find an optimal solution by identifying vectors x ∈ Rn and y
∈ Bm which will:

Minimise the objective function:

f(x) = cTx + pTy (2.9)

subjected to constraints:

Ax = b (2.10)
Dy = c

x ≥ 0, x ∈ Zq × Rn−q

y ∈ Bm where B = {0, 1}

In the case of q corresponding to a value of 0, x will be assigned any real number whereas if q equals
n then x will take on only discrete values.

Depending on the optimisation problem at hand, the user needs to rewrite the problem in any
one of the above standard forms in order to apply a solution method such as the branch-and-bound
algorithm. When faced with nonlinear integer problems, methods such as binary integer logical for-
mulation can be utilised to develop a linear approximation of the problem, prior to utilising MILP
solution algorithms to solve the problem. By applying the logical formulation methodology as dis-
cussed, nonlinear problems can also be transformed to the above integer linear standard forms. A
detailed discussion regarding nonlinear linearisation is provided throughout Section 2.2.2.

2.2.2 Logical modeling with binary variables (linearisation)

In contrast to linear programming, where the implementation of the primal simplex method is used
to solve majority of the LP problems, in nonlinear programming (NLP) there are multiple methods
which can be applied in solving NLP problems. Throughout literature it has been stated that
although a multitude of methods exists, each method can only be applied to certain optimisation
problems, as the effectiveness of each method was identified to be isolated to only specific problem
instances. When applying NLP solution methods to problems outside of its development scope, the
methods’ effectiveness are expected to reduce significantly. Due to the evolving environment of NLP,
continuous improvement is required in order to be able to adapt to the different problem instances
(Corneujols & Tutuncu, 2006). It is also important to note that the complexity of the combined IP-
NLP problems (also known as quadratic integer programming (QIP)) are much greater in comparison
to single LP or IP problems. The increased complexity results in additional computational power
required to obtain an optimal solution. In order to reduce the complexity of the QIP problem,
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one can transform the problem into a MILP problem by utilising logical modeling with binary
variables, as mentioned in Section 2.2.1. By implementing the preceding principle, it reduces the
computational power and time required to obtain an optimal solution significantly. Note however
that such a solution will however only be an approximated optimal solution as a result of the
linearisation methodology applied. In order to linearise an NLP problem one of the following three
methods can be utilised:

1. Piecewise linear approximation using continuous and binary variables

2. Piecewise linear approximation using binary variables

3. Piecewise linear approximation using function gradients and binary variables

Note however that all three methods make use of binary variables to effectively linearise the NLP
problem to a MILP problem with some methods utilising the binary variables in the objective
functions and others in the problem constraints. The form in which an NLP problem is generally
represented prior to applying the piecewise linear approximation transformation, is depicted below:

Minimise the objective function

z = f(x1, x2, ..., xn) (2.11)

subjected to constraints:

gm(x1, x2, ..., xn) = bm (2.12)
gm(x1, x2, ..., xn) ≥ 0

where f(x1, x2, ..., xn) represents a nonlinear objective function of any polynomial form. Equation
(2.12) is defined as the problem constraints which are able to take on either linear or nonlinear
forms. Variables (x1, x2, ..., xn) and bm are subsets of real numbers Rn. For the subsequent sections,
gm(x1, x2, ..., xn) are assumed as linear constraint.

1. Piecewise linear approximation using continuous and binary variables
To explain the methodology of nonlinear linearisation using non-negative continuous variables (Williams,
2009; Winston & Goldberg, 2004), the exponential objective function as depicted in Figure 2.2 is
considered. Note that the objective function can take on any nonlinear form and is only considered
as exponential for explanatory purposes. In Figure 2.2, the exponential function is set equal to 2x2.
In order to linearise the mentioned function it is evaluated at different grid points. The points (xj)
used for analysis is not necessarily required to be evenly spaced, but is however required to span
the entire range of the area under investigation. In Figure 2.2, the range of interest is represented
between xj = 0, ..., 3 with the grid being divided into equal spaced intervals of 1. By dividing the
grid in three equally sized functions, the user is able to obtain values of fj(xj) = (f1(x1), ..., f3(x3))
corresponding to the integers xj = (0, ..., 3). Refer to Figure 2.2 for a visual representation of the
above stated.

By joining the evenly distributed points fj(xj) into one equation, it provides the user with a piece-
wise linear approximation of the nonlinear objective function 2x2. In order to combine the points,
non-negative continuous variables (λj) needs to be assigned to each given point. These weights are
multiplied with each point fj(xj) and summated in terms of index j to obtain the linear approxi-
mated objective function of the original nonlinear function. An example of the linearised objective
function using non-negative continuous variables is depicted in equation (2.13).

z =
j=n∑
j=1

[λ1f1(x1) + λ2f2(x2) + ...+ λjfj(xj)] (2.13)
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Figure 2.2: Linearisation on nonlinear objective functions using continuous and binary variables

In order to adapt the inequality constraints with the non-negative continuous variables as stipulated
above, each one of the variables xj also needs to be multiplied by λj and summated in terms of index
j. The summated term is equivalent to xj =

∑j=n
j=1 [λ1x1 +λ2x2 + ...+λjxj ] which is substituted into

function gm to obtain the linear function value associated to variable xj. The preceding is then set
equal to or less than variable bi in order to constrain the summation function to an upper limit as
noted in equation (2.14):

gm(
j=n∑
j=1

[λ1x1 + λ2x2 + ...+ λjxj ]) ≤ bi (i = 1, 2, ...,m) (2.14)

In addition, to ensure that the summation of the non-negative continuous variables equal a value of
1, equation (2.15) needs to be added to the model. By incorporating this constraint, variables λj are
only allowed to be assigned fractional values less than or equal to one. The reason for constraining
variables λj between 0 and 1 is because it needs to represent the percentage weighting assigned to
each variable fj(xj) and xj. Allowing a fractional value greater than 1 to be assigned to λj will not
satisfy the definition of percentage values and would lead to erroneous results being obtained.

λ1 + λ2 + ...+ λj = 1 (j = 1, 2, ..., n) (2.15)

Using this linearisation methodology, the user is required to add constraints to the model which
will impose the condition that at most only two adjacent λj variables can take on non-zero values.
If for example adjacent variables λj and λj + 1 are assigned non-zero values, these variables will
represent a point on the linear approximation line which corresponds to the jth and j + 1th grid
points. Variables δj are defined as binary variables which is incorporated to assist with the logical
decision making process of deciding which two non-negative continuous variables to select (assign
values of 1) and which to ignore (assign values of 0). When index j is at either a value of 1 or
n, different constraints will apply as these index points are at the lower and upper points of the
nonlinear curve. In order to implement the above methodology, the constraints stacked in equation
(2.16) needs to be incorporated into the model. By doing this, the user effectively assigns the model
with the ability to apply the theory of interpolation.

δj ≤ λj (j = 1) (2.16)
δj ≤ (λj + λj - 1) (j = 2, 3, ..., n− 1)

δj ≤ λj (j = n)
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To ensure that the above constraints hold true, equation (2.17) needs to be added to the model in
order to allow only one δj variable to be assigned a value of 1. By only assigning one δj variable
with a non-zero value, it will activate only one of the constraints contained within equation (2.16)
to ensure that the logical decision making process is done correctly. Without incorporating the
mentioned constant will allow the model to select multiple grid points which in turn will result in
unrealistic answers being obtained.

δ1 + δ2 + ...+ δj = 1 (j = 1, 2, ..., n) (2.17)

The constraints contained within equation (2.18) is added to the piecewise linearisation model to
define variables λj as non-negative variables and variables δj as binary variables.

λj ≥ 0, (j = 1, 2, ..., n), λ ∈ Rn (2.18)
δj = {0; 1}, δ ∈ Bn

Also note that the linear approximation method will either over or underestimate the nonlinear
function’s true value when implementing the above algorithm, but the offset can be reduced by
refining the grid under consideration. By refining the grid, the computational time required to
obtain the optimal solution will most definitely be increased.

2. Piecewise linear approximation using binary variables
Another methodology which can be applied to linearise a nonlinear objective function is known as
piecewise linear approximation using binary variables (as defined by the author). For explanatory
purposes, the same exponential objective function is utilised as was discussed in Section 2.2.2 part 1
to explain the reasoning behind the mentioned method. Contrary to what was discussed in Section
2.2.2 part 1, this methodology only utilises binary variables for its linearisation process and does not
incorporate non-negative continuous variables. In the previous method, the functionality of interpo-
lation was built into the model by using both the non-negative continuous variables and the binary
variables. However in this method, the interpolation functionality is not available and the model
will only be able to select from a number of data points using the binary variables. The number of
data points will be dependent on the grid size division. Due to the linearisation methodology used
in this method, the optimisation algorithm will only have a limited amount of data points to chose
from. When compared to the previous method, this method will have far less options to chose from
in order to obtain an optimal solution. For example, in Figure 2.3 the grid is divided into seven data
points with the x-axis being represented by xj and its associated y-axis by fj(xj). When using the
binary variables, the model will only be able to choose from one of the seven data points. Refer to
Figure 2.3 for a visual representation.

Although the objective function in the initial method (Figure 2.2) is only divided into four data
points (three linear equations), the methodology applied enables the model to interpolate between
the different points resulting in a significant increase in options to chose from. Note however that
the method discussed in Section 2.2.2 part 1 would maybe provide the user with a more optimal
solution due to its ability to automatically generate multiple data points, but this method will most
definitely require increased computational power and calculation time to obtain the desired solu-
tion. When faced with large scale problems, the piecewise linear approximation methodology using
binary variables might be a better method to implement as the algorithm will be able to provide an
approximated optimal solution within a reasonable time frame, contrary to the method discussed in
Section 2.2.2 part 1.
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Figure 2.3: Linearisation on nonlinear objective functions using binary variables

To develop a linearised approximation of the nonlinear objective function 2x2, using binary variable
formulation, a binary decision variable needs to be assigned to each grid point fj(xj). By multiplying
each grid data point with its associated binary variable (δj) and summating the multiplication term
of each data point in terms of index j, a linear approximation of the nonlinear objective function
can be obtained. An example of the linearised objective function using binary variables formulation
is depicted in (2.19) below:

z =
j=n∑
j=1

[δ1f1(x1) + δ1f2(x2) + ...+ δjfj(xj)] (2.19)

Similar to Section 2.2.2 part 1, the inequality constraints need to be adapted in terms of binary
variables δj by means of multiplying variables xj with binary variables δj. The preceding is done to
relate the constraints to the linearised objective function. The foregoing multiplication functions are
summated in terms of index j and substituted into function gm. The summated term, prior to its
substitution, is equivalent to xj =

∑j=n
j=1 [δ1x1 + δ2x2 + ...+ δjxj ]. Function gm is again set equal to

or less than variable bi in order to constrain the inequality constraint to an upper limit as denoted
in equation (2.20). Note however that by implimenting the binary variables in equation (2.20), the
model will only be allowed to select one variable xj which corresponds to the data point fj(xj) as
selected in equation (2.19). The remaining variables will be assigned 0 values and will be discounted
from the calculation process.

gm(
j=n∑
j=1

[δ1x1 + δ2x2 + ...+ δjxj ]) ≤ bi (i = 1, 2, ...,m) (2.20)

For the above statement to hold true, equation (2.21) needs to be incorporated into the optimisation
model. By summating variables δj in terms of index j and setting the function equal to a value of
1, it allows only one binary variable to be assigned a non-zero value. If the subsequent constraint
is not added to the model, the model will be allowed to assign multiple binary variables non-zero
values which in turn will result in incorrect results being obtained from the model.

δ1 + δ2 + ...+ δj = 1 (j = 1, 2, ..., n) (2.21)

Equation (2.22) needs to be added to the piecewise linearisation model in order to declare δj as
binary variables.

δj = {0; 1}, δ ∈ Bn (2.22)
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The model accuracy and computational time required to obtain an optimal solution will be de-
termined by the amount of data points within which the grid is discretised when using the binary
variable formulation method. When the grid is discretised into more data points, the model accuracy
and solution time will increase and vice versa. It is therefore the prerogative of the user to determine
the importance of the model accuracy and to determine if an approximated optimal solution will
suffice. Depending on the conclusion, grid discretisation intervals can be determined.

3. Piecewise linear approximation using function gradients and binary variables
The third method that can be applied to linearise a nonlinear objective function is known as piecewise
linear approximation using function gradients (Bradley et al., 1977). Similar to the method discussed
in Section 2.2.2 part 1, this method also utilises both non-negative continuous variables and binary
variables to linearise the nonlinear function. However the difference between the two methods is that
in this method the nonlinear objective function is divided into three evenly spaced linear functions
(y = mx + c) from which the gradient (m) of each linear function is used to develop the piecewise
linear objective function, whereas in Section 2.2.2 part 1 the nonlinear function was divided into
multiple data points and the theory of interpolation was applied to obtain the mentioned function.
Refer to Figure 2.4 for a graphical representation of the function gradient method. When using
the theory of function gradients, the nonlinear function does not necessarily need to be divided
into evenly spaced sections, but for explanatory purposes the x-axis is divided into even lengths in
Figure 2.4. Also, take note that the nonlinear function intersects the y-axis at 0 in Figure 2.4. In
mathematical terms, variable c used in the linear function formulation will be equal to zero and
won’t be included in the objective function. If however the nonlinear function intersects the y-axis
at any other non-zero point, variable c will be equal to the value fj(xj) of the intersection and will
have to be incorporated into the objective function.

Figure 2.4: Linearisation on nonlinear objective functions using function gradients and binary vari-
ables

Given the aforementioned, the nonlinear objective function can be transformed to a linear approxi-
mation by means of multiplying each function gradient mj with non-negative continuous variables λj
and summating the multiplication functions in terms of index j. If however there exist a y intersect
fj(xj) of a non-zero value, the intersect value also needs to be added to the objective function in
equation (2.23). Given the function in Figure 2.4, no y intersect exist that results in this value being
omitted from the objective function.
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z =
j=n∑
j=1

[m1λ1 +m2λ2 + ...+mjλj ] (2.23)

Due to the mathematical formulation used in this method, λj effectively represents variable x in the
general linear function y = mx + c. Therefore, in order to rewrite the x-axis inequality constraints
of the stipulated problem in terms of the function gradients method, variables λj can be summated
in terms of index j, substituted into function gm and set equal to or less than variable bi. The
summated term, prior to its substitution, is equivalent to xj =

∑j=n
j=1 [λ1 + λ2 + ... + λj ]. Refer to

equation (2.24) for the mathematical representation of the mentioned formulation.

gm(
j=n∑
j=1

[λ1 + λ2 + ...+ λj ]) ≤ bi (i = 1, 2, ...,m) (2.24)

In order to enforce the model to be able to perform correct logical decisions, constraints needs to be
incorporated to ensure that whenever λ2 > 0 then λ1 = ∆x1 and when λ3 > 0 then λ1 = ∆x1 and
λ2 = ∆x2, and so on. Without incorporating such constraints, the model will be able to minimise
the objective function by assigning λ2 a non-zero value, if m2 has the smallest gradient, while
maintaining variables λ1 and λ3 equal to 0. Although this might provide the smallest variable cost,
the results would be incorrectly calculated. In order to enforce the preceding conditional constraints,
binary variables (δj) needs to be incorporated in to the model. The binary variables are added to
assist with the logical decision making process of deciding which conditional constraints to activate
or discount from the model as to obtain an optimal feasibly solution. When index j is at either
a value of 1 or n, different constraints will apply as these index points are at the lower and upper
points of the nonlinear curve. In order to implement the above methodology, the constraints stacked
in equation (2.25) are used in the model. When for example variable λj is set equal to a non-zero
value by the model where index j = n, all binary variables δj of index j = 1...n will be assigned
values of 1 to ensure the conditional constraints are satisfied. If however only λ2 is set equal to
a non-zero value, δ1 will be the only binary variable assigned a value of 1 with the others binary
variables remaining at 0 values.

∆xjδj ≤ λj ≤ ∆xj (j = 1) (2.25)
∆xjδj ≤ λj ≤ ∆xjδj-1 (j = 2, 3, ..., n− 1)

0 ≤ λj ≤ ∆xjδj-1 (j = n)

The constraints in (2.26) are added to the piecewise linearisation model to define variables λj as
non-negative variables and variables δj as binary variables.

λj ≥ 0, (j = 1, 2, ..., n), λ ∈ Rn (2.26)
δj = {0; 1}, δ ∈ Bn

In summary, depending on the size and complexity of the nonlinear optimisation model and the
availability of the computational time, either one of the piecewise linearisation models can be im-
plemented to simplify a nonlinear problem to a integer-linear form. The linearisation is executed
in order to apply solution algorithms such as the branch-and-bound method to obtain optimal so-
lutions. Take into consideration some piecewise linearisation models will require additional solving
time in comparison to others as a result of its mathematical formulation and the user will need
to determine the amount of time available for solution prior to the implementation of the different
methods.

2.2.3 Branch-and-bound method for mixed integer linear problems

Literature compiled by Corneujols & Tutuneu (2007) and Winston & Goldberg (2004) were investi-
gated in order to obtain an understanding of the branch and bound method. For more detail, the
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foregoing references can be cited. The branch-and-bound method is based on the principle of parti-
tioning a set of feasible solutions into smaller subsets. These subsets are then individually evaluated
in order to obtain an optimal solution. To explain the detailed methodology behind the branch-
and-bound algorithm, a mixed integer linear programming problem (MILP) of the minimisation
type is considered. The initial step in the branch-and-bound method is to solve the LP relaxation
problem LP0 by means of dropping all integer constraints from the MILP. Generally, LP0 is solved
by using the simplex method with the solution to LP0 being defined as xLP. When solving LP0 by
means of applying an LP solution algorithm, and the solution (xLP) obtained is integer, then the
MILP problem is solved and the branch-and-bound algorithm terminates. If, however, the solution
to LP0 is infeasible, the MILP will also be infeasible and will again result in the termination of the
branch-and-bound algorithm. Only if there exists a component within xLP which does not contain
an integer value, the branch-and-bound method initiates the second step in the algorithm. Note
however if a variable is allowed to have fractional values, the branch-and-bound algorithm will not
be applied to this variable. The algorithm will only be applied to variables which are constrained to
be integer. In the second step, the lower bound (LB) of MILP is set equal to the objective function
value obtained for LP0, and the upper bound (UB) takes on the value of infinity. After defining
LB and UB, the feasible regions as depicted by LP0 needs to be partitioned into two separate sub-
problems. In order to partition LP0, a variable xLP

r contained within xLP for which the integrality
constraint is violated, is identified and divided into two sub-problems, say, LP r1 and LP r2 . This is
done by adding constraint:

xr ≤ [xLP
r ]

to the parent problem (LP0) to obtain LP r1 , as well as constraint:

xr ≥ [xLP
r ]

to obtain LP r2 . As mentioned above, LP0 is defined as a parent node whereas sub-problems LP r1
and LP r2 can each be denoted as child nodes. The preceding process is known as branching. After
creating child nodes, the LP relaxation problem of each is solved and the solutions obtained are
checked for integer feasibility. If the integrality constraints are violated and the objective function
value obtained is less than the upper bound Z, the node is added to the waiting list. Such a node
is know as a dangling node. If however all the integrality constraints are satisfied, the child node
becomes the new integer solution. If the objective value (Zp) obtained from the solution is less than
the current upper bound (Z), Zp will become the new upper bound so that Z = Zp. Else, if the
objective value is higher than the current upper bound, the node is removed from the waiting list.
For explanatory purposes, refer to Figure 2.5. Given the example portrayed in Figure 2.5, we note
that branching was done on parent node (LP0) as discussed above, where after the LP relaxation
problem of both child nodes LP r1 and LP r2 were solved using an LP solution algorithm. In order
to elaborate on the remaining steps in the branch-and-bound algorithm, the results obtained from
node LP r1 is assumed to be non integer values and is placed in the waiting list whereas node LP r2 is
discarded from the waiting list as the node provided non-optimal results.

Figure 2.5: Branching process used in the branch-and-bound algorithm
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The next step is to select the next sub-problem from the dangling nodes in the waiting list on which
branching needs to be performed. For the above example, branching is done on node LP r1 . This
process is termed node selection. During node selection, the node for which the sub-problem has
the minimum objective function value needs to be selected for branching. Again the LP relaxation
problem of each branched node is solved to obtain a solution. The mentioned evaluation criteria are
then utilised to determine if the solution will become the next incumbent integer solution, if further
branching is required or if the node needs to be eliminated from the computational process. If the
waiting list is empty, the branch-and-bound algorithm will terminate as no node will be available
for selection. In such a case, the optimal MILP solution will then be the last identified incumbent
solution. It might also be that no incumbent solution was obtained during the computational pro-
cess which would indicate that the MILP problem has no feasible solution. Refer to Figure 2.6 for
a representation regarding the node selection process.

After selecting node LP r1 , branching is performed to sub-divide LP r1 into child nodes LP r3 and
LP r4 . Applying the algorithmic methodology discussed, it is identified that child node LP r3 satis-
fies all integrality constraints and that the results obtained from this node becomes the incumbent
solution. The same process is applied to LP r4 but the node is identified to be infeasible and is
consequently discarded from the calculation process.

Figure 2.6: Node selection process used in the branch-and-bound algorithm

After traversing the waiting list for dangling nodes, it is determined that all the nodes were processed
and that the list is empty. Therefore, the incumbent solution LP r3 becomes the optimal solution
to the minimisation problem where after the branch-and-bound algorithm will terminate. Refer to
Figure 2.7, for a detailed flow diagram of the complete branch-and-bound algorithm applied to a
minimisation problem as discussed.

In summary, the principle that underpins this algorithm is to subdivide a complex problem into
sub-problems of progressively decreasing dimensions in order to solve the problem easier (apply-
ing the principle of divide and conquer). Also note that when confronted with either IP or MIP
problems, this algorithm can be applied to obtain a mathematically proven optimal solution. When
discussing the unit commitment and load dispatch optimisation problem throughout Chapters 4 to
5, this solution method must be kept in mind as the commercial software used to solve the mentioned
problem implements this method.
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Figure 2.7: Iterative flowchart for the branch-and-bound algorithm applied to IP or MIP problems

Heuristic solution methods
Heuristic solution methods or algorithms are designed to solve complex optimisation problems faster
and more efficient than traditional exact solution methods. However, in order to increase the com-
putational speed of these algorithms, a compromise is made to sacrifice precision, accuracy and
solution optimality. Generally, heuristic algorithms are employed when only an approximated solu-
tion is required and where exact solutions would be computationally too expensive. These algorithms
are usually problem specific and when applied to different problem instances, they typically do not
provide satisfactory results. Metaheuristic algorithms, are similar to general heuristic algorithms,
but they are designed to be compatible with a multitude of problem instances and provide adequate
results when applied to various scenarios. However, at times these algorithms are only able to gen-
erate local optimum values (maxima or minima) which deviate from the global optimal solutions.
General heuristic methods include, but are not limited to:
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1. Particle swarm optimisation

2. Tabu search

3. Hopfield neural network

4. Simulated annealing

5. Ant colony optimisation

Throughout the subsequent sections, a high level overview of the principles from which each method
originate, is provided.

2.3 Particle swarm optimisation
The particle swarm optimisation algorithm (PSO) was developed by Kennedy and Eberhart in 1995.
This method was based on the concept of mimicking the behavior of individual agents or particles
within a group or swarm. The PSO algorithm provides an optimisation tool which is population-
based where the agents or particles adjust their position within a certain time period. In order
to obtain an optimal solution using the PSO algorithm, the particles are allowed to fly around a
multidimensional search space during which the position of each particle is adjusted according to
the particles own and its neighboring particle’s experience (Li et al., 2008). In mathematical terms,
we define a d-dimensional search space, as well as the velocity and position of the ith particle in the
swarm which is represented by vectors Vi = (vt1, vt2, ..., vtd) and xi = (xt1, xt2, ..., xtd) respectively.
Vector pbesti = (pbestt1, pbestt2, ..., pbesttd) is defined in order to record the previous best position
of the ith particle. Index gbesttd is implemented in the algorithm to log the position of the best
particle among all of the other particles in the swarm.

To calculate the modified position and velocity of a particle from the current velocity and the
distance from pbesttd to gbesttd, the following equation can be utilised:

vk+1
td = w × vktd + C1 × r1 × (pbesttd − xktd) + C2 × r2 × (gbesttd − xktd) (2.27)

With d = 1, 2, ..., Ng and i = 1, 2, ..., Np. Note thatNg is the number of elements in a particle whereas
Nd denotes the number of particles in a swarm. Variable ri is a uniform random number within the
range [0; 1], variables C1 and C2 represents acceleration constants, w is the swarm inertia or also
know as weight parameter and lastly, vktd is the velocity of particle i at an iteration k. Constants C1
and C2 are implemented in equation (2.27) to pull each particle to either positions pbesttd or gbesttd.
In order to change the position of each particle in a swarm, the updated velocity can be utilised as
depicted in equation (2.28).

xk+1
td = xktd + vk+1

td (2.28)

To reduce the iterations required to obtain an optimal solution, when using the PSO algorithm, the
correct inertia weight (w) needs to be selected in order to obtain a balance between the local and
global explorations. In order to calculate the inertia weight, the following equation can be applied:

w = wmax −
wmax − wmin
itermax

× iter (2.29)

With itermax and iter defined as the maximum and current number of iterations, respectively. The
preceding is a high level overview of the classical PSO algorithm. Note however that this algorithm
has also been applied in combination with other methods in literature to improve the performance
of the PSO algorithm (Mandal et al., 2015).
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2.4 Tabu search
The tabu search method was developed by F. Glover during 1989 and it is applied as a metaheursitic
local search method. The method was designed to have a flexible memory in order to save and
employ information regarding the historical searches to explore the search space for an optimal
solution (Naama et al., 2013). The computational principle of the tabu search method is based
on the hill-climbing algorithm. However, the difference is that if a current solution is identified,
the algorithm is allowed to move out of the mentioned area although it might negatively affect the
objective function at first, in the hope that it will eventually lead to a better solution. The tabu
search algorithm can be divided into two main components which consist of the tabu list (TL) and
the aspiration criterion (AC), with the TL being divided into the following three subsections

1. Forbidding: In this phase the search algorithm checks the moves which was executed by the
search algorithm and prevent the algorithm from executing moves which were already explored
during previous executions and were deemed undesirable.

2. Freeing: The preceding process is focused on which solutions satisfy the aspiration criteria and
is allowed to exit the tabu list. In this phase, the algorithm also tracks in what instance this
freeing action takes place.

3. Short term memory: This strategy is included into the algorithm in order to update the tabu
list, based on the memory structure formulated during the forbidding and freeing phases.

The tabu list is employed to store a list of all the moves that are not permitted to be applied to
a current solution and to record the frequency, recency and move direction of each decision. The
purpose of the AC is to identify when a move is allowed to be free after satisfying a specific move
criterion. The procedure of the Tabu search algorithm can be summarised by the following steps:

1. Initialize the algorithm by selecting an initial solution i from S and set variables K=0 and
i∗ = i

2. While the stopping criteria is not yet met, set K = K + 1 and generate a subset say (V ∗) of
solution N(i,K) which will either hold one aspiration condition or violate one tabu condition.

3. Chose the best solution say j in subset V ∗ and replace the initial solution with the mentioned
solution i = j.

4. If it is found that f(i) ≤ f(i∗) then the algorithm will set i∗ = i

5. Thereafter the aspiration criteria and tabu list are updated and the algorithm is stopped if the
stop criteria are met. Otherwise, if the criteria are not met revert back to step 2.

The tabu search algorithm will stop if there is no feasible solution, if the maximum allowable number
of iterations has been exceeded or if an optimum solution has been obtained (Joshi, 2018).

2.5 Hopfield neural network
During the early 1980s, John Hopfield developed the neural network method know as the Hopfield
model. The model consist of multiple neurons with all neurons being both input and output neurons.
Each neuron is connected in both directions to the neighboring neurons (Benyahia et al., 2008). In
this method, the input is applied simultaneously to all neurons in order for the mathematical compu-
tation to take place. The output obtained from each neuron is then again supplied to all the neurons
as inputs where the computational process is re-initiated. This process continues until a stable state
is obtained, where after the model terminates to provide the network output (Dash, 2013). The
Hopfield neural network (HNN) is generally applied in solving combinatorial optimisation problems.
The HNN system consist of different elements of which include parallel input and output channels
as well as a significant amount of interconnectivity between the neural network elements.
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In practice, either the discrete or continuous Hopfield neural network is utilised. In the discrete
model, each processing element or neuron can take on either a value of 0 or 1, which is represented
by V 0

i and V 1
i respectively. The inputs (U) to the discrete model can either be obtained from an

external source (I) or from the neighboring neurons (Vj). Equation (2.30) is indicative of the inputs
to neuron i, with variable Tij presenting the interconnective conductance between the input (i) and
output (j) neurons:

Ui =
N∑
j=1

TijVj + Ii (2.30)

The input to each neuron is sampled randomly by means of the following two rules.

Vi = 0, if Ui ≤ θi (2.31)
Vi = 1, if Ui ≥ θi

The continuous Hopfield model is based on continuous variables. The output values obtained from
neurons i is within a range V 0

i ≤ Vi ≤ V 1
i with the input-output function being a continuous

increasing function of input Ui to neuron i. Each neuron’s dynamic characteristics can be represented
by the subsequent differential equation, with variable Tij being the self-connection conductance of
the ith neuron.

dUi
dt

=
N∑
j=1

TijVj + Ii (2.32)

Each neuron’s output in the continuous model is given by (2.33), with variable fi(Ui) being the
input-output function:

Vi = fi(Ui) (2.33)

The energy function used in the HNN model is defined in (2.34). Note that when taking the time
derivative of the energy function, a negative function is obtained. It is for this reason that in the
computational process of the HNN model, the algorithm will always result in the energy function
being gradually reduced as to converge the function to a minimum value.

E = −1
2

N∑
i=1

N∑
j=1

TijViVj −
N∑
i=1

IiVi (2.34)

Depending on the type of problem that needs to be solved, either the discrete or continuous model can
be applied to solve the optimisation problem. The results obtained from the mentioned algorithms
are however not proven optimal. Exact methods will need to be implemented to obtain proven
optimal solutions (Benhamida et al., 2018).

2.6 Simulated annealing
Another heuristic optimisation algorithm is the simulated annealing (SA) method. This algorithm
was proposed by S. Kirkpatrick et al. in 1983. The theory on which the SA algorithm is based, is
the annealing process of a molten metal (Amhamad & Shrivastava, 2016). In this process, a hot
metal at a high temperature is cooled down at a slow incremental rate as to ensure that thermal
equilibrium is reached at each stage of the cooling process. The annealing process is terminated
when the energy of the system reaches a global minimum value. This principle is applied to complex
nonlinear combinatorial minimisation problems in order to obtain the global minimum. Note that
this algorithm will not always be able to provide a proven global minimum due to its heuristic
structure. Exact methods will need to be employed to determine the optimality of the solution
obtained from the simulated annealing method. In the SA algorithm, a temperature parameter T
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is defined which is slowly reduced during the optimisation process. At each point T, an iterative
procedure is executed. In the iterative process, a Gaussian probabilistic distribution function is used
to obtain a trail solution from a current solution. If the cost associated with the trail solution is less
than that identified for the current solution, then the trial solution is accepted by the algorithm and
implemented to generate other trial solutions. If however the trail solution is greater than the current
solution, it is only accepted when the transition probability of acceptance (P (T )), as determined by
the Boltzmann distribution, is greater than a random number ranging between 0−1. Variable P (T )
is defined as:

P (T ) = e
−∆F

Tt (2.35)

In the SA algorithm, each trail solution which is identified at a temperature T, is tested for an
appropriate time period in order for the algorithm to reach thermal equilibrium. If not enough time
is assigned for the testing process, there exists a high probability that only a local minimum will be
obtained. The reduction in temperature in order to reach equilibrium is done by implementing the
subsequent geometric function:

Tt+1 = αTt (2.36)

The mentioned iterative process is repeated until no significant improvement in the objective function
is noted where after the computational process will terminate. Similar to the tabu search algorithm,
the process can also terminate when the maximum number of iterations have been reached. Also
note that the SA algorithm is able to obtain a global solution as the calculation process allows the SA
solution to jump out of a local solution by accepting deteriorated solutions (Sasikala & Ramaswamy,
2010).

2.7 Ant colony (swarm) optimisation
The Ant colony Optimisation (ACO) model was initially proposed by Marco Dorigo in 1992. The
calculation methodology on which this method is based, was inspired by the behavior of ant colonies
while scouring food. During the process of searching for food, ants usually try to identify the shortest
path between their nest and the food source to minimise their effort. When the mentioned path
has been identified by a group of ants, they will utilise a hormone know as pheromone to indirectly
communicate with one another the logical decisions which were made to identify the path. This is
done to enable the other ants to access the same route without any difficulty. The path which the
ants will choose to use will be directly linked to the intensity of the pheromone. If a certain path
is not used regularly, the pheromone trail will evaporate over time and the ants will lose interest.
However, when the pheromone trail is strong, the path will be more frequently used and as a result
will grow faster as compared to the less traveled paths (Afroozi et al., 2014).

When the preceding is applied to optimisation problems, one can derive that the best solutions
will have the highest intensity of pheromones and therefore will have an increased probability to
be chosen. This principle can be applied in the optimisation environment to solve combinatorial
optimisation problems. When implementing the ACO algorithm, artificial ants will be allowed to
travel through the search space (from node to node) in order to obtain a solution. The movement
of the artificial ants will be highly dependent on the previous actions which are stored in the algo-
rithm’s memory using a specific data structure. The pheromone intensities are only updated when
the artificial ants have traveled through all the nodes with high intensities indicating good paths
and vice versa. In order to prevent the ants from being stuck in local optima solutions, the inten-
sity of the pheromones is progressively reduced by evaporation. In mathematical formulation, the
probability of an ant k, which is at node i, to select a new node j to move to, can be calculated
by means of equation (2.37). In this equation Jki represents the nodes of which ant k has not yet
visited, variable τij(t) denotes the concentration intensity of the pheromones at edge (i, j) in the tth
iteration. Variable nij represents the visibility of the different paths whereas variables α and β are
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implemented to control the importance of the visibility versus the pheromone intensity (Khodia et
al., 2014).

pkij(t) = [τij(t)]α[nij ]β∑
j∈Jk

i
[τij(t)]α[nij ]β

, If j ∈ Jki (2.37)

and 0 if j /∈ Jki

After completing an iteration, the pheromone intensity on each edge or path is updated by means
of implementing Equation 2.34 with p being representative of the pheromone persistence and ∆τij
being equal to the solutions identified at each iteration t.

τij(t) = ptij(t) + ∆τij(t) (2.38)

The function utilised to calculate ∆τij is provided below, with index n referring to the number of
artificial ants being considered in the problem:

∆τij =
n∑
k=1

∆τkij(t) (2.39)

The quantity ∆τkij(t) represents the amount of pheromone which is added on edge (i, j) per unit
of length at the end of each iteration t, by the kth ant. Note that if (i, j) ∈ T k(t), then ∆τkij (t)
is calculated by Q

Lk(t) . If however (i, j) /∈ T k(t) then ∆τkij(t) will equal a value of zero. T k(t) is
indicative of the tour selected by an artificial ant, Lk(t) is the length of the tour and Q is a user
defined constant. Similar to the previous heuristic methods, the ACO algorithm will be iteratively
executed until a solution is obtained and all constraints are satisfied before terminating the process
(Afroozi et al., 2014).

2.8 Summary
A technical overview of both exact and heuristic methods was provided in this chapter with specific
focus on the linear and integer programming algorithms and their associated standard forms. A de-
tailed discussion regarding the mathematics related to the simplex and branch-and-bound algorithms
were provided as to ensure the correct modeling approach is applied by the author when formulating
the UCEELD MILP problem in Chapter 4. The reason the mentioned methods are emphasised in
this thesis is because the commercial software, Cplex, implements these exact approaches as solvers
in the background. A high-level overview of the heuristic methods generally applied to the unit com-
mitment and load dispatch problems such as the particle swarm optimisation, tabu search, hopfield
neural network, simulated annealing, and ant colony optimisation methods were also discussed. No
in-depth mathematical analysis was conducted on the heuristic methods, but a brief explanation of
the principles on which each method is based, were given. In the subsequent chapter, an overview
is provided on the technical aspects associated with coal fired, hydro and pumped storage power
generation technologies. A detailed literature review on the solution methods applied by researchers
to solve power utility optimisation problems is also provided.
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Chapter 3

Technical Background

Power generation technologies operational overview
In this section the engineering basics behind coal fired, hydro and pumped storage power generation
are provided as an introduction to the unit commitment and load dispatch optimisation problem.
Details are provide on the different subsystems used within the mentioned power generation tech-
nologies and how these systems interact with one another in order to generate power. Note that
technologies such as nuclear, photovoltaic and wind power are not considered for the purpose of this
dissertation as mentioned in Section 1.2.2 and will not be elaborated on in the following chapter.

3.1 Coal fired power generation
The primary function of coal fired or also know as thermal power stations are to transform dem-
ineralised water into superheated steam using coal as energy source (Govidsamy, 2013). In order to
allow a coal fired power station to generate high enthalpy superheated steam, different processes are
implemented which include feedwater and condensate, boiler, turbine and auxiliary systems such as
portrayed in Figure 3.1. There is however other subsystem also present in a coal fired station, but
the scope of the dissertations is limited to the above mentioned to provide a high level overview of
the technology.

Figure 3.1: Overview of a general coal fired power generation process (Govidsamy, 2013)
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The principle on which coal fired power generation is based is known as the Rankine cycle. This
is a thermodynamic cycle where a working fluid such as demineralised water is both vaporized and
condensed while flowing through different sets of processes. A basic Rankine cycle consists of a
boiler, turbine, condenser and compressor (Koretsky, 2013). To significantly increase the efficiency
of a basic Rankine cycle, feed water heaters are also added to the process to recover some latent
heat of vaporization which was used during the vaporization process (process 2 - 3) (Jestin, 2017).
The working fluid is transported to the boiler by means of boiler feed pumps (also known as the
compression process 1 - 2). Energy used for power generation in the turbine is produced by means
of pulverised combustion in the boiler. The energy is transferred from the boiler to the turbine by
means of heat transfer tube banks knows as superheater, reheater and economizer sections (process
3 - 5 and 6 - 7). Depending on the design of a coal fired power station, the station can either
consist of a single high pressure (HP) turbine or multiple HP, intermediate pressure (IP) and low
pressure turbines (LP). The amount and size of turbines installed will also govern the rated megawatt
output of the power station (process 5 - 6 and 7-8). After passing the turbine, energy needs to
be transferred between the system and the surroundings to ensure that the system is returned to
its original state in order to complete the cycle. The energy transfer is induced by means of heat
expulsion in the condenser (process 8 - 1) and auxiliary power input to the compressor. The
preceding can be represented graphically by means of a temperature-entropy diagram as depicted
in Figure 3.2 (Wu et al., 2014). This diagram is an overview of a sub-critical Rankine cycle, similar
to the principle on which some South African power stations are designed on. In the South African
context, coal fired power stations are used as base load stations to regulate and maintain the grid
frequency stable.

Figure 3.2: T-S Diagram of a typical sub-critical Rankine cycle (Wu et al., 2014)

A more detailed analysis of the different processes depicted in the Rankine cycle follows in the sub-
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sequent sections with an elaboration on some of the design considerations. Note that the equations
depicted in the subsequent sections are provided for understanding the principles behind the power
generation process only and was not explicitly used in formulating the UCEELD problem.

3.1.1 Compression system

The initial step in the Rankine cycle as depicted in Figure 3.2, is to raise the pressure of the working
fluid to the desired turbine inlet pressure setpoint. In order to achieve a pressure increase, boiler feed
water pumps (BFP’s) are added to the power generation process (Teleman, 2016). Depending on
the design conditions of the turbine, different BFP’s may be utilised to satisfy the pressure increase
required. The work necessary to increase the fluid to the desired pressure is calculated by means of
equation (3.1). Note that variables ĥ2s and ĥ1 are representative of the isentropic outlet enthalpy
and actual inlet enthalpy of the working fluid, ṁ depicts the mass flow of the fluid whereas nC
presents the isentropic efficiency of the BPF’s (Kapooria et al., 2008).

W12 = ṁ(ĥ2s − ĥ1)
nC

(3.1)

Depending on the efficiency variations, the work required per pump may differ. To determine the
isentropic efficiency, the following equation is used with variable ˆh2r representing the actual enthalpy
at the outlet conditions (Kapooria et al., 2008):

n12 = ĥ2s − ĥ1

ĥ2r − ĥ1
(3.2)

The inlet conditions to the BFP’s are usually single phase saturated by design as majority of BPF’s
are not able to handle two-phase mixtures (Koretsky, 2013). Due to the fact that the molar volume
of a liquid is much less than that of a vapor, the power required by the BPF’s to compress the fluid is
only a small fraction of the total power generated by the turbine. Generally, the power used for the
fluid compression is termed auxiliary power. After being compressed, the fluid is in the subcooled
phase due to its high pressure and low temperature. BPF’s generally consist of multiple stages from
where spray water can be extracted at any intermediate pressure to control the steam temperature.
The next step in the Rankine cycle is to preheat the feedwater prior to it entering the boiler.

3.1.2 Feedwater and preheating

The purpose of installing feedwater heaters in a power generation process is twofold. The first reason
for installing feedwater heaters is to reduce the operational cost required to produce power (amount
of coal consumed) and secondly to prevent thermal shock to any metal components in the boiler when
the working fluid is introduced back into the system. Depending on the design of the turbine, the
inlet temperature of the steam required can range from anything between 500 ◦C to 540 ◦C. Adding
feedwater heaters to the cycle, would reduce the ∆T which exist between the inlet and outlet of the
boiler and will result in less primary energy (coal) being consumed to meet the desired temperature
and pressure setpoints. Depending on the design of the power station, multiple HP and LP heaters
may be present in the cycle (Jestin, 2017). HP heaters are designed to use steam extractions after
the HP turbine as heating source whereas LP heaters would utilise steam extractions from either the
IP or LP turbines as heating medium (Pieterse, 2016). Implementing the mentioned components
into the Rankine cycle would mean that less energy will be lost at the cooling towers and resultantly
an increase in the overall thermal efficiency of the station would be gained (Wu et al., 2014). At
times, the feedwater heaters may be exposed to tube leaks or fouling which will reduce the efficiency
of both the heaters and the overall power generation process and result in more coal being consumed
for a megawatt generated. To determine the effect of plant defects on the heater efficiency, equation
(3.3) can be used (mass and energy balance) with Efeedwater representing the energy contained in
the feedwater, Ebledsteam the energy in the extraction steam and Eheaterflashbox the energy in the
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feedwater entering the flashbox of the heater from the previous heater:

nheater = Efeedwater
Ebledsteam + Eheaterflashbox

(3.3)

When comparing the performance of two identical generating units, it might be that one would be
able to consume less coal than the other due to more efficient feedwater heaters (less defects) being
present in the cycle. After exiting the feedwater heaters, the working fluid enters the heat transfer
regions of the boiler.

3.1.3 Evaporation, superheating and reheating systems

The boiler consists of different heat transfer regions that include the evaporation, superheater and
reheater sections (Wu et al., 2014). In these sections, the energy released by the combustion process
of the fuel (coal) is transferred to the working fluid (steam). The fluid is heated from liquid to
saturation phase in the economizer section whereas in the remaining sections the fluid is heated
to the superheated vapor phase. The mechanisms by which heat is transferred to the economizer
and reheater sections are by means of convective and conductive heat transfer. In the superheater
sections, the mentioned mechanisms are also present, but with radiation heat transfer being the pri-
mary source. The quantity of radiation, convection and conduction heat transferred to the different
boiler sections can be calculated by means of applying equations such as the Stefan-Boltzmann’s Law
(3.4), Newton’s law of cooling (3.5) and Fourier’s law (3.6) respectively (Welty et al., 2008). In the
mentioned equations, variable A refers to the area of heat transfer, dT to the temperature difference
across the material, T to the flame temperature, ε to the heat uptake capability, σ represents the
Stefan-Boltzmann constant, variable hc depicts the heat transfer coefficient of the process, k refers
to the thermal conductivity of the material and lastly s depicts the material thickness.

q = εσT 4A (3.4)

q = hcAdT (3.5)

q = kA
dT

s
(3.6)

It is apparent from critically evaluating the above equations that, depending on the cleanliness of the
heat transfer sections, which influences the value of variable k, the boiler’s heat pick-up capability
will either increase or decrease. If a boiler is filthy it will result in less heat being transferred to the
steam and consequently lead to a reduction in the boiler’s thermal efficiency performance. The loss
of energy as a result of ineffective heat transfer in the boiler is termed dry fluegas losses (van Rooyen,
2014). Generally, systems such as sootblowers are installed to manage the boiler’s cleanliness, but
due to equipment unavailability at times, the heat transfer sections cannot be cleaned sufficiently. A
reduction in the boiler’s efficiency as a result of the foregoing, will lead to more coal being consumed
to maintain the boiler at the desired operating conditions. Another method to determine the rate
of heat transfer at each section of the boiler other than the above mentioned, is by applying the
enthalpy calculation method (Koretsky, 2013). This method can also be used to determine the
extent of tube fouling when comparing the difference in design data with the answers obtained from
equation (3.7).

QB = ṁ( ˆhout − ĥin) (3.7)

Similar to what was mentioned in Section 3.1.2, if two identical generating units are compared to
each other, one unit might be able to outperform the other by consuming less coal, given that its
boiler cleanliness is managed more effectively. After the steam exits the superheater and reheater
sections of the boiler, it is transported to the HP, IP and LP turbines respectively.
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3.1.4 HP, IP and LP expansion system

The superheated steam enters the HP turbine through governor valves which are used to regulate
the inlet pressure to the turbine. As the steam moves through the turbine, its energy content is
reduced by means of expansion and cooling while producing work (Sampath, 2015). The rate of work
produced is dependent on the mass flow of steam entering the turbine and its associated operating
conditions. To calculate the work produced, the first law of thermodynamics can be applied with
the assumption that the potential and kinetic energy and heat transfer through the turbine casing
is negligible. Refer to (3.8) for the mathematical formulation with variables h5 and h6s representing
the inlet and outlet enthalpy of the steam flowing through the HP turbine, respectively, and nT
referring to the isentropic efficiency of the turbine (Kapooria et al., 2008).

W56 = ṁ(ĥ5 − ĥ6s)nT (3.8)

The amount of work produced by the turbine is, however, highly dependent on the turbine efficiency
which can be influenced by plant defects such as deposits on the balding. This implies that due to
plant defects, less megawatt will be produced by the HP turbine per kilogram of coal consumed by
the boiler. In order to determine the isentropic efficiency, (3.9) can be applied (Jestin, 2017). Note
that variable h6 depicts the actual outlet enthalpy of the steam leaving the HP turbine.

n56 = ĥ5 − ĥ6r

ĥ5 − ĥ6s
(3.9)

In the HP turbine, the steam enters in the superheated state in order to prevent condensation during
the expansion and cooling process. If the steam entered the turbine in saturated state, however,
liquid would form during the generation process. Liquid formation would result in wear of the
turbine blades and consequently long term action will need to be taken to replace the turbine. After
exiting the HP turbine, the steam can either be routed to the condenser or to the boiler depending
on the design of the coal fired power station. In Figure 3.2, it is apparent that an IP and LP turbine
is installed in the process under consideration. Prior to entering the remaining turbines, the steam
is first superheater in the reheater section of the boiler. Note that the reheated steam contains less
energy than that of the steam entering the HP turbine due to the reduced pressure and mass flow
available. After being reheated, the steam expands through the IP and LP turbines in order to
produce work where after the process fluid is routed to the condenser (Sampath, 2015). To calculate
the isentropic efficiencies and work produced by the IP and LP turbines, the same equations can be
used as mentioned above while considering the change in inlet and outlet conditions.

3.1.5 Condensate system

In the condenser, the working fluid changes from saturated vapor to saturated liquid. Phase change
of the working fluid is induced by means of circulating low temperature cooling water through
the tubes of the condenser to extract the latent heat of vaporization (van Rooyen, 2014). The
temperature difference between the steam and the cooling water initiates the heat transfer process
which continues until equilibrium is reached. Note that the phase change occurs at a constant
pressure. Vacuum pumps known as ELMO pumps are connected to the condenser to maintain the
process under vacuum which allows the fluid to flow from the boiler to the condenser. The heat
expulsion is however dependent on the cleanliness of the condenser, and will reduce as the condenser
tubes are exposed to fouling. A reduction in the condenser’s heat transfer capability will directly
influence the condenser’s efficiency (n81) as calculated by equation (3.10) (Kapooria et al., 2008). In
the equation below, variable Tci depicts the cooling water inlet temperature, Tco the cooling water
outlet temperature and Tsat the saturation temperature of the water at the specified operating
pressure of the condenser.

n81 = Tco − Tci
Tsat − Tci

100 (3.10)
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If the outlet temperature of the cooling water is able to reach the saturation temperature of the
water in the condenser, the efficiency will equate to a value of 100%. This is, however, an ideal
situation and in reality plant defects and inefficiencies will result in lower condenser efficiencies
being obtained. Lower efficiencies will result in the condenser operating at increased backpressures
and will consequently require the unit to consume more coal for each megawatt generated (Jestin,
2017). If two units need to be compared to one another with regards to cost efficiency, the unit with
the condenser efficiency less than the other will consume more coal per megawatt generated and will
be considered more expensive. The heat energy extracted from the condenser can be estimated by
means of using the same principle as was stated in (3.7).

3.1.6 Milling and combustion system

The starting point of the combustion system in a coal fired power station is the milling plant. This
system consists of mills or also know as pulverisers, pulverised fuel (PF) transportation piping and
burners. Mills are utilised to grind coal to the desired particle size distribution (into PF) prior
to being dried and transported by means of primary air (PA) to the burners. The transportation
process occurs through the PF piping, with the piping connecting the burner inlets to the mill
outlets (Govidsamy, 2013). In some designs, classifiers are installed after the mill outlets, prior to
the PF piping, to prevent too large particle sizes from entering the PF piping as it might result in
PF settling and consequently pipe blockages (Afolabi, 2012). In addition to the mass flow of coal
and primary air entering each burner, secondary air (SA) is added at each burner to provide enough
air for complete combustion. Ensuring that each burner receives sufficient amount of air, it will
assist to produce an even distribution of heat through the furnace. The quantity of SA introduced
to each burner is controlled by means of auxiliary air dampers. Mixing of the PF, PA and SA occurs
in front of the burners. The fuel-air mixture enters the boiler where after the combustion of coal
occurs and by-products such as flue gas and ash particles are formed. The flue gas enters the heat
transfer regions as mentioned in Section 3.1.3 and acts as heating medium for the steam.

3.1.7 Draft group and airheater system

The draft group system consists of three types of fans which include the PA fans, forced draft
fans (FD) and Induced draft fans (ID). The PA fans are installed to supply the milling system
with enough air to transport and dry the PF. These fans impart a high static pressure onto the
PA system to enable the coal-air mixture to overcome the system resistance from the mills to the
burners. The FD fans are responsible for supplying the burner corners with SA which is the main
source of combustion air. The FD fans take suction from the ambient surroundings. Depending
on the design of the draft group system, the PA fans can either take suction from the FD fan dis-
charge or from the ambient air. Normally there are two FD and two PA fans installed per boiler.
After the flue gas (i.e. SOx, NOx, O2, CO2 and CO) and ash particles are produced in the com-
bustion chamber, the ID fans are utilised to suck these by-products through the boiler. The ID
fans are designed to maintain the boiler under vacuum by controlling the boiler operating pressure
slightly below atmospheric pressure (or 100 Pa). This is done to ensure safe operating conditions
and prevent the combustion flames from propagating outside of the furnace walls (Govidsamy, 2013).

Air heaters are added to the draft group system to improve boiler efficiency (Manivel et al., 2017).
The aim of the air heaters are to extract heat from the warm flue gas exiting the boiler and transfer
it to the cold air entering the air heaters, with the cold air being supplied from both the FD and
PA fans. Depending on the design implemented, there may only be rotary SA heaters installed or a
combination of both rotary SA and tubular PA heaters. The SA heaters are generally regenerative
type heaters where metal plates are heated by the flue gas when the gas passes through the plates.
The SA air is heated by the mentioned plates when it passes through the heater during each rotation.
In the tubular air heaters, flue gas passes through the tube side in order to heat the metal structure.
The air flows around the heated tubes, inside the PA heater casing from where the PA is heated
(Swart, 2016). After heating, the PA is transported to the milling system whereas the SA is sent to
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the burner corners.

3.1.8 Net power generation and cycle efficiency

In the Rankine cycle, net power generated by a coal fired unit is defined as the power produced
by the HP, IP and LP turbines subtracted by the amount of auxiliary power utilised by the boiler
feed pumps. However, in reality, other components such as the mills and fans also consume quite a
significant amount of auxiliary power and this needs to be taken into consideration when computing
the net power production. The net work obtained from a generating unit can be calculated by means
of equation (3.11).

Wnet = Wturbine −Wauxiliary (3.11)

The cycle efficiency or also known as thermal efficiency is a dimensionless performance measure
used to evaluate the effectiveness of the power generation process. The cycle efficiency is defined
as the fraction of how the energy which is added to the boiler by means of coal combustion, has
been converted to useful energy (Anjali & Kalivarathan, 2015). Refer to equation (3.12) for the
calculation of the thermal efficiency.

nthermal = Wturbine −Wauxiliary

QB
(3.12)

If for example any of the above mentioned plant sections does not perform as per its specification, it
will result in a reduction in the thermal efficiency performance and consequently, more heat energy
will be required to maintain the net power generation at the required setpoint value. This, in turn,
will result in an increase in the operational cost of the utility which is undesirable.

3.1.9 Auxiliary systems

Additional to the plant sections discussed throughout Sections 3.1.1 to 3.1.8, auxiliary systems such
as coal, ash, water treatment, hydrogen, auxiliary cooling, fuel oil, compressed air and fire water
plants exist within a thermal power station (Palanichamy, 2015). Each of the mentioned plant sec-
tions is either responsible for the supply of primary resources such as coal, water, hydrogen and
fuel oil to the boiler or is installed with the purpose of handling the ash by-products originating
from the combustion process. Although the auxiliary plant sections form an integral part of the
entire power generation process, these plant sections generally do not contribute to significant oper-
ational financial losses. Even though there might be instances where these systems contribute to the
mentioned losses as a result of extended unit downtime caused by auxiliary system unreliability and
unavailability, such cases rarely occur. Factors which have more of a direct impact on the day-to-day
operational financial losses, are the boiler and turbine plant defects (as mentioned in the preceding
sections) which leads to power station partial load losses. Note that some of these defects can only be
addressed during extended maintenance opportunities which include interim repairs (IR) or general
overhauls (GO). It is for this reason that the focus in this literature review is rather on the partial
load losses instead of constraints that might be encountered on the auxiliary systems.

3.1.10 Power station partial load loss constraints

When considering coal fired generating units, partial load losses can be defined as defect induced
conditions resulting in the temporary reduction of a unit’s power output capability, with the limita-
tions being present until the defects are either addressed or resolved. The major partial load losses
power stations are generally faced with include air heater leakages, poor emissions performance, high
condenser backpressure, and subgrade coal qualities. Note however that there are other load losses
additional to those mentioned, but they occur less frequently.
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1. Air heater leakage related load losses
Air heater leakages are caused by the deterioration of the PA and SA heaters. The mechanisms for
PA heater deterioration include both fly ash erosion and sulfuric acid corrosion. These mechanisms
cause the wall thickness of the heat transfer tubes in the PA heaters to reduce until holes start to
form in the tubes. With holes present in the heat transfer tubes and the tubes being under vacuum
conditions induced by the ID fans, the high pressured PA leaks into the flue gas. This increases the
gas volume flowing to the ID fans. The escalation in flue gas volumetric flow imparts additional
strain onto the ID fans, as the fans need to try and maintain the furnace pressure at the required
set point given the rise in gas flow. In order to process the additional load, the ID fans are required
to increase its output. Similar is true for the PA fans as these fans need to counteract the effect of
the lost PA. To address the preceding, the PA fans are required to increase its volumetric output to
maintain a constant mass flow of air to the milling plant. Deterioration on SA heaters are caused by
air heater blockages and tearing of rubber seals. A reduction in the SA heaters′ performance mainly
affects the ID fans as blockages increase the system resistance to which the ID fans are exposed to
and the tearing seals increase the additional amount of SA being introduced into the flue gas stream.
The mentioned conditions require the ID fans to increase its volumetric output in order to maintain
effective furnace pressure control.

Initially, the PA and ID fans have enough additional capacity to counteract the increased loads.
However, as the PA and SA heaters deteriorate, the rate of air heater leakages steadily increase to
such an extent that the ID and PA fans eventually run out of capacity (operating with fan vanes
at 100% open). When the ID fans are saturated, the unit operators are obligated according to the
fossil fuel firing regulations to deload the unit with a few megawatts in order to bring the ID fans
into control range (vane positions ≤ 90%). This is to ensure the unit remains capable of controlling
its furnace pressure below atmospheric pressure. The PA fans are however allowed to operate at
100% vane positions as these fans are only required to supply a set quantity of PA to the milling
plant and is not used to control any process fluctuations. However, if the PA leakage is high enough
the PA fans will not be able to supply the required amount of PA to the milling plant and will place
the unit at risk of PF pipe blockages. In such a case, the unit operator is again required to deload
the unit until a sufficient amount of PA is supplied to the milling plant. Although the FD fans will
also be required to increase its volumetric output with the deterioration of the SA heaters, usually
these fans are designed with far more capacity than what is required and the fans remain well below
80% vane positions.

2. Emissions related load losses
Poor emissions performance are generally caused by mechanical defects on the electrostatic precipita-
tor (ESP) plant. The mechanical defects may include but are not limited to blocked precipitator hop-
pers, choked or defective precipitator conveyors, poor performing collector and discharge electrodes
and unavailability of the rapping systems. Blocked hoppers are usually caused by defective hopper
heaters or closed knifegates. Process related aspects contributing to reduced emissions performance
include boiler sootblower unavailability (as mentioned in Section 3.1.3), resulting in ineffective heat
pick-up in the boiler causing high backend temperatures. An increase in the temperatures entering
the ESP’s causes the volumetric flow through the system to increase, contributing to a reduction in
gas residence time and consequently a decline in ESP efficiency. Air heater leakages also negatively
affect the performance of the ESP’s as an increase in volume flow to the ID fans, through the ESP’s,
has the same effect as mentioned for the temperature influence and causes a decrease in ESP effi-
ciency. If any of the above mentioned defect conditions are present on the plant, it will hinder the
unit’s ability to maintain its emissions below the legislative limits as stated in Section 1.1.2. In such
a case, the unit operator is obligated to reduce the unit’s output to maintain the emissions below
the desired limits. If however the extent of the defects are too severe, sometimes even load reduction
does not have enough of an impact to lower the emissions production. The only remaining option
is to request unit downtime to conduct partial ESP plant repairs. Although temporary repairs will
assist with the emissions performance, extended maintenance interventions such as IR’s and GO’s
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are required to completely resolve the issues.

3. Condenser backpressure related load losses
The performance of a condenser will deteriorate due to factors such as air ingress, tube fouling or
scaling, low cooling water flow rates, defective vacuum extraction pumps, and condenser tube leaks.
The mentioned aspects will reduce the condenser’s efficiency and resultantly lead to an increase in
the unit’s backpressure. As depicted in Section 3.1.5, increased backpressures will lead to additional
coal being consumed per megawatt generated. With an increase in coal consumption, extra PA and
SA will need to be supplied to the boiler to prevent sub-stoichiometric combustion from occurring.
The introduction of additional volumetric air flow to the boiler will result in further strain being
imparted on the ID fans. The preceding will require the ID fans to increase its volumetric output
in order to maintain stable process control. As noted in Section 3.1.10 part 1, the unit operator
will be required to take a load loss if the high condenser backpressure results in ID fan saturation
as to ensure the fans remain in control range. Depending on the design of the condenser plant,
some generating units also have controls implemented to automatically deload the unit when the
condenser backpressure exceeds the allowable limit. Deloading will continue until the unit is within
an allowable operating range. The reason such logics are implemented is to prevent saturated steam
from pushing back to the earlier stages of the LP turbine, as there exists a possibility that the steam
will start to condense and form water droplets in the upper stages. The mentioned stages are not
designed to handle water droplets and eventually, the droplets will start causing physical damage to
the blades. High condenser backpressures will also induce additional stresses on the turbine balding
which will lead to stress corrosion cracking. Similar to the above mentioned, the defect induced
conditions will require either IR or GO maintenance opportunities to resolve the issues. However,
if not resolved the affected units will be subjected to load losses and will not be able to attain full
load operation.

4. Coal quality related load losses
Generally, a power station is designed to operate within a certain coal quality band of say 14 MJ/kg
- 21 MJ/kg. These qualities are used as a guideline to determine the capacity required for the design
of the PA, SA and ID fans as well as the milling plant and its associated components. However, in
instances where coal qualities below the design band are supplied to the station, it causes equipment
such as the milling plant and PA fans to run above its design load, when the unit is operating at
maximum continuous rating. This is due to the fact that the equipment needs to increase its feed of
air and coal (with a lower heat content) to the boiler as to maintain a constant heat input into the
boiler. Operating equipment above its maximum capacity is both detrimental to the plant and can
lead to unsafe operating conditions. In order to prevent the foregoing from occurring, unit operators
are required to take load losses to maintain the milling plant and PA fans within its design operating
ranges as specified by the fossil fuel firing regulations. In order to counteract the effect of poor coal
qualities, better coal sources can be identified and the coal obtained from the mentioned sources can
be distributed to the different units. This is however not always practicable due to financial and coal
constraints and consequently, the units are required to run with load losses. Note however that the
strain induced on the milling plant and PA fans are also aggravated by poor equipment performance
as mentioned in the foregoing sections.

3.2 Hydro power generation
Hydro power generation is the process where electricity is generated by means of using water energy
to drive turbines, which are connected to generators. In this process, the kinetic energy contained
within the flow of water, originating either from a dam or river, is converted to rotational energy
in a turbine. The rated power output of a hydro unit is dependent on the turbine design and
available kinetic energy. This type of technology is widely implemented where geographic and
climatic conditions are suitable as the power contained by the reservoirs of a hydro unit is highly
dependent on the rain patterns or volume of the upstream catchment areas. The generation process is
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environmentally friendly as it uses a renewable energy source which does not produce any pollutants.
Hydro power stations are generally used for peak load regulation as it is quick to commit and is
capable of responding rapidly to load variations. The construction cost associated with this kind of
technology is however expensive as it sometimes requires complex tunneling and building of dams
(Jacobs, 2017). Refer to Figure 3.3 for a high-level overview of the hydro power station technology.

Figure 3.3: Overview of hydro power generation process (Antal, 2014)

The next section gives an overview of the equipment, systems, and layout of a general hydroelectric
station. Note however there is a multitude of variations and combinations of equipment as each
hydro station is tailored to the topography and environmental surroundings in which it is situated.
For the purpose of this dissertation, the focus will only be set on medium to high head storage
reservoirs, with run-of-the-river stations being excluded from the study.

3.2.1 Upper reservoir

The upper reservoir, or also known as the dam, is generally erected in a watercourse to hinder
natural water flow and force a rise in the water level upstream of the dam. The construction of the
dam may be of such sort that the water level is several hundred meters higher than the initial river
flow level. The high water level is to ensure enough water head is stored upstream of the hydro units
as to obtain maximum profit gain of the contained potential energy (Ferreres & Font, 2010). The
dams are usually designed to be able to discharge water from the dam to either satisfy downstream
requirements (via spillways) or to supply the required quantity of water to the generating units.
When designing the upper dams, different mechanisms such as pushing and tipping forces need to be
taken into consideration as these forces can result in the destruction of the dam structure. Different
permanent and temporary dam configurations include embankments, gravity, arch, buttress, coffer
and rubber dams. Headworks known as spillways or sluice ways are generally installed on these
dams to control the amount of water contained in the upper dams and protect against overfilling by
directing the water directly into the downstream river (Jacobs, 2017).

3.2.2 Intake works

The intake structure is the connection between the dam and the pentstock system. These structures
are generally constructed by using reinforced concrete in order to guarantee structural integrity.
The intake is formed by means of excavation on the reservoir bed at the inlet of the penstock.
At times it is necessary to excavate below the penstock inlet as to allow silt to accumulate below
the discharge level (Jacobs, 2017). In some underground installations, circular tower intakes are
implemented which consist of circular vertical intakes used to direct water to the turbines. Trash
or coarse screens, floating booms or trash racks are installed at the intake to prohibit debris such

41



as leaves, plants or logs from entering the penstock (Bratko, 2013). To determine the extent of
screen blockage, differential pressure transmitters are installed on the screens to prevent extensive
blockages. After the screens, control gates are installed to isolate the penstock from the reservoir
either during emergency or normal operating conditions.

Penstocks are large transportation ducts or tunnels used to convey the water from the reservoirs to
the turbines. The penstocks are usually bored through solid rock faces and reinforced with either
concrete or steel depending on the pressures and rock conditions involved. As the penstocks get
closer to the turbine, the amount of static water pressure increases. With an increase in static
pressure the support, tunnel lining and sealing arrangements are increased. The penstocks are usu-
ally equipped with surge tanks to either damper or absorb any oscillations or pressure shock waves
induced by emergency conditions (Jeyalalitha, 2008). Main inlet valves are installed at the outlet
of the penstocks, prior to the turbines. The purpose of the valves is to isolate the turbines form the
penstocks, in case undesirable conditions arise. The type of main inlet valves installed may either
be butterfly valves or ball valves depending on the pressures to which it is exposed to. Depending
on the design of the turbine, water exiting the main valve can either be distributed horizontally or
vertically to the turbine by means of spiral casings. The mentioned casings are connected to the
penstocks via the main valves and expansion joint compensator. The expansion joints are added to
prevent expansion forces from being transferred to the turbines (Jacobs, 2017).

3.2.3 Power house

The power house is the area where the turbines, generators, and transformers are contained. Within
the power house different types of turbine designs can be installed of which can either include reaction
or impulse turbines. The different types of impulse turbines entail the Pelton, Turgo, and Crossflow
turbine whereas the reaction turbines comprise of the Francis and Kaplan turbine (Lombard, 2010).
The principle on which the impulse turbines are based is to induce rotation by means of using high
velocity jets of water to impact the turbine buckets connected to the turbine wheels. The velocity
of the water stream reduces to a value of almost zero after transferring its kinetic energy to the
impluse turbine, where after the water is sent to the tailrace. In contrast to the impulse turbines,
the reaction turbines are completely filled with water. Rotation is induced in these turbines by
means of a pressure difference across the turbine runners. The pressure difference pushes the water
through the runners and as a result, causes the turbines to start rotating (Jacobs, 2017). In both
scenarios, the net power which these hydro turbines are capable of generating, is dependent on the
available system head (Hn), the water density (p), gravitational constant (g), volumetric flow rate
of the water (Q) and the turbine efficiency (n). The turbine efficiency is estimated by taking into
account the manometric, mechanical and volumetric efficiencies in the system. Depending on the
efficiency variation of the entire system, the net power generated by each hydro power turbine will
vary accordingly. Also, note that the volumetric flow of water entering the turbines are controlled
by governor valves. Refer to equation (3.13) for the calculation of the hydro turbine net power
generation (Ferreres & Font, 2010).

Pnet = QHnpgn (3.13)

In order to accurately estimate the head available for power generation, head losses such as the
following need to be taken into consideration (Ferreres & Font, 2010):

1. Head losses due to pipe friction, using the Darcy Weisbach principle and the Moody diagram
to calculate these losses.

2. Head losses due to trash racks, using the formula developed by Kirschmer as calculation method
to estimate the losses.

3. Head losses due to sudden contractions in process piping leading to the turbines, as estimated
by the coefficient of contraction method.
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4. Head losses due to inlet valves as depicted on the valve’s performance data sheets.

The turbine-generators can either be installed vertically or horizontally. In the horizontal installa-
tion, the machines are equipped with journal bearings used to maintain alignment of the generator
and to support the shaft during rotation. With the vertical installations, the machine shaft is used
to transfer the rotational energy directly to the generator from the turbine. The generator consists
of a rotor within which multiple DC powered electro-magnetic elements are contained. A stator with
electrical windings surrounds the rotor and is used to induce electrical energy during rotation. Other
designs exist such as older vertical machines where the magnets contained in the rotor are energized
by a slip ring and brush type exciter. However, in the modern era, a static exciter is rather used
instead of the slip ring arrangement. Thrust bearings are also installed on the turbine-generator to
support the weight of the entire system whereas guide bearings are used to ensure correct alignment
of the entire rotor system (Jacobs, 2017). Transformers are also installed in the power house to
step-up the generated voltage to enable the power to be sent through the transmission lines to the
grid (Zoi, 2013).

3.2.4 Tailrace

After the water exits the turbine system, it is either transported in an open channel or duct to the
watercourse, dam or reservoir. These channels or ducts act much like spillways with the water being
directed to the watercourse with as minimum erosion as possible. When considering underground
stations, the water is initially transported through tunnels before being discharged into the tailrace.
In both arrangements, the water introduced back into the watercourse is at its minimum level of
energy and results in the water entering the system at a very low velocity. Draft tubes are installed
at the discharge of the turbine prior to entering the tailrace with the purpose of creating a siphon or
vacuum effect that sucks the water from the turbine. By implementing the draft tube, the effective
head over the turbine is increased to allow a rise in the turbine’s power output. Note that the
tailrace has been designed as the lowest point of the entire hydro system in order to ensure that all
of the potential and kinetic energy stored in the water is used during the generation process (Jacobs,
2017).

3.3 Pumped storage power generation
Pumped storage schemes are similar to hydro generation technologies, with the difference being
that the turbines of a pumped storage scheme have the capability of functioning as both turbines
and centrifugal pumps, whereas hydro stations only have standard turbine installations. Pumped
storage units are designed to act as mechanical batteries in that these units are able to generate
power using the same water repetitively. As a result of the water recycling capability, these units are
less dependent on the water flow of the upper catchment area or the rainfall conditions. Identical
to hydro stations, pumped storage units consist of both upper and lower reservoirs. During low
demand periods, pumped storage schemes are operated in pumping mode in order to covey the
water from the lower to the upper reservoir. When the electricity demand increases, the water is
released from the upper reservoirs to drive the turbine generators and produce power (Prasad et
al., 2013). After generation, the water is discharged to the lower reservoir where it is ready to be
conveyed back to the upper reservoir by means of pumping. Pumped storage stations are designed
to be net consumers of electricity as a result of the pumping functionality of the facility. Generally,
these stations will consume up to 30% more electricity than what it generates (Hunt et al., 2014).
When operating in pumping mode, the generator acts as a motor with the turbine and rotor rotating
in the opposite direction as compared to the direction of rotation in generating mode. to prevent
excessive starting currents on the generator in pumping mode, a pony motor is installed to the
machine shaft to assist the pump turbine to accelerate to the required operating speed, where after
the generator takes over. The same motor is utilised during shutdown operation to brake the unit.
The reasoning behind constructing pumped storage units are not because of its energy efficiencies,
but because of the technologiesábility to supply instantaneous power to the grid under constrained
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condition. Refer to Figure 3.4 for a high-level overview of the pumped storage power generation
technology (Jacobs, 2017).

Figure 3.4: Overview of pumped storage power generation process (Antal, 2014)

Considering the above layout, it is apparent that the design layout of a pumped storage station is
similar to the previously mentioned hydro stations. The major difference between these two tech-
nologies is, however, the pumping functionality and the turbine generator design. Pumped storage
units can be installed with two different turbine configurations of which include a separate turbine
and pump or a combined turbine/pump setup (Norang, 2015). An advantage to the separate turbine
and pump configuration is that it minimises the transition time required to switch between pumping
and generating mode. However, installing such a system would require additional mechanical and
electrical equipment as well as a larger power house structure resulting in a rise in capital expendi-
ture. Contrary to the foregoing, combined configurations require less expensive structures but the
transition time between pumping and generating modes increase significantly. In addition to the
different configurations, pumped storage units can either be designed as single speed or adjustable
speed pumping units. Note that variable speed pumping units are more efficient in comparison
to single speed units due to the elimination of control valve/gate throttling to control the water
discharge rates. Depending on the pump efficiencies of a pumped storage station, the units would
require approximately 90 minutes of pumping for each hour of full load generation in order to refill
the upper reservoirs. This means that a pumped storage station would only be able to generate
power for 9 hours within a 24 hour period and therefore cannot be utilised as a base load station
(Jacobs, 2017). Therefore, this type of technology is generally employed for peak demand regulation.

3.4 UCEELD problem formulation
Power utilities nationally and internationally are faced with the problem of preparing a short term
production schedule aimed at deciding which generating units to commit to the grid and at what
output level, as to satisfy the power demand at the cheapest possible cost. This problem does not in-
clude maintenance planning as such planning forms part of the medium term planning process. The
maintenance schedule does however serve as input to the short term production planning schedule.
The formulation of this schedule consists of many complex variations which are technically challeng-
ing to solve. As a result of energy not being able to be stored in the power grid, it is required that
the production schedule ensure an exact match between the power demand and production at each
time period of the study horizon. For short term planning, it is also required to consider the hourly
forecasted power demand as input when formulating the production schedule. The generating units
considered in the production schedule are required to be modeled as being able to supply a certain
amount of power, taking into consideration limiting factors such as mentioned throughout Section
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3.1. Other factors that also need to be considered when producing such a schedule include, but
are not limited to, ramp rate constraints, minimum on and off times required after start-up and
shutdowns, operating reserve availability, prohibited operating regions, outage schedule constraints,
and environmental legislation. Factors only isolated to hydro and pumped storage units include vol-
umetric water flow and reservoir level management constraints. Considering the above mentioned
parameters, each utility is required to generate a short term production schedule which will lead to
the lowest amount of operational cost being incurred.

In the literature, different types of optimisation problems exist within the power generation contexts
including, but not limited to, the economic load dispatch (ELD) (Sayah & Zehar, 2006), combined
economic emissions load dispatch (CEELD) (Manteaw & Odero, 2012), multi-area economic dis-
patch (MAED) (Secui et al., 1984), unit commitment (UC) (Yahya et al., 2015), unit commitment
and economic load dispatch (UCELD) (Santillan et al., 2016), short term hydro scheduling (STHS)
(Borghetti et al., 2008), short term hydro-thermal scheduling (STHTS) (Salama et al., 2013) and
pumped storage scheduling (PSS) (Chen, 2008) problems. If however valve point effects are taken
into consideration, the notation VP is added to the above stated acronyms (Ghasemi, 2013; Azzam
et al., 2014). These problems involve the optimisation of a power utilities’ performance in order
to reduce operational cost and improve resource utilisation while considering different aspects of
the generation process. In this dissertation, the focus is on combining the dynamics of the above
problems into a single model (excluding VP effects). This model will be defined as the unit commit-
ment and environmental economic load dispatch optimisation problem (UCEELD). The UCEELD
model will be applied to thermal, hydro and pumped storage generating units. The mathematical
formulation will be discussed in more detail throughout Chapter 4. Each of the mentioned problems
encompasses different dynamics and therefore various solution methods can be applied in solving
these problems. Refer to Section 3.5 for a detailed discussion of the different solution methods used
in literature to solve the listed problems.

3.5 Review of power generation optimisation solution methods
The most rudimentary form of the problem under consideration is the ELD optimisation problem. In
this problem, the primary objective is to minimise the operational cost of thermal power stations by
means of analyzing the fuel cost associated with each individual coal fired unit and dispatching the
units accordingly. In recent years, a multitude of optimisation methods was developed in an attempt
to solve the ELD problem. The two main categories within which these methods can be divided are
exact and heuristic methods. The exact methods include integer programming (Dillon et al., 1978),
lambda iteration (Suman et al., 2016), direct search methods (Chen, 2007), dynamic programming
(Lowery, 1996) and quadratic programming (Papageorgiou & Fraga, 2007). Heuristic methods on the
other hand include algorithms such as the particle swarm optimisation (Gaing, 2003), Hopfield neural
network (Park et al., 1993), evolutionary programming (Jayabarathi et al., 2005), genetic algorithm
(Walters & Sheble, 1993), tabu search (Senthil & Manikanda, 2010), differential evolution (Ghasemi
et al., 2016), biogeography-based optimisation (Bhattacharya & Chattopadhyay, 2010) and cuckoo
search algorithm (Basu & Chowdhury, 2013). The last few years, a lot of focus has also been drawn
to emission reduction within thermal power stations using optimal load scheduling, as a result of
other solutions requiring significant amount of time to execute. It is for this reason that in order
to address both the economical and environmental aspects, the CEED problem was formulated. To
solve the CEED problem, researches proposed different techniques. The first method implemented
was to treat the economic aspect of the CEED problem as a single objective, with the emissions only
being considered as a problem constraint. Another approach is to combine both the economic and
emissions aspects into one objective function and thereafter using a user defined weighting parameter
to define each aspect’s importance (Jeddi & Vahidinasab, 2014). Solution methods applied to the
CEED problem by researchers include the non-dominated sorting genetic algorithm (Abido, 2003),
bacteria foraging algorithm (Panigrahi et al., 2011), differential evolution algorithm (Lu et al., 2011),
hybrid neuro-fuzzy system (Chaturvedi et al., 2008), evolutionary algorithm (Abido, 2006), virus
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optimisation algorithm (Liang & Juarez, 2014), harmony search algorithm (Jeddi & Vahidinasab,
2014) and the fuzzy clustering-based particle swarm algorithm (Agrawal, 2008).

Depending on the power grid design, utilities can either be connected to single or multi-area grids.
In single-area grids, one power utility is connected to the grid to meet the power demand. This is
typically considered during the formulation of the ELD and CEED problems. In multi-area grids,
different power utilities operate interconnected from one another within a competitive environment.
A multi-area grid is designed to improve grid reliability, stability, reserve sharing and reduce cost
production. Within such a grid, certain utilities can be excluded from the power generation pro-
cess, if for example the utilities’ electricity production price is too expensive or a surplus of supply
exist. The competitiveness of a multi-area grid promotes operational efficiency improvements and
innovation between independent power utilities. Multi-area problems are increasingly more complex
in comparison to single-area problems, due to the multitude of additional decision making tasks
that a model needs to perform in order to optimise the operational cost of the power grid. Within
literature, the multi-area power grid optimisation problem is abbreviated as MAED (Secui et al.,
2015). This problem still utilises the fuel cost functions of the individual coal fired units as objective
functions and attempts to minimise the operational cost, while considering multiple grid areas. Al-
gorithms proposed to solve the MAED problems include the Dantzig-Wolf decomposition approach
(Romano et al., 1981), linear programming (Desell et al., 1984), evolutionary programming using
tie-line constraints (Jayabarathi et al., 2000), direct search method (Chen & Chen, 2001), neural
networks using new nonlinear optimisation methods, differential evolution with time varying evolu-
tion, improved particle swarm optimisation (Zhu, 2003) and artificial bee colony optimisation (Secui
et al., 2015).

When considering the ELD, CEED and MAED problems, an assumption is made that the utili-
ties’ generating units are already committed to the power grid, and that the load at which the units
are required to be dispatched, is the only uncertainty which needs to be optimised. However, in
reality, the UC problem forms the initial phase of the production schedule development process and
needs to be executed prior to solving the mentioned problems. The results obtained from the UC
model, will provide the user with an indication of which units to commit to the power grid. The
preceding problem is also coupled with the ELD problem in order to address both the commitment
and dispatch of generating units simultaneously and is known as the UCELD problem. The aim of
the UC and UCELD problems is to reduce the accumulated start-up, shutdown and operational cost
of a power utility by managing the commitment (on/off selection) of the units accordingly. General
algorithms applied by researchers to solve the UC and UCELD problems include exact methods such
as the branch-and-bound, dynamic programming, Newton’s method, Lagrangian relaxation method,
lambda iteration method and mixed integer programming (Afzal & Madhav, 2017) whereas heuristic
methods include simulated annealing, artificial neural networks, tabu search, particle swarm opti-
misation (Hadji et al., 2015), chaotic ant swarm algorithm (Cai et al., 2010), bacterial foraging
algorithm, evolutionary programming, waterdrop algorithms and bio-geography based optimisation
(Afzal & Madhav, 2017).

Although the preceding models address majority of the challenges faced by power utilities when
developing a short term production schedule, they do not take into consideration the commitment
and dispatch of peaking stations such as hydro and pumped storage generating units. The ELD,
CEED, MAED and UCELD problems only focus on coal fired generating units and the optimisation
of its operational activities. The management process of hydro station scheduling is defined as the
STHS problem. When interconnected with the coal fired power stations, the scheduling process is
redefined as the STHTS problem. The objective of these two problems is mainly to critically evaluate
the generation schedule obtained from the department of water affairs and dispatch the available
hydro units in such a manner as to minimise the operational cost incurred by the power utility.
To solve the hydro scheduling problems, researchers have applied algorithms that include classical
methods such as linear programming (Chang & Waight, 1999), maximum principle, network flow
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programming (Sjelvgen et al., 1983), dynamic programming (Yang & Chen, 1989), decomposition
(Habibollahzadeh & Bubenko, 1986) and nonlinear programming (Ikura & Gross, 1988). Artificial
intelligence concepts such as differential evolution (Jayabarathi et al., 2007), simulated annealing
(Wong & Wong, 1994; Basu, 2015), genetic algorithms (Gil et al., 2003), particle swarm optimi-
sation (Sun & Lu, 2010) and neural networks (Basu, 2003) were also applied in solving the SHTS
and STHTS problems. The problem of optimising the commitment and dispatch of pumped storage
power stations, is known as the PSS problem. In this problem, the objective is to maintain the
required amount of energy storage in the upper reservoirs of the pumped storage station. This is
enforced by means of switching the pumped storage units between generating and pumping modes.
The reason for setting the energy management of the upper reservoir as objective, is to ensure that
enough energy reserves are present during peak demands as to allow the units to be available for
generation dispatch. Similar solution methods as was applied to the hydro scheduling problem are
applied by researchers in solving the PSS problem (Chen, 2008).

In analyzing the above solution methodologies applied to the various power generation optimisa-
tion problems, it is apparent that heuristic, also called artificial intelligence methods have captured
the interest of researchers. The reason being is because heuristic methods can be utilised in solving
nonlinear, nonconvex, combinatorial and large scale problems within a reduced time period when
compared to exact methods. However, when applying heuristic methods a compromise needs to be
made with regards to solution accuracy as these methods are generally only able to obtained local
optimum values. These methods are usually also quite complex and they behave stochastically. By
implementing exact methods to solve power generation optimisation problems, an increase in the so-
lution time needs to be expected as the model will attempt to find a definite global optimum solution
(Ashfaq & Khan; 2014). Depending on the criticality of the problem and accuracy required, either
heuristic or exact methods can be applied. As stipulated in Chapter 1, it is critical that a global
optimal solution is obtained when solving the UCEELD problem as less of an accurate solution will
result in an undesirable increase in operational cost. It is for this reason that MILP programming
will be implemented in this dissertation in an attempt to solve the UCEELD problem.

3.6 Application of MILP to power grid optimisation
Prior to applying MILP to the nonlinear UCEELD problem, linearisation principles as discussed
in Section 2.2.2 needs to be used to linearise the nonlinear functions. These functions include
the fuel cost functions associated with the coal fired units and the water consumption functions
related to the pumped storage units. For the purpose of this dissertation, the piecewise linear
approximation methodology using binary variables (Section 2.2.2 part 2) will be used to linearise
the mentioned nonlinear functions. The preceding method will be used in an attempt to reduce
computational time by means of preventing the optimisation model to generate its own quantity of
data points using the interpolation functionality. The reason this method is followed, is because of
the UCEELD problem being of type NP-hard. This means that with an increase in the number of
data points from which the model is able to make decisions, the computational time and complexity
will increase exponentially. By applying the piecewise linear approximation methodology mentioned
in Section 2.2.2 part 2, the user is able to dictate the interval sizes within which the nonlinear
functions are divided and consequently the number of data points available for decision making.
Dividing the nonlinear functions into large sized intervals, will assist the MILP model to be able to
obtain a global optimal solution, within a reasonable amount of time. Although the linearisation
methodologies as discussed in Sections 2.2.2 part 1 and part 3 might provide more accurate results,
the model computational time will definitely increase. Provided that the study horizon considered in
the UCEELD problem is a twenty four hour period, the model will need to be able to solve within a
period of less than twenty four hours. Therefore, the decision was taken to try and keep the possible
amount of scenarios at a minimum by implementing the methodology described in Section 2.2.2
part 2. In the subsequent chapter, the mathematical formulation of the UCEELD problem in MILP
format is provided with a detailed analysis of the objective function and its associated constraints.
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3.7 Model formulation and experimental scope
In the sections to follow the MILP UCEELD model will be developed. The objectives of the model
will entail the reduction of the power utilities’ capital expenditure and optimising its resource util-
isation. The model will take into consideration thermal, hydro and pumped storage generating
technologies and will include the following constraints:

1. Power balance, operating reserve availability, unit commitment considering up and downtimes,
ramp rate capabilities, prohibited operating regions, outage schedule consideration, environ-
mental aspects, interconnected multi-area power flow between neighboring areas.

2. Water balance for both hydro and pumped storage units

3. Volumetric flow rate range selection for pumped storage units

4. Power demand, Fuel consumption, and Emissions production stochasticity

In order to evaluate the performance of the MILP UCEELD model after development, the following
experiments will be conducted:

1. Model verification tests. The preceding tests will consist of 12 problem instances which will
be used the evaluate the model’s response when only certain mathematical constraints are
considered. The verification process is initially performed using a base model consisting of
3 thermal units. The base model is then augmented to a 6 thermal, 1 hydro and 2 pumped
storage unit case study.

2. Model validation tests. The aforementioned tests will consist of 2 problem instances. The
initial problem instance is concerned with evaluating the model’s performance by comparing
the model results with the performance of an actual thermal power station. For the purpose
of the initial instance, only 6 thermal units will be utilised. The second problem instance will
be focused on determining the capability of the MILP UCEELD model in solving a realisti-
cally sized power utility optimisation problem. The realistically sized model will consist of 98
thermal, 8 hydro and 6 pumped storage generating units. In conjunction with the preceding,
an analysis is also conducted to determine the scalability of the MILP UCEELD model and
the influence the scalability has on model solution time.
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Chapter 4

Mathematical Model Formulation

4.1 General notation
In the subsequent chapter the mathematical formulation of the UCEELD problem, as discussed in
Chapter 3, is presented with a detailed interpretation on the dynamics of the objective function and
its associated constraints. However, prior to the formulation of the model some general notations
are provided as introduction.

In order to account for the number of geographical areas incorporated into the UCEELD model, the
index set N is defined with n ∈ N referring to a specific geographical area. The graph G(N ,A),
with arc set A is used to accommodate the modelling of power flow from geographical areas i ∈ N
to j ∈ N , with (i, j) ∈ A.

Let H denote the index set of thermal and hydro units considered in the UCEELD problem, with
h ∈ H referring to a specific unit within the collection. The subset H(n) ⊆ H denotes the index set
of all thermal and hydro units belonging to the geographical area n ∈ N .

The collection of pump storage stations considered in the model is denoted by the index set S.
The subset S(n) ⊆ S denotes the index set of all pump storage stations belonging the the geograph-
ical area n ∈ N . The reservoir volume for each pump station s ∈ S is given by the input parameter
v with each reservoir volume being defined by index v ∈ V. The set of pump storage units installed
at each pumped storage station s ∈ S is defined by the index set U(s).

The study horizon within which the generating units need to satisfy the forecasted grid demand
is denoted by the index set T . Each time period t ∈ T represents one hour of the twenty four hour
study horizon.

The proposed optimisation problem that will address all the modeling requirements of the UCEELD
problem, is a nonlinear programming problem. In order to incorporate logical decision-making in
the model, a linearization approach is followed. More specifically, to be able to solve the UCEELD
within an exact framework, e.g. the branch-and-bound approach, the resulting optimisation prob-
lem is required to be a mixed integer linear programming problem. The approach followed in this
chapter to linearize the objective function and constraints involves the creation of a set of discretised
function points (see Section 2.2.2 part 2). The index set J is used to represent these discretised
function points.

In order to capture the variability observed in many of the input parameters of the UCEELD,
for instance, grid demand, fuel costs, and emissions, a scenario based approach is followed. More
specifically, the index set P = {1, 2, . . . , |P|} represents the possible future realisations and each
stochastic input parameter will be indexed by a scenario p ∈ P.
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4.2 Model objective
The mathematical formulation of the UCEELD problem’s objective function is provided in (4.1).
The objective is to minimise the operational cost of the generating units, available to be committed,
to meet the grid demand. The different types of power generating units considered in the opti-
misation model include coal fired, hydro and pumped storage units. Note that although various
generating units are considered in this model, no operational cost is assigned to the hydro and
pumped storage units. The reason for this is because these units utilise the potential and kinetic
energy contained within the water reservoirs and or dams installed upstream to generate electricity.
As a result, no fuel is consumed for power generation by these type of generating units. There are
however fixed maintenance costs which can be assigned to each of these units but this specific cost
is not taken into consideration for the purpose of this study. Analyzing the above mentioned it is
apparent that only the coal fired units are assigned operational costs within the optimisation model.
The operational cost of the coal fired units are however threefold and include coal consumption,
water utilisation and start-up/shutdown costs (Fossati, 2012; Jeddi & Vahidinasab, 2014). Note
however that throughout literature, the water usage cost has not yet been included in the objective
function for coal fired stations, but will be added to the dissertation as a contribution.

In (4.1) auxiliary variables F and W , which will be discussed in more detail below, are repre-
sentative of the coal consumption and water utilisation costs associated with the operation of the
coal fired units. The start-up cost of a coal fired unit h ∈ H is given by c(u)

h , whereas the shutdown
cost is given by c(d)

h . Binary decision variables wth and xth are introduced to keep track of the on
and off selection of each coal fired unit. If variable wth is assigned a value of 1, the unit is committed
and the start-up cost will be considered in the objective function. During unit commitment, variable
xth assumes a value of 0 which prevents the shutdown cost to be considered. The opposite is true
when the unit is decommitted, then wth will take on a value of 0 and xth will take on a value of 1.

min (F +W +
∑
t∈T

∑
n∈N

∑
h∈H(n)

(c(u)
h wth + c

(d)
h xth)) (4.1)

The cost associated with the station’s coal consumption is determined by two factors which include
the quality of coal obtained from the mines (dependent on the calorific value (CV) and ash content)
and the thermal efficiency at which each unit is operating. A Unit with a low thermal efficiency will
consume more coal for a given megawatt generated in comparison to a unit with a high efficiency,
which will result in a higher operating cost being incurred for that specific unit. By incorporating
the coal cost of each coal fired unit, the model will attempt to schedule the units with the lowest
coal consumption/ coal cost while satisfying the remaining constraints. This cost is calculated by
implementing equation (4.2).

The value c(f)
jh in (4.2) is the fuel cost associated with a discretised function point j ∈ J , for a

coal fired unit h ∈ H. As mentioned in Section 3.4, the linearisation methodology as discussed in
Section 2.2.2 part 2 has been applied to derive the discretised fuel cost data from each coal fired
unit’s nonlinear cost curve. The fuel cost is directly dependent on the load a unit is required to
operate at. The binary decision variable zpthj is used in the model to select the load at which each
coal fired and hydro unit is required to be committed, if available for selection. If zpthj is assigned
a value of 1, unit h ∈ H is committed for service during time period t ∈ T , at a load corresponding
to the discretised level of j ∈ J . This in turn will also determine the coal consumption of the given
unit. The remaining load ranges for the unit will be assigned a value of 0 as the unit can only be
assigned a single load point during each time period. The input parameters rp, q(f)

hp and q
(e)
hp are

considered in the model to induce a stochastic influence to the optimisation problem. Parameter q(f)
hp

50



denotes the expected variability in fuel consumption whereas q(e)
hp relates to the possible variability

in emissions production for coal fired units. Parameter rp represents the expected power demand
variability.

F =
∑
p∈P

∑
t∈T

∑
n∈N

∑
h∈H(n)

∑
j∈J

rpq
(f)
ph c

(f)
hj zpthj (4.2)

To enforce a single load point selection in (4.2), constraint (4.3) is added to the model. The variable
zpthj is summated in terms of index j to ensure that only one load point may be selected per unit
from the set of discretised load points provided to the model via the user input. The binary decision
variable yth is introduced to indicate whether a unit h ∈ H is in operation during time period t ∈ T ,
or not.

∑
j∈J

zpthj = yth, p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (4.3)

The second cost to consider is demineralised water consumption. To produce demineralised water,
chemical cleaning processes are required which is used to extract the unwanted ions/ impurities from
the water. If one unit consumes more demineralised water in comparison to another unit due to
plant defects, the total operating cost for the specific unit will increase. By implementing this cost
in the objective function, the model will attempt to reduce the total water consumed by the coal
fired units via the unit scheduling process. The water cost for each unit is calculated by (4.4). The
input value c(w)

h in this equation denotes the rand value associated with the water consumed by a
coal fired unit h ∈ H. Thus, if a unit is on load and operational, variable yth will be assigned a
value of 1. The opposite is true when the unit is off. By multiplying the value c(w)

h with the decision
variable yth, water cost will only be considered in the objective function when a coal fired unit is
committed to the grid.

W =
∑
t∈T

∑
n∈N

∑
h∈H(n)

c
(w)
h yth (4.4)

The third cost to consider for coal fired units, is the cost associated with the start-up and shutdown
of the units. During start-up and shutdown fuel oil is utilised to provide flame ignition and or com-
bustion support until pulverised fuel is either introduced into or taken out of the boiler. Depending
on the type of fuel oil and quantity consumed, each unit will have a cost linked to its start-up and
shutdown operation. Incorporating the above mentioned to the objective function will govern the
extent to which the model will allow operation changeover between the units.

The fact that there are no costs assigned to the hydro and pumped storage units as mentioned
previously, means that these units are considerably cheaper in comparison to the coal fired units
and the optimisation model will want to commit these units continuously to satisfy the grid demand.
To prevent the preceding from occurring, constraints are utilised. For pumped storage units, the
power dispatch is governed by the available power contained in the upper and lower reservoirs. This
is determined by the level in each reservoir. Providing a level setpoint to the upper reservoir, at
a specific time in the study horizon, the pumped storage units will switch between generating and
pumping modes to satisfy the given setpoint and prevent continuous unit commitment. For hydro
units, the power dispatch is governed by a dispatch schedule obtained from the department of water
affairs. This schedule considers the water availability in the dams as well as the effect the water
release will have on the downstream ecosystem (to prevent floods). Therefore, the model allows the
hydro and pumped storage units only to be scheduled during a fixed timeframe, which is usually
during peak demand periods when considering the South African context, to prevent continuous
unit commitment. The preceding constraints will be discussed in detail in the sections to follow.
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4.3 Satisfying the power grid demand
The main objective of the optimisation model, apart from the financial objective of cost minimisation,
is to meet the forecasted load demand of the power grid. The preceding is implemented in the model
as an inequality constraint, as seen in (4.5). This constraint is known as the power balance. In the
mentioned constraint, the difference is taken between the forecasted grid demand and the power
generated by coal fired, hydro and pumped storage units of the resident area under consideration
as well as the power imported from and or exported to neighboring areas. Effectively it is an
energy balance of the entire power grid, incorporated into the model to ensure that the power
supply will ultimately equal the power demand. Term P (T ) in (4.5) denotes the power supplied by
both coal fired and hydro generating units whereas the second term, P (F ) denotes the power flow
between geographical areas. The third term contained within (4.5), refers to the power generated or
consumed by pumped storage power stations and is represented by variable p(p)

ptsu. Lastly, term p
(d)
ptn

in (4.5) refers to the grid demand for both resident and neighboring countries. The grid demand
is a forcasted data set which is used as an input to the optimisation model. This data set is the
driving force for both unit commitment and load dispatch decision making. The optimisation model
will commit a number of units at a given load to satisfy the grid demand. Chen (2008), Ni & Guan
(1999) and Jadoun (2015) provides information regarding the power balance constraints mentioned
in literature.

0 ≤ P (T ) + P (F ) +
∑

s∈S(n)

∑
u∈U(s)

p
(p)
ptsu − p

(d)
ptn ≤ 60.0, p ∈ P, t ∈ T , n ∈ N (4.5)

To calculate the value of P (T ), (4.6) is added to the model. In this equation, input parameter
p

(t)
hj refers to the discretised operating envelope (load range) at which each coal fired and hydro

generating unit is able to operate within. Parameter p(t)
hj is multiplied with the binary decision

variable zpthj to select an operating point to which the given unit needs to be loaded provided the
discretised operating envelope (j ∈ J ) and the remaining operating constraints considered in the
model. By summating the multiplication function in terms of index h ∈ H(n) and j ∈ J the total
power generated by the committed coal fired and hydro units are obtained for the resident area.

P (T ) =
∑

h∈H(n)

∑
j∈J

p
(t)
hj zpthj (4.6)

The power flow between geographical areas as determined by P (F ) can be either power imported
from or alternatively exported to a neighboring country. The reason why multi-area power flow is
incorporated into the optimisation model is because the probability exists that a neighboring country
will be able to supply power to a resident country at a far cheaper rate, in comparison to what the
given country will be able to generate it for. If this is the case, it will be more economically feasible
to import a fraction of the power required to satisfy the grid demand instead of producing power
by using more costly resources. For explanatory purposes we compare coal fired units with hydro
and or pumped storage units. If a resident country is only dispatching coal fired units to meet the
grid demand, it will result in a high cost being incurred by the resident country as coal fired power
generation is rather expensive. If however there is a possibility to import hydro and or pumped
storage generated power from a neighboring county to satisfy a third of the grid demand, while
using coal fired units for the remaining two thirds, this will reduce the cost significantly. For this
reason, the functionality of multi-area power flow is incorporated into the optimisation model. It is
however important to note that the foregoing ratio of the amount of local power generation versus
power importation at which an optimal solution will be obtained is dependent on various constraints
incorporated into the optimisation model which needs to be satisfied and cannot be determined by
only considering power generation cost.
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Variable P (F ) is divided into two mathematical terms. The first term computes the power imported
from a neighboring country whereas term two accounts for the power exported by the resident coun-
try. Refer to (4.7) for the mathematical formulation. By taking the difference between the imported
and exported power, P (F ) will either take on a positive or negative value depending on the magni-
tude of each term. By summating p(f)

pt(i,j) in terms of index (i, j) ∈ A for import power and p(f)
pt(j,i) in

terms of index (j, i) ∈ A for export power, the power flow per area can be calculated.

P (F ) =
∑

(i,j)∈A
p

(f)
pt(i,j) −

∑
(j,i)∈A

p
(f)
pt(j,i) (4.7)

The power generated by pumped storage power stations (p(p)
ptsu) is dependent on the mode of oper-

ation the pumped storage unit is selected to operate on. As mentioned, pumped storage units can
either operate in generating mode or pumping mode. When in generating mode, the unit supplies
power to the grid whereas in pumping mode the unit consumes energy from the grid. The detailed
calculation of p(p)

ptsu is depicted throughout equations (4.8) and (4.9).

Equation (4.8) is effectively a small scale power balance of a pumped storage power station which
is incorporated into the global power balance, as seen in (4.5). In constraint (4.8), variable p(p)

ptsu

is defined as a rational number decision variable representing the power flow either from or to a
pumped storage station. The optimisation model can assign either positive or negative values to
this variable depending on the mode of operation. Positive values will be assigned to p(p)

ptsu when a
unit is providing power to the grid. The contrary is true when a unit is consuming power. Variable
L(P ) in (4.8) refers to the power generated by a pumped storage unit when selected to generating
mode with the detailed calculation of L(P ) provided in (4.9). Similar to p(t)

hj , input parameter l(p)
suvj

refers to the discretised operating envelope (load range) at which each pumped storage generating
unit is able to operate within when in generating mode. In order to select the active operating point
in the identified envelope, l(p)

suvj is multiplied with binary decision variable fptsuvj . The purpose of
variable fptsuvj is identical to variable zpthj , but consist of more dimensions and is only applicable to
pumped storage units. By summating the multiplication function in (4.9), in terms of index v ∈ V
and j ∈ J , the power generated by each active pumped storage unit is obtained. Note that in
reality, the power generated by a pumped storage unit is dependent on the water head contained in
the upper reservoir and may vary with water level fluctuations. In order to model this phenomenon,
one can either make use of variable load ranges at a fixed volumetric flow rate or use a fixed load
range at variable volumetric flow rates, given varying upper reservoir water volumes. An example
is provided to explain the reasoning.

If the volume of an upper reservoir changes over time, the available power output that a pumped
storage unit can supply will change given a fixed volume flow through the turbine. If this reasoning
is followed, one can supply the model with a fixed volumetric flow range (i.e. 0m3/h - 10m3/h)
as user input and given different reservoir volumes (i.e. 100m3,200m3 or 300m3) the model should
select a power output from a selection of load ranges (i.e. (0 MW - 100 MW), (0 MW - 120 MW)
or (0 MW - 140 MW)) associated to the upper reservoir volume and volumetric flow rate at time
period t. On the other hand, if the volume of an upper reservoir changes over time, the available
power output which a pumped storage unit can supply, can be maintained constant by varying the
volumetric throughput through the turbine. By following this reasoning, one can supply the model
with a fixed load range (i.e. 0 MW - 120 MW) as user input and given different reservoir volumes
(i.e. 100m3,200m3 or 300m3) the model should select a volumetric throughput from a selection of
volumetric flow rates (i.e. (0m3/h - 10m3/h), (0m3/h - 8m3/h) or (0m3/h - 6m3/h)) associated to
the upper reservoir volume and load operating point at time period t. Note that for the purpose of
this study, the second reasoning was applied to optimise the operation of the pumped storage units.
Variable LPnehvj is supplied a fixed load range from where the model needs to analyze the upper
reservoir volume and select the volume flow form a set list (Section 4.12.1) corresponding to the
upper reservoir volume and load operating point. As the reservoir volume changes, the volumetric
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flow rate through the turbine, selected by the model, will also change to satisfy the load operating
point at which the unit is dispatched.

Input parameter p(w)
su depicts the power consumption when in pumping mode. Parameter p(w)

su

is assigned a fixed power consumption per unit to reduce model complexity. Variable p(r)
tsu is a binary

decision variable used to track the time a pumped storage unit is operational in pumping mode. By
multiplying p(w)

su with p
(r)
tsu, it provides the model with the functionality to only consider pumped

storage power consumption when in pumping mode. If p(r)
tsu is assigned a value of 0, the power

consumption term will not be considered. A 0 value will be indicative of a pumped storage unit
operating in generating mode. The contrary is true when p(r)

tsu is assigned a value of 1.

p
(p)
ptsu − L(P ) + p(w)

su p
(r)
tsu = 0, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.8)

L(P ) =
∑
v∈V

∑
j∈J

l
(p)
suvjfptsuvj (4.9)

It is imperative to note that in practice, the power generated must always equal the grid demand.
If the power generation falls short of or exceeds the grid demand, it can result in grid instabilities
and consequently a grid collapse. Although the preceding is a prerequisite, an error term/ allowable
error range is added to the power balance constraint to improve solving time. This is incorporated
via an inequality constraint. For explanatory purposes, the error range is defined as 0 ≤ error ≤ 60
in (4.5). The error range refers to the allowable deviation at which the power generated may deviate
from the power demand. In the model formulation, the power generated is allowed to exceed the
power demand with the magnitude provided in the error range. This error range is applied to the
power balance due to the discretisation methodology implemented in the optimisation model. By
only allowing the model to select unit load ranges from a predefined discretised list, it reduces the
possibility of an equality constraint from being satisfied as the increments into which the data is
divided might be too broad, and do not allow for an exact solution. These increments can however
be refined, but by providing more data inputs to the model, the complexity as well as solution time
will most definitely increase accordingly. For this reason, an inequality constraint is implemented
into the model with an error term. The size of the allowable error range is however dependent on
the magnitude of the problem. The addition of the error term does not affect the credibility of the
model results, but does however only provide an approximation as to what an optimal commitment
and load dispatch schedule will be, within a reasonable time-frame. The model will always schedule
the available units to either satisfy or exceed the grid demand. For this reason, the results obtained
for each unit load will need to be normalized with respect to the power demand, by the system
operator, to ensure power supply is never exceeded and grid stability is maintained at all times.
It is the prerogative of the system operator to either trade accuracy for solving time or vice versa
depending on the allowable error range provided to the model. As mentioned, this error range may
change depending on the problem complexity, magnitude and desired solving time and needs to be
managed by the system operator to obtain the desired results.

4.4 Operating reserve availability
Apart from meeting the grid demand, the optimisation model needs to ensure that enough units
and or power capacity is available to the system operator within a short period of time in case there
is a disruption to the normal power supply. This is known as operating reserves. These reserves
are crucial in ensuring that the day-ahead unit commitment and dispatch schedule will be able to
withstand any unforeseen variation in load profiles or equipment failures. Operating reserves, also
known as spinning reserves can be assigned to either one of the units considered in the optimisa-
tion model, given that the remaining constraints are still satisfied. When considering multi-area
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power system capabilities, operating reserves for an area may include importing power from other
systems or retracting power which was provided to a neighboring country in an attempt to maintain
a stable grid frequency during unforeseen occurrences. This is however not explicitly modeled by
an optimisation constraint, but is indirectly considered by means of (4.5). In Mahor et al. (2009),
Zhou (2010) and Ghasemi et al. (2016) various approaches are depicted of the reserve availability
constraints implemented in the literature.

To guarantee reserve availability, operating constraints are added to the model by means of (4.10) -
(4.15). The amount of operating reserves required for each area (reserve demand) in the optimisation
model is provided as a fraction of the total grid demand. The fraction is a user defined parameter
and its magnitude is dependent on the extent of load variability or uncertainties expected for the
planning horizon. Refer to (4.10) for the mathematical formulation of the operating reserve demand.
In this equation, grid demand (p(d)

ptn) is multiplied with the reserve demand fraction (g(d)) to obtain
the desired operating reserve demand (s(d)) for each area. The total operating reserves available
for each area must satisfy the reserve demand in order for the optimisation model to find a feasible
solution.

s(d) = p
(d)
ptn(g(d)/100) (4.10)

To calculate the operating reserves available to the system operator, (4.11) is incorporated to the
model. The calculation entails the addition of the available operating reserves for each coal fired
and hydro unit (s(t)

pth summated in terms of index h ∈ H(n)), together with the available operating
reserves for each pumped storage unit (s(p)

ptsu summated in terms of index s ∈ S(n) and u ∈ U(s)).
The methodology utilised to calculate s(t)

pth and s
(p)
ptsu will be discussed in the subsequent sections.

Note that reserve demand is calculated per area and not per Unit. For this reason the summation
of all operating reserves available per unit, if the unit is selected to maintain a reserve capacity, is
taken to ensure the reserve constraints per area are satisfied.

∑
h∈H(n)

s
(t)
pth +

∑
s∈S(n)

∑
u∈U(s)

s
(p)
ptsu = s(d), p ∈ P, t ∈ T , n ∈ N (4.11)

In order to calculate the available reserve for each coal fired and hydro unit, (4.12) is added to the
model. In this equation, the difference is taken between the design power output of a unit (d(t)

h ),
also know as the unit’s maximum continuous rating (MCR), and the current power output of a
unit (p(t)

hj ). The result of this calculation provides an indication as to the remaining capacity of a
unit that is still available to be committed, if an unforeseen event occurs. Input parameter d(t)

h is
multiplied with binary decision variable yth to ensure that the equation is only in effect when the unit
is committed. If the unit is operational, variable yth will be assigned a value of 1. If however the unit
is decommitted, this variable will take on a value of 0 and the constraint will not be considered. The
same principle applies with regards to the multiplication of input parameter p(t)

hj with binary decision
variable zpthj which is discussed throughout Section 4.3 in detail. Variable s(t)

pth in (4.12) is a decision
variable defined as a rational number which is only capped to positive values. The optimisation
model can assign any positive value to this variable as long as the constraints are satisfied. If a
unit is required to maintain a certain reserve quantity, a value greater than 0 will be allocated to
variable s(t)

pth for the selected unit. Note that although all units will be able to maintain reserve
capacities, only selected units will be assigned the task to meet the reserve demand. This selection
will be primarily dependent on the unit’s operating cost. Therefore some units will be allowed to
be loaded to MCR operation as they are not selected by the optimisation model to maintain a
reserve capacity (generally cheaper units). Other units will be loaded at lower load ranges because
of the reserve requirements (more expensive units) and will not be allowed to operate at full load
conditions. Loading units to MCR operation will result in variable s(t)

pth being assigned a 0 value as
no reserve capacity will be required by the affected units.
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s
(t)
pth ≤ (d(t)yth −

∑
j∈J

p
(t)
hj zpthj), p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (4.12)

Equations (4.13) is added to the optimisation model to prevent the operating reserve assigned to
each unit, to exceed the unit’s load ramp-up capability. Equation (4.13) is applicable to coal fired
and hydro units only. Although a unit might be operating at minimum generation and still have
ample capacity to contribute to the grid, the unit will only be able to provide power to the grid at
the designed ramp-up capability, given an unforeseen event occurs. The design ramp-up capability of
a thermal unit is incorporated in (4.13) by means of input paramter r(u)

h . This variable is multiplied
with binary decision variable yth to prevent the equation from being considered when a unit is not
operational. Equations (4.13) will only influence the model’s decision making when the difference
between a unit’s design and operating power output is greater than its design ramp rate capability.
If however, the difference in output is less than the ramp rate capability, (4.12) will govern the
decision making for both coal fired and hydro units.

s
(t)
pth ≤ r

(u)
h yth, p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (4.13)

The same principle is applied in (4.14) to calculate the available reserves for each pumped storage unit
as was used in (4.12). Input parameter d(p)

su refers to the design power output of a pumped storage
unit and p

(p)
ptsu to the operating output. The difference is taken between these two parameters to

determine the remaining capacity of a pumped storage unit that is still availability to be committed,
if necessary. Parameter d(p)

su is multiplied with binary decision variable t(r)tsu in the mentioned equation
to track unit operation, similar to (4.12). This is to prevent the constraint from being considered
when a unit is decommitted from the grid. Variable s(p)

ptsu is a decision variable defined as a rational
number which is capped to positive values. If a unit is required to maintain a certain reserve quantity,
a value greater than 0 will be allocated to this variable. The preceding will be done until enough
reserves are assigned to the different units to satisfy the reserve demand.

s
(p)
ptsu ≤ (d(p)

su t
(r)
tsu − p

(p)
ptsu), p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.14)

Lastly, constraint (4.15) is added to the optimisation model to prevent the operating reserve assigned
to each pumped storage unit, to exceed the unit’s load ramp-up capability. Input parameter r(u)

su

used in (4.15) refers to the design ramp-up capability of a pumped storage unit. This parameter is
multiplied with binary decision variable t(r)tsu to prevent the constraint from being considered when
a unit is not operational. Constraint (4.15) will only influence the model’s decision making when
the difference between a unit’s design and operating power output is greater than its design ramp
rate capability. If however the difference in output is less than the ramp rate capability, (4.14) will
govern the decision making for the pumped storage units.

s
(p)
ptsu ≤ r(u)

su t
(r)
tsu, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.15)

4.5 Unit commitment considering up and downtimes
The unit commitment problem is a large mathematical optimisation problem which entails the co-
ordination of power generating units to achieve a common target, while considering factors such as
reliability, financial, regulatory and unit operating constraints. For the purpose of this study, the
common target to be satisfied as mentioned in Section 4.2 is to reduce financial expenditure while
still satisfying the power grid demand. In the unit commitment problem, the optimisation model
must evaluate the grid demand via the power balance, and perform an on/off selection to ensure
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enough units are committed to satisfy this demand. Only thereafter, the model can assign a load to
which each unit need to be dispatched to. In accordance with unit scheduling, parameters such as
minimum up and down time need to be considered.

The minimum up and downtime constraints are however primarily applicable to coal fired units
as hydro and pumped storage units can be committed to the grid within a few minutes. When
considering coal fired units, the duration required for a unit start-up or shutdown can range from
anything between 1 hour to 24 hours depending on the operational condition of the unit and the
problems encountered when executing these activities. During start-up there are certain operating
parameters, such as temperatures and pressures, which needs to be satisfied as well as operational
tests and checks which needs to be performed before grid synchronization is authorized. When a coal
fired unit is desynchronized from the grid, time is required to systematically shutdown mechanical
and C&I equipment in an attempt to safely remove fuel from the combustion process. By excluding
the mentioned constraints from the model, it will reduce the complexity of the problem to be solved,
but will most certainly provide an unrealistic unit commitment schedule which will not be practi-
cable to apply to real life events. For this reason, the minimum up and downtime constraints have
been added to the optimisation model, although it increases the model complexity significantly. The
mathematical formulation for the unit commitment constraints associated with coal fired and hydro
units as well as pumped storage units are depicted throughout (4.16) to (4.28). Note that (4.16) -
(4.22) are applied to coal fired and hydro units whereas (4.23) - (4.28) are related to pumped storage
units. The research done by Chang et al. (2001), Tseng et al. (2000), Tuffah & Gravdahl (2013),
Ashan et al. (2018) and Borghetti et al. (2008) provide some insight into the formulation of the
above mentioned constraints.

Equation (4.16) has been added to the optimisation model to track the operation of both coal
fired and hydro units, to effectively provide a unit commitment schedule for each unit. As discussed
in Section 4.2, wth and xth in (4.16) are binary decision variables used to monitor the on/ off selection
of a unit whereas yth was added to calculate the time a unit was operational, after receiving the
on selection. Variable y(t−1)h in (4.16) still fulfill the same purpose as yth but only references the
operational state of a unit at time period t-1 instead of period t. If a unit is off at the start of the
study horizon and only receives an on selection in period t, say for example t = 2, then variable yth
will be assigned a value of 1 and y(t−1)h will take on a 0 value for the period under consideration.

wth − xth = yth − y(t−1)h t ∈ T , n ∈ N , h ∈ H(n) (4.16)

To explain the functionality of the constraint, an example is provided. If a unit is committed to
the grid, variables wth and yth will be assigned a value of 1 whereas variables xth and y(t−1)h will
take on 0 values. The equality constraint will be satisfied with both sides of the equation equaling
1. The opposite is true when a unit is decommitted, variables wth and yth will be assigned 0 values
whereas variables xth and y(t−1)h will each take on a value of 1. As a result the equality constraint
will be satisfied with both sides of (4.15) equaling a value of -1. Lastly, if a unit is not considered
for selection during the study horizon, all variables in (4.15) will be assigned 0 values to prevent the
unit from being committed.

Equation (4.17) is added to the model to prevent simultaneously on/off selection of a single gener-
ating unit in the same time period. If wth is assigned a value of 1, the model will maintain xth equal
to 0. Only when wth equals 0, thereafter xth will be allowed to be assigned a value of 1. Note that
(4.17) is defined as an inequality constraint as the possibility exist where both wth and xth equates
to 0. It will occur when no selection is made regarding the operation of a generating unit. The unit
is not required to switch on or off, and will remain in the same mode of operation as was selected in
the previous time interval (either committed or decommited to the grid).

wth + xth ≤ 1 t ∈ T , n ∈ N , h ∈ H(n) (4.17)
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To add the functionality of minimum up and downtime to the model, (4.18) - (4.21) are incorporated.
Note however that this problem is twofold. The model first needs to evaluate the unit commitment
schedule of the previous study horizon. Thereafter it needs to ensure that a unit is not allowed to
switch operation in the current study horizon, if the minimum up or down-times have not yet been
satisfied for a unit in the previous study horizon. The preceding is enforced by equations (4.18)
and (4.20). Secondly, after the previous study horizon’s constraints have been satisfied, the model
must evaluate the current study horizon and ensure the minimum up and downtime constraints are
adhered to in this time period. Equations (4.19) and (4.21) provide this functionality to the model.
These constraints are however only applicable to coal fired units and will not be considered for hydro
units due to the fast response time.

Input parameters t(u)
h and t

(u1)
h in (4.18) denotes the time a unit was operational for the current

as well as the previous study horizon. The difference between t(u)
h and t(u1)

h provides the model with
the remaining time the unit is required to be operational. Parameter t(u1)

h is multiplied with variable
y1h to ensure that (4.18) is only considered when the unit is operational at the start of the study
horizon. Equation (4.19) is implemented to enforce the minimum up-time of a generating unit in the
remaining stages of the study horizon. In this equation t(u)

h is multiplied with wth to ensure that the
constraint is only in effect when a unit is operational. The time a unit is operational is tracked by
summating variable yth in terms of index t ∈ T for each unit. This time must exceed the predefined
operational time, before an off selection will be allowed for the given unit.

∑
t∈T
t≥1

t≤(t(u)
h
−t(u1)

h
)

yth ≥ t
(u)
h − t

(u1)
h y1h, t ∈ T , n ∈ N , h ∈ H(n) (4.18)

∑
k∈T
k≥t

k≤(t+t(u)
h
−1)

ykh ≥ t
(u)
h wth, t ∈ T , n ∈ N , h ∈ H(n) (4.19)

Input parameters t(d)
h and t(d1)

h in (4.20) depicts the downtime of a unit in the current as well as in
the previous study horizon. Taking the difference between t

(d)
h and t

(d1)
h , gives an indication as to

the remaining downtime required per unit before operation change over is allowed. Parameter t(d1)
h

is multiplied with (1 - y1h) to ensure (4.20) is excluded from the model, if the unit was operational
at time period 1 of the study horizon. If however the unit was decommitted during hour 1, only
then (4.20) will be considered. Similar to (4.18), this equation is only applicable to the initial stages
of the study horizon. Equation (4.21) is added to the model to ensure that the minimum downtime
of a generating unit is adhered to for the remaining stages of the study horizon. Parameter t(d)

h is
multiplied with xth to prevent the constraint from being considered when a unit is operational. By
summating (1 - yth) in terms of index t ∈ T for each unit, the model is able to track the downtime per
unit. The time a unit is decommitted must exceed the predefined downtime, before an on selection
will be permitted by the model.

∑
t∈T
t≥1

t≤(t(d)
h
−t(d1)

h
)

1− yth ≥ t
(d)
h − t

(d1)
h (1− y1h), t ∈ T , n ∈ N , h ∈ H(n) (4.20)

∑
k∈T
k≥t

k≤(t+t(d)
h
−1)

1− ykh ≥ t
(d)
h xth, t ∈ T , n ∈ N , h ∈ H(n) (4.21)
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Equation (4.22) is added to the model to provide the user with the functionality of specifying a
predefined number of coal and or hydro units that are required to be operational during the study
horizon. To calculate the number of units selected for operation, variable zpthj is summated in terms
of index h ∈ H(n) and j ∈ J . The answer obtained from this calculation must either equal or
exceed the value stated on the right hand side of the equation. For explanatory purposes, the right
hand term is assigned a value of 2. This means that at least two units need to be committed to the
grid in order to satisfy the equation. Note however that this equation is not compulsory for unit
commitment, but provides the user with the ability to run test examples with different number of
units committed to the grid. If for example on load maintenance or tests are required on various
units for a given study horizon (i.e. air heater leakage tests, duct leakage inspections etc.) this
equation can be used to force the model to commit the affected units. By doing this, it might result
in a suboptimal solution being obtained. In order to exclude this constraint from the model, a value
of 0 needs to be assigned to the right hand side term of (4.22).

∑
h∈H(n)

∑
j∈J

zpthj ≥ 2 p ∈ P, t ∈ T , n ∈ N (4.22)

When considering pumped storage technology, minimum up and downtime are not incorporated into
the model due to its fast reaction time. It is however, necessary to incorporate scheduling constraints
which will allow a pumped storage unit to switch between its different operating modes (either gen-
erating or pumping mode) in order to satisfy the water balance constraints. In order to provide
the optimisation model with the functionality to schedule pumped storage units with regards to its
generating and or pumping modes, (4.23) - (4.28) are added to the model. Equations (4.23) and
(4.24), similar to (4.16), are used to track the on/off selection as well as the operational time of a
pumped storage unit in either generating or pumping mode. Both equations are utilised to provide
the system operator with a detailed commitment schedule, specifying selected operating modes and
commitment durations assigned to each generating unit in the study horizon. This schedule is crucial
when performing either day or week-ahead planning.

Variables p(n)
tsu and t

(n)
tsu are binary decision variables incorporated into (4.23) and (4.24) to track

the commitment (on selection) of a pumped storage unit in either pumping or generating mode. If
for example, variable p(n)

tsu is assigned a value of 1, and t
(n)
tsu a value of 0, it will be indicative of a

pumped storage unit operating in pumping mode. The opposite is true when operating in gener-
ating mode. Variable t(n)

tsu will be assigned a value of 1 and p
(n)
tsu a value of 0. Variables p(f)

tsu and
t
(f)
tsu are applied to track the decommitment (off selection) of a generating unit from either pumping
or generating mode. If a pumped storage unit is decommitted from pumping mode, variable p(f)

tsu

will be assigned a value of 1 and t(f)
tsu a value of 0. When decommitted from generating mode the

contrary applies. Variables p(r)
tsu and t(r)tsu are also binary decision variables added to (4.23) and (4.24)

to track the time a unit was operational, either in pumping mode or in generating mode. Binary
decision variables p(r)

(t−1)su and t(r)(t−1)su fulfill the same purpose as p(r)
tsu and t(r)tsu, but only references

the operational state of a unit in time period t-1 instead of period t. Depending on the mode of
operation, either p(r)

tsu or t(r)tsu can be assigned a value of 1 or 0.

p
(r)
tsu − p

(r)
(t−1)su − (p(n)

tsu − p
(f)
tsu) = 0, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.23)

t
(r)
tsu − t

(r)
(t−1)su − (t(n)

tsu − t
(f)
tsu) = 0, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.24)

The fact that the purpose of (4.23) and (4.24) are identical to (4.16), but only applied to different
power generating technologies, no in-depth explanation will be provided as to the functionality of
the mentioned equations and how the equation results needs to be interpreted. Refer to (4.16) for
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a detailed explanation on the mechanics of these equations, when applied to different model instances.

To prevent the simultaneous on/off selection of a single pumped storage generating unit, (4.25)
and (4.26) are added to the model. Equations (4.25) and (4.26) are related to pumping and gener-
ating modes respectively. The mathematical formulation of the mentioned equations are depicted
below:

p
(n)
tsu + p

(f)
tsu ≤ 1, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.25)

t
(n)
tsu + t

(f)
tsu ≤ 1, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.26)

When variable p(n)
tsu is assigned a value of 1, pumping mode is initiated and the unit will transport

water from the bottom reservoir to the upper reservoir. Variable p(f)
tsu will assume a value of 0 during

the mentioned mode of operation as (4.25) will not allow both variables to take on values of 1. This
is to prevent illogical scheduling as a unit cannot receive an on and off selection at the same time.
The same principle applies to (4.26), but this equation governs the logical scheduling of a pumped
storage unit when in generating mode. Note that both equations are defined as inequality constraints
to allow the model to assign 0 values to the mentioned variables when no operation mode change
over is initiated.

Another factor to consider when scheduling pumped storage units is the fact that a single unit is
not allowed to pump and generate at the same time. To prevent simultaneous pumping/generation
selection, (4.27) and (4.28) are incorporated into the model.

t
(n)
tsu + p

(n)
tsu ≤ o(p)

su , t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.27)

t
(r)
tsu + p

(r)
tsu ≤ o(p)

su , t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.28)

For explanatory purposes, an example is provided to explain the functionality of the above equa-
tions. If a pumped storage unit is selected to provide power to the grid (i.e. selected to generating
mode) variables t(n)

tsu and t
(r)
tsu will be assigned a value of 1. Both equations (4.27) and (4.28) will

prevent variables p(n)
tsu and p(r)

tsu to be selected, and as a result, maintain these variables at 0 values
until pumping mode is initiated by the model. At this stage, the pumping variables will take on
values of 1 whereas the generating variables will switch to 0 values. Under no circumstance will
these constraints allow the model to simultaneously activate both pumping and generating modes.
Similar to (4.25) and (4.26), these equations are formulated as inequality constraints to allow the
model to assign 0 values to these variables if no operation mode changeover is required for a given
unit. Note that o(p)

su is a binary user defined input parameter which provides the model with infor-
mation regarding the outage schedule for each pumped storage unit. If a unit is scheduled for an
outage, parameter o(p)

su will be assigned a 0 value by the user. As a result, the left hand side of (4.27)
and (4.28) will be forced to 0 and prevent scheduling of the affected unit.

In conjunction with the preceding two constraints, (4.29) is added to the model to prevent any
unit from operating in generating mode whilst other units connected to the same upper reservoir
are selected to operate in pumping mode. If any unit is selected to pumping mode (i.e. p(r)

tsu = 1)
variables t(r)tsu and t(n)

tsu will be prohibited to take on a value of 1 until pumping has been completed.
Variable M is a user defined input parameter that needs to take on a very large positive value to
ensure that equation (4.29) holds true when a unit is operating in pumping mode.

∑
u∈U(s)

L(P ) ≤M(1− p(r)
tsu), p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.29)
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4.6 Ramp rate capability
When referring to ramp rate capability, it is indicative of the allowable maximum up or downward
change in power output per time period (i.e. MW/min) of a unit. In other words, a unit will not be
able to increase or decrease its power output at a rate which exceeds the maximum up or downward
ramp limits. For application to the optimisation horizon, the ramp rate capability of each unit is
provided in terms of MW/h via user input. Depending on the power generation technology under
consideration, each ramp rate may differ. Also, when incorporating ramp rate capabilities into the
optimisation model, both start-up/shutdown and on-load ramp rates must be considered. Equations
(4.30) - (4.37) are added to the model to incorporate the mentioned functionality. Different formu-
lations of the foregoing is presented by Borghetti et al. (2008), Hedman et al. (2009) and Espana
et al. (2012) throughout their research.

Equation (4.30) governs the maximum allowable ramp-up capability of both coal fired and hydro
units. In this equation, input parameter p(t)

hj is multiplied with binary decision variable zpthj and
summated in terms of index j ∈ J to select the optimal operating point of a unit for time period t.
In conjunction with the preceding, p(t)

hj is multiplied with zp(t−1)hj , and again summated in terms of
index j ∈ J to determine the optimal load selection of a unit for time period t-1. Subtracting the
two multiplication functions from one another as depicted in (4.30), provides the user with the rate
(MW/h) at which a unit increased load from time period t-1 to t. Variable R(U) is incorporated into
(4.30), via user input, to prevent the load increase of a unit from exceeding its maximum allowable
ramp capability. Depending on the operational state of a unit, either during start-up or normal
operation, variable R(U) can be assigned different values. Refer to (4.31) for a detailed discussion
regarding the calculation of R(U). By adding R(U), a unit is allowed to increase its load with either
less than or equal to the quantity specified by the user. Note however that a unit will not be allowed
to undergo a load step change which exceeds R(U). If a unit is not selected for operation, variables
zpthj and zp(t−1)hj will be assigned 0 values and prevent the constraint from being considered. The
contrary is true when the unit is committed for operation.

(
∑
j∈J

p
(t)
hj zpthj −

∑
j∈J

p
(t)
hj zp(t−1)hj) ≤ R(U), p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (4.30)

Variable R(U) is divided into two terms in (4.31). The first term denotes the allowable maximum
ramp-up capability of a unit during normal operation whereas term two portrays the ramp-up
capability during unit start-up. Parameter r(u)

h is multiplied with binary decision variable y(t−1)h to
ensure that the first term is only considered when the unit is committed for operation (i.e. when
variable y(t−1)h = 1). If a unit is decommitted, term one will be discounted from the calculation
as y(t−1)h will equal 0. Term two will only come into affect when a unit is selected for start-up.
Parameter r(us)

h is multiplied with wth in term two. If selected for start-up, wth will be assigned a
value of 1 and consequently, R(U) will equal the value of r(us)

h . Note however that R(U) cannot equal
the sum of both terms in (4.31), as only one term can be in effect at a time. As stated, the active
term will be dependent on the mode of operation of the unit.

R(U) = r
(u)
h y(t−1)h + r

(us)
h wth (4.31)

Following the same mathematical reasoning as depicted in (4.30), equation (4.32) is incorporated
into the model to govern the maximum allowable ramp-down capability of both coal fired and hydro
units. In (4.32) the operating load of a unit at period t-1 is subtracted with the load at period t to
obtain the rate (MW/h) at which a unit decreased its load during each hour. Variable R(D) denotes
the maximum allowable ramp down capability of each unit and is supplied to the model via user
input. Similar to R(U), R(D) also consist of two terms. Term one denotes the ramp down capability
of a unit when operational (r(d)

h ), whereas term two is indicative of the shutdown ramp capability of
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a unit when decommittment from the grid (r(ds)
h ). Term one will be active when a unit is operational

(yth = 1, xth = 0 ) whereas term two will be considered in the optimisation model when a unit is
selected for shutdown (yth = 0, xth = 1 ). Due to the similarities of (4.32) and (4.33) (ramp-up
capability) with (4.30) and (4.31) (ramp down capability) respectively, we will not elucidate on the
below equations. Refer to the above paragraph for a more detailed explanation on the mathematical
formulation and mechanics of such equations.

(
∑
j∈J

p
(t)
hj zp(t−1)hj −

∑
j∈J

p
(t)
hj zpthj) ≤ R

(D), p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (4.32)

R(D) = r
(d)
h yth + r(ds)

ny xth (4.33)

When considering pumped storage ramp rate capabilities, the same principle applies as was men-
tioned during the discussion for coal fired and hydro units. Variable p(p)

ptsu denotes the power flow
from a pumped storage unit in time period t whereas p(p)

p(t−1)su references the power flow in time
period t-1. Subtracting the variables as noted in (4.34), the rate MW/h at which a pumped storage
unit increased its load from time period t-1 to t is obtained. Similar to variable R(U) in (4.30), R(UP )

is incorporated to limit the ramp-up rate of a pumped storage unit below the maximum allowable
rate.

(p(p)
ptsu − p

(p)
p(t−1)su) ≤ R(UP ), p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s), v ∈ V (4.34)

The calculation of variable R(UP ) is divided into two sections identical to (4.31) and for this reason
we will not elucidate on the below equations. Parameter r(u)

su depicts the ramp up rate under normal
operating conditions whereas r(us)

su denotes the allowable start-up ramp rate of each pumped storage
unit.

R(UP ) = r(u)
su t

(r)
(t−1)su + r(us)

su t
(n)
tsu (4.35)

Equations (4.36) and (4.37) are incorporated into the optimisation model to account for the ramp
down capability of pumped storage units. The mentioned equations use the same mathematical
reasoning as mentioned in (4.32) and (4.33). In (4.36), variable R(DP ) signifies the maximum ramp
down capability of a pumped storage unit. The foregoing is calculated by applying (4.37). In this
equation, parameters r(d)

su and r(ds)
su refers to the ramp rate capability of a pumped storage unit under

normal operating and shutdown conditions respectively. Due to the similarities of these equations
with that explained for coal fired and hydro units, no further exposition will be provided.

(p(p)
p(t−1)su − p

p)
ptsu) ≤ R(DP ), p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s), v ∈ V (4.36)

R(DP ) = r(d)
su t

(r)
(t−1)su + rds)su t

(f)
tsu (4.37)

By incorporating the ramp rate capabilities into the optimisation model, it increases the problem
complexity significantly. The reason for this is the fact that the model needs to compare the results
of different time periods in order to satisfy the constraints. As a result, the solution time increases.
However failing to include this into the model, the results obtained from the model will allow units
to operate outside its design base. Consequently, the system operator will not be able to use these
results for real time power dispatch.
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4.7 Prohibited operating regions
Generating units may have certain regions where operation is either impossible or undesired due to
either process instabilities, physical limitations of mechanical components or arranged testing which
needs to be conducted at predefined load ranges. Refer to Section 3.1.10 for examples of the men-
tioned limitations. These prohibited operating regions produce discontinuities in the load curves,
of the affected units, since the units are forced to operate over or under certain specified limits to
maintain safe and or stable operation. In order to account for a unit’s prohibited operating ranges
(4.38) (applicable to coal fired and hydro units) and (4.39) (applicable to pumped storage units)
are incorporated into the model. Researchers such as Jeddi & Vahidinasab (2014), Mandal et al.
(2015), Pan et al. (2017) also proposed different methodologies as to how prohibited operating re-
gions can be incorporated into the power generation optimisation models. Note however that in the
UCEELD model as developed in this dissertation, only the logical modeling of the above researchers
was followed with the constraints being restructured to fit into the MILP framework.

To prevent scheduling of a coal fired or hydro unit at a prohibited operating point, the summa-
tion of binary decision variable zpthj in terms of index j ∈ J , is set equal to a value of 0 where index
j is constrained between ranges pr(l)

h and pr(h)
h . The span of the range is dependent on user input.

Input parameters pr(l)
h and pr(h)

h denotes the lower and upper ranges at which a unit is forbidden to
operate. For explanatory purposes, an example is provided. Say a unit’s operating envelop (0 MW
- 600 MW) is divided into 15 data points (40 MW/point). If parameters pr(l)

h and pr(h)
h is set equal

to 4 (160 MW) and 8 (320 MW) respectively, it will prevent a unit from being dispatched at a load
which falls within the range of data points between 4 (160 MW) - 8 (320 MW), as variable zpthj is
forced to a value of 0. For this example, a unit will however still be allowed to be dispatched within
the load range 1 (40 MW) - 3 (120 MW) and 9 (360 MW) - 15 (600 MW) if committed to the grid.

∑
j∈J
j≥pr(l)

h

j≤pr(h)
h

Zrptnyj = 0, p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (4.38)

The same principle is applied to prevent scheduling of pumped storage units at a prohibited operating
point. Binary decision variable fptsuvj is summated in terms of index j ∈ J and set equal to 0 where
j ranges between pr(l)

su and pr(h)
su . Parameters pr(l)

su and pr(h)
su depicts the lower and upper ranges at

which a pumped storage unit is prohibited to operate.

∑
j∈J
j≥pr(l)

su

j≤pr(h)
su

fptsuvj = 0, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s), v ∈ V (4.39)

If no prohibited operating regions exist for either coal fired, hydro or pumped storage units the
functionality can be eliminated. This is achieved by setting input parameters pr(l)

h and pr(h)
h equal

to 0 for coal fired and hydro units whereas parameters pr(l)
su and pr

(h)
su can be set equal to 0 for

pumped storage units. By implementing the foregoing, (4.38) and (4.39) will be discounted from
the model and the entire operating envelope of the affected unit will be considered for optimisation.

4.8 Outage schedule considerations
Every system operator, at some point, is responsible to take a generating unit offline temporarily
for either maintenance or system upgrades. The time a unit is down, is known as an outage op-
portunity. The duration of an outage is dependent on the magnitude of the work that needs to be
performed, but can range from anything between 12 to 120 days. When considering coal fired, hydro
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and pumped storage generating technologies, it is important to note that a combination of these
units can either be scheduled for an outage during the same time period, or during time periods
offset with a few weeks/months from one another. This is governed by an outage schedule which
ensures that enough units are available at all times to meet the grid demand. Throughout litera-
ture, researchers do not include outage schedule constraint functionalities into the commitment and
dispatch optimisation problems as they assume that only the available units will be considered when
performing the optimisation computations. However, in this dissertation the outage schedule will
be considered in order to improve the versatility of the model.

The process of determining the optimal outage schedule is, however, a separate optimisation prob-
lem, which will not be addressed throughout the scope of this project. The assumption is made that
an optimal outage schedule has already been obtained from the system operator. In order to enforce
unit downtime via the existing outage schedule, Equation 4.40 is incorporated into the model by
means of an inequality constraint. Variable yth is set equal to or less than binary input parameter
o

(t)
h . Parameter o(t)

h refers to the optimal outage schedule as obtained from the system operator. If
o

(t)
h is set equal to 1 by the user, this will be indicative of a unit that is available for commitment.
Variable yth will be allowed to take on a value of either 0 or 1 depending on the decision making of
the optimisation model. If however a unit is scheduled for an outage, o(t)

h will be set equal to 0 by
the user and the unit will be discounted from the optimisation process.

yth ≤ o
(t)
h t ∈ T , n ∈ N , h ∈ H(n) (4.40)

If the outage schedule is altered by the system operator, the inputs to the model will also need
to be updated accordingly. The preceding is required to ensure the model considers the correct
combination of generating units when performing load commitment.

4.9 Environmental dispatch
Environmental load dispatch is a set of constraints applicable to only coal fired generating units,
which is aimed to reduce both emissions production and water utilisation (make-up). Considering
the Air Quality Act, it is apparent that the air emissions limits set out for coal fired units are
becoming increasingly stringent. In order to comply to the prescribed limits, coal fired utilities
can either allow for large scale maintenance to be conducted on electrostatic precipitations (ESP)/
fabric filter plants (FFP) to improve current performance or install new technologies such as flue gas
desulphurization (FGD) plants. These are however long term solutions which will require significant
capital expenditure. The same is true when considering water consumption for coal fired units. To
reduce water consumption, long term solutions will entail large maintenance interventions which
will require a significant amount of time. South Africa is an arid country and immediate short term
interventions are required to prevent water shortages at communities neighboring coal fired units.

In the interim, coal fired utilities can incorporate air emissions and water consumption limits into a
load dispatch optimisation model to reduce both emissions production and water consumption. By
doing so, the model will commit the coal fired units in such a manner as to maintain the units below
the prescribed limits. Note that emissions production is load dependent whereas water make-up is
load independent. Excessive water make-up is reliant on the quantity of water leaks, incorrect blow-
down cycles, passing valves on the plant and or open cooling water evaporation. Researchers such
as Ghasemi (2013) and Manoret al. (2009) propose different ways of incorporating the emissions
legislation into the model. As mentioned in Chapter 3, these limitations can either be incorporated
into the model as another objective function or as a constraint. For the purpose of this dissertation,
the constraint methodology is utilised. The water consumption limits have not yet been mentioned
in literature and are added into the UCEELD model to improve its accuracy when compared to
reality. Equations (4.41) and (4.42) are used to enforce both emissions production and water con-
sumption limits in the optimisation model. Input parameter e(f)

hj in the above equation refers to
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the discredited envelope of emissions emitted as a result of the load range at which each coal fired
unit is able to operate within. Note that the emissions concentration (mg/Sm3) is either influenced
by unit load, coal quality or poor plant performance. Parameter e(f)

hj is multiplied with parameter
q

(e)
ph to induce a stochastic influence to the optimisation problem as previously mentioned. Term
e

(f)
hj q

(e)
ph in (4.41) is multiplied with binary decision variable zpthj and summated in terms of index

j ∈ J to select the emissions emitted by a coal fired unit as a result of the load at which the unit
is dispatched. The multiplication function is set equal to or less than the emissions limit (e(l)) as
stated by the Air Quality Act. By doing so, the loading of each coal fired unit is prohibited to exceed
a load range which will result in the contravention of the emissions limit. Note that this constraint
is only considered when a unit is committed for operation.

∑
j∈J

(q(e)
ph e

(f)
hj zpthj) ≤ e

(l), p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (4.41)

Equation (4.42), is implemented to prevent coal fired units, situated in different geographical areas,
from exceeding the maximum allowable water usage limits as prescribed per area. If a coal fired unit
is committed to the grid in say geographical area 1, the water consumed by the affected unit will be
accounted for by means of (4.42). If however the unit is decommitted, the opposite will apply. By
multiplying parameter q(w)

h with binary decision variable yth and summating the function in terms
of index h ∈ H(n), the total water consumption as a result of the active coal fired units are obtained
for each area. The multiplication function is divided with a fixed cost amount in Rand/V olume to
convert parameter q(w)

h to V olume/T ime. This is done to ensure that the multiplication function of
(4.42) is in the same SI units as that of parameter w(m)

n . The cost associated with the water usage
(Rand/V olume) is taken as the cost required to purify and treat the water before it enters the power
generating process. Parameter w(m)

n depicts the water usage limit assigned to each geographical area.
The multiplication function is set equal to and or less than w(m)

n . By doing so, the amount of coal
fired units committed per geographical area, will be dependent on the water limitations stipulated by
the user for each area as well as the water consumption per unit as a result of poor plant performance.

∑
h∈H(n)

((q(w)
h yth)/1505.49) ≤ w(m)

n , p ∈ P, t ∈ T , n ∈ N (4.42)

4.10 Interconnected multi-area power flow

As stipulated in Section 4.3, variable p(f)
pt(i,j) denotes the power flow between geographical areas.

When considering the foregoing, it is imperative to incorporate an upper and lower limit function-
ality to specify the maximum and minimum amount of power allowed to be exchanged between two
geographical areas. It is incorporated into the optimisation model by means of (4.43) and (4.44)
respectively. In literature Jadoun et al. (2015) and Pandit et al. (2015) also incorporate similar
constraints which is defined as tie-line constraints, used to govern the maximum and minimum power
flow between areas. In this dissertation, the same analogy is utilised.

In (4.43), variable p(f)
pt(i,j) is set equal to and or less than a user defined upper limit (b). This

upper power flow limit will vary according to the agreement between power utilities situated in
different geographical areas. If for example, a resident area does not have enough capacity to supply
the demand, an agreement will be made with neighboring utilities to supply power equal to the
shortfall of the resident area, and the upper limit will be updated accordingly. If however no power
supply is required from a neighboring utility, the upper limit can be set equal to 0, which will ensure
that (4.43) is discounted form the optimisation process.

p
(f)
pt(i,j) ≤ b, p ∈ P, t ∈ T , (i, j) ∈ A (4.43)
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The same principle applies when considering (4.44), but it is only focused on the user defined lower
limit. Note that variable p(f)

pt(i,j) is set equal to and or greater than 0, to prevent a negative power
flow between two geographical areas. This limit can either remain equal to 0 or be adjusted to match
the agreement between two power utilities.

p
(f)
pt(i,j) ≥ 0, p ∈ P, t ∈ T , (i, j) ∈ A (4.44)

These two equations thus govern the allowable amount of power that may be distributed by the
optimisation model between the different geographical areas.

4.11 Hydro generating units
As mentioned in Section 4.2, power generation of hydro units are governed by the dispatch schedule
obtained from the department of water affairs and is provided as a user input to the optimisation
process. This schedule allows the commitment of hydro generating units to the grid for only a cer-
tain time period, in order to manage the water levels downstream of each hydro station. In order to
enforce time dependent unit commitment for each hydro unit, (4.45) is incorporated into the optimi-
sation model. Researchers such as Chen (2008) and Chan et al. (2001) proposed different constraints
to consider when incorporating hydro units into the power generation optimisation problems. Note
however that a lot of the constraints mentioned by these researchers are not incorporated into the
hydro model as a steady river/ dam level is assumed given the short study horizon considered in the
UCEELD model. For the pumped storage units discussed in Section 4.12, a more detailed model is
developed to account for the water level variability.

Input parameter w(h)
hj in (4.45) represents the discretised envelope of hydro water consumption per

unit as a result of the load range at which each hydro unit is able to operate within. Note that w(h)
hj

is multiplied with binary decision variable zpthj and summated in terms of index j ∈ J to select the
water consumed by a hydro unit as a result of the load at which the unit is dispatched. By setting
the multiplication function equal to or less than 0, the user forces downtime of the affected hydro
unit, as per the dispatch schedule. In doing this, variable zpthj is assigned a value of 0 in order to
ensure the feasibility of (4.45).

It is, however, important to note that this equation is only applicable to certain hydro units, given
a specific time horizon. The units and time period affected by (4.45) are specified by constraining
indexes h ∈ H(n) and t ∈ T , and can be updated by the user as the dispatch schedule changes.
In this example, (4.45) will only be in effect when the model’s calculation process reaches time
period t >= 5 to t <= 10. During this time, hydro units ranging from h >= 99 to h <= 105
will be prevented from being committed to the grid in an attempt to minimise the disruption of
the downstream ecosystem. After the predefined time period has passed, the optimisation model is
then again allowed to select the affected hydro units for generation. Note however that during time
period t >= 5 to t <= 10, units h <= 99 and h >= 105 will still be available for commitment. Note
that the aforementioned is however only an example and in reality, indexes t ∈ T and h ∈ H(n) can
be constrained as the user deems it necessary.

∑
j∈J

w
(h)
hj zpthj ≤ 0, p ∈ P, t ∈ T : 5 ≤ t ≤ 10, n ∈ N , h ∈ H(n) : 99 ≤ h ≤ 105 (4.45)

Equation (4.46) is added to the optimisation model, in case unstable operating conditions are identi-
fied for a hydro unit, when operating within its design load range. This equation is used to limit the
water consumed by the affected hydro unit and prevent the unit from operating outside its stable
and or safe operating envelope. Say for example a hydro unit’s design load range is between 0 MW
to 120 MW. It might be that above 100 MW unstable operating conditions are experienced. Unsta-
ble conditions can arise as a result of plant defects and or outstanding maintenance. Considering
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the foregoing, the user will not want this unit to be scheduled above 100 MW, by the optimisation
model, as it may result in undesired outcomes. To enforce this principle and prevent loading above
100 MW, (4.46) is applied.

∑
j∈J

w
(h)
hj zpthj ≤ w

(hm)
h , p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (4.46)

In order to limit hydro power generation, the multiplication function in (4.46) is set equal to or less
than the maximum allowable water consumption limit (w(hm)

h ). In the above example this will be
equal to the quantity of water consumed at 100 MW. The water consumption limit is specified by
the user and will prevent the hydro unit from operating outside its desired load range. If however
no limitations are required on the power generation of a hydro unit, parameter w(hm)

h needs to be
set to a value greater than the maximum continuous rating of the affected unit.

4.12 Pumped storage generating units
Pumped storage units act as a battery and or energy storage device to the power grid and are utilised
for power generation during peak periods. Being a cheap source of power generation, the optimisation
model will attempt to schedule these units at full load for the entire study horizon. This is however
not practicable as the water levels of the upper reservoirs only contain a limited water capacity
available for power generation. If not managed correctly, these reservoirs will run out of capacity
after a few hours of operation. In order to prevent this from happening, pumped storage units
are forced by the system operator to occasionally switch between generating and pumping mode,
to maintain the upper reservoirs at a predefined level setpoint. The preceding is usually initiated
during lower grid power consumption, typical during early mornings or late nights, where coal fired
units are capable of satisfying the grid demand. This is done to replenish the upper reservoir water
levels to ensure that there are enough pumped storage generation capacity available during each
peak period. In order to describe the process of pumped storage power generation mathematically
(4.47) to (4.60) are incorporated into the optimisation model. Borghetti et al. (2008) together
with Ni & Guan (1999) presents detailed models used to simulate the dynamics of pumped storage
stations when incorporated into the dispatch and commitment schedules.

4.12.1 Water balance

As mentioned in Section 4.2, the power generated by pumped storage stations is governed by the
available power contained in the upper and lower water reservoir for each station. It is, therefore
necessary to model the level of each reservoir (upper and lower), and track the changes to the levels
as a result of a unit either operating in generating and or pumping mode.

To track the water volume of the upper reservoir of each pumped storage station, (4.47) is in-
corporated into the model. Variables v(u)

pts and v
(u)
p(t−1)s in (4.47) denotes the water volume of each

upper reservoir at time periods t and t-1 respectively. Variable v(fl)
p(t−1)su which is summated in terms

of index h ∈ H(n) is representative of the quantity of water either flowing out of (when in generating
mode) or into each reservoir (when in pumping mode). The detailed calculation of v(fl)

p(t−1)su will be
provided in the sections to follow. When a pumped storage unit is in generating mode, v(fl)

p(t−1)su
will take on a positive value. This will be indicative of water flowing out of the reservoir. The
opposite is true when in pumping mode. In generating mode, v(u)

p(t−1)s will be reduced by the value
of v(fl)

p(t−1)su. The answer to the subtraction function will then be captured by v(u)
pts and be logged by

the optimisation model as the new reservoir volume for time period t. The preceding is an iterative
process which will be repeated up and to the end of the study horizon. This is done to keep track
of the upper reservoir volume during each time period as power is generated or consumed. This
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equation is effectively a mass balance of the water flowing out of and into each upper reservoir.
Refer to (4.47) for the mathematical formulation.

v
(u)
pts = v

(u)
p(t−1)s −

∑
u∈U(s)

v
(fl)
p(t−1)su, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n) (4.47)

In order to prevent pumped storage units from continuously being scheduled in generating mode,
due to it being a cheap source of power generation, (4.48) is added to the optimisation model.
Input parameter v(ue)

ts in (4.48) is user defined and depicts the upper reservoir water volume set-
point (minimum allowable volume) at time period t. Note that v(ue)

ts is multiplied with binary input
parameter o(p)

su representing the outage schedule for each pumped storage unit. If a unit is sched-
uled for an outage, o(p)

su will be assigned a value of 0. The opposite applies if the unit is available
for generation. By multiplying these two parameters with one another, the user ensures that this
equation will only be considered when units in a pumped storage station are available for generation.

By providing the upper reservoirs with a setpoint, (4.48) will force the optimisation model to switch
the pumped storage units between generating and pumping modes in order to meet the desired water
volume at the predefined time period. In (4.48) the time period at which the water volume setpoint
must be reached is set at t = 6 of the study horizon. Note however that at hour 7 in the study
horizon and beyond, the model will be allowed to commit the pumped storage units for generation
continuously without having to consider any setpoint. The reason for this is the fact that the volume
setpoint has already been met at hour 6 of the study horizon. If the remaining period of the study
horizon is too long, say for example from hour 7 to hour 24, it might cause the reservoirs to run out
of capacity. The reason for this being, is that the pumped storage units will be scheduled at full load
from hour 7 to 24 which will result in the upper reservoirs being completely drained. To prevent the
preceding from occurring, the user can adjust the time period at which the volume setpoint needs to
be satisfied to a subsequent hour in the study horizon, say for example hour 15. This will force the
optimisation model to maintain sufficient capacity in the upper reservoirs for the remaining periods
of the study horizon, by switching between generating and pumping modes during hour 1 to hour 15.

It is for this reason that the system operator needs to analyze the available capacity of the reservoirs
on a continuous basis. By doing so, the operator will guarantee that a realistic setpoint (maximum
allowable water volume (v(ue)

ts )) is provided at the correct time period (lowest grid demand), to en-
sure enough generation capacity is available for the current as well as subsequent study horizons at
peak demand.

V
(u)
pts ≥ V

(ue)
ts o(p)

su , p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.48)

Lastly, to effectively track the water balance of the upper reservoir, using (4.47) and (4.48), the user
needs to initialize variable v(u)

pts at time period t = 1. Without providing an initial reservoir volume,
the upper reservoir water balance calculation will fail to execute. The initialization functionality is
added to the model by means of (4.49). In this equation variable v(u)

pts is set equal to the user defined
input parameter v(ui)

ts (initial upper reservoir water volume) at time period 1 of the study horizon.
This value needs to correspond to the actual water volume as contained in the upper reservoir of
each pumped storage station. Providing the model with an inaccurate input value, will result in
erroneous commitment and dispatch schedules being obtained for each pumped storage unit.

v
(u)
pts = v

(ui)
ts , p ∈ P, t ∈ T , n ∈ N , s ∈ S(n) (4.49)

The same mathematical principle, which was used to track the upper reservoir water volume, is
incorporated to track the water volume of the bottom reservoir of each pumped storage station.
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This functionality is incorporated into the model by means of (4.50) and (4.51). In (4.50), variables
v

(l)
pts and v

(l)
p(t−1)s denotes the water volume of each bottom reservoir at time periods t and t-1

respectively. Contrary to (4.47), variable v(fl)
p(t−1)su is added to v(l)

p(t−1)s in (4.50), to obtain the new
reservoir volume at time period t. The reason for this being is that when a pumped storage unit
is in generating mode (v(fl)

p(t−1)su takes on a positive value), water will be consumed from the upper
reservoir and transported to the bottom reservoir, resulting in a rise in the bottom reservoir water
volume. The magnitude of volume rise in the bottom reservoir will be directly dependent on the
amount of water consumed from the upper reservoir. As a result, the amount consumed from the
upper reservoir will need to be added to the volume of the bottom reservoir to ensure conservation
of the mass balance. The opposite is true when in pumping mode. Considering the dynamics of the
bottom reservoir, the user is not required to provide a water volume setpoint as was done for the
upper reservoirs in (4.48). By controlling the upper reservoir volume, it will indirectly govern the
bottom reservoir volume at each time period t as these reservoirs are directly linked to one another.
Effectively, (4.50) will respond to any changes in the upper reservoir volume. Similar to (4.47), the
calculation is an iterative process which will repeat until the end of the study horizon is reached.
By doing this, the dynamics in the bottom reservoirs can be tracked accurately to ensure realistic
results are obtained from the model when operating in either generating or pumping modes.

v
(l)
pts = v

(l)
p(t−1)s +

∑
u∈U(s)

v
(fl)
p(t−1)su, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n) (4.50)

Equation (4.51), similar to (4.49), is incorporated to initialize variable v(l)
pts in (4.50) at time period

t = 1. In (4.51) variable v(l)
pts is set equal to the user defined input parameter v(li)

ts (initial bot-
tom reservoir volume) at time period 1 of the study horizon. By providing an acceptable starting
value, the model will be able to track the fluctuations in the water balance of the bottom reservoir
accurately.

v
(l)
pts = v

(li)
ts , p ∈ P, t ∈ T , n ∈ N , s ∈ S(n) (4.51)

In order to accurately track the water flow through both upper and lower reservoirs, as depicted in
the above sections, variable v(fl)

ptsu is incorporated into the model. This variable is representative of
the quantity of water either flowing out of or into each pumped storage unit at time period t of the
study horizon. In (4.52), the detailed mathematical calculation for v(fl)

ptsu is provided. Note that the
calculation is done using the bottom reservoir as reference point. Meaning that v(fl)

ptsu takes on a pos-
itive value when a pumped storage unit is operating in generating mode (water flowing into bottom
reservoir calculated by term 2 of (4.52)) and a negative value when in pumping mode (water flowing
out of bottom reservoir calculated by term 3 of (4.52)). In term 2 of (4.52), parameter v(fl)

suvj refers
to the discretised envelope of water consumed as a result of the load range at which each pumped
storage unit is able to operate within and due to the variability of the upper reservoir volume over
time. Given a fixed operating load, the water consumption for a pumped storage unit can vary as a
result of the variability of the upper reservoir volume. For example, if a pumped storage unit can
be dispatched at a load range between 0 MW - 120 MW with an upper reservoir volume of 20 m3,
the equivalent volumetric flow rate through the turbine would range between 0 m3/s - 2 m3/s. If
however the same pumped storage unit is dispatched at an upper reservoir volume of 10 m3, the
equivalent volumetric flow rate through the turbine would need to range between 0 m3/s - 4 m3/s
to maintain a load range between 0 MW - 120 MW. If the volumetric flow rate is not adjusted, the
operating load range of the pumped storage unit will drop to between 0 MW - 90 MW as a result
of the reduced potential energy in the upper reservoir.

Infinite examples such as this exist, however, to reduce the model complexity, it was assumed that
there are only two possible upper reservoir volume ranges (consequently two volumetric flow rate
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ranges which are contained in v
(fl)
suvj) that the model is able to chose from, for a fixed load range.

By allowing more data points to be considered (i.e. more reservoir volume ranges), it will definitely
increase the model’s accuracy, but will become impractical to solve due to increased model solution
time. Given the two reservoir volume ranges, the model will utilise the results obtained from the
water balance to determine the upper reservoir volume at time period t. After identifying the reser-
voir volume, fptsuvj will be assigned a value of 1 for index v ∈ V corresponding to the identified
volume. The remaining sections of index v will be assigned values of 0. Input parameter v(fl)

suvj is
then multiplied with binary decision variable fptsuvj and summated in terms of index v ∈ V and
j ∈ J to select the water consumed by a pumped storage unit as a result of the load at which
each unit is dispatched and the volume contained in the upper reservoir. Note that the multiplica-
tion function is subtracted from v

(fl)
ptsu as a result of the bottom reservoir being used as reference point.

In term 3, input parameter p(q)
su denotes that quantity of water consumed from the bottom reservoir

when a pump storage unit is operated in pumping mode. For this application, it is assumed that the
turbine of each pumped storage unit consumes a constant water quantity when in pumping mode.
Parameter p(q)

su is multiplied with binary decision variable p(r)
tsu to activate the multiplication function

(term 3) when a unit is switched to pumping mode. When in pumping mode, p(r)
tsu will be assigned a

value of 1 and vice versa when switched to generating mode. By setting (4.52) equal to 0, it ensures
that v(fl)

ptsu will take on the value of either term 2 or term 3, depending on which term is active for
the time period under consideration. Take note that both terms cannot be active at the same time.
A pumped storage unit can either be in generating mode or pumping mode in a single time period,
not both. Refer to Section 4.5 for a detail explanation regarding this statement.

v
(fl)
ptsu −

∑
v∈V

∑
j∈J

v
(fl)
suvjfptsuvj + p(q)

su p
(r)
tsu = 0, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.52)

By accurately modeling the dynamics of the upper and lower reservoir volumes using the equations
set out in Section 4.12.1, it will ensure that the pumped storage units considered in the optimisation
model will be committed to the grid at time periods and dispatched at loads which will correspond
to periods of high grid demands to prevent frequency incidents.

4.12.2 Volumetric flow rate range selection

As mentioned throughout Sections 4.3 and 4.12.1, it is assumed that there will only be two volume
ranges in which each upper reservoir volume will be allowed to fluctuate within. In order to deter-
mine within which volume range each upper reservoir falls, the water balance is utilised. Applying
the results obtained from variable v(u)

pts in the water balance, the actual upper reservoir volume is
obtained. By utilising (4.53) and (4.54) in conjunction with v(u)

pts , the model can determine within
which predefined reservoir volume range the current reservoir volume falls. Input parameter rsv in
both equations are representative of the predefined volume ranges for the upper pumped storage
reservoirs. The volume ranges are divided into range (1 - 2) and range (2 - 3). The values contained
in each volume range is determined by user input.

Parameter rsv is multiplied with binary decision variable d(m)
ptsuv in (4.53) to track the upper bound

of the top reservoir volume. If for example v(u)
pts falls within range (1 - 2), variable d(m)

ptsuv will be
assigned a value of 1 for index v ∈ V corresponding to point 1 of range (1 - 2). Point 1 will then
form the upper limit of the range within which the reservoir volume falls. Note that in this example,
variable d(m)

ptsuv will be assigned 0 values in point 2 and 3 of index v. Term 2 in (4.53) is added to
ensure that the equation remains feasible although a pumped storage unit is decommitted from the
grid. If this term was emitted from the equation, an infeasible solution will be obtained for (4.53)
and the model will not be able to solve correctly.
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∑
v∈V

rsv(d(m)
ptsuv + (1− t(r)tsu)) ≥ v(u)

pts , p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.53)

Similar to (4.53), input parameter rsv in (4.54) is multiplied with binary decision variable d(n)
ptsuv to

track the lower bound of the top reservoir volume. For the above example where the reservoir volume
falls within range (1 - 2), variable d(n)

ptsuv will be assigned a value of 1 for index v ∈ V corresponding
to point 2 of range (1 - 2). Point 2 will form the lower limit of the range within which the reservoir
volume falls. Point 1 and 3 in index v will be assigned 0 values for variable d(n)

ptsuv. If however a
pumped storage unit is operated in generating mode for a prolonged period of time, it might result
in the volume range moving from range (1 - 2) to range (2 - 3) due to the reduction in reservoir
volume. Consequently, binary variables d(m)

ptsuv and d
(n)
ptsuv will be updated by the model, by assigning

a value of 1 for both points 2 and 3 in index v respectively. The remaining points in index v will be
assigned 0 values.

∑
v∈V

rsvd
(n)
ptsuv ≤ v

(u)
pts , p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.54)

In order to force variables d(m)
ptsuv and d(n)

ptsuv to track the upper and lower bounds within which the
top reservoir volume fluctuates, (4.55) is incorporated into the model. Variable d(n)

ptsuv is subtracted
from d

(m)
ptsu(v−1) and is set equal to a value of 0. By equating the subtraction function to 0, it ensures

that both binary decision variables are assigned either a value of 1 or 0 simultaneously, and prevent
these variables from being assigned different values in time period t. If for example d(n)

ptsuv is assigned
a value of 1 for index v corresponding to point 2 of range (1 - 2), d(m)

ptsuv will be forced by (4.55) to
assign a value of 1 to point 1 of range (1 - 2) to ensure the equation’s feasibility. By using the results
obtained from this equation, the model will utilise range (1 - 2) as the volume range within which
the upper reservoir volume operates for time period t.

d
(m)
ptsu(v−1) − d

(n)
ptsuv = 0, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.55)

Variable fptsuvj , which is used for load and volumetric flow decision making, is linked to the lower
reservoir volume range by means of (4.56). In this equation fptsuvj is set equal to d

(n)
ptsuv. By

implementing this equation, the model will prevent a value of 1 to be assigned to fptsuvj if the upper
reservoir’s volume of the affected unit does not fall within the limit prescribed by fptsuvj and d(m)

ptsuv.
For example, if the reservoir’s volume falls within the (1 - 2) volume range, the model will only be
allowed to assign values of 1 to fptsuvj in index v corresponding to point 2 of range (1 - 2). In (4.56),
fptsuvj is set equal to the lower bound of the volume range and therefore point 2 is used as reference.
The equation can however be updated by the system operator by setting fptsuvj equal to the upper
bound which will force the model to use point 1 of volume range (1 - 2) as reference.

∑
j∈J

fptsuvj = d
(n)
ptsuv, p ∈ P, t ∈ T, n ∈ N , s ∈ S(n), u ∈ U(s), v ∈ V (4.56)

It is, however, important to note that the process of volumetric flow rate range selection is only
applicable if a pumped storage unit is operating in generating mode. If at any time, a pumped
storage unit is either decommitted from the grid or switched to pumping mode, (4.53) to (4.55)
needs to be discounted from the model. In order to achieve the foregoing, (4.57) and (4.58) is added.
Note that in these equations both variables d(n)

ptsuv and d
(m)
ptsuv are set equal to binary decision variable

t
(r)
tsu. Variable t(r)tsu, as mentioned in Section 4.5, is used to track the on/off selection of pumped
storage units in generating mode. Therefore, if a pumped storage unit is selected to generating
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mode, t(r)tsu will be assigned a value of 1. This, in turn, will allow (4.57) and (4.58) to come into effect
and start tracking the volume range within which a pumped storage unit operate within, when in
generating mode. The contrary is true when a unit receives an off selection. t(r)tsu will be assigned a
value of 0, and (4.57) and (4.58) will be discounted from the decision making process.

∑
v∈V

d
(m)
ptsuv = t

(r)
tsu, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (4.57)

∑
v∈V

d
(n)
ptsuv = t

(r)
tsu, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s)c (4.58)

By including the content discussed throughout 4.12 into the optimisation model, it most definitely
increases the complexity as well as the solution time. Although this is the case, these constraints
cannot be omitted from the model as it will result in an unrealistic and inaccurate commitment and
dispatch schedule being obtained for the pumped storage units.

4.13 Stochastic elements
Stochastic elements or variables refer to data which might have a random probability distribution
or pattern that may be analyzed statistically. Such variables also exist in the unit commitment
and load dispatch optimisation problem. Due to the uncertainty contained within these variables, it
affects the model’s decision making process significantly. Therefore it needs to be incorporated into
the optimisation model to ensure the results obtained will be comprehensive and accurate. These
variables include power grid demand variability and coal fired fuel consumption variability. Both
these variables are predicted values derived from historical data. It is however imperative to note
that no prediction can be done without some degree of uncertainty and therefore stochasticity need
to be incorporated into the model. A detailed discussion is provided on each in the sections to
follow. The principle of two-stage stochasitc modeling as presented in Papavasiliou & Oren (2013)
and Shiina (2004) is applied in the UCEELD model formulation. The model first needs to perform its
decision making process on the commitment of the units given the stochastic nature of the forecasted
demand, fuel cost and emissions production. Only thereafter, the dispatch process can be initiated
in order to develop the optimal generation schedule.

4.13.1 Power demand variability

In order to consider the stochasticity of the predicted power grid demand, index p is added to the
optimisation model as discussed in the introduction to Chapter 4. By using index p, input parameter
p

(d)
ptn as depicted in Section 4.3, is modified to contain a stochastic index. By doing this, parame-

ter p(d)
ptn can be provided with input data sets containing different scenarios of grid demands which

might occur in time period t. Note that this is not contradictory to what was discussed in Section
4.3, but only contributory to make the model more relevant to actual conditions. In Section 4.3,
p

(d)
ptn was defined as a single data set (effectively index p = 1) whereas now it is introduced as a

multidimensional data set (effectively index p > 1). Therefore, multiple data sets (scenarios) can be
contained within p(d)

ptn for different indexes of p. Say for example index p ranges from 1 to 3. This
will mean that variable p(d)

ptn will consist of three sets of possible grid demand data, which will need
to be satisfied by the model, via unit commitment and load dispatch, in order to obtain a feasible
solution. Note however that the range for index p is user defined and can be updated as the user
deems necessary. If however the range for index p is increased, the model complexity and solution
time will be greatly amplified. Index p is also added to the remaining variables in the model to
account for the power grid demand stochasticity.
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Another factor to consider when introducing power demand variability (i.e. different load sce-
narios), is the influence it has on the total fuel cost calculated in the objective function. According
to historical data, each grid demand scenario has a certain probability to occur during each time
period t. The weight assigned to each scenario as a result of its probability to occur, will directly
influence the total fuel cost as calculated in the objective function. This is because the fuel cost per
scenario will be proportioned according to this same probability. Note that the summation of all
the probabilities should provide the user with an answer of 1. To incorporate this effect accurately,
(4.2) is multiplied with input parameter rp. This parameter proportions the fuel cost (c(f)

hj ) in (4.2)
with a weight equivalent to the probability for each power demand scenario to occur. Which ever
scenario carries the most weight, will be the primary driver for the decision making process of the
optimisation model. In other words, the fuel cost used to satisfy the grid demand with the highest
probability to occur, will have the biggest influence on the model’s commitment and dispatch process.
For example, if there are three grid demand scenarios, it might be possible that the probability is
0.3 for scenario 1, 0.5 for scenario 2 and 0.2 for scenario 3 to occur. This means that the probability
that the optimisation model will need to satisfy the power grid demand contained in data set 2 of
index p (while consuming an equivalent amount of fuel) is the most likely to occur. Therefore this
scenario will outweigh the other scenarios and will be the primary driver for the decision making
process. However, the model decision making cannot be solely based on scenario 2 as scenario 1 and
3 will also have an effect on the final outcome, even though it is less likely to occur. The model needs
to take all possible scenarios as supplied by the system operator into consideration in the objective
function in order to provide a consolidated answer, considering each scenario. By incorporating
this functionality into the optimisation model, the system operator will be able to obtain the best
possible commitment and load dispatch schedule, provided a certain level of uncertainty.

4.13.2 Fuel consumption variability

Coal fired fuel consumption stochasticity is incorporated by means of adding index p to all rele-
vant variables in the optimisation model and by multiplying (4.2) with input parameter qph. This
parameter is used to simulate different fuel consumption scenarios (by means of multiplying (4.2)
with different fractions) that might exist. Fuel consumption variability of a coal fired unit may be
due to changes in plant conditions and or plant performance. Depending on the input variability
range obtained from the system operator, qph can contain multiple scenarios with which the fixed
coal usage, depicted by input parameter c(f)

hj , can be adjusted to model fuel cost stochasticity. By
incorporating this functionality into the model, it increases the model complexity significantly. The
reason for this is that, for each possible fuel consumption scenario, the model needs to solve the op-
timisation problem by iterating through the different load scenarios as mentioned in Section 4.13.1,
as well as compute through each index t, n, h, j for coal fired and hydro units and through each
index t, n, s, u and v for pumped storage units. By adding this functionality, it creates a stacked
effect (something similar to a for loop) which increases the model size exponentially. The model,
therefore, needs to iterate through all of the possible combinations in order to minimise the objective
function. Depending on the number of combinations, the model’s solving time will increase until it
becomes impractical to solve.

4.13.3 Emissions production variability

Emissions production variability is incorporated into the mathematical model by means of adding
index p to all relevant variables and multiplying (4.10) with input parameter q(e)

ph . Emissions produc-
tion variability of a coal fired unit may be a result of poor performing plant equipment or burning
sub-grade coal with high ash and sulfur content. Depending on the inputs obtained from the system
operator after analyzing the mentioned aspects, q(e)

ph may contain multiple scenarios with which the
fixed emissions production (e(f)

hj ) can be adjusted. These scenarios are applied to model the emissions
production stochasticity for a specific time period. The preceding ensures the model’s adherence to
the legislative emissions restrictions when committing and dispatching units, given a wide band of
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possible variability. By doing so, the utility’s chances of incurring a section 30 legal contravention
are eliminated. This is done by ensuring the units are scheduled is such a manner as to handle any
margin of emissions production variability as defined by the system operator. This makes the model
more robust as it is capable of accounting for dynamic process fluctuations. This does however also
increase the model complexity similar to what was explained in Section 4.13.2.

4.14 Transmission line losses
In addition to the constraints discussed throughout Sections 4.2 to 4.13, transmission line losses
can also be taken into consideration when developing the UCEELD model. This will entail the
commitment and dispatch of generating units while considering the length and capacity of the
various transmission line networks as it can contribute to some extent of megawatt losses. The
incorporation of these constraints are however complex and results in the problem again taking
on a nonlinear form. The results obtained from (Bhattacharay & Chattopadhyay: 2010; Jeddi
& Vahidinasab: 2014) shown that the transmission losses calculated by their models were only
equivalent to approximately 1% of the total grid’s generation capacity, which is relatively negligible.
Incorporating these losses into the UCEELD model would increase the complexity of the problem as
well as the computational time required to obtain an optimal solution. Given the foregoing reasons,
it was decided that the transmission line losses would not be incorporated into the scope of this
dissertation.
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Chapter 5

Model Results and Interpretation

In this chapter the computational results obtained from the MILP UCEELD optimisation model,
outlined in Chapter 4, is presented. The data obtained from the model is technically evaluated
by means of verification and validation. The process of model verification is concerned with the
determination of the model accuracy and establishing if the model’s response is as expected. The
verification process also entails the evaluation of the mathematical coding to assess the correctness
thereof. The validation process is concerned with the ability of the optimisation model to solve
realistic real-world problems with specific focus on how accurate the results represent reality. In
many cases, the process of verification and validation are linked to one another and for this reason,
both these evaluation techniques are addressed in this section.

The verification process is initially performed using a base model consisting of 3 thermal units.
The base model is augmented to a 6 thermal, 1 hydro and 2 pumped storage unit case study as the
model verification progresses. The purpose of utilising a small scale model is to simplify the process
of critically evaluating the influence of each equality and inequality constraint on the model dynam-
ics. Using an extensive model to perform the verification process will unnecessarily complicate the
interpretation of the model results. The validation of the MILP UCEELD model is performed by
means two problem instances. The first problem instance entails the evaluation of the model’s per-
formance by comparing the model results with the performance of an actual thermal power station.
For the first problem instance, only 6 thermal generating units are considered. The second problem
instance entails the solution of a 98 thermal, 8 hydro and 6 pumped storage unit case study. The
size of the second problem instance used for the validation process corresponds to that of a realistic
sized problem similar to what is found in South Africa’s power grid. In Addition to the preceding,
an analysis is performed to evaluate the effect model scaling has on solution time to determine if it
will be possible to incorporate the optimisation model into a real life production environment.

The mathematical MILP UCEELD model is solved by using the commercial solver, Cplex (IBM
Corp, 2015). The user defined input data is introduced into Cplex by means of linking the model to
a Microsoft Excel visual basics tool, equipped with a graphical user interface aimed at simplifying
the data acquisition process. A detailed explanation is provided in Section 5.5 on the workings of
the data handling tool. The solution algorithm implemented by Cplex software to solve the MILP
UCEELD problem is the branch-and-bound method. The input data used to simulate the different
generating units are derived from a consistent data set obtained from a power utility named Eskom.
In order to prevent the distribution of confidential design information, the data was adapted by the
author. Effort was however made to ensure that the data is still a realistic representation of reality.

5.1 Study horizon and power demand
In order to perform the validation and verification process, a 24 hour (1 day) study horizon is
considered with the study horizon being divided into hourly intervals. A random power demand
curve is populated by the author for the verification process, as a way of testing the model response
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with the inclusion of different constraints (Figure 5.1). When performing the validation process a
realistic day ahead hourly demand curve is incorporated into the model in order to simulate reality
(Figure 5.26). In both curves hour 1 corresponds to 01:00 am and hour 24 represents 24:00 pm when
using the digital time format.

5.2 Model data
The input data used during both the validation and verification experiments are structured simi-
larly to the data portrayed in Tables 5.1 to 5.6 with the quantity of data varying for each problem
instance. The first three tables contain data related to 6 thermal units and 1 hydro unit whereas the
data in Tables 5.4 to 5.6 are related to 2 pumped storage units. The below data is an extract of the
inputs used to perform the data verification process as stipulated in Section 5.3 of this dissertation.
The input data depicted in Tables 5.1 to 5.3 are consolidated using the VBA graphical user interface
as discussed in Figure 8.1, Appendix B. Similar to the preceding, the data in Tables 5.4 to 5.6 are
inserted into the excel user sheet using the VBA graphical user interface depicted in Figure 8.2,
Appendix B.

The data in columns 2 to 4 of Table 5.1 refers to the exponential curve coefficients associated
to the coal consumption of each unit. Similar is true for columns 5 and 6 which depicts the linear
curve coefficients associated with each units emissions production. Columns 7 to 10 contains data
regarding each units’ minimum and maximum load ranges as well as the up and down ramp rates
linked to each unit.

Table 5.1: Thermal and hydro units input data

Unit Coal (a) Coal
(b)

Coal
(c)

Emis
(a)

Emis
(b)

Min Load
(MW)

Max Load
(MW)

Ramp
Up

(Mw/h)

Ramp
Down
(MW/h)

1 -0.00002 0.12 -6.02 0.13 2.48 220 396 120 120
2 0.00004 0.047 13.09 0.16 5.81 90 400 120 120
3 -0.00001 0.097 -0.20 0.13 4.10 90 400 120 120
4 -0.00005 0.15 -5.87 0.08 5.82 90 396 120 120
5 -0.00013 0.20 -8.54 0.04 3.87 90 370 120 120
6 -0.00003 0.13 -9.51 0.05 2.74 120 520 140 140
7 0 0 0 0 0 90 150 120 120

In Table 5.2, the first 5 columns contain data relating to the start-up and shutdown fuel oil con-
sumption rates for each unit as well as the cost per ton of coal and fuel oil. Columns 6 and 7 contains
data linked to the minimum and maximum prohibited load ranges for each of the generating units.
The last two columns refer to outage schedule data and water usage rates for each unit.

Table 5.2: Thermal and hydro units input data continued

Unit Start-up
Fuel Oil
(Ton)

Shutdown
Fuel Oil
(Ton)

Coal
Cost

(R/Ton)

Fuel
Oil
Cost

(R/Ton)

Min
Prohib
Load

Max
Prohib
Load

Unit
Outage

Water
Usage
(a)

1 11 14 430 3000 0 0 0 0.068
2 15 12 400 7760 0 0 0 0.018
3 13 16 415 1250 12 15 0 0.028
4 32 25 380 3000 0 2 1 0.019
5 25 19 395 2864 0 0 1 0.020
6 40 37 470 3791 0 0 1 0.099
7 0 0 0 0 0 0 1 0
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Table 5.3 is the last table associate to the thermal and hydro units. The data depicted in columns
2 to 4 provides information regarding the up and down time of each unit as well as the time each
unit has either been operational or out of commission. Additional information contained within this
table also includes start-up and shutdown ramp rates, maximum hydro flow rates and lastly linear
coefficients pertaining to the hydro unit flow curves.

Table 5.3: Thermal and hydro units input data continued (1)

Unit Up
Time

Down
Time

Time
Running

Time
Down

Start
Ramp

(MW/h)

Shutdown
Ramp

(MW/h)

Max
Hydro
Flow
(m3/s)

Hydro
Flow
(a)

Hydro
Flow
(b)

1 1 1 0 0 150 150 0 0 0
2 1 1 0 0 150 150 0 0 0
3 1 1 0 0 150 150 0 0 0
4 2 2 0 0 150 150 0 0 0
5 1 2 0 0 150 150 0 0 0
6 1 2 0 0 150 120 0 0 0
7 1 1 0 0 150 150 224000 0.57 -0.89

Table 5.4 is related to pumped storage data such as the minimum and maximum load ranges for
each pumped storage unit, up and down ramp rates, minimum and maximum prohibited operating
regions, the initial top and bottom reservoir volumes and lastly the final top reservoir volume setpoint
for each reservoir.

Table 5.4: Pumped storage units input data

Unit Min
Load
(MW)

Max
Load
(MW)

Up
Ramp
(MW/h)

Down
Ramp
(MW/h)

Min
Prohib
Load

Max
Prohib
Load

Initial
Top Res

Vol
(GL)

Final
Top Res

Vol
(GL)

Initial
Bottom
Res Vol
(GL)

1 30 250 100 100 0 0 15.5 16.5 7.5
2 30 250 100 100 0 0 13.5 16.5 7.5

Table 5.5 summarises the exponential volumetric flow curve coefficients related to each pumped
storage unit. Each unit is linked to the main reservoir and depending on the reservoir volume, the
pumped storage unit flow rate curve will change (i.e. affected by the available head in each upper
reservoir).

Table 5.5: Pumped storage units input data continued

Unit Reservoir
Volume
Number

Pumped
Storage

(a)

Pumped
Storage
(b)

Pumped
Storage

(c)

Reservoir
Volume
(GL)

1 1 -2E-16 3.6568 -2E-13 27.5
1 2 -0.00004 2.3289 -0.0076 17.5
1 3 -0.00009 1.001 -0.0152 7.5
2 1 -2E-16 3.6568 -2E-13 27.5
2 2 -0.00004 2.3289 -0.0076 17.5
2 3 -0.00009 1.001 -0.0152 7.5

The last table contains data pertaining to the start-up and shut down ramp rates, pump volumetric
flow and power consumption rates as well as the outage schedule for each pumped storage unit.
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Table 5.6: Pumped storage units input data continued (1)

Unit Start-Up
Ramp

(MW/h)

Shut down
Ramp

(MW/h)

Pump
Flow

(GL/h)

Pump
Power
(MW)

Unit On
Outage

1 150 150 1.2 30 1
2 150 150 1.2 30 1

Note that the above tables are utilised as examples to provide the reader with insights into the input
data used for the MILP UCEELD model. As previously mentioned, the amount of data required
will be dependent on the size and complexity of the problem instance to be solved.

5.3 Model verification
During model verification, 12 different problem instances are considered with the first instance
(Section 5.3.1) being the most rudimentary and the last (Section 5.3.12) comprising of the complete
model as outlined in Chapter 4. In order to evaluate the dynamics of the MILP UCEELD model,
the results obtained from the initial problem instance is considered as the base case model. As
the problem instances progress additional constraints are added to the base model. The results
obtained from the altered models are compared to its neighboring instances in order to determine
the effect each constraint has on the model dynamics. Evaluating the change in unit loading every
time a constraint is added to the model, provides the reader with the ability to discern between the
different instances and the influence each constraint has on the model dynamics.

5.3.1 Single area coal fired unit dispatch - base model

The initial problem instance, only takes into consideration the coal cost associated with the ther-
mal units as encompassed by ((4.1) - (4.3)) and the power balance constraints ((4.5) - (4.6)). The
base model discounts the water consumption, start-up, and shutdown costs included in (4.1) as well
as the unit commitment variable (yth) in (4.3). Excluding the commitment variable prevents the
model from performing unit commitment decision making. Input parameters rp and qph are assigned
values of 1 to eliminate the stochastic functionality of the fuel cost in (4.2). When considering the
power balance, only the first term (P (T )) and fourth term (p(d)

ptn) are taken into consideration with
the remaining terms being omitted. The remaining constraints are excluded from the base model
problem instance. In this example, only 3 thermal units are considered, with the results obtained
from solving the base model being portrayed in Figure 5.1.

In analyzing the results obtained in Figure 5.1, it is apparent that thermal unit 2 is the least
expensive unit to dispatch with thermal unit 3 and unit 1 being more costly. Given the low opera-
tional cost associated to unit 2, the unit is dispatched at 250 MWh - 370 MWh output for most of
the study horizon, with the load being reduced at the start of hour 21 due to the decline in power
demand. Unit 3 being the second cheapest unit, is dispatched during peak demand periods (hours
1 to 4 and 8 to 16) at loads of between 340 MWh - 390 MWh where after the unit is deloaded to its
minimum allowable generation as a result of the reduced grid demands. Unit 1 is mostly operated
at 90 MWh for majority of the time due to the operational cost linked to the unit. It is only during
time periods 1 to 2 and 11 to 12 where the unit is required to increase its load to satisfy the grid
demand. The cumulative operating cost incurred by the utility, given the study horizon, equates to
a value of R 2 060 377 in total. The stated operating cost will be used as baseline in evaluating the
remainder of the problem instances. Note however that it is expected for the operational cost to
increase as constraints are added to the model. The reason being is because the model is forced to
satisfy operational constraints other than the primary goal of cost minimisation.
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Figure 5.1: Single area coal fired unit dispatch - base model

5.3.2 Emissions limitations

Problem instance two entails the inclusion of (4.41) to the base model as explained in Section 5.3.1.
In this equation parameter q(e)

ph is assigned a value of 1 to prevent the stochastic functionality of
emissions production from being taken into consideration for the thermal units. The emissions
limits (e(l)) assigned to each unit for the given problem instance were 50 mg/sm3, 60 mg/sm3 and
55 mg/sm3 respectively. Figure 5.2 is representative of the results computed by the optimisation
model.

Figure 5.2: Emissions limitation influence on model results

Comparing the model results depicted in Figure 5.2 with that of Figure 5.1, it is apparent that
the addition of the emissions limitation constraints definitely resulted in the alteration of the load
dispatch schedule. Specific emphasis needs to be placed on the data encompassed in the red block.
In order to prevent thermal unit 2 and 3 from exceeding the emissions limits, the model deloaded
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these units to below the allowable limits. Unit 2 was not allowed to exceed a load output of 330
MWh in this problem instance which is much lower in comparison to the 370 MWh which was
generated in instance 1. The maximum output of Unit 3 was also reduced with approximately 20
MWh, from 390 MWh to 370 MWh, as a result of the emissions limitations. In order to counteract
the load reduction of unit 2 and unit 3, the load of thermal unit 1 was increased above 90 MWh at
time periods 3, 10 and 13 - 15 to ensure the satisfaction of the power balance. The cumulative cost
incurred by the utility after considering the emissions limitation constraints equates to a value of R
2 092 207. In comparison to the initial problem instance, the operating cost of instance 2 increased
slightly. Meaning that if a utility is required to manage the emissions production by means of load
dispatch decision making, it will result is higher operating costs being experienced.

5.3.3 Prohibited operating regions

Problem instance three involves the addition of (4.38) to the model mentioned in Section 5.3.2, with
the purpose of the constraint being to account for prohibited operating regions. These regions entail
the load ranges at which the units are not allowed to be dispatched at. In this problem instance only
thermal unit 3 was constrained at the lower (pr(l)

h ) and upper (pr(h)
h ) load ranges corresponding to

the discretised load data points 12 and 15 respectively. Meaning that although the design operating
envelope of the unit is specified at 90 MWh - 390 MWh, the unit is only allowed to be dispatch
between an operating range of 90 MWh - 304 MWh as a result of the prohibited regions. Prohibited
operating regions can be induced by factors such as mentioned in Section 3.1.10. The influence of
adding (4.38) to the model can be noted in the red block of Figure 5.3.

Figure 5.3: Prohibited operating regions’ influence on model results

When evaluating the data portrayed in Figures 5.2 and 5.3, it is clear that the addition of (4.38)
resulted in a change to the unit load dispatch schedule. Considering the fact that thermal unit 3 is
prohibited to operate above 304 MWh, the model reduced the output of the unit significantly. Unit
3’s maximum load output was reduced from 370 MWh in problem instance 2 to 304 MWh in the
current instance. In order to account for the reduction in megawatt output from unit 3, the model
increased the maximum power generated by thermal unit 1 from 290 MWh to 356 MWh. In this
problem instance, the generation schedule for unit 2 remained relatively constant with only a few
small changes. In adding (4.38) to the model, the cumulative cost increased from R 2 092 207 to R
2 105 511. Scrutinizing the increase in operational cost, it is apparent that if a unit is subjected to
prohibited operating regions induced by plant defects, it can result in additional cost being incurred.
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It is therefore beneficial for a utility to immediately attend to any defect conditions before it results
in loading constraints on a unit as it can lead to significant cost savings.

5.3.4 Unit commitment

The unit commitment functionality is incorporated into the optimisation model by means of adding
(4.16) to (4.22). Due to the interconnectivity of these constraints, they need to be lumped together
into the model and cannot be individually added to evaluate the influence of each. Input parameters
t
(u)
h and t(d)

h in (4.18) and (4.20) are assigned values of 1 for the purpose of this problem instance
whereas parameters t(u1)

h and t(d1)
h are allocated 0 values. Equation (4.22) is set equal to or greater

than a value of 0 to ensure that at least 1 unit remains committed to the grid during the study
horizon. The remaining variables in (4.16) to (4.22) are decision variables and will take on either
values of 0 or 1 depending on the commitment schedule generated by the optimisation model. Terms
3 and 4 in (4.1) are incorporated into the model in order to account for the cost incurred by the
utility as a result of unit start-up and shutdown operation. For explanatory purposes, the fuel oil
cost associated to the shutdown of unit 3 was assumed to be quite low to demonstrate the effect of the
unit commitment constraints. The results obtained from the computational process are portrayed
in Figure 5.4. The unit commitment constraints added in problem instance 4 are an extension to
the model discussed in Section 5.3.3.

Figure 5.4: Unit commitment influence on model results

Adding the unit commitment constraints to the optimisation model, allows the model to decommit
a unit from the grid instead of running the unit at its minimum allowable output load, given a low
power demand. In analyzing Figure 5.4, it is apparent that the model prescribed decommitting
thermal unit 3 from the grid at hour 21 of the study horizon instead of running the unit at 90 MWh
as seen in Figure 5.3. The decommitment of unit 3 resulted in the reduction of the cumulative
operating cost from R 2 105 511 to R 2 093 305 in the study horizon. By shutting down unit 3,
the model is able to reduce the capital expenditure associated with the operating cost. In order to
counteract the megawatt lost from unit 3’s shutdown, the loading on unit 2 is increased. The unit’s
megawatt output increased from below 200 MWh at hour 21 in problem instance 3 to above 200
MWh in instance 4. The increase in load output is substantiated when evaluating the trends for
unit 2 in Figures 5.3 and 5.4 respectively. The loading of the three thermal units prior to hour 21
remained relatively constant with only small changes in the load output being noted.
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5.3.5 Ramp rate limits

To evaluate the effect of the ramp rate limit constraints on the commitment and load dispatch
schedule, (4.30) to (4.33) are added to the model discussed in problem instance 4. Input Parameters
r

(u)
h and r(d)

h in (4.31) and (4.33) are assigned ramp rate values of 100 MW/h whereas parameters
r

(us)
h and r(ds)

h are allocated values of 150 MW/h. The mentioned ramp rate values are however only
incorporated into the model for explanatory purposes with the aim of determining the effect of the
constraints on the model results. Realistically, the ramp rates may vary from 100 MW/h to 900
MW/h depending on the technology used. Refer to Figure 5.5 for a graphical representation of the
model results, after incorporation of the ramp rate limitations.

Figure 5.5: Ramp rate limit influence on model results

From the results portrayed in Figure 5.5, it can clearly be noted that the inclusion of the ramp
rate limitations affects both the unit loading and the cumulative operating cost. The rate at which
the megawatt loading is allowed to change for thermal units 1 to 3 in time period 1 to 14, results
in a smoother load profile curve. For example, unit 1 in Figure 5.4 is allowed to reduce its load
from 112 MWh at hour 4 to 90 MWh in hour 5. After incorporating the ramp rate limitations, the
unit is prohibited to deload at such a fast pace and only reaches 90 MWh in hour 7 of the study
horizon as seen in Figure 5.5. The same principle applies to the remaining units and therefore the
loading schedule is significantly altered. The loading of unit 2 is reduced at the early stages of the
study horizon due to the delayed response of the other two units in reducing its output to 90 MWh.
As mentioned previously the delayed response is induced by the ramp rate limit constraints. The
cumulative cost also increases from R 2 093 305 in problem instance 4 to R 2 127 382 in instance 5
as the units are forced to operate closer to reality.

5.3.6 Multi-area power flow functionality

As outlined in Chapter 4, multi-area power flow is the process of power importation from a neigh-
boring country or exportation by a resident country. In order to incorporate the multi-area power
flow functionality into the optimisation model depicted in Section 5.3.5, term P (F ) in (4.5) as well
as (4.43) and (4.44) are included into the model. For the purpose of this problem instance, an
allowable power flow of 50 MWh was specified from area 1 (resident area) to area 2 (neighboring
area). Power flow from area 2 to area 1 was prohibited. The preceding is specified in the model by
means of variable b. Identical to that of area 1, area 2 consist of 3 thermal units (numbered as unit
4 to unit 6). Therefore, problem instance 6 comprise of a 6 thermal unit problem with 3 units being
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assigned to each area. Depending on the coal and fuel oil cost consumed per area, the model will
either export or import power to satisfy the power grid demands of both areas in the most optimal
and cost effective way possible. However, given the restrictions specified by the author, the model
will only allow power flow in one direction and discount the above mentioned. The results obtained
from the optimisation model for area 1 and 2 are depicted in Figures 5.6 and 5.7 respectively with
the data of interest being marked in the red blocks.

Figure 5.6: Multi-area power flow area 1, influence on model results

In analyzing the results obtained for area 1, it is apparent that the multi-area power flow constraints
included in the model, forced an increase in the loading of the units in area 1. The preceding state-
ment can be substantiated by comparing the results obtained from problem instance 6 with that
of instance 5. In Figure 5.6, unit 2 is dispatched at its maximum allowable load of 330 MWh for
majority of the time, much higher than its previous loading. The output of unit 3 has increased
during the early hours of the study horizon with the unit not being shutdown after hour 21, as was
seen in instance 5. Instead, unit 3 is loaded at 90 MWh from hour 21 to 24. The optimisation
model decided to export power to area 2 as a result of the power flow link specified by the user. The
power exportation from area 1 to area 2 does not exceed a value of 50 MWh for the instance under
consideration (emphasized in the bottom red block of Figure 5.6). The operating cost incurred for
area 1 accumulated to a value of R 2 127 382, R 63 527 higher than the previous value of R 2 191 010.
The increase in operating cost can be attributed to the additional power that had to be generated
for the power exportation to area 2.

Figure 5.7 is representative of the commitment and dispatch schedule generated by the optimi-
sation model for area 2. From the results portrayed in this figure, it is apparent that thermal unit 5
is the most expensive to dispatch and therefore power importation is rather considered. It is only at
hour 7 when the model decides to start unit 5 and dispatch the unit to 120 MWh in preparation for
the peak demand. After hour 19, both units 5 and 6 are shutdown as a result of the reduced load
demand. Note however that during these hours power is still imported from area 1 to satisfy the
grid demand. The power production from unit 4 is less expensive than the other units and therefore
the unit is loaded at close to full load throughout the study horizon. It is only during low demand
periods where the unit is deloaded to an output of between 170 MWh to 220 MWh. The cumulative
operating cost incurred by the utility in area 2 equates to a value of R 2 518 119. Note that although
power is imported to reduce the utilities’ operating cost, the cost is still higher than that of area
1 as a result of the high rate of coal consumption to which the units are subjected to. High coal
consumption can be credited to plant inefficiencies or low coal qualities.
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Figure 5.7: Multi-area power flow area 2, influence on model results

5.3.7 Outage schedule

To investigate the influence of unit downtime on the computational results, Equation 4.40 is added
to the model. The user defined input parameter o(t)

h is assigned values of 1 for units 2 and 3 in
area 1 as well as for units 4 to 6 in area 2. The only unit that is excluded from the computational
process with the purpose of simulating an outage opportunity, is unit 1 in area 1. To force unit
downtime, parameter o(t)

h is assigned a value of 0 for unit 1. Figures 5.8 and 5.9 depict the influence
unit downtime may have on the model results. Note that in this example the allowable power flow
from area 1 to area 2 was specified at 500 MWh and vice versa. The reason why this was done was
to allow the model to obtain a feasible solution. If the power flow was maintained at 50 MWh from
area 1 to area 2, the units in area 1 would not be able to satisfy the grid demand. Consequently,
the model would provide an infeasible solution as feedback.

Figure 5.8: Outage schedule added to area 1, influence on model results
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The results portrayed in Figure 5.8 provides a clear indication of the outage constraint influence.
In the red block unit 1 is shown to be scheduled at 0 MWh for the study horizon as it is booked
for an outage. Given that unit 1 is not available, unit 2’s loading is still maintained at 330 MWh
for majority of the time. The power output of unit 3 is also increased in order to account for the
reduction in unit 1’s output. Note however that the two units of area 1 are incapable of supplying
enough power to satisfy the grid demand as seen when comparing the power demand and generated
curves in Figure 5.8 with one another. The power generated is significantly less than that of the
demand. This is indicative of a power generation resource shortage in the area which will lead to the
power demand not being satisfied. It is for this reason that a significant amount of power is imported
from area 2, although it is more expensive, to satisfy the grid demand of area 1. The quantity of
power imported can be seen in Figure 5.9. The cumulative cost incurred by the utility in area 1 is
significantly less than that of the previous problem instance as a result of unit 1’s downtime. The
area’s operating cost equates to a value of R 1 821 875.

Figure 5.9: Reaction of area 2 to outage schedule, influence on model results

The loading of area 2’s units are significantly higher in comparison to the previous problem instance
as these units are required to supply area 1 with enough power to meet the grid demand. Analyzing
the power generated versus demand curve, it is apparent that more power is being generated by the
units in area 2 than what is required. The difference being the power which needs to be exported to
area 1. The cumulative operating cost incurred by area 2 equates to a value of R 2 840 452, which
is significantly higher than the previous instance. The reason being that area 2 needs to generate
additional electricity to accommodate the shortage in area 1.

5.3.8 Water consumption limitations

In problem instance 8, water consumption limitation constraints are added to the model in order
to evaluate the effect these constraints have on the model results. Equation (4.4) is added to the
objective function depicted in Chapter 4, with parameter c(w)

h representing the rand per hour value
associated with the demineralised water consumed by each thermal unit. Equation (4.42) is also
incorporated into the model with parameter w(m)

n being assigned a value of 0.12 ML/h per area.
The purpose of (4.42) as mentioned in Section 4.9 is to prevent the various areas from exceeding
its demineralised water usage targets by scheduling the units optimally. In this instance the outage
limitations induced on unit 1 of area 1 is omitted to allow the model to determine which units to
decommit from the grid in an attempt to prevent excessive water consumption. Figures 5.10 and
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5.11 portrays the results obtained for areas 1 and 2 respectively after solving the water constrained
optimisation problem. Note that the allowable power flow between areas 1 and 2 in the mentioned
problem instance still remains at 500 MWh in both directions.

Adding the water consumption limitation constraints to the model resulted in a significant change
to the commitment and dispatch schedule generated by the optimisation model. This is confirmed
by comparing the results depicted in Figures 5.8 and 5.9 with that of Figures 5.10 and 5.11. In the
previous problem instance unit 1 was decommitted from the grid as a result of the outage constraint.
However, in the current instance unit 1 is again committed to the grid together with units 2 and 3.
The units contained in area 1 are loaded at relatively high outputs as the model requires a significant
amount of power to be exported to area 2. The reason being is because thermal unit 5 in area 2
was decommitted from the grid for the entire study horizon to prevent the area from exceeding the
water usage limitations. Although two units are still active in area 2, they are incapable of supplying
enough power to meet the grid demand during peak periods. Also note that power generation in area
1 has been identified to be much cheaper in comparison to area 2 and therefore power is imported
from area 1 even during lower demand periods, as it reduces the overall operational cost incurred
by the utility in area 2. The cumulative cost incurred by area 1 during the study horizon equates
to a value of R 2 553 627. The operating cost for area 1 is significantly more in comparison to the
previous instance as additional power generation is required in this area for the exportation to area
2. The preceding can be noted when evaluating the power generation versus demand curve in Figure
5.10.

Figure 5.10: Water consumption limitations in area 1, influence on model results

Evaluating the data depicted in Figure 5.11, it is clear that the units in area 2 are relatively expensive
to dispatch and therefore they are not utilised to their full capacity to meeting the power demand.
During hours 4 - 10 and 18 - 24 unit 6 is loaded at its minimum allowable load. Unit 4 is maintained
at similar loads for periods 5 - 7 and 18 - 24. The remaining power required to meet the demand is
supplemented by importing power from area 1. The maximum amount of power that was imported
from area 1 to 2 in a single hour equated to a value of 430 MWh. From the data portrayed in
Figure 5.11, it has been concluded that unit 5 was decommitted from the grid to prevent area 2 from
exceeding the water usage limitations. Note that unit 5’s water usage is not the most severe when
analyzing the water consumption of the units contained in area 2. Therefore, the unit was not only
shutdown as a result of its water usage. The model evaluates fuel cost, water consumption, and fuel
oil usage simultaneously as well as emissions performance to determine which unit to decommit. In
this case unit 5 was the unit which had to be shutdown as to optimise the overall model results.

86



The cumulative operating cost incurred by the utility in area 2 for the current problem instance
is equivalent to R1 829 146 which is much less than the R 2 840 452 reported in the previous
instance. The reason why the cost reduced significantly from problem instance 7 to 8 is because of
the decommitment of unit 5 in area 2 as well as the power that is imported from area 1 to area 2.
Note however that if the water usage of the available units exceed the limitations set out by (4.42),
and the capacity of the units does not allow the decommitment of a unit as there will not be enough
power to meet the grid demand, the model will not be able to provide a feasible solution and the
computational process will be terminated.

Figure 5.11: Water consumption limitations in area 2, influence on model results

5.3.9 Spinning reserve functionality

The spinning reserve functionality is incorporated into the optimisation process by means of adding
(4.10) - (4.13) to the model, with term 2 of (4.11) (s(p)

ptsu) being omitted. The reason for the exclu-
sion is because the term is representative of the reserves required by pumped storage units. The
preceding will however be taken into consideration in Section 5.3.11. Parameter g(d) in (4.10) is
assigned a value of 5%. This parameter ensures that the amount of operating reserves maintained
by the available thermal generating units equate to a value of 5% of the total power demand for
the affected area. Note that only the reserve schedule results have been reported in this section to
portray the model’s capability of tracking the reserve availability. Refer to Figure 5.12 for a detailed
representation thereof.

In analyzing the reserve schedule depicted in Figure 5.12, it is apparent that the model is capa-
ble of tracking the available reserves throughout the study horizon. The reserve quantities are
switched between the various units in both areas 1 and 2 in order to ensure that enough reserve
capacity is maintained. The quantity of reserves required per hour will fluctuate with the change in
power demand as it is defined as a percentage of the total demand. For example, in hour 7 a reserve
of 25 MWh needs to be maintained whereas in hour 14 it increases to 42 MWh and so on. Note that
the model does not select one single unit to manage the operating reserves, but rather switches the
responsibility between the various units in an attempt to optimise the commitment and dispatch
schedule.
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Figure 5.12: Spinning reserve requirements in area 1, influence on model results

5.3.10 Hydro generating units

Problem instance 10 entails the inclusion of a hydro generating unit to area 2. The foregoing is
achieved by adding (4.45) and (4.46) to the model as well as the necessary input data into the excel
acquisition tool. The prohibited operating time for the hydro unit as mentioned in Section 4.11 was
specified from hour 1 to 7 in (4.45), with the unit being allowed to be committed to the grid after
hour 7. Variable w(hm)

h in (4.46) has been set equal to 62 m3/s to prevent the hydro unit from
exceeding its maximum allowable operating limits. The model results obtained after the inclusion
of the hydro unit is depicted in Figure 5.13 for area 1 and Figure 5.14 for area 2. Keep in mind that
thermal unit 5 in area 2 still remains decommitted from the grid as a result of the water limitation
constraints added in Section 5.3.8.

Figure 5.13: Reaction of area 1 to hydro unit inclusion, influence on model results

The loading of units 2 and 3 in area 1 did not change significantly with the inclusion of the hydro
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unit in area 2. The only major change was the decommitment of unit 3 from the grid at hour 22 of
the study horizon. After shutting down unit 3, the model requested power to be imported from area
2’s hydro unit to supplement the capacity lost from unit 3. The hydro unit has no cost associated
with its power generation and therefore it is beneficial to import power to area 1 using the hydro
unit as source. Note however that power importation from area 2 to area 1 was only considered
during the last hours of the study horizon where the grid demand in area 2 was low enough to make
the power importation feasible. At low loads the power generation of thermal unit 6 in area 2 has
been identified to be cheaper than that of unit 3 in area 1. The preceding does not hold true for high
load conditions. From a cost perspective, it makes sense to rather shutdown unit 3, maintain unit
6 at minimum load and import power from area 2’s hydro unit to substitute the power shortage in
area 1, given low load conditions in area 2 and hydro unit availability. In the initial hours between
1 and 7, the power flow was directed from area 1 to area 2 as the hydro unit was not yet on load. It
was only after hour 7 that the hydro unit was committed (hydro power generation portrayed in the
red block of Figure 5.14). After hydro commitment the power flow was still directed from area 1 to
area 2 to support the high power demand in area 2 and to counteract the cost of operating thermal
units 4 and 6 at high loads. As a result of the hydro unit being available for generation, the loading
of unit 1 was seen to reduce over selected areas of the study horizon as the power required to be
exported to area 2 diminished. The power exported to area 2 reduced from a maximum of 430 MWh
in the previous problem instance to 300 MWh. The maximum allowable power which the hydro unit
was able to generate was equivalent to a value of 106 MWh. The cumulative operating cost incurred
by area 1 equated to a value of R 2 432 626 which is less than the cost mentioned in Section 5.3.8
for area 1. A reduction in the operating cost was expected as a result of the decommitment of unit
3 and the power imported from area 2 during the last hours of the study horizon.

Figure 5.14: Adding a Hydro unit in area 2, influence on model results

Except for the last few hours (16 - 24) of the study horizon where unit 6’s load remained constant,
the unit’s load also reduced, shortly after commitment of the hydro unit to the grid. The reason for
unit 6’s load reduction, is because it is cheaper to substitute the power generated by a thermal unit
with that of a hydro unit. The loading of unit 4 remained relatively unchanged in comparison to
the previous problem instance. The cumulative operating cost associated with area 2 decreased to
a value of R 1 622 709 which is less than the operating cost stated in problem instance 8 of Section
5.3.8. The reduction in operating cost can be attributed to the inclusion of the hydro unit in area 2.
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5.3.11 Pumped storage generating units

The aim of problem instance 10 is to determine the effect, the inclusion of pumped storage units will
have on the unit commitment and load dispatch schedule. For the purpose of the problem instance,
only two pumped storage units are added to the model with one being assigned to area 1 and the
other to area 2. By adding the foregoing units, the model is expanded to a 6 thermal, 1 hydro
and 2 pumped storage unit optimisation problem. Similar to the unit commitment constraints,
the interconnectivity of the pumped storage constraints requires all the equations to be lumped
together into the model simultaneously in order to evaluate its influence. Individually adding the
pumped storage constraints will lead to infeasible and erroneous results being obtained. To include
the pumped storage units into the optimisation model, the following equations had to be added to
the Cplex coding:

1. The power balance constraints which includes term 2 (p(p)
ptsu) of (4.5) as well as (4.8) and (4.9)

with input parameter p(w)
su in (4.8) being set equal to 30 MWh for each unit.

2. Spinning reserve constraints comprising of term 2 (s(p)
ptsu) in (4.11) and (4.14) to (4.15) with

parameter r(u)
su being assigned a value of 100 MW/h for each unit.

3. Unit commitment constraints including (4.23) to (4.29), with the outage input parameter o(p)
su

being assigned a value of 1 for both pumped storage units.

4. Ramp rate capability constraints consisting of (4.35) to (4.37) where parameters r(u)
su , r(us)

su ,
r

(d)
su and r(ds)

su being set equal to 100 MW/h, 150 MW/h, 100 MW/h and 150 MW/h for each
unit respectively.

5. Prohibited operating region constraints are added by means of (4.39), with no pumped storage
unit being subjected to forbidden regions in the current problem instance.

6. Lastly, water balance and reservoir volume flow constraints are added to the model by means
of (4.47) to (4.58).

The results obtained from solving the optimisation model specified in problem instance 10, is por-
trayed throughout Figures 5.15 to 5.17 with the data points of interest being encompassed in the
red blocks. The power flow between areas 1 and 2 was maintained at a value of 500 MWh in both
directions and unit 5 in area 2 remains decommitted as a result of the water usage limitations. The
power generated by the pumped storage units as well as the upper and lower reservoir volumes is
depicted in Figure 5.17 to prevent data cluttering in Figures 5.15 and 5.16.

The addition of the pumped storage unit in area 1 resulted in a reduction in both the thermal
unit loading (at certain time intervals) and the cumulative operating cost incurred by the utility
in area 1. When comparing the model results portrayed in Figure 5.13 with that of Figure 5.15,
the foregoing statement is substantiated. Knowing that the pumped storage unit in area 1 supplied
additional power to the grid, the model decided to decommit unit 3 at hour 19 instead of 22 as
seen in the previous problem instance. The quantity of power exported from area 1 to area 2 also
reduced as a result of area 2 receiving loading support from the pumped storage unit added in that
area. Although the power flow from area 1 to area 2 decreased, there is still a significant amount of
power being exported to provide loading support and reduce the operational cost incurred by area
2’s thermal units.
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Figure 5.15: Pumped storage unit added to area 1, influence on model results

Combining the influence of the power exportation to area 2 and the addition of the pumped storage
unit loading support, the model is able to reduce the power output of the thermal units in area 2
significantly. The foregoing can be noted in Figure 5.16. Note that the loading of the thermal units
in area 1 did not decrease significantly in the early hours of the study horizon as the pumped storage
units were mostly operating in pumping mode. The reason being was to ensure that the pumped
storage units achieve its upper reservoir volume setpoint at hour 5 of the study horizon. During the
early hours, power was also imported from area 2 and exported to area 2 in order to provide sufficient
power supply to the pumped storage units while operating in pumping mode. After incorporating
the pumped storage unit to area 1, the cumulative operating cost reduced from R 2 432 626 to R 1
911 656 as a result of the negligible cost associated to the pumped storage power generation.

Figure 5.16: Pumped storage unit added to area 2, influence on model results

Comparing the results depicted in Figure 5.14 with that of Figure 5.16, it is clear that the loading
of both units 4 and 6 in area 2 reduced significantly after adding the pumped storage unit to area 2.
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During hours 6 - 9 and 16 - 24 both the thermal units in area 2 were loaded close to the minimum
allowable power generation which corresponds to 120 MWh for unit 6 and 175 MWh for unit 2. The
hydro unit in area 2 was also dispatched at 105 MWh in hour 8, similar to the previous problem
instance, with the load of the unit fluctuating to maintain reserve power at certain hours of the
study horizon. Comparable to the pumped storage unit in area 1, the unit in area 2 was mostly
operated in pumping mode during hours 1 - 5 to ensure that the upper reservoir volume setpoint
at hour 5 was satisfied. After hour 5, the pumped storage unit was dispatched at varying loads in
order to regulate the grid demand. When relating the cumulative operating cost of the current and
previous instance with one another, it is apparent that the cost reduced from R 1 622 709 to R 1
274 078 as a result of the pumped storage units being able to provide cheap electricity. Note that
the cumulative operating cost of area 2 is cheaper than that of area 1 as a result of the additional
power that had to be generated by area 1 for the exportation to area 2. Refer to the power demand
versus power generated curves in both Figures 5.15 and 5.16 to evaluate the above statement. In
Figure 5.15, the power generated is generally higher than the power demand whereas in Figure 5.16
the opposite is true. The mentioned is indicative of the power flow dynamics between the two areas.

Figure 5.17: Pumped storage unit dynamics

Figure 5.17 represents the dynamics of the pumped storage units for the period under consideration.
Given the data portrayed in the above figure, it is clear that the volume flow of water to and from
the upper and lower reservoirs are accurately tracked by the model. From the above results, one
can attain that the upper reservoirs’ levels increased from hour 1 to 5 (when the units operate in
pumping mode) as a result of the level setpoints provided to the model. The upper reservoir level
setpoint of reservoir 1 and 2 were each set at 16.5 Giga Liters (GL) and had to be reached at hour
5. The contrary is true for the bottom reservoirs as water was extracted from the lower reservoirs
to fill the upper ones. After hour 5, the units were switched to generating mode as seen in the load
profiles and the upper levels started to drop. From hour 6 to 24, the upper reservoir levels slowly
drop, with short periods of pumping being allowed to assist with load regulation during low demands
and preventing the reservoirs from dropping below its minimum allowable volume limits. Note that
the periods of pumping is emphasized in the red block.

5.3.12 Stochastic variable incorporation

Stochasticity is incorporated into problem instance 12 by means of adding two arrays to index p
for variable p(d)

ptn, with the aim of modeling variability in the grid power demand. Input parameter
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q
(f)
ph is multiplied with c

(f)
hj to induce fuel cost variability whereas q(e)

ph is multiplied with e
(f)
hj to

account for possible emissions production changes. For the purpose of evaluating the influence of
parameter stochasticity, two stochastic scenarios are considered where the power demand, fuel cost
and emissions production data are adjusted. The two scenarios are incorporated into the model by
means of setting index p equal to a value of 2. The initial scenario assumes that the mentioned
parameters remain constant as was inserted into the excel acquisition tool. The second scenario
considers a change in the forecasted power demand by a fraction of 0.8. The fuel cost and emissions
production variables are augmented with fractions as depicted in Tables 5.7 and 5.8 respectively. By
increasing the number of stochastic scenario’s, the model complexity is seen to increase exponentially.
It is for this reason that only two scenarios are considered to maintain the model simplicity and
ensure ease of data interpretation. Only the results attained for stochastic scenario 1 is presented
in this section as it can be compared to the results obtained from the model in Section 5.3.11. Data
comparison is required to evaluate the effect model stochasticity has on the unit commitment and
dispatch schedule. Providing the results obtained from stochastic scenario 2 will not contribute to
the model verification process and therefore it is omitted from this section.

Table 5.7: Fuel cost stochasticity

Scenario Area Unit Fraction of fuel cost change (q(f)
ph )

2 1 1 1.12
2 1 2 0.99
2 1 3 1.08
2 2 4 0.91
2 2 5 0.74
2 2 6 1.05

Table 5.8: Emissions production stochasticity

Scenario Area Unit Fraction of emissions production change (q(e)
ph )

2 1 1 1.09
2 1 2 1.21
2 1 3 1.00
2 2 4 0.72
2 2 5 1.04
2 2 6 0.89

To ensure that the results obtained from the stochastic model can be compared with the previous
models, no changes were made to the input parameters and constraints. This means that the changes
identified in the unit loading schedule can only be attributed to the consideration of the stochas-
tic influence. In this problem instance the model first needs to determine which units to commit
prior to dispatching the units for each stochastic scenario. The model is not allowed to change the
unit commitment decision during each stochastic scenario, but needs to maintain the commitment
decision fixed when loading the units. Therefore, the unit commitment schedule needs to be able
to provide the optimal results while considering the variability of the different process parameters.
The results obtained from the stochastic model is portrayed throughout Figures 5.18 to 5.20.

Evaluating the data depicted in Figures 5.15 and 5.18, it can be concluded that the unit com-
mitment schedule remained unchanged for the thermal units in area 1. The optimisation model
prescribed that all three thermal units remain on load for the entire study horizon. Although there
were no changes to the commitment schedule, there were some alterations to the load dispatch
schedule. The loading profile of thermal unit 1 remained relatively unchanged with slight changes
during the peak demand periods. The power output assigned to unit 3 increased during hours 10 to
20 of the study horizon, with the unit being decommitted in hour 21 instead of hour 19 as depicted
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in the previous problem instance.

Figure 5.18: Stochastic variables added to area 1, influence on model results

The most significant change in the loading profile is noted for unit 2 where the unit is dispatched at
close to full load operation for the entire study horizon. The power exported from area 1 to area 2
also increased significantly due to the cost associated with thermal power generation in area 2. In
comparing the power exported in Figure 5.15 with that of Figure 5.18, it is apparent that additional
power is required by area 2 in hours 3 - 9 and 22 - 24 of the study horizon. The cumulative
operational cost of area 1 increased to a value of R 2 208 928 from the previous problem instance.
The increase in operational cost can be linked to the additional power that is exported to area 2.
The power dispatch of the pumped storage units in both areas does not have a significant impact
on the loading of the thermal units in area 1, but does however result in the alteration of the load
dispatch schedule in area 2.

Figure 5.19: Stochastic variables added to area 2, influence on model results

94



Scrutinizing the results obtained from Figure 5.19 and comparing it to the previous model results as
portrayed in Figure 5.16, it is noted that both the unit commitment and load dispatch schedules were
changed as a result of adding a stochastic element to the model. In the previous problem instance
unit 5 was decommitted from the grid whereas in the current problem instance the model decided
to shutdown unit 4 and commit unit 5 instead. The reason why the specific decision making was
made is because unit 4’s fuel cost was only adjusted by a fraction of 0.91 in the second stochastic
scenario whereas unit 5’s fuel cost was reduced significantly with a fraction 0.74. The preceding
infers that unit 4 will be able to generate power at a cheaper rate than that of unit 5 provided
that the fuel cost stochasticity holds true on the day of generation. The loading dispatch schedule
assigned to the thermal units in area 2 has also changed in the sense that the units were loaded at
close to minimum generation for majority of the study horizon. It is only during the first 4 hours
when the pumped storage units and hydro unit were not yet committed, where the loading of units
5 and 6 was maintained above minimum generation. Similar to the previous problem instance, the
hydro unit was dispatch during hour 8 at a load of 106 MWh. As a result of the thermal units being
maintained at very low loads in area 2, the cumulative operating cost dropped from R 1 273 078
in Section 5.3.11 to R 950 718. The drop in operational cost is maintained in area 2 by means of
importing power from area 1.

Figure 5.20: Pumped storage unit dynamics

Figure 5.20 provides information regarding the commitment and dispatch schedule developed for
the pumped storage units contained in areas 1 and 2. Similar to the previous problem instance,
the pumped storage units primarily operated in pumping mode during the initial hours of the study
horizon (hour 1 - 6) in order to satisfy the upper reservoir setpoints. After hour 6, the pumped
storage units were dispatched to approximately 250 MWh in order to support the power grid during
the peak hours. The duration for which the pumped storage units were dispatched at 250 MWh
increased in comparison to the data depicted in Figure 5.17. Note that only after hour 16, the model
allowed the units to start switching between pumping and generating modes in order to assist with
load regulation during the low grid demands and preventing the upper reservoirs from falling below
its lower volume limits. When operating in pumping mode, it was noted that the upper reservoir
volumes increased while the lower reservoir volumes decreased. The opposite was seen when the
pumped storage units were operated in generating mode. Similar to the previous example, the
periods of pumping is accentuated in the red block of Figure 5.20.
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5.4 Model validation
The process of model validation entails the solution of two problem instances. The first problem
instance is concerned with evaluating the model’s performance by comparing the model results with
the performance of an actual thermal power station. The purpose of this problem instance is to
determine if the model will be capable of improving the overall power station’s loading requirements
in order to reduce capital expenditure and improve resource utilisation. For the purpose of the
aforementioned problem instance, a 6 thermal unit problem is considered. The second problem
instance consists of solving a realistic sized power grid problem containing 98 thermal, 8 hydro and
6 pumped storage units. The purpose of the second validation process is to determine the capability
of the model in solving a large scale problem as well as the accuracy of the results obtained. To
solve the comprehensive realistic sized power grid problem, constraints (4.1) to (4.58) as depicted
in Chapter 4, are considered in the optimisation model. In conjunction with the preceding, the
validation process also entails the analysis of the effect model scaling has on the solution time to
determine if the proposed model is suitable for implementation in a production environment. Model
scaling entails the process of expanding the optimisation problem by increasing the number of units
or constraints and evaluating the increase in solution time as a result of the foregoing. In Section
5.4.2, 8 different model scaling problem instances were considered of which can be noted in Figure
5.25.

5.4.1 Comparing model results with actual thermal unit loading

In order to compare the model results with actual thermal unit loading requirements, a 6 thermal
unit power station case study was considered. Given that only thermal units were considered for the
mentioned problem instance, both hydro and pumped storage constraints were excluded from the
model computations. The design generation capacity of the thermal units considered in this example
can be noted in Figure 5.21 (green line) which equates to a value of 4116 MW. Although the station
is capable of generating 4116 MW as per design, plant constraints and defect conditions prohibit the
units from attaining full load operation resulting in the station only being able to supply a limited
amount of megawatts. The preceding is classified as the available load the power station can supply
and is portrayed by the red line in Figure 5.21. Plant constraints include aspects such as primary
air heater leakages, ID fan constraints, and milling plant constraints. The blue line in Figure 5.21
depicts the load demand which the units are required to satisfy in the given problem instance.

The results obtained after solving the 6 thermal unit problem instance are portrayed in Table 5.9.
Note that the model results are compared to the actual unit loading as determined by the system
operator. When evaluating the loading requirements for each of the 6 units, it is apparent that there
are some similarities between the model results and the actual unit loading. It can however clearly
be noted that during certain time periods, the loading requirements as proposed by the model differs
quite drastically from the actual unit loading. For example, when comparing the loading require-
ments for unit 2 at hour 1 of the study horizon, it is identified that the model proposed a unit loading
of 675 MW, whereas the actual unit loading was set at 576 MW. Similar is true when comparing the
results for unit 5, hour 1. The model proposed that unit 5 be loaded to a megawatt output of 386
MW instead of the actual loading of 558 MW. It is also apparent from the below data that when
the units are loaded close to full load operation, the margin with which the model can optimise the
unit loading decreases as all the units will be required to operate at full load to satisfy the load
demand. The foregoing will result in the model results and actual unit loading not greatly deviating
from one another. However, when the load demand decreases, the margin for optimising the loading
requirements improves greatly. See Table 5.9 for a detailed comparison of the model results with
the actual loading requirements as instructed by the system operator.
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Figure 5.21: Load demand for first validation problem instance

Table 5.9: Model versus actual loading requirements

Hour U1
Mod

U1
Act

U2
Mod

U2
Act

U3
Mod

U3
Act

U4
Mod

U4
Act

U5
Mod

U5
Act

U6
Mod

U6
Act

1 675 679 675 576 675 644 675 621 386 558 640 640
2 686 679 686 638 686 661 686 641 420 535 640 639
3 675 679 686 676 686 679 649 649 629 642 640 638
4 686 679 686 676 686 679 649 643 629 659 640 638
5 686 679 686 667 686 667 686 632 527 628 640 598
6 644 678 686 671 686 669 649 640 533 582 588 544

By comparing the proposed fuel cost obtained from the model results with the fuel cost incurred by
the power station when using the actual unit loading requirements, provides a means of evaluating
the effectiveness of the model in improving the overall performance of the thermal power station. The
preceding analysis can be seen in Figure 5.22 with the blue line representing the model fuel cost. The
orange line depicts the actual power station fuel cost. The green line in the below figure is indicative
of the expected cumulative rand value saving that the power station would have received, if the
units were loaded according to the model results instead of using the actual loading requirements.
When evaluating the results portrayed in Figure 5.22, it is clear that if the proposed model loading
requirements were applied by the system operator instead of using the actual loading requirements,
a definite rand value saving would have been noted for the 6 hour period. The results indicate that
during hours 1 to 2 as well as 5 to 6 a definite saving, equating to a cumulative value of R20900.00,
could have been obtained if the model loading requirements were implemented. During hours 3 and
4, marginal savings were noted as a result of the units being required to operate at their highest
attainable load.

97



Figure 5.22: Model versus actual fuel consumption comparison

When extrapolating the possible cost saving the power station can receive by implementing the
optimisation model in the production environment, assuming an R 20900 saving every 6 hours, an
estimated saving of R30 572 844 is obtained for a period of 1 year. Note that the estimated cost
saving is only applicable to 1 power station. If the preceding principle is expanded to a fleet of power
stations such as discussed in Section 5.4.3, the expected cost savings will increase significantly.

Figure 5.23: Extrapolation of possible cost savings for the power station
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Another aspect to evaluate, in order to determine the effectiveness of implementing the optimisation
model in the production environment, is by comparing the actual emissions production with the
expected model emissions production. The comparative study results are depicted in Figure 5.24.
When analyzing the results, it is clear that if the proposed model unit loading was implemented
instead of the actual loading requirements as instructed by the system operator, a definite reduction
in emissions production would have been noted. Similar to the fuel cost in Figure 5.22, a significant
reduction in the emissions production would have been noted for periods 1 to 2 and 5 to 6. Note
that the reason for the significant reduction in emissions is as a result of the alteration in the unit
loading requirements. Emissions is a function of unit load as mentioned previously, and if a unit
with poor emissions performance is deloaded, an immediate reduction in emissions will be noted.
A marginal change in the emissions production is seen during hours 3 and 4 due to the units being
loaded close to full load operation.

The results discussed in Section 5.4.1 serves as proof that by implementing the MILP UCEELD
model in the power utility production environment, a definite reduction in capital expenditure, as
well as an improvement in resource utilisation, will be expected. Now that the functionality of the
MILP UCEELD has been proven in Section 5.4.1, it is imperative to ensure that the MILP model
will be able to solve a comprehensive problem instance within a reasonable time. Although it is ex-
pected that the model will improve capital expenditure and resource utilisation as mentioned above,
it will not be practical to implement if the model cannot solve a realistic sized problem within a
reasonable time. For this reason, a detailed model scaling analysis and comprehensive model case
study is performed in Sections 5.4.2 and 5.4.3 to determine the ability of the MILP UCEELD model
in solving a realistically sized optimisation problem.

Figure 5.24: Model versus actual emissions production comparison
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5.4.2 Influence of model scaling on solution time

The specifications of the computer used to solve the model scaling problem instances comprised of
the following:

1. Acer laptop with an installed Intel Core i7-6500U processor

2. 4 GB DDR4 ram memory and an Intel HD 520 MB dynamic video memory graphics card

Note that when using a computer with increased computational capability, the solution time will
definitely improve.

The initial problem instance that was solved comprised of 25 thermal generating units. The optimi-
sation model was able to obtain an optimal solution within 39 seconds and calculated an objective
function value of R6 533 440. After adding another 25 thermal units, the solution time increased to
1 minute 15 seconds with an expected rise in the objective function to a value of R 10 781 207. Note
that an escalation of the objective function value is expected as a result of the increase in coal, water
and fuel oil consumption associated with the addition of thermal units. The third problem instance
entailed the solution of 75 thermal units with the model results obtained, indicating a solution time
of 10 minutes 41 seconds and an objective function value of R31 499 704. The computational time
required for a 98 thermal unit problem instance equated to a value of 12 minutes 21 seconds with
an operational cost of R51 537 345 being calculated. After adding 7 hydro units to the 98 thermal
unit model, the solution time increase to 15 minutes 37 seconds with the objective function value
increasing marginally to a value of R 51 900 784. The increase in operational cost can be attributed
to the increase in power demand induced by the author from problem instance 4 to 5. If the power
demand remained constant, the objective function cost would have been seen to reduce as a result
of the addition of the hydro units. Adding 4 pumped storage units to the previous problem instance
does not significantly increase the model complexity and results in a solution time of 16 minutes
36 seconds. The objective function cost associated with the preceding model equates to a value of
R 51 494 857. Comparing the operating cost of problem instance 6 with that of 5, it is apparent
that there was a reduction in the overall cost. The decrease in cost can be attributed to the ad-
dition of the pumped storage units. The remaining two problem instances include the addition of
multi-area power importation (with area 2 consisting of 1 hydro and 2 pumped storage units) and
model stochasticity. Including the power importation functionality drastically increases the model
complexity, leading to a solution time of 31 minutes 38 seconds. Similar is true when adding model
stochasticity as it results in a solution time of 43 minutes 48 seconds. The objective function of the
two mentioned instances are calculated to be R 50 446 031 and R 86 753 073 respectively. The drop
in operational cost from R 51 494 857 to R 50 446 031 can be credited to the power importation
being cheaper than the ability of the resident area to produce power. The increase in operating
cost when considering the last problem instance can be as a result of the fuel cost stochasticity
incorporated into the model. Refer to Figure 5.25 for a detailed summary of how the solution time
is influenced by model scaling.
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Figure 5.25: Solution time influenced by model scaling

During the execution of the different scaling problem instances, the error range as depicted in (4.5)
was maintained in a range of 0 - 50 MW. It was only during the addition of model stochasticity
where the range was increased to 0 - 11250 MW. The increase in error range was necessary in
order to obtain a solution within a reasonable time. If not adjusted, the optimisation model will
either run out of memory or will take a few hours to solve, depending on the computational power
available on the computer used for solving the model. From the data depicted in Figure 5.25, it
can be concluded that the MILP UCEELD problem solution time follows an exponential trend
when scaling the problem from 25 thermal units straight through to the addition of the model
stochasticity. The mentioned problem can be classified as an NP-hard problem as the computational
complexity increases exponentially as the model is expanded. Considering the results obtained
from scaling problem instances 1 - 8, it can be established that the model is capable of solving
a real life realistic power utility problem within a reasonable time period. However, in order to
implement the optimisation model in a production environment, it might be better to exclude the
model stochasticity as it significantly increases the solution time. By Including model stochasticity
the user is also required to adjust the power balance operating error range in order to obtain a
model answer within a sensible time frame, with the determination of the error range also consuming
additional time. In order to portray the capability of the MILP UCEELD model in solving realistic
sized power utility optimisation problems, the unit commitment and load dispatch schedules obtained
from the stochastic model in Figure 5.25 are portrayed in Section 5.4.3.

5.4.3 Comprehensive model

Figures 5.26 to 5.28 depict the results obtained for the comprehensive stochastic model consisting
of 98 thermal, 8 hydro and 6 pumped storage units. For ease of data interpretation, the results of
only thermal units 20, 37, 41, 80, 90 as well as hydro units 100, 104 and pumped storage units 1 - 4
are portrayed where indexes n ∈ N and p ∈ P are equal to 1. As mentioned in the introduction to
Chapter 5, the power demand curve incorporated into the model corresponds to a realistic day ahead
hourly demand curve. The initial peak in the demand curve resembles the morning peak demand
whereas the second peak refers to the evening peak demand. The power flow from area 2 to 1 was
set at 500 MWh to represent the maximal allowable amount of power that may be imported by the
power utility in area 1. The power imported can only be supplied from either hydro or pumped
storage units as no thermal units were considered for area 2.
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Figure 5.26: Comprehensive model results, thermal unit response

In evaluating the data depicted in Figure 5.26, it is apparent that the majority of the thermal units’
loading mimic the power demand curve. During hour 1 to 5 the thermal units were loaded close to
their minimum allowable loading. As the power demand started to escalate in hour 6, the loading of
each thermal unit was increased to ensure that sufficient power was available to satisfy the demand.
After hour 8, the power demand steadily reduced. In order to maintain grid stability, some of the
thermal units were deloaded (units 20, 37, 41 and 90) whereas others were maintained at constant
load (unit 80). The second peak is noted in hour 19 with the units’ loading again being increased
to meet demand. During hours 21 to 24, the demand reduced at a fast rate, resulting in unit 90
being decommitted from the grid. The remaining units were maintained on load, however they were
deloaded close to their minimum allowable operation. In the above figure, it can also be concluded
that the greatest amount of power was imported during hours 15 to 24. Prior to hour 15, power
importation was limited as to ensure that the pumped storage units in area 2 satisfy their upper
reservoir volume setpoint as specified by the author. From the above data, it can also be stated that
thermal unit 41 is the most expensive unit when related to units 20, 37, 80 and 90 as its loading is
less for majority of the time as compared to the other units.

The load profiles of both hydro and pumped storage units are portrayed in Figure 5.27. From the
results depicted in the mentioned figure, it is apparent that the hydro units were only dispatched
during periods 1 - 4 and 11 - 24. The preceding is as a result of the power generation schedule added
to the model, by the author, to simulate the effect the commitment schedule obtained from the
department of water affairs will have on the hydro unit loading. During hours 5 - 10 the hydro units
were decommitted from the grid to prevent any negative influence on the downstream ecosystem as
mentioned in Chapter 4. The pumped storage units were operated in pumping mode during hours
1 - 5. As the power demand increased, the pumped storage units were switched to generating mode
in order to supply power to the grid during the morning peak demand (hours 6 - 10). After hour 10,
the pumped storage units switched between shutdown and pumping modes in order to ensure the
satisfaction of the upper reservoir volume setpoint prescribed by the author at time period 15. For
the remaining hours of the study horizon, the pumped storage units operated in generating mode
with the aim of supplying power to the grid during the evening peak demand period. Take note that
no pumped storage units were operated in generating mode while neighboring units were switched to
pumping operation. The units were either all operated simultaneously in pumping mode or a com-
bination of pumping operation and single units being decommitted from the grid. When a pumped
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storage unit was switched to generating mode, the remaining pumped storage units followed. The
preceding substantiates the fact that the optimisation model correctly manages the commitment
and loading of the hydro and pumped storage units.

Figure 5.27: Comprehensive model results, hydro and pumped storage unit response

Figure 5.28 portrays the dynamics associated with the upper and lower pumped storage reservoir
volumes, as induced by the pumped storage units’ mode switching. During hours 1 - 4, the upper
reservoir volume increased while the lower reservoir volume decreased. The reason being because the
pumped storage units were operated in pumping mode. The same principle applied when analyzing
the unit loading results depicted in hours 11 - 14 of the study horizon. Throughout hours 6 - 10
and 15 - 24, the upper reservoir volumes decreased as a result of the pumped storage units that
were operated in generating mode. For the duration during which the pumped storage units were
operated in generating mode, they were loaded to the maximum allowable output because of the
negligible cost associated with pumped storage power generation.

Figure 5.28: Comprehensive model results, pumped storage reservoir response
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The results depicted in Section 5.4.3 serves as proof of the capability of the MILP UCEELD model
to solve realistic sized power utility optimisation problems within a reasonable time. Therefore, it
can be concluded that the MILP UCEELD model will be suitable for the implementation in a power
utility production environment.

5.5 Visual basic GUI for data processing and acquisition
A data processing and acquisition tool was developed using Microsoft Excel Visual Basic (VBA), to
reduce the time required by the user to prepare the input data for the Cplex optimisation model.
In the data processing tool, graphical user interfaces (GUI’s) were developed for different categories
of the MILP UCEELD optimisation model. The GUI’s comprise of thermal and hydro, pumped
storage, day ahead forecast power demand, load demand stochasticity as well as fuel and emissions
stochasticity user interfaces. Refer to Appendix B (Chapter 8) for a representation of the GUI’s
mentioned above. The GUI’s are used to supply the VBA coding with input data from where it is
transformed to the matrix format required by the commercial software, Cplex. The data processing
tool does not only improve data acquisition time, but also prevent unnecessary data handling errors
to ensure correct model outputs are obtained.
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Chapter 6

Summary and Conclusion

6.1 Chapter summaries
Generating a unit commitment and load dispatch schedule with the aim of optimising resource utili-
sation and reducing operational cost, while satisfying the grid demand is a typical challenge for power
utilities internationally. Constructing such a detailed schedule entails the consideration of various
factors including aging infrastructures, stringent environmental legislation, multiple operational lim-
itations and interconnected scheduling of different generating technologies as discussed throughout
Chapter 1. This is a complex and monotonous exercise to perform using manual computations and
therefore requires the intervention of mathematical optimisation modeling. This entails the use of
computer programming to improve the feasibility and practicality of the process. It has therefore
been an objective in this thesis to construct and develop a MILP UCEELD model which will be able
to utilise realistically sized input data and provide the user with a comprehensive commitment and
dispatch schedule within a reasonable time frame.

A technical background of different solution methods encompassed through literature with spe-
cific emphasis on linear and integer programming algorithms was provided in Chapter 2. Spesific
attention was also paid to the standard formulations of both linear and integer programming prob-
lems together with a detailed elaboration on the theory behind the simplex algorithm as well as the
branch-and-bound method. A brief overview of various heuristic solution algorithms was provided
with a discussion of the core principle associated with each method. The aim of Chapter 2 was to
ensure that the reader comprehend the fundamentals of the principles applied throughout literature
to solve the unit commitment and load dispatch problems as to obtain a better understanding of
the logic applied in this thesis.

The purpose of Chapter 3 was to provide the reader with a view of the fundamentals associated
with different power generation technologies and the applicability of the UCEELD problem to the
mentioned technologies. Specific information was provided regarding the terminology and techni-
cal aspects associated with coal fired, hydro and pumped storage units and the complexity of the
problems faced on a daily basis. The aim of including the foregoing was to obtain insight and an
understanding regarding the dynamics associated with the MILP UCEELD problem to be solved.
A comprehensive literate review of the different solution algorithms applied by other researchers
were also summarised in this chapter to obtain an idea of the algorithmic advances made by other
academics.

The MILP model applied in this work for solving the UCEELD problem is presented in Chapter 4.
The problem objective and constraints are formulated using mixed integer linear programming as
baseline. In this chapter the different aspects associated with the model is defined with descriptive
reasoning of why each was included into the model. Simplistic examples were provided in conjunction
with a detailed discussion on the basic notations used, as to ensure ease of the model understanding.
The model derivation is only focused on the inclusion of coal fired, hydro and pumped storage units
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and did not consider other technologies such as nuclear, wind and photovoltaic power.

The computational results depicted in Chapter 5 provide a means of analyzing the capability and
effectiveness of the proposed model in solving the UCEELD problem. The results depicted in this
chapter were divided into verification and validation sections. Throughout model verification, focus
was set on determining the model accuracy and establishing if the model’s response was as expected
for each of the constraints depicted in Chapter 4. The validation process was more concerned with
the ability of the proposed MILP UCEELD model to solve realistically sized problems within a
reasonable time frame. After evaluating the model results generated from the verification and val-
idation processes, it could be concluded that the model’s response was as expected and that the
model was capable of solving realistically sized problem instances within a reasonable time. The
proposed model was able to solve a full scale stochastic scenario within 43 minutes 48 seconds as
denoted in Section 5.3.1. Considering the above mentioned, it is apparent that the model has the
capability of being successfully implemented within a power utility production environment, and
will be able to supply the user with an optimal unit commitment and load dispatch schedule.

Although the model proposed in this thesis is quite comprehensive as mentioned in the above sec-
tions, there still exists some future research that needs to be investigated in order to improve the
ability of the model to simulate realistic real life conditions. A summary of the aspects that is
recommended for inclusion in future work is provided in Section 6.2.

6.2 Future work
The MILP UCEELD model formulated in this thesis only takes into consideration thermal, hydro
and pumped storage units when constructing the unit commitment and load dispatch schedule. Al-
though the foregoing covers a great deal of the power generation technologies utilised by a power
utility, not all existing technologies were incorporated into the model. An opportunity exists to inte-
grate power generation technologies such as nuclear, wind and photovoltaic stations to the existing
MILP UCEELD model. When considering renewable technologies such as wind and photovoltaic
power, the stochasticity of these sources also needs to be taken into consideration. By including the
mentioned technologies to the existing model, the complexity and solution time will most definitely
increase. For this reason, an investigation will be required to determine the computational feasi-
bility of using the MILP formulation approach in solving such a comprehensive UCEELD model.
The computational feasibility must be evaluated by means of considering both solution time and the
ability of the model to obtain global optimum results.

It might be beneficial to explore other means of formulating the MILP UCEELD model, after adding
the additional power generation technologies, to ensure reasonable solution times are maintained.
One option to scrutinize may be to supply the model with a predefined commitment schedule con-
taining all base load units (thermal units), which are known to be on load and will remain committed
for the period of the study horizon. By incorporating such a user defined input functionality, it will
reduce the decision making computations required by the optimisation model significantly and may
lead to improved solution times. The impact the different piecewise linear discretisation methods
have on the MILP model solution time, as depicted in Section 2.2.2, also needs to be assessed during
future work as to determine the optimal MILP UCEELD model formulation. An evaluation of the
MILP UCEELD model solution time compared to other heuristic methods will also be beneficial
when performing further research.

Further algorithmic work which can be added to the MILP model as defined in Chapter 4, in-
clude transmission line losses. These losses comprise of the amount of energy lost as a result of the
transmission line lengths and capacity restrictions. Although research has shown that these losses
are minute, by including these losses into the model, the capability of the model to simulate real life
conditions will improve. However, in order to incorporate the foregoing losses, additional research
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is required to determine an efficient method of linearising the nonlinear equations in order to fit it
into the MILP framework. After inclusion of the transmission line losses, it might be beneficial to
conduct a contingency analysis where different transmission lines are taken out of service to evaluate
the effect these lines may have on the total operational cost. The contingency analysis may also be
used to determine the criticality of each transmission line by determining which line outages may
lead to infeasible solutions being obtained. The criticality of each transmission line can be utilised
to determine the amount of maintenance resources to be assigned to each line as to ensure power
availability and reliability is maintained. Additional aspects such as labor and maintenance cost as-
sociated with thermal, hydro and pumped storage generating units may also be added to the model
objective function to improve the model’s capability of simulating reality.

Incorporation of demand side resources is another aspect worthy of being investigated when consid-
ering future work on the MILP UCEELD model. These resources refer to energy consumers such as
aluminium smelters with whom contracts are signed to manage the grid’s energy consumption. The
preceding sources are generally capable of either consuming energy or providing additional reserves
to the grid in an event of grid instabilities. The demand side resources are usually capable of switch-
ing off production for a predetermined time period without suffering any losses. By utilising the
characteristics of the demand side resources effectively, the optimisation model will be able to ensure
grid stability by means of either scheduling the resources to, or decommitting them from the grid
during power uncertainty. Being able to model the dynamics of the contracts agreed upon between
a power utility and the demand side participants, will provide the system operator with additional
resources to utilise with the aim of reducing total operational cost. A methodology that may be ap-
plied to simulate the demand side resources, is to model the different resources as one single virtual
power plant and include it into the optimisation model accordingly. However, additional research is
required to determine the feasibility of the foregoing proposal.

In the MILP UCEELD model specified throughout Chapter 4, spinning reserves were considered
with no specific focus on the different categories. In order to improve the model’s accuracy and
its ability to simulate real life conditions, it might be beneficial to investigate the inclusion of the
spinning reserves by differentiating between instantaneous, regulating and ten minute reserves. In-
stantaneous reserves entail the capability of certain units to supply additional power to the grid
within 10 seconds with the ability to sustain the power supply for up to 10 minutes. Regulating
reserves or also know as automatic generation control (AGC) are reserves provided by thermal units
on a second by second basis to account for any power demand fluctuations, and is managed by the
AGC control system. Lastly, ten minute reserves comprise of any units which can be committed to
the grid within 10 minutes and is able to sustain the power supply for up to two hours.

In addition to the aforementioned, future work is required to expand the current day ahead MILP
UCEELD model to a 7 day ahead model with the purpose of evaluating the dynamics of the pumped
storage generating units. The purpose of including the pumped storage units to the day ahead model
as depicted in Chapter 4, was to portray the characteristics of the constraints and its applicability
to the commitment and dispatch process. However, in order to obtain a realistic and holistic view of
the commitment and dispatch schedule associated to pumped storage units, a 7 day ahead schedule
needs to be considered. Specific focus must be set on the solution time required to solve a 7 day
ahead MILP UCEELD model as it is expected that the solution time will increase drastically. The
reason being is because of the increase data quantity that needs to be processed. It might also be
beneficial to evaluate other solution methodologies or constraint formulation methods which will be
able to reduce the computational time of the 7 day ahead UCEELD model. Adding to the 7 day
ahead model, research needs to be performed to incorporate dynamic generator maintenance outage
schedule constraints. The purpose of the mentioned constraints will be to ensure that the model
is able to account for variable unit outage schedules and not only consider static outage schedules
as was done in this thesis. The researcher will need to evaluate the effect the inclusion of such
constraints will have on the commitment and load dispatch schedule generated by the model.
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Chapter 7

Appendix A: Model Parameters and
Variables

Table 7.1: Model Parameters

Symbol Definition Units
c(u)

h Financial fee associated with start-up fuel oil consumption for
Thermal Units

R/h

c(d)
h Financial fee associated with shutdown fuel oil consumption for

Thermal Units
R/h

rp The probability for a specific load scenario to occur Fraction
q(f)

ph Possible variable coal cost associated to each thermal unit Fraction
c(f)

hj Thermal unit coal cost due to load related coal consumption R/h
c(w)

h Thermal unit demineralised water consumption cost R/h
p(t)

hj Discretised generated load for thermal and hydro units MWh
o(t)

h Outage schedule for thermal and hydro units to prevent load
scheduling of units scheduled for either IR/IN/GO

Binary

t(u)
h The minimum up time required for thermal units before

shutdown is permitted
Hours

t(u1)
h The time a thermal unit was already operational at the start of

the planning horizon
Hours

t(d)
h The minimum down time required for thermal units before

start-up is permitted
Hours

t(d1)
h The time a thermal unit was already off at the start of the

planning horizon
Hours

e(f)
hj Particulate emissions produced by the thermal units due to load

selection
mg/sm3

e(l)
hj Particulate emissions operating limit as stipulated by the Air

Quality Act
mg/sm3

w(m)
n Maximum allowable water consumption permitted for thermal

units
GL/h

r(u)
h Thermal and hydro unit onload ramp-up capability MW/h

r(us)
h Thermal and hydro unit start-up ramp capability MW/h

r(d)
h Thermal and hydro unit onload ramp-down capability MW/h

r(ds)
h Thermal and hydro unit shutdown ramp capability MW/h

d(t)
h The maximum continuous rating both thermal and hydro units

are capable of achieving under normal operating conditions (no
limitations)

MWh

p(d)
ptn Grid load demand governed by area power consumption MWh
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g(d) Total spinning reserves required for given planning horizon MWh
w(h)

hj Hydro unit water consumption associated with load selection in
planning horizon

m3/s

w(hm)
h Maximum allowable water consumption permitted for hydro

units
m3/s

v(ui)
ts The initial top reservoir volume for a pumped storage station at

the start of the planning horizon
GL

v(ue)
ts The required reservoir volume for a pumped storage station at

time 6 in the planning horizon
GL

o(p)
su Outage schedule for pumped storage units to prevent load

scheduling of units scheduled for either IR/IN/GO
Binary

v(li)
ts The initial bottom reservoir volume for a pumped storage station

at the start of the planning horizon
GL

l(p)
suvj Discretised generated load for pumped storage units MWh

p(w)
su Power consumption of a pumped storage unit associated with

pumping operation
MWh

rsv Predefined volume ranges for the top pumped storage reservoir
which is utilised for load selection

MWh

r(u)
su Pumped storage unit onload ramp-up capability in generating

mode
MW/h

r(us)
su Pumped storage unit start-up ramp capability in generating

mode
MW/h

r(d)
su Pumped storage unit onload ramp-down capability in generating

mode
MW/h

r(ds)
su Pumped storage unit shutdown ramp capability in generating

mode
MW/h

v(f)
suvj Pumped storage unit water consumption due to a specific load

selection in generating mode
GL/h

p(q)
su Pumped storage unit water consumption due to operating in

pumping mode
GL/h

d(p)
su The maximum continuous rating pumped storage units are

capable of achieving under normal operating conditions (no
limitations)

MWh

Table 7.2: Model Decision Varaibles

Symbol Definition
zpthj A binary decision variable for thermal and hydro load selection to satisfy

grid demand in the planning horizon with zε(0; 1)
p(f)

pt(i,j) A decision variable for load distribution between multiple geographical areas
in the planning horizon with p(f)ε(0; b)

yth A binary decision variable to track the operational hours for thermal and
hydro generating units in the planning horizon with yε(0; 1)

wth A binary decision variable to track Unit start-up for thermal and hydro units
in the planning horizon with wε(0; 1)

xth A binary decision variable to track Unit shutdown for thermal and hydro
units in the planning horizon with xε(0; 1)

s(t)
pth A decision variable for spinning reserve allocation for thermal and hydro

generating units in the planning horizon with s(t)ε(0; 100000)
s(p)

ptsu A decision variable for spinning reserve allocation for pumped storage
generating units in the planning horizon with s(p)ε(0; 100000)
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v(u)
pts A decision variable to track the upper reservoir volume (Mm3) of a pumped

storage station throughout the given planning horizon with v(u)ε(0; 100)
v(l)

pth A decision variable to track the lower reservoir volume (Mm3) of a pumped
storage station throughout the given planning horizon with v(l)ε(0; 100)

v(f)
ptsu A decision variable to track the water consumption into or out of both top

and bottom pumped storage reservoirs for the given planning horizon with
v(f)ε(−100; 100)

p(r)
tsu A binary decision variable to track the operational hours for a pumped

storage unit in pumping mode throughout the given planning horizon with
p(r)ε(0; 1)

p(n)
tsu A binary decision variable to track Unit start-up for pumped storage units in

pumping mode throughout the planning horizon with p(n)ε(0; 1)
p(f)

tsu A binary decision variable to track Unit shutdown for pumped storage units
in pumping mode throughout the planning horizon with p(f)ε(0; 1)

t(r)tsu A binary decision variable to track the operational hours for a pumped
storage unit in generating mode throughout the given planning horizon with

t(r)ε(0; 1)
t(n)

tsu A binary decision variable to track Unit start-up for pumped storage units in
generating mode throughout the planning horizon with t(n)ε(0; 1)

t(f)
tsu A binary decision variable to track Unit shutdown for pumped storage units

in generating mode throughout the planning horizon with t(f)ε(0; 1)
fptsuvj A binary decision variable for pumped storage load selection in generating

mode to satisfy grid demand in the planning horizon with fε(0; 1)
p(p)

ptsu A decision variable to track the power generation (in generating mode) and
or power consumption (in pumping mode) for pumped storage units

throughout the planning horizon with p(p)ε(−1000; 1000)
d(m)

ptsuv A binary decision variable to track the upper bound of the top reservoir
volume to determine the load range at which the Unit will be able to operate

given the reservoir volume with d(m)ε(0; 1)
d(n)

ptsuv A binary decision variable to track the lower bound of the top reservoir
volume to determine the load range at which the Unit will be able to operate

given the reservoir volume with d(n)ε(0; 1)

Table 7.3: Model Indexes

Symbol Definition
P Index for the possible stochastic variability with pεP
N Index for the number of geographical areas considered with nεN
T Index for the number of time periods considered with tεT
H(n) Index for the number of thermal and hydro units considered with hεH(n)
J Index for the number of discretisation points used to linearise nonlinear func-

tions with jεJ
V Index for the number of reservoir volumes considered for each pumped storage

unit with vεV
S(n) Index for the number of pumped storage reservoirs considered with sεS(n)
U(s) Index for the number of pumped storage units per reservoir considered with

uεU(s)
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Chapter 8

Appendix B: Excel Model Graphical
User Interface

In the subsequent section, the graphical user interfaces (GUI’s) designed to improve the data pro-
cessing and acquisition of the MILP UCEELD model inputs are provided. In Figure 8.1, the thermal
and hydro GUI is portrayed. The succeeding GUI can be utilised to provide the VBA tool with the
number of power generating areas, the quantity of units per area, the type of units (either thermal
or hydro) and the design data for each of the mentioned units. The design data associated to the
thermal units include parameters such as fuel usage and emissions production coefficients, make-up
water consumption, minimum and maximum load ranges, prohibited operating regions, ramp rates
as well as minimum up and down times. Other parameters also covered by the GUI include coal and
fuel oil cost, outage schedules, spinning reserves, and legislative emissions limitations. Parameters
associated with hydro units include majority of the above mentioned, with the fuel cost, fuel oil
usage and emissions production being neglected. In order to properly account for the dynamics of
the hydro stations, the curve coefficients representing the water flow rate through each turbine is
added by means of the GUI as well as the maximum allowable volume flow to which the units are
limited. The upload button on the GUI is utilised to submit the foregoing data to the VBA model
in order to structure the information in the required matrix format.

Figure 8.1: Acquisition Tool GUI for thermal and hydro unit data

Figure 8.2 represents the GUI designed for the data processing of pumped storage generating units.

111



The design of the GUI is similar to what was mentioned for Figure 8.1, with some additional
functionalities incorporated to account for the dynamics of pumped storage units. Using the GUI,
the user will be able to specify the number of areas, the quantity of reservoirs per area and the
amount of pumped storage units per reservoir. Design data associated to the pumped storage units
are also incorporated by means of the GUI. Majority of the parameters as mentioned in the above
discussion are also applicable to the pumped storage units with the functionality of adding these
parameters also included in the GUI portrayed in Figure 8.2. Note that the fuel, emissions and hydro
parameters are not included in the GUI as it is irrelevant to the operation of pumped storage units.
However, additional factors to consider include the initial upper and lower reservoir volumes, the
upper reservoir volume setpoint, pumped storage turbine water consumption curve coefficients, the
maximum and minimum allowable upper and lower reservoir volumes as well as the water and power
consumption rates when operating a pumped storage unit in pumping mode. After submitting the
data of each individual pumped storage unit, the information is processed by means of selecting the
upload button.

Figure 8.2: Acquisition Tool GUI for pumped storage unit data

In Figure 8.3, the GUI utilised to process the day ahead power demand forecast data, is presented.
In the foregoing, the user is able to divide the power demand forecast data into hourly intervals.
The GUI is structured in such a manner as to allow the user to select the area under consideration
before submitting the power demand forecast. The area selection functionality is incorporated to
ensure that the VBA coding assigns the correct power demand data to its corresponding area. If an
incorrect power demand is assigned to an area, the mismatch could lead to erroneous results being
obtained and incorrect decision making being made. For the purpose of this dissertation a GUI
was designed to only process a 24 hour power demand data set, but can easily be expanded to a 7
day power demand data set interface. If however a 7 day power demand forecast is provided to the
Cplex optimisation model, it is expected that the computational time required to obtain an optimal
solution will increase. After submitting the demand forecast data, the information can be processed
by selecting the upload button.
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Figure 8.3: Acquisition Tool GUI for forecasted load demand

Another GUI included to the excel model to improve the data acquisition process, is the power
demand stochasticity interface. The aforementioned is depicted in Figure 8.4. When using this
GUI, the user is able to specify the number of stochastic scenarios with which the power demand
can be altered during the study horizon. The mentioned scenarios are incorporated into the Cplex
model to simulate power demand stochasticity. After selecting the submission button on the GUI,
the number of stochastic scenarios is uploaded to the excel file. The drop down box enables the user
to select a specific scenario number from the previously generated list. After selecting the scenario
number, a fraction can be entered representing the weight to which the power demand needs to be
adjusted for the specific scenario. A probability fraction is also specified representing the likelihood
of the scenario from occurring. The data is uploaded to the excel file in matrix format by using the
bottom submission buttons depicted in Figure 8.4.

Figure 8.4: Acquisition Tool GUI for forecasted load demand stochasticity
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The last GUI designed by the author is the fuel cost and emissions production stochastic interface.
The purpose of this GUI is to allow the user to generate random weight fractions to which the fuel
and emission variables need to be adjusted to simulate variable uncertainty. Utilising the GUI, the
user is able to specify the number of stochastic scenarios that need to be considered. After selecting
the number of scenarios, the data is uploaded to the excel file via the submission buttons. The
matrix generation buttons call the normal distribution random number generator function in excel,
and depending on the number of scenarios, the excel model will generate a certain amount of random
numbers. The preceding is then implemented in the Cplex optimisation model in order to model
fuel cost and emissions production stochasticity.

Figure 8.5: Acquisition Tool GUI for fuel cost and emissions production stochasticity
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Chapter 9

Appendix C: Mathematical Model
Summary

9.1 Model objective

min (F +W +
∑
t∈T

∑
n∈N

∑
h∈H(n)

(c(u)
h wth + c

(d)
h xth)) (9.1)

F =
∑
p∈P

∑
t∈T

∑
n∈N

∑
h∈H(n)

∑
j∈J

rpq
(f)
ph c

(f)
hj zpthj (9.2)

∑
j∈J

zpthj = yth, p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (9.3)

W =
∑
t∈T

∑
n∈N

∑
h∈H(n)

c
(w)
h yth (9.4)

9.2 Model constraints

0 ≤ P (T ) + P (F ) +
∑

s∈S(n)

∑
u∈U(s)

p
(p)
ptsu − p

(d)
ptn ≤ 60.0, p ∈ P, t ∈ T , n ∈ N (9.5)

P (T ) =
∑

h∈H(n)

∑
j∈J

p
(t)
hj zpthj (9.6)

P (F ) =
∑

(i,j)∈A
p

(f)
pt(i,j) −

∑
(j,i)∈A

p
(f)
pt(j,i) (9.7)

p
(p)
ptsu − L(P ) + p(w)

su p
(r)
tsu = 0, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.8)

L(P ) =
∑
v∈V

∑
j∈J

l
(p)
suvjfptsuvj (9.9)
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s(d) = p
(d)
ptn(g(d)/100) (9.10)

∑
h∈H(n)

s
(t)
pth +

∑
s∈S(n)

∑
u∈U(s)

s
(p)
ptsu = s(d), p ∈ P, t ∈ T , n ∈ N (9.11)

s
(t)
pth ≤ (d(t)yth −

∑
j∈J

p
(t)
hj zpthj), p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (9.12)

s
(t)
pth ≤ r

(u)
h yth, p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (9.13)

s
(p)
ptsu ≤ (d(p)

su t
(r)
tsu − p

(p)
ptsu), p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.14)

s
(p)
ptsu ≤ r(u)

su t
(r)
tsu, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.15)

wth − xth = yth − y(t−1)h t ∈ T , n ∈ N , h ∈ H(n) (9.16)

wth + xth ≤ 1 t ∈ T , n ∈ N , h ∈ H(n) (9.17)

∑
t∈T
t≥1

t≤(t(u)
h
−t(u1)

h
)

yth ≥ t
(u)
h − t

(u1)
h y1h, t ∈ T , n ∈ N , h ∈ H(n) (9.18)

∑
k∈T
k≥t

k≤(t+t(u)
h
−1)

ykh ≥ t
(u)
h wth, t ∈ T , n ∈ N , h ∈ H(n) (9.19)

∑
t∈T
t≥1

t≤(t(d)
h
−t(d1)

h
)

1− yth ≥ t
(d)
h − t

(d1)
h (1− y1h), t ∈ T , n ∈ N , h ∈ H(n) (9.20)

∑
k∈T
k≥t

k≤(t+t(d)
h
−1)

1− ykh ≥ t
(d)
h xth, t ∈ T , n ∈ N , h ∈ H(n) (9.21)

∑
h∈H(n)

∑
j∈J

zpthj ≥ 2 p ∈ P, t ∈ T , n ∈ N (9.22)
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p
(r)
tsu − p

(r)
(t−1)su − (p(n)

tsu − p
(f)
tsu) = 0, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.23)

t
(r)
tsu − t

(r)
(t−1)su − (t(n)

tsu − t
(f)
tsu) = 0, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.24)

p
(n)
tsu + p

(f)
tsu ≤ 1, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.25)

t
(n)
tsu + t

(f)
tsu ≤ 1, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.26)

t
(n)
tsu + p

(n)
tsu ≤ o(p)

su , t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.27)

t
(r)
tsu + p

(r)
tsu ≤ o(p)

su , t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.28)

∑
u∈U(s)

L(P ) ≤M(1− p(r)
tsu), p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.29)

(
∑
j∈J

p
(t)
hj zpthj −

∑
j∈J

p
(t)
hj zp(t−1)hj) ≤ R(U), p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (9.30)

R(U) = r
(u)
h y(t−1)h + r

(us)
h wth (9.31)

(
∑
j∈J

p
(t)
hj zp(t−1)hj −

∑
j∈J

p
(t)
hj zpthj) ≤ R

(D), p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (9.32)

R(D) = r
(d)
h yth + r(ds)

ny xth (9.33)

(p(p)
ptsu − p

(p)
p(t−1)su) ≤ R(UP ), p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s), v ∈ V (9.34)

R(UP ) = r(u)
su t

(r)
(t−1)su + r(us)

su t
(n)
tsu (9.35)

(p(p)
p(t−1)su − p

p)
ptsu) ≤ R(DP ), p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s), v ∈ V (9.36)

R(DP ) = r(d)
su t

(r)
(t−1)su + rds)su t

(f)
tsu (9.37)
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∑
j∈J
j≥pr(l)

h

j≤pr(h)
h

Zrptnyj = 0, p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (9.38)

∑
j∈J
j≥pr(l)

su

j≤pr(h)
su

fptsuvj = 0, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s), v ∈ V (9.39)

yth ≤ o
(t)
h t ∈ T , n ∈ N , h ∈ H(n) (9.40)

∑
j∈J

(q(e)
ph e

(f)
hj zpthj) ≤ e

(l), p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (9.41)

∑
h∈H(n)

((q(w)
h yth)/1505.49) ≤ w(m)

n , p ∈ P, t ∈ T , n ∈ N (9.42)

p
(f)
pt(i,j) ≤ b, p ∈ P, t ∈ T , (i, j) ∈ A (9.43)

p
(f)
pt(i,j) ≥ 0, p ∈ P, t ∈ T , (i, j) ∈ A (9.44)

∑
j∈J

w
(h)
hj zpthj ≤ 0, p ∈ P, t ∈ T : 5 ≤ t ≤ 10, n ∈ N , h ∈ H(n) : 99 ≤ h ≤ 105 (9.45)

∑
j∈J

w
(h)
hj zpthj ≤ w

(hm)
h , p ∈ P, t ∈ T , n ∈ N , h ∈ H(n) (9.46)

v
(u)
pts = v

(u)
p(t−1)s −

∑
u∈U(s)

v
(fl)
p(t−1)su, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n) (9.47)

V
(u)
pts ≥ V

(ue)
ts o(p)

su , p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.48)

v
(u)
pts = v

(ui)
ts , p ∈ P, t ∈ T , n ∈ N , s ∈ S(n) (9.49)

v
(l)
pts = v

(l)
p(t−1)s +

∑
u∈U(s)

v
(fl)
p(t−1)su, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n) (9.50)

v
(l)
pts = v

(li)
ts , p ∈ P, t ∈ T , n ∈ N , s ∈ S(n) (9.51)
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v
(fl)
ptsu −

∑
v∈V

∑
j∈J

v
(fl)
suvjfptsuvj + p(q)

su p
(r)
tsu = 0, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.52)

∑
v∈V

rsv(d(m)
ptsuv + (1− t(r)tsu)) ≥ v(u)

pts , p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.53)

∑
v∈V

rsvd
(n)
ptsuv ≤ v

(u)
pts , p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.54)

d
(m)
ptsu(v−1) − d

(n)
ptsuv = 0, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.55)

∑
j∈J

fptsuvj = d
(n)
ptsuv, p ∈ P, t ∈ T, n ∈ N , s ∈ S(n), u ∈ U(s), v ∈ V (9.56)

∑
v∈V

d
(m)
ptsuv = t

(r)
tsu, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s) (9.57)

∑
v∈V

d
(n)
ptsuv = t

(r)
tsu, p ∈ P, t ∈ T , n ∈ N , s ∈ S(n), u ∈ U(s)c (9.58)
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