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Abstract 

Inference measurements with time-delayed feed-forward neural networks facilitates the 

inference of unknown variables from known variables in non-linear dynamic systems. This 

is based only on the mapping data of the known variable and variable to be inferred. For 

successful inference, several constraints have to be overcome. This is, the neural network 

should have the correct topology, the training data set characteristics must have inherent 

attributes to ensure generalisation and the training algorithm must be capable of finding 

an acceptable local minimum on the error surface. At present, the neural network topology 

is based on trial and error, while the generalisation capability of the trained neural network 

is tested by using test and validation sets. 

Due to  the lack of design methods for the topology of neural networks and the need 

for independent testing and validation, this thesis endeavours to develop a generalised 

method to  find the optimum topology for accurate inference measurements. The aim is 

further to develop a method for judging the training set that could lead to generalisation 

without using test sets or validation sets. For this to be done, the training algorithm 

should succeed in finding a small enough local minimum on the error surface. 

The developed methods are applied to a simulated model of the pebble bed modular 

reactor (PBMR). 



Opsomming 

Inferensiemetings met tydvertraagde vooruitvoer neurale netwerke maak dit moontlik om 

onbekende veranderlikes van bekende veranderlikes in nie-liniere dinamiese stelsels af te 

lei. Dit word slegs gebaseer op die data van die bekende veranderlike en di6 van die 

veranderlike wat afgelei moet word. Vir suksesvolle inferensie moet verskeie beperkings 

oorkom word. Die topologie van die neurale netwerk moet korrek wees, eienskappe van die 

opleidingsdata moet inherente attribute he om veralgemening te verseker, en die oplei- 

dingsalgoritme moet in s t a t  wees om 'n aanvaarbare plaaslike minimum op die fout 

oppervlakte te vind. Tans berus neurale netwerktopologie op proefondervinding, terwyl 

die opgeleide neural network se vermoe om te veralgemeen, met toe t s  en validasie stelle 

bepaal moet word. 

Vanwee 'n gebrek aan ontwerpmetodes vir die bepaling van die topologie van vooruitvoer 

neurale netwerke is dit nodig om onafhanklike toetsing en validasie te doen. Hierdie tesis 

stel hom dus ten doe1 om 'n algemene metode te vind om die optimum topologie vir 

akkuraat afgeleide metings te bepaal. Verder beoog hierdie studie ook om 'n opleidingstel 

te vind wat kan lei tot veralgemening sonder die gebruik van toets  of validasiestelle. 

Om dit te bewerkstellig, moet die opleidingsalgoritme in staat wees om 'n klein genoeg 

plaaslike minimum op die fout oppervlakte te vind. 

Die ontwikkelde metodes word toegepas op 'n gesimuleerde model van die korrel bed 

modulere reaktor (Pebble Bed Modular Reactor). 
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arbitrary amplitude 
bandwidth [Hz] 
capacitance [F], heat capacity [kJ/kg.K] 
electrical potential [V], energy [J] 
frequency, arbitrary function 
feed-forward neural networks 
electrical current [A], moment of inertia [kg.m2] 
arbitrary number 
constant 
inductance [HI 
mass flow rate [kg/s] 
number of floating point weights 
mean square error 
number of neurons, number of bits 
neural networks 
ordinary differential equation 
pressure [Pa] 
power [W] 
pebble bed micro model 
pebble bed modular reactor 
electrical charge [C], heat [J] 
pressure ratio 
resistance [O] , thermal resistance ["CIW] 
time [s] 
temperature [K], time constant [s] 
torque [N.m] 
number of time delays 

T D F F N N  time-delayed feed-forward neural networks 
V,  v electrical potential [V] 
w neural network weight 
W work [J] 

Y specific heat ratio 
A difference 
AT time interval [s] 
C damping factor 
u neural network activation function 
I3 rotational angle [rad] 
W .  angular velocity [rad/s] 
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Chapter 1 

Introduction 

This chapter gives the motivation for investigating inference measurements and the reason 

why feed-forward neural networks are used. Taking the shortcomings in the design meth- 

ods for feed-forward neural networks into account, an overall aim and specific objectives 

are formulated. This chapter also describes the steps that are taken, with reference to 

other chapters, to reach these objectives. 

1.1 Measurements 

Measuring the variables of systems are vital for analysis or control. Measurements are 

performed by using sensors or transducers in order to derive a model of a system or to 

determine the system state. Measurements attempt to represent variables as accurately as 

possible, so that accurate modelling can be performed or the state of a system determined 

accurately. 

For complete information on a system, noiseless ideal transducers, sampled at  an infinitely 

high sampling rate and high resolution, are required. Noise, inherent to all physical s y s  

tems, is nevertheless captured in the measurement process. For practical measurements, 

the sampling rate and resolution are limited, as is the length of the data records. It fol- 

lows that for practical systems, the information is limited by the transducer error, noise 

inherent to the system, sampling noise, sampling rate and the finite length of the data 

records. An in-depth discussion on noise can be found in reference books such as [I]. In 
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this thesis pseudo random noise within certain amplitude limits will be used to investigate 

the effect of noise on inference measurements. 

Due to  the non-ideal characteristics of the transducers, measurement errors could occur, 

depending on the characteristics of the specific sensors [2]. Typical characteristics that 

could result in measurement errors, are for example non-linearity, temperature depen- 

dence, hysteresis and a limited frequency response [3]. Many installed transducers, such 

as current transformers [4], were implemented for the purpose of current measurement 

at a fixed frequency and acceptable accuracy. 

For a noiseless measurement process, the Nyquist sampling rate given in Equation 1.1, 

where f, is the sampling rate and B is the bandwidth in Hz, ensures that a bandwidth- 

limited signal is uniquely represented by the data. Failure to adhere to the critical sam- 

pling rate causes aliasing in the frequency domain [5]. Since bandwidth and the rate of 

change of a signal are related, it is equally true that the sampling rate must be high 

enough to capture the rate of change of a signal (everywhere) to obtain a sufficiently 

high accuracy. Based on the limitations of the measurements itself and the processing 

limitations of the modeller, the modelling of systems has in practice limited accuracy and 

complexity. 

In order to gather information on a system, it is necessary to have the system excited. 

It might be required to excite the system externally, or a system in operation could also 

be in an excited state already. It is important to realise, however, that the information 

gathered is limited to  the operational range. System models are therefore not applicable 

outside the measurement range. 

For a linear system, the Nyquist or critical sampling rate defines the minimum data rate, 

while the data is valid a t  any amplitude. For non-linear systems, however, such a simple 

rule is not sufficient to gather for accurate information on a system. 

In the frequency domain, a system with non-linearities results in harmonics, subsequently, 
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harmonic frequencies that are higher than the excitation frequency, exist in the system. 

This implies that the critical sampling rate must be based on the highest significant 

harmonic frequencies and not merely on the highest frequency of the system excitation 

signal. Furthermore, the amplitudes of harmonics generated in the system depend on the 

absolute amplitudes of the variables. 

In the time domain, the rate of change of a variable depends on the rate of change of the 

stimulus and absolute amplitude of the variable. This implies that samples have to be 

taken at  a sufficiently high sampling rate in order to capture the dynamics (rate of rise) 

of a non-linear system at  various amplitudes. 

Both these arguments imply that to map non-linear system dynamics, it has to be sampled 

at  a considerably higher rate than its linear counterpart. hrthermore, the excitation of 

the system should cause a rate of change (or frequency) a t  various absolute amplitudes. 

Although this does not lead to an explicit formulation of excitation waveforms, excitation 

waveforms are devised in Chapter 3: Training, test and validation sets, causing 

satisfactory mapping of the system. 

1.2 Inference measurement 

In many cases direct measurement techniques are either inaccurate or impossible, subse- 

quently, other methods of variable estimation are required. Such indirect measurements 

are referred to as derived or inferred measurements. An inference measurement is an es- 

timate of a variable derived from other directly measurable variables [6]. As an example, 

Figure 1.1 illustrates a system with various interrelated variables. In this example, the 

variable D must be derived from the measurement of variables A, B and C. Information 

of the system characteristics enables the construction of the inference engine. 

Inference measurement techniques can be applied to  determine unknown variables or vari- 

ables that are measured by using transducers with non-ideal characteristics. In general, 

the inference engine maps the input space x, to the output space y, via an input/output 

relationship g, as shown in Figure 1.2. The vector presentation is shown in Equation 1.2 

[7, p161. Since models or inference requires the mapping of an input to an output via 
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sensor indirect 
measurement 

system engine 

Figure 1.1: Block diagram of inference measurement process 

some relationship, the same techniques used for modelling can be used for inference. For 

a transducer, the inference engine is the inverse mapping of the transducer itself. 

4 % p 
Figure 1.2: Inference engine as a general system with input/output relationshap 

Models that are best suited to the compensation problem at  hand [8], are often derived. 

In the following sections several inference measurement techniques are discussed. These 

techniques are either model-based or information-based. 

1.3 Inference measurement techniques 

In this section two types of inference measurements techniques are discussed, namely 

model-based techniques and information-based techniques with neural networks as an 

example. Since most physical systems can be modelled as non-linear dynamic systems 

with smooth nonlinearities, this thesis will be limited to the inference measurements 

applied to such systems. 

Variables in systems are interrelated and therefore it is possible, a t  least in principle, 

to derive an unknown variable from the other known variables if the unknown variable 

were observable. If every state variable affects the output of a system, the system is 

completely observable. If a state variable cannot be observed from the output of a system, 
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the system is unobservable [9, ~1531. For the purpose of this thesis, it will be assumed 

that an unknown variable to be inferred is observable. 

1.3.1 Model-based inference measurements 

Based on the model of the system, an unknown variable, if observable, can be calculated 

from the equations that describe the system. Model-based inference of both linear and 

non-linear dynamic systems will be discussed. 

Linear dynamic systems 

For linear dynamic systems with an input x(t) and an output y ( t ) ,  the output/input 

characteristics of a system can be written in Equation 1.3. For an inference measurement, 

the output y ( t )  is the directly measurable variable, while the input x(t)  is the variable to 

be inferred. 

If the transfer function G(s) has been obtained accurately, an accurate estimate of the 

input can be obtained from the output and the transfer function of the system as expressed 

in Equation 1.4. 

In state variable form [lo, ~4531 for a system state vector x and its derivative k, a linear 

system can be written as in Equation 1.5, where [A] is the system matrix, [B] the input 

matrix and u the input vector. With known characteristics of such a general multivariable 

linear system, the input u can be inferred based on the output of the system. 
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For example, in the system shown in Figure 1.3, with a transfer function = G(s), 

the input can be inferred from El(s) = w. Similarly, to infer another variable, (e.g. 

is from i3), algebraic manipulation results in a system of the same order, in this case, a 

system with two complex pole pairs. 

Figure 1.3: Fourth o d e r  linear system 

Nonlinear dynamic systems 

In contrast to a linear system with k = [A]x + [Blu, for non-linear systems, the matrix 

[A] can no longer be separated 110, ~4531. The vector-matrix state differential equations 

for a nonlinear system is given in Equation 1.6, or more simply, Equation 1.7 19, ~1581. 

k = f [x, u] (1.7) 

For a nonlinear sytem, the state equations can be determined from the parametric model 

of the sytem. Various methods can be used for determining the parametric model [ll], 

applicable to electrical, chemical or mechanical processes. Once such a model has been 

found by some method, a measurement can be inferred by using state-space equations, 

and a computationally intensive numerical solution. 

Assuming that an accurate parametric model is available, one method of finding a solution 

is to expand the nonlinear state equations into a Taylor series 19, ~1591 about a nominal 
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operating trajectory xo. This should correspond with the nominal input uo as shown in 

Equation 1.8 with i = 1,2, ..., n, ignoring higher order terms. This results in a set of linear 

equations. Subsequently a variable can be inferred in the same manner as for a linear 

system. If a high accuracy were required, many terms of the Taylor series expansion are 

required, resulting in a large number of equations. Such a method is only valid close to 

the nominally chosen operating point. 

Another method of finding a solution is to use a linearised parameterised model for each 

applicable frequency. Because of the linearisation, superposition can be applied to find the 

solution for an arbitrary, frequency decomposable input signal. This method is common 

in power systems engineering, since specific harmonic frequencies that are sustained over 

a period of time are dominant. 

1.3.2 Information-based inference 

In the previous section, inference techniques were discussed, using a model of a system. 

To create such models usually requires a domain expert for each applicable technical 

field. Information-based inference does not require a model of the system. Variable 

inference is based on the data giving the relationship between the known variable and 

the variable to be inferred. Artificial neural networks are one such information-based 

inference measurement technique. It was chosen for inference measurement in this thesis 

because of their advantages as discussed in the following section. 

1.3.3 Artificial neural networks 

Artificial neural networks are loosely modelled on the interconnected neurons of a biolog- 

ical brain. A neuron of a biological brain could have several inputs of different strengths, 

which are summed at  the neuron. Some threshold function acts on the summation results 

in the neuron output. With massive interconnection of neurons, a biological brain could 
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process complicated functions. These complicated functions (e.g. the human ability to 

read) are possible because of the way the neurons are interconnected and the strength of 

the inputs. 

Using artificial neural networks (mimicking parts of a biological brain), similar compli- 

cated functions can be achieved by the correct interconnectivity and training or learning. 

However, the field of artificial neural networks has developed considerably on its own. 

The similarities between a biological brain and artificial neural networks have become 

virtually irrelevant in order to understand and use artificial neural networks. 

General problem-solving techniques attempt to map a set of inputs to a set of outputs. 

Mathematically, it is attempted to  map an input space x, in R" to an output space ym 

in Rm. Problem-solving, such as model-based inference measurements, was achieved by 

programmed computing using a suitable programming language [12, pl]. Neurocomput- 

ing, using artificial neural networks, differs from problem-solving techniques, in that it 

uses programmed computing. These differences are reflected in Table 1.1 [12]. 

Table 1.1: Comparison of programmed computing and neurocomputing 

I programmed computing 11 neurocomputing 
accurate system model required 11 only input/output data required 
algorithm must be developed 11 network topology must be found 
algorithm must be implemented 11 network must be trained 
algorithm must be debugged 11 network must be tested 

The most appealing advantages of neural networks for inference measurements are that: 

i A parameterised model for the system is not required. This implies that the neural 

network inference measurement can be implemented directly from the data of the 

input/ouput relationship of the system to be modelled, as opposed to first having 

to derive a model and then finding a programmed solution based on the model. 

ii Neural networks are fault-tolerant due to its inherent massive parallelism 17, ~101.  

In contrast, solving problems by means of programmed computing requires that ac- 

curacy and stability should be incorporated into the algorithm and implementation 
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The most important disadvantages of a neural network implementation are that: 

i No clear rules exist for the design of network topology [7, plO] 

ii The internal working of a neural network is hidden, and therefore a black box 

approach is taken [14, p205],[15]. 

iii The training procedure might not be successful in finding the global minimum by 

adjusting weights. 

iv Generalisation cannot be guaranteed and must be validated [7, plO]. 

Neural networks have been successfully applied to system modelling and inferential mea- 

surements. Modelling examples are a non-linear dynamic electronic circuit [16], an ex- 

truder [17] and a function approximator [HI. Inferential measurements have been applied 

for nitrous oxide emissions from a gasline pumping station, feedwater flow in a nuclear 

reactor and sensor validation [19, ~2661. 

In order to solve certain problems, &fferent neural network topologies with applicable 

learning rules have been developed [20, p1141. The type of problem, the neural network 

topology that is used and the training algorithm are related a s  shown in Figure 1.4. A 

suitable combination of the problem type, neural network topology and training algorithm 

must thus be found to do inference measurements. 

Figure 1.4: The type of problem, topology and training are related 

Since the type of system used to infer variables is restricted to non-linear dynamic systems 

with smooth non-linearities, the topology and training should thus be chosen for such 
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systems. Time-delay feed-forward neural networks are universal function approximators 

[7, p175] and therefore suitable for inference measurements. This will be discussed in the 

next section and investiged in this thesis. 

1.4 Time-delayed feed-forward neural networks 

In this section time-delayed feed-forward neural networks (TDFFNN) will be discussed. 

For successful neural network implementation, the neural network topology must be cho- 

sen for a specific modelling application. The training algorithm, using training sets, must 

be capable of finding a minimum that results in a trained neural network conforming to 

the inferrence error specification when tested or validated, using test and validation sets. 

1.4.1 Neural network topology 

The basic building blocks of artificial neural networks are neurons 121, p43). A neuron, 

shown in Figure 1.5, has as input the input vector x = (xo,xl, ..., x,) 120, p46]. The 

inputs could be bipolar xi E (-1, I) ,  binary xi E {O,1)  or continuous in the intervals 

[ - 1  0 1 (-11)  or ( 0  1). The xo term is often labelled the bias and set to 1 112, 

p4]. These inputs x are multiplied with the weight vector w = (wo, w,, ..., w,) and the 

function F is the sum of these products multiplied with an activation function u so that 

the neuron output y is written as y = uCwTx. 

With the activation function u linear, only linearly seperable classes of problems can 

be solved. With u being non-linear, non-linear classes of problems can be solved. The 

activation function u is called the discriminator or squashing function 17, p78j. Several 

nonlinear functions have been implemented, such as the threshold function (hard limiter), 

linear function with upper and lower threshold, polynomial function and sigmoid functions 

P O ,  ~ 4 8 1  [7, ~781. 

A feed-forward neural network consists of several layers of neurons organised so that the 

output of a layer is the input of the next layer. Feed-forward neural networks therefore 

consist of the superposition and composition of non-linear functions. Figure 1.6 shows a 
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Figure 1.5: The neuron is the basic building block af an artificial neural network 

threelayer feed-forward neural network. The output of this three layer neural network 

can be written as 

where 01 is the activation function for the first hidden layer, uz is the activation function for 

the second hidden layer and so forth. 

"Pn hidden lap, 1 him hyer 2 auWlaysr WW 

Figure 1.6: Three-layer feed-forward neural network 

Given the topology shown in Figure 1.6, the question arises what type of functions can be 

estimated by Equation 1.9. It was shown [22] that a continuous function can be presented 

as 

f (4 = C x[h4(41  
O 9 l m  

with h4 and x continuous functions and m 2 1. 

Directly applicable to feed-forward neural networks, it was demonstrated rigorously [23] 
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that functions with support in a unit hypercube can be approximated uniformly with a 

feed-forward network with a single hidden layer. It was shown that even with weights 

bounded, universal approximation can be achieved [24]. Whether more than one hidden 

layer is advantageous, was investigated [25]. It was found that, in general, single hidden 

layer neural networks perform better classification than two hidden layer neural networks 

P I .  

For an input vector x, with activation function o, with n neurons in the single hidden 

layer, the output y of a single hidden layer feed-forward neural network can be written 

simply as 

The number of neurons in the hidden layer required for a function mapping to be a p  

proximated within a certain error, depends on the specific function. Generally, with the 

error E + 0, the number of neurons n + co. It was shown [26] that for n neurons in 

the hidden layer, the approximation error e can decrease up to e cc &. For practical 

situations the number of neurons n will be limited, subsequently the function mapping 

can only be approximated. Apart from the practical limitations, it was shown that the 

required number of neurons n, for mapping an input/output relationship, are bounded by 

the the number of training patterns p. It was shown that for p training patterns, p + 1 

neurons are required for mapping the input/output relationship [27]. Failure to achieve 

acceptable approximation is due to faulty training, non-optimal number of neurons per 

layer or insufficient information captured in the training input/output data [7]. 

For modelling or inference, other types of neural networks have been implemented suc- 

cessfully, such as recurrent neural networks. A recurrent neural network can perform 

the same mapping with less memory than a time-delayed feed-forward neural network. 

However, stability is a difficult issue to deal with [28, ~6641. In this thesis, feed-forward 

networks were chosen for inference measurements, due to their stability and since any 

function can be approximated within an arbitrarilary small error. Two disadvantages of 

neural networks are addressed in this thesis, namely that n o  clear design rules exist f o r  
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the required topology and genemlisation cannot be guaranteed. 

In order to capture dynamic characteristics, the input vector x to the neural network 

is the timedelayed values of the variable x. The topology for the time-delayed feed- 

forward network is formed in such a manner. Figure 1.7 shows such a timedelayed 

feed-forward neural network with one hidden layer, capable of inferring variables of a 

non-linear dynamic system. 

Figure 1.7: Time-delayed feed-forward neural network with one hidden layer 

The topology of a time-delayed feed-forward neural network is defined by the number of 

inputs, outputs, layers, neurons per layer, the type of activation functions of the neu- 

rons, the way the neurons are interconnected and the number of time delays in these 

connections. 

The number of time delays for the neural network depends on the system's dynamic 

range that needs to be captured. If a time step AT is small, fast dynamics can be 

modelled. Many time delays in the network result in information regarding the slow- 

varying dynamics of a system [28, ~6391. Should a network be too large (too many time 

delays, layers or neurons) there is a possibility of overtraining. The network then tends 

to memorise the training set, rather than generalising or capturing the underlying system 

characteristics [29, ~2401. For successful inference, it is thus desirable to have a neural 

network that has a sufficient number of time delays and neurons in the hidden layer 

to  perform the required mapping, but limited in such a way that generalization can be 

accomplished. The minimum (but sufficient) number of time delays and neurons in the 

hidden layer, results in minimum processing requirements. 
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1.4.2 Training and testing 

Artificial neural network training is done by an algorithm that seeks to minimise the 

output error with the training set a s  example. Using the error as feedback for weight 

adjustment, training is repeated until an acceptably small error has been achieved. Failure 

to reach the required small error can be caused by a topological limit or should the 

algorithm iterate indefinitely at a local minimum. After a certain time lapse it is expected 

that the adjustments to the weights would be small, subsequently a minimum has been 

reached under these constraints [7, p241. 

The purpose of a training algorithm for a feed-forward neural network is to update the 

weight vector w to such an extent as to minimise the output error of the neural net- 

work. This is shown schematically in Figure 1.8. During training, the neural network is 

presented with a set of input vectors x and a set of output vectors y [12, p4]. During 

each training trial, the weights w are modified to such an extent that the neural network 

output approaches the desired output response. 

neural neiwork 

t 
weightibias adjustment 

training procedure 

Figure 1.8: Training procedure for a feed-forward neural network 

For single hidden layer feed-forward neural networks, the backpropagation algorithm is 

most commonly used [30]. In this algorithm, the error E , defined by 

for any set of weights must be minimized. In Equation 1.12, c is the number of in- 

put/output training pairs, j the index of output units, y and d are the actual and desired 

states respectively. For minimizing E by gradient descent, the partial derivative of E, 

with respect to each weight w in the network, must be found. Doing so, the weights can 
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be adjusted according to 

where 9 is the learning rate parameter. For convergence, the choice of the learning rate 

parameter 9 is critical. Choosing the learning rate 9 high, can result in fast learning, 

but can also lead to a zigzag training path or even to divergence. A low value for the 

learning rate q results in slow learning. Adjustments can be made either sequentially, or 

in a batch, where every is calculated before weight adjustments are made. 

Gradient descent has proven to be slow, and one method to accellerate learning, is to 

modify the velocity of the point in weight space according to 

for every epoch 7. An epoch is one sweep of adjustments made to the weights. The 

parameter a determines the contribution of the previous gradient. 

Newton's method 1281 attempts to minimise the quadratic approximation of the error 

vector E at a specific point in weight space. By expanding the error vector E into a 

second order Taylor series, adjustments to the weight vector w is made according to 

where H is the Hessian of E and defined as H = V2E. Newton's method learns faster 

than gradient descent, but H must be nonsingular for the inverse to exist, the calculation 

of H is computationally expensive and convergence cannot be guarenteed. To overcome 

the difficulty in calculating the Hessian, other methods such as the conjugate gradient or 

the quasi-Newton method (which only requires an estimate of the gradient of the vector 

E) have been developed. 

The GaussNewton method 1281 only makes use of the first order Taylor series. By ex- 

panding the error vector E into a first order Taylor series, an expression for the linearized 



CHAPTER 1. INTRODUCTION 16 

error E as a function of the weight vector w can be found. By minimizing E for every 

epoch, an adjustment to the weight vector w is made [28, p126][31] according to 

In Equation 1.16 the Jacobian J is the transpose of the gradient of the error VE. For the 

inverse of the Jacobian to exist, it must be nonsingular. 

The Levenberg-Marquardt algorithm [32] is in essence an interpolation of the gradient 

descent and Gauss-Newton methods. The weight vector w with every epoch is updated 

according to  

For a large value of p, this algorithm approaches the steepest descent method (of which a 

step is proportional to the variable E) and, for a small value of p,  the algorithm appoaches 

the Gauss-Newton method. The inclusion of the factor pI makes the matrix (to be 

inverted) nonsingular. The constant p is multiplied by P should a step result in an 

increase of the sum of the square error. Should a step result in a decrease of the sum 

of the square error, p is divided by P. It was shown [31] that the Levenberg-Marquardt 

algorithm performs well in comparison to other algorithms, and was subsequently chosen 

as the training algorithm for the feed-forward neural networks in this thesis. 

A training algorithm can iterate indefinitely a t  a local minimum, and thus not be able to 

find the global minimum. It was proven that the error surface of a linear feed-forward neu- 

ral network does not have local minima [33] when trained in batch mode. For non-linear 

feed-forward neural networks, it was found that a neural network capable of mapping 

a specific function, with the backpropagation training of a single hidden layer neural 

network, the error surface does not have a local minimum under certain training set con- 

straints [34]. These training set constraints might not be met, and the error surface may 

have local minima. 

The characteristics of the training set and the initialization of the weights can influence 
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the success of a neural network implementation. Concerning the bias/variance dilemma as 

applicable to neural networks [35] it has been shown that training sets that are biassed, will 

result in a biassed training of a neural network (and not generalize well). To circumvent 

this, a training set can be selected that is less biassed, or the number of neurons in the 

hidden layer can be increased, resulting in more degrees of freedom and the algorithm is 

less likely to iterate indefinitely at  a suboptimal point on the error surface. 

A test set is used to establish whether acceptable generalisation and accuracy have been 

achieved with a trained neural network. Test sets are thus critical for an evaluation of the 

trained neural network. The trained network is accepted after having passed validation. 

Validation is an independent test, using an objective validation data set. The training set 

must span the whole required input space, otherwise certain characteristics of the system 

under investigation will not be mapped, and subsequently large errors are to be expected. 

A test set or validation set that spans a larger range than the input training set will not 

result in reliable output mapping, since neural networks are good at  interpolation, but 

weak in performing extrapolation. 

Requiring that the test and validation sets will test the trained neural network within all 

specified operating conditions, the training set must have certain characteristics to ensure 

that the trained neural network will pass both test and validation. Since the test or 

validation set output target is not visible for the modeller, while the test or validation set 

inputs (or equivalent specification) are, the relationship between the test (or validation) 

excitation as well as the training set excitation waveform should be established (if possible) 

to ensure accurate inference under all operating conditions. 

1.5 Aim, objectives and benefits 

From the previous section it was seen that no generalised design procedure exists for the 

design of the size of time-delayed feed-forward neural networks. The relationship between 

training set inputs and test inputs (or validation set) are not defined in concrete terms. 

The aim of this thesis is accordingly stated as follows: 
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The overall aim of this thesis is to develop a generalised design method for the 

implementation of inference measurements, using time-delayed feed-forward neural 

networks applicable to general non-linear dynamic systems. 

From this overall aim, the following specific objectives are formulated, namely to: 

1. Develop a design procedure for the number of neurons, layers and time delays that 

determine the size of the time-delayed feed-forward neural network based on the 

type of system from which variables must be inferred; 

2. develop a design procedure for the characteristics of the training excitation wave- 

form to  ensure successful inference measurement implementation based on the test 

(or validation) excitation waveform characteristics or some operating range specifi- 

cation; 

3. apply the design procedures to general non-linear dynamic systems with smooth 

non-linearities: and 

4. demonstrate the neural network inference design method on a simulated model of 

the Brayton cycle as proposed for the pebble bed modular reactor. 

This research has multiple benefits: 

1. It will provide a generalised method for designing the size of time-delayed feed- 

forward neural networks for inference, resulting in an optimum neural network size 

for a certain specification, without exhaustive trial and error; 

2. training excitation waveforms with the desired characteristics, as compared to test 

(or validation) excitation waveforms could ensure accurate inference measurements 

using time-delayed feed-forward neural networks without any knowledge of the s y s  

tem in any form; and 

3. since the requirements for the neural network inference capability for a certain type 

of system are the same as the requirements for neural network modelling of such a 

system, the design procedures can also be used for neural network modelling. 
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1.6 Discussion 

Artificial neural networks can offer an inference method that eliminates actual specific 

modelling in terms of component or equation parameters. Neural networks do not offer a 

"model" in an analytical form, and if not required explicitly, eliminates the necessity to 

find such a model. Furthermore, artificial neural networks can approximate complicated 

mapping requirements, complicated meaning a collection of energy storage elements and 

non-linear dissipative elements. Whether using traditional methods or neural networks 

for modelling, a mapping of the input/output relationship is required for all the expected 

operational conditions. 

Due to the shortcomings in general design procedures for timedelayed feed-forward neural 

networks, namely the design of the neural network size and training excitation waveforms 

that ensure accurate inference, the overall aim and specific objectives were formulated. 

Chapter 2: Network topology and system characteristics draws a relationship 

between system characteristics and the appropriate neural network topology for inference. 

From this relationship, design rules are established that lead to optimum neural network 

topology for a specific problem. Chapter 3: Training, test and validation sets 

shows that simulated data sets are generated correctly, as well as the effect of noise on the 

inference error. More importantly, it shows what the characteristics of training and test 

(or validation) excitation waveforms should be to ensure a small inference error without 

knowledge of the system input/output characteristics. Chapter 4: PBMR neural 

network inference measurements, applies the methods developed in the thesis to 

a simulated model of the basic Brayton cycle. Simulated data is generated by using 

Flownet, the thermodynamic software package used for the design of the PBMM and 

PBMR. Chapter 5: Conclusion, summarises this thesis and makes recommendations 

for future research. Appendix A lists the MATLAB files used in this thesis. 



Chapter 2 

Network topology and system 
characteristics 

The purpose of this chapter is to develop design rules for a neural network topology 

that would meet the inference accuracy specification of variables on a non-linear dynamic 

systems. Based on the input/output mapping of the system, the neural network topology 

for the problem type can be selected and the size of the neural network determined by 

using the design rules. 

With these methods, feed-forward neural networks for inference can be designed for non- 

linear dynamic systems, that are based only on the input/output mapping. It will be 

shown that two distinct topological requirements must be met, namely a layer with several 

non-linear neurons for performing non-linear static mapping, and time delays for mapping 

dynamics. 

Since the neural network topology, training algorithm and problem type are related, the 

chosen topology must be capable of modelling the system within an expected error, as- 

suming that such an error target is possible. Assuming that the topology has been chosen 

correctly, an expected error might not be reached due to the incapability of the training 

algorithm or due to the low information content of the data sets. Many time delays and 

many neurons in the hidden layer result in many neural network weights and a large 

memory requirement. This in turn tends to slow down the training process due to the 

increase in operations that must be performed during each training epoch. A minimum 
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number of weights required to reach a specified accuracy uses the least computational 

resources. 

The neural network topologies for inference on systems which are nonlinear, linear dy- 

namic or non-linear dynamic were determined. The number of time delays required for 

dynamic mapping is determined explicitly from the input/output data of a system. The 

number of neurons in the hidden layer is determined by means of only a few training 

trials. Inference of a variable of a general non-linear dynamic system requires many 

weights. Therefore a topology was developed that requires only a fraction of such a num- 

ber of weights for the same inference capability. Where there is an inference problem, 

an reduction in the number of weights results in a reduction of training and simulation 

time. Developed topologies for multivariable inference measurements are extentions of 

the topology for single input, single output inference of a variable of a general non-linear 

dynamic system. 

2.1 Neural network implementation 

The neural network topology and training used in this thesis were implemented by simu- 

lation using, MATLAB's neural network toolbox. The static or time-delayed feed-forward 

neural networks were simulated by using MATLAB's neural network toolbox newf f func- 

tion with appropriate time delays at the input as required for a specific experiment. 

For training, MATLAB offers many implemented training algorithms. From these, the 

Levenberg-Marquardt algorithm was chosen for its training speed for all neural networks. 

The implementation of this algorithm trainlm, using MATLAB, is given in Appendix 

A: Software implementation. For every simulation the input vectors and targets (the 

variable to be inferred) were selected from the system variables. These were obtained 

from solving the state equations using MATLAB's ODE solver ode45 as described in 

Appendix A: Software implementation. For a specific experiment, a topology was 

chosen with an appropriate selection of time delays or neurons per layer. 

The final training error and test error serve as measures of accuracy for the trained neural 

network system model. The output error of the model, excited by an input waveform, 
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can be expressed either in mean square error (MSE) or the maximum absolute error 

in the time domain. With the target yn and the network ouput $,, the mean square 

error is calculated from MSE = C iyn - &I2. The maximum absolute error in the 

time domain is given by err,, = maxly, - &I. Both these measures were used as error 

measures of the neural network performance. 

2.2 Static non-linearities 

In this section the type of non-linearity and the required topology size to reach a specific 

error are compared. From this comparison a relation can be drawn between the non-linear 

element characteristics and the number of neurons required for accurate inference. Two 

types of non-linear dissipative elements were used in the experiments. Figure 2.1 shows a 

non-linear dissipative element, where the voltage over the element is given by e = f (2) .  

Figure 2.1: Non-linear element 

The first type of non-linear elements is three tangent functions with input ranges of 

[-0.9 0.91, [-1.1 1.11 and [-1.3 1.31 respectively. A large input range results in the 

largest deviation from a linear element. The tangent function was chosen because it is 

smooth and even and has a dominant spatial frequency off, = lcycle/input range. Three 

sets of data for the V - I characteristic were simulated, using equations 2.1, 2.2 and 2.3. 

Each tangent function was multiplied with a constant so that the output is a closest fit to 

linear function 6 = 0.52. These constants were determined by using MATLAB's polyf it 

function (see Appendix A: Software implementation). 
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e7 = 0.3293 tan(l.li) (2.2) 

Figure 2.2: Plot of non-linear elements 

The second type of non-linear components is the superposition of sinusoidal functions and 

a linear function f = 0.52. The spatial frequencies of the sinusoidal functions were chosen 

as 1, 2 and 4Hzcycleslinput range respectively, as shown by equations 2.4, 2.5 and 2.6. 

The amplitudes of the sinusoidal part are scaled so that the maximum rate of change of 

the three functions are equal. Figure 2.2 shows the plots of the non-linear components. 

Figure 2.3 shows the spatial frequency components of the non-linear functions. 
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Figure 2.3: Spatial frequency components of nonlinear functions. 

A network topology consisting of a hidden layer with tansig activating functions and 

a single linear neuron in the output layer was used, as shown in Figure 2.4. Training 

sets were generated with the independent variable i linearly increasing -1 2 i 2 1. By 

increasing the number of neurons in the hidden layer for every training experiment, the 

mean square error M S E  reached after 50 epochs for all the non-linearities were tabulated. 

The error goal was set a t  a mean square error of MSE = lo-'. The training errors for 

the non-linear elements with an increasing number of neurons in the hidden layer are 

represented in Figure 2.5. 

Figure 2.4: Static feed-forward neural network with a hidden layer 

The characteristics of the non-linear functions and the neurons required for a mean square 

error M S E  ~s lo-' are given in Table 2.1. The first-order polynomial fit for all the non- 

linear functions is 6 = 0.52. The characteristics for comparison of the non-linear functions 

are the spatial frequency f,, the root mean square of the deviation from a linear function 
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Figure 2.5: Plot of training results for static non-linear functions 

ERMs = and maximum rate of change m a x e .  

Table 2.1: Characteristics of non-linear elements and required number of neurons N for 
a mean square error M S E  = lo-' 

From Table 2.1 two relationships between the non-linear function characteristics and the 

number of neurons required for an error goal can be drawn: 

Ae . 1. The number of neurons increases as the maximum rate of change maxz zncreases. 

Functions e5, e7, eg and sl have spatial frequencies f ,  = lcycles/input range. For 

the functions e5,  e~ and eg, the number of neurons increases as the maximum rates 

of change m a x e  increases. The functions e5 and s, have the same spatial frequency 

and approximately the same rate of change, but a large difference in R M S  deviation 
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from a linear function. Approximately the same number (3 or 4) of neurons are 

required to reach the target error. For this reason the maximum rate of change 

m a x g  of functions with the same spatial frequency is regarded as a reasonably 

characteristic attribute. 

2. The number of neurons increases as the dominant spatial frequency increases. For 

the functions s l ,  sz and s4, the maximum rates of change m a . %  are equal. With an 

increase in the spatial frequency of the function, the number of neurons required to 

reach a specific error goal increases, even though the RMS deviation from a linear 

function decreases. 

2.3 Linear dynamic systems 

A general transfer function for a linear system can be written in the form of Equation 2.7. 

The order of the system is the power of s in the denominator. By factorization, such a 

general transfer function can be written as the product of first and second order systems. 

Assuming that the dominant response of a system can be modelled as a first or second 

order system, first and second order systems are investigated in order to establish a design 

rule for the number of time delays required for accurate inference which is based on the 

system response. 

Linear dynamic system modelling requires a neural network with time delays and a single 

linear neuron. Figure 2.6 shows such a neural network. In this section, the relationships 

between the error as function of the time delays and the system dynamics are established. 

Firstly, the time delays required for a neural network to perform integration and differen- 

tiation were established. Secondly, linear systems with decay were investigated in order 

to establish the time delays required for such systems. 
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X- d 
Figure 2.6: Time-delayed feed-forward neural network 

2.3.1 Integration and differentiation 

Integration y ( t )  = f , zd t ,  or in the discrete case, a summation y, = Cl,x,AT, is 

cumulative, meaning that the value y at a specific time is a function of all the previous 

values of x .  This suggests that in order to perform an integration (or cumulative summa- 

tion), values of the independent variable x are required at  an infinite length of time in the 

past for the accurate evaluation of such a function. Subsequently, for a neural network 

to perform such cumulative summation, a very large number of input time delays are 

required for a reasonable estimate. 

Figure 2.7: First-order non-linear system 

Differentiation y = 2 can be expressed in the discrete case as the difference y = g. In 

the discrete case, a value of x is required at a time t and a previous value for x at an 

infinitesimal small time in the past. Thus, it is a t  least required for the calculation of the 

difference in the discrete case to have the value for x ( n )  at a time t and the previous value 

x ( n  - 1) at a time t -AT. It is also true that for slow-varying functions, the difference can 

be estimated from x ( n )  at  a time t and a more distant previous value x ( n  - 2)  at  a time 

t - 2 * AT and so forth. This suggests that the neural network topology for performing 

difference must have at  least one input time delay. The calculation of the difference is 

highly sensitive to noise or errors in the data set, therefore neural networks with more 

than one time delay were investigated to model the difference. 
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The neural network training sets for cumulative summation and difference modelling were 

simulated by using a first-order non-linear system as shown in Figure 2.7. For the first 

order non-linear system shown in Figure 2.7, the state variable was chosen as x1 = ez. 

Equation 2.8 gives the state space equation for this system. For this system, C1 = 0.05F, 

Ri = 152, i z  = fi(ez) = K1, tan(Klbe2) with K1, = 0.2A and Kib = 3.0radlV. 

The data of the V - I relationship of the capacitor C1 was used for the training set, from 

basic principles, by integrating ez(t) = & Ji3dt and by differentiating ez(t) = Cl$i~( t ) .  

For the discrete case, the cumulative summation is given by Equation 2.9 and the differ- 

ence by Equation 2.10. 

Figure 2.8: Raining error versm time delays for cumulative summation 

With regard to inference where the target is the cumulative summation of the input, the 

simulated data for ez was used as the target of the neural network and iz is the neural 
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network input. By changing the number of time delays for every training experiment, the 

relationship shown in Figure 2.8 was obtained. 

With regard to inference where the target is the difference of the input, the simulated 

data for i2 was used as the target and ez as the input. By changing the number of time 

delays for every training experiment, the relationship shown in Figure 2.9 was obtained. 

Tbne Delays 

Figure 2.9: Training error versus time delays for dzfference 

From Figure 2.8 it can be seen that a large number of time delays are required for inference 

where the input/output mapping is a cumulative summation, as was predicted. From 

Figure 2.9 it can be seen that inference where the input/output mapping is a difference 

requires only a few time delays as was predicted. Systems with poles a t  the origin, i.e. 

no time decay, cannot be modelled accurately for a limited number of time delays. Zeros 

at the origin, on the other hand, require only a few time delays for accurate modelling. 

Practical stable systems decay with time. The next section deals with linear systems with 

decay. 

2.3.2 Dynamic systems with decay 

It was seen from the previous results that systems with zeros a t  the origin (differentiators) 

require only a few time delays, hence variables can be inferred accurately. Systems with 

poles at the origin (integrators) require a very large (infinite) number of time delays. 
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Practical systems, however, decay, and in this section the experiments will show how 

many time delays are required for linear systems with no poles a t  the origin. 

A phase lead circuit, a phase lag circuit, a parallel resonant circuit and series resonant 

circuit were investigated to establish a design rule for the number of time delays required 

for modelling linear dynamic systems. These systems are shown in Figure 2.10. 

Figure 2.10: Phase lead, phase lag, parallel resonant and series resonant systems 

A phase lead circuit has a transfer function of % = :w with a > 1. The zero is a t  
1 -- aT and the pole a t  -$. Furthermore, a T  = RICl and T = E C 1  with a = && 

Rz 

[9, ~5361. For this circuit the chosen values are RI = 152, Rz = 152 and Cl = 0.1F. By 

choosing the state variable X I  = el - ez, the state space equation for the phase lead circuit 

is obtained (Equation 2.11). 

A phase lag circuit has a transfer function of a = with a < 1 resulting in a zero 

a t  -& and a pole at -$. Furthermore, a T  = R2C and T = (R1 + R2)C1 with a = 
Ri+Rz 

[9, ~5361. For this circuit the chosen values are RI = 10, R2 = 1R and Cl = 0.025F. By 

choosing the state variable XI = es ,  the state space equation for the phase lag circuit is 

obtained (Equation 2.12). 
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A parallel resonant circuit has a transfer function as given in Equation 2.13, which is of 

the form shown in Equation 2.14 with complex pole pair at  -a& jw  = -(w,f j w , m  
+L L is proportional to the time constant of the system [9, ~2751. For and a = ~ R : c : L ~  a 

this circuit, the chosen values are R1 = 10, Rz = 10, GI = 0.05F and L1 = 0.05H. By 

choosing the state variables xl = e2 and xz = is ,  the state space equations in Equation 2.15 

is obtained. 

The series resonant circuit has a transfer function as shown in Equation 2.16, the same 

form shown in Equation 2.17 with a complex pole pair at  -a ?c jw = -(w, & j w n m  

+L'. With the chosen values R1 = 10, R1 = 10, Cl = 0.05F and m d  f f  = ' 2&Zl 

L, = 0.05H. By choosing the state variables x l  = e2 and x? = il, the state space 

equations are obtained (Equation 2.18). is proportional to the time constant of the 

system [9, ~2751. 

The time response of a system is determined by the poles of the characteristic equation. 

For first order systems, such as the phase lead and phase lag circuits, the response decays 
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at a rate of e - $ ,  where 7 is the time constant of the circuit. For the phase lead circuit 

qead = $ and for the phase lag circuit q,, = $. Circuits with complex pole pairs, such 

as the parallel resonant and series resonant circuits with 0 < < < 1, decay at  a rate of 

Since the output of these systems decay exponentially, it is required to capture the infor- 

mation of the system within the period of decay. An infinite number of measurements will 

result in an exact description of the system. However, as the output of the system decays, 

the transient response amplitude becomes smaller and subsequently less relevant. With 

noisy data, small amplitudes will be masked, and subsequently no useful information can 

be gathered from small amplitudes. For practical purposes it is thus only required to 

gather sufficient information, that is when the circuit has decayed to a sufficiently small 

amplitude. 

In terms of neural network modelling, the number of time delays will depend on the 

system decay and the required accuracy. 

In order to make a comparison of the four circuits, time delays for the phase lead and 

phase lag circuits and d for the resonant circuits were chosen as 0.05s. With a choice 

of R1 = 1.00 and R1 = 1.00, this resulted in C1 = 0.1F (for the phase lead circuit), 

Cl = 0.025F (for the phase lead circuit), L1 = 0.05H and C, = 0.05F (for the resonant 

circuits). Figure 2.11 shows the transient responses of the four circuits under investigation, 

with the phase lag circuit output display scaled down by 0.5 in order to have the same 

final value as the other circuits. It can be seen that the (enveloped) decay of the systems 

are more or less equal, as the choice of component values indicated. 

The neural network for inference of the output variable e2 from the input variable el is 

a single linear neuron with different input time delays (see Figure 2.6) for every training 

experiment. The neural network training results for different values of time delays were 

plotted in Figure 2.12. It can be seen that, as predicted, the error decreases with the 

increasing number of time delays. As the number of time delays increased beyond a 

certain point, no significant improvement of the accuracy was achieved. The accuracy is 

therefore limited by the data characteristics and training algorithm capabilities. 
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Figure 2.11: Phase lead, phase lag, parallel resonant and series resonant systems transient 
responses 

An important consequence of these results are that the number of time delays required 

can be derived from the time lapsed till a system output decays to a small value, and not 

on the order of the system. Since the decay of a system response is largely determined by 

the dominant pole or pole pair, the time delays required can also be found from the time 

constant of a system, if available. The number of time delays required by a time-delayed 

feed-forward network for inference can be established from the transient response with a 

steplike excitation signal for systems such as studied here. 

2.4 Nonlinear dynamic systems 

The previous sections have dealt with the mapping of non-linear characteristics and the 

mapping of linear dynamic systems. It was shown that a layer of non-linear activation 

functions is required for non-linear mapping, while time delays are required for dynamic 

mapping. For a system with non-linearities and dynamics, both these topological entities 

are required. A layer of non-linear activation functions is required for non-linear mapping, 

while time delays are required for capturing the dynamics of a system. A neural network 

that has both these entities is shown in Figure 2.13. For a general non-linear system, the 

number of time delays must be established. It must also be established whether such a 

system has nonlinearities. Two types of dynamic systems will be considered, namely a 

system with dissipative non-linearities, and a system with storage non-linearities. 
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Figure 2.12: Thining error versus NN time delay for phase lead, phase lag and resonant 
circuits 

Figure 2.13: Time-delayed feed-forward neural network with a hidden layer 

2.4.1 Dynamic system with non-linear dissipative elements 

As an example of how the neural network topology can be determined for a non-linear 

dynamic system with non-linear dissipative elements, the second order dynamic system 

with non-linearities shown in the Figure 2.14 will be used. By choosing the state variables 

xl = i5 and x2 = ez ,  the state space equation for this system is obtained (Equation 2.19). 

For this system, LI = 0.05H, CI  = 0.05F, R1 = 2.0fl, e4 - ez = f1(i5) = Kla t&n(Klbi3) 

with Kla = 0.4V, Kit, = 3.0radlA and iz = f2(ez) = Kz, tan(Kzbez) with Kz, = 0.2A, 

KZb = 2.0radlV. 
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Figure 2.14: Second order non-linear system 

The number of neurons in the hidden layer cannot be determined from the input/output 

data, since the non-linearities are not accessible when treated as a black box but hidden 

in the system. However, by observing the input output data, it can at  least it can be 

shown that there are non-linearities. Two ways of showing that there are non-linearities 

are presented here. 

The first method uses the data generated by applying a stepped input waveform as shown 

in Figure 2.15. At certain points, after the decay of the transient behaviour (such as at t = 

5.5s), the input/output relationship is static. By plotting the input/output relationship at 

these static points (at 0.5s after a transient), the existence of non-linearities in the system 

(reflected at  the output) can be observed. Figure 2.15 shows that the input/output at 

selected static points does not form a straight line. For a linear system superposition is 

valid and such a plot would result in a straight line. 

Figure 2.15: Stepped waveform input and resultant output, and input/output plot at se- 
lected points 

When treated as a black box, the input/output relationship plotted in Figure 2.15 cannot 

reflect the characteristics of the non-linear elements in a system directly. The elements, 

or the equivalent function of the combined effect of the elements, are hidden. Subse- 
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quently the characteristic/neurons relationship derived in a previous section ob static 

non-linearites cannot be used to predict the number of neurons in the hidden layer that 

would lead to a specified inference accuracy. If a description of the non-linearities were 

known as in this experiment, a prediction can to some extent be made. With two non- 

linearities, it is predicted that a certain number of neurons are required for each non- 

linearity. By using Table 2.1, it thus predicted that the number of neurons 10 5 N 5 20 

should result in a mean square error of MSE = lo-'. 

The second method proposed here to show that there are non-linearities in the system, 

uses the fact that a slow-varying excitation waveform approaches static conditions. By 

plotting the slow-varying part of the input/output relationship shown in Figure 2.16, a 

distorted oval is formed. In contrast, the mapping of the input/output relationship of 

a linear system will result in an undistorted oval. Similarly, as with the first method, 

Figure 2.16 merely shows that there are non-linearities. No judgement can be made 

though on the actual hidden non-linearities characteristics that require mapping by the 

hidden layer. 

Figure 2.16: Chirp waveform input and resultant output, and input/output plot of slow- 
varying part 

From the results of any of these two methods it can be observed that there are non- 

linearities in the system. Subsequently the neural network used for inference measure- 

ments must have one layer with non-linear activation units. Knowing the non-linearities 

in the system, the number of neurons required can to some extent be predicted. 

In order to  determine the number of neurons in the hidden layer sufficiently to model 
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the dynamic system, a guess was made based as to the number of neurons required 

for non-linear mapping as was determined in the section on static non-linearities a t  the 

beginning of this chapter. Figure 2.5 shows that 3 to 9 neurons were sufficient to map the 

non-linearities that were used. Based on this observation and the fact that the equivalent 

effect of the hidden non-linearities is due to the combination of the separate non-linearities, 

three neural networks with three different numbers of neurons in the hidden layers were 

trained. The number of neurons chosen were 10, 20, and 30 respectively. 

Modeling a system with dynamic characteristics requires input time delays. The number of 

time delays required depends on the system's decay in order to obtain a specific accuracy. 

The time required for decay of the transient response can be obtained from the time plot of 

the output of the system due to a step response. The stepped input waveform, consisting 

of several rapid changes, was applied to the system. The simulated data is shown in 

Figure 2.17, with an enlarged view showing the output decay. From Figure 2.17 it can be 

seen that after t = 0.25s, the output transient decayed to an insignificantly small value. 

Since the neural network input time delay has to capture this time decay, the number of 

time delays T D  can be calculated from TD = timh$ay = 50 with AT = 0.005s. 

Figure 2.17: Stepped input wavefomn and resulting output transient behaviour 

The training results for all three neural networks, differing only in the number of neurons 

in the hidden layer, are shown in Figure 2.18. From Figure 2.18 it can be seen that the 

choice of time delays, together with the informed choice of the number of neurons in the 

hidden layer, resulted in accurate inference with very little trial and error. Having to 

resort exhaustively to trial and error methods for determining the neural network size 
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in terms of the number of time delays and number of neurons, has up to now been one 

of the major drawbacks encountered in implementing time-delayed feed-forward neural 

networks, as was pointed out in Chapter 1 Introduction. 

m 

Figure 2.18: Training results for 10, 20 and 30 neurons in the hidden layer 

2.4.2 Dynamic system with non-linear storage element 

The previous section dealt with inference of a variable of a non-linear dynamic system with 

non-linear dissipative elements and linear storage elements. This section will illustrate 

that the same method can be used to determine the number of time delays and neurons 

in the hidden layer for variable inference in a system that includes a nonlinear storage 

element. Figure 2.19 shows a system with a non-linear storage element. The non-linear 

capacitor characteristic has been chosen as C1 = fc(e2) = Kcei, since Qc = CV = 

Kcei, i~ = 9 = 4 ~ e ; % .  The non-linear dissipative characteristic has been chosen 

as fl(el - e2) = KltanK2(el - e 2 )  By choosing the state variable x1 = e2, the state 

equation for this system (Equation 2.20) is obtained. The parameters for this system are 

Kc = 0.15C/V, Kl = 0.2A, K2 = 2radlV and R1 = 20. 

By using MATLAB's ode45 solver with input excitation signals in the range of 0.3 5 
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Figure 2.19: First order non-linear system 

el 5 0.9, input/output data sets were simulated. Using a stepped input excitation signal 

as in Figure 2.20 and plotting the input/output relationship a t  static points (after the 

system has decayed), it can be observed from Figure 2.20 that there is a non-linearity in 

the system. 

Figure 2.20: Stepped w a v e f o m  input and resultant output, and input/output plot at se- 
lected points 

By plotting the input/output relationship of the slow-varying part of a chirp input signal 

as shown in Figure 2.21, a distorted oval is produced. The existence of a non-linear storage 

element can be observed from Figure 2.21. This is because the input/output relationship 

produces a distorted oval, indicating that the storage element capacitance increases as 

the input amplitude increases. 

Since the capacitance increases as the input amplitude increases, the time constant, and 

therefore the decay time of the system increases as the input amplitude increases. In 

order to find the number of time delays, a stepped input signal is required as well as the 

observation of the system output decay. This should be observed at  a point where the 

time constant is the longest in order to be able to capture the slowest possible system 

dynamics that could exist. Since the capacitance increases as the input excitation signal 

amplitude increases, the output will decay the slowest at the maximum input amplitude. 
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Figure 2.21: Chirp waveform input and resultant output, and input/output plot of slow- 
varying part 

In Figure 2.22 the transient response of the system at  various input amplitudes is shown 

with the stepped input signal. The slowest observed decay is a t  the maximum input 

amplitude. After a time delay of 0.25s, the output has decayed to a sufficiently small 

value. As before, with a time interval AT = 0.005s, this will required 50 time delays in 

the input layer. 

Figure 2.22: Stepped input waveform and resulting output transient behaviour 

The number of neurons in the hidden layer cannot be obtained explicitly if the nonlinear- 

ities of the system were hidden. Each non-linearity of the system must be mapped by the 

neural network. The total number of neurons in the hidden layer is the sum of the number 

of neurons required for each non-linear mapping. Assuming that the non-linearities to be 

mapped have characteristics that fall in the range of the functions in Table 2.1, between 

3 and 9 neurons will be required for the mapping of each non-linearity. This results in 

a number of neurons in the range 6 5 N 5 18. Based on this rough estimate, three 
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neural networks with different numbers of neurons (10, 20 and 30) in the hidden layer 

were simulated and trained. The training results in an error goal of M S E  = lo-* and 50 

training epochs, as shown in Figure 2.23 for the chosen number of neurons. 

Figure 2.23: hining results for 10, 20 and 30 neurons in the hidden layer 

Figure 2.23 shows that the range of numbers of neurons in the hidden layer resulted in a 

small training error. It can subsequently be concluded that: 

1. It is possible to apply the methods for determining the number of time delays to a 

general nonilinear system. 

2. An estimate of the number of neurons can be made with the help of some information 

of the system. If this proves to be impossible, choose progressively larger numbers 

of neurons in step changes until the error goal has been reached or no significant 

improvement has been accomplished with the increase in the number of neurons in 

the hidden layer. 

2.5 Network memory 

In the previous sections it was shown that the topology required for inference is determined 

by the problem type. The most general type of problem, a non-linear dynamic system 
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with decay, requires input time delays and a hidden layer with non-linear activation 

functions. The number of weights of the neural network is determined by the number of 

time delays and the number of neurons in each hidden layer. Ignoring biases, the number 

of floating point weights M are given by Equation 2.21 (for Figure 2.4), Equation 2.22 

(for Figure 2.6), Equation 2.23 (for Figure 2.13) and Equation 2.24 (for Figure 2.24) 

respectively. 

For static non-linear mapping, the number of weights MI are determined by the character- 

istics of the non-linear elements. For mapping any of the elements in the section Static 

non-linearities, using 10 neurons in the hidden layer, MI = 20. For linear dynamic 

mapping of systems with decay, the number of floating point weights are determined by 

the input time delays. For 50 input time delays, Mz = 50. 

Non-linear dynamic systems using the network topology of Figure 2.13, require a large 

number of floating point weights, determined mostly by the product of the time delays 

and number of neurons in the hidden layer. 

Figure 2.24: Time-delayed feed-forward neural network with two hidden layers 

From the results in Figure 2.18 and Figure 2.23 it can be seen that the choice of the 

number of neurons in the hidden layer results accurate modelling. The accuracy achieved 
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with more neurons improves slightly for the same amount of training time. Furthermore, 

the accuracy achieved for the same number of epochs is better when using more neurons. 

These results suggest a "more is better" guideline when choosing the number of neurons 

in the hidden layer. However, using too many neurons has several disadvantages. Firstly, 

more memory (in terms of weights) are required for a specific modelling requirement. 

Secondly, the time required for training using back-propagation (e.g. the Levenberg- 

Marquardt algorithm) is related to the number of weights in the neural network. Thirdly, 

too many weights could result in overtraining. Due to these factors, a neural network 

topology that greatly reduces the amount of memory and training time will be discussed. 

From the results above, it appears that there are two requirements for the neural network 

topology. These requirements are a sufficient number of time delays and a layer with a 

sufficient number of neurons. However, the hidden layer (for non-linear mapping) need 

not be directly coupled with the input layer. By adding another hidden layer between the 

input and the layer for nonlinear mapping, an intermediate remapping can be achieved. 

Such a neural network topology is shown in Figure 2.24. If the first hidden layer has 

much less neurons than the second layer but is sufficiently large to support the mapping 

requirement, two advantages are achieved. Firstly, the total amount of memory (in terms 

of weights) are greatly reduced. Secondly, because of the reduction in the weight matrix 

size, training time is reduced. 

The two hidden layer network can therefore have the same functionality as the single 

hidden layer network. It is also advantageous if the first hidden layer has less neurons 

than the second hidden layer does. In order to test whether this is true, the same data 

sets that were used in the previous section were used to train the two hidden layer neural 

network. The same number of neurons was used in the second layer, with only 5 neurons 

in the first layer. The training results are given in Figure 2.25. 

For the neural network of Figure 2.13 (ignoring biases) the number of floating point 

weights M3 = 2430 with 30 neurons in the hidden layer, and for the neural network of 

Figure 2.24 (ignoring biases) the number of floating point weights M4 = 580 with 30 

neurons in the second hidden layer. 

When comparing Figure 2.18 and Figure 2.25 it can be observed that the accuracy that 
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Figure 2.25: k i n i n g  results for 10, 20 and 30 neurons in the second hidden layer 

was achieved with the two topologies for the same training data are close. The training 

time was limited to 10000s and 500 epochs. It can be seen that a considerable saving in 

training time was achieved by using an intermediate hidden layer. 

2.6 Multi-variable inference measurements 

In the previous sections neural network topologies were derived for the type of relationship 

(e.g. non-linearity) that exists between the known variable and the variable to be inferred. 

These neural networks were limited to single input/single output systems. In this section 

the neural networks required for accurate inference of multiple variables in systems using 

multiple input variables are derived. Two types of inference problems will be considered: 

single input, dual output and dual input, single output variable inference. 

2.6.1 Single inputldual output 

In this section the network topology requirements for the inference of two variables from a 

single variable are derived. Since there are non-linearities, the system is dynamic. There 

are two outputs. The neural network topology in Figure 2.26 will be capable of inferring 

the variables with the correct number of time delays and neurons in the hidden layer. The 
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required number of time delays was established by inspecting both output responses due to 

a step change by means of the method shown in a previous section on non-linear dynamic 

systems. The largest number of time delays required for inference of either outputs were 

chosen. Within 0.3s, both the outputs decayed to an acceptable small value to ensure 

accurate inference, therefore the number of time delays were chosen as TD = 60. 

X. 

x -3 

X N  

input 

x, 

Figure 2.26: Dual output time-delayed feed-forward neural network with a hidden layer 

The hidden layer is responsible for the mapping of the non-linearities of a system. In order 

to establish the number of neurons required for the inference of two variables compared 

to the inference of only variable, the network in Figure 2.26 was trained for two targets 

with different number of neurons. Two networks such, as in Figure 2.13, were trained for 

both output targets with a different number of neurons. 

For the simulation of data a fourth order system (Figure 2.27) with several non-linearities 

was used. By choosing the state variables xl = iz, xz = es, x3 = is and x4 = ez, the state 

space equations for this system was obtained (Equation 2.25). 

Figure 2.27: Fourth order non-linear system. 
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For this system, C1 = 0.07F, CZ = 0.03F, L1 = 0.07H, Lz = 0.03H and R1 = 10R. The 

non-hear elements' characteristics are e4-e3 = f l ( i z )  = Kl, tan(Klbaz) with K1, = 0.8V, 

Klb = 1.3rad/A, 25 = fz(e3) = Kz, tan(Kzbe3) with Kz, = 0.2A, KZb = 2.0rad/V, 

i g  = f3(e3 - ez) = K3, tan(K3b(e3 - ez) )  with K% = 0.2A, K3* = 4.0rad/V, is = f4(e2) = 

Kda t a ~ ~ ( & ~ ( e ~ ) )  with K4, = 0.1A, K3b = 4.0rad/V, and ez-e5 = f5(is) = tan(Ksbis) 

with K5, = 0.1V, K5b = 5.0radlA. 

For the dual output target with a single neural network, the input to the neural network 

is e l ,  while the outputs are e~ and ez. For comparison, the same targets were used when 

training two separate networks with only one output target each. The training results 

for the three neural networks are given in Figure 2.28. The neural network output errors 

for the three neural networks are expressed in nomalased mean square error ( M S E ) .  

Figure 2.28 shows that the number of  neurons required for a specific error (irrespective 

of  whether one or two outputs are inferred) are more or less equal. For example, with 15 

neurons in the hidden layer, an error of M S E  x was achieved for any of the three 

trained neural networks. 

Figure 2.28: Training results for the inference of two variables with a single input variable 

Ignoring biases, 915 weights were required for a single output inference. For dual output 

inference, 930 weights were required. The number of weights for these network topologies 

are mostly determined by the number of  input weights. The output layer weights do not 

contribute significantly to  the total number of  weights. In this system where the outputs 
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are related, a single neural network uses about half the number of weights for the same 

capability. 

2.6.2 Dual input/single output 

For a non-linear dynamic system with two independent directly observable variables from 

which a single output must be inferred, the neural network topology shown in Figure 2.29 

meets the topological requirements with the correct number of time delays and neurons 

in the hidden layer. The required time delays were established by inspecting the output 

response decay due to step changes occurring after transients, using the method shown in 

the previous section non-linear dynamic systems, with both inputs changing. The number 

of time delays was chosen according to the slowest decay observed at  the output due to 

any step input changes. Within 0.25s the output decayed to an acceptably small value to 

ensure accurate inference, therefore the number of time delays were chosen as T D  = 50 

with a time step of 0.005s. 

Figure 2.29: Time-delayed feed-forward neural network with a hidden layer and two out- 
puts 

For the simulation of the data sets, Figure 2.27, a third order system with several non- 

linearities, was used. By choosing the state variables xl = i2, x2 = i4 and x3 = e ~ ,  the 

state space equations for this system were obtained (Equation 2.26). 

For this system, CI = 0.05F, L1 = 0.03H, L2 = 0.07H, R1 = 5Q and R2 = 5Q. The non- 
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Figure 2.30: Third order non-linear system 

linear elements' characteristics are e4 - ez = f1(i2) = Klatan(Klbiz) with K1, = 0.3V, 

Klb = 4.0rad/A, e~ - ez = f2(i4) = KZa t&n(KZbi4) with KZa = 0.2V, KZb = 3.0radlA and 

i-, = f3(ez) = K k  tan(K3b(ez)) with K3a = 0.2A, K3b = 3.0radlV. 

Table 2.2 gives the training results for the inference of a single variable e2 with two input 

variables, compared to the training results with only one input excited with either el or e3 

(with the other input at a constant voltage of 0.8V). A neural network with two inputs, 

60 time delays in the input layer and 15 neurons in the hidden layer was used. 

Table 2.2: Training results for the inference of a single variable with two input variables 

With c mly one input variable changing (the other input a t  a constant value), 

maximum error 
1 0 . 0 1  
1 0.002 
1 0.001 

network inputs 

el, e3 
el, e3 = 0.8V 
el = 0.W,  ea 

the 7 

MSE 
1.3 * 
3.6 * lo-? 
3.4 1; 1 0 P  

values 

of the variables a t  the non-linear elements are less than or equal to the values reached 

with both independant inputs varying. A larger or equal error with both inputs varying 

as compared to only one input varying is thus expected. The results in Table 2.2 confirm 

this expectation. 

Ignoring biases, 1515 weights are used for the inference of a single variable on a system 

with two independent input variables. With one input variable only 765 weights were 

used. At least twice as many weights are therefore required to infer a variable from two 

input variables than inferring a variable from only one variable. 
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2.7 Discussion 

This chapter has shown which neural network topologies are required for a specific infer- 

ence problem. For non-linear mapping, a single hidden layer with non-linear activation 

function are required. Dynamic mapping requires input time delays. 

The number of neurons in the hidden layer depends on the characteristics of the non-linear 

elements to be mapped. If some information of the non-linear elements' characteristics 

were known, some indication of the number of neurons required for accurate inference can 

be found. If no information on the non-linear elements are available, a few training trial 

runs with different numbers of neurons in the hidden layer can be used to establish the 

required number of neurons that will result in an acceptable small inference error. 

Integration (cumulative summation) and differentiation (difference) perform as was the- 

oretically predicted. A transfer function with a pole a t  the origin is therefore difficult to 

model when using a neural network. On the other hand, a transfer function with a zero 

at the origin can be performed accurately by using a neural network. 

By using linear dynamic systems it was established that the number of time delays required 

for inference of a variable of system are related to the time constant of the characteristic 

equation. For non-linear systems, without knowledge of the time constant, the number 

time delays required can be calculated from the time the system output response decays 

to a sufficiently small value with a step input applied to the system. 

By introducing a second hidden layer, the neural network memory requirements for the 

same modelling capability can be reduced significantly with an associated reduction in 

training and simulation time. 

For the inference of two variables from a single variable on the same system, a single 

neural network resulted in accurate inference of two variables requiring approximately 

the same number of weights required for two separate neural networks. 

For the inference of a variable from two independent variables, the inference error when 

using a neural network is larger than the inference from only one variable. This is due 

to  the higher level of excitation of the hidden non-linearities. Approximately twice the 
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number of weights are required for inference from two variables than from one variable. 

In this chapter a general method for the neural network topology design (with mini- 

mal trial and error) for accurate inference measurements was developed. The following 

procedure summarises these steps: 

1. Determine whether the mapping requirement is non-linearly static, linearly dynamic 

or non-linearly dynamic. Choose the simplest network topology to  satisfy the map- 

ping requirement as shown earlier in this chapter. For multivariable mapping, add 

the appropriate number of inputs or outputs as set out in the problem statement. 

2. For dynamic mapping, determine the number of time delays by inspecting the output 

response decay with a step input. 

3. For non-linear mapping, obtain the number of neurons that would satisfy the infer- 

ence error specification by using a few training trial runs with different numbers of 

neurons in the hidden layer. 

4. Test and validate the neural network, using test and validation sets. 

The next chapter will show that, not only is the correct neural network topology necessary 

for accurate inference, but that the training set inputs must have certain characteristics 

compared to the test or validation set inputs. 



Chapter 3 

Training, test and validation sets 

This chapter provides a critical evaluation of the validity of the data sets and character- 

istics of training, test and validation data sets. Two important issues will be addressed 

in this chapter, namely: 

A. Are the data sets that are created by the simulation valid? 

B. What are the required characteristics of training sets, as compared to test and 

validation excitation waveforms. in order to ensure accurate inference? 

3.1 Data simulation 

Training, test and validation data sets are required for successful implementation of ar- 

tificial neural networks. Data sets are the applicable system variables with excitation 

waveforms as input. Figure 3.1 illustrates the data simulation process. 

excitation waveform I- variables 

Figure 3.1: Block diagram of the data simulation process 

E . 

In order to generate these training and test sets, MATLAB's ODE solver ode45 was 

used to find the solution for the system variables from the state space equations of the 

system 
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systems. Appendix A: Software implementation discusses MATLAB's ODE solvers. 

In most cases the state equations were based on electrical circuits, although the results are 

equally applicable to mechanical or chemical systems [ l l] ,  as will be shown in Chapter 

4: PBMR neural network inference measurements. The variables in the systems 

that were not solved by the ODE solver were determined explicitly. 

A time frame of 10s was chosen for all the experiments. The maximum frequency of the 

excitation waveform applied to the system under investigation was chosen as f-, - 10Hz. 

The critical sampling rate for the excitation waveforms (with a maximum frequency of 

10Hz) requires a sampling rate of only 20Hz. However, the non-linear components result 

in distortion, subsequently harmonics are generated in the system. These harmonics are 

reflected at any observable point in the system. Therefore it is required to sample any 

observation at  a sufficiently high frequency in order to capture the system characteristics. 

Figure 3.2 shows the input and output spectra of a linear chirp signal input el applied to 

the system under investigation. Because of the non-linearities in the system, harmonics 

are generated. This can be observed from the higher frequencies in the spectrum of the 

output € 2 .  

Figure 3.2: Input and output spectra with linear chirp as input 

In order to reach an error goal, the ODE solver requires a temporal grid that is sufficiently 

fine. The ODE solver can adjust the temporal grid locally to reach the error goal, or a fixed 
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temporal grid could be set. A fixed temporal grid was chosen since the timedelayed neural 

network assumes a fixed temporal grid. In order to capture the signals with harmonics 

and to  ensure sufficiently fine temporal resolution for the ODE solver, a sampling rate 

of 200Hz was chosen. This resulted in a time step of AT = 0.005s and 2001 points in 

each data set. This temporal resolution provided data sets that are accurate enough to 

lead to sensible experimental results. In order to minimise the effect of absolute scale, the 

parameters in all the systems were chosen so that the variables are of the same order of 

magnitude and the amplitude A fall in the range -1 < A < 1 so that it is not required 

to normalise the amplitudes [19, ~3951. 

In the section on data set validation, analysis and inspection methods by means of which 

data sets can be validated, are presented. These methods assist the modeller to evalu- 

ate the accuracy of the data. Inaccurate data will result in inaccurate neural network 

modelling, irrespective of the neural network topology or training algorithm. 

In the subsequent section on excitation waveform characteristics, input waveforms' char- 

acteristics are compared. By using the trained neural network output error with test 

waveform input as measure, the characteristics, by means which the the training wave- 

form input and test waveform input are compared, will enable us to predict whether a 

training set would result in accurate inference for a test input waveform. By using these 

input waveforms' characteristics comparison, it will be shown, how to  ensure, without 

neural network simulation with a test waveform input, whether the trained neural will 

accurately infer a variable for such a test waveform input or not. 

To address these issues, the data of the second order non-linear system shown in Figure 3.3 

was used. The neural network topology that was used is a time-delayed single hidden layer 

feed-forward network as shown in Figure 3.4. It has 50 time delays and 30 neurons in the 

hidden layer. Where used, it is assumed that the neural network topology and training 

algorithm could infer variables of the system to within a required specification. The issues 

concerning the design of a neural network topology for a specific system were addressed 

in Chapter 2: Network topology and system characteristics. 
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Figure 3.3: Second order non-linear system 

Figure 3.4: Time-delayed feed-forzuard neural network with one hidden layer. 

3.2 Data set validation 

In this section several tests will be conducted in order to verify the validity of data set 

simulation. Since all other experiments, results and conclusions rely on the simulated 

data, it is crucial to verify the accuracy of such data. Figure 3.5 shows the excitation 

waveform that was used for data simulation in order to validate the data set. Waveform 

i is an amplitude-modulated linear chirp signal given by Equation 3.1. 

3.2.1 Energy 

For any closed system, the law on conservation of energy states that the energy supplied 

to a system must be equal to the energy dissipated plus stored energy. Thus, for the 

system in Figure 3.3, initially at  rest, the energy supplied must be equal to the energy 

dissipated by the lossy elements, i.e. R1, fi and f2, plus energy stored by the inductor L1 

and capacitor GI. Since amplitude of the excitation waveform is close to zero at  t = 10 s, 

it is expected that the stored energy will be small. Any simulated data set should yield 
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Figure 3.5: Waveform i used for data set validation 

similar results. 

The total energy supplied to the system Ei, can be calculated from Equation 3.2 and 

the total energy (dissipated and stored) Emt can be calculated from Equation 3.3 with 

nts = 2001 and AT = 0.005s. Within a small numerical error, the energy is preserved, 

while the energy in any storage element is indeed small, as could be expected. 

n=nts n=nts n=nts 

Eat = x [el, - ezn] &AT + x [e4,, - ez,] ZS,AT + 1 ~ Z ~ ~ Z . , A T  
n=l n=l n=l 
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3.2.2 Dissipative elements 

Static dissipative elements such as the resistor R1 and the non-linear elements fi and fi 

should have an accurate V-I relationship for any applied waveforms used to generate a 

data set. Figure 3.6 shows the V-I relationships of the dissipative elements with waveform 

i as input for data set generation. Since these plots are lines, showing unique mapping 

of the V-I relationships, it can subsequently be concluded that these relationships have 

been computed accurately everywhere. 

Figure 3.6: Plot of V-I relationship of dissipative elements for excitation waveform 

3.2.3 Storage elements 

The voltage over an inductor is given by v ( t )  = L$ and the current through a capacitor 

is given by i(t) = c$. From these identities, approximations for the voltage C over the 

inductor L1 and the current through the capacitor C1 can be written as Equation 3.4 

and Equation 3.5 respectively. For accurate data, the plot of the estimate versus the 

generated data should approach a straight line. The plot of the estimate versus e~ is 

shown in Figure 3.7, while the plot of the estimate î 3 versus is is shown in Figure 3.8. 
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Since these plots are thin straight lines, it can be concluded that these relationships have 

been computed accurately everywhere. 

Figure 3.7: Plot of versus es for excztation waveform 

3.2.4 Noise 

This section will determine the effect of noise added to the training set data on the train- 

ing results. Three experiments with noise added to the training set data were conducted. 

From these experiments a relationship between the accuracy of the neural network infer- 

ence with certain scenarios of training set data noise was determined. 

In the three experimental scenarios, random noise is added to the training set (I) input, 

(11) output and (111) input and output. The training set data was simulated by using 

waveform i. The added pseudo random noise is of the form noise = A * rand where 

-1 < rand < 1 and the amplitude A was varied over a range 0.0001 I A 5 0.1. The 
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Figure 3.8: Plot of versus i3 for ezcitation waveform 

random function was implemented by using MATLAB's rand function as described in 

Appendix A: Software implementation. 

The neural network was trained for each of these scenarios with different amplitudes of 

the added noise. The training errors achieved with these three scenarios are plotted in 

Figure 3.9. It can be seen that the training error increases more or less logarithmically with 

a linear increase in noise amplitude. Assume that the data generation simulation error is 

random with the same distribution as the added noise, the error of the simulated data can 

be estimated. Noise added to the input data el indicates that a simulation error of less 

than x 0.001 could result in a training mean square error of less than M S E  = 2 * 
For reaching the same training error of less than MSE = 2*  lo-*, the simulation error for 

the target data ez must be less than 0.0002. With [ell 1 0.8 and lezl 5 0.5, in percentage 

of maximum amplitude, a randomly distributed error with maximum amplitude of 0.125% 

added to the input vector, or a randomly distributed error with maximum amplitude of 

0.04% added to the output vector, would result in a training error of less than MSE = 

2* lo-*. This indicates that modelling with neural networks is more sensitive to the noise 

added to the output than to the input. 
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Figure 3.9: Plot of training e m r  with noise added to (I) input, (11) input and output, 
(111) input and output 

3.2.5 Finite bit resolution 

The measurement data on a system is discrete, with a finite bit resolution. In order to 

establish the effect of such a finite bit resolution on the neural network inference accuracy, 

the training data (generated by using waveform i) was converted to sets of data with a 

finite resolution. With a full-scale input and output range of -1 1, Equation 3.6 and 

Equation 3.7 convert the training set data to sets of data with finite resolution of N bits. 

For all N bit resc dution data sc 2ts with 4 5 N 5 16, the neural network was trained and 

the training error ( M S E )  tabulated and plotted. Figure 3.10 shows the mean square 

error ( M S E )  versus the bit resolution N. It can be seen that the training error decreases 

as the bit resolution increases, thus more accurate inference could be achieved by using 

data with a high resolution. 
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Figure 3.10: Plot of tmining error, wing input and output tmining data with finite bit 
resolution 

3.3 Excitation waveform characteristics 

In this thesis, training of the neural network was done with a single set of training in- 

put/output data. For accurate inference, such an input/output data set should contain 

all the information to train the neural network within the required specifications. 

Several types of excitation waveforms for obtaining input/output data for system charac- 

terisation or neural network training have been used. Commonly used excitation wave- 

forms are waveforms with superimposed harmonics [36], multiple-frequency waveforms 

[37][19], band limited random waveforms (191 and chirp waveforms [16][38]. For this the- 

sis, variations of chirp, multiple-frequency and step waveforms will be used as inputs to 

generate the training and test sets. Specifications for the range of variable inference mea- 

surements can be expressed as test or validation sets. Test sets will refer to any set that 

is used for testing the trained neural network. It could be a validation set or a specifica- 

tion expressed as a test set. The comparison of training sets and test sets in this thesis 

is therefore directly applicable to the comparison of training and validation sets. From 

this viewpoint, a validation set is just another test set, and both has to fall within the 

inference specification. 

Trained neural networks perform well when doing interpolation, but are not good when 
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performing extrapolation. For this reason it is important to train neural networks with 

a training set that spans a greater mapping space than a test or validation set. It is 

expected that the validation set would represent the mapping requirement for the neural 

network in operation. This section will develop comparitive measures by which training 

input waveforms' characteristics can be evaluated to predict inference accuracy for any 

given test or validation input waveforms. A single training set consisting of input/output 

data is used for training. The input waveform must subsequently excite the system in such 

a way as to generate a sufficient number of training data examples in a neighbourhood 

where the required mapping is specified. In order to compare the sufficiency of a training 

input waveform to a test input waveform for the purpose of predicting whether accurate 

inference measurements will be achieved, the following hypotheses are presented: 

1. Test or validation input wavefoms should not cause variables to have a greater 

amplitude than the neural network has been trained for. Black box modelling, such 

as neural network modelling, could hide such occurrences. Therefore precautions 

should be taken if an internal parameterised model (that can be inspected) were not 

available. To ensure that the mapping capabilities of the neural network in terms 

of the non-linear components are larger than the requirement for the test set, a 

relationship between the training waveform and test waveform that would result in 

successful modelling is desired. A simple solution is to ensure that the amplitude A 

of the training set input is larger than the test set input, thus 

Systems with complex pole pairs, excited with waveforms close to or a t  the res- 

onant frequency, will experience large variable amplitudes, reaching a maximum 

when sustained long enough. The smaller the damping factor <, the larger the 

amplitudes reached for a specific input amplitude. For non-linear systems, the res- 

onant frequency changes with the absolute amplitude of the excitation waveform, 

and therefore the resonant frequency cannot be determined accurately. The reso- 

nant frequency is approximately f ,  -- 5Hz and can be estimated from the -3dB 

cut-off frequency in the spectrum of the output of the system with an input with 

a flat frequency spectrum such as in Figure 3.2 or from the overshoot with a step 
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input applied. It was shown in the previous chapter that the system under consid- 

eration has an overshoot with a step input applied, and therefore the system has 

complex pole pairs with a damping factor 0 < C < 1. Since the overshoot is small 

5 1%, the damping factor < is just less than 1, and therefore it is not expected 

that the variable amplitudes would increase significantly if an input waveform has a 

frequency at the resonance frequency of the system, sustained for a prolonged time. 

2. The training input w a v e f o m  should span a wider dynamic mnge than the test input 

(or validation input), since the trained neuml network cannot extmpolate. In terms 

of frequency, this implies that 

ftrain(min) I ftest 5 ftrczin(maz) 

Since the frequency of a waveform is related to the rate of change in the time domain, 

this implies that the rate of change of the test input waveform should be within the 

rate of change of the training input waveform, or 

Should the neural network be seen as a pattern classifier, where the input consists 

of the current value and time-delayed copies of the previous values, the patterns 

presented in the time span of the time delays range from slow-varying patterns to 

fast-varying patterns. The slowest varying patterns are closest to constant values, 

ranging from maximum to minimum amplitudes. For the neural network to learn 

the relationship between the input and output for a constant input, the training 

input waveform should have constant parts at minimum and maximum amplitudes 

for at least the time span of the time delays. The highest frequency part of the 

input waveform produces the fastest varying pattern. 

3. For successful neural network tmining between the dynamic mnge limits, the tmining 

input w a v e f o m  should excite the system suficiently dense. In terms of frequency 

components, this means that the training input waveform should have frequency 

components a t  regularly spaced intervals, or a t  least have frequency components 

with larger amplitudes than that of the test input waveform. The frequency spec- 

trum of the training set input waveform should therefore be sufficiently dense to 



CHAPTER 3. TRAINING, TEST AND VALIDATION SETS 63 

enable successful modelling. In the time domain, this implies that the training set 

input waveform should have different rates of change within the amplitude range. 

The different rates of change within the amplitude range must be sufficiently dense, 

in other words, there should not be large domains where there is no mapping of a 

rate of change at  a specific amplitude. 

In order to test these hypotheses, experiments were conducted where the input waveforms' 

characteristics were compared and the output error of the trained neural network was 

used as measure. The experiments consist of training the neural networks with selected 

excitation input waveforms and comparing the test input waveform's characteristics with 

the training excitation waveform's characteristics. Frequency and time domain analyses 

are performed to quantify the waveforms' characteristics. Using the output error (either 

the mean square error (MSE) or error in time domain) as inference accuracy measure, 

a comparison between the characteristics of the training excitation waveform and test 

excitation waveform is established so that it can be predicted whether inference would be 

accurate or not, without actual network simulation using test sets. 

3.3.1 Excitation waveforms 

Variations of the three basic types of excitation waveforms, namely chirp, multi-frequency 

and step waveforms, were used in the experiments. These three types of waveforms 

originated from chirp signals used by bats and for radar, waveforms with line spectra that 

can be used to determine system frequency characteristics and step inputs to determine 

the step response of systems. One of the waveforms and the resultant output will be 

used to train the neural network in the experiments. The training input waveform's 

characteristics will be compared to the characteristics of the other waveforms, using either 

frequency domain or time domain characteristics. 

The numerical values were chosen so that they fall within a range, and can scaled to 

suit the application as will be shown for the pebble bed micro model (PBMM). These 

numerical values were chosen for the convenience of having parameter values that can be 

expressed simply. 
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Excitation waveforms used for training 

Waveforms used for training are shown in Figure 3.11. 

Figure 3.11: Time plot of waveforms c, k, h, and j 

Waveform c is a linear chirp signal as formulated in Equation 3.8. At high frequencies, 

the amplitude is modulated to reduce any unwanted end effects. 

Waveform k is a quadratic chirp signal, of which the amplitude is modulated at  high 

frequencies, as given by Equation 3.9 

elk = 0.2 * [1 + tanh(5 * (t - 0.5)) * (1 - tanh(2 * (t - 9.0))] * sin(0.2t3) (3.9) 

Waveform h is a frequency-modulated signal where the modulation signal is chosen in 
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such a way that the frequency increases up to a maximum and then decreases again. The 

signal is amplitude modulated at  the high-frequency part of the waveform. Equation 3.10 

gives the formulation for waveform h. 

Waveform j, given by Equation 3.11, is a modification of waveform h, with the addition 

of a constant part of maximum absolute amplitude sustained for a t  least as long as the 

input time delay of a neural network required for accurate inference. 

elj = 0.4 * (12 + tanh(5 * (t - 6.0)) - tanh(5 * (t - 4.0))] * 
sin [50.rr(l - cos(O.l?rt))] + tanh(50 * (t - 4.5)) - 

tanh(50 * (t - 4.8)) - tanh(50 * (t - 5.2)) + tanh(50 * (t - 5.5))) (3.11) 

Excitation waveforms used for testing 

Waveforms used for testing the trained neural network is given in this section. 

Waveform p and q, given by Equation 3.12 and Equation 3.13 are amplitude-modulated 

linear chirp signals. For waveform p the low-frequency part has the highest amplitude, 

and for waveform q the high-frequency part has the highest amplitude. These waveforms 

are shown in Figure 3.12. 

Waveform a (formulated by Equation 3.14) is a superposition of amplitude-modulated 

signals, resulting in a line spectrum with a minimum frequency of O.09Hz and a maximum 
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Figure 3.12: Time plot of waveforms p and q 

frequency of 7.7Hz. Waveform f (formulated by Equation 3.15) is an amplitudemodulated 

signal with a fixed carrier frequency of 5Hz. This frequency was chosen because the 

resonant frequency of the system under investigation (see Figure 3.3) has a resonant 

frequency of approximately 5Hz. Figure 3.13 illustrates the plots of these waveforms. 

el, = 1 k,0.5 [cos(O.ln2~ f t - T) - 11 s i n ( 2 n ~  f t )  (3.14) 

w i t h n = 1 , 3 , 5 a n d 7 ,  f = 1 H z , k l = 0 . 5 , k 3 = 0 . 2 , k 5 = 0 . 2 , k 7 = 0 . 1 .  

Figure 3.13: Time plot of wave foms  a and f 

The rate of change of a step signal (and the number of frequency components) are infinite 

in the ideal case. To ensure that the signal is well-presented in the time domain (and 
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frequency domain), the rate of change of a step signal must be limited. In order to 

accomplish this limited rate of change, pseudo step signals, closely representing true step 

signals, were constructed, using the hyperbolic tangent function tanh. Waveform e is close 

to a step signal and is given by Equation 3.16. Waveform m is a multistep signal given 

by Equation 3.17 Waveform e and m are plotted in Figure 3.14. 

Figure 3.14: Time plot of waveforms e and m 

3.3.2 Frequency domain analysis 

In this section, an attempt will be made to quantify a waveform's characteristics for com- 

parison based on the frequency spectrum. For an estimate of the spectrum of a waveform, 

MATLAB's pmtm function was used as described in Appendix A: Software imple- 

mentation. In a previous section, three characteristics for the comparison of training 

and test input waveforms were hypothesised, namely, (1) amplitude, (2) dynamic range 

and (3) density within the dynamic range. 
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The frequency spectrum gives the frequency components with high confidence, but the 

amplitude of the spectrum at a specific frequency does not relate directly to the actual 

amplitude of the waveform, since the amplitude depicts the summation of the components 

of a specific frequency. When comparing waveform c (a chirp waveform) with a waveform 

with specific frequency components (such as waveform a or f) that are sustained for 

a prolonged period with equal maximum amplitude, the amplitude of the spectra will 

suggest that the amplitude of the waveform with specific frequency components is larger 

than the amplitude of the chirp waveform. However, this is not true. Subsequently, the 

spectra cannot be used to compare the amplitudes of waveforms. This can be verified by 

observing the spectra of waveforms c, a, f and k (given in Figure 3.15). 

Figure 3.15: Spectra of input waveforms 

The dynamic range of waveforms, that is the minimum and maximum frequencies, can 

to some extent be shown by the spectra. For the spectra of waveforms with sharp cut-off 

a t  high frequency, such as waveforms k and h (shown in Figure 3.15), the spectra show 

that waveform h has higher frequency components than waveform k. Similarly, it can be 
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seen that waveform p has higher frequency components than waveform h. For the spectra 

a t  low frequency, waveform e has the highest amplitude of the waveforms in Figure 3.15, 

implying that waveform e has low-frequency components with larger amplitudes than 

any of the other waveforms. Although the spectrum is computed correctly (compare the 

Fourier series of a a square wave [39]) ,  the amplitude of the spectrum of the step waveform 

e does not reflect the amplitudes of distinct frequencies. 

Within the dynamic range between the maximum and minimum frequencies, the spectra 

can to some extent be used to compare the density in the frequency domain. For example, 

comparing the spectra of waveforms a and h (Figure 3.15), it is observed that waveform 

h has frequency components where the spectrum of waveform a has no frequency com- 

ponents. From Figure 3.15, according to the same argument, it can be observed that 

waveform q is more dense in the frequency domain than waveform f is. 

From the above discussion it can be seen that the spectra of waveforms can only be used 

to compare the highest frequencies of waveforms. The amplitude, lowest frequency or 

frequency density cannot be compared quantitively by using the spectra. It is concluded 

that in order to have quantified characteristics for waveforms (amplitude, dynamic range 

and density within the dynamic mnge ) ,  the spectra cannot be used. For this reason, 

methods to  quatify waveform characteristics will be developed in the next section. 

3.3.3 Time domain analysis 

In the previous section it was shown that the spectra cannot be used to quantify wave- 

forms' characteristics with confidence. In order to compare characteristics quantitively, 

time domain analyses methods will be developed in this section. The characteristics that 

ought to be quantified are the amplitude, dynamic mnge and density within the dynamic 

mnge. 

It is easy to compare amplitudes of waveforms in the time domain. A simple procedure, 

directly implementing the requirement that At,,i,(mi,) I Atest I At,,,,(,,), will suffice. 

In order to compare the dynamic mnge and density within the dynamic mnge of wave 

forms, two functions, sum density and rate of change density will be developed. 
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The average sum over several points of a waveform at  a specific amplitude, could indicate 

the existence of either slow-varying parts of the waveform, or any arbitrary waveform. 

However, the maximum or minimum average sum at  a specific amplitude, will indicate 

the existence of slow-varying parts of the waveform. In order to indicate the existence of 

the slowest-varying parts of the waveform relevant to the problem, the average sum was 

taken over the number of points K of the input pattern of the neural network. In this 

case it is 51 (the current value and 50 time delays). With K points, the average sum for 

a waveform x is given by 

1 
k = K  

S,, = - c2 
K + l  

xn+ k 
k=-K  

2 

for $ 5 n 5 nts - $ where nts  is the number of points of the waveform. The sum 

density function is derived by making the average sum S, versus amplitude relationship 

discrete and assigning an 1 if there were an average sum and amplitude on the discrete 

grid thus formed. For both the axis of the average sum and amplitude, 20 divisions were 

used. This allows for a maximum of 400 countable features. This number was chosen to 

be less than the number of weights or the number of training patterns, but suffient to 

enable comparison of waveforms when using these features. The results will indicate that 

this was an appropiate choice. 

Figure 3.16: Average sum and sum density of waveform k and sum density of waveforms 
c and a 

Figure 3.16 shows the relationship between the average sum versus amplitude and the 

sum density function for waveform k. As an example of how the sum density will be 

used to compare waveforms, Figure 3.16 shows the sum density functions for waveforms 
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c and a. The sum density of waveform a has 53 features, of which 8 were not mapped by 

the sum density of waveform c. The percentage sum density features of waveform a not 

mapped by the sum density features of waveform c will be used as measure, which in this 

example = 15%. 

The rate of change of an input waveform to a system will cause a certain output response. 

For a linear system, rates of change of the input could result in characterising the system 

at any amplitude. For non-linear systems, system characteristics change with the absolute 

amplitude of the input. Therefore, to characterise a non-linear system, an input waveform 

should have different rates of change at  several amplitudes. The rates of change of a 

waveform were determined by making use of a first order polynomial fit (using MATLAB's 

polyf it function). The polynomial fit was taken over 3 points, regarded as sufficiently 

few to  determine the highest rates of change of a waveform. The rate of change density 

function is the discrete version of the rates of change versus amplitude, using a grid of 

20 x 20. A 1 is assigned to the rate of change density function if a rate of change exists at 

a specific amplitude. Figure 3.17 shows the rate of change and the rate of change density 

for waveform m. 

Figure 3.17: Rate of change and rate of change density for waveform m and rate of change 
density for waveforms c and a 

As an example of how the rate of change density will be used to compare waveforms, 

Figure 3.17 shows the rate of change density functions for waveforms c and a. The the 

rate of change density of waveform a has 64 features, of which 5 were not mapped by the 

rate of change density of waveform c. The percentage rate of change density features of 

waveform a not mapped by the rate of change density features of waveform c will be used 
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as measure, which in this example is = 7.8%. 

In this section, two functions, the sum density function and rate of change density func- 

tion, have been developed in order to compare waveform characteristics. The unmapped 

features of these functions, expressed in percentage, will be used to compare waveforms. 

In the next section, the neural network will be trained by using a training set and tested 

by using test sets. The test input waveforms are compared to training input waveforms 

with the sum density and rate of change functions. 

3.3.4 Experimental results 

Four training experiments were conducted in this section. A timedelayed feed-forward 

neural network shown in Figure 3.4 with 50 time delays, and 30 neurons in the hidden layer 

were used for these experiments. The training sets c, k, h, and j were used respectively. 

The trained neural networks were tested with all the training or test sets. The error, 

expressed in mean square error ( M S E )  and the maximum output error in the time domain, 

in percentage of the maximum output, were used to evaluate the inference accuracy. As an 

example of how the maximum error in the time domain was obtained, Figure 3.18 shows 

the error in the time domain with test sets a and m, with set c as training set. With a 

maximum absolute amplitude of 0.5V, the errors are - 6% and FZ 20% respectively. Since 

the mean square error ( M S E  ) will not show large output errors that occur for a short 

time interval, the maximum error in the time domain was preferred as error measure, 

being a more conservative measure. Comparing the errors in Figure 3.18, the large errors 

with waveform m as input might not be reflected by the mean square error. 

Training set c 

In this experiment, the neural network was trained by using training set c. The network 

was simulated for each waveform, and the output error, in mean square error ( M S E )  and 

maximum error in the time domain, were determined. Compared to the training waveform 

c, the sum density features of the waveforms not mapped by the sum density features 

of the training waveform and the rate of change density features of the waveforms not 
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Figure 3.18: Time domain error vith training set c and test inputs a and m 

mapped by the rate of change density features of the training waveform, were determined. 

The output errors and the percentage features that were not mapped, are indicated in 

Table 3.1. 

Table 3.1: Ibining results using tmining set c, and waveform chamcteristics 

% max error % unmapped sum % unmapped rate 
density of change density 

From Table 3.1, the time domain error, in percentage of output amplitude, versus the 

percentage unmapped features, are plotted in Figure 3.19 The magnitude of the percentage 

error in the time domain is shown graphically in Figure 3.19. The radii of the circles in 

the presentation is approximately proportional to the error in the time domain for the 

appropriate waveform. 

From Figure 3.19 it can be observed that the output error increases as either the rate of 
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Figure 3.19: Percentage e m r  in  time domain versus unmapped density features with 
neural network trained with training set c 

change density or the sum density increases. 

Training set k 

The same procedure was followed for this experiment as with training set c. The network 

was trained by using training set k and simulated by using all the input waveforms. The 

results of the simulation errors for all the waveforms and the percentage of unmapped 

features are listed in Table 3.2. From Table 3.2, Figure 3.20 was plotted, showing the 

percentage error in the time domain (with the radii approximately proportional to the 

error) versus the unmapped features. 

Figure 3.20: Percentage e m r  in  time domain versus unmapped density features with 
neural network trained with training set k. 
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Table 3.2: Thining results using training set k, and waveform characteristics. 

% max error % unmapped rate % unmapped sum 
of change density density 

From Figure 3.20 it can be observed that the output error increases as either the rate of 

change density or the sum density increases. 

Training set h 

The same procedure was followed for this experiment as with training set c. The network 

was trained by using training set h and simulated by using all the input waveforms. The 

results of the simulation errors for all the waveforms and the percentage of unmapped 

features are listed in Table 3.3. From Table 3.3, Figure 3.21 was plotted, showing the 

percentage error in the time domain (with the radii approximately proportional to the 

error) versus the unmapped features. 

From Figure 3.21 it can be observed that the output error increases as either the rate of 

change density or the sum density increases. 

Training set j 

The same procedure was followed for this experiment as with training set c. The network 

was trained by using training set j and simulated by using all the input waveforms. 

The results of the simulation errors for all the waveforms and the percentage unmapped 
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Table 3.3: h i n i n g  results using training set h, and waveform characteristics. 
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Figure 3.21: Percentage e m r  in  time domain versus unmapped density features with 
neural network trained with training set h 

features are listed in Table 3.4. 

From Table 3.4 it can be seen that the output errors of all the waveforms are small, 

when the percentage of unmapped features (from the sum density functions and rate of 

rise density functions) are small. The output error with waveform m as input (with 0 

unmapped features) is larger than the output errors of other waveforms, of which the 

percentage unmapped features are 0. Nevertheless, the results indicate the same general 

tendencies. 

From the results of the four experiments in this section, using training sets c, k, h and 
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Table 3.4: lh ining results using training set j, and waveform characteristics. 

% max error % unmapped rate % unmapped sum 
of change density density 

j, it can be concluded that the percentage of output errors increases as the percentage 

of unmapped features increases. Using the waveform characteristics (the sum density 

functions and rate of change functions) for determining the unmapped features proved 

to be an appropiate test to predict whether a trained neural network would have a small 

error for a test input waveform (or validation input waveform or a specification expressed 

as an input waveform). This result implies that neural networks need not be tested or 

validated by using test or validation sets, since the characteristics of test or validation 

input waveforms can be compared to the training input waveform. 

3.4 Multi-variable inference 

In the previous sections, inference of a single variable based on a single input variable 

was discussed. This section looks at  two other possibilities, namely the inference of two 

variables from a single input, and the inference of a variable from two independent input 

variables. The systems that were used for these two cases and the topologies required, 

were discussed in the previous chapter. Of concern in this chapter, are the requirements 

for the training excitation waveforms. 

For the single input, dual output, the same requirements for the training set input com- 

pared to the test (or validation ) input waveforms such as discussed in this chapter are 
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applicable. � he results in the previous chapter illustrated this. 

For the inference of a single variable from two independent variables, it is required to have 

training input waveforms of which one input waveform has the whole range of character- 

istics for any characteristic of the other input waveform. This implies that the training 

input waveforms will have a considerably longer time span than the single input coun- 

terpart for the same sampling rate and frequency range. This is not constructive for 

creating such input waveforms. However, as experienced in the previous sections when 

constructing training input waveforms for the single input case, the two input waveforms 

(for the training set) shown in Figure 3.22 were created. The basis for these waveforms 

is a waveform that consists of a chirp signal with constant parts at the minimum and 

maximum amplitude, and assumed to be favourable for mapping the required relation- 

ship accurately. Such a waveform basis, for instance, can be seen in Figure 3.22 in time 

period 15 5 t 5 27 s. These two inputs are given by Equation 3.18 and Equation 3.19 

respectively. The numerical values were chosen, as before, for convenience, and can be 

scaled for a specific application. 

It can be seen from Figure 3.22 that for every charxteristic, whether a slow-varying 

pattern or a fast-varying pattern of the one waveform, the other waveform has a range 

of patterns ranging form slow-varying to fast-varying patterns. The neural network for 

dual input, single output inference shown in the previous chapter was trained by using 

the training set data obtained by the same method as discussed before. Table 3.5 shows 

the training results for dual input, single output inference, and the output errors with 

either one of the two inputs were held at a constant value of 0.8V. 
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time 

Figure 3.22: Training set input waveforms for dual input, single output inference 
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Table 3.5: lh ining results for the inference of a single variable with two input variables 

3.5 Discussion 

This chapter has addressed two important issues, namely whether the simulated data sets 

used for training or testing are valid, and the characteristics of training input waveforms, 

compared to test input waveforms that are necassary to ensure accurate inference. 

% max error 
2 
0.4 
0.2 

inputs 

el, e3 
e l ,  e3 = 0.8V 
el = 0.8V, e3 

The validity of data sets were based on the conservation of energy and the fundamental 

relationships of storage elements. Due to the presence of noise in practical systems and 

the finite bit resolution of digital systems, the influence of noise and finite bit resolution 

on inference accuracy was determined. From these results it can be concluded that the 

inference errors in the subsequent sections are not dominated by the inaccuracy of data, 

but by the specific experimental setup. 

M S E  
1.3 * 
3.6 * lo-7 
3.4 * 

A comparison between training input waveforms and test (or validation) input waveform 

characteristics was made. The purpose of these comparisons were to show whether the 

hypotheses regarding the amplitude, dynamic mnge and density within the dynamic mnge 

of training inputs compared to test (or validation) inputs were true. Frequency and 

time domain analysis methods were used. When using the spectra in the frequency 

domain as waveform characteristics, training input waveforms and test (or validation) 

input waveforms cannot be compared in order to predict whether inference would be 

accurate. Because of the inadequacy of spectra to make such a prediction, time domain 

analysis methods were developed. These time domain methods consist of two functions, 

namely the sum density function and rate of change density function. Using the sum 

density function and rate of change function to compare training input waveforms and 

test (or validation) input waveforms, waveforms could be compared quantitively. 

For the sum density function and rate of change density function, test (or validation) 
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input waveforms are compared to the training input waveform. The sum density features 

or rate of change density features of the test (or validation) input waveforms not mapped 

by the training input waveform serve as a quantitive measure for comparison. When all 

the features of the test (or validation) input waveforms have been mapped by the features 

of the training input waveforms, accurate inference is possible for the test (or validation) 

input waveforms when the training set was used for training the neural network for infer- 

ence, subject to certain constraints. These constraints are the topological requirements 

and the training algorithm capabilities. The topological requirements for accurate infer- 

ence were derived in the previous chapter. In all cases the training algorithm was capable 

of finding a local minimum with a sufficiently small error. 

This chapter has shown that inference will be accurate (using test or validation sets 

as acceptability tests) if all the features of the test or validation input waveforms were 

mapped by the features of the training input waveform. The hypotheses have been shown 

to be true, and in effect makes it unnecessary to test or validate neural networks after 

training. These results not only apply to inference measurements, but also to modelling 

systems. Since a comparison can be made between a training input waveform and test (or 

validation) input waveforms, it can subsequently be predicted whether accurate inference 

would be possible. A training input waveform can be constructed to allow accurate 

inference measurements. Specifications, such as maximum amplitude or frequency range, 

can be expressed as test input waveforms. Training input waveforms can be constructed 

that would map all the sum density or rate of change density features of such a test 

input waveform in order to allow accurate inference measurements (or system modelling) 

with time-delayed feed-forward neural networks. It is assumed that validation sets will fall 

within these specifications and that the trained neural network would pass such validation 

tests. 

Assuming the appropiate neural network topology and capable training algorithm, the 

following is a summary of the steps to be taken to allow accurate inference measurements 

that should allow the trained neural network to pass test or validation tests: 

1. If the specifications for the inference (or modelling) problem were not in the form 

of test input waveforms, translate them into test input waveforms. 
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2. Construct a training input waveform that will map all the sum density features 

and rate of change density features of the test input waveforms. If the sum density 

function of the training input waveform does not map all the sum density features of 

the test input waveforms, add slow-varying patterns to the proposed training input 

waveform at the relevant amplitudes so that all the sum density features of the test 

waveform, inputs are mapped. If the rate of change density function of the training 

input waveform does not map all the rate of change density features of the test input 

waveforms, add fast-varying patterns to the proposed training input waveform at 

the relevant amplitudes so that all the rate of change density features of the test 

waveform inputs are mapped. 

3. Generate the training set in such a way that the training input waveform is the 

known variable from which some other variable must be inferred. 

4. Train the timedelayed feed-forward neural network by using the training set. 

The next chapter will apply the methods developed in this and the previous chapter to a 

simulated Brayton cycle, and the simulated pebble bed micro model (PBMM), which, from 

a thermodynamic viewpoint, closely resembles the pebble bed modular reactor (PBMR). 



Chapter 4 

PBMR neural network inference 
measurements 

This chapter applies the inference methods developed in the previous chapters to  the 

Brayton cycle power plant, which is t o  be used in the pebble bed modular reactor (PBMR). 

Two examples are presented. The first example is based on a simulation, using MATLAB's 

ODE solver to solve the variables of the state equations of the Brayton cycle with a single 

axis. The second example is based on a simulation using Flownet of the three axes 

Brayton cycle of the pebble bed micro model (PBMM). This is a scaled version of the 

thermodynamic part of the pebble bed modular reactor (PBMR), designed, built and 

demonstrated at  the Potchefstroom University, South Africa. 

4.1 The pebble bed modular reactor 

The pebble bed modular reactor (PBMR) is a new type of nuclear reactor currently being 

developed. PBMR is also the name of the South African company that develops this 

reactor. However, in this thesis PBMR will refer to the reactor and not the company. In 

South Africa the PBMR is approaching the construction phase, with the first plant to 

be constructed in 2005. Also called a high-temperature reactor (HTR), China and Japan 

have commissioned small HTR reactors [40]. 

This type of reactor differs from conventional nuclear reactors in many aspects. The most 
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appealing difference is the PBMR's inherent safety in terms of possible core meltdown 

and subsequent radioactive leakage to the environment. Inherent safety, or passive safety, 

means that core meltdown is not possible even if all control and safety mechanisms were 

to fail. To achieve this inherent safety, the enriched uranium fuel is dispersed in billions of 

particles (with diameter = 0.5mm ) with several high-density coatings [40, p52]. One of 

the layers is tough silicon carbide ceramic that serves as a miniature pressure vessel capable 

of containing the fission products up to temperature of 1600°C. These particles are 

encapsulated in graphite spheres (= 50mm diameter) that can withstand the maximum 

temperatures reached through convection cooling even if all control systems and safety 

mechanisms were to fail. There are typically 15000 coated particles encapsulated in a 

graphite sphere, and several hundred thousand graphite spheres are stacked to form the 

reactor core. These graphite spheres (or pebbles) have a high specific heat capacity and 

serves as a moderator. The power density of the pebbles are typically less than one- 

tenth of that of a conventional nuclear reactor. Fuel replenishment schemes totally refuel 

after a few years with fuel added during this period (resulting in a growing stack), or 

continuous refueling with new, partially spent or unfuelled pebbles. The latter scheme 

has the advantages that the power and temperature distribution can be shaped, adding 

to the salient safety of the reactor [40, p52]. 

A single working fluid (helium) in a closed environment is used as working fluid. Helium 

is both chemically and nuclearly inert and does not interfere with the nuclear moderation 

process. Because no phase change takes place, the heat transfer and transport are uniform. 

The use of a single working fluid allows a theoretical higher efficiency than light water 

reactors, and reduces the number of components with subsequent lower investment cost. 

Furthermore, the reactor can be much smaller than the existing types of nuclear reactors, 

with a maximum electrical output of IOOMVA, making it feasible for utiliiation by small 

consumers at  localities not served by a power grid. The inlet and outlet temperatures of 

the working fluid are typically 500°C and 900°C respectively, operating at  a pressure of 

= 7MPa. 

The thermodynamic cycle is a recuperative Brayton cycle. The Brayton cycle is the 

ideal for the closed cycle gas turbine unit. The South African PBMR is a recuperative 

Brayton cycle with three axes. This means that the main turbine/generator, low-pressure 
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compressor/turbine and high-pressure compressor/turbine are mounted on different axes, 

allowing more degrees of freedom for control, with subsequent increase in efficiency. 

The thermodynamic cycle is designed by making use of the thermodynamic simulation 

software package Flownet [41]. The models of the individual components of a thermo- 

dynamic network can be built in software, and when interconnected, the total (closed 

or open loop) response of a system can be evaluated. Flownet, and similar simulation 

packages [42] 1431 [44] are based on fundamental thermodynamic principles such as 

the Maxwell equations [45, ~3671. In order to validate the design, including the control 

systems, the pebble bed micro model (PBMM), a scaled down, simplified version of the 

thermodynamic part of the PBMR, has been designed, built and demonstrated at  the 

Potchefstroom University, South Africa. The PBMM uses nitrogen as working fluid at  a 

much reduced pressure and electrical elements for heat generation. 

4.2 The Brayton cycle 

For demonstration of neural network inference implementation, a simulated simplified 

model using the Brayton cycle consisting of a turbine, a compressor and two heat- 

exchangers, will be used. Such a simplified system consists of all the major components 

that are found in the complete pebble bed modular reactor. Figure 4.1 shows the T-s 

diagram and the model for the basic Brayton cycle [46]. 

Figure 4.1: Brayton cycle T-s  diagmm and basic Bmyton  cycle 

In order to add dynamics to the basic Brayton cycle, Figure 4.2 shows a diagram of the 

basic Brayton cycle with heat input Qi, and heat output QWt, an input heat exchanger 
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with significant heat capacitance, a load consisting of a flywheel with moment of inertia 

IF and varying torque load TG due to the generator. The output heat exchanger transfers 

heat to  an infinite thermal sink at  constant temperature, therefore TI is constant. 

Figure 4.2: Brayton cycle with heat-exchanger and flywheel 

Assume that the expansion or compression is done isentropically and the heat transfers 

are at  constant pressure p. For steady flow, neglecting velocity changes, Equation 4.1 

gives the work and heat transfer for each part of the cycle [46, ~1561. The heat capacity 

C, of a fluid is the energy per unit mass per unit temperature J/kg.K, therefore the work 

or heat of Equation 4.1 is in energy per unit mass J/kg. 

With r the pressure ratio, y the specific heat ratio, the netto work W,t = WT - WC is 

given by Equation 4.2. Since the work is done isentropically, 2 = = @lil. At a 

constant mass flow rate m = 1 kg/s, from Equation 4.2 the power output to the load Pnet 

is given by Equation 4.3. 
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The total torque ZOt applied to the load is the sum of the generator torque Tc: and the 

torque applied to the flywheel TF = 1 ~ 8 .  Since P = 7 4 ,  the netto power Pnet in terms of 

the load is given by Equation 4.4. 

The input heat-exchanger is modelled as a thermal resistance Rt with heat capacitance 

C,. Figure 4.3 shows the model for the heat exchanger. The total power Pbt is the sum 

of the power gain of the heat reservoir and the power applied to the thermal cycle, and 

can be expressed by Equation 4.5, using consistent units [lo, ~2691. 

Figure 4.3: Model for heat-exchanger 

T5 - T3 
ptot = 

Rt 
= C,T~ + P,, W 

By choosing the state variables xl = 8, x2 = 8 and x3 = T3, from Equation 4.3, Equa- 

tion 4.4 and Equation 4.5 the state equations are given by Equation 4.6. 
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4.3 Simulated model of the Brayton cycle 

For the simulated model of the Brayton cycle, the turbine characteristic and compressor 

characteristics were modelled as r = K,(1 + ~ e ) ,  although more refined thermodynamic 

modelling will use published compressor and turbine characteristics such as shown in 

[47, p211. Practical systems have turbine and compressor characteristics that are more 

refined than those of the model chosen above. However, with the right pressure ratio a t  

a certain rotational speed 8 rad/s, this model is acceptable within a certain operating 

range. Typical pressure ratios are 5 5 r 5 20 (48, ~3981. It was assumed that the mass 

flow rate is more or less constant (as shown by analysis [43]). The system dynamics are 

dominated by the effect of the heat capacitance C, of the input heat exchanger and the 

moment of inertia IF of the flywheel. 

Temperatures encountered in practical Brayton cycle systems are typically TI = 300 K 

and T3 x 900 K [46, ~1561. By choosing the fluid diatomic (such as nitrogen), the specific 

heat ratio y = 1.4 [45], with a specific heat capacity Cp = 1.039 kJ1kg.K. 

The state equations for the Brayton cycle (Equation 4.6) was normalised by multiplying 

throughout by a constant A = 0.001, as shown in Equation 4.7. 

The mass flow rate was chosen as r n  = 1 kgls, the heat capacitance was chosen as 

Cp = 1.0 kJ/kg.K, the maximum and minimum temperatures were chosen as TI = 300 K 

Tg = 900 K respectively, the moment of inertia was chosen as IF = 0.01 kg.m2, the 

thermal resistance was chosen as Rt = 0.1 "CIW, heat capacitance was chosen as C, = 

0.1 kJ1kg.K and the choice of KT = 5 ensured a pressure ratio 1 5 r 5 10. 

Several variables should be monitored on a thermodynamic system. These are pressures, 

total mass, mass flow rate, fluid temperature, the rotational speeds of the compressors and 
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turbines as well as the power input and output. Since measuring the fluid temperature is 

problematic and cannot be measured accurately or timeously [49, ~2521, it was used as 

an example for demonstrating inference measurements on this model of the Brayton cycle. 

Temperature measurements of flowing gases are accomplished by using a thermocouple in 

a thermometer well. Conduction and convection or convection and radiation reduce the 

accuracy that could be achieved with such a measurement setup. 

Training and test set data were generated by using a varying load torque as an independent 

variable and solving the state equations of Equation 4.6, using MATLAB's ODE solver. 

4.4 Inference measurements on the simulated Bray- 
ton cycle model 

By using the methods developed in the previous chapters, (i) the appropriate neural 

network topology for inference measurement on the system model was found, (ii) the 

training and test input waveforms were constructed, (iii) the training and test input 

waveforms were compared, using the sum density function and the rate of change density 

function, and (iv) the neural network was trained using the normalised torque ATG as 

input and the normalised temperature AT2 as target. 

4.4.1 Neural network topology 

In Chapter 2: Network topology and system characteristics it was shown which 

neural network topology to choose for a specific type of system. To do so, it must be 

established whether the system is dynamic or static, linear or non-linear. 

The transient response with a step input applied can be seen in Figure 4.4. The decay 

of the temperature shows that the system is dynamic, which requires a neural network 

with time delays. The number of time delays is based on the time when the amplitude 

has reached the final value within an arbitrary small error. Using Figure 4.4, with the 

amplitude within 0.05 % of the final value, the time decay was chosen as 0.3s. With time 
time &a step AT = 0.005 s the time delays TD = ,, ' = 60. 
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Figure 4.4: Transient response of nonnalised output AT2 with nonnalised input ATc 

Figure 4.5: Static input/output relationship of the normalised temperature Tz us nor- 
malised generator t o q u e  TG 

Two methods were presented by means of which it can be established whether a system is 

linear or non-linear. The existence of static non-linearities can be shown with a plot of the 

input/output relationship of static operating points, as shown in Figure 4.5. By plotting 

the output/input relationship of a slow-varying part of the input and output waveforms, 

the interpretation of the shape obtained can show whether the system is linear or non- 

linear. A distorted oval, as shown in Figure 4.6, indicates that the system is non-linear. 

For modelling non-linearities, the neural network must have at  least one layer with non- 

linear activation functions. A few trial training runs, using different numbers of neurons 

in the layer, would result in the optimum number of neurons. 

From the input/output relationship it was seen that the neural network is required to map 

a non-linear dynamic relationship. For this type of mapping, a time-delayed feed-forward 
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Figure 4.6: Response of output with slow-varying input and input/output relationship at 
slow-varying part 

neural network with input time delays and a single hidden layer is required. With a few 

trial training runs, 30 neurons was selected for inferring the normaliied temperature AT2 

from the applied generator load torque ATG for the simulated Brayton cycle. 

4.4.2 Training and t e s t  sets 

For the simulation of data sets, the normalised generator torque TG was varied according 

to the exitation signals in Figure 4.7. The data set, using exitation signal n, was used 

as training set. The data sets from the other exitation signals were used as test sets, or 

test sets derived from some specification. For example, exitation signal c will represent 

a frequency range specification of 1 H z  5 f 5 7 H z  for a torque range of 0.12 N.m 5 

ATG 50 .26  N.m. 

In the previous chapter, comparisons were made between the training neural network 

input waveform and the test input waveforms. The sum density functions and rate of 

change density functions were used for the comparison of input waveforms. It was shown 

that the neural network simulation error increases as the percentage of unmapped features 

of a function increases when compared to the proposed training input waveform. 

By comparing the characteristics of test inputs to those of the training input before 

training, the test inputs that are accommodated in the neural network model can be 

predicted. For example, the sum density functions and the rate of change density functions 



Figure 4.7: Nomalased input A?;: training and test input wave foms  for inference of the 
nomalised temperature AT2 

for input waveforms n and c are shown in Figure 4.8. The percentage of unmapped 

features of test waveforms not mapped by the features of the training input waveform n 

were determined for all the input waveforms and listed in Table 4.1. 

Based on the comparison of the waveforms and using waveform n as training input, it can 

be predicted that the neural network should be able to infer the temperature T2 accurately 

from the torque TG for waveforms c and h, if the training algorithm were capable of finding 

a local minimum with a sufficiently small error. A larger error is expected for inference of 

the temperature AT2 from the torque ATG with input waveform m, because some features 

of waveform m are not mapped by the features of waveform n. 
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Figure 4.8: Rate of change density functions and sum density functions for input wave- 
forms n and c 

4.4.3 Neural network training 

The time-delayed feed-forward network was simulated and trained by using the training 

set generated with the torque TG varying to exitation signal n. The input to neural 

network is the normalised torque ATG, and the target is the temperature T2. The error 

target was set at  a mean square error of M S E  = and trained with the Levenberg- 

Marquardt algorithm. The training process was stopped after 20 epochs. This number of 

epochs was chosen based on Figure 2.18, where it can be seen that the training algorithm 

reaches an error close to the minimum error within 20. 

Table 4.1: MSE and maximum e m r  of output for all input waveforms with set n as 
training set 

The training results expressed in mean square error M S E  and maximum percentage error 

in the time domain are shown in Table 4.1. The maximum percentage error in the time 

% unmapped 
sum density 

0 
0 
0 
0 

waveform 

c 
h 
m 
n 

% max error 

1.2 
1.3 
3 
1.5 

MSE 

6.5 * 
4.4 * lo-" 
1.2 * 
8.9 * lo-' 

% unmapped 
rate of change 
density 
0 
0 
3.6 
0 
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domain is calculated from 

% max error = 
maxle(t) I 

max(T2) - min(T2) 

where e(t) is the output error in the time domain for a specific input waveform, and Tz 

is the temperature. From Figure 4.6, the normalised temperature range is approximately 

from 0.52 5 T2 5 0.565. With a normalisation factor of A = 0.001, a 1 % error is 0.45 OC. 

In this section it was shown that the correct topology can be found from the data from the 

input/output relationship between the known variable (the torque I,) and the variable to 

be inferred. Furthermore, by comparing the characteristics of the training input waveform 

and the test input waveforms, it could be predicted whether a variable will be inferred 

accurately. In the next section, the same techniques will be applied to a simulated model 

of the pebble bed micro model (PBMM). 

4.5 Inference measurements on the PBMM 

The thermodynamic cycle of the pebble bed modular reactor (PBMR) and the pebble 

bed micro model (PBMM) are identical, except in size. Therefore the pebble bed micro 

model (PBMM), having been built, was used to demonstrate the inference measurement 

techniques developed in the previous chapters. Figure 4.9 shows the three axes recupera- 

tive Brayton cycle used for the pebble bed micro model (PBMM) to be used for the South 

African PBMR 1501. The pebble bed micro model (PBMM) output is rated at  lOOkW 

with a maximum heat input of 500kW. The output power is controlled by mass injection 

and removal. In order to map the input/output characteristics of the model's components, 

such as the turbines or compressors, mass injection and removal were performed on the 

Flownet model [51] of the pebble bed micro model. A MATLAB Simulink interface with 

Flownet [52] enables the use of MATLAB for simulating and training the neural networks 

for inference. 

The generation of data for training and test sets were accomplished in the following way. 

A static nominal operating point with an output of 36kW at constant rotational speed 

was chosen. Mass was injected or removed at  point P of the model shown in Figure 4.9. 
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Figure 4.9: PBMM/PBMR recuperative Bmyton cycle with three axes 

Two case studies were done by using data from the simulated pebble bed micro model 

(PBMM). For the first case study, the mass injection/removal rate was directly varied 

according to certain training and test input waveforms. In the second case study, the 

data was generated by using a controller that acts on the mass injection/removal rate 

so that a variable in the system would vary according to certain training and test input 

waveforms. 

4.5.1 PBMM: case study I 

In this case study, the mass injection/removal rate was done according to the training and 

test input waveforms. A nominal operating point for the generator at  a fixed rotational 

speed of 3000 rprn delivering 36 kW was chosen. This output level is approximately 

half of the maximum operating capacity, and therefore a variation around this operating 

point can be established. The mass injection/removal rate according to the training and 

test input waveforms resulted in stable operation (with positive power output) of the 

simulated pebble bed micro model (PBMM). It was assumed that these variations in 

mass rate change can be redised and will not cause any component to operate beyond its 

rating or cause instability. 

Measuring variables on a system such as the PBMM requires sensors such as pressure 

sensors, mass flow meters and temperature sensors. Pressure sensors and flow meters, 
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which rely on the pressure drop over a calibrated orifice, are accurate and have good 

frequency characteristics. Temperature sensors, however, have large time lags, and there- 

fore it is desirable to infer the temperature measurement from other variables. Since the 

temperature, mass flow rate and pressure in a thermodynamic system are interrelated, 

the temperature can be inferred from these values. It was therefore decided to use the 

mapping of the pressure/temperature relationship to infer the temperature from the pres  

sure. For a demonstrative example, the inlet pressure to the power turbine was used for 

inference of the power turbine temperature. 

For successful inference, it was shown that the correct topology and a favourable com- 

parison of test input waveforms and the training input waveform are required. By using 

the mass injection/removal rate according to the waveforms in Figure 4.10, four sets of 

input/output data were simulated. The time interval used was AT = 1 s for the step size 

of the thermodynamic solver Flownet. The same step size was used for the training and 

test sets, resulting in 2001 data points for each variable. 

Figure 4.10: Mass rate injection/removal signals for PBMM inference measurements 
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Neural network topology 

For the choice of the neural network topology it must be determined whether the in- 

put/output relationship to be mapped for an inference measurement is linear or non- 

linear, and whether the mapping is static or dynamic. Since the power turbine input 

temperature Tin must be inferred from the directly measurable power turbine input pres- 

sure Pin, this relationship will determine the neural network topology. Figure 4.11 shows 

the input/output relationship of the power turbine input temperature Ti, vs the power 

turbine input pressure Pin for the slow-varying part of the waveforms. Since this results in 

a distorted oval, it can be concluded that the relationship to  be mapped is non-linear and 

dynamic, requiring a time-delayed feed-forward neural network with a t  least one hidden 

layer with non-linear activation functions. 

Figure 4.11: Input pressure vs input temperature of power turbine for slow-varying part 
of wavefonn 

The step input a t  the first part of the mass injection/removal rate according to waveform 

n enables one to obtain the transient response of the output of a system due to the step 

input. In the first part of the waveforms in Figure 4.11 showing the power turbine input 

temperature T,, and the power turbine input pressure Pin, it can be seen that the step 

input is not reflected in either of the waveforms, therefore the number of input time delays 

cannot be determined explicitly. The relationship between the mass injection rate and 

power turbine inlet temperature is shown in Figure 4.12. In this figure it can be seen 

that the power turbine inlet temperature decays to a small value within 60 s due to 

step input of the mass injection/removal rate. This led to this number of time delays 
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TD = = 60 being chosen. 

Figure 4.12: Mass injection mte and resultant power turbine inlet tempemture 

Neural network training 

For neural network training the variables were normaliied. The neural network was trained 

with the input $ and the target %. In order to predict whether accurate inference could 

be accomplished, the input waveform characteristics were compared by using the rate of 

change density function and the sum density function. As example, the rate of change 

density functions for the inputs of sets n and d, and the sum density functions of the inputs 

of sets n and k is shown in Figure 4.13. The percentage unmapped features (features not 

mapped by the training set input) of the input pressure waveforms are shown in Table 4.2. 

From the high percentage of unmapped features of the test set inputs, it is predicted that 

the power turbine input temperature will not be inferred accurately for data sets d and 

k, even if a small training error were found with input waveform n. 

The neural network with 50 input time delays and 20 neurons in the single hidden layer 

was trained, using normaliied data for inference of the power turbine inlet temperature 

from the power turbine inlet pressure. Figure 4.14 shows the time domain error of the 

neural network's inferred temperature for the different input waveforms. The mean square 

error ( M S E )  of the neural network and the output in the time domain in percentage of 
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Figure 4.13: Sum density functions and rate of change density functions for power turbine 
input pressure waveforms 

the maximum range of Ti, is shown in Table 4.2. 

From Table 4.2 it can be seen that the neural network output error is large, even for the 

training input waveform. It was expected that the error for the training input waveform 

would be small, due to the apparently correct topology that was used and assuming that 

the training algorithm is capable of finding a local minimum with a sufficiently small 

error. The error due to  input waveform p is approximately the same as for the training 

input, while the error due to input waveform k is larger than for the training input. These 

are expected results based on the comparison of waveform characteristics. 

Table 4.2: MSE and maximum error of output for all input waveforms with set n as 
training set 

Due to the large neural network output error in this case study, further investigation 

revealed that two errors were made. By applying step inputs to the system, it was found 

that the time decay of the power turbine inlet temperature with a step change of the power 

input pressure was larger than 200 s. With only 50 input time delays used, the system 
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Figure 4.14: Emrs  of inferred inlet temperatures of the power turbine 

could not be mapped accurately. For the thermodynamic cycle, the power turbine input 

pressure around a certain operating point is approximately proportional to  the integral 

of the mass injection rate or P,, = K J m  d t ,  where K is either constant for direct 

proportionality or a non-linear function for non-linear relationship. This can be verified 

by the triangular shape at  the first part of the power turbine input pressure shown in 

Figure 4.11. This integration causes the pressures of the different data sets to operate 

at  non-overlapping amplitudes. Because of this, the training input waveform (the inlet 

pressure of the power turbine) is not suitable for accurate inference with pressure inputs 

d or k. This was shown by compariing of the sum density functions and rate of change 

density functions as shown in Figure 4.13 and Table 4.2. 

In the next section, the second case study shows how to ensure an accurate inference mea- 

surement of the temperature at the power turbine inlet by using the directly measurable 

pressure at  the the power turbine inlet pressure. 
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4.5.2 PBMM: case study I1 

In order to accomplish accurate inference of the power turbine inlet temperature from 

the power turbine input pressure, sets of data were generated in order to overcome the 

shortcomings of the previous case study. A time step AT = 4 s was used and the input 

pressure of the high-pressure compressor was controlled by changing the mass injection 

rate. The desired pressure waveforms are the same as shown in Figure 4.10, but scaled 

down as shown in Figure 4.16. Figure 4.15 shows the controller, while Figure 4.16 shows 

the output of the controller (the mass injection rate) for the high-pressure compressor 

inlet pressure. In Figure 4.18 it can be seen that the power turbine inlet pressure closely 

approximates a scaled version of the high-pressure compressor inlet pressure. 

p~ 

Figure 4.15: Controller for creating data sets 

Figure 4.16: Input pressure of high-pressure compressor and mass injection rate required 
for such a pressure wavefom 

Neural network topology 

When choosing the neural network topology, it is necessary to determine whether the 

required mapping is linear or non-linear, and whether the system is dynamic. Figure 4.17 
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shows the plot of the slow-varying part of both the power turbine inlet pressure and the 

power turbine inlet temperature. The distorted oval indicates that the relationship to 

be modelled is non-linear and dynamic. The required time delays for the neural network 

can be found when looking at  Figure 4.18. This figure shows that the power turbine 

inlet temperature has decayed to an arbitrary small value within 240 s for a step change 

of the input, while the required number of time delays can be determined from TD = 
time decng = 

AT 60. 

Figure 4.17: Input pressure us input temperature of power turbine of slow-varying part of 
waveform 

Figure 4.18: Input pressure of high pressure compressor, input pressure of power turbine 
and input temperature of power turbine 
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Neural network training 

A time-delayed feed-forward neural network with 60 input time delays and 20 neurons in 

the single hidden layer was used to infer the power turbine input temperature Ti, from the 

power input pressure P,,. When comparing the sum density function and rate of change 

density function of the input waveforms, it is predicted that the neural network will have 

a small output error for the training input waveform n. This is because the features of the 

test waveforms d, k and p are mapped by the features of waveform n. The training results 

in mean square error ( MSE) and percentage maximum error is shown in Table 4.3. 

Table 4.3: MSE and maarimurn error of output for all input waveforms with set n as 
training set 

From Table 4.3 it can be seen that the error of the neural network output for a test 

input is approximately the same magnitude as the error due to the training input. The 

error is much smaller than was achieved with the previous case study. Assuming that the 

network topology is correct for this inference problem, a possible cause for the relatively 

large error of 5 % could be the finite accuracy by means of which the data was generated. 

From Figure 4.19 it can be seen that for a resolution of more than 10 bits, no improve- 

ment of the training errors were reached. It is thus concluded that, if all other factors 

influencing the training process were to be excluded, that the data was generated with a 

resolution of approximately 10 bits, and the inference accuracy being limited due to the 

finite resolution. 
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Figure 4.19: lhining e m r  for inference of power turbine input e m r  with finite resolution 
training set 

4.6 Discussion 

For the simulated Brayton cycle, accurate inference measurements were achieved, using 

the methods developed in the previous chapters. This proves that the developed methods 

can be applied successfully for a general non-linear dynamic system. 

The inference measurements on the PBMM, however, are less accurate. For the first case 

study, data was generated in such a way that the time delays could not be determined 

correctly. The neural network training input waveform also does not have the necessary 

characteristics to ensure accurate inference for the test input waveforms. 

In order to improve the inference accuracy on the pebble bed micro model (PBMM), the 

inlet pressure of the high-pressure compressor was controlled according to the training 

input and test input waveforms. This enabled one to determine the number of time 

delays explicitly. It was predicted that the neural network output error with test inputs 

would be small, or at least as small as the neural network output error with training 

input. It was also shown that the accuracy is limited by the finite accuracy (in terms of 

resolution) of the data. 

This chapter has shown that variables can be inferred accurately by using the methods 
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developed in this thesis. Care should be taken to ensure that the dynamics are captured 

by observing the decay of the target with step change of the neural network input. The 

sum density functions and rate of change density functions enables one to predict whether 

an inference measurement would be accurate for a specfic test input. 



Chapter 5 

Conclusion 

This aim of this thesis was to find a generdised method for inference measurements, using 

neural networks. There are several possible types of neural networks that could be used 

for inference, of which time-delayed feed-forward neural networks were used. Two major 

issues were addressed, namely the topological requirements for accurate inference and the 

characteristics of training input waveforms that would allow generalisation if the training 

algorithm is capable of finding a local minimum. 

The topological requirements for accurate inference depend on the system characteristics. 

The dynamic response determines the number of time delays, since the dynamics of the 

system must be captured by the neural network. The number of time delays can be found 

explicitly from the time a system decays to an acceptable small value due to a step input. 

Should a time delay value larger than required be chosen, hence requiring more time 

delays, it could cause an unnecessary large neural network that requires longer training 

times and lends itself to overtraining. 

The non-linearity in a system requires a layer with non-linear activation functions. Since 

the non-linearities are hidden, the number of non-linear neurons in the hidden layer cannot 

be found explicitly. Nevertheless, two methods were presented by means of which it can be 

established whether there are non-linearities. By means of this knowledge, a few training 

runs with variations in the number of non-linear activation functions would result in a 

choice of an optimum number of non-linear activation functions in the hidden layer. 
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The steps for finding the topology can be summarised as follows: 

1. Determine the number of time delays based on the time response of the system. 

2. Determine whether the system is linear or non-linear. 

3. If the system is non-linear, find the optimum number of non-linear activation func- 

tions in the hidden layer with a few training runs. 

In order to allow accurate inference, the training set should map the system sufficiently 

dense over a wider range than required by the specification to  allow generalisation as 

judged by the test or validation sets. The training algorithm should be able to find 

a local minimum that is acceptably small. The sampling rate of the training sets for 

non-linear systems must be higher than depicted by the Nyquist criteria because of the 

generated harmonics and because the neural network trains on time domain patterns that 

must be represented accurately. 

Assuming that the specification could be translated into excitation signals or test set 

inputs given as specification, favourable characteristics for the training sets based on the 

specifications could lead to training sets that would allow generalisation. Two methods to 

describe these characteristics were presented. The characteristics of the training excitation 

signal and test excitation signals in both the frequency and time domain were compared. 

In the frequency domain the spectrums of the training and test excitation signals do give 

some indication whether the training set could result in generalisation of the trained neural 

network. Such a comparison is not reliable. However, comparing the characteristics of the 

training and test excitation signals in the time domain, has led to a reliable test. It could 

therefore be said whether the training set would lead to  generalisation or not. Passing 

the test would lead to generalisation. If the training algorithm finds a small enough local 

minimum, it would pass the test. The test would not result in generalisation if this test 

was failed, irrespective of the attempts of the training algorithm. 

The characteristics of neural network input waveforms were compared by using the sum 

density functions and the rate of change density functions. It was shown that it can be 
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predicted whether accurate inference would be accomplished based on the features of a 

test signal not mapped by the features of the training set. 

The following steps enable accurate inference for a test input waveform: 

1. Compare the test and training set by using the sum density function and rate of 

change density function. With all the features of the test input waveform mapped by 

the features of the training input waveform, the error of the neural network output 

should be small. 

2. If some features of a test input waveform were not mapped by the training input 

waveform, modify the training input waveform until all the features of the test input 

waveforms have been mapped. 

3. Train the neural network by using the training set. 

By using this generalised method for designing neural networks, it was shown that time- 

delayed feed-forward neural networks could be designed from the input/output relation- 

ship that must be mapped. A test input waveform can be compared with the training 

input waveform to predict whether the neural network would be trained for the test input 

waveform. This was successfully applied to a Brayton cycle and a simulation of the pebble 

bed micro model (PBMM), applying thermodynamic modelling software package used for 

its design. 



Appendix A 

Software implementation 

This appendix discusses the implementation of some functions as was used in this thesis, 

and gives the list of MATLAB files included as a computer medium. 

trainlm 

trainlm is the implementation of the Levenberg-Marquardt backpropagation network 

training algorithm that updates weight and bias values. trainlm can train any network as 

long as its weight, net input, and transfer functions have derivative functions. At network 

creation, the training algorithm was set to trainlm. Executing net = t r a i n b e t  ,P,T) 

trains the network with input P and target T. 

newff 

newff creates a feed-forward backpropagation network. For example, the command 

net = newff ([-1 11, [30 11 ,C'tansig' 'purelin'), 'trainlm') creates the network 

with input range [-I, 11 with 30 sigmodial tangent neurons in the first layer and 1 lin- 

ear neuron in the output layer and will use the Levenberg-Marquardt backpropagation 

network training algorithm. 
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pmtm 

pmtm estimates the power spectral density (PSD) of the real time series x using the 

multitaper method (MTM). 

ODE Solver 

MATLAB implements the automatic stepsize Runga-Kutta-Fehlberg integration method and 
has been used to obtain the solution of the state space equations. ode45 was used, suggested as 
first option 1531. 

polyfit 

p = polyf i t  (x,y,n) finds the coefficients of a polynomial p(x) of degree n that fits the data 
of x and y in the least square sense. For a linear fit, n=l. 

Y = f f t  (X) returns the discrete Fourier transform of vector X, computed with a fast Fourier 
transform (FFT) algorithm. 

rand 

Y = rand(m,n) returns an m-by-n matrix of random entries. rand( ' s t a t e ' ,  sum(lOO*clock)) 
will reset the random seed generation to a different state each time. 
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Table A.l: Files used for simulation and plots for Chapter  2: Network topology and 
system characteristics 

This file was used for the generation of the data sets for the neural 
network 
This file 

simulation of non-linear components characteristics. 
was used for the generation of the data sets for the neural 

network simulation of summation and difference. The following 
files are required: non1ba.m non1bb.m non1bc.m non1bd.m non1be.m 
non1bi.m --- - --- 

This file was used for the generation of the data sets for the neural 
network simulation of the phase lead circuit. The following files are 
required: difba.m difbb.m difbc.m difbdm d1fbe.m 
This file was used for the generation of the data sets for the neural 
network simulation of the phase lag circuit. The following files are 
required: 1agba.m 1agbb.m 1agbc.m 1agbd.m 1agbe.m 
This file was used for the generation of the data sets for the neural 
network simulation of the parallel resonant circuit. The following 
files are required: resbam resbbm resbc.m resbdm resbe.m 
This file was used for the generation of the data sets for the neural 
network simulation of the series resonant circuit. The following files 
are required: serba.m serbb.m serbcm serbd.m serbe.m 
This file was used for the generation of the data sets of the phase 
lead, phase lag, parallel resonant and series resonant circuits for 
the plot of the transient responses. The following files are required: 
difbm.m 1agbm.m resbm.m serbm.m 
This file was used for the generation of the data sets for the choice of 
topology for the inference of variables on a non-linear dynamic sys- 
tem. The following files are required: non1ca.m non1cb.m non1cc.m 
non1cd.m non1ce.m non1cf.m non1cg.m non1ch.m non1ci.m non1cj.m 
non1ck.m non1cl.m non1cm.m non1cp.m non1cq.m 
This file was used for the generation of the data sets for the 
choice of topology for the inference of variables on a dynamic sys- 
tem with non-linear storage element. The following files are re- 
quired: non1pa.m non1pb.m non1pc.m non1pd.m non1pe.m non1pj.m 
non1pm.m 
This file was used for the generation of the data sets for the choice - 
of a topology for the inference of variables on a non-linear dynamic 
system for comparison with the inference of two variables using a 
single neural network. The following files are required: non1da.m 
non1db.m non1dc.m non1dd.m non1de.m non1dj.m non1dm.m 
This file was used for the generation of the data sets for the infer- 
ence of variables on a non-linear dynamic system using a single neu- 
ral network. The following files are required: non1da.m non1db.m 
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Table A.2: Files used for simulation and plots for Chapter 3: Training, test and 
validation sets 

quired: non1ca.m non1cb.m non1cc.m non1cd.m non1ce.m non1cf.m 
non1cg.m non1ch.m non1ci.m non1cj.m non1ck.m non1cl.m non1cm.m 
non1cp.m non1cq.m 
This file was used for the generation of the data sets for the inference 
of variables on a non-linear dynamic system with two inputs. The 
following files are required: non1ha.m non1hd.m non1hk.m nonlh1.m 
non1hm.m non1hn.m 

fsimc.m 

Table A.3: Files used for simulation and plots for Chapter 4: P B M R  neural network 

This file was used for the simulation of data sets, the simulation 
and training of the neural networks, the implementation of the algo- 
rithms for comparing the signal characteristics and the plot of wave- 
forms, spectra and signal characteristics. The following files are re- 

Table A.4: Files used for the plots of results 

inference 

fsirngm 

fsim1.m 

This file was used for the simulation of data sets, the simulation and 
training of the neural networks for inference measurements on the 
Brayton cycle. The following files are required: non1gc.m non1ge.m 
non1gh.m non1gj.m non1gm.m non1gn.m 
This file was used for the reading of the data generated by using 
Flownet, and training of the simulated neural networks for infer- 
ence measurements on the PBMM. The data for the different mass 
injection rate functions are in chirpdmat chirpkmat chirpn.mat 
chirpp.mat data.mat 

plotal1.m The documented training results of Chapter 2: Network topol- 
ogy and system characteristics and Chapter 3: Training, 
test and validation sets are plotted by using this file. 
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