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Abstract 

In this dissertation the generalized coupled Zakharov-Kuznetsov system and the 

(2+ 1 )-dimensional breaking soliton equation will be studied. Exact solutions for the 

coupled Zakharov-Kuznetsov equations are obtained using the Kudryashov method 

and the Jacobi elliptic function method while the exact solutions for the (2+1)

dimensional breaking soliton equation are derived using the double reduction theory. 

Furthermore, N oether theorem is employed to construct conservation laws for the 

above mentioned partial differential equations. Since the coupled system is of third

order, it does not have a Lagrangian. Therefore, we use the transformations u = Ux 

and v = Vx to increase a third-order system to a fourth-order coupled system in U and 

V variables and let a = l. Thus, the new system of equations have a Lagrangian. 

However the (2+1)-dimensional breaking soliton equation has a Lagrangian in its 

natural form. 

Finally, the conservation laws are expressed in 'U and v variables for the generalized 

coupled Zakharov-Kuznetsov system. Some local and infinitely many nonlocal con

served quantities are found and the Kudryashov method and Jacobi elliptic function 

method are used to obtain the exact solutions for the coupled Zakharov-Kuznetsov 

system. The (2+1)-dimensional breaking soliton equation possesses only local con

served quantities and the double reduction theory is applied to obtain some exact 

solutions. 
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Introduction 

In many fields of science and engineering, nonlinear partial differential equations 

( LPDEs) such as Korteweg-Vries equation, Burgers equation, Schrodinger equation, 

Boussinesq equation and many others play an important role in the study of nonlinear 

wave phenomena. For example, wave-like equations can describe earthquake stresses 

[1]. The wave phenomena can also be observed in fluid mechanics , plasma, elastic 

media, optical fibres and in many other areas of mathematical physics. NLPDEs of 

real life problems are difficult to solve either numerically or theoretically. Finding 

exact solutions of the NLPDEs plays an important role in nonlinear science. There 

has been recently much attention devoted to search better and more efficient solution 

methods for determining solutions to NLPDEs [2- 11]. 

In the last few decades, a variety of effective methods for finding exact solutions, such 

as homogeneous balance method [4], the ansatz method [5, 6], variable separation 

approach [7], inverse scattering transform method [8] , Backlund transformation [9], 

Darboux transformation [10], Hirota's bilinear method [11] were successfully applied 

to LPDEs. 

There is no doubt that in the study of differential equations, conservation laws play 

an important role. In fact, conservation laws describe physical conserved quantities 

such as mass, energy, momentum and angular momentum, as well as charge and 

other constants of motion [12, 13]. They have been used in investigating the existence, 

uniqueness and stability of solutions of NLPDEs [14, 15]. Also, they have been used in 

the development and use of numerical methods [16, 17]. Recently, conservation laws 

were used to obtain exact solutions of some PD Es [18- 20]. Thus, it is essential to 
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study conservation laws of PDEs. For variational problems, the Noether 's theorem 

[21] provides an elegant way to construct conservation laws. The knowledge of a 

Lagrangian is important in finding Noether point symmetries and oether conserved 

vectors. However, in the absence of a Lagrangian, there are other methods that can 

be applied to obtain the conserved vectors. See, for example, [22, 23]. 

The theory of double reduction of a PDE is well-known for the association of con

servation laws with Noether symmetries [24-26]. This association was extended to 

Lie Backlund symmetries [27] and non-local symmetries [28] recently. This opened 

doors to the extension of the theory of double reductions to partial differential equa

tions (PDEs) that do not have a Lagrangian and therefore do not admit Noether 

symmetries. 

In this dissertation we study the generalized coupled Zakharov-Kuznetsov system and 

the (2+ 1)-dimensional breaking soliton equation. Firstly, we study the generalized 

coupled Zakharov-Kuznetsov (gcZK) system [29] 

Ut + Uxxx + Uyyx - 6 uux - Vx 0, 

V t + OVxxx + A Vyyx + TJVx - 6µ vvx - aux 0, 

where u(t , x , y) and v(t , x , y) are real-valued functions, tis time, x and y are the 

propagation and transverse coordinates, T/ is a group velocity shift between the cou

pled models, O and >. are the relative longitudinal and t ransverse dispersion coeffi

cients and µ and a are the relative nonlinear and coupled coefficients. The coupled 

ZK equations are the model describing two interacting weakly nonlinear waves in 

anisotropic background stratified fluid flows. 

Lastly, we consider the (2+ 1 )-dimensional breaking soliton equation [30] 

where u = u(t , x , y) denotes the wave profile with t , x and y representing time and 

space variables respectively. The (2+1)-dimensional breaking soliton equation is a 
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typical so-called breaking soliton equation describing the (2+ 1 )-dimensional inter

action of a Riemann wave propagation along the y-axis with a long wave along the 

x-axis. 

The outline of this dissertation is as follows. 

In Chapter one, the basic definit ions, theorems and corollaries concerning the Noether 

theorem and the double reduction theory are presented. 

In Chapter two, aether theorem [21] is used to construct conservation laws for a 

generalized coupled Zakharov-Kuznetsov system. Moreover, exact solutions of the 

generalized coupled Zakharov-Kuznetsov system are obtained with the aid of the 

Kudryashov method [31] and the Jacobi elliptic function method. 

In Chapter three, t he conservation laws for the (2+ 1 )-dimensional breaking soliton 

equation are obtained using the aether theorem [21]. Thereafter , we construct t he 

exact solutions for the (2+ 1 )-dimensional breaking soliton equation using the double 

reduction theory [24-28]. 

Finally, in Chapter four, a summary of the results of the dissertation is presented. 

A bibliography is given at the end of this dissertation. 
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Chapter 1 

Lie symmetry methods for partial 

differential equations 

In this chapter we present the basic Lie group theory of partial differential equations. 

We discuss the algorithm for the calculation of the Lie point symmetries. We also 

give some basic definitions and theorem concerning N oether point symmetries and 

conservation laws. Furthermore, we we also discuss the theory of double reduction 

of partial differential equations. 

1.1 Introduction 

Lie group analysis originated in the late nineteenth century by an outstanding math

ematician Sophus Lie (1842-1899). He discovered that majority of the methods for 

solving differential equations could be explained and deduced simply by means of 

his theory which is based on the invariance of the differential equat ions under a 

continuous group of symmetries. The mathematical ideas of Lie's theory are pre

sented in several books, e.g., G.W . Bluman [25], P.J . Olver [26], and S. Kumei [32], 

Stephani [24] and Cantwell [33]. For more information on the definitions and results 

presented in this chapter the books ment ioned above can be consulted. 
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1.2 Local continuous one-parameter Lie group 

Let us take x = (x1
, . . . , xn) to be the independent variables with coordinates xi and 

h = (h1, .. , hm) to be the dependent variables with coordinates h°' (n and m finite) . 

D efinition 1. 1 A set G of transformations 

(1.1) 

where a is a real parameter which continuously takes values from a neighborhood 

V' C V C IR of a = 0 and Ji , qP are different iable functions, is called a local 

continuous one-parameter Lie group of transformations in the space of variables x 

and h if: 

(i) For Ta, n E G where a, b E 'D' C V then Tb Ta= Tc E G, c = </> (a , b) E 'D 

(Closure); 

(ii) To E G if and only if a= 0 such that To Ta = Ta To = Ta (Ident ity) and 

(iii) For Ta E G, a E 'D' c V , Ta- 1 = Ta- 1 E G, a-1 E 'D such that 

Ta Ta- 1 = Ta- 1 Ta = To (Inverse). 

The associativity property follows from (i). T he group property (i) can be written 

as 

xi = t(x, h, b) = t(x, h, </> (a , b)) , 

h°' = </>°' (x, h, b) = </>°' (x , h, </>(a, b)) 
(1.2) 

and the function ¢ is called the group composition law. A group parameter a is called 

canonical if ¢( a, b) = a + b. 

Theorem 1.1 For any composition law ¢ (a, b) , there exists the canonical parameter 

a defined by 

where 

{° ds 
a= Jo w(s ) ' 

( ) - 8 ¢ (s, b)I 
w s - [)b b=O · 
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1.3 Prolongation formulas and Group generator 

The derivatives of h with respect to x are defined as 

where 

D c) hoc) hoc) 
i = axi + i a ha + ii a ha + .. . 

J 

(1.3) 

i= l , .. . , n, (1.4) 

is the operator of total different iation. The collection of all first derivatives hf is 

denoted by h{l), i.e. , 

Similarly 

and h (3) = {h0k} and likewise h (4) et c, since h0 = h'Ji , h (2) contains only h0 for i :s; j . 

In the same manner h(3) has only terms for i :s; j :s; k. There is natural ordering in 

h (4) ,h (5) • • • . In group analysis all variables x, h, h (l) • • • are considered functionally 

independent variables connected only by the differential relations (1.3) . Thus t he h~ 

are called differential variables and a pth-order partial differential equation is given 

as 

(1.5) 

Prolonged or extended groups 

If z = (x, h) , one-parameter group of transformations G is 

(1.6) 

According to Lie's theory, the construction of the symmetry group G is equivalent 

to the determination of t he corresponding infinitesimal transformations: 

(1.7) 
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obtained from (1.1) by expanding the functions Ji and ¢P· into Taylor series in a, 

about a= 0 and also taking into account the initial conditions 

Thus , we have 

i ap l t (x, h) = ~ , 
ua a=O 

a oqP' I Tl (x , h) = a . 
a a=O 

(1.8) 

One can now introduce the symbol of the infinitesimal transformations by writing 

(1.7) as 

xi ;:::; (1 + a X) x, fa;::::: (1 + aX)h, 

where 

(1.9) 

The differential operator (1.9) is called the infinitesimal operator or generator of the 

group G. 

Here we see how the derivatives are transformed. 

The Di transforms as 

where Dj is the total differentiations in transformed variables xi. Therefore 

and 

Hence 

Di(JJ)Dj(ha) 

Di(JJ)h'J-
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(1.12) 



The quantities hJ can be represented as functions of x, h, h(i) , a, 

for small a, ie. , (1.12) is locally invertible: 

(1.13) 

The transformations in x, h, hci) space given by (1.6) and (1.13) form a one-parameter 

group ( one can prove this but we do not consider the proof) called the first prolon

gation or just extension of the group G and denoted by G[1l . 

Let 

(1.14) 

be the infinitesimal transformation of the first derivatives so that t he infinitesimal 

transformation of the group G[1l is (1.7) and (1.14). Higher-order prolongations of 

G, viz. G[2l , G[3l can be obtained by derivatives of (1.11) . 

Prolonged generators 

Using (1.11) together with (1.7) and (1.14) we get , 

Di (JJ) (h'J ) 

Di(xj + ae)(h'J + a(J') 

hf + a(f + ah'J Di;,3 

(f 

Di( <//' ) 

Di( ho: + art) 

(1.15) 

This is called the first prolongation formula. Likewise, one can obtain the second 

prolongation, viz., 

(1.16) 

By induction (recursively) 

(1.17) 
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The first and higher prolongations of the group G form a group denoted by Gl1l, • • • , GIP] . 

The corresponding prolonged generators are 

x l1l = X + (f a~a (sum on i , a) , 
i 

X [p-1] + (a . 0 1 
p "?:. ' tJ ,···•'P aha . 

t1 , .. . ,'l.p 

where 

1.4 Group admitted by a partial differential equa

tion 

Definition 1.2 The vector field 

(1.18) 

is a point symmetry of the pth-order PDE (1.5), if 

(1.19) 

whenever E = 0. This can also be written as 

(1.20) 

where the symbol IE=O means evaluated on the equation E = 0. 

D efinition 1.3 Equation (1.19) is called the determining equation of (1.5) because 

it determines all the infinitesimal symmetries of (1.5). 
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Definition 1.4 (Symmetry grou p) A one-parameter group G of transformations 

(1. 1) is called a symmetry group of equation (1.5) if (1.5) is form-invariant (has the 

same form) in the new variables x and h, i.e. , 

(1.21) 

where the function Eis the same as in equation (1.5). 

1. 5 Group invariants 

Definition 1.5 A function F(x , h) is called an invariant of the group of transfor

mation (1.1) if 

F(x , h) = F(f (x , h, a) , ¢0 (x , h, a)) = F(x , h) , (1.22) 

identically in x , h and a. 

Theorem 1.2 (Infinitesimal criterion of invariance) A necessary and sufficient 

condition for a function F(x, h) to be an invariant is that 

(1.23) 

It follows from the above theorem that every one-parameter group of point transfor

mations (1. 1) has n functionally independent invariants , which can be taken to be 

the left-hand side of any first integrals 

of the characteristic equations 

dx 1 

--- = == = 
dh1 

e(x , h) ~n(x , h) 'f/1 (x , h) 
(1.24) 

Theorem 1.3 If the infinitesimal transformation ( 1. 7) or its symbol X is given, then 

the corresponding one-parameter group G is obtained by solving the Lie equations 

dh0 
-

da = "la(x, h) (1.25) 

subject to the initial conditions 
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1.6 Lie algebra 

Let us consider two operators X 1 and X 2 defined by 

and 

Definition 1.6 The commutator of X1 and X2, written as [X1, X2], is defined by 

[X1, X2] = X1(X2) - X2(X1)-

Definition 1. 7 A Lie algebra is a vector space L ( over the field of real numbers) of 

operators X = ( i(x, h) a!i +rl°'(x, h) :h with the following property. If the operators 

X1 = ~~ (x , h) [):i + TJf( x, h) :h , X2 = ~;(x, h) [):i + TJ~(x , h) :h 

are any elements of L , then their commutator 

is also an element of L. It follows that the commutator is: 

1. Bilinear: for any X , Y , Z E L and a, b E lR , 

[aX + bY, Z] = a[X , Z] + b[Y, Z ], 

[X , aY + bZ] = a[X, Y] + b[X , Z] ; 

2. Skew-symmetric: for any X , YE L , 

[X, Y] = - [Y, X]; 

3. and satisfies the Jacobi identity: for any X , Y, Z E L , 

[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0. 
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1. 7 Fundamental relationship concerning the Noether 

theorem 

In this section we briefly present the notation and pertinent results that will be used 

in this research. For details the reader is referred to [18, 21 , 23 , 34, 35]. Consider the 

system of qth order PDEs 

(1.26) 

if there exist a function L(x , u , U(l), u (2), ... U(s) ) EA (space of differential functions) , 

s < q such that system (1.26) is equivalent to , 

a= 1, 2, ... , m, (1.27) 

then L is called a Lagrangian of (1.26) and (1.27) are the corresponding Euler

Lagrange differential equations. 

In (1.27), o/oua is the Euler-Lagrange operator defined by 

/ = ~[) + "°' (-l)8 Di1 •• • Di 
O 

O , a =l , ... ,m. 
uua uua D • ua • 

s2:1 'I ·· ·'• 
(1.28) 

Definition 1.8 A Lie-Backlund operator X is a oether symmetry generator asso

ciated with a Lagrangian L of (1.27) if there exist a vector A= (A 1, ... , An) , Ai EA, 

such that 

If in (1.29) Ai = 0, i = 1, .. . , n then X is referred to as a strict oether symmetry 

generator associated with Lagrangian L E A . 

Theorem 1.4 For each Noether symmetry generator X associated with a given 

Lagrangian L, there corresponds a vector T = (T1, T 2
, ••• , Tn) , T i EA, defined by 

(1.30) 
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which is a conserved vector for the Euler-Lagrange equations (1.27) and the Noether 

operator associated with X is 

(1.31) 

in which the Euler-Lagrange operators with respect to derivatives of ua are obtained 

from (1.28) by replacing ua by the corresponding derivatives, e.g. , 

In (1.31) , wa is the Lie characteristic function given by 

W a a ti a 1 = 7J - s, ui , a= , .. . , m . 

The vector (1.30) is a conserved vector for (1.26) if Ti satisfies 

(1.32) 

1. 7.1 Generalized double reduction theorem 

T heorem 1.5 Suppose that X is any vector field operator of (1.26) and 

T = (T 1, T 2 , . . . , rn) , TiEV , i = 1, 2, ... , n are the components of the conserved vector 

of (1.26) then, 

(1.33) 

establishes the components of a conserved vector of (1.26) and also 

(1.34) 

Theorem 1.6 Suppose DiTi = 0 is a conservation law of (1.26). Then under a 

contact transformation, there exist functions 'fi such that J Di T i = Difi where 'fi 
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is defined by 

fl fl 

f2 
= J(A-lf 

f2 

fn fn 

fl fl 

f2 
=AT 

f2 
J where (1.35) 

fn fn 

D1X1 D1 x2 D1Xn 

A 
D2X1 D2X2 D 2Xn 

D1X1 D1 X2 D1Xn 

D1f1 D1x2 D1xn 

D2x1 D2x2 D2xn 
(1.36) 

D1x1 D1x2 D1xn 

and J = det(A). (1.37) 

T heorem 1.7 (Fundamental theorem on double reduction [35]). 

Suppose that Difi = 0, is a conservation law of (1.26) . Then under a similarity 

transformation of a symmetry X of (1.26) , there exist a functions f i such that X 

still remains a symmetry for the partial differential equation f>ifi = 0 and 

Xf1 [fl, X] 
Xf2 

= J(A-lf 
[f2, X] 

(1.38) 

xfn [fn , x] 
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where 

D 1X1 D 1x2 D1Xn 

A 
D2x 1 D 2X2 D2Xn 

= 

D 1X1 D 1x2 D1Xn 

D 1i1 D 1x2 D1xn 

A - 1 D 2i1 D2x2 D2xn 
(1.39) 

D 1i1 D1i2 D1xn 

and J = det (A). (1.40) 

Corollary 1.1 (The necessary and sufficient condit ion for reduced conserved form 

[35]). The conserved form DiT i = 0 of system(l.26) can be reduced under a similarity 

t ransformation of a symmetry X to a reduced conserved form 15/ f' i = 0 if and only 

if X is associated with the conservation law T , that is, [T , X ](1_26) = 0. 

Corollary 1.2 A nonlinear system of qt h-order partial differential equations with n 

independent and m dependent variables , which admits a nontrivial conserved form 

that has at least one associat ed symmetry in every reduction from the n reductions 

(the first step of double reduction) can be reduced to a (q - l)th-order nonlinear 

system of ordinary different ial equations [35]. 

1.8 Conclusion 

In this chapter we have presented briefly some basic definitions and results of the Lie 

group analysis of PD Es. vVe also briefly recalled the fundamental relations concerning 

Noether symmetries and conservation laws. In addition, we concisely discussed the 

double reduction theory for partial differential equation. 
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Chapter 2 

Variational approach and exact 

solutions for a generalized coupled 

Zakharov-Kuznetsov system 

In this chapter we study a generalized coupled system of PDEs which describes 

two interacting weakly nonlinear waves in anisotropic back-ground stratified fluid 

flows [36] given by 

(2. 1) 

Gottwald et al. [37], derived the generalized coupled Zakharov-Kuznetsov system 

( 2 .1) . It is easy to see that if the transverse variation ( Uy = Vy = 0) , the coupled 

Zakharov-Kuznetsov system reduces to a family of Korteweg-de Vries equations [37], 

which describes the interaction of the nonlinear long waves in various fluid flows. 

In this dissertation, we will work with a slight modification of the generalized coupled 

Zakharov-Kuznetsov system (2.1), namely, 

{ 

Ut + Uxxx + Uyyx - 6UUx - Vx = 0, 

V t + 6Vxxx + AVyyx + TJVx - 6µ v11x - Ux = 0. 
(2.2) 

The oether's theorem will be used to construct conservation laws for system (2.2). 
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Thereafter, we focus our investigations on the derivation of exact solutions for the 

generalized coupled Zakharov-Kuznetsov system (2.2) by invoking the Kudryashov 

method and the Jacobi elliptic function method. 

2.1 Conservation laws for a generalized coupled 

Zakharov-Kuznetsov system (2 .2) 

In this section we derive the conservation laws for system (2.2) . Here we observe 

that system (2.2) does not admit any Lagrangian formulation in its present form. 

In order to apply the Noether theorem we transform system (2.2) to a fourth-order 

system using transformations u = Ux and v = Vx. Then system (2.2) becomes 

{ 

Utx + Uxxxx + Uyyxx - 6UxUxx - Vxx = 0, 
(2.3) 

Vtx + 811:z:xxx + A Vyyxx + 17 Vxx - 6 µ Vx Vxx - U xx = 0. 

Here we observe that system (2.3) posses a second-order Lagrangian given by 

L = 

(2.4) 

It can be verified that the second-order Lagrangian (2.4) satisfies the Euler-Lagrange 

equations. Thus 

8L 8L 
JU = 0 and JV = 0, 

where 8 / 8U and 8 / 8V are defined by 

8 
8U 

8 
8V 

17 

(2 .5) 



and the total differential operators are given by 

We now show the calculations which verify t hat t he Lagrangian (2.4) satisfies system 

(2.5) 

and 

5L 

5U 

5L 

5V 

Dt ( - 1 Ux ) - Dx ( 3U; -1Ut + Vx ) + D; ( Uxx ) + DxDy(Uxy) 

1 1 
2Utx - 6UxUxx + 2Utx - Vxx + Uxxxx + Uyyxx 

Utx + Uxxxx + Uyyxx - 6UxUxx - Vxx 

0 

- Di ( -1 Vx ) - Dx ( - 77 Vx + 3µ Vx
2 

- 1 ½ + Ux ) + D; ( 5Vxx ) 

+ DxDy (-), Vxy ) 

1 1 
2, Vtx + 77 Vxx - 6µ Vx Vxx + 2, Vtx - Uxx + 6Vxxxx + A Vyyxx 

Vtx + 5Vxxxx + A Vyyxx + 77 Vxx - 6µ Vx Vxx - Uxx 

0. 

Hence the Lagrangian (2.4) is a Lagrangian for system (2.3). 

Consider the vector field 

X = 1 a 2( ) a 3 ( ) a E(t , x,y , U, V)at +E t ,x, y,U,V ox+E t ,x, y , U, V oy 

1 ) a 2( ) a +77 (t,x , y,U,V au+77 t , x,y , U, V oV' 

18 
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which has the second-order prolongation defined by 

(2.9) 

where 

(l Dt(-r/ ) - UtDt(e) - UxDt(e) - UyDt(e) , (2.10) 

(; = Dx(r/) - UtDx(e) - UxDx(e) - UyDx(e) , (2. 11) 

(; Dt(1J2
) - ½Dt (e) - VxDt(e) - VyDt(e) , (2 .12) 

(; = Dx(1J2
) - ½Dx(e) - VxDx(e) - VyDx(e) , (2 .13) 

(;x Dx((;) - UtxDx(e) - UxxDx(e) - UxyDx(e) , (2.14) 

(;x Dx((;) - ½xDx(e) - VxxDx(e) - VxyDx(e) , (2. 15) 

(;y = Dy((;) - UtxDy(e) - UxxDy(e) - UxyDy(e) , (2.16) 

(;y = Dy((;) - ½xDy(e) - VxxDy(e) - VxyDy(e). (2.17) 

The Lie-Backlund operator X defined in (2.9) is a Noether operator corresponding 

to the Lagrangian L if it satisfies 

where A1 (t, x, y , U, V), A2 (t , x , y , U, V) and A3 (t , x, y , U, V) are the gauge terms. The 

expansion of (2. 18) together with the Lagrangian (2.4) results in an overdetermined 

system of linear PDEs given as, 
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I 

( V = 0, 
I 

( u = 0, 
I 

(y = 0, 
I 

(x = 0, 

3 

(V = 0, 
3 

( u = 0, 
3 

(X = 0, 
3 

(t = 0, 

A
3 

= 0 
V ' 

2 

(xx = 0, 
I 

Tl v = 0, 
I 

Tluu = 0, 
I 

T/xy = 0, 
I 

T/yu = 0, 
I 

T/xu = 0, 
I 

T/xx = 0, 
2 

Tiu = 0, 
2 

Tlvv = 0, 
2 

T/xy = 0, 
2 

T/yv = 0, 
2 

T/xv = 0, 
2 

T/xx = 0, 
2 I 3 2 I 

Tlv + Tiu + (y - (x + (t = 0, 
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(2 .19) 

(2 .20) 

(2 .21) 

(2 .22) 

(2.23) 

(2.24) 

(2 .25) 

(2.26) 

(2.27) 

(2 .28) 

(2 .29) 

(2.30) 

(2 .31) 

(2.32) 

(2 .33) 

(2 .34) 

(2.35) 

(2 .36) 

(2 .37) 

(2 .38) 

(2 .39) 

(2 .40) 

(2.41) 

(2.42) 

(2 .43) 

(2.44) 

(2.45) 



► ·; a: 
I 3 ::,< 2'Tlu = -~Y ' (2.46) 

3cc 2 3 
(2.47) -2'T7 -~ = 0 

~ 
V y ' 

I I 
(2.48) -2A -'Tl =0 U X > 1 

I 2 
(2 .49) -2A -'Tl = 0 V X > 

2 l 2 2 

-2Av + 2'Tlx - 2'Tl'Tlx - 'Tlt = 0, (2 .50) 

2 3 . 2 I 

2'Tlv + ~y - 3Ex + ~t = 0, (2 .51) 

I 3 . 2 I 

2'Tlu + ~Y - 3Ex + ~t = 0, (2 .52) 

I 3 2 I 

3'Tlu + ~Y - 2~x + ~t = 0, (2 .53) 

2 3 2 I 
2'Tlv - ~Y - ~x + ~t = 0, (2 .54) 

I 3 2 I 
2'Tlu - ~Y - Ex + ~t = 0, (2 .55) 

2 3 2 I 

3'Tlv + ~Y - 2~x + ~t = 0, (2 .56) 

I 2 

6'Tlx + ~t = 0, (2 .57) 

2 2 l 

-2Au + 2'Tlx - 'Tlt = 0, (2 .58) 

2 3 2 2 l 2 

2'Tl'Tlv + 'TlEy = 6µ'Tlx + 'Tl~x - 'TlEt + ~t , (2 .59) 

l 2 3 

-At - Ax - AY = 0. (2 .60) 

We now solve the above system of linear PD Es for e, e, e, 'T/1, 'T/2 , A 1, A 2 and A 3 . 

From equations (2 .19)-(2.22) we obtain 

e(t, x , y, U, V) = a(t) , (2 .61) 

where a(t) is an arbitrary function . Solving equations (2.23)-(2.25) we obtain 

E2(t , x, y , U, V) = b(t , x) , (2 .62) 

where b(t , x) is an arbitrary function. From equations (2.26)-(2.29) we attain 

e(t , x , y, U, V) = d(y) , (2.63) 

where d(y) is an arbitrary function. Solving equations (2 .30) and (2.31) we get 

A3 (t , x , y, U, V) = S(t , x , y) , (2.64) 
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where S(t, x, y) is an arbitrary function. 

Using equations (2.33)-(2 .38) we obtain 

r/(t, x , y, U, V) = k(t)U + n(t) x + J(t , y) , 

where k(t) , n(t) and J(t , y) are arbitrary functions. 

Solving equations (2.39)-(2.44) we obtain 

r/(t, x, y, U, V) = E(t)V + H(t) x + g(t , y) , 

(2.65) 

(2.66) 

where E(t) , H(t) and g(t, y) are arbitrary functions. Differentiating (2.62) twice with 

respect to x and substituting the results into (2 .32) we obtain 

b.,., = 0. 

Integrating the above equation twice with respect to x we attain 

b(t, x) = p(t)x + q(t ), (2 .67) 

where p(t) and q(t) are arbitrary functions of their arguments. Substituting (2.67) 

into (2.62) implies 

t (t , x, y, U, V) = p(t)x + q(t). (2 .68) 

Differentiating (2 .65) and (2.66) with respect tot and x respectively and substituting 

the results into (2.58) we attain 

(2.69) 

The integration of (2 .69) with respect to U gives 

A
2 
(t, x, y , U, V) = H(t)U - ik'(t)U

2 
- ~n'(t)Ux - ~U ft+ r(t , x, y , V) , (2.70) 

where r(t, x , y , V) is an arbitrary function. Differentiating (2.65) , (2.66) and (2.70) 

with respect to x, t and V respectively and substituting the results into (2 .50) we 

obtain 

(2 .71) 
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Integrating (2. 71) with respect to V we obtain 

r(t , x , y, V) = n(t)V - TJH(t)V - iE'(t)V
2 

- iH'(t)V x - t V gt 

+R(t, x , y) , (2 .72) 

where R(t, x, y) is an arbitrary function. Substituting (2.72) into (2 .70) we attain 

1 2 1 1 
H(t)U - 4k'(t)U - 2n'(t)Ux - 2Uft + n(t)V 

-TJH(t)V - iE'(t)V
2 

- iH'(t)V x - t V 9t 

+R(t, x, y). (2.73) 

Differentiating (2 .65) with respect to x and substituting the results into (2 .48) we 

obtain 

(2.74) 

The integration of (2 .74) with respect to U yields 

1 1 
A = - 2n(t)U + W(t , x , y, V) , (2 .75) 

where W(t , x, y , V) is an arbitrary function. Differentiating (2.66) and (2 .74) with 

respect to x and V respectively and substituting the results into (2.49) we obtain 

Integrating (2. 76) with respect V we obtain 

1 
W(t, x , y, V) = - 2H(t)V + Q(t , x , y) , 

(2 .76) 

(2 .77) 

where Q(t ,x, y) is an arbitrary function . The insertion of (2.77) into (2.74) yields 

1 1 1 
A = - 2n(t)U - 2H(t)V + Q(t , x, y) . (2 .78) 

By differentiating (2.64) , (2 .73) and (2 .78) with respect to y , x and t respectively 

and substituting the results into (2.60) we obtain 

n'(t)U + H'(t)V - Qt - Rx - Sy = 0. (2 .79) 

23 



Splitting equation (2.79) with respect to U and V we get 

n'(t) 

H'(t) 

Integrating equations (2.80) and (2.81) yields 

0, 

0, 

0. 

(2.80) 

(2 .81) 

(2 .82) 

(2.83) 

where c1 and c2 are arbitrary constants. The substitution of (2.83) into (2.65) , (2 .66) , 

(2 . 73) and (2. 78) gives 

r/ (t , x , y , U, V) 

r,2 (t , x , y , U, V) 

A\t, x , y , U, V) 

A\t, x, y , U, V) 

k(t)U + c1 x + f (t , y), 

E(t)V + c2 x + g(t , y) , 
1 1 - 2c1 U - 2c2 V + Q(t, x , y) , 

1 ' ( ) 2 1 C u - -k t u - -Uf + C V - '11C V 
2 4 2 t 1 '/ 2 

-iE'(t)V
2 -1 V 91 + R(t, x, y). 

(2 .84) 

(2 .85) 

(2 .86) 

(2 .87) 

Differentiating (2.68) and (2.84) with respect tot and x respectively and substituting 

the results into (2.57) we obtain 

6c1 + p'(t)x + q'(t) = 0. 

Splitting equation (2.88) with respect to x we get 

p'(t) 0, 

0. 

Integrating equations (2.89) and (2.90) we obtain 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

where c3 and c4 are arbitrary constants. The insertion of (2.91) into (2.68) gives 

(2.92) 
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Differentiating (2.63) and (2.84) with respect to y and U respectively and inserting 

the results into (2.46) respectively, yields 

d'(y) = -2k(t) . (2.93) 

Differentiating (2.63) and (2 .85) with respect toy and V respectively and substituting 

the results into (2.47) yields 

2E(t) + d'(y) = 0, (2.94) 

therefore 

d'(y) = -2E(t) (2.95) 

and this makes 

E(t) = k(t) . 

Differentiating (2.61), (2 .63) (2.85) and (2.92) with respect tot, y, V and x respec

tively and substituting the results into (2.51) we obtain 

2E(t) + d'(y) - 3c3 + a'(t) = 0. (2.96) 

The insertion of (2.94) into (2.96) yields 

a'(t ) = 3c3 • (2.97) 

Integrating (2 .97) we obtain 

(2.98) 

where c5 is an arbitrary constant. The substitution of (2.98) into (2 .61) yields 

(2.99) 

Differentiating (2 .63) , (2.85) , (2.92) and (2.99) with respect toy, V , x and t respec

tively and substituting the results into (2.54) we obtain 

2E(t) - d'(y) = -2c3 • (2.100) 
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The sum of (2.94) and (2. 100) gives 

4E(t) = -2c3 , 

thus 

Since E(t) = k(t) then 

1 
E(t) = --C3-

2 

1 
k(t) = --c 2 3 · 

Substituting (2.101) into (2.95) we obtain 

d'(y) = -2( - ~c3 ) , 

then 

The integration of (2.103) yields 

where c6 is an arbitrary constant. Inserting (2.104) into (2 .63) we obtain 

Substituting (2.101) and (2.102) into (2 .84) , (2.85) and (2 .87) yields 

r/ (t , x, y , U, V) 

r/ (t , x, y , U, V) 

A
2 

(t , x , y , U, V) 

1 - 2c3 U + c1 x + f(t , y) , 

1 
-2C3 V + C2X + g(t , y) , 

1 
= c2 U - 2 U f, + c1 V - TJC2 V 

1 - 2Vg, + R(t ,x, y) . 

(2.101) 

(2.102) 

(2 .103) 

(2.104) 

(2 .105) 

(2 .106) 

(2 .107) 

(2.108) 

Differentiating equations (2.92), (2.99) , (2. 105) and (2.106) with respect to x , t , y 

and U respectively and substituting the results into (2.53) we obtain 
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Thus c3 = 0. Therefore equations (2.45) , (2.52) , (2.54) and (2.56) are satisfied. 

The differentiation of equations (2.92) , (2.99) , (2 .105) , (2 .106) and (2.107) with re

spect to x, t , y , U and V and substituting their derivatives into (2.59) yields 

thus we have 

(2 .109) 

The substitution of (2 .109) into (2.86) , (2.92) (2 .99) , (2 .105) , (2.106) , (2 .107) and 

(2.108) gives, 

((t , x,y ,U,V) 

~

2 

(t , x, y , U, V) 

t(t , x , y, U, V) 

r/ (t , x , y , U, V) 

r/ (t , x, y , U, V) 

A
1 

(t, x, Y, U, V) 

A\t, x , y , U, V) 

Thus the general solutions of system (2.19)-(2.60) are: 

1 2 3 1 
~ = c5 , ~ =-6c1t+ c4 , ~ =c6 , TJ =c1 x +f(t, y) , 

A
1 = _S.u- 5..v +Q(t x y) 

2 2µ ' ' ' 

A
2 = 2U- ~Uf +c V- TJC 1 V-~Vg +R(t.x y) µ 2 t 1 µ 2 t , > l 

A 3 = S ( t, X, Y) , Qt + Rx + Sy = 0. 

2 C1 X ( ) TJ = - + g t , y ' 
µ 

(2.110) 

We can choose Q(t , x , y)= R(t , x, y) = S(t , x, y) = 0 as they contribute to the trivial 

part of the conserved vectors. Hence the Noether symmetries and gauge functions 

27 



are 

X1 
f) f) f) 

1 U V 2 u 'r/ A3 = 0 6µt ox - µx fJU - x fJV' A=---- A =-+V--V, 
2 2µ ' ' µ µ 

X 2 
f) 

A1 = 0 A2 = 0, A3 = 0, = 
' ox ' 

X3 
f) 

A1 = 0 A2 = 0 A3 = 0 = 
at' ' ' ' 

X4 
f) 

A1 = 0 A2 = 0 A3 = 0 
ay ' ' ' ' 

f) 
A1 = 0 2 1 

A3 = 0 X1 J(t , y)fJU ' ' 
A = - 2UJt) 

' 
f) 

A1 = 0 
2 1 

A3 = 0. Xg g(t , y)fJV ' A = --Vg 
' 2 t) 

The above results will now be used to find the components of the conserved vectors. 

Applying Theorem 1.4, [21 , 38] and reverting back into the original variables we 

obtain the following nontrivial conserved vectors associated with the above oether 

point symmetries: 

Tl = 
2
~ { - 6µtu 2 

- µxu + µJ u dx - 6µtv 2 
- xv + J v dx } , 

T2 
1 2-{- 6µt uyyU - l2µt uxxU - l28µtvxxV - 6>.µtvyyV + l2µtuv 

2µ 

(2 .111) 

+24µtu3 + 6µ xu2 + 2xu - 2 j u dx - 6r,µtv 2 
- 2r,xv + 2r, j v dx 

+24µ 2tv3 + 6µ xv2 + 2µxv - 2µ J v dx + 6µtux 2 
- µx J Ut dx 

+66µtvx 2 
- X J Vt dx + 2µux - 2µ xuxx - µxuyy + 28vx 

-28xvxx - AXVyy } , 

T( = 2_ { - 6µt'uxy'U - 6>.µt vxy'V + 6µt 'Ux'Uy + 6>.µl'ux Vy - µxuxy 
2µ 

+µuy - AXVxy + AVy } ; 
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(2.113) 



T.l 
2 = ~ { u

2 + v2 
} , (2.114) 

T.2 
2 = l{ . 3 2 3 

2 UyyU + 2UxxU + 20VxxV + AVyyV - 2uv - 4u + 'TJV - 4µv 

-u/- 8v/ } , (2.115) 

T.3 
2 = ~ { UxyU + AVxyV - UxUy - AVxVy } ; (2.116) 

T.l 
3 = ~ { 2uv + 2'u3 

- 'TJ'U2 + 2µv3 + Ux 2 + 'Uy 2 + 8vx 2 + A'Vy 2 } , (2 .117) 

T.2 
3 = ~ { - 2v J Ut dx - 2u (/ Vt dx ) - 6u

2 J Ut dx + 2'T]V (! Vt dx) 

-6µv
2 
(/ Vt dx ) + Uyy J Ut dx - Uy (! Uty dx ) - 2utUx + (! Ut dx) 

2 

+2uxx J Ut dx - 28vtVx + 28vxx (! Vt dx ) - AVy (! Vty dx) 

+>.vyy (! Vtdx ) + (! Vtdx ) 
2

} , (2.118) 

T3 
3 = ~ { Uxy (! Ut dx ) - UtUy + AVxy (! Vt dx ) - AVtVy } ; (2.119) 

Tl 
4 = ~ {-u (! Uy dx ) + v (J vy dx) } , (2.120) 

T2 
4 = ~ { - 2u (/ Vy dx ) - 2v (/ uy dx ) - 6u

2 
(/ Uy dx ) 

+2'T]V (/ Vy dx ) - 6µv
2 
(/ Vy dx) + J Ut dx (! Uy dx ) 

+ J Vt dx (! Vy dx) - 2uxUy - Uy (! Uyy dx ) + Uyy (! Uy dx ) 

+2uxx (! Uy dx ) - 28vxVy + 28Vxx (! Vy dx ) 

- AVy (! Vyy dx) + AVyy (! Vy dx ) } , (2.121) 

T 3 
4 = ~ { - u (! Ut dx ) - v (! Vt dx ) + 2uv + 2u

3 
- 'TJV

2 + 2µv
3 

+uxy (! Uy dx ) + Ux
2 + 8vx

2 + AVxy (! Vy dx ) } ; (2.122) 
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Tl 1 
(2.123) f - 2J(t ,y)u'. 

T2 
f ~ { - 2'Uxxf (t , y) - f (t, y) f 'Ut dx + ft( f 'u dx) - Uyyf(t , y) 

+6f(t , y)u2 + 2f(t , y)v + fvuy } , (2.124) 

T3 1 
(2.125) f - 2 J(t , y)uxy; 

Tl 1 
(2.126) - 2g(t , y)v, g 

T2 = ~{ - 28vxxg(t , y) - g(t , y) j Vt dx + 9t( j v dx) - AVyyg(t, y) g 

+2g(t , y)u - 2r79(t , y)v + 6µg(t , y)v2 + >-.gyvy } , (2.127) 

T3 1 
(2.128) = - 2>-.g(t, y)vxy· g 

The conservation law (2.114)-(2.116) is a local conservation law whereas the remain

ing ones are nonlocal conservation laws. We note that for arbitrary values of J(t , y) 

and g(t, y) infinitely many nonlocal conservation laws exist for system (2.2). 

2.2 Exact solutions of (2 .2) using the Kudryashov 

method 

This section aims to show the algorithm of the Kudryashov method for computing 

exact solutions of systems of nonlinear evolution equations. The Kudryashov method 

was one of the earliest methods for finding exact solutions of nonlinear partial differ

ential equations [39- 41] . It should be emphasized that due to the lack of popularity 

of computer algebra systems such as Maple and Mathematica in the late 1980s, the 

Kudryashov method was not well-known [41]. 

Let us shortly revisit the basic steps of the Kudryashov method. Consider the system 

nonlinear partial differential equation of the form 

(2.129) 
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We use the following ansatz 

u(x, y, t) = F(z), u(x, y, t) = G(z ), z = k1 x + k2y - ct . (2.130) 

From (2.129) we obtain the system of ordinary differential equations 

(2.131) 

which has a solution of the form 

M M 

F(z) = L Ai(H (z))i, G(z ) = L Bi(H( z ))i, (2 .132) 
i=O i=O 

where 

1 
H ( z) = -1 -+-c-os_h_( z_)_+_s-in_h_( z-) ' 

satisfies the Riccati equation 

H'( z) = H(z )2 - H( z ) (2.133) 

and Mis a positive integer that can be determined by balancing technique as in [41] 

and A0 , • • · , AM , B0 , · · • , BM are parameters to be determined. 

2.2.1 Application of the Kudryashov method 

Employing anstaz (2. 130) , we obtain the following nonlinear ordinary differential 

equation 

(2 .134a) 

The balancing technique [41] gives M = 2 so the solutions of (2.134) are of the form 

F (z) =Ao+ A1H + A2H 2
, 

G(z) =Bo+ B1H + B2H 2
. 
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Replacing (2 .135a) into (2. 134) and making use of (2.133) and then equating all coef

ficients of the functions I-Ji to zero, we obtain an overdetermined system of algebraic 

equations. Solving this system of algebraic equations with the aid of Maple, one 

obtains, 

C = 2 
1 

2 { k1 ( 62 
k1 

4 + 2 6 A k1 
2 

k2 
2 + .A 2 

k2 
4 

i5 k1 + ..\ k2 

-6 i5 µ B0k/ - 6 ..\ µ B0k/ + i5 rJ k/ + rJ ..\ kl - µ k/ - µ k/)} , 

A - - 1 { 52 k B + 52 k 4 k 2 0 
- 6 ( 6 k1 4 + 6 k1 2 k 2 2 + .A k1 2 k2 2 + .A k2 4 ) µ µ l µ l 

2 

+2 i5 ..\µ k/k/ + 2 i5 ..\ µ k/k2 4 + ..\2µ k/k2 4 + ..\2µ k 2
6 

- 6 i5 µ2 B0k/ 

-66 µ2B0k/k/ - 6 µk1
6 

- 2 i5 µk/k/ - <5 µ k/k2
4 

- 6 ..\µ2 B0k/k/ 

-6 ..\ µ 2 B0k2
4 

- ..\ µk 1
4k/ - 2 ..\µk/k2

4 
- ..\ µk2

6 + 6 rJ µk/ + 8 rJ µk /k/ 

+rJ ..\ µ k/kl + rJ ..\ µ k 2 
4 + 82k/ + 2 8 ..\ k/ k/ + ..\2k 2

4 
- µ2k/ - 2 µ2k/k/ 

-µ2k2 4 } , 

A1 = -2k/-2k/, 

A2 = 2 k/ + 2 k/ , 
B1 = -2 8 k/ + A kl , 

µ 

B2 = 2 8 k1 2 + ..\ k2 2 

µ 

Consequently a solution of (2.2) is, 

u(t, x , y) 

+ 

v(t,x , y) 

+ 

Ao+ A1 . { 
1 } 

1 + cosh(z) + smh(z) 

A2
{ 1 + cosh(z~ + sinh(z)} 

2

' 

Bo+ B1 . { 
1 } 

1 + cosh(z) + smh(z) 

B2
{ 1 + cosh(z~ + sinh(z)} 

2

' 

A profile solution of (2.136) is given in Figure 2.1. 
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Figure 2.1: Profile of solitary waves (2.136) 

2.3 Solutions of (2.2) using Jacobi elliptic function 

method 

Periodic exact solutions of (2.2) in terms of Jacobi elliptic function are shown in this 

section. The cosine-amplitude function , cn(z lw), and the sine-amplitude function , 
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sn(zlw) satisfy the following first-order differential equations [42]: 
I 

H' ( z) = -{ ( 1 - H 2 
( z)) ( 1 - w + w H 2 

( z) ) } 
2 

(2 .137) 

and 
I 

H' ( z) = { ( 1 - H 2 
( z)) ( 1 - w H 2 

( z)) } 
2

. (2.138) 

By following the same technique as in the Kudryashov method we obtain the following 

cnoidal and snoidal wave solutions: 

u(x, Y, t) =Ao+ A1cn(z lw) + A2cn2(zlw) , 

v(x , y , t) =Bo + B1cn(z lw) + B 2cn2(zlw), 

c = - 2 
1 

2{ k1(8<52wk/+ l 6<5>.wk/kl+8>.2wk24 -4<52k/ 
o k1 + >. k2 

-8 <5 >. k/ k2 
2 - 4 >. 2 k2 

4 
- 6 r5 µ B0k/ - 6 >. µ B0kl + <5 T/ k/ + T/ >. kl 

-µk / - µkl) } , 

(2.139a) 

(2.139b) 

Ao=- ( 4 2 } 2 2 4 ) { 8<52µwk/+8<52µwk/kl 
6µ <5 k1 + <5 k1 k2 + >. k1 k2 + >. k2 

+ 16 r5 >.µ wk/kl+ 16 r5 >. µ w k/k2 
4 + 8 >.2µw k/k2 4 + 8 >.2µ w k2

6 

-4 <52 µ k1 6 
- 4 82 µ k/ kl - 8 <5 Aµ k1 4 kl - 8 <5 A µ k/ k2 4 

- 8 8 µ w k1 6 

-16 8 µ w k1
4kl - 8 <5 µ w k/k24 

- 4 >.2µ k/k2 4 
- 4 >.2µ k26 

- 8 >.µwk/kl 

-16 ✓\µ w k/k2
4 

- 8 >.µw k26 
- 6 <5 µ2 Bok/ - 6<5 µ2 Bok/kl+ 4<5 µk1 6 

+8<5 µk/kl + 4<5 µk /k2 4 
- 6 >. µ2 Bok/kl - 6>.µ2 Bok24 + 4>.µk1 4kl 

+8 >. µ k1 
2 k2 4 + 4 >. µ k2 6 + r5 T/ µ k1 4 + r5 T/ µ k12k22 + T/ >. µ k1 2k22 + T/ >. µ k2 4 

+<52k/ + 2 6 A k/k22 + >.2k24 
- µ2k1 4 

- 2 µ2k/kl - µ2k2 4 
} , 

A1 = 0, 

A2 = -2wk/- 2wkl , 

B1 = 0, 

W (<5 k1 2 + A kl) 
B2 = -2 -'-----

µ 

u(x, y , t) =Ao + A1sn(z lw) + A2sn2(z lw) , 

v(x, y , t) =Bo+ B1sn(z lw) + B2sn2(zlw) , 
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c = - l { 4 <52 w k 4 + 8 J >- w k 2 k 2 + 4 >-2 w k 4 + 4 <52 k 4 
J k/ + >- k/ ki i i 2 2 i 

+86 >- k/k/ + 4).2k2
4 + 6<5 µB0k/ + 6 >- µ B0k/ - 6 TJ k/ - TJ >-k/ 

+µk/ + µk/ } , 

A= l { 4<52 wk 6 +4r52 wk 4k 2 
O 6µ (<5k/+Jk/k/+>-ki2k/+>-k24

) µ i µ i 
2 

+8 J >- µ w ki 4 k2 2 + 8 J >- µ w ki 2 k2 4 + 4 >-2 µ w ki 2 k2 4 + 4 >-2 µ w k2 6 + 4 <52 µ ki 6 

+4<52µki 4k/ + 86 >-µk/k/ + 8 i5 >-µk/k2
4 

- 4<5 µw ki 6 
- 8<5 µw k/k/ 

-4 J µ w k/ k2 4 + 4 >-2 µ k/ k2 4 + 4 >-2 µ k2 
6 

- 4 >- µ w ki 4 k/ - 8 >-µwk/ k2 
4 

-4>- µw k26 + 6<5 µ2 Boki4 + 66 µ2 Bok/k/ - 46 µk i6 
- 86 µ ki 4kl - 46 µk/k2 4 

+6>-µ2Bok/k22 + 6 /\µ2B0 k24 -4>-µk/k/ - 8 >- µk/k2
4 -4>-µk2

6 

-J TJ µ k/ - i5 TJ µ k/ k/ - TJ >- µ k/ k/ - TJ >- µ k2 
4 - <52 k/ - 2 J >- k/ k/ - >-2 k2 

4 

+µ2k/ + 2 µ2ki 2k/ + µ2k24 } , 

Ai= 0, 

A2 = 2wk/ + 2wk/ , 

Bi= 0, 

w (Jk/+>-k2
2) 

B2 = 2 - '--------'-
µ 

A profile solution of (2 .139) is given in Figure 2.2. 
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Figure 2.2: Profile of cnoidal wave (2.139) 

Remark 2: Note that the Kudryashov method yields a solitary wave solution 

whereas the Jacobi elliptic function method gives periodic solutions. 

2.4 Conclusion 

In this chapter we have studied the generalized coupled Zakharov-Kuznetsov sys

tem (2.2) which did not have a variational edifice. By letting u = Ux, v = Vx, the 
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generalized coupled Zakharov-Kuznetsov system (2 .2) was converted to the fourth 

order partial differential equation that had a variational structure. Subsequently, 

Noether's theorem was used to acquire infinitely many conservation laws. Further

more the Kudryashov and the Jacobi elliptic function methods were employed to 

construct exact solutions for the coupled Zakharov-Kuznetsov system (2.2). The 

solutions attained were solitary, cnoidal and snoidal waves . 
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Chapter 3 

Reductions and exact solutions of 

the ( 2+ 1 )-dimensional breaking 

soliton equation via conservation 

laws 

In this chapter we study the (2+1)-dimensional breaking soliton equation in the form 

(3. 1) 

Equation (3.1) was first presented by Calogero and Degasperis [43 ,44] and is used to 

describe the (2+1)-dimensional interaction of a Riemann wave propagating along the 

y-axis with a long wave along the x-axis. Due to the importance of equation (3.1) , 

there has recently been much attention devoted to studying solutions of equation 

(3.1). In [45], the author employed the homogeneous method and some soliton-like 

solutions were obtained . The classical Lie symmetry method was employed in [46] 

and some new non-traveling wave explicit solutions of Jacobian elliptic function were 

derived. Although a great deal of research work has been devoted to finding different 

methods of solving nonlinear evolution equations, there is no unique method for 

finding exact solutions of nonlinear partial differential equations. 
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Here we use the Noether theorem [21] to construct conservation laws for equation 

(3.1) . Thereafter, we employ the definition of the association of symmetries with con

servation laws to obtain exact solutions for the (2+1)-dimensional breaking soliton 

equation via the generalized double reduction theorem. 

3.1 Construction of conservation laws for (2+ 1 )

dimensional breaking soliton equation (3.1 ) 

Consider the (2+ 1 )-dimensional breaking soliton equation (3.1) , viz. , 

It can be verified that the corresponding second-order Lagrangian for equation (3 .1) 

is 

(3.2) 

The insertion of L from (3 .2) into equation (1.29) and splitting with respect to the 

derivatives of u(t , x, y) yields an overdetermined system of PDEs: These are: 

I 

~u = 0, (3 .3) 

I 

~y = 0, (3.4) 
I 

~x = 0, (3.5) 

2 

~u = 0, (3.6) 

2 

~y = 0, (3.7) 

A~= 0, (3 .8) 

3 

~u = 0, (3 .9) 

3 

~x = 0, (3.10) 

2 

~xx= 0, (3.11) 

T/uu = 0, (3 .12) 
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'r/xy = 0, (3.13) 

'r/yu = 0, (3.14) 

'r/xu = 0, (3.15) 

'r/xx = 0, (3 .16) 

2'r}u + ~i = 0, (3. 17) 

2'r}y + ~; = 0, (3 .18) 

4rJx + ~: = 0, (3 .19) 

2'r}u - 2(; + (t = 0, (3.20) 

3rJu - (; + (t = 0, (3.21) 

2At + 'r/x = 0, (3.22) 

2A~ + 'r/t = 0, (3 .23) 

Ai + A; + Az = 0. (3.24) 

After some very much computations, the above system of PDEs yields, 

e = -4C1 t + C2 , 

e -c1 x + c4 t + c5 , 

e -2c1 y - 4c3t + c7 , 

1 
'r/ c1 u + c3x -

2
c4 y + c6 , 

Al 1 
= -2C3 u + E(t , x , y) , 

A2 D(t, x , y) , 

A3 R(t, x , y) , 

Et+ Dx + Ry 0. 

Here we choose D(t, x , y) = E(t , x , y) = R(t, x , y) = 0 as they lead to trivial part 

of the conserved vectors. The invocation of theorem 1.4, results in the following 

nontrivial conserved vectors corresponding to the seven Noether point symmetries 
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respectively: 

Tl 
1 

y2 
1 

T3 
1 

y,1 
2 

y,2 
2 

y,3 
2 

y,1 
3 

y2 
3 

T3 
3 

Tl 
4 

T2 
4 

T3 
4 

r,1 
5 

r,2 
5 

r,3 
5 

r,1 
6 

r,2 
6 

r,3 
6 

= 

= 

= 

2 1 1 2 
-4t'Ux'Uy - 2tuxx'Uxy -

2
uux -

2
xux - Y'UxUy , 

2 2 1 2 XUxUY + 2UUxUy + 8tUtUxUy + 4yuxUy -
2

uut - 2tut - YUtUy 

3 1 
-

4
uxxy(u + 4lUt + XUx + 2yuy) + 

2
uxy(2ux + 4tUxt + 2yuxy) 

1 
+

4
uxx(3uy + 4lUty + XUxy + 2yuyy) , 

2 2 3 1 
YUxUt + uux + 4tUtUx + xux - 4Uxxx(u + 4tut + XUx + 2yuy) 

1 
+

4
uxx(2ux - 2yuxy + X'Uxx + 4t'Uxt) ; (3 .25) 

2 1 
uxuY + 2UxxUxy , 

1 2 3 1 1 
-2UtUxUy + 

2
ut + 

4
utUxxy -

4
uxxUty -

2
uxtUxy, 

2 1 1 
-UtUx + 

4
utUxxx -

4
utxUxx; (3.26) 

1 1 
-u - 2tu u - -xu 2 X y 2 x , 

1 2 3 ) 1 2 2XUxUy -
2

xut + 8tUxUy - 2tUtUy -
4

uxxy(X + 4tuy + 
2

uxy + 2tuxy 

+tuxxUyy , 

2 1 1 
2tuxUt + XUx + 

4
uxx - tuxxUxy -

4
uxxx(x + 4tuy) ; (3.27) 

1 1 2 

4
vux + 

2
tux , 

(3.28) 

(3.29) 

(3.30) 
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y,1 
7 

y,2 
7 

T.3 
7 

1 
2UxUy, 

1 3 1 1 
- 2Ux 'U~ + 

2
utUy + 4,Uy 'Uxxy -

2
u ;y - 4'Uxx'Uyy, 

1 1 1 
-

2
UxUt + 4uxxUxy + 4u yUxxx· (3.31) 

3.2 Double reduction of (3 .1) via conservation laws 

The aim of this section is to employ the double reduction method to the (2+1)

dimensional breaking soliton equation by using the derived conservation laws and 

the associated symmetries. Employing the classical Lie algorithm for symmetry 

method [26,47], it can be shown that the (2+1)-dimensional breaking soliton equation 

admits seven Lie symmetries which are all Noether symmetries. We first look for the 

possible associations between the symmetries and the conserved vectors. This will 

be achieved through the following formula, 

(3.32) 

It can easily be verified that the associated symmetries are X2 , X 5 and X 7 , so the 

combination of these symmetries, 

can be used to get a reduced conserved vector where p, /3 are constants. The generator 

X has the canonical form X = :q , then from (1.24) we have 

dt 

1 

dx 
p 

dy 

/3 
du 

0 

and thus the canonical variables are: 

dr 
0 

ds 

0 

dq dv 
= 1 0 

r=y-f3t, s=x-pt, q=t, v(r, s)=u(t , x , y) . 
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Employing the following formula, we can reach the reduced conserved vector , 

(3 .35) 

where A-1 from (3.35) is given by 

I 
Dtr Dts 

A-l = Dxr D xs 

Dyr Dys 

J = det(A) . (3.36) 

Equations (3.35) and (3.36) for the conserved vector (3 .30) result in 

(3.37) 

and the reduced conserved vector is 

(3.38) 

We further determine the associated symmetry with the reduced conserved vector 

(3.38) through the formula, 

It can be shown that the associated symmetries are 

(3.40) 

Thus, it is possible to obtain a further reduced conserved vector by the combination 

of, 
a a 

y = Y1 + ,Y2 =Dr+ ' 8s ' 

where I is a constant and the generator Y has canonical form 

a 
Y= om' 
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if 

dr 

1 

with the similarity variables 

ds 

'Y 

dm 
1 

dn 
0 = 

dv 
0 

dw 

0 

n = 1r - s, m = r, w(n) = v(r,s). 

Invoking the following formula, we can reach the reduced conserved vector , 

with 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

Equations (3.43) and (3 .44) for the conserved vector (3.37) yield the following form, 

Equation (3.45) expressed in terms of variable n becomes 

-(,w"' + pw' + 31 w'2) + 1 /3w' , 

- ~/3w' - w'2 

2 

and the reduced conserved form is 

Equation (3.47) gives T6 = -k1 and (3.46) can be written as: 

1w111 + (p - /3,)w' + 31w'2 = 0. 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

The integration of (3.48) with respect to z three times and taking the constants of 

integration to be zero leads to a first-order variable separable ordinary differential 

equation, which can be integrated easily. Reverting back to the original variables and 
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taking specific values of the constant of integration, we obtain the following exact 

solution for the (2+ 1 )-dimensional breaking soliton equation; 

J/3, - p tanh ( z✓f}?) 
u(t ,x,y) = ------~, (3.49) 

vFf 
where z = 1(y - (3t) - (x - pt) . A profile solution of (3.49) is presented in Figure 

3.1. 

Figure 3.1: Evolution of solitary travelling wave solution (3.49) with parameters 

t = 0, 1 = 4, /3 = 2, p = 4. 

It can also be shown that the symmetries X 2 , X 5 and X 7 are associated with the 

conserved vector T.J , T:j and Tf through formula (3.32). So we can get a reduced 

conserved vector by the combination of 

a a a 
X = X2 + pX5 + (3X7 = ot +pox + (3 oy, 

and the generator X has the canonical form X = :q if 

dt dx dy du dr ds dq dv 
- - - -

1 p (3 0 0 0 1 0 
(3.50) 

where the canonical variables are 

r = y - (3t , S = X - pt , q = t , v(r,s) =u(t, x,y). (3.51) 

Through the following formula, we can achieve the reduced conserved vector, 

(3.52) 
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where A-1 from (3.52) is given by 

I 
Dtr D ts 

A-l = Dxr Dxs 

Dyr Dys 

J = det(A). 

Equations (3.52) and (3 .53) for the conserved vector (3.26) result in 

r.r 2 

r,s 
2 

T.q -
2 -

1 3 1 2 1( ) 
4f3vssVrs - pv3 - 4.PV88 + 4. PVs + f3vr Vsss , 

-f)'v;vr - 2/3v8 v; -1(/J'Vs + f3vr/ + ~(fYUs + f3vr)'Vssr - 1 /3v;s 

1 1 
- 4/3VssVrr - 4.PVssVrs , 

2 1 
- V8 Vr - 2v8 8Vrs 

and the reduced conserved vector is 

(3.53) 

(3 .54) 

(3.55) 

Similarly, we can further determine the associated symmetry with the reduced con

served vector (3 .55) using the following formula, 

(3.56) 

One can verify that the associated symmetries are 

(3.57) 

so we can further get a reduced conserved vector by the combination of 

where , is an arbitrary constant and the generator Y has canonical form 

if 

dr ds 

1 ' 

dm dn dv dw 
1 0 0 0 

(3.58) 
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and 

n = ,r - s, m = r, w(n) = v(r, s). (3.59) 

Employing the following formula, we can attain the reduced conserved vector, 

(3.60) 

with 

(3.61) 

Equations (3 .60) and (3 .61) for the conserved vector (3 .54) has the following form: 

I 
113 3 1 2 1( /3 ) I 4 VssVrs - PVs - 4PVss + 4 PVs + Vr Vsss 

-pv;vr - 2/3vsv; - ½(pvs + /3vr/ + ¾(PVs + f3vr)Vssr- · 

½f3v;s - ¼(/3Vrr + PVrs)Vss 

(3.62) 

Expressing equation (3 .62) in terms of variable n yields 

-21 (,/3 - p)w'3 - ,(,/3 - p)w'w111 + !(,/3 - p)2w'2 

2 

+1,(,/3 - a)w'12 , (3.63) 

l /3 112 13 l ( /3 ) I Ill - - , w + pw - - ' - p w w 
2 2 

and the reduced conserved form is 

(3.64) 

Equation (3.64) gives T2 = -k1 and (3.63) can be written as: 

4,(,/3 - p)w'3 + 2,(,/3 - p)w'w111 
- (,/3 - p)2w'2 

- ,(,/3 - p)w"2 = k3. (3.65) 

Despite its simplicity, this nonlinear third-order ordinary differential equation is in

tractable to solve explicitly in general. However, these difficulties will be by passed 

using the Kudryashov method [39-41] . 

47 



3.3 Exact solution using Kudryashov method 

In this section we utilize the Kudryashov method to construct exact solution of the 

nonlinear evolution equation. The third-order ordinary differential equation (3.65) 

has a solution of the form 
M 

w(z) = L Ai(H( z ))\ (3.66) 
i=O 

where 

1 
H ( z) = -1 -+-c-os_h_( z_)_+_s-in_h_( z- )' 

satisfies the equation 

H'( z) = H (z) 2 
- H (z) (3.67) 

and Mis a positive integer that can be determined by balancing technique as in [41] 

and Ao ,·· · , AM are parameters to be determined. 

3.3.1 Solution of (3.1) via Kudryashov method 

41 (/31 - p)w'3 + 21 (/31 - p)w'w"' - (/31 - p)2w'2 
- 1 (/31 - p)w"2 = 0. (3.68) 

The balancing procedure [41] yields M = 1, so the solutions of (3.68) are of the form 

(3 .69) 

Inserting (3.69) into (3 .68) and making use of (3 .67) followed by equating all coeffi

cients of the functions Hi to zero, we obtain an overdetermined system of algebraic 

equations in terms of A0 , A1 . Solving the system of algebraic equations with the aid 

of Maple, we obtain the following cases: 

CASE 1 

p = /3 ,, 

A1 , Ao arbitrary. 
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CASE 2 

p=/3,-,, 

A1 = -2 and Ao arbitrary. 

Consequently a solution of (3.1) is 

u(t, x , y) = Ao+ Ai { 1 + cosh(z~ + sinh(z) } ' 

where z = ,(y - (3t) - (x - pt) . 

A profile solution of (3.70) is given in Figure 3.2. 

-2.0 {.. 

' -15 ~ 

U 10\ 
t 

-!'J~ t 

•• 

X ~ ",..... ____________ ····--.. 

y 

·-, 
" ,, 
i 
; 

(3 .70) 

Figure 3.2: Evolution of solitary travelling wave solution (3.70) with parameters 

t = 0,, = l , Ao= 0. 

3.4 Concluding remarks 

We have constructed the associated conservation laws for the admitted Noether point 

symmetries for the (2+1)-dimensional breaking soliton equation. Thereafter, two 

solutions have been obtained by making use of the double reduction theorem. This 

has been attained after establishing the association between the conserved vectors 

and the symmetries. The correctness of these solutions has been verified by back 

substitution into equation (3. 1) . 
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Chapter 4 

Conclusion and Discussions 

In this dissertation we first recalled some important definitions and results concerning 

Lie, Noether theorem and the double reduction theorem, which were later used in 

the dissertation. 

In Chapter two we derived the conservation laws for the third-order coupled system 

(2.2) through a very interesting method of increasing the order of the third-order 

coupled system (2.2) to a forth-order coupled system (2.3) using u = Ux and v = Vx . 

Thereafter we applied the Noether theorem to derive conservation laws in U and V 

variables. We then reverted back to the original variables u and v and obtained the 

conservation laws for the third-order coupled system (2.2) which did not admit a 

variational structure in its present form. Moreover, we constructed exact solutions 

for the generalized coupled Zakharov-Kuznetsov system (2.2) using the Kudryashov 

method and Jacobi elliptic function method. 

Lastly in Chapter three the Noether theorem was employed to construct the conser

vation laws for the (2+1)-dimensional breaking soliton equation (3.1). Furthermore, 

the double reduction theorem was used to find exact solutions for equation (3. 1) . 

This was attained after establishing the association between the conserved vectors 

and the symmetries. 
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