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Abstract
This thesis focuses on two statistical problems related to credit scoring. In credit sco-

ring of individuals, two classes are distinguished, namely low and high risk individuals

(the so-called "good" and "bad" risk classes). Firstly, we suggest a measure which

may be used to study the nature of a classi�er for distinguishing between the two risk

classes. Secondly, we derive a new method DOUW (detecting outliers using weights)

which may be used to �t logistic regression models robustly and for the detection of

outliers.

In the �rst problem, the focus is on a measure which may be used to study the nature

of a classi�er. This measure transforms a random variable so that it has the same

distribution as another random variable. Assuming a linear form of this measure,

three methods for estimating the parameters (slope and intercept) and for constructing

con�dence bands are developed and compared by means of a Monte Carlo study.

The application of these estimators is illustrated on a number of datasets. We also

construct statistical hypothesis to test this linearity assumption.

In the second problem, the focus is on providing a robust logistic regression �t and

the identi�cation of outliers. It is well-known that maximum likelihood estimators of

logistic regression parameters are adversely affected by outliers. We propose a ro-

bust approach that also serves as an outlier detection procedure and is called DOUW.

The approach is based on associating high and low weights with the observations as

a result of the likelihood maximization. It turns out that the outliers are those obser-

vations to which low weights are assigned. This procedure depends on two tuning

constants. A simulation study is presented to show the effects of these constants on



the performance of the proposed methodology. The results are presented in terms of

four benchmark datasets as well as a large new dataset from the application area of

retail marketing campaign analysis.

In the last chapter we apply the techniques developed in this thesis on a practical credit

scoring dataset. We show that the DOUWmethod improves the classi�er performance

and that the measure developed to study the nature of a classi�er is useful in a credit

scoring context and may be used for assessing whether the distribution of the good

and the bad risk individuals is from the same translation-scale family.

Keywords: credit scoring; quantile comparison function; method of moments; method

of quantiles; estimation; asymptotic theory; test of linearity; logistic regression; out-

liers; robust estimators; trimming; down weighting.



Uittreksel
In hierdie proefskrif word gefokus op twee statistiese probleme wat betrekking het op

kredietkeuring ("credit scoring"). In kredietkeuring van individue word daar tussen

twee risikoklasse onderskei, naamlik lae- en hoë-risiko individue (die sogenaamde

"goeie" en "slegte" risikoklasse). Eerstens stel ons 'n maatstaf voor wat gebruik kan

word om die aard van 'n klassi�seerder vir die twee risikoklasse te bestudeer. Twee-

dens stel ons 'n nuwe metode DOUW ("detecting outliers using weights") voor wat

gebruik kan word om robuuste passings vir logistiese regressie te bied asook om uit-

skieters te identi�seer.

In die eerste probleem is die fokus op 'n maatstaf wat die aard van 'n klassi�seerder

bestudeer. Hierdie maatstaf transformeer 'n stogastiese veranderlike sodat dit die-

selfde verdeling het as 'n ander stogastiese veranderlike. Met die aanname dat hier-

die maatstaf 'n lineêre vorm het, word drie metodes ontwikkel vir die beraming van

die parameters (helling en afsnit) en vir die konstruksie van vertrouensintervalle. Die

beramers word vergelyk deur middel van 'n Monte Carlo studie en hulle toepassing

word geïllustreer aan die hand van 'n aantal datastelle. Statistiese hipotese-toetse

word gekonstrueer om die aanname dat hierdie maatstaf lineêr is, te toets.

Die fokus in die tweede probleem is op die ontwikkeling van 'n robuuste logistiese re-

gressiepassing en die identi�sering van uitskieters. Dit is alombekend dat maksimum

aanneemlikheidsberamers van logistiese regressie nadelig beïnvloed word deur uit-

skieters. Ons bied 'n robuuste metodologie aan wat ook as 'n uitskieteridenti�serings-

prosedure dien, bekend as DOUW. Die benadering is daarop gebaseer dat tydens

die aanneemlikheids-maksimering proses, hoë en lae gewigte aan elke waarneming



toegeken word. Die uitskieters is dié waarnemings waaraan lae gewigte toegeken

word. Die prosedure maak gebruik van twee verstelbare konstantes. 'n Simulasie-

studie word aangebied om die uitwerking van hierdie konstantes op die effektiwiteit

van die prosedure aan te toon. Die resultate word geïllustreer aan die hand van vier

maatstaf-datastelle asook 'n groot nuwe datastel uit die toepassingsveld van klein-

handelbemarkingsveldtog-analise.

In die laaste hoofstuk pas ons die tegnieke wat ons in die proefskrif ontwikkel het op

'n praktiese kredietkeuringsdatastel toe. Ons wys dat die DOUW-metode die klassi-

�seerder se prestasie verbeter, dat die maatstaf wat ontwikkel is om die aard van 'n

klassi�seerder te bestudeer, nuttig is in 'n kredietkeuringskonteks en dat dit ook ge-

bruik kan word om te toets of die verdeling van die goeie en die slegte risiko individue

van dieselfde translasie-skaal familie is.

Sleutelwoorde: kredietkeuring; kwantielvergelykingsfunksie; metode van momente;

metode van kwantiele; beraming; asimptotiese teorie; toets vir lineariteit; logistiese

regressie; uitskieters; robuuste beramers; snoeiing; afweging.
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CHAPTER 1

Introduction



 



In this thesis we focus on two statistical problems related to retail credit scoring.

Thomas et al. (2002) consider retail credit scoring to be one of the most success-

ful applications of statistical modelling in �nance and banking. In this chapter we

introduce the reader to credit scoring and provide the motivation for the statistical ap-

plications we consider. These applications are not exclusive to the credit scoring �eld

and we will comment on other application areas as well. In particular we focus on a

measure to study the nature of a classi�er and on the identi�cation of outliers when

�tting logistic regression models. In Section 1.1 we introduce credit scoring and in

Section 1.2 we motivate the need for studying the nature of a classi�er. In Section 1.3

we motivate the need for identifying outliers and of �tting logistic regression models

robustly.

1.1 Introduction to credit scoring

The term "credit" is used to describe the loan of an amount of money to a customer by

a �nancial institution for a period of time. In such a transaction, the lender wants to be

as con�dent as possible that the money will be repaid in due course. In addition most

borrowers would not want to borrow money if there was little chance of them being

able to repay it. Thus, there is a need to distinguish between low risk and high risk

applicants for credit, both from the lender's and borrower's perspectives. In credit scor-

ing slang the low and high risk classes are frequently referred to as the `goods' (those

individuals posing low risks) and the `bads' (those individuals posing high risks). Risk,

in a credit scoring context, may be described as the ability of the customer to repay

the credit granted. In reality there are not simply two well-de�ned classes: goods and

bads. An indeterminate class might also exist. In industry, objective statistical meth-
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ods of allocating individuals to risk classes are known as credit scoring methods (see

e.g. Thomas et al., 2002 and Hand, 1997). The term "credit scoring" refers to a wide

area. Hand (2004) describes credit scoring as the collection of formal statistical and

mathematical models used to assist in running �nancial credit-granting operations, pri-

marily to individual applicants in the personal or retail consumer sectors. The range

of applicability of such tools is vast, covering areas such as bank loans, credit cards,

mortgages, car �nance, hire purchase, mail orders, customer relationship manage-

ment (CRM) and others.

In a traditional scorecard each response on an application form is assigned a value

and the sum of these values for an individual is that individual's overall score (Hand,

1997). This score is then compared to a threshold to produce a classi�cation. Such

a score is an application score since it measures the propensity of a new individual to

default.

The objective of an application credit scoring model or credit scorecard is therefore to

classify new individuals into low (good) and high (bad) credit risk classes with a high

degree of accuracy. Often banks or other credit granting institutions use the knowledge

obtained through the behaviour of existing customers to aid them in �nding classi�ca-

tion rules that can be used to decide whether credit may be granted to new applicants

or not. In order to construct such a classi�cation rule it is important to analyse the

characteristics of existing customers, which may be used to distinguish whether the

prospective client pose a good or bad risk to the bank. Typical characteristics are for

example the individual's income or demographic information like age or geographic

location. Credit scoring models, based on these characteristics, are then developed to

classify individuals into good and bad risk classes with a certain degree of accuracy.

11



The characteristics used in these credit scoring models are frequently referred to as

classi�ers. Note that in this thesis what we refer to as a "classi�er" is often called an

independent, an explanatory or an input variable.

In order to build a credit scoring model, a sample of existing customers' credit beha-

viour is observed over a certain �xed period after which they are classi�ed as good

and bad risk individuals. De�nitions of good and bad risk individuals may vary be-

tween companies and products within companies, but often good risk individuals are

those who have never missed a payment and bad risk individuals are those who have

defaulted, i.e. missed three consecutive payments or more. This dataset is usually

augmented by data on the individuals obtained from credit rating agencies. Suppose

a number of individuals have been classi�ed into a good risk and a bad risk class

and that we have available a number of characteristics of these individuals which may

be used as potential classi�ers. Logistic regression models are popular in developing

scorecards (or classi�cation rules) and are frequently �tted to such datasets in order

to estimate the probability of default given a set of characteristics of the individuals.

The best model, that emerges after the variable selection and model building process

have been completed, contains those characteristics which may be considered to be

the best classi�ers.

The above-mentioned model-building process is �awed in that only those "good" ap-

plicants, who have been granted credit previously, are now existing customers and

only those are now classi�ed as good or bad on the basis of their credit behaviour.

This bias problem is referred to as "reject bias" (see e.g. Hand and Henley, 1997). A

number of bias correcting techniques have been proposed in the literature under the

heading "reject inference". For more detail see e.g. Thomas (2000), Hand (2001),
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Hand and Henley (1997), Mays (2004) and Siddiqi (2006). Up to and until now the

focus has been on application scoring. An application score can be contrasted with a

behavioural score which is a score based on existing borrowers' repayment behaviour

and which can be used for such things as deciding what kind of action to take to pur-

sue a mildly delinquent loan or deciding whether to offer a borrower a new loan. In

this thesis our focus will not be on the credit scoring model building process. Rather

our focus will be to study the nature of the classi�ers which emerge from the model

building process and to identify outliers and erroneous observations in credit scoring

datasets.

Datasets in credit application are large; there may be hundreds of variables (characte-

ristics of applicants) and tens of thousands or even a million cases (applicants). Most

of the many variables are typically categorical. If not, the practice until recently was

usually to categorise them prior to analysis. However, nowadays the tendency seems

to have shifted towards using the uncategorised continuous variables especially when

�tting logistic regression models, neural networks or support vector machines to the

design set. Of course, in large datasets the number of outliers is also large, and an

important pre-processing step is to purge the data of those outliers that are erroneous

observations. Therefore, the identi�cation of outlying observations is an important step

when building scorecards.

In this thesis we are concerned with two aspects of credit scoring. In Section 1.2

we motivate the need for studying the nature of classi�ers. We assume that potential

classi�ers have been de�ned by for example a variable selection step and that we need

to understand the way in which these classi�ers discriminate between the distribution

of the goods and the bads. In Section 1.3 we motivate the development of a robust
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logistic regression method which may be used for outlier identi�cation. Both these

ideas are applicable in other areas as well. These applications will be discussed in

more detail later in this thesis.

1.2 Determining the nature of a classi�er

Consider a particular classi�er X which may be used to classify individuals into good

and bad risk classes. Assume that the random variable V represents X for the

good risk individuals and that the random variable W represents X for the bad risk

individuals. Suppose further that V � FX and W � GX and that FX and GX

are from the same translation-scale family, say H, i.e. FX(x) = H
�
x��V
�V

�
and

GX(x) = H
�
x��W
�W

�
. In this context one might expect this assumption to be true

since the distribution of X for low and high risk individuals should not differ too much

except for location and scale differences. This assumption will be discussed again

when credit scoring datasets are studied later. After some mathematical manipulation

it follows that

G�1X (FX(v)) = �W � �W
�V
�V +

�W
�V
v:

Now set �0 = �W � �W
�V
�V and �1 =

�W
�V

then we have that

G�1X (FX(v)) = �0 + �1v:

Note that FX and GX are equivalent when �0 = 0 and �1 = 1 and that the diffe-

rence between FX and GX will be indicated by deviations from these values of the

alphas. For instance, if �1 = 1 (�W = �V ), then the difference between FX and GX

are determined by a location difference (�W � �V ). Obviously if FX and GX are not

from the same translation-scale family the linear relationship G�1X (FX(v)) = �0 + �1v
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will not hold and some non-linearities will be introduced which will result in a more

complex relationship. Ignoring the assumption that FX and GX are from the same

translation-scale family it follows from the well-known probability integral transforma-

tion that G�1X (FX(v)) =D W , where =D denotes equality in distribution. Dropping

the subscript X for the sake of notational simplicity we have that the transformation q

(q(v) = G�1(F (v))) will transform V so that it has the same distribution as W . Dok-

sum (1974) and Doksum and Sievers (1976) have investigated this q function in a

medical context, where the objective was to investigate the differences between a

control group and a treatment group (see Doksum, 1974 and Doksum and Sievers,

1976). In a similar study Lombard (2005) used it in an application in the coal industry

where the objective was for example to distinguish between two methods of measuring

abrasive qualities of coal. In our context, we will be more interested in the linear form

of q (q(v) = G�1(F (v)) = �0+�1v), because we expect F and G to be from the same

translation-scale family.

We now consider two examples whereby we will illustrate the nature of a classi�er in

distinguishing between two groups. In order to illustrate this graphically we consider

random variables V andW and we assume that V represents the good risk class and

W the bad risk class as observed through some characteristic. In our �rst example

(Case 1) we assume that V � N(0; 1) and W � N(2; 22) and that X is the underlying

characteristic, and in the second example (Case 2) we assume that V � N(0; 1) and

W � N(10; 22) and that Y is the underlying characteristic. In the left panel of Fi-

gure 1.1 we plot the two theoretical densities as observed through characteristic X

and in the right panel of Figure 1.1 the two theoretical densities as observed through

characteristic Y . Clearly Y distinguishes much better between the good and bad risk
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classes than does characteristic X, so Y is the better classi�er.

Note that this is if we restrict attention to a single classi�er at a time. However, in

most practical applications we have many classi�ers and then it may be misleading

to evaluate the usefulness of a classi�er in isolation. This is especially true if the

classi�ers are highly correlated. In such cases a classi�er having the same distribution

in both groups, and therefore being useless as a classi�er when viewed on its own,

may in fact be very useful when combined with other classi�ers. We now return to our

examples of viewing a single classi�er at a time.
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Figure 1.1: Plot of probability densities f (good risks) and g (bad risks) as observed

through characteristic X (left) and Y (right)

A diagnostic tool that is frequently used to compare distributions is a QQ-plot where the

empirical quantiles of the observed distribution of F are plotted against the empirical

quantiles of the observed distribution of G. Deviations from the 45 degree straight

line through the origin q(v) = v or F (v) = G(v) indicate that the empirical distribution

of F deviates from that of G. We will refer to this 45 degree straight line through

the origin as the equal distribution line, or the ED line for short. In order to illustrate

this graphically we again study the two random variables V and W in the two above-
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mentioned examples and draw a sample of 1000 observations from each distribution.

In the left two graphs of Figure 1.2 we plot the frequency distributions and on the right

the corresponding quantile plots. In this case, because we have equal sample sizes,

our QQ plot is effectively a plot of the ordered observations of V against the ordered

observations ofW .

In both QQ plots the deviation from the 45 degree line through the origin is clear. In

fact, the plotted points in both cases resemble a straight line, but with different slopes

and intercepts. Further inspection reveals that the plotted observations in the upper

QQ plot in Figure 1.2 (top right panel) resemble a line having an intercept of about 2

and slope of about 2.

The plotted observations in the QQ plot in Figure 1.2 (bottom right panel) again re-

semble a line but with an intercept of about 10 and a slope of about 2. Therefore

the QQ-plot reveals the underlying relationship between the theoretical distributions.

From the above examples it should be clear that the QQ-plot may be used to study the

nature of the classi�ers X and Y . The QQ-plot clearly identi�es Y as the better clas-

si�er because the plotted observations resemble a line which is further removed than

that of X from the line indicating equality between distributions. Also the straight line

suggests that the distributions are from the same translation-scale family and may be

used to study the magnitudes of location and scale differences. The obvious question

is whether this plot may also be useful when a typical credit scoring dataset is used.

Two credit scoring datasets will now be considered which will be referred to as Case 3

and Case 4.

The �rst dataset, Public.xls, was obtained from the CD accompanying the book by

Thomas et al. (2002) and we selected the applicant's income (DAINC) characteristic
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Figure 1.2: Frequency diagrams (left) and QQ plots (right) for Case 1 (top) and for

Case 2 (bottom)

18



(Case 3). Note that the Public.xls dataset has 792 individuals in the good risk class

and 227 in the bad risk class.

In the left top graph of Figure 1.3 we plot the frequency distributions and in the right top

graph the corresponding quantile plot. In this case, because we have unequal sample

sizes, our QQ plot is effectively a plot of V(dmi=ne) againstW(i) where V(1) < : : : < V(m)

are the order statistics of V1; : : : ; Vm and W(1) < : : : < W(n) are the order statistics of

W1; : : : ;Wn. Here m >= n and dte indicates the ceiling of t.

The second dataset, HMEQ.xls, was obtained from the SAS Course Notes (see e.g.

Wielanga et al., 1999). The HMEQ.xls dataset has 4234 individuals in the good

risk class and 1045 observations in the bad risk class. We selected the loan amount

requested (LOAN ) as our characteristic (Case 4) and depicted the results in the two

bottom panels of Figure 1.3. Note that in both cases the missing values of DAINC

and LOAN were excluded.

When inspecting Figure 1.3 (bottom right panel), the plotted observations seem to

follow a straight line, although one could argue that non-linearities are present and

therefore that the distributions of the goods and the bads are not from the same

translation-scale family. In both QQ plots there is very little deviation from the 45

degree line through the origin (ED line). The introduction of con�dence bands for this

q-function may be used to test the null hypothesis of equality between distributions. In

this thesis we will consider various methods for estimating the linear form of q as well

as construct associated con�dence bands for the estimators.

From the above it is clear that q may be used as an ad hoc measure to study the nature

of a classi�er in discriminating between two populations. Furthermore it may be useful

as a diagnostic measure for assessing whether the distribution of the good and bad
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Figure 1.3: Frequency diagrams (left panels) and QQ plots (right panels) for DAINC

(Case 3) top panels and for LOAN (Case 4) bottom panels
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risk individuals is from the same translation-scale family. Since the assumption of

linearity (the distributions are from the same translation-scale family) is central to this

study, statistical tests for testing this assumption will be constructed and studied.

As a last observation one should note that this type of analysis is more applicable to

continuous variables. Also, an informed reader might ask whether alternatives to the

measure proposed here are available. Examples of statistics that are frequently used

as measures of separation between two distributions are e.g., Kolmogorov-Smirnov

(KS), the c-statistic (see e.g. Siddiqi, 2006) and the Receiver Operating Characteristic

(ROC) curve (see e.g. Mays, 2004 or McNab and Wynn, 2000). Note that according

to Siddiqi (2006) the c-statistic is equivalent to the area under the ROC curve, Gini

coef�cient and the Wilcoxon-Mann-Whitney statistic. The measure which we propose

here should not be seen as a competitor to the above-mentioned statistics, but rather

as another tool for determining the nature of a classi�er in distinguishing between

distributions.

The QQ plot based measure that we want to investigate is analogous to well-known

measures originating from PP plots (see e.g. Mushkudiani and Einmahl, 2007 and

Holmgren, 1995). A standard PP plot compares the empirical cumulative distribution

function of a variable to a speci�ed theoretical cumulative distribution function such

as the normal, but in our case a PP plot will be the empirical cumulative distribution

function of the one distribution plotted against the empirical cumulative distribution

function of the other distribution. In a PP plot a 45o straight line indicates that the

two distributions are identical. Deviations from this line indicate, as in a QQ plot, that

differences between distributions exist. Measures that have been derived based on

this include the ROC curve and the Gini coef�cient.
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1.3 Detecting outliers using weights in logistic regression

Logistic regression (LR) is frequently used in the development of credit scoring models

and is concerned with predicting a binary variable (Y ) that can take the values 1 (bad

risk class) or 0 (good risk class) given a number of independent explanatory variables,

or classi�ers, say x1; :::; xK , e.g. the responses on the application form. However, as

with most model �tting techniques, logistic regression based on maximum likelihood

(ML) is adversely affected by outliers. Outliers occur in most datasets and credit sco-

ring provides no exception. In fact, large datasets often contain many outliers, even

after data cleaning procedures have been carried out. In this section we de�ne out-

liers in a logistic regression context and illustrate how logistic regression maximum

likelihood �ts are severely affected by outliers.

As stated in the introduction, the good and bad risk classes are usually assigned

on the following basis: A sample of existing customers is taken and their behaviour

in a particular year recorded. Good is de�ned as no payment in arrears for that

period, while bad is having three or more payments in arrears. Alternatively good

may be referred to as the group containing no defaulters and bad the group containing

defaulters. Obviously there is an indeterminate class, but as we have noted in Section

1.1, only the good and bad risk classes are used in designing a credit scoring model.

We then �t a logistic regression model to determine the default probability. Let x> =

(1; x1; :::; xK). Then the logistic regression model is given by

P (Y = 1) = p(x;�) =1=
�
1 + exp

�
��>x

��
(1.1)

where �> = (�0; �1; :::; �K) is a vector of parameters (see e.g. Hosmer and Lemeshow,

1989 and Kleinbaum, 1994). l(x) = �>x is often referred to as the logit value of x and
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p(x;�); a function of l(x), as the default probability function or curve of the model we

are �tting to the data. Assume that we have N observations, where the nth observa-

tion is (yn;x>n ), with yn the observed value of Y and x>n = (1; xn;1; :::; xn;K) the vector

of observed values of the K regressors. The log likelihood of the N observations is

given by
NX
n=1

Dn (�) (1.2)

where

Dn (�) = yn log p(xn;�) + (1� yn) log(1� p(xn;�)) (1.3)

and the maximum likelihood estimates of � are obtained by maximising this expression

over �:

Using an arti�cial dataset we now investigate outliers for the case of one regressor

and illustrate how outliers may affect a logistic regression maximum likelihood �t. The

concept of outliers is easiest illustrated by a graphical example, after which a formal

de�nition of outliers will follow.

We construct our dataset by setting K = 1 and � = (1; 2)> in (1.1). Therefore

P (Y = 1) = p(xn; (1; 2)
>) =1= (1 + exp (�1� 2xn)) (1.4)

A sample of 50 (x; y) observations is now constructed by generating xn, n = 1; :::; 50

from a N(0; 1) distribution and the corresponding yn's are obtained as

yn =

8>><>>:
1; if un � pn

0; if un > pn
(1.5)

where pn = p(xn; (1; 2)
>) and un is independently drawn from a U(0; 1) distribution.

The maximum likelihood �t yields b� = (1:16; 2:20)>; which is close to the true value

of � = (1; 2)>: The true probability curve, pn = p(xn;�) and the estimated probability
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curve, bpn=p(xn; b�) are virtually identical and are depicted in the left panel of Figure
1.4. In order to illustrate the effect of outliers we now change the last two observations

and set (xn�1; yn�1) = (4:5; 0) and (xn; yn) = (�4:5; 1). Note that we have signi�cantly

increased the value of x and switched the y-value, in the unexpected direction, in both

cases.

Figure 1.4: True probability curve and estimated probability curve without outliers

(left) and with outliers (right)

We now explain this in more detail. In this dataset a high positive x-value causes

p(xn;�) to be close to 1 and is therefore associated with y = 1, while a low x-value

is similarly associated with y = 0. Both observations, (xn�1; yn�1) and (xn; yn), are

therefore outliers in the sense that the y-values do not conform to what is expected

under the true model. The maximum likelihood (ML) �t on this new dataset yields

b� = (0:81; 0:67)> which is quite different from the true parameter value, � = (1; 2)>: In

the right panel of Figure 1.4 we show again the true probability curve as well as the

�tted maximum likelihood probability curve. It is clear from the two graphs that the

introduction of the two outliers severely affected the �t. The true curve distinguishes
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well between the y's equal to 1 and the y's equal to 0 as indicated by the steep gra-

dient. However, the �tted curve distinguishes less well between the two populations

as indicated by the �atter gradient. The objective of Chapter 3 is to �t a curve that

achieves maximum separation between 0's and 1's and is not severely affected by

outliers.

Up to now we have not yet given a formal de�nition of outliers. One can distinguish

between outliers in the x-space and in the y-space (or y-direction). We use the ar-

ti�cial dataset from Rousseeuw and Christmann (2003) to graphically illustrate the

concept of outliers in a logistic regression context. In Figure 1.5 we graphically depict

the dataset. Observations which lie inside the bulk of the x-values (in this example

between 1 and 10) are x-inliers, while those outside this area are x-outliers, speci�-

cally datapoints (a), (b), (c) and (d). For illustrative purposes we have also added two

contours p(xn; �) = d and p(xn; �) = 1�d (with d small, we expect that if p(xn; �) < d

then y = 0 and if p(xn; �) > 1 � d we expect y = 1). Observations outside of these

contours with inappropriate y-values are y-outliers. Copas (1988) calls an observation

with y = 1 and p close to 0 an "uplier" (for example datapoint (a)) and an observation

with y = 0 but p close to 1 a "downlier" (for example datapoint (d)). To summarise,

datapoint (a) is an uplier and (d) is a downlier, and both are bad leverage points as

they adversely affect the �tted curve. On the other hand, datapoints (b) and (c) are

good leverage points which reinforce the �t.

To explain outliers in a credit scoring context, we recall that y = 1 for customers in

the bad risk class (defaulters) and y = 0 for customers in the good risk class (non-

defaulters). Assume that we only have one explanatory variable, namely the number

of delinquent accounts (NDA). Suppose that the higher the NDA, the more likely the
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Figure 1.5: x- and y-outliers (one dimension)

customer is in the bad risk class (i.e. the higher the probability of default). Note that

in this example, p is the probability of default.

An uplier will then be a customer with a low probability of default, p, (a customer with a

low NDA) that is nonetheless a defaulter (i.e. in the bad risk class). This might indicate

that the NDA has been captured incorrectly or maybe not all the delinquent accounts

are captured in this variable. A downlier is a customer who is in the good risk class

although having a high probability of default (i.e. high NDA). Again this might indicate

incorrectly captured data or the customer might have a false delinquent account on

his/her record. Any customer with a NDA at the extremities of the NDA range will be

considered a leverage point. Leverage points which are up- and downliers may be

considered to be bad leverage points.

It sometimes happens that the 0's and the 1's can be clearly separated in the x-space.

For example, consider the top left panel of Figure 1.6 (the same dataset as in Figure

1.5 was used, with the leverage points removed). It is clear that for x > 5:5 all y's

equal 1 and for x < 5:5 all y's equal 0. In this case the maximum likelihood estimator
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(MLE) does not exist. This will be explained in more detail in Chapter 3.

Rousseeuw and Christmann (2003) overcame this non-existence problem by introdu-

cing the hidden logistic regression model with an associated estimator referred to as

the maximum estimated likelihood (MEL) estimator which always exists even when the

y's are perfectly separated. Rousseeuw and Christmann (2003) also proposed a ro-

busti�ed form of the MEL estimator, called the weighted maximum estimated likelihood

(WEMEL) estimator. The WEMEL estimator downweights leverage points, where the

choice of leverage points is based on robust distances in the regressor space.

We now illustrate the behaviour of the MEL and WEMEL estimators on the datasets of

Rousseeuw and Christmann (2003). The estimated probability curves with respect to

the MEL and WEMEL estimators are given in Figure 1.6.

The uncontaminated clearly separated dataset is given in the top left hand panel. The

other three panels show data that contains outliers. The top right panel contains a

downlier; the bottom left a more extreme downlier and the last panel a downlier as

well as an uplier. As expected both the MEL and WEMEL estimated curves �t the

uncontaminated data well (the �tted curves are indistinguishable). In all other cases

the MEL estimated curve is much more affected than the WEMEL estimated curve by

the outliers. As seen in Figure 1.6, the WEMEL procedure performs very well as a

robust procedure compared to the MEL procedure. However, the WEMEL procedure

does not take outliers in the response direction into account and is not really an outlier

detection procedure in the sense that it produces a subset of the observations that

may be labelled as outliers.

We use a different form of downweighting to introduce a procedure that may be thought

of as both a robust logistic regression estimation procedure and an outlier detection
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Figure 1.6: Probability curves of MEL and WEMEL
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method. The procedure selects two sets of weights, namely high and low weights and

then splits the data optimally into two subsets to which the high and the low weights

are attached, the subset with the low weights containing the observations that are

more likely to be outliers. A corresponding weighted maximum likelihood estimator

of the regression coef�cients is computed. This is used to estimate the response

probabilities of the individual observations. Observations with a y = 1 response but

low probability for this response and observations with a y = 0 response but high

probability of this response can then be classi�ed as outliers. The procedure is

called detecting outliers using weights (DOUW) and in Chapter 3 we formulate the

basic DOUW procedure and list a number of more elaborate versions that can also

be used. We also report the result of a simulation study that evaluates the DOUW

procedure. Further in Chapter 3 we discuss the application of the DOUW procedure to

a number of standard datasets in the literature as well as a new large dataset relating

to success probabilities in sales promotion campaigns. Note that the multivariate case

(K > 1) will be discussed in Chapter 3.

1.4 Summary

In this chapter we have introduced the reader to credit scoring and provided some

motivation for the statistical methods developed in this thesis. Speci�cally, in Section

1.2 we motivated the need for determining the nature of a classi�er in credit scoring.

The details of this measure will be discussed in Chapter 2. In Section 1.3 we motivated

the need for identifying outliers which will be discussed in Chapter 3. In Chapter 4 we

will apply the techniques developed in Chapters 2 and 3 to a practical credit scoring

dataset.
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CHAPTER 2

Determining the nature of a  
classifier



 



As stated in Chapter 1 our focus in this chapter will be to �nd estimators for q and to

construct con�dence bands based on these estimators. Again we assume that V � F

and W � G where F and G are two unknown distribution functions both assumed to

be continuous and strictly increasing. We want to �nd the transformation q, which

will transform the random variable V so that it has the same distribution as W , i.e.

q(V ) =D W . From the well known probability integral transformation, we know that

F (V ) =D U =D G(W ); where U denotes a uniformly distributed random variable.

From this we have that G�1F (V ) =D W: Therefore we can write q(v) = G�1F (v)

as the generic form of q. Lehmann (1974) proposed a non-parametric estimator for

the general form of q and Doksum (1974) derived the asymptotic distribution of this

estimator. Con�dence bands for q based on this estimator were derived by Doksum

and Sievers (1976). We provide an overview of these results in Section 2.1.

As mentioned in Chapter 1, Section 1.2, one possibility might be to assume that q has

a linear form, e.g. q(v) = �0 + �1v. The method of moments estimator for estimating

the linear form of q is introduced in Section 2.2 and we derive the asymptotic distri-

bution of the estimator and construct 100(1 � �)% con�dence bands for q based on

the asymptotic results. We compare the non-parametric estimator with the method of

moments estimator by means of a Monte Carlo study and illustrate its application in

a number of datasets (Section 2.3). As one would expect, the method of moments

estimator, because of its semi-parametric nature, leads to a narrower con�dence band

than does the fully non-parametric estimator. We introduce a further two estimators

for the linear form of q namely the method of quantiles estimator and the regression

estimator (introduced by Hsieh, 1995). The method of quantiles estimator is de�ned

in Section 2.4 and the asymptotic distribution derived as well as the con�dence bands.
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We compare the method of moments and the method of quantiles estimator (and asso-

ciated con�dence bands) in Section 2.5 by means of a Monte Carlo study and illustrate

their application to a number of datasets. In Section 2.6 the regression estimator will

be discussed. Then, we compare the three estimators (method of moments, method

of quantiles and regression) in Section 2.7 again by means of a Monte Carlo study and

illustrate their application in a number of datasets. Tests of the linearity assumption on

q are discussed and analysed in Section 2.8 and some concluding remarks are given

in Section 2.9.

2.1 Non-parametric estimator for the generic q-function

As stated in Chapter 1 we want to estimate the general form q(v) = G�1F (v). Lehmann

(1974) proposed a non-parametric estimator for q(v) = G�1F (v); replacingG and F by

their empirical distribution functions Gn and Fm where n and m denote the respective

sample sizes: Thus,

bq(v) = G�1n Fm(v): (2.1)

Note that bq(V(i)) = G�1n
�
i
m

�
: When m = n, we have bq(V(i)) = W(i); where V(1) <

: : : < V(m) andW(1) < : : : < W(n) are the order statistics of V1; : : : ; Vm andW1; : : : ;Wn

respectively. In general, we can calculate G�1n
�
i
m

�
as follows where #(A) denotes

the cardinality of the set A:

G�1n (i=m) = inf

�
t : Gn(t) �

i

m

�
(2.2)

= inf

�
t : #(W � t)=n � i

m

�
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= inf ft : #(W � t) � ni=mg

= W(dni=me)

where dte indicates the ceiling of t.

2.1.1 Con�dence bands for q based on the non-parametric estimator

Doksum and Sievers (1976) proposed two 100(1� �)% con�dence bands for q based

on this non-parametric estimator. They referred to these con�dence bands as the

S-band and the W-band. The S-band is given by the following expression:

h
S�(v); S

�
(v)

�
=
�
W(lm;n);W(um;n)

�
(2.3)

where v 2 [V(i); V(i+1)); V(0) = �1 and V(m+1) =1; i = 0; : : : ;m, with

lm;n =

�
n

�
i

m
�KS;�=M1=2

��
(2.4)

um;n =

�
n

�
i

m
+KS;�=M

1=2

��
+ 1

where M = mn
m+n ; W(j) = �1 (j < 0) and W(j) = 1 (j � n + 1) and where btc

indicates the �oor of t. KS;� is chosen from the Kolmogorov-Smirnov tables (Pearson

and Hartley, 1972, Table 55), i.e.

P (Dn+m � KS;�) = 1� �; (2.5)

where

Dn+m =

r
mn

m+ n
sup
v
jFm(v)�Gn(v)j : (2.6)

The W-band is given by

h
W�(v);W

�
(v)

�
=
�
W(lm;n);W(um;n)

�
(2.7)
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where v 2 [V(i); V(i+1)); i = 0; : : : ;m with

lm;n =
�
nh�(u)

�
(2.8)

um;n =
�
nh+(u)

�
where

h�(u) = fu+1=2c(1��)(1� 2�u)� 1
2

�
c2(1� �)2 + 4cu(1� u)

	1=2g= �1 + c(1� �)2� ;
with c = K2

�=M; u = Fm(v) = i=m and Gn(v) = i=n: K� is chosen to satisfy the

probability statement

P (Wn+m � K�) = 1� � (2.9)

where

Wn+m =

r
mn

m+ n
sup
v

jFm(v)�Gn(v)jp
	(v) [1�	(v)]

(2.10)

and

	(v) =
m

n+m
Fm(v) + (1�

m

n+m
)Gn(v): (2.11)

Canner (1975) provides Monte Carlo estimates of K�. We now use an arti�cial

dataset to illustrate the behaviour of the S- and W-bands. The dataset is created

by sampling 100 observations from a N(0; 1) distribution and 100 from a N(0; 4) dis-

tribution. The estimate bq and the S- and W bands are depicted in Figure 2.1. As

in Doksum and Sievers (1976) we �nd that the W-band is narrower than the S-band.

This corresponds with the theoretical results by Doksum and Sievers. The ED (equal

distribution) line is not contained fully in either of the con�dence bands, which con�rms

that the distribution of the characteristic, X, is different between the two populations.

The S- and W-bands are both narrower in the centre of the distributions (of V andW )

than in the tails. In the tails both bands become wider and the bands do not entirely
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cover the tails of the distributions. Note that the S-band has the advantage of being

simpler to construct than the W-band and that its critical values are more extensively

tabulated (Doksum and Sievers, 1976). Note also that the plotted observations seem

to follow a straight line and this therefore suggests that the distributions are from the

same translation-scale family.

Figure 2.1: Non-parametric estimate with S- and W-bands

It seems plausible from the plot of bq in Figure 2.1 that q could be a linear function as
was the case with the four examples (Cases 1 - 4) considered in Section 1.2. As we

have mentioned in Section 1.2 we also expect that an estimator based on the linear

form of q will lead to a narrower con�dence band than the non-parametric estimator.
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2.2 Method of moments estimator for q

In this section we focus on estimating the linear form of the q-function and we use

the method of moments to derive an estimator for q. We �rst describe the estimator,

then derive its asymptotic distribution, and based on this, derive con�dence bands for

q. As an alternative to the con�dence bands based on the asymptotic distribution we

propose bootstrap con�dence bands and compare the two sets of bands by means

of a Monte Carlo study. In this section we assume that the distributions of V and W

have �nite moments up to order four.

There are many ways in which the distributions of V andW can differ. Taking q(v) =

�0 + �1v amounts to considering only the possibility that V and W are related by a

location and scale change, which is one of the simplest ways in which they can differ.

Per de�nition q(V ) =D W , therefore,

W =D �0 + �1V: (2.12)

Let �W and �V denote the means, and �W and �V the standard deviations, ofW and

V respectively. We see from (2.12) that

�W = �0 + �1�V and �2W = �21�
2
V : (2.13)

Therefore

�1 =
�W
�V

and �0 = �W � �W
�V
�V : (2.14)

We can estimate �0 and �1 by the method of moments by substituting W for �W ; V

for �V ; s2W for �2W and s2V for �2V in (2.14), so that

b�1 = sW
sV

(2.15)
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b�0 =W � sW
sV
V : (2.16)

The method of moments estimator for q is then

bqMOM (v) = b�0 + b�1v (2.17)

= W � sW
sV
V +

sW
sV
v: (2.18)

2.2.1 Asymptotic distribution of bqMOM

Theorem 1 The asymptotic distribution of bqMOM is given by the expression

p
m+ n(bqMOM (v)� q(v)) � N(0; �(v)2) (2.19)

where

�(v)2 = �20 + �
2
1ev2 + 2�0;1ev; (2.20)

ev = v � V (2.21)

and

�20 =
�2W

�(1� �) ; (2.22)

�0;1 =
�3(V )�

2
W

2��4V
+

�3(W )

2(1� �)�V �W
; (2.23)

�21 =
�4(V )�

2
W

4��6V
+

�2W
2�(1� �)�2V

+
�4(W )

4(1� �)�2V �2W
: (2.24)

�i indicates the ith cumulant and � = m=(m+ n).

The proof of Theorem 1 is given in Appendix A.1.1.
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2.2.2 Con�dence band for q based on the method of moments estimator

In this section we construct a simultaneous con�dence band for q based on the a-

symptotic distribution of bqMOM : We denote the asymptotic variance of bqMOM by

�2(v) =
�(v)2

m+ n
(2.25)

and estimate this by

b�2(v) = b�(v)2
m+ n

: (2.26)

Using (2.20), we estimate �(v)2 by

b�(v)2 = b�20 + b�21 �v � V �2 + 2b�0;1 �v � V � (2.27)

where

b�20 =
s2W

�(1� �) (2.28)

b�21 =
b�4(V )s2W
4�s6V

+
s2W

2�(1� �)s2V
+

b�4(W )
4(1� �)s2V s2W

(2.29)

b�0;1 =
b�3(V )s2W
2�s4V

+
b�3(W )

2(1� �)sV sW
: (2.30)

A 100(1� �)% con�dence band

bqMOM (v)� c�;m+nb�(v) � q(v) � bqMOM (v) + c�;m+nb�(v) 8 v (2.31)

can now be obtained if we can �nd the constant c�;m+n satisfying the probability state-

ment

P

�
sup
v

���� bqMOM (v)� q(v)b�(v)
���� � c�;m+n=pm+ n� = 1� �: (2.32)

Theorem 2 The asymptotic value of c�;m+n in (2.32) is c� =
p
�2 loge(�).

The proof of Theorem 2 is in Appendix A.1.2. Obviously, the continuous nature of

this con�dence band (2.31) will ensure that the entire distributions (of V and W ) are

covered while this is not the case for the non-parametric bands.
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2.3 Empirical study

We investigate the con�dence band for q based on the method of moments by means

of a Monte Carlo study and then illustrate its application in a number of datasets. Two

versions of the band (2.31) will be considered, namely where the critical value, c�;m+n,

is estimated by
p
�2 loge(�), the asymptotic value, and alternatively where c�;m+n is

estimated using the bootstrap. The �rst band will be referred to as the asymptotic

con�dence band (the A-band) and the second as the bootstrap con�dence band (the

B-band). In the Monte Carlo study we investigate whether the estimated coverage

probability of the con�dence band is close to the nominal coverage probability. Then

the behaviour of the con�dence bands will be illustrated by using the four examples

discussed in Chapter 1 (Section 1.2) and compared with the S- and W-bands of the

non-parametric estimator.

2.3.1 Monte Carlo study

In this section we investigate by means of a Monte Carlo study whether the coverage

probability of the con�dence band (2.31) for q based on the method of moments es-

timator, is close to the nominal coverage probability. We expect that the estimated

coverage probability will be close to the nominal value in large samples but not neces-

sarily in small samples. It is shown in Theorem 2 (Appendix A.1.2) that the inequality

sup
v

���� bqMOM (v)� q(v)b�(v)
���� � c�;m+n=pm+ n (2.33)

is equivalent to the inequality

(m+ n)

2664e
1e
0
3775
> 2664 b�21 b�0;1
b�0;1 b�20

3775
�1 2664e
1e
0

3775 � c2�;m+n: (2.34)
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The two gamma parameters are de�ned in (A.56) and (A.57) in Theorem 2, Appendix

A. Denote the left hand side of (2.34) by S. Then equation (2.32) can equivalently be

expressed as

P (S � c2�;m+n) = 1� �: (2.35)

Therefore, in the two Monte Carlo studies below we estimate the coverage probability

of (2.31) by estimating the left hand side of (2.35).

In the Monte Carlo studies we assume some distribution for F and G and then ge-

nerate equal size samples (m = n) from each of those distributions and repeat the

process L times. The estimated coverage probability is obtained as

(1=L)
XL

l=1
I
�
Sl � c2

�
(2.36)

where Sl denotes the value of S obtained in the lth sample. We take c =
p
�2 loge(�)

(the asymptotic critical value) or c = c� (a bootstrap estimated critical value). The

algorithm to obtain the estimated coverage probability is given in Algorithm 1 (Appen-

dix A.2) and the algorithm for obtaining a bootstrap estimated critical value is given

in Algorithm 2 (Appendix A.2). Throughout the thesis we used the smooth bootstrap

(see Calculation 1, Appendix A.3) and used the relevant subroutines in PROC IML of

SAS (SAS Institute, 2003) to generate random numbers.

In our �rst Monte Carlo study we assume F � N(1; 22) and G � N(2; 22) and ge-

nerate our samples from these distributions, while in the second study, we generate

samples from the empirical distributions of the good and bad risk classes of the income

(DAINC) variable (taken from the Public.xls dataset, discussed in Chapter 1, Section

1.2). In both Monte Carlo studies we consider sample sizes of 100; 200; 500 and 1000

and L = 1000 simulation runs.
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The results of the �rst study are given in Tables 2.1 and 2.2. Table 2.1 shows the

estimated coverage probability using the asymptotic critical value and Table 2.2 the

estimated coverage probability using the bootstrap estimate of the critical value.

Nominal coverage Estimated coverage probability

probability m = n = 100 m = n = 200 m = n = 500 m = n = 1000

90% 86.61% 87.23% 88.16% 88.27%

95% 91.95% 92.72% 93.26% 93.32%

97.50% 94.98% 95.45% 96.18% 96.38%

Table 2.1: Coverage probabilities for normal data when using the asymptotic critical

value

Nominal coverage Estimated coverage probability

probability m = n = 100 m = n = 200 m = n = 500 m = n = 1000

90% 90.50% 90.48% 89.81% 89.75%

95% 95.03% 95.12% 95.23% 94.85%

97.50% 97.68% 97.53% 97.37% 97.04%

Table 2.2: Coverage probabilities for normal data when using the bootstrap estimate

of the critical value

We see that, especially in small samples, the estimated coverage probabilities are less

than the nominal coverage probabilities when the asymptotic critical value is used.

Also, as expected, the estimated coverage probabilities are closer to the nominal va-

lues as the sample size increases. However, the estimated coverage probabilities

using the bootstrap estimate of the critical value, are much closer to the nominal cov-

erage probabilities at all sample sizes considered. The improvement is especially
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clear in small samples (m = n = 100; 200).

The results of the second study are given in Tables 2.3 and 2.4. As before, Table

2.3 contains the estimated coverage probabilities using the asymptotic critical value

and Table 2.4 the estimated coverage probabilities using the bootstrap estimate of

the critical value. As in the previous study, the estimated coverage probabilities are

found to be less than the nominal coverage probabilities when using the asymptotic

critical value while the estimated coverage probabilities obtained using the bootstrap

estimated value are close to the nominal coverage probabilities.

Nominal coverage Estimated coverage probability

probability m = n = 100 m = n = 200 m = n = 500 m = n = 1000

90% 85.53% 84.71% 89.51% 87.77%

95% 89.37% 93.02% 93.28% 94.75%

97.50% 96.60% 96.74% 96.92% 97.12%

Table 2.3: Coverage probabilities for the income variable when using the asymptotic

critical value

Nominal coverage Estimated coverage probability

probability m = n = 100 m = n = 200 m = n = 500 m = n = 1000

90% 91.26% 90.28% 90.36% 89.72%

95% 95.23% 95.16% 94.96% 95.02%

97.50% 98.16% 97.72% 97.38% 97.39%

Table 2.4: Coverage probabilities for the income variable when using the bootstrap

estimate of the critical value
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Because the bootstrap con�dence bands yield estimated coverage probabilities which

are close to the nominal values over a range of sample sizes and a range of nominal

coverage probabilities, the bootstrap con�dence band should be preferred to the a-

symptotic con�dence band.

An area for future work is to derive a correction term for the asymptotic value of c to

make it perform better for modest sample sizes.

2.3.2 Examples

Given the above-mentioned results, we will focus our attention on the bootstrap con�-

dence band. The behaviour of the con�dence bands will now be practically illustrated

by using the four examples discussed in Chapter 1 (Section 1.2).

Recall, in the �rst two examples, the standard normal is compared with a N(2; 22)

(Case 1) and then with N(10; 22) (Case 2). Note that in Case 1 and Case 2 the

standard normal distribution represents the good risk class, while the bad risk class is

represented by the N(2; 22) distribution in Case 1 and by the N(10; 22) distribution in

Case 2. In each case 1000 observations were generated from each of these distribu-

tions and bqMOM and bq and associated con�dence bands estimated. The results are
depicted in Figures 2.2 and 2.3 for Case 1 and Case 2, respectively. As expected, in

both examples, the S-band is wider than the W-band (see Doksum and Sievers 1976)

and both bands tend to be wide in the tails of the distributions and also do not cover

the distributions entirely. It is also clear from the graphs that the 95% B-band is always

narrower than the S- and W-band in the tails of the distribution. This is to be expected

due to the semi-parametric nature of bqMOM . Note that in both examples considered,

the ED lines are not contained in the con�dence bands, so that it can be concluded
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Figure 2.2: MOM and non-parametric estimate (with B-, S- and W-bands), Case 1

Figure 2.3: MOM and non-parametric estimate (with B-, S- and W-bands), Case 2
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that there are clear differences between the distributions considered. See the remark

at the end of this section.

Our next two examples are based on the "credit scoring" datasets where the DAINC

(Case 3) and the LOAN (Case 4) classi�ers are used to distinguish between good

and bad risk classes. Note again that 792 observations are in the good risk class and

227 in the bad risk class in the dataset whereDAINC is used as a classi�er and 4234

observations in the good risk class and 1045 in the bad risk class in the dataset where

LOAN is used. In this case we only estimate bqMOM and the associated bootstrap

con�dence band for each example. The results are depicted in Figures 2.4 and 2.5.

Note that in the last two examples the ED lines are included in the 95% bootstrap

con�dence bands so that it can be concluded that the classi�ers do not distinguish

well between the good and bad risk classes.

Figure 2.4: Method of moments estimate (with B-band) for DAINC (Case 3)
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Figure 2.5: Method of moments estimate (with B-band) for LOAN (Case 4)

To conclude we want a con�dence band that gives the required coverage probability

and a con�dence band that is narrow and therefore we recommend that the B-band

be used in practice, as it gives the required coverage probability over the distributions

considered and a narrow con�dence band, especially in the tails of the distributions in

the examples considered.

In Chapter 1 we claimed that the QQ plot may be used to study the nature of classi-

�ers. Considering the four examples just analysed, it should be clear at this stage that

the estimated q function may be used to study the performance of classi�ers in dis-

criminating between the good and the bad risk classes as well as to suggest whether

the two distributions (goods and bads) come from the same translation-scale family.
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Remark

From the previous discussion it should be clear that bqMOM and associated bootstrap

con�dence band may be used to test the null hypothesis H0 : F = G against the

alternative hypothesis Ha : F 6= G. The null hypothesis will not be rejected if the

ED line q(v) = v is contained within the con�dence bands, however, if the ED line

is not fully contained within the con�dence bands, we reject the null hypothesis. In

Figure 2.2 and in Figure 2.3 the ED line is not fully contained in the B-bands and the

hypothesis that the two distributions are identical is rejected at a signi�cance level of

5%.

Figure 2.6: Method of moments estimate with associated con�dence bands for

LOAN (alternative plot for Case 4)

In Figure 2.4 and Figure 2.5 the ED lines are contained in the B-bands indicating that

the variables, DAINC and LOAN , do not distinguish well between the good and the
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bad risk classes. In order words, the hypothesis that the two distributions are identical

cannot be rejected on a 5% signi�cance level. In order to simplify interpretation these

plots may be transformed so that the ED line becomes the y = 0 line. This is obtained

by plotting bq(v)�v against v�VsV as shown in Figure 2.6: The ED line in Figure 2.5 was

the 45o line and now becomes the line y = 0 in Figure 2.6.

2.4 Method of quantiles estimator for q

From (2.23) and (2.24) it is clear that the asymptotic variance of the method of mo-

ments estimator is based on the third and fourth moments of V and W . It is well

known that higher moments (3rd and 4th) have a tendency to become unstable (see

e.g. van der Vaart, 1998 or Lehmann, 1999). A more robust alternative might be to

replace the mean in the method of moments estimator with the median and the stan-

dard deviation with the interquartile range, which will lead to a more stable covariance

matrix. We refer to this alternative estimator as the method of quantiles estimator,

bqMOQ(v).

In this section we introduce the method of quantiles estimator for q and as in the pre-

vious section we �rst describe the estimator, then derive the asymptotic distribution

thereof and based on these, propose con�dence bands for q. As an alternative to

the con�dence bands based on the asymptotic distribution we propose bootstrap con-

�dence bands and compare the two sets of bands by means of a Monte Carlo study.

We also illustrate the application of the method of moments estimator and the method

of quantiles estimator in a number of datasets.

The method of quantiles estimator is

bqMOQ(v) = b�0 + b�1v (2.37)
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where

b�1 = biWbiV (2.38)

b�0 = bmW �
biWbiV bmV : (2.39)

bmV ; bmW , biV and biW denote the sample equivalents of mV ; mW , iV and iW . The

p-quantiles of F and G will be denoted by �p and �p, respectively. Then

mV = � 1
2
; (2.40)

mW = � 1
2
; (2.41)

iV = � 3
4
� � 1

4
(2.42)

and

iW = � 3
4
� � 1

4
: (2.43)

2.4.1 The asymptotic distribution of bqMOQ

Theorem 3 The asymptotic distribution of bqMOQ is given by the expression

p
m+ n(bqMOQ(v)� q(v)) � N(0; �MOQ(v)

2) (2.44)

where

�MOQ(v)
2 = C1 + C2 (v �mV ) + C3 (v �mV )

2 (2.45)

and

C1 =
i2W

4�i2V f
2
V (mV )

+
1

4 (1� �) f2W (mW )
(2.46)

C2 = � iW

2
p
�
p
1� �f2W (mW )

+
1

4 (1� �) iV fW (mW )
(

3

4fW (� 3
4
)

(2.47)

� 1

4fW (� 1
4
)
) (2.48)
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C3 =
i2W

4�f2W (mW )
� iW

4
p
�
p
1� �iV fW (mW )

(
3

4fW (� 3
4
)
� 1

4fW (� 1
4
)
) (2.49)

+
1

(1� �) i2V
(

3

4fW (� 3
4
)
� 1

4fW (� 1
4
)
)2

where fV and fW are the probability density functions of V and W respectively. Again

� = m=(m+ n):

The proof of Theorem 3 is given in Appendix A.1.3.

2.4.2 Con�dence band for q based on the method of quantiles estimator

In this section we construct a simultaneous con�dence band for q based on the a-

symptotic distribution of bqMOQ: The derivation of the con�dence bands follows along

the same lines as the derivation of the con�dence bands of the method of moments.

We denote the asymptotic variance of bqMOQ by

�2MOQ(v) =
�MOQ(v)

2

m+ n
(2.50)

and estimate this by

b�2MOQ(v) =
b�MOQ(v)

2

m+ n
: (2.51)

Using (2.45), we estimate �MOQ(v)
2 by

b�MOQ(v)
2 = bC1 + bC2 (v � bmV ) + bC3 (v � bmV )

2 (2.52)

where b�MOQ(v)
2 is obtained by substituting all the quantities in (2.45) with the sample

equivalents. bfV and bfW are kernel estimates of the probability density functions, fV

and fW (see Calculation 3, Appendix A.3).

A 100(1� �)% con�dence band

bqMOQ(v)� d�;m+nb�MOQ(v) � q(v) � bqMOQ(v) + d�;m+nb�MOQ(v) 8 v (2.53)
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can be obtained if we can �nd a constant d�;m+n satisfying the following probability

statement

P

�
sup
v

���� bqMOQ(v)� q(v)b�MOQ(v)

���� � d�;m+n=pm+ n� = 1� � (2.54)

Theorem 4 The asymptotic value of d�;m+n in (2.54) is d� =
p
�2 loge(�).

Given the result in (2.44), it follows exactly as in the case of bqMOM that the asymptotic

value of d�;m+n is d� =
p
�2 loge(�).

2.5 Empirical study

We investigate the con�dence band for q based on the method of quantiles by means

of a Monte Carlo study and then illustrate its application in a number of datasets.

In the Monte Carlo study we investigate whether the estimated coverage probability

of the con�dence band is close to the nominal coverage probability. As before, we

investigate the asymptotic band (2.53) as well as the bootstrap band.

2.5.1 Monte Carlo study

In this section we investigate by means of a Monte Carlo study whether the cove-

rage probability of the con�dence band (2.53) for q based on the method of quantiles

estimator, is close to the nominal coverage probability. The Monte Carlo study here

follows along the same lines as the Monte Carlo study used to investigate the coverage

probability of the con�dence band of q based on the method of moments estimator.

As in Theorem 2 (Appendix A.1.2), it can be shown in Theorem 4 (Appendix A.1.4)

that the inequality

sup
v

���� bqMOQ(v)� q(v)b�MOQ(v)

���� � d�;m+n=pm+ n (2.55)
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is equivalent to the inequality

(m+ n)

2664e
�1e
�0
3775
> 2664 bC1

bC2
2

bC2
2

bC3
3775
�1 2664e
�1e
�0

3775 � d2�;m+n: (2.56)

The two gamma parameters are given in Theorem 4, Appendix A. Denote the left

hand side of (2.56) by SMOQ. Then equation (2.54) can equivalently be expressed as

P
�
SMOQ � d2�;m+n

�
= 1� �: (2.57)

In the two Monte Carlo studies below we estimate the coverage probability of (2.53)

by estimating the left hand side of (2.57).

Our Monte Carlo studies are designed as follows. We assume some distribution for F

and G and then generate equal size samples (m = n) from each of those distributions

and repeat the process L times. The estimated coverage probability is obtained as

(1=L)
XL

l=1
I
�
SMOQ;l � d2

�
(2.58)

where SMOQ;l denotes the value of SMOQ obtained in the lth sample, and where d can

take the value
p
�2 loge(�) (the asymptotic critical value) or d� (a bootstrap estimated

critical value). The algorithm to obtain the coverage probability is the same as in the

case for the method of moments (Algorithm 1, Appendix A.2), except that S has to

be substituted by SMOQ and the algorithm for obtaining a bootstrap estimated critical

value is also the same, see Algorithm 2 (Appendix A.2).

In our �rst Monte Carlo study we assume F � N(1; 22) and G � N(2; 22) and ge-

nerate our samples from these distributions, while in the second study we generate

samples from the empirical distributions of the good and bad risk classes of the income

(DAINC) variable (taken from the Public.xls dataset, discussed in Chapter 1). In both
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Monte Carlo studies we consider sample sizes of 100; 200; 500 and 1000 and L = 1000

simulation runs.

The results of the �rst study are given in Tables 2.5 and 2.6. Table 2.5 contains

the estimated coverage probability using the asymptotic critical value and Table 2.6

the estimated coverage probability using the bootstrap estimate of the critical value.

We see that, especially in small samples, the estimated coverage probabilities are

less than the nominal coverage probability when using the asymptotic critical value.

Also, as expected, the estimated coverage probabilities are closer to the nominal co-

verage probabilities as the sample size increases. However, the estimated coverage

probabilities using the bootstrap estimate of the critical value, are much closer to the

nominal coverage probabilities in all sample sizes considered. The improvement is

especially clear in small samples (m = n = 100; 200).

Nominal coverage Estimated coverage probability

probability m = n = 100 m = n = 200 m = n = 500 m = n = 1000

90% 85.6% 86.1% 86.8% 86.9%

95% 91.7% 92.5% 92.8% 93.8%

97.50% 93.1% 94.9% 93.7% 95.3%

Table 2.5: Coverage probabilities for normal data when using the asymptotic critical

value

The results of the second study are given in Tables 2.7 and 2.8. As previously, Table

2.7 contains the estimated coverage probabilities using the asymptotic critical value

and Table 2.8 the estimated coverage probabilities using the bootstrap estimate of the

critical value. Again, the estimated coverage probabilities are found to be less than the
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Nominal coverage Estimated coverage probability

probability m = n = 100 m = n = 200 m = n = 500 m = n = 1000

90% 88.6% 89.1% 91.4%. 91.5%

95% 94.0% 94.6% 94.9% 95.1%

97.50% 98.7% 97.2% 97.3% 98.0%

Table 2.6: Coverage probabilities for normal data when using the bootstrap estimate

of the critical value

nominal coverage probabilities when using the asymptotic critical value, even in large

sample sizes (m = n = 1000). We can therefore assume that the asymptotic theory

of MOQ estimation only holds with very large samples. As in the previous study, the

estimated coverage probabilities obtained using the bootstrap estimated value, are

very close to the nominal coverage probabilities at all the sample sizes considered.

Because the bootstrap con�dence band provides much better estimates of the nominal

coverage probabilities than the asymptotic con�dence bands, it is recommended for

practical applications.

Nominal coverage Estimated coverage probability

probability m = n = 100 m = n = 200 m = n = 500 m = n = 1000

90% 73.3% 73.0% 74.5% 79.1%

95% 72.3% 82.8% 83.7% 88.6%

97.50% 76.3% 86.2% 86.2% 87.6%

Table 2.7: Coverage probabilities for the income variable when using the asymptotic

critical value
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Nominal coverage Estimated coverage probability

probability m = n = 100 m = n = 200 m = n = 500 m = n = 1000

90% 88.6% 92.6% 91.4% 90.9%

95% 94.3% 94.6% 94.3% 95.3%

97.50% 91.9% 97.6% 97.3% 97.6%

Table 2.8: Coverage probabilities for the income variable when using the bootstrap

estimate of the critical value

Comparing the results obtained in this section with the corresponding results obtained

for method of moments, we observe that the B-band is preferred in both cases, as it

gives the required coverage probability and in both cases the A-band is less than the

nominal coverage probabilities. However, note that the A-band based on the method

of quantiles estimator is less than the nominal coverage probability to a greater extent

due to the fact that the asymptotic theory of method of quantiles estimation only holds

in very large samples. A further Monte Carlo comparison will be made between the

method of moments (MOM) and the method of quantiles (MOQ) estimators in Section

2.7.1 using bias and mean squared error.

2.5.2 Examples

The behaviour of the bootstrap con�dence bands for MOM and MOQ will now be prac-

tically illustrated by again using the four examples discussed in Section 1.2. Again, in

the �rst two examples, the standardised normal is compared with a N(2; 22) (Case 1)

and then with N(10; 22) (Case 2). Recall that in Case 1 and Case 2 the standardised

normal distribution represents the good risk class, while the bad risk class is repre-
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sented by the N(2; 22) distribution in Case 1 and by the N(10; 22) distribution in Case

2. In each case 1000 observations were generated from each of these distributions

and bqMOM and bqMOQ and associated con�dence bands estimated. The results are

depicted in Figures 2.7 and 2.8 for Case 1 and Case 2, respectively. As expected, in

both cases the 95% B-band of the method of quantiles is wider than the 95% B-band of

the method of moments estimate. This could be explained by the fact that in the case

of normally distributed data, the variance will be higher when estimating a quantile as

opposed to a moment (van der Vaart, 1998, Chapter 4 and Chapter 21).

Figure 2.7: MOM and MOQ estimates (with B-bands) for Case 1

The two estimates, bqMOM and bqMOQ; are similar and almost indistinguishable in Fi-

gures 2.7 and 2.8. As previously, the last two examples are based on the "credit

scoring" datasets where theDAINC (Case 3) and the LOAN (Case 4) classi�ers are

used to distinguish between good and bad risk classes. The MOM estimate for q, the
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Figure 2.8: MOM and MOQ estimates (with B-bands) for Case 2

MOQ estimate for q, the associated 95% bootstrap con�dence bands and the ED lines

are plotted in Figures 2.9 and 2.10, respectively. Again the B-band of the method of

quantiles estimate is wider than the B-band of the method of moments estimate and

again the two estimates, bqMOM and bqMOQ; are similar and almost indistinguishable.

To conclude, in the four examples considered, the bootstrap con�dence bands based

on the MOQ estimator are wider than the bootstrap con�dence bands based on the

MOM estimator. Recall that a further Monte Carlo comparison will be made between

the MOM and the MOQ estimator in Section 2.7.1 using bias and mean squared error.
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Figure 2.9: Method of moments and method of quantiles estimates (with B-bands)

for DAINC, Case 3 (values in R`000)

Figure 2.10: Method of moments and method of quantiles estimates (with B-bands)

for LOAN , Case 4 (values in R`000)
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2.6 Regression method estimator for q

An alternative estimator for q was proposed by Hsieh (1995). We refer to this as

the regression method estimator, bqRM . The methodology described by Hsieh (1995)
is a weighted least squares regression that estimates the linear form of q. Let � =

[�0; �1]
>: The model that Hsieh assumes is:

G�1n (t) = Xk(n)� + �Dk(n)

�
B2(t)p
n
� B1(t)p

m

�
(2.59)

with

X
>
k(n) =

2664 1 ::: 1

F�1m (t1) ::: F�1m (tk(n))

3775 (2.60)

where B1(t) and B2(t) are two independent Brownian bridges and Dk(n) denotes the

diagonal matrix of 1=f(F�1(tk(n))): The covariance matrix is given by

� = cov

�
B2(t)p
n
� B1(t)p

m

�
(2.61)

where the ijth element of � is given by

�ij =

�
1
m +

1
n

� �
i

m+1 �
i�j

(m+1)2

�
bg �F�1n �

i
m+1

�� bg �F�1n �
j

m+1

�� (2.62)

for i � j. The regression estimates for b�0 and b�1 are obtained as the weighted least
squares regression estimates

b�=[c�0;c�1]> = (X>
� X�)

�1X>
� Y� (2.63)

where

Y� =
�
Dk(n)�

1=2
��1

G�1n (t) (2.64)

and

X� =
�
Dk(n)�

1=2
��1

Xk(n): (2.65)
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For each m and n, an integer k(n) and a vector t = (t1; :::; tk(n))>, are chosen, where

0 < t1 < ::: < tk(n) < 1. The vector t refers to the percentiles corresponding to the

data points used in �tting the model. Note that the asymptotic theory of Hsieh requires

that m=n tends to a positive value when m and n increase. Therefore asymptotically

k(n;m) can be written as k(n).

To summarise, the regression method of Hsieh (1995), is basically a weighted regres-

sion of the interpolated order statistics (at t1 < ::: < tk(n)) of the Y -values calculated

on the associated interpolated order statistics of the X-values.. Hsieh (1995) men-

tioned that the number of datapoints to be used, is critical. Yet, his article is unclear

on how the datapoints should be selected.

2.6.1 Asymptotic distribution of b� = [b�0; b�1]>
The asymptotic distribution of b� = [b�0; b�1]> is given by the expression

(b� � �)r mn

m+ n
�= N

(
0; �2

�
X
>
k(n)�

�1
k(n)Xk(n)

��1)
: (2.66)

For details on the derivation, see Hsieh (1995). Note that con�dence bands for the

regression method estimator can be constructed by the usual method used when ap-

plying weighted least squares.

2.7 Empirical study

In this section the three estimators, bqMOM ; bqMOQ; and bqRM of the linear form of q are

�rstly compared by means of a Monte Carlo study and secondly their application is

illustrated by the datasets considered in Chapter 1 (Section 1.2).
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2.7.1 Monte Carlo study

The objective of this study is to determine the accuracy of the three estimators in

estimating the parameters �0 and �1. We use the root mean squared error and the

bias as measures of how well the method of moments, the method of quantiles and

the regression method estimate the true parameters.

Our Monte Carlo study is designed as follows. We assume some distribution for F

and G and then generate equal size samples (m = n = 100; 200; 500 and 1000) from

those distributions and repeat the process L times (L = 1000). For each sample,

we calculate b�0;l and b�1;l (l = 1; :::; L) for each of the three estimators. De�ne the

estimated bias of b�j;l as
1

L

LX
l=1

(b�j;l � �j) ; (2.67)

and the estimated root mean squared error (RMSE) of b�j;l asvuut 1

L

LX
l=1

(b�j;l � �j)2; (2.68)

for j = 0; 1: Without loss of generality, we take �0 = 0 and �1 = 1 which implies that

F = G. For F and G we generate samples from four distributions: the standard nor-

mal, exponential, t distribution (with 5 degrees of freedom) and the standard Cauchy

distribution. Note that the exponential distribution is de�ned by

F (x; �) = 1� e��x for x � 0 (2.69)

F (x; �) = 0 otherwise

and the Cauchy distribution is de�ned by

F (x;x0; 
) =
1

�
arctan

�
x� x0



�
+
1

2
: (2.70)
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In this study we take � = 1 (for the exponential distribution) and x0 = 0 and 
 = 1 (for

the Cauchy distribution).

The formula for the cumulative distribution function of the t distribution is complicated

and is not included here. It is given in the book of Evans et al., 2000.

The results of the Monte Carlo study are given in Table 2.9 (F and G are normally

distributed), Table 2.10 (F and G are exponentially distributed), Table 2.11 (F and

G are t distributed) and Table 2.12 (F and G are distributed according to the Cauchy

distribution). Because the moments of the Cauchy distribution do not exist, we omitted

the methods of moments from this Monte Carlo study.

Note that throughout the thesis we used kernel density estimation to estimate f .

Speci�cally we used the bandwidth in (A.98) for the normally, exponentially and the

t distributed data and the bandwidth in (A.104) for the Cauchy distributed data (see

Calculation 3, Appendix A.3). Note also that to calculate the regression method es-

timates we need estimated values for f , g, F�1 and G�1 (refer to Calculations 2 and

3, Appendix A.3, for more detail). We used eight evenly spaced datapoints for the

regression method. We will now discuss the four tables containing the results of the

Monte Carlo study separately and make some concluding remarks at the end.

When considering the results in Table 2.9 it is clear that the method of moments and

the regression method (using eight datapoints) are the best performers with respect to

the RMSE and the bias criterion for both parameters and over all sample sizes consi-

dered. As far as RMSE is concerned the regression method (using eight datapoints)

performed the best in most cases, while the method of moments performed the best

in most cases when bias is considered.

The simulation results in Table 2.10 (exponentially distributed data) again shows that
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Normal data m = n RMSE Bias

�0 �1 �0 �1

Method of moments

100

200

500

1000

0:1443

0:0991

0:0627

0:0459

0:1059

0:0748

0:0451

0:0327

0:0002

�0:0058

0:0028

0:0013

0:0118

0:0017

0:0012

0:0015

Method of quantiles

100

200

500

1000

0:1828

0:1239

0:0806

0:0559

0:1753

0:1211

0:0741

0:0529

�0:0011

�0:0113

0:0018

0:0010

0:0177

0:0155

0:0026

�0:0004

Regression method

(used all datapoints)

100

200

500

1000

0:1920

0:1494

0:0900

0:0629

0:1452

0:1024

0:0705

0:0519

0:0021

�0:0020

0:0020

0:0022

0:0298

0:0209

0:0224

0:0197

Regression method

(used 8 datapoints)

100

200

500

1000

0:1392

0:1004

0:0601

0:0432

0:1009

0:0689

0:0425

0:0281

�0:0039

�0:0074

0:0032

0:0015

0:0092

0:0049

0:0013

�0:0002

Table 2.9: Bias and root mean squared error for the three estimators (normal data)

63



the regression method (using eight datapoints) is the best performing method in terms

of the RMSE criterion and also does well in terms of the bias criterion. As far as bias

is concerned the closest competitors are the method of quantiles and the method of

moments, while in terms of RMSE, the method of moments, the method of quantiles

and the regression method (using all datapoints) perform similarly and not too much

worse than the regression method (using eight datapoints).

The simulation results in Table 2.11 (t distributed data) again shows the regression

method (using eight datapoints) as the best performer in terms of RMSE. As far as

bias is concerned all four methods perform similarly.

The results in Table 2.12 (Cauchy distributed data) show that the method of quantiles is

the best performing method in terms of RMSE and bias over most of the samples sizes

considered, with the regression method (using eight datapoints) a close contender es-

pecially in larger sample sizes. The regression method (using all datapoints) performs

very poorly in all cases considered.

When considering all the results the regression method (using eight datapoints) seems

to be the best performer while the regression method (using all the datapoints) seems

to be the worst performer. The method of quantiles and the method of moments per-

form reasonably well when compared to the best performing method, with the method

of quantiles having the advantage that it is a robust method which can be applied in

extreme cases (like the Cauchy). However, as seen in Section 2.5.2, this method will

yield slightly wider con�dence bands than the method of moments.

An important question that we need to answer is what estimator should be used in

practice on real datasets? Although the regression method (using eight datapoints)

comes out as the clear winner in this simulation study it is unclear whether it will keep
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Exponential data m = n RMSE Bias

�0 �1 �0 �1

Method of moments

100

200

500

1000

0:1376

0:1009

0:0635

0:0452

0:2000

0:1429

0:0912

0:0633

�0:0084

�0:0065

�0:0058

�0:0003

0:0162

0:0062

0:0045

0:0021

Method of quantiles

100

200

500

1000

0:1624

0:1045

0:0673

0:0485

0:2260

0:1476

0:0923

0:0669

�0:0142

0:0003

�0:0029

0:0005

0:0265

0:0025

�0:0010

0:0018

Regression method

(used all datapoints)

100

200

500

1000

0:0339

0:0163

0:0064

0:0032

0:2075

0:1577

0:1026

0:0771

0:0281

0:0137

0:0056

0:0028

0:0579

0:0532

0:0452

0:0390

Regression method

(used 8 datapoints)

100

200

500

1000

0:0230

0:0120

0:0045

0:0027

0:1511

0:1001

0:0604

0:0439

0:0067

0:0025

0:0009

0:0013

0:0152

0:0038

�0:0005

0:0024

Table 2.10: Bias and root mean squared error for the three estimators (Exponential

data)
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t distribution (5) m = n RMSE Bias

�0 �1 �0 �1

Method of moments

100

200

500

1000

0:1852

0:1325

0:0791

0:0576

0:1748

0:1255

0:0796

0:0608

0:0081

�0:0031

0:0006

0:0018

0:0097

0:0028

�0:0016

0:0021

Method of quantiles

100

200

500

1000

0:1930

0:1384

0:0804

0:0586

0:1830

0:1305

0:0756

0:0552

0:0062

0:0012

0:0006

0:0031

0:0094

0:0066

�0:0057

0:0011

Regression method

(used all datapoints)

100

200

500

1000

0:2789

0:1960

0:1112

0:0793

0:2288

0:1729

0:1019

0:0834

0:0054

�0:0027

�0:0001

0:0021

0:0707

0:0587

0:0347

0:0315

Regression method

(used 8 datapoints)

100

200

500

1000

0:1767

0:1259

0:0730

0:0531

0:1229

0:0896

0:0466

0:0343

0:0024

�0:0030

0:0022

0:0032

0:0076

0:0038

�0:0041

0:0029

Table 2.11: Bias and root mean squared error for the three estimators (t(5) data)
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Cauchy data m = n RMSE Bias

�0 �1 �0 �1

Method of quantiles

100

200

500

1000

0:2210

0:1561

0:0980

0:0710

0:2329

0:1669

0:1008

0:0720

�0:0068

0:0006

0:0020

�0:0004

0:0246

0:0148

0:0042

�0:0009

Regression method

(used all datapoints)

100

200

500

1000

59:7400

23:9294

127:5930

93:7040

18:7939

55:0324

22:8143

111:9280

�1:8921

�1:3648

�4:6896

�1:8882

2:5151

3:5878

2:9019

6:5011

Regression method

(used 8 datapoints)

100

200

500

1000

0:2530

0:1600

0:0969

0:0666

0:2660

0:1753

0:0993

0:0662

�0:0083

0:0025

�0:0049

0:0001

0:0577

0:0312

0:0118

0:0061

Table 2.12: Bias and root mean squared error for the two estimators (Cauchy data)

67



up this good performance on real datasets. The choice of the number of datapoints

to use in the construction of the estimator remains a practical problem. In his paper

Hsieh (1995) showed that the regression method is asymptotically ef�cient in the semi-

parametric location-scale model but also stated that the choice of the datapoints to be

used in the weighted regression is problematic. In his paper he provides no guidelines

on how the datapoints should be selected and also uses a rather arbitrary selection of

eight datapoints in one of his examples.

A practical recommendation is to use the method of quantiles since it is a robust

method, which can be applied in extreme cases (like the Cauchy). However, if ini-

tial plots of the data do not exhibit heavy tails or any outlying observations, the method

of moments should be used, since this method has narrower con�dence bands than

the method of quantiles.

2.7.2 Examples

In order to study and compare the behaviour of the methods of moments, the method

of quantiles and the regression method (using eight datapoints) further, we again con-

sider the four examples discussed in Chapter 1, Section 1.2. The three estimators

were computed for the normally distributed datasets (Case 1 and Case 2) and the

resulting �ts are depicted in Figure 2.11. In both cases the lines depicting the �ts

are almost indistinguishable. This is not surprising since the simulation results for the

normally distributed data (Table 2.9) showed that the three methods performed rather

similarly. Figure 2.12 contains the �ts of the same three estimators to the credit sco-

ring datasets (Case 3 and Case 4). Again the �tted lines of the method of moments

and the method of quantiles are closely similar, while the �tted line of the regression
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Figure 2.11: Method of moments estimator, method of quantiles estimator and

regression method estimator for Case 1 (left) and Case 2 (right)

Figure 2.12: Method of moments estimator, method of quantiles estimator and

regression method estimator for DAINC; Case 3 (left) and LOAN;

Case 4 (right), values in R`000
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method is slightly removed from the latter �ts as well as from the bulk of the data.

Based on the resulting �ts in the last four examples, we would recommend that the

method of quantiles or the method of moments be used, since these two �tted lines

are similar. However, the method of moments has the advantage that it has narrower

con�dence bands than the method of quantiles, and is therefore the better option in

these four examples considered. We will discuss this in more detail when a practical

credit scoring dataset is analysed in Chapter 4.

2.8 Tests of linearity

In the previous sections, we assumed that q is linear. In this section we propose

statistics for testing this assumption. The test for linearity in a credit scoring context

could also be used to test whether the two distributions, the goods and the bads, are

from the same translation-scale family.

The null hypothesis is

H0 : q (v) = �0 + �1v: (2.71)

Recall that q (v) = G�1(F (v)): One could formulate the null hypothesis in various

alternative ways. For example, the hypothesis that F and G belong to the same

translation-scale family, is equivalent to testing whether q is linear. The null hypothesis

is then

H0 : F0 = G0 (2.72)

and the alternative hypothesis is

Ha : F0 6= G0 (2.73)
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where

F0(x) = F

�
x� �V
�V

�
(2.74)

and

G0(x) = G

�
x� �W
�W

�
: (2.75)

A possible test statistic is given by the following expression

1p
m+ n

nX
i=1

�eV(im=n) �fW(i)

�2
(2.76)

where eV(i) (fW(i)) indicates the ith ordered value of eV (fW ) and where eV andfW indicate

the standardised versions of V andW , i.e.

eVi =
Vi � V
sV

for i = 1; :::;m (2.77)

fWj =
Wj �W
sW

for j = 1; :::; n: (2.78)

Note that throughout this thesis we assumed that m � n.

Another possible test statistic is the two-sample Kolmogorov-Smirnov test statistic ap-

plied to the standardised values eVi and fWj , i.e.

K1 =
p
m+ n supy

��� eFm(y)� eGn(y)��� (2.79)

where eFm and eGn denote the EDF 's (empirical distribution functions) of the eV and fW
values.

The previous test statistics may be used to test the null hypothesis of linearity against

the broad alternative that the relationship is not linear. To create a more powerful test,

we would need to restrict this broad alternative. One could, for instance, replace the

alternative hypothesis by a special form such as that the relationship is a polynomial.

We do not develop such tests here and leave the details of their construction for further
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research. The null hypothesis remains the same, i.e.

H0 : q(v) = �0 + �1v (2.80)

but the alternative hypothesis changes to

Ha : q(v) = h(v) (2.81)

where h(v) is a polynomial of degree > 1. Then another potentially useful test sta-

tistic is the well known t test that is used in regression to test whether a regression

coef�cient is zero (Neter et al., 1985, e.g. p. 51 or p. 118-121). In our case, we use

the weighted regression method of Hsieh (1995), where the regression model is

Y� = X�� + " (2.82)

This weighted regression is shown in Section 2.6, in (2.59). Y� is given by (2.64), X�

is now similar to (2.65) just adding a quadratic term, P2(�), i.e.

X� = �
�1=2

26666664
1 F�1m

�
1
n+1

�
P2(F

�1
m

�
1
n+1

�
)

...
...

...

1 F�1m

�
n
n+1

�
P2(F

�1
m

�
n
n+1

�
)

37777775 (2.83)

where � is given in (2.61) and now � = [�0; �1; �2]>: Furthermore, " is a vector of

i.i.d. (independent and identically distributed) random variables. The test statistic is

then

K2 =
jb�2j
s(b�2) = jb�2jq

MSE ((X>
� X�)

�1)[3;3]

(2.84)

where (X>
� X�)

�1
[3;3] denotes the [3; 3] element of (X

>
� X�)

�1
:

In the remainder of this section, the focus will be on the test statistics, K1 (2.79) and

K2 (2.84). The other test statistic (2.76) was also investigated by means of a Monte

Carlo study, but the results obtained were unsatisfactory. Some comments on this will

be made at the end of Section 2.8.1.
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2.8.1 Monte Carlo study

In this section we use a Monte Carlo study to investigate the �nite sample signi�cance

levels and power attained by K1 and K2.

Our Monte Carlo study is designed as follows. Assume some common distribution

type for F and G and then generate equal-sized samples (m = n = 20; 50, 100 and

500) from each of those distributions and repeat the process L = 1000 times. Let Ks;l

denote test statistic Ks calculated in the lth Monte Carlo sample, s = 1; 2; l = 1; 2; ::L.

The bootstrap estimate of the critical value for each test statistic is denoted by K�
�;s;l.

The estimated bootstrap signi�cance level is given by

(1=L)
XL

l=1
I
�
Ks;l > K

�
�;s;l

�
: (2.85)

When F and G above are not of the same type, (2.85) gives the estimated power of

the tests.

In summary, to compare the estimated signi�cance levels with the nominal signi�cance

levels, we assume the same distribution type for F and G. Note that we can assume

without loss of generality that �V = �W and �V = �W as both the test statistics are

based on the standardised values of V and W . To estimate the power of the tests of

linearity, we assume some distribution type for F and another distribution type for G.

Signi�cance levels Firstly, we assume that F and G are the standard normal dis-

tribution functions: The estimates of the bootstrap signi�cance levels from this Monte

Carlo study are given in Table 2.13. The results in Table 2.13 were obtained by Al-

gorithm 3 (Appendix A.2) with B = 1000 and L = 1000. In all cases, the attained

signi�cance levels are very close to the nominal value of 5%. However, the estimated
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signi�cance levels for K1 is constantly lower than the nominal value of 5% and the

opposite is true for K2.

Estimated bootstrap signi�cance levels

m = n K1

K2

(using all

datapoints)

K2

(using eight

datapoints)

20 4:90% 5:80% 5:10%

50 4:10% 5:70% 5:00%

100 4:60% 5:40% 5:10%

500 4:70% 5:20% 5:20%

Table 2.13: Estimates of the signi�cance levels (nominal signi�cance level of 0.05),

standard normal distribution

Note that for K2, which is based on the method of Hsieh (1995), the choice of which

datapoints to use for the weighted regression is problematic, as mentioned in Section

2.7.1. As in the previous section, we use all the datapoints as well as eight evenly

spaced datapoints. The calculation of K1 is shown in Appendix A.3, Calculation 4.

Secondly, we assume that F and G are the CDF (cumulative distribution function) of

the logarithm (ln) of an exponential random variable, namely

F (x) = 1� e�ex ; �1 < x <1:

The natural logarithm of an exponential random variable is a standard Gumbel random

variable. The estimates of the bootstrap signi�cance levels are given in Table 2.14.

For K1 and K2 the attained signi�cance levels are very close to or slightly lower than

the nominal value of 5%.
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Estimated bootstrap signi�cance levels

m = n K1

K2

(using all

datapoints)

K2

(using eight

datapoints)

20 4:10% 4:40% 4:60%

50 4:90% 5:10% 3:80%

100 4:50% 4:80% 5:10%

500 5:10% 5:10% 5:20%

Table 2.14: Estimates of the signi�cance levels (nominal signi�cance level of 0.05),

standard Gumbel distribution

Thirdly, we assume that F and G are standard Cauchy distribution functions. Since

the Cauchy distribution does not have a mean and a standard deviation, we cannot

standardise by sample mean and sample standard deviation. Rather we standardise

by subtracting the sample median and dividing by the sample interquartile range. The

estimates of the bootstrap signi�cance levels are given in Table 2.15. The attained

signi�cance levels of K2 are close to the nominal value of 5%, especially in larger

sample sizes (m = n > 20). The signi�cance levels of K1 are lower than the nominal

value of 5%.

Fourthly, we assume that F and G are both mixtures of the standard normal CDF and

the CDF of the standard Gumbel random variable (Mixture 1). The estimates of the

bootstrap signi�cance levels are given in Table 2.16. The attained signi�cance levels

of K2 (using eight datapoints) are close to the nominal value of 5%. The signi�cance

levels of K1 are higher than the nominal value of 5% and for K2 (using all datapoints)
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Estimated bootstrap signi�cance levels

m = n K1

K2

(using all

datapoints)

K2

(using eight

datapoints)

20 2:70% 6:20% 3:40%

50 2:90% 5:80% 5:50%

100 3:30% 5:40% 5:30%

500 4:30% 5:00% 5:10%

Table 2.15: Estimates of the signi�cance levels (nominal signi�cance level of 0.05),

Cauchy distribution

lower than the nominal value of 5%.

Lastly, we assume that F andG are both mixtures of the standard normal CDF and the

standard Cauchy CDF (Mixture 2). The estimates of the bootstrap signi�cance levels

are given in Table 2.17. The attained signi�cance levels ofK2 (using eight datapoints)

are close to the nominal value of 5%. Again the attained signi�cance levels of K1 are

higher than the nominal value of 5% and for K2 (using all datapoints) lower than the

nominal value of 5%.

To summarise, the attained signi�cance levels ofK2 (using eight datapoints) are close

to the nominal value of 5% over all the distributions considered. The attained signi-

�cance levels of K2 (using all datapoints) are slightly lower than the nominal value of

5% over all the distributions considered and the signi�cance levels of K1 are slightly

lower for the �rst three distributions considered, and slightly higher for the last two

mixture distributions considered. We now investigate the power of these tests.
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Estimated bootstrap signi�cance levels

m = n K1

K2

(using all

datapoints)

K2

(using eight

datapoints)

20 6:20% 3:90% 5:10%

50 7:00% 4:30% 4:80%

100 6:30% 4:20% 4:70%

500 6:10% 4:80% 5:00%

Table 2.16: Estimates of the signi�cance levels (nominal signi�cance level of 0.05),

Mixture 1

Estimated bootstrap signi�cance levels

m = n K1

K2

(using all

datapoints)

K2

(using eight

datapoints)

20 6:40% 3:80% 4:00%

50 5:70% 4:20% 4:50%

100 6:90% 4:00% 4:50%

500 6:00% 4:40% 4:90%

Table 2.17: Estimates of the signi�cance levels (nominal signi�cance level of 0.05),

Mixture 2
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Power Note that in the previous section, where the signi�cance levels are calculated,

we assume the same distribution type for F and G, so it does not matter whether

bootstrap samples are taken from F or from G. In this section, where the power is

calculated, F and G do not have the same distribution type, therefore one is not sure

whether to sample from F orG to determine the bootstrap critical value. To investigate

whether to sample from F or G, a sample will �rstly be taken from F , secondly from

G and thirdly from a mixture of F and G, denoted by H. These answers will then be

compared.

Note that, because we used bootstrap critical values, it is dif�cult to ensure that the

type I error (signi�cance level) is exactly the same when comparing the power of the

tests. This fact should be taken into account when interpreting the results that follow,

however, the estimated bootstrap signi�cance levels were close to the nominal value

of 5% (see previous section).

Firstly, we assume the standard normal distribution function for F and the CDF of the

standard Gumbel random variable for G (Mixture 1). The estimates of the power of

K1 and K2 are given in Figures 2.13, 2.14 and 2.15.

ForK1 andK2 the estimated power increases with the sample size, as expected. The

power is higher for K1 than K2 in large samples. This might be due to the choice of

which datapoints to use for the weighted regression, as mentioned previously. The

power forK2 (using all datapoints) is higher thanK2 (using eight datapoints) for all the

sample sizes considered. The results are very similar whether the samples were taken

from F , G orH to calculate the bootstrap critical values. This was also con�rmed with

two way analysis of variance tests. From these three graphs it is clear that sample

size has a considerable effect on the power of the test statistics. Whether samples
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Figure 2.13: Estimates of the power of K1 (Mixture 1)
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Figure 2.14: Estimates of the power of K2 (using all datapoints), Mixture 1
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Figure 2.15: Estimates of the power of K2 (using eight datapoints), Mixture 1

were taken from F , G or H to calculate the bootstrap critical values, have little effect

on the power of the test statistics.

Secondly, we assume the standard normal distribution function for F and the Cauchy

distribution function for G (Mixture 2). The estimates of the power of these tests are

given in Figures 2.16, 2.17 and 2.18.
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Figure 2.16: Estimates of the power of K1 (Mixture 2)

80



-

0.10000

0.20000

0.30000

0.40000

0.50000

0.60000

0.70000

0.80000

0.90000

F G H

 20
 50

 100

 500

Figure 2.17: Estimates of the power of K2 (using all datapoints), Mixture 2
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Figure 2.18: Estimates of the power of K2 (using eight datapoints), Mixture 2
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Again the estimated power increases with the sample size, as it should. The power

is very high, especially in large samples. The power of K2 (using eight datapoints)

is slightly higher than the power of K2 (using all the datapoints). Again, the results

are very similar whether the samples were taken from F , G or H to calculate the

bootstrap critical values. This was again con�rmed with two way analysis of variance

tests. From these three graphs it is again clear that sample size has a considerable

effect on the power of these tests. The difference between the power of K1 and K2

when samples were taken from F , G or H to calculate the bootstrap critical values, is

as in Mixture 1, very small.

Taking into account the results of the attained signi�cance levels as well as the power,

it is recommended to use K1 (2.79) to test the null hypothesis that q is linear. K2

(2.84) is not recommended due to the problematic choice of the number of datapoints

to use. Another reason for not using the test K2 is that it is testing against a very

restricted alternative.

Remarks

1. One of the test statistics mentioned, (2.76), has not been considered in this

section. The reason is that preliminary simulation studies showed poor esti-

mated signi�cance levels for this test statistic. Potgieter (2006) explained that

in its current unstandardised form, the statistic does not have a proper limiting

distribution.

2. Note that the value of the regression test statistic, K2, depends on whetherW is

regressed on V or V is regressed onW . In all other test statistics V andW can

be switched around without changing the value of the test statistic.
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3. Note that as an alternative to the regression test statistic, K2, an unweighted

regression could also be used. Preliminary studies showed that the weighted

regression gives better results than the unweighted regression and therefore only

the weighted regression was studied.

2.9 Summary and conclusion

In Chapter 2 our aim was to �nd methods for estimating q and to construct con�dence

bands for q.

As a departure point we provided an overview of a non-parametric estimator for the

general form of q proposed by Lehmann (1974) and associated con�dence bands

derived by Doksum and Sievers (1976).

Then we introduced the method of moments estimator for estimating the linear form of

q and we derived the asymptotic distribution of the estimator and constructed 100(1�

�)% con�dence bands for q based on the asymptotic results. We compared the non-

parametric estimator with the method of moments estimator by means of a Monte

Carlo study and illustrate its application in a number of datasets. As one would ex-

pect, the method of moments estimator, because of its semi-parametric nature, yields

narrower con�dence bands in the tails of the distribution than did the non-parametric

estimator.

The method of moments estimator has certain de�ciencies, for example the asymp-

totic covariance matrix of the method of moments estimator is based on the third and

fourth moments. It is well known that higher moments (3rd and 4th) have a tendency

to become unstable (see e.g. van der Vaart, 1998 or Lehmann, 1999). A more

robust alternative might be to replace the mean in the method of moments estimator

83



with the median and the standard deviation with the interquartile range, which will

have a more stable covariance matrix. This method, referred to as the method of

quantiles estimator was de�ned and the asymptotic distribution derived as well as the

con�dence bands. We compared the method of moments and the method of quantiles

estimator (and associated con�dence bands) by means of a Monte Carlo study and

illustrate their applications in a number of datasets. In both cases (method of moments

and method of quantiles) the bootstrap con�dence band was preferred above the a-

symptotic con�dence band as the required coverage probability was obtained.

Another alternative to estimate the linear form of q, is the regression method proposed

by Hsieh (1995). We compared the three estimators (method of moments, method of

quantiles and regression method) by means of a Monte Carlo study where we mea-

sured their performance using mean squared error. All three methods performed

reasonably well over the distributions considered. However, the choice of the number

of datapoints to use in the regression method presented a problem. The method of

quantiles was the more robust choice, but gave slightly larger con�dence bands.

To conclude this chapter we constructed statistical hypothesis tests of the linearity

assumption on q and did some Monte Carlo investigations of these tests. Taking into

account the results of the attained signi�cance levels as well as the power, some

recommendations were made on which test statistic to use.
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CHAPTER 3

Detecting outliers using 
weights in logistic regression



 



As we have mentioned in Chapter 1, Section 1.3, logistic regression (LR) is frequently

used in the development of credit scoring models and is concerned with estimating

the probability of an event occuring. Pregibon (1981) states that the estimated LR

relationship may be severely affected by outliers; this motivates the need for robust lo-

gistic regression procedures. Studies in this direction have been reported by Pregibon

(1981), Copas (1988), Rousseeuw and Christmann (2003), Huber (1973), Rousseeuw

and Leroy (1987) and Yohai (1987). Trimming is a broad approach towards robustify-

ing statistical procedures. It allows one to identify outliers and remove them from the

data used in the estimation process. Trimming has been developed extensively by a

number of authors in least squares regression, multivariate analysis and other �elds

(see e.g. Rousseeuw, 1984, Rousseeuw and Van Driessen ,1999a,b, where further

references can be found). At �rst thought it seems attractive to use trimming also in

LR to identify outliers and to limit their effects. When trimming, a subset of the data

that is highly likely to be free from outliers is needed and a method is required to select

such a subset. One possibility is to use ML considerations, but this approach tends

to run into the separation problem. As we mentioned in Section 1.3, the maximum

likelihood estimator (MLE) does not exist if there is separation in the data. The pro-

blem is that those observations that are considered as outliers are usually the same

observations that will provide some overlap in the data. Therefore, as pointed out by

Christmann and Rousseeuw (2001), trimming these observations removes the overlap

and may lead to non-existence (indeterminacy) of the ML estimator (MLE) applied to

the remaining data. These authors produced methodology to measure this overlap,

enabling the user to judge the closeness to indeterminacy. In a further contribution

Rousseeuw and Christmann (2003) overcame the non-existence problem by introdu-
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cing the hidden logistic regression model with an associated estimator referred to as

the maximum estimated likelihood (MEL) estimator which always exists even when

there is no overlap in the data. They also proposed a robusti�ed form of the MEL es-

timator, called the weighted maximum estimated likelihood (WEMEL) estimator. The

WEMEL estimator does not trim, but downweights leverage points, where the choice

of leverage points is based on the robust distances in the regressor space. Using a

simulation study they show that the WEMEL estimator performs very well as a robust

procedure compared to its competitors. However, the WEMEL estimator does not

take outliers in the response direction into account and is not really an outlier detec-

tion procedure because it does not produce a subset of the observations that may be

labelled as outliers. In this chapter we use a different form of downweighting to intro-

duce a procedure that may be thought of as both a robust LR estimation procedure

and an outlier detection method.

Our procedure may be described as a method that "Detects Outliers Using Weights"

and is referred to below as the DOUW method. The DOUW method begins by se-

lecting two sets of weights, namely high and low weights and then splits the data

optimally into two subsets to which the high and the low weights are attached, the

subset with the high weights including the observations that are more likely not to

be outliers. A corresponding weighted ML estimator of the regression coef�cients

is computed. This is used to estimate the response probabilities of the individual

observations. Observations with success response (= 1) but low estimated success

response probability and observations with failure response (= 0) but high estimated

success response probability are then classi�ed as outliers. A �nal weighted MLE

can then be computed by redistributing the high and low weights according to the
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degree of "outlyingness" of the observations in question. The method depends on

the speci�cation of some quantities, such as the size of the initial high weight subset

and the levels of the high and low weights as well as the threshold according to which

outlyingness is decided. We study the effects of the choices of these items below and

also compare the DOUW estimator with the ML, MEL and WEMEL estimators.

The layout of the present chapter is as follows. Section 3.1 introduces the notation

and terminology used here and reviews brie�y some notions regarding outliers rele-

vant to LR. Section 3.2 formulates the basic DOUW procedure and lists a number of

more elaborate versions that can also be used. Section 3.3 reports the results of a

simulation study that evaluates the cost/bene�t balance that has to be taken into ac-

count when specifying the tuning parameters of the procedure. Section 3.4 discusses

the application of the DOUW procedure to a number of standard datasets in the litera-

ture as well as a new large dataset relating to success probabilities in sales promotion

campaigns. Section 3.5 gives a summary of, and main conclusions drawn from, the

work in this chapter. Technical details are provided in Appendix B.1.

3.1 Notation and terminology

As mentioned in Chapter 1, Section 1.3, in a linear logistic regression (LR) setup we

have a dichotomous response variable Y that can take the values 1 (bad risk class) or

0 (good risk class), and we have K regressors x1; :::; xK . Let x> = (1; x1; :::; xK) with

> denoting transpose. We �t the LR model

P (Y = 1) = p(x;�) =1=
�
1 + exp

�
��>x

��
(3.1)
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where �> = (�0; �1; :::; �K) is the vector of LR coef�cients (see e.g. Hosmer and

Lemeshow, 1989 and Kleinbaum, 1994). l(x) = �>x is often referred to as the logit

value of x and p(x;�) considered as a function of l(x) as the probability function or

curve of the model we are �tting to the data. In the credit scoring context we refer to

p(x;�) as the default probability curve, but in the general context, we see Y = 1 as a

success and therefore refer to p(x;�) as the success probability curve.

Assume that we have N observations, where the nth observation is (yn;x>n ), with yn

the observed value of Y and x>n the vector of observed values of the K regressors.

Under the independence assumption the log likelihood of the N observations is given

by

NX
n=1

Dn (�) with Dn (�) = yn log p(xn;�) + (1� yn) log(1� p(xn;�)) (3.2)

and the MLE of � is obtained by maximising this expression over �.

It will become clear later on that a link exists between outliers and separation. To

understand this link, separation will �rst be discussed. For datasets in which there

is no overlap between the 0 and 1 responses (i.e. the xn's corresponding to yn = 0

can be separated by a hyperplane from the xn's corresponding to yn = 1), the MLE

does not exist since the likelihood function achieves its maximum when some of the

components of � are +1 or -1. This can be argued as follows. If there is separation,

there exists a choice for �, say �0; �1; :::; �K so that

�0 + �1xn;1 + :::+ �Kxn;K > 0 for all cases where yn = 1 (3.3)

�0 + �1xn;1 + :::+ �Kxn;K < 0 for all cases where yn = 0:

Therefore, the choice, c�0; c�1; :::; c�K with c a positive constant leads to the log likeli-
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hood which is equal to

X
fyn=1g

log

�
1

1 + e�c(�0+�1xn;1+:::+�Kxn;K)

�
+
X

fyn=0g
log

�
1� 1

1 + e�c(�0+�1xn;1+:::+�Kxn;K)

�
:

(3.4)

Since

�0 + �1xn;1 + :::+ �Kxn;K > 0

for all cases where yn = 1; each term in the �rst sum tends to log(1) = 0 as c ! 1.

Again, since

�0 + �1xn;1 + :::+ �Kxn;K < 0

for all cases where yn = 0; each term in the second sum also tends to log(1) = 0 as

c!1. Therefore the log likelihood then tends to 0 as c!1.

Thus the log likelihood which is strictly negative for all �nite � can be made 0 by letting

� ! 1 in the above explained fashion and in this sense the MLE does not exist. In

practice, using PROC NLP of SAS (SAS Institute, 2003) on separated data, we still

�nd a solution, but typically some of the components are very large, re�ecting the

situation discussed above. It will become apparent below, that when observations

that are considered to be outliers are excluded from the dataset, separation is often

the result. Thus the MLE does not exist.

Rousseeuw and Christmann (2003) introduced the MEL estimator to overcome this

dif�culty when the MLE does not exist. The MEL estimator may be summarised as

follows. Set � = 0:01. De�ne

� =
1

N

NX
n=1

yn;

b� = max(�;min(1� �; �));
�0 = b��= (1 + �)
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and

�1 = (1 + b��) = (1 + �) :
Transform the yn's to eyn = (1 � yn)�0 + yn�1: Then the MEL estimator chooses � to
maximise the "estimated" log likelihood

NX
n=1

eDn (�) with eDn (�) = eyn log p(xn;�) + (1� eyn) log(1� p(xn;�)): (3.5)

Unlike the classical MLE, Rousseeuw and Christmann (2003) show that when 0 <

�0 < �1 < 1 and the dataset has a design matrix of full column rank, the MEL estimator

always exists and is unique. The argument we used previously to show that the MLE

does not exist if there is no overlap, no longer holds, because the equivalent of (3.4)

does not exist in this case.

The related robust WEMEL estimator is de�ned as the maximiser over � of the weighted

estimated log likelihood
PN
n=1wn

eDn (�) : The weights only depend on how far away
xn is from the bulk of the data. They use

wn =M=max
�
RD2(x�n);M

	
; (3.6)

where x�n = (xn;1; :::; xn;K)
> and RD(x�n) is its robust distance and M is the 75th per-

centile of all the RD2(x�n) values. Rousseeuw and Christmann (2003) used the robust

distances that come out of the minimum covariance determinant (MCD) estimator of

Rousseeuw (1984). In their article, Rousseeuw and Christmann (2003) also provide

other properties and results on the performance of the MEL and WEMEL estimators.

As mentioned in Chapter 1, outliers may severely affect the �tted model (3.1). This

motivates the need for robust LR procedures (of which the WEMEL estimator is an

example). In Chapter 1 we mentioned that one can distinguish between outliers in the

x-space and in the y-space (or also referred to as the y�direction). Many methods
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have been developed to deal with outliers in the x-space. Perhaps the most prominent

of these is the fast minimum covariance determinant (FAST-MCD) methodology due

to Rousseeuw and Van Driessen (1999b) which is used in the WEMEL procedure. In

the present chapter our emphasis is more on outliers in the y-direction. Figure 3.1

illustrates the situation in the case of two regressors.

Figure 3.1: x- and y-outliers (two dimensions)

The shaded area which includes most of the (x1; x2) pairs may be thought of as con-

taining the x-inliers while the complementary area contains the x-outliers, for exam-

ple A, B, D, G and H. In Figure 3.1 we have added two contours p(x;�) = d and

p(x;�) = 1� d (with d small). Observations outside the region between the contours

with inappropriate y-values may be thought of as possible y-outliers, especially those

that are far from the contours, for example A and G. A is an observation with y = 1

and p close to 0 and will be called an "uplier", while G and E are observations with

y = 0 but p close to 1 and will be called "downliers". Again upliers and downliers may

also be thought of as bad leverage points, in the sense that they are likely to in�uence
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the estimated regression coef�cients seriously in directions different from that implied

by the other observations. By contrast observations such as those corresponding to B

and H may be called good leverage points in the sense that although they are outlying

in the x-space, their y-values are consistent with what is to be expected in the x-region

where they lie.

3.2 Detecting outliers using weights

The methodology introduced here has some parallels with the least trimmed squares

(LTS) methodology of Rousseeuw and Van Driessen (1999a, b) in ordinary regres-

sion; hence we brie�y review the LTS methodology. The LTS methodology starts

with a lower bound, g1, on the number of good observations (inliers). We then look

for a subset G of the observations with size #(G) = g1; which has smallest residual

sum of squares among all subsets of size g1. The optimal G1 found in this way is

thought most likely to be free of outliers and should therefore result in an estimate of

the regression coef�cients that is least in�uenced by possible outliers. The estimated

regression coef�cients obtained in this way are the LTS estimates based on g1 obser-

vations. It may be that the choice of g1 is conservative in the sense that there could be

observations outside of G1 which are also good. One could use the LTS estimates to

calculate residuals for the observations outside of G1 and use these residuals to de-

cide which observations to add to G1 to obtain a larger subset G2 containing g2 � g1

good observations and then base the �nal trimmed regression estimate on G2: The

LTS optimisation is computationally dif�cult and if done exactly, requires a number of

steps that grows combinatorially with the number of observations and is practically

infeasible especially in large problems. Rousseeuw and Van Driessen (1999a, b)
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handle the computational procedure by starting with an initial random choice of G,

where #(G) = g1; and then improves this choice of G iteratively until convergence,

using a so called C-step procedure. This is repeated many times and the best solution

is kept and taken to represent the optimal G1 required. More detail can be found in

Rousseeuw and Van Driessen (1999b).

The LTS procedure is quite attractive and successful in ordinary regression and our

initial aim was to formulate an analogue for the LR case, using trimmed likelihood

instead of trimmed least squares. This would mean that we want to select a sub-

set G containing g1 observations (together with an associated �) which maximisesP
n2GDn(�). Again this is computationally dif�cult but the equivalent to the C-step

is already available from the work of Neykov and Muller (2002). However, when im-

plementing the procedure we found that the "optimal" G1 usually tends to get bogged

down among subsets with no overlap for which the corresponding MLE does not ex-

ist. This especially happens when one starts with a conservative g1 which is much

smaller than N . Replacing the MLE with the MEL estimator avoids the non-existence

issue but does not eliminate the possibility that the "optimal"G1 may be chosen poorly.

To circumvent these problems we decided to follow a downweighting approach rather

than a trimming approach. For this purpose let 0 < � < 1 and for a given subset G

de�ne a corresponding weighted log likelihood by

l�(�;G) =
X
n2G

Dn(�) + �
X
n=2G

Dn(�): (3.7)

This expression is a weighted log likelihood function with wn = 1 for n 2 G and wn = �

for n =2 G . Thus the observations in G are associated with the higher weight 1 and

the observations outside ofG with the lower weight �. In order to make (3.7) large, an
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observation that is good in the sense of making a large contribution Dn (�) to the log

likelihood function should be in G while ones that are bad in the sense of making low

contributions should be outside G. As in LTS, to capture the good observations in G

we now look for that subset G with size #(G) = g1 and associated � which maximise

l�(�;G) among all subsets of given size g1. For any given set G it is relatively easy

to calculate the corresponding optimiser, ��(G) of l�(�;G) over � using, for example,

a Newton-Raphson method (see Hastie et al., 2001). Maximising l�(�;G) over both

� and G can be handled by a more general form of the C-step procedure of Neykov

and Muller (2002), which is presented in Appendix B.1, C-step lemma. Once this

has been done we have an optimal G1 with an associated estimator ��(G1): Next

we must set up a criterion that can be used to identify outliers: To do this, we use

a small number c with 0 < c < 1 and then declare observation n to be an outlier if

yn = 1 but p(xn;��(G1)) � c or if yn = 0 but p(xn;��(G1)) > 1 � c: The reasoning

here is that if yn = 1; and p(xn;��(G1)) is small it is probable that observation n is

an uplier and therefore should be downweighted (given the weight �). Similarly if

yn = 0; and p(xn;��(G1))) is large it is probable that observation n is a downlier and

should therefore be downweighted. The remaining observations are given weights

1. We could now let G2 be the set of observations that are given the high weights in

this classi�cation step and then compute a �nal weighted estimate for the regression

coef�cients as ��(G2
_) which by de�nition maximises l�(�;G2): This is the DOUW

procedure.

There are further issues that have to be dealt with to complete the speci�cation of the

DOUW method. Among these are the initial choice of g1; the number of iterations in

the C-steps, the choice of � and the choice of cut-off c. The choices of � and c will be
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dealt with after we have reported the results of a simulation study in Section 3.3. The

choice of g1 and the number of iterations are spelled out in the form of the following

pseudocode for the DOUW procedure and was programmed in PROC IML of SAS

(SAS Institute, 2003).

1. Select g1 = max f[(N +K + 1)=2] ;K + 1g where [x] is the integer part of x:

This is in line with the suggestion of Rousseeuw and van Driessen (1999a) for

the FAST-LTS method.

(a) Repeat 50 times:

i. Select a starting subset H � f1; :::; Ng at random with #(H) = K +

1 = g1. Calculate ��(H), the Dn(��(H))'s and �nd the �i's so that

D�1(�
�(H)) � ::: � D�N (�

�(H)). Put G = f�1; :::; �g1g. Carry out

two C-steps starting with this G and ending with G00 say.

(b) For all these 50G00, store the �ve best results, in terms of the highest values

of l�(��(G00);G00):

(c) For each of these �ve best results, repeat the C-step iteration until conver-

gence.

(d) Retain the overall best subset G1 among the last �ve:

2. Put G2 = fn : (yn = 1 and p(xn;��(G1)) � c ) or (yn = 0 and p(xn;��(G1)) �

1 � c)g and then calculate the �nal weighted estimate ��(G2
_) which maximises

l�(�;G2): The outliers are the observations outside of G2:

This basic DOUW procedure can be varied in a number of ways as indicated in the

following list:
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� We varied the number of repetitions in step 2 from 50 to 500 and found that it

made little difference in most cases and feel that 50 repetitions are generally

suf�cient.

� The number of C-steps in step 2 (a) and subsets in step 2 (b) were also varied.

For most of the results reported in this chapter two C-steps and �ve subsets

were found to be suitable.

� SinceG1 is likely to be outlier free by construction we could restrict the choice of

G2 in step 3 to observations outside of G1 only, i.e. we could de�ne G2 = G1[

fn =2 G1 : (yn = 1 and p(xn;��(G1)) � c ) or (yn = 0 and p(xn;��(G1)) �

1 � c)g: However there is no guarantee that G1 will be outlier free in the strict

sense that a high response observation has estimated probability larger than

c and the low response observations has estimated success probabilities less

than (1 � c). It seems unreasonable to treat such observations differently from

those outside of G1. Nonetheless, in our experience this variation makes little

difference to the properties of this procedure.

� For a small to moderate sample sizeN , the C-step algorithm does not take much

time, but when N grows the computation time increases. Nested extensions

similar to those of Rousseeuw and Van Driessen (1999a) for the LTS methodo-

logy can be used to limit the computational effort required for large datasets.

� We could follow step 3 by a fourth step which would identify the outliers u-

sing ��(G2
_) as the current estimate, i.e. we de�ne G3 = fn : (yn = 1 and

p(xn;�
�(G2)) � c) or (yn = 0 and p(xn;��(G2)) � 1 � c) _g and declare the

observations outside of G3 as outliers. This can be repeated until convergence
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is obtained. However, this declaration of current outlier candidates was seldom

worthwhile in our simulation study.

� Another variation is to use g2 = #(G2) obtained in step 3 only as an estimate

of the number of good observations. In other words, after step 3, we repeat

steps 2 and 3 to identify an optimal subset of size g2 to which to assign the high

weights while the rest get the low weights. Again we found that this additional

computational effort seldom appeared to be worthwhile.

� We could use different choices for � in step 3. For example since we feel more

con�dent that the observations outside of G2 are indeed outliers, we could use

�=2, say, and compute the �nal estimate ��(G2
_) by maximising l�=2(�;G2). We

could even choose � = 0 thereby trimming the outliers in the computation of the

�nal estimate. However we found that the results are quite similar when different

values of � are used.

� We could replace the MLE with the MEL estimate throughout the procedure, i.e.

work with the weighted estimated log likelihood (3.7) with Dn(�) replaced by

eDn(�). We comment on this after presenting the results in Section 3.3.
As a �rst illustration we compare the MEL, WEMEL and DOUW procedures on the

four small arti�cial datasets of Rousseeuw and Christmann (2003). We also used

these examples in Chapter 1, Section 1.3. The estimated success probability curves

with respect to the MEL, WEMEL and DOUW procedures (with choices � = 0:2 and

c = 0:05) are given in Figure 3.2 and the estimates are given in Table 3.1. We included

ML estimates in the table. Case (a) is in the top left panel of Figure 3.2, case (b) in

the top right, case (c) in the bottom left and case (d) in the bottom right panel.
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Figure 3.2: Probability success curves of MEL, WEMEL and DOUW
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We assume that the data in case (a) re�ects the true situation in the sense that suc-

cesses and failures are practically separated at x = 5:5 while the additional obser-

vations in (b), (c) and (d) represent outliers. It is clear that all procedures perform

equally well in case (a) where no outliers are present. Consider the large values for

the ML coef�cients in case (a) being due to separation. For cases (b), (c) and (d)

the WEMEL and DOUW estimates outperform the MEL estimates. The DOUW esti-

mates decrease systematically (in absolute value) across the three cases. If we take

� = 0 it may happen that the procedure chooses only the observations corresponding

to yn = 0 as the best subset in the �rst phase and then trim the yn = 1 observations in

the second phase (or vice versa). With � positive this wrong conclusion is avoided.

Case (a) b�0 b�1 Case (b) b�0 b�1
ML �183:8074 33:4195 ML �3:1389 0:4772

MEL �22:2688 4:0489 MEL �3:0880 0:4691

WEMEL �23:9615 4:3566 WEMEL �3:5180 0:5682

DOUW �146:8575 26:7010 DOUW �7:5155 1:2249

Case (c) b�0 b�1 Case (d) b�0 b�1
ML �1:6526 0:2307 ML �0:1931 0:0356

MEL �1:6333 0:2276 MEL �0:1911 0:0353

WEMEL �5:6379 0:9953 WEMEL �3:3921 0:6112

DOUW �5:4845 0:8373 DOUW �3:0009 0:5457

Table 3.1: ML, MEL, WEMEL and DOUW estimates

We also refer back to the �rst example used in Chapter 1, Section 1.3. Again a

sample of 50 (x; y) observations is constructed by generating xn, n = 1; :::; 50 from
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a N(0; 1) distribution. As in Chapter 1, we again show the true probability curve,

pn = p(x; (1; 2)>) as well as the estimated probability curve, bpn = p(x; b�) but this
time we show the estimated probability curves when using the ML, MEL, WEMEL and

DOUW algorithms, see Figure 3.3. In the left panel we show the data without outliers

Figure 3.3: Probability success curves of ML, MEL, WEMEL and DOUW compared

with the true probability success curve

and in the right panel with outliers (as in Chapter 1, Section 1.3). In the left panel the

ML, MEL, WEMEL and DOUW curves are very similar and almost indistinguishable.

In the right panel we observe that the ML and MEL curves are almost indistinguishable

and the true and DOUW curves are also almost indistinguishable. The DOUW curves

outperform the ML, MEL and WEMEL curves. We also added the estimates in Table

3.2. It seems that the DOUW procedure performs very well if there are outliers present

in the data. We investigate this more thoroughly using simulation studies.
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Data (no outliers) b�0 b�1 Data (with outliers) b�0 b�1
ML 1:1604 2:1958 ML 0:8150 0:6701

MEL 1:1404 2:1261 MEL 0:8129 0:6601

WEMEL 1:1323 2:1914 WEMEL 0:8483 0:4521

DOUW 1:1353 2:6400 DOUW 1:0825 1:6321

Table 3.2: ML, MEL, WEMEL and DOUW estimates

3.3 Simulation studies

3.3.1 Design

To study the properties of the DOUW procedure and to get some guidance on the

effects of the choices of the tuning parameters, we report the results of simulation

studies in this section. As in Rousseeuw and Christmann (2003) we use K = 2

regressors x1 and x2 and we take �> = (1; 1; 2). We study the following cases:

1. N = 100 with x1 and x2 independently N(0; 1) distributed,

2. N = 100 with x1 and x2 independently N(0; 4) distributed,

3. N = 100 with x1 and x2 independently t3 distributed and

4. N = 20; 50; 100; 200 with x1 and x2 independently N(0; 1) distributed.

These speci�cations give the true values of the model p(x;�) of (3.1) to be �tted to

the data (the "approximating family" in the terms of Linhart and Zucchini, 1986). Of

course data generated under this model may contain apparent up- and downliers since

there is always positive probability to get yn = 1 even though p(x;�) may be small and

vice versa. One way to study the sensitivity of procedures to outliers is to manually
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add a number of additional up- and downliers into the data. Instead of following this

approach we choose to select a data generating model q(x) (the "operating model"

in the terms of Linhart and Zucchini, 1986) with a �atter success probability curve than

p(x;�). Data generated from such a model will then contain more up- and downliers

than expected under p(x;�). An example of such a q(x) is

q(x) = q(x;�;�) =

8>>>>>><>>>>>>:

�

p(x;�)

1� �

if p(x;�) < �

if � � p(x;�) � 1� �

if p(x;�) > 1� �

(3.8)

which will be used extensively in this section. Here � is a parameter ranging be-

tween 0 and 1/2. Figure 3.4 panel (a) illustrates the corresponding success probability

curves for the choice � = 0:2.

(a) (b)

Figure 3.4: Examples of success probability curves of p(x;�) and q(x;�;�) with

� = 0:2. Panel (a) q(x;�;�) given by (3.8) and panel (b) by HLR

For p(x;�) between � and 1� � the two curves coincide. For p(x;�) < � the proba-

bility of getting y = 1 (an uplier) is larger under the data generating model q(x) so that
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relatively more upliers will tend to be present in the actual data than expected under

the �tting model p(x;�). For p(x;�) > 1� � the probability of getting y = 0 (a down-

lier) is larger under the data generating model q(x) so that relatively more downliers

will tend to be present in the actual data than expected under p(x;�).

If � = 0 the two models do not differ but as � increases the number of outliers pro-

duced under the data generating model increases. Many other examples of q(x)

are possible, for example the hidden logistic regression (HLR) model used in Copas

(1988) and Rousseeuw and Christmann (2003). For our purposes we may take this

HLR model to be given by q(x;�;�) = �+ (1� 2�)p(x;�) and illustrate it in panel (b)

of Figure 3.4. Again the severity of the number of outliers increases as � increases.

The results for both these models are largely similar and to save space we report only

in terms of the data generating model of (3.8).

3.3.2 Performance criteria

The �rst performance criterion to be used may be described as the average mean

squared error of estimation of the true �'s, i.e. if b�= (b�0; b�1; :::; b�K) is the estimator of
� =(�0; �1; :::; �K) then

CB = (1=(K + 1))E

KX
k=0

(b�k � �k)2: (3.9)

It is often also important that the success probabilities be estimated accurately. A

criterion to judge this accuracy may be described as the average mean weighted

squared error of estimation of the success probabilities at the actual x-values i.e. if

bpn = p(xn; b�) then
CWP = (1=N)E

NX
n=1

�n (bpn � p(xn;�))2 (3.10)
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where �n is a weight associated with the nth observation. Often the observations with

small or large response probabilities are particularly important and we can choose the

weights to emphasise this. One possibility is to take

�n = 1=p(xn;�) (1� p(xn;�)) ; (3.11)

but then �n tends to in�nity when p(xn;�) tends to 0 or 1 causing these extreme cases

to dominate the others. Therefore to lessen the in�uence of the extreme cases on the

weights we take

�n = 1= (A+ p(xn;�) (A+ 1� p(xn;�))) : (3.12)

As long as A is positive the weights no longer tends to in�nity when p(xn;�) tends to

0 or 1. The choice of A is somewhat arbitrary but does not seem to matter much for

our purposes and we report mostly for the choice A = 0:01. We could also consider

an unweighted form where we take �n = 1; so that the criterion becomes

CP = (1=N)E

NX
n=1

(bpn � p(xn;�))2 : (3.13)

The expected value is estimated by averaging over the simulation results in equations

(3.9), (3.10) and (3.13).

Many other criteria could be considered (for example judging bias and variance sepa-

rately or using absolute deviation, etc.). There are however, other features that need

to be varied (for example the sample size N , the number of regressorsK, and the dis-

tribution of the xn's as well as the DOUW tuning constants, etc.). It is not feasible to

report on a large number of criteria in conjunction with all these other features; hence

attention will be restricted to these criteria.

105



3.3.3 Choice of � and c

We �rst study the effect of the choice of � on the performance of the DOUW procedure.

Provisionally we choose the cut-off c = 0:05 and will comment on its effect later on.

We show that choosing � very small causes the procedure to perform very poorly while

choosing a moderate value for � leads to good performance in the presence of outliers,

at limited cost when no outliers are present.

To begin with consider case 1. The top two panels of Figure 3.5 show CB for the

choices � = f0:01; 0:1; 0:2; 0:3; 0:4; 0:5g as functions of � with the data generating

model (3.8) based on 1000 simulation runs. In the left hand panel it is evident that

for � = 0:01; CB is uniformly very large. If � is made smaller than 0.01 CB rapidly

becomes even worse. To understand the reasons for this phenomenon we studied

the best subset G1 for the very small choices of �. It turns out that most often the

observations in this subset can be separated. Strictly speaking in such cases the ML

estimators of the �'s do not exist; however the optimiser that we used in this study

did converge but to values rather different from the true beta's and this discrepancy

causes the large values for CB shown in Figure 3.5. Therefore � should not be cho-

sen very small. The right hand top panel of Figure 3.5 shows the same curves as the

left hand panel with the curve corresponding to � = 0:01 omitted in order to increase

the vertical scale and display more details of the remaining curves. For comparison

purposes we also included the curves of MEL and WEMEL. Considering �rst the CB

curve corresponding to � = 0:1, the DOUW procedure outperforms both the MEL and

WEMEL procedures if there are a substantial number of outliers (� > 0:15) but this

advantage comes at a cost when there are few or no outliers in that CB for the DOUW

procedure is larger than CB for the MEL and WEMEL procedures when � is small.
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Figure 3.5: CB;CWP and CP values for � = f0:01; 0:1; 0:2; 0:3; 0:4; 0:5g and c = 0:05

for case 1
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If we increase � to 0:2 the DOUW procedure outperforms the MEL and WEMEL pro-

cedures over a larger range of � values but not to the same extent as for � = 0:1.

At the same time a smaller cost when few outliers are present is involved for � = 0:2

as compared to � = 0:1. With further increases in � the extent of the improvement

when many outliers are present diminishes and the required cost when few outliers

are present also diminishes so that the CB curve resembles those of the MEL and

WEMEL procedures progressively more closely. Examining the curves of � = 0:4 and

� = 0:5 it would seem that choosing � greater than 0:3 leaves little scope for different

performance of the DOUW procedure as compared to the MEL and WEMEL proce-

dures so that the interesting range for � is from 0:1 to 0:3 and our impression at this

time is that � = 0:2 is a reasonable compromise for the scenarios modelled.

The middle and the bottom four panels of Figure 3.5 show CWP and CP for the cases

corresponding to the top panels. We have also inserted an enlargement on each of

these four graphs to show details of the curves at small values of �. In the left of these

four panels it is again evident that choosing � = 0:01 leads to very poor performance

in terms of the CWP and CP criteria and we have con�rmed that smaller choices of �

lead to even worse performance. The right hand middle and bottom panels show that

the DOUW procedure with � = 0:1 improves substantially on the MEL and WEMEL

procedures when many outliers are present (for � > 0:09) but again this comes at a

cost when few outliers are present as is shown in the enlargements. Making � larger

decreases the cost but also decreases the bene�t when many outliers are present.

We can clearly see that the results for CWP and CP are similar. This similarity was

true for all the different cases and from now on we only report on CB and CP: Thus

the effects of varying � are quite similar for all performance criteria. The choice of �
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must take into account the cost/bene�t balance associated with �. This feature is a

typical dilemma in the choice of tuning constants in statistical procedures; for example

selecting a small size for a test is desirable to make the type I error rate small, but also

decreases the power of the test to reject the null hypothesis when it is not true and

vice versa.

In Figure 3.6 we repeat the analysis but this time for a different cut-off value c. We

used c = 0:01 for the two left panels and c = 0:1 for the two right panels. The results

are qualitatively similar to Figure 3.5 where we used c = 0:05: However with the choice

of c = 0:01 we have to make � smaller (for example 0.1) for the cost/bene�t balance

not to disappear, since otherwise the DOUW procedure performs similar to the MEL

and WEMEL procedures. By contrast, for the choice c = 0:1 the bene�t increases

but so does the cost and to keep these in balance we need to make a larger choice

of � (for example 0.3). It appears that the combination of choices, (�; c) = (0:1; 0:01);

(0:2; 0:05); (0:3; 0:1) are reasonable but to some extent this combination is a judgement

call based on limited experience and the issue of making sensible choices in practice is

still open at this stage and will be investigated in future research. However, in the next

section we consider some examples to investigate the affect that changes in these two

tuning parameters have on the results. This will give some practical guidelines.

In Figure 3.7 we compared the DOUW procedure with the MLE replaced by the MEL

estimate throughout (last variation in Section 3.2). Here we see that the DOUW-MEL

procedure performs better than the DOUW-ML procedure when � is small (few out-

liers), but otherwise the two versions of the DOUW procedure perform quite similarly.
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Figure 3.6: CB and CP values for � = f0:1; 0:2; 0:3g (with c = 0:01 left and c = 0:10

right) for case 1
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Figure 3.7: CB and CP values for DOUW when using ML and MEL for case 1

(� = 0:2, c = 0:05)

Proceeding to cases 2 and 3, Figures 3.8 and 3.9 show the corresponding CB and

CP curves respectively. A similar cost/bene�t balance effect is again evident as in

case 1. In both these �gures, we used c = 0:05 on the left and c = 0:10 on the right

while � varies over the values 0:1 to 0:3. We see that the choice of the cut-off again

in�uences the extent of the cost/bene�t balance. For illustrative purposes, we from

now on use � = 0:2 and c = 0:05. We also did the same analysis with data generated

under the HLR model and found similar results.

For case 4 we have plotted the CB and CP values for n = 50 and n = 200 (Figure

3.10). These may be compared to the case n = 100 in the top right and bottom right

panels of Figure 3.5. We can see in all these cases that we have similar behaviour with

regards to the cost/bene�t balance of the DOUW procedure vs the MEL and WEMEL

procedures. However the DOUW procedure does even better than the MEL and

WEMEL procedures as n increases. The bene�t is very large and the cost is minimal

if we consider n = 200, while the bene�t of the DOUW procedure above the WEMEL
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and MEL procedures, is less when n = 50 and the cost of the DOUW procedure is

higher when n = 50.

Figure 3.8: CB and CP values for � = f0:1; 0:2; 0:3g and c = 0:05(left), c = 0:1(right)

for case 2

We have also run simulations on 3 and more regressors and found similar results

namely increasing � diminishes both the cost and the bene�t associated with the

DOUW procedure and so does decreasing c. The effects are more pronounced in

large samples than in small samples. The behaviour of the tuning constants, � and c,
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Figure 3.9: CB and CP values for � = f0:1; 0:2; 0:3g and c = 0:05(left), c = 0:1(right)

for case 3
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are similar in all simulations.

Figure 3.10: CB and CP values for n = 50 on left and n = 200 on right for

� = f0:1; 0:2; 0:3g and c = 0:05

3.4 Examples

In this section we apply the DOUW procedure to a credit scoring dataset as well as to

a number of benchmark datasets. Note that in Chapter 4 we will apply the techniques

derived in Chapters 2 and 3 on another practical credit scoring dataset.
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The �rst example relates to what is called Recency, Frequency and Monetary Analysis

(RFM) in Customer Relations Management (CRM). As mentioned in Chapter 1, credit

scoring refers to a wide �eld and CRM is often, but not always, included in credit sco-

ring. For a detailed discussion of RFM analysis, see Nova (2000). Our data is a ran-

dom sample of 10000 customers from a promotional campaign of a large retailer. The

retailer would like to stay anonymous and therefore no reference is given. However,

the data used in the analysis can be obtained from the author. It is known that typically

customers with low R, high F and high M values are more likely to respond (actually

take up the offers of the promotion). The R, F and M values for each customer be-

fore the campaign starts were recorded and the response indicators Y were observed

when the campaign ended. LR may be used to predict the probability of response

in terms of R, F and M and then the results used to save costs in future campaigns

by not sending promotional offers to customers that are unlikely to respond. Outlier

analyses are also important in this context. Here an uplier is a customer who did

respond although being unlikely to do so. In the interest of good CRM practice such

a customer should be �welcomed back into the fold� by a suitable thank you note or

even an additional offer. A downlier is a customer who did not respond although being

highly likely to do so. Such a customer may be in the process of defection and again

good CRM practice requires that an effort be made to �nd out why and try to retain the

customer. Clearly the analysis should not only provide LR model estimates but also

a list of the up- and downliers so that appropriate action can be taken.

Typically the variable R is the number of days since the last transaction by the cus-

tomer, F is the number of transactions over a previous period (e.g. one year) and

M is the total sales to the customer over that period. The values of these variables
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can vary widely and to make their ranges more reasonable we use their logs as the

regressors. Table 3.3 shows the estimates of the �'s and the number of outliers

found for the different procedures. We took � = 0:2 throughout and varied c from

0:01 to 0:1. The estimated �'s are quite similar for small values of c. However, as c

increases the number of identi�ed outliers increased substantially and the estimates

of �'s increased in absolute value. The reason why this happened is the tendency to

separation becomes more pronounced as more outliers are removed from the dataset

(details not shown here). In a CRM context it is prudent to use a rather high cut-off

value c to identify the outliers. The 224 customers identi�ed corresponding to the last

line in Table 3.3 can be listed easily. It is instructive to see where they are located in

the RFM space. The three panels in Figure 3.11 show their positions in the three

Method �0 �1 (log R) �2 (log F) �3 (log M) #O

ML �4:36384 �0:33743 0:34672 0:41973

MEL �4:30700 �0:33322 0:34195 0:41396

WEMEL �4:73874 �0:29085 0:34567 0:45498

DOUWc=0:01;�=0:2 �4:52931 �0:34218 0:35075 0:43802 0

DOUWc=0:05;�=0:2 �5:73153 �0:46132 0:45818 0:55445 4

DOUWc=0:06;�=0:2 �5:93786 �0:48374 0:48041 0:57283 14

DOUWc=0:07;�=0:2 �6:17061 �0:50961 0:49989 0:59641 36

DOUWc=0:08;�=0:2 �6:41890 �0:53143 0:51864 0:62036 79

DOUWc=0:09;�=0:2 �6:62722 �0:55139 0:53249 0:64092 132

DOUWc=0:10;�=0:2 �6:86272 �0:57202 0:54757 0:66476 224

Table 3.3: RFM (N=10000,K=4)
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Figure 3.11: Scatterplot of the RFM dataset
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pairs of two dimensional spaces of the regressors. Clearly there is large overlap

between the responders and non-responders with the responders tending to be more

prevalent in the direction with decreasing R values, increasing F values and higher

M values. The downliers are visible in the low R, high F, high M directions, while

the upliers are visible in the higher R, lower F and lower M directions. The graphs

shown above indicate 5732 non-responders and 4258 responders. The labels of the

responders are superimposed on that of the non-responders, thereby concealing the

labels of the non-responders. Therefore, although it appears that there are far more

responders than non-responders, this is not the case.

Secondly, we apply the DOUW procedure to a number of benchmark datasets. The

benchmark datasets are:

� banknotes (Rousseeuw and Christmann, 2003),

� toxoplasmosis (Efron, 1986),

� vaso constriction (Finney, 1947; Pregibon, 1981) and

� food stamp (Kunsch et al. 1989).

These benchmark datasets were also used for illustration purposes by Rousseeuw

and Christmann (2003).

Tables 3.4 - 3.7 present the results for the benchmark datasets and the column labelled

#O indicates the number of outliers found. In these examples we used the MEL esti-

mate in the DOUW method. The parameter estimates for ML, MEL and WEMEL are

the same as those of Rousseeuw and Christmann (2003), barring the slight difference

in the case of the WEMEL method which may be due to our using different software.
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The banknotes dataset in Table 3.4 has no overlap and therefore the MLE does not

exist. The DOUW procedure found no outliers and therefore has the same estimated

�'s as the MEL procedure, differing from the WEMEL procedure due to the radically

different weighting scheme used by the latter.

Method �0 �1 �2 �3 �4 �5 �6 #O

ML - does not exist -

MEL 147:09 0:4649 �1:0204 1:3316 2:2049 2:3218 �2:3703

WEMEL 252:55 �0:2541 �1:5791 2:0337 2:1012 2:3706 �2:1496

DOUWc=0:01;�=0:1 147:09 0:4649 �1:0204 1:3316 2:2049 2:3218 �2:3703 0

DOUWc=0:05;�=0:2 147:09 0:4649 �1:0204 1:3316 2:2049 2:3218 �2:3703 0

DOUWc=0:10;�=0:3 147:09 0:4649 �1:0204 1:3316 2:2049 2:3218 �2:3703 0

Table 3.4: Banknotes (N=200, K=7)

Method �0 �1 �2 �3 #O

ML 0:09939 �0:44846 �0:18727 0:21342

MEL 0:09882 �0:44395 �0:18536 0:21126

WEMEL 0:09932 �0:40999 �0:16756 0:20259

DOUWc=0:01;�=0:1 0:13460 �0:46283 �0:27584 0:25642 0

DOUWc=0:05;�=0:2 0:13002 �0:46045 �0:26424 0:25064 0

DOUWc=0:10;�=0:3 0:12562 �0:45814 �0:25308 0:24508 0

Table 3.5: Toxoplasmosis (N=694, K=4)

In Table 3.5 we show the results for the toxoplasmosis dataset. Again no observa-

tions are identi�ed as outliers when using the DOUW procedure and the estimated �'s
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Method �0 �1 �2 #O

ML �2:92382 5:2205 4:6312

MEL �2:76789 4:9844 4:4064

WEMEL �2:73954 4:9487 4:3641

DOUWc=0:01;�=0:1 �2:76789 4:9844 4:4064 0

DOUWc=0:05;�=0:2 �4:12743 6:8738 6:0565 2

DOUWc=0:10;�=0:3 �6:11277 9:6801 8:5351 2

Table 3.6: Vaso constriction (N=39, K=3)

Method �0 �1 �2 �3 #O

ML 0:92638 �1:85021 0:89606 �0:33275

MEL 0:89360 �1:82665 0:88498 �0:32772

WEMEL 5:37607 �1:75504 0:61952 �1:06607

DOUWc=0:01;�=0:1 1:21335 �2:14949 1:06178 �0:39777 0

DOUWc=0:05;�=0:2 0:93637 �2:31400 1:13623 �0:35559 3

DOUWc=0:10;�=0:3 0:51745 �3:00769 0:75962 �0:25222 6

Table 3.7: Food stamp (N=150, K=4)
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are quite similar for all the procedures. In Table 3.6 we have the results for the vaso

constriction dataset which was extensively used in the literature often reporting ob-

servations 4 and 18 as outliers. With the small cut-off c = 0:01 the DOUW procedure

reports no outliers but with c >= 0:05 observations 4 and 18 are �agged as outliers

here also. Note that the estimates of �'s for these choices are substantially different

from the estimates found by the ML, MEL and WEMEL and DOUW (with c = 0:01)

procedures. Again this is a re�ection of the substantial in�uence that outliers have

on the estimated parameters. In Table 3.7 we show the results of the foodstamp

data. Again the small choice of c = 0:01 identi�es no outliers but either 3 (observa-

tions 66, 137 and 147) or 6 outliers (the former plus observations 22, 103 and 120)

are declared when c = 0:05 and 0:10 respectively. Pregibon (1981) developed logistic

regression diagnostic plots as a tool to identify outliers. One of these namely the

deviance residual plot can be stated as follows: De�ne Devn = �
q
�Dn(b�) if yn = 0

and Devn =
q
�Dn(b�) if yn = 1. In Figure 3.12 we plot Devn against the observation

number n.
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Figure 3.12: Deviance residual diagnostic plot of the foodstamp data
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The downliers are represented by the extreme lower observations and the upliers by

the extreme upper observations in this plot. Again observations 66, 137 and 147

show up as downliers when the cut-off level is about -2.2 and in addition also obser-

vations 22, 103 and 120 when the cut-off level is about -1.9. It is noteworthy that the

estimates of the �i's produced by the different estimators are substantially different for

this dataset.

It is interesting to note that in Table 3.4 (Banknotes example) the DOUW procedure

�nds no outliers and the estimates from this procedure are identical over the three sets

of tuning parameters used and are also identical with those from the MEL procedure.

In contrast, in Table 3.5 (Toxoplasmosis example), the DOUW procedure also �nds no

outliers, but the estimates vary over the different sets of tuning parameters and also

differ from the MEL estimates. We would expect the same estimates in Table 3.5. The

reason is that the initial parameters differ in each of these cases. For the ML and the

MEL procedure, we used the initial estimates as discussed in Hastie et al. (2001).

For the DOUW procedure, we used the �nal estimates out of the �rst phase as initial

estimates for the second phase. For future research we will investigate the stability of

using the initial estimates as discussed in Hastie et al. (2001).

3.5 Summary and conclusion

Logistic regression (LR) is frequently used in the development of credit scoring mo-

dels and is concerned with predicting a binary variable. Outliers in logistic regression

data can be �agged by so-called deviance diagnostic (or similar) analysis. Once we

have the ML estimate b� of the regression coef�cients, we calculate the deviances of
the observations and classify those with the most extreme negative deviances as the
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downliers and those with the most extreme positive deviances as the upliers, using

some cut-off level to express the extent of outlyingness. The problem with this ap-

proach is that the outliers (if any) were included in the observations on which the ML

estimate b� was based to begin with and this inclusion may seriously effect the results.
Among other consequences, it leaves the procedure vulnerable to the well-known dan-

gers of masking and swamping in outlier identi�cation. To guard against these risks

one must use a procedure that does parameter estimation and outlier detection simul-

taneously. Trimming approaches have been used successfully for this purpose in a

number of areas in statistics but in logistic regression trimming runs into the separa-

tion problem which makes it dif�cult to apply. In this chapter we presented an approach

based on associating high and low weights with the observations in an optimal way as

a result of the likelihood maximisation. This device enables the identi�cation of the

outliers as those points that are assigned the low weights. The required maximisation

is handled by a search method based on repeated random starting subsets to which

the high weights are assigned, followed by C-step improvements similar to that used

in ordinary LTS (least trimmed squares) regression. We refer to the method as the

DOUW method and its properties depend on two tuning constants, namely the ratio

of the small to the large weights and the probability cut-off level used to measure out-

lyingness. We present a simulation study to show the effects of these constants on

the performance of the DOUW procedure and illustrate the results in terms of four

benchmark datasets as well as a large new dataset from the application area of retail

marketing campaign analysis.
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CHAPTER 4

Analysis of a credit scoring 
dataset



 



In this chapter we will apply the techniques developed in this thesis on a practical

credit scoring dataset. We will �rst �t a logistic regression model and then, using the

q-function, study the nature of the statistically signi�cant classi�ers. Then we will use

the DOUW method to identify outliers and we will compare the performance of the

DOUW �t with that of the logistic regression �t. As performance measures we will

use the mean squared error (MSE), the so-called c-statistic and the best accuracy

rate at the optimal threshold. After discarding the outliers we will again �t a logistic

regression model and, using the q-function, again study the nature of the classi�ers.

We will expect the classi�ers' performance in discriminating between goods and bads

to improve. Our main objective is to illustrate that the application of the DOUWmethod

will yield a better logistic regression �t and better classi�cation performance and we

want to show that the q-function may be used to study the classi�cation performance

of classi�ers.

The layout of the chapter is as follows. In the next section the performance mea-

sures are de�ned. Then, in Section 4.2, we will �rstly analyse an arti�cially generated

dataset (Case1 in Chapter 1). This is necessary to prepare the reader for the discus-

sion of the analysis of the practical credit scoring dataset that will follow in Section 4.3.

Some concluding remarks will be made in Section 4.4. We conclude the thesis with

ideas for future research.

4.1 Performance measures

To compare the logistic regression �ts, we use three performance measures, the c-

statistic, the mean squared error and the best accuracy rate at the optimal threshold.

The c-statistic measures the area under the Sensitivity vs. (1- Speci�city) curve for
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the entire score range (Siddiqi, 2006). The sensitivity is equal to the total actual

positives divided by the total actual positives and the speci�city is equal to the total

actual negatives divided by the total actual negatives where the total actual positives

are those customers that are actually good customers and are predicted as being good

customers and the total actual negatives are those customers that are actually bad

customers and are correctly predicted as being bad customers. The mean squared

error (MSE) is given by the following equation

MSE =
1

N

NX
n=1

(yn � bpn)2
where yn is the target variable indicating whether a customer is a good customer

(yn = 0) or a bad customer (yn = 1) and bpn is the estimated probability of being a bad
customer, P (yn = 1).

Another performance measure similar to the c-statistic is the best accuracy rate ob-

tained. The accuracy rate is equal to the total actual positives plus the total actual

negatives divided by the total number of customers. The best accuracy rate is then

determined by calculating the accuracy rate at all possible thresholds and then choo-

sing the highest accuracy rate. Let us refer to the threshold at which the best accuracy

rate is obtained as the 'optimal threshold'. The accuracy rate obtained at the optimal

threshold may be used as a third performance measure and will be reported in some

of the examples discussed.

4.2 Analysis of Case 1

We �rstly analyse the arti�cial dataset (Case 1) which contains no 'real' outliers. Then

we add outliers to the arti�cial dataset and repeat the analysis. Using a simple and
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easy to understand dataset, the objective is to illustrate jointly the behaviour of the

DOUW method and the q-function on a well behaved dataset and then on a dataset

containing 'known' outliers. This will prepare the reader for the discussion pertaining

to the real dataset in Section 4.3.

Recall that Case 1 assumes that V � N(0; 1) (goods) and W � N(2; 22) (bads) with

X the underlying characteristic. A sample of 1000 observations were generated from

each of these distributions (see the frequency distribution in Figure 4.1) and bqMOM and

associated 90% and 95% bootstrap con�dence bands estimated (see Figure 4.2).

Figure 4.1: Frequency distribution of Case 1

Note that the equal distribution line is not contained in either of the con�dence bands,

so that it can be suggested that the classi�er X distinguishes between the good and

the bad risk classes. The plotted observations in the QQ plot seem to follow a linear

trend which is expected because V andW are from the same translation-scale family.
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Figure 4.2: MOM (with B-bands), Case 1

The logistic regression maximum likelihood (ML) �t yields a c-statistic of 0:814 and a

MSE of 0:0000711 while the DOUW �t (using � = 0:2 and c = 0:05) yields a c-statistic

of 0:814 and a MSE of 0:0000664. From the above it is clear that the DOUW improves

the MSE but not the c-statistic. This seems surprising that the c-statistics for the ML

and the DOUW �ts to the data are identical, whereas their MSE's differ. This may

be explained by examining Figure 4.3 in which the ML and DOUW are depicted. The

DOUW probability curve is slightly steeper than the ML curve resulting in a better MSE

however the classi�cation performance is similar resulting in the same c-statistic. This

can be explained by the fact that the curves overlap at the same probability (approxi-

mately 0.5). Note that the best accuracy rate at the optimal threshold of the ML �t as

well as the DOUW �t was 77.4% and the optimal thresholds were similar (in the region

of 0.5).
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Figure 4.3: Estimated probability curves of ML and DOUW, Case 1

The DOUW �t applied to the arti�cial dataset identi�ed 48 outliers. These outliers

are now excluded from the dataset and the logistic regression �tted on the reduced

dataset. This yields a c-statistic of 0:854 and a MSE of 0:0000662 which is a slight

improvement on the �t on the full dataset.

However, the QQ plot (see Figure 4.4) now shows a non-linear relationship between

the distributions of the goods and the bads. The exclusion of the outliers distorted the

distributions to such an extent that the goods and the bads can no longer be regarded

to come from the same translation-scale family. This is especially clear in the tails of

the distributions.

Obviously in this dataset there are no "real" outliers. In order to examine the effect of

real outliers we will now introduce outliers to the full dataset. We add 200 random

uniform variables between -4 and 8 (see Figure 4.5) and selected 100 randomly as
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Figure 4.4: MOM (with B-bands) Case 1, excluding outliers

good customers and 100 as bad customers. Note that the 200 additional observations

may not all be regarded as 'true' outliers, because some of the 'good' ('bad') outliers

may by chance lie in the bulk of the data from the 'good' ('bad') distribution. The

frequency distribution is shown in Figure 4.5 and the effect of the inclusion of the

outliers can clearly be seen, especially in the right tail of the distribution of the goods.

The associated QQ plot with bqMOM and the bootstrap con�dence bands are depicted

in Figure 4.6. It is clear that the introduction of the outliers shifted the QQ plot closer to

the equal distribution line in the left and right tails of the distribution. These additional

observations give the illusion that the distribution of the very low x values and the very

high x-values are similar for the goods and the bads. The QQ plot is no longer linear

suggesting that the goods and the bads are no longer from the same translation-scale

family. This is expected due to the way in which the outliers were included. The ML

�t obtains a c-statistic of 0:768 and a MSE of 0:000615, which are both worse than in
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Figure 4.5: Frequency distribution of Case 1, with added noise

the corresponding �t on the original dataset.

The DOUW �t yields a c-statistic of 0:768 and a MSE of 0:000152 and identi�ed 73

outliers. Of these, 22 are identi�ed from the �rst 2000 observations and 51 are from

the 200 additional observations. We depict the estimated probability curves of the ML

�t as well as the DOUW �t in Figure 4.7. The DOUW �t is much steeper than the

ML �t resulting in a much better MSE. The steepness of the DOUW �t is now more

pronounced than in the previous examples, but again the classi�cation performance is

the same and can again be explained by the fact that the curves overlap at a probability

of approximately 0.5, which is close to the optimal threshold.

Excluding the 73 outliers, the ML �t yields a c-statistic of 0:819 and a MSE of 0:0000524

which improves on both the previous �ts. We construct the QQ plot with bqMOM and

associated con�dence bands in Figure 4.8 on this reduced dataset. Although the QQ
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Figure 4.6: MOM (with B-bands) Case 1, with additional observations

Figure 4.7: Estimated probability curves of ML and DOUW, Case 1, with additional

observations
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plot is still non-linear, it is much closer to linearity than the QQ plot in the full dataset.

Figure 4.8: MOM (with B-bands) Case 1, with additional observations, but outliers

excluded

This arti�cial example illustrated how we can use the techniques used in Chapter 2

and Chapter 3 in analysing a dataset.

4.3 Analysis of credit scoring dataset

Our next example is concerned with a practical credit scoring dataset and is an extract

of the HMEQ.xls dataset from Wielenga, Lucas & Georges (1999). This dataset was

extracted after doing validity and reliability checks on the data and has 4672 indivi-

duals in the good risk class and 1133 observations in the bad risk class. Initial analy-

sis identi�ed three classi�ers as being statistically signi�cant classi�ers using forward

stepwise logistic regression, namely LOAN (loan amount requested), MORTDUE

(amount due to existing mortgage) and DELINQ (number of delinquent trade lines).
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In the analysis that follows, QQ plots will only be constructed for the two continuous

variables, LOAN and MORTDUE, since this analysis is not suitable for categorical

variables.

As there is a high percentage of missing values in the dataset some method is needed

to handle the missing values in the dataset: the standard median value imputation

method was used in this example. Initial plots of the frequency diagrams showed that

the distributions for the two continuous variables were skewed and therefore we log

transformed (natural logarithm) the variables LOAN andMORTDUE.

We plot the frequency distributions of DELINQ and the natural logarithm of LOAN

and MORTDUE in Figure 4.9. In Figure 4.10 we plot the QQ plot, bqMOM and as-

sociated 90% and 95% bootstrap con�dence bands for LOAN (left) andMORTDUE

(right). When inspecting both panels in Figure 4.10 the plotted observations seem

to follow approximately a straight line although some deviation is observed in the tails

of the distributions. This suggests that the distributions of the good and the bad

risk individuals could be from the same translation-scale family. In both QQ plots

there are little deviation from the 45 degree line through the origin (ED line) and this

suggests that the classi�ers, LOAN and MORTDUE, do not statistically distinguish

between the goods and the bads. The ML �t yields a c-statistic of 0:707 and a MSE of

0:00000148. The DOUW �t (using � = 0:2 and c = 0:05) yields a c-statistic of 0:701 and

a MSE of 0:00000073146 and identi�es 86 outliers. The MSE improved substantially

while the c-statistic marginally worsened. This latter reduction in the c-statistic is very

small and could possibly be explained by random effects, as the best accuracy rate at

the optimal threshold was 82.4% for both the ML and the DOUW �t. Note again that

the best accuracy rate is determined at an optimal threshold, whereas the c-statistic
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Figure 4.9: Frequency diagrams of LOAN (top),MORTDUE (middle) and

DELINQ (bottom)
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measures performance over all possible thresholds. We are therefore less concerned

about the slight reduction in the c-statistic, because the best accuracy rate is the same

for both the ML and the DOUW �ts.

Figure 4.10: MOM (with B-bands) for LOAN (left) andMORTDUE (right)

Excluding these 86 outliers, the ML �t yields a c-statistic of 0:752 and a MSE of

0:0000005909. Both these values improved when compared to the original ML �t using

all the data. Excluding these 86 outliers, we redraw the QQ plots in Figure 4.11 for

LOAN (left) andMORTDUE (right).

Figure 4.11: MOM (with B-bands) for LOAN (left) andMORTDUE (right) excluding

86 outliers
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The plot for LOAN is similar (compare with Figure 4.10), but forMORTDUE we ob-

serve that the con�dence bands are narrower and now the ED line is not contained in

the 90% con�dence bands, suggesting that the classi�er,MORTDUE, distinguishes

better between the good and the bad risk classes than in the original dataset.

As mentioned in Chapter 3, we could vary c from 0:01 to 0:1 and usually in bigger

datasets, a value closer to 0:1 might be more appropriate. The reason for this is that

for bigger datasets the probability of separation is low and even if you remove a large

number of outliers from the dataset, you should not get into a break-down situation.

Therefore, we increase the DOUW parameter, c; to 0:10, and this DOUW �t yields a

c-statistic of 0:695 and a MSE of 0:00000003535 and identi�es 512 outliers. Again

the MSE improves substantially from the original ML �t, but the c-statistic marginally

worsened. Note that the reduction in the c-statistic and the increase in best accuracy

rate at the optimal threshold (82.5% from 82.4%) are very small.

Excluding these 512 outliers the ML �t yields a c-statistic of 0:919 and a MSE of

0:0000000025, which both improve substantially from the previous �ts. In Figure 4.12

we depict the QQ plots again and estimate bqMOM and the associated bootstrap con�-

dence bands for LOAN andMORTDUE, excluding the 512 outliers.

Clearly with the exclusion of the outliers, the ED lines are no longer contained within

the con�dence bands suggesting that the two classi�ers, LOAN and MORTDUE,

now distinguish much better between the goods and the bads.

To complete this example, a QQ analysis was also performed on the three variables

jointly (LOAN , MORTDUE and DELINQ) using the regression function �TX (see

Figure 4.13). The latter analysis revealed that the join QQ plot is different from the ED

line, far more strongly so than with the individual variables.
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Figure 4.12: MOM (with B-bands) for LOAN (left) andMORTDUE (right) excluding

512 outliers

Figure 4.13: MOM (with B-bands) for �TX excluding 512 outliers
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In this example we have shown that the DOUW method improves the classi�er perfor-

mance especially as measured by the MSE and from our analyses it is clear that q is

useful in studying the nature of a classi�er.

One might argue that a weakness in the analysis of the credit scoring datasets is that

the evaluation, using the different performance measures (in particular the c-statistic

and classi�cation accuracy) has been carried out on the training datasets and not on

holdout datasets, as is usual in credit scoring and other classi�cation exercises. This

is certainly true, and should be considered in a follow-up analyses. Here the purpose

was to illustrate the use of the techniques.

4.4 Summary and conclusions

In this chapter we applied the techniques developed in this thesis on a practical credit

scoring dataset. Firstly we analysed an arti�cially generated dataset (Case1 in Chap-

ter 1) and secondly the practical credit scoring dataset. In both examples, we �rst

�tted a logistic regression model and then, using the q-function, studied the nature of

the signi�cant classi�ers. Then, we used DOUW to identify outliers and we compared

the performance of the DOUW �t with that of the logistic regression �t. After discar-

ding the outliers we again �tted a logistic regression model and, using the q-function,

study the nature of the classi�ers. The logistic regression �t and the classi�ers' perfor-

mance in discriminating between goods and bads improved after excluding the outliers

identi�ed by the DOUW methodology.
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4.5 Ideas for future research

Ideas for future research were mentioned in previous chapters, and in this section, we

summarise and expand on those ideas.

In Chapter 2, we made the simplifying assumption that q(v) is linear, i.e. we assumed

that V and W are from the same translation scale family. In some of the datasets we

analysed, we noted that this is not always the case and that investigation of different

shapes of q(v) might prove fruitful. For example in Figure 1.3 (bottom right panel)

and in Figure 4.4 the plotted observations exhibit a slightly non-linear pattern. Another

example of a non-linear q(v) appears in the QQ plot in Figure 4.6. Here one would

postulate that the q(v) function has a quadratic shape. The above-mentioned empirical

evidence motivates the need for investigating different forms of q(v) and for developing

theory to test such assumptions.

Also, in Chapter 2, we conducted the majority of Monte Carlo studies by generating

equal samples from the distributions of V andW . This is certainly an oversimpli�cation

and future research should additionally focus on considering unequal sample sizes.

Comment from an external referee suggested that assessment of the accuracy of the

Monte Carlo studies is required. This may be done by conducting the simulation study

in blocks, and by calculating standard errors of answers obtained in each block.

In one set of these Monte Carlo studies we investigated whether the coverage pro-

bability of the asymptotic con�dence band for q, based on the method of moments

estimator, is close to the nominal coverage probability and found that this was true in

large samples but not in small samples. Another referee suggested that a correction

term for the asymptotic value in small samples should be determined. This can easily

be done through a further Monte Carlo study (see e.g. de Jongh and de Wet, 1986).
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In Chapter 3, we recommend some rule of thumb choices for � and c. This is a

judgment call based on limited experience and the issue of making sensible choices

in practice is still open and could provide a fruitful area for further research. A possible

approach is as follows:

� Start with a small c, increasing the value of c up until one outlier is identi�ed (i.e.

a downlier or uplier as explained in Section 1.3). The p-value of this outlier is

then the c (or 1�c) value where this observation became an outlier. We can now

further increase c until we identify a second outlier, and this c (or 1 � c) is the

p-value of the second outlier. With these newly de�ned p-values, the user can

then decide how many outliers there are.

Another possible area for future research in Chapter 3 is to compare our methodology

with other robust procedures for estimation of the logistic regression, for example the

work of Bianco and Yohai (1996). One could compare and possibly combine these

types of methodologies.

In the last chapter our purpose was to illustrate the use of the techniques developed in

Chapters 2 and 3 and for this purpose we analysed a credit scoring dataset. Evaluating

the performance of a classi�er on the same data used to train the classi�er usually

leads to an optimistically biased assessment. The simplest strategy for correcting the

optimistic bias is to holdout a portion of the development data for assessment (SAS,

2000). Therefore, for future research, we recommend partitioning this credit scoring

dataset into training and holdout datasets.

As a �nal remark, credit scoring is by no means the only application area for the theo-

retical concepts that were developed in this thesis. As a case in point, the techniques
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developed in Chapter 2 may be applied to the medical �eld (see Doksum, 1974 and

Doksum and Sievers, 1976) as well as the coal industry (see Lombard, 2005). Simi-

larly the techniques developed in Chapter 3 may be applied to wider application areas.

Examples include banking (Rousseeuw and Christmann, 2003) and the medical �eld:

toxoplasmosis (Efron, 1986) and vaso constriction (Finney, 1947; Pregibon, 1981).
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APPENDIX A

Technical details of Chapter 2



 



This appendix contains the technical details of Chapter 2. In Appendix A.1 all the

Theorems with associated proofs are given. In Appendix A.2 all the algorithms are

given and in Appendix A.3 we have general items.

A.1 Theorems

A.1.1 Proof of Theorem 1

Lemma 1 The asymptotic joint distribution of V ,W , sV and sW is given by the follow-

ing expression: 266666666664

p
m+ n(V � �V )

p
m+ n(W � �W )

p
m+ n(sV � �V )

p
m+ n(sW � �W )

377777777775
� N4 (0;���) (A.1)

where
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�4(W )
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+
�2W
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�

377777777775
;

(A.2)

with � = m=(m+ n) and �i indicating the ith cumulant.

Proof of Lemma 1. We know that

var(
p
m(V � �V )) = �2V (A.3)

and

var(
p
n(W � �W )) = �2W : (A.4)
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Note that we can assume, without loss of generality, that �V and �W are zero because

we consider the distribution of (V � �V ) and (W � �W ).

V andW are independent, therefore:

cov(
p
m(V � �V );

p
n(W � �W )) = cov(

p
n(W � �W );

p
m(V � �V )) = 0

cov(
p
n(W � �W );

p
m(sV � �V )) = cov(

p
m(sV � �V );

p
n(W � �W )) = 0

cov(
p
n(sW � �W );

p
m(V � �V )) = cov(

p
m(V � �V );

p
n(sW � �W )) = 0

cov(
p
n(sW � �W );

p
m(sV � �V )) = cov(

p
m(sV � �V );

p
n(sW � �W )) = 0

(A.5)

and

cov(
p
m(V � �V );

p
m(s2V � �2V )) (A.6)

=
p
m
p
mcov

0@V ; 1
m

X
j

(Vj � V )2
1A

= mcov

0@V ; 1
m

X
j

V 2j � V )2
1A

= mcov

0@V ; 1
m

X
j

V 2j

1A+mcov �V ; V 2�
= A+B:

Now,

A = mcov

0@V ; 1
m

X
j

V 2j

1A (A.7)

= �3(V ) + 2�1(V )�2(V )

= �3(V )

because �1(V ) = 0. Note that we use a method described by Brillinger (1965, p.19-
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21) to write covariances in terms of cumulants throughout this appendix. Also,

B = mcov
�
V ; V

2
�

(A.8)

=
�3(V )

m
+ o(1)

as m!1:

Thus,

cov(
p
m(V � �V );

p
m(s2V � �2V )) = �3(V ) + o(1) (A.9)

as m!1: Similarly,

cov(
p
n(W � �W );

p
n(s2W � �2W )) = �3(W ) + o(1) (A.10)

as n!1: Next,

var
�p
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�
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2
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m
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2

1A+ cov �V 2; V 2�
35

= m [C +D + E]
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C = cov
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m
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=
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4
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�
;

D is given by

D = �2cov

0@ 1

m

X
j

V 2j ; V
2

1A (A.13)

=
�2
m2

�
�4(V ) + 2�

4
V

�
146



and E is given by

E = cov
�
V
2
; V

2
�

(A.14)

=
1

m3

�
�4(V ) + 6m�

4
V

�
:

Note that all these results, A - E, can also be found in Rao (1965, p.368).

Using (A.11), (A.12), (A.13) and (A.14), we therefore have

var
�p
m(s2V � �2V )

�
(A.15)

= m

�
1

m

�
�4(V ) + 2�

4
V

�
+
�2
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�
�4(V ) + 2�

4
V

� 1
m3

�
�4(V ) + 6m�

4
V

��
=

�
�4(V ) + 2�

4
V

�
+ o(1)

as m!1. Similarly,

var
�p
n(s2W � �2W )

�
=
�
�4(W ) + 2�

4
W

�
+ o(1) (A.16)

as n!1: From the previous results together with the central limit theorem (CLT), we

have, asymptotically2664
p
m(V � �V )

p
m(s2V � �2V )

3775 � N2
0BB@0;

2664 �2V �3(V )

�3(V ) �4(V ) + 2�
4
V

3775
1CCA
:

(A.17)

We require the distribution of 2664
p
m(V � �V )

p
m(sV � �V )

3775
:

(A.18)

and to obtain this we use the delta method described in Ferguson (1996, p. 44-50).

This method is also found in Rao (1965, p. 322). De�ne g by2664 V

sV

3775 = g
0BB@
2664 V

s2V

3775
1CCA
;

(A.19)
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so that

g

0BB@
2664 a1
a2

3775
1CCA =

2664 a1

p
a2

3775
:

(A.20)

Then

g0 =

26641 0

0 1
2
p
a2

3775 (A.21)
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=

2664 1
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3775 (A.22)
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1
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(A.23)

Using the delta method, we then have2664
p
m(V � �V )

p
m(sV � �V )

3775 � N2
0BB@0; g0
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4
V
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(A.24)

Because V andW are independent, we have

�
p
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p
n(W � �W );

p
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p
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(A.25)

with > denoting transpose and where
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Note that 266666666664
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Proof of Lemma 2. Set
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�W �V
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Now, algebra gives g0���g0> = ���� and the result follows by the delta method. ��� is

given in Lemma 1, (A.30). �

Theorem 1 The asymptotic distribution of bqMOM is given by the expression

p
m+ n(bqMOM (v)� q(v)) � N(0; �(v)2) (A.36)

where
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2
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where �i indicates the ith cumulant and � = m=(m+ n).

Proof of Theorem 1. The proof of Theorem 1 is now completed by using the results

of Lemma 1 and Lemma 2. We can rewrite bqMOM (v)� q(v) as follows
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The asymptotic variance of
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where ���� is given in Lemma 2, (A.32). �

Note also that2664 �20 �0;1

�0;1 �21

3775 =
2664

�2W
�(1��)

�3(V )�2W
2��4V

+ �3(W )
2(1��)�V �W

�3(V )�2W
2��4V

+ �3(W )
2(1��)�V �W

�4(V )�2W
4��6V

+
�2W

2�(1��)�2V
+ �4(W )

4(1��)�2V �2W

3775 (A.51)

is the asymptotic covariance matrix of the vector
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This fact will be used in the proof of the next theorem. Then, a 100(1��)% con�dence

band for q is based on the probability statement

P

�
sup
v

���� bqMOM (v)� q(v)b�(v)
���� � c�;m+n=pm+ n� = 1� �: (A.53)

A.1.2 Proof of Theorem 2

Theorem 2 The asymptotic value of c�;m+n in (A.53) is c� =
p
�2 loge(�).

Proof of Theorem 2. From (A.46) we have
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if and only if for all v,�����W � �W
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Then (A.55) becomes
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For (A.59) to be true for all v, two conditions must hold. The �rst condition is that the

coef�cient of
�
v � V

�2 must be negative, i.e. e
21 � c2�;m+nb�21m+ n

!
< 0: (A.60)

The second condition is that the maximum of (A.59) must be smaller than or equal to

0, i.e.
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21 � c2�;m+nb�21m+ n

)(e
20 � c2�;m+nb�20m+ n
); (A.61)

or, equivalently,

S := (m+ n)
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!
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The left hand side of (A.62) is

S = (m+ n)

2664e
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0

3775 : (A.64)

From the remark preceding Theorem 2, it follows that S has an asymptotic chi-squared

distribution with 2 degrees of freedom, i.e. S � �2(2) (see e.g. Rice, 1995, page 318),

i.e.

1� � = lim
m;n!1

P

�
sup
v

���� bqMOM (v)� q(v)b�(v)
���� � c�;m+n=pm+ n� (A.65)

= lim
m;n!1

P

0BBB@(m+ n)
2664e
1e
0

3775
> 2664 b�21 b�0;1
b�0;1 b�20

3775
�1 2664e
1e
0

3775 � c2�;m+n
1CCCA (A.66)

= P (�2(2) � c2�): (A.67)

Thus, c� =
p
�2 loge(�). �

A.1.3 Proof of Theorem 3

Lemma 3 The joint asymptotic distribution of bmV ; bmW , biV and biW is:

p
m+ n

"bmV �mV ; bmW �mW ;
biWbiV � iW

iV

#
� N3

�
0; C�C 0

�
(A.68)

where

� =

2664 �1 0

0 �2

3775 (A.69)

and

�1 =

2664 �11 �12

�21 �22

3775 (A.70)
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with

�11 =
1

4f2V (mV )
(A.71)

�22 =

 
3

4fV (� 3
4
)
� 1

4fV (� 1
4
)

!2
(A.72)

�12 =
1

8fV (mV )

 
3

4fV (� 3
4
)
� 1

4fV (� 1
4
)

!
(A.73)

C =

26666664
1p
�

0 0 0

0 0 1p
1�� 0

0 � iWp
�(iV )2

0 1p
1��iV

37777775
:

(A.74)

�1 is the asymptotic covariance matrix of (
p
m (bmV �mV ) ;

p
m
�biV � iV �) and simi-

larly �2 is the asymptotic covariance matrix of (
p
n (bmW �mW ) ;

p
n
�biW � iW

�
).

Proof of Lemma 3. The joint distribution of sample quantiles is known (see e.g. van

der Vaart, 1998 or Lehmann, 1999) and therefore we have that
�
zbmV

; zbiV
�
is asymp-

totically bivariate normal with mean zero and covariance matrix

�1 =

2664 �11 �12

�21 �22

3775 (A.75)

where �11, �12 and �22 are given in (A.71), (A.72) and (A.73), and where

zbmV
=

p
m (bmV �mV ) (A.76)

zbmW
=

p
n (bmW �mW )

zbiV =
p
m
�biV � iV �

zbiW =
p
n
�biW � iW

�
:

Similarly (zbmW
; zbiW ) is asymptotically bivariate normal with mean zero and covariance

matrix �2. Also (zbmV
; zbiV ) and (zbmW

; zbiW ) are statistically independent. We prove in
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Lemma 4 below that

biWbiV =
iW
iV
+

zbiWp
nbiV � iWp

m(iV )2
zbiV + op((n+m)�1=2): (A.77)

Then it follows that

p
m+ n

 bmV �mV ; bmW �mW ;
biWbiV � iW

iV

!

=
p
m+ n

�
zbmVp
n
;
zbmWp
m
;
zbiWp
niV

� iWp
m(iV )2

zbiV
�
+ op(1) (A.78)

=

�
zbmVp
�
;
zbmWp
1� �

;
zbiWp
1� �iV

� iWp
�(iV )2

zbiV
�
+ op(1)

=

26666664
1p
�

0 0 0

0 0 1p
1�� 0

0 � iWp
�(iV )2

0 1p
1��iV

37777775

266666666664

zbmV

zbiV
zbmW

zbiW

377777777775
+ op(1)

= C

�
zbmV

zbiV zbmW
zbiW

�>
+ op(1) (A.79)

where � = m= (m+ n) :
�
zbmV

; zbiV ; zbmW
; zbiW

�
is asymptotically 4-variate normal with

mean zero and covariance matrix � where � is given in (A.69). Thus,

p
m+ n

"bmV �mV ; bmW �mW ;
biWbiV � iW

iV

#
� N3

�
0; C�C 0

�
: (A.80)

This completes the proof. �

Lemma 4 The following expression holds

biWbiV =
iW
iV
+

zbiWp
nbiV � iWp

m(iV )2
zbiV + op((n+m)�1=2): (A.81)
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Proof of Lemma 4.

biWbiV =
zbiW =pn+ iW
zbiV =pm+ iV (A.82)

=
�
zbiW =pn+ iW

� 1

iV

�
1 +

zbiVp
miV

�
=

�
zbiW =pn+ iW

� 1� zbiV =pmiV
iV

+ op((n+m)
�1=2) (A.83)

=
zbiWp
niV

+
iW
iV
� iWp

m(iV )2
zbiV � zbiW zbiV =

p
miVp

n
p
m(iV )2

+ op((n+m)
�1=2)

=
zbiWp
niV

� iWp
m(iV )2

zbiV + iWiV + op((n+m)
�1=2):

�

Theorem 3 The asymptotic distribution of bqMOQ is given by the expression

p
m+ n(bqMOQ(v)� q(v)) � N(0; �MOQ(v)

2) (A.84)

where

�MOQ(v)
2 = C1 + C2 (v � bmV ) + C3 (v � bmV )

2 (A.85)

and

C1 =
i2W

4�i2V f
2
V (mV )

+
1

4 (1� �) f2W (mW )
(A.86)

C2 =
�iW

2
p
�
p
1� �f2W (mW )

+ (A.87)

1

4 (1� �) iV fW (mW )
(

3

4fW (� 3
4
)
� 1

4fW (� 1
4
)
) (A.88)

C3 =
i2W

4�f2W (mW )
� iW

4
p
�
p
1� �iV fW (mW )

(
3

4fW (� 3
4
)
� 1

4fW (� 1
4
)
) (A.89)

+
1

(1� �) i2V
(

3

4fW (� 3
4
)
� 1

4fW (� 1
4
)
)2:

Proof of Theorem 3. The proof of Theorem 3 can now be completed by using the

results of Lemma 3 and Lemma 4. The proof follows along exactly the same lines as

that of Theorem 1, and is therefore omitted.
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A.1.4 Proof of Theorem 4

Theorem 4 The asymptotic value of d�;m+n in (2.54) is d� =
p
�2 loge(�).

Proof of Theorem 4. The proof follows along exactly the same lines as that of Theo-

rem 2 and is therefore omitted. �
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A.2 Algorithms

Algorithm 1: Determine coverage probability given any critical value, c

1. Generate V1; : : : ; Vm; from F and generateW1; : : : ;Wn from G.

2. For each sample calculate Sl, where Sl denotes the value of S in the lth sample

and S is given in (A.63).

3. Repeat steps 1 and 2 L times, therefore calculate S1; :::; SL.

4. Calculate the coverage probability, i.e. (1=L)
XL

l=1
I
�
Sl � c2

�
, where

c =
p
�2 loge(�) (the asymptotic critical value) or c� (a bootstrap estimated criti-

cal value).

Algorithm 2: Calculate the bootstrap critical value

1. Generate a bootstrap sample, V �1 ; : : : ; V �m, from F , and a bootstrap sample,W �
1 ;

: : : ;W �
n , from G.

2. For each sample calculate S�b ; where S
�
b denotes the value of S in the b

th boot-

strap sample, with b = 1; :::; B and S is given in (A.63).

3. Repeat steps 1 and 2 B times. Keep a record of all the S�b -values.

4. The 100(1 � �)% percentile of the S�b -values is the bootstrap estimated critical

value, c�2� .
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Algorithm 3: Determine signi�cance levels and power of tests

1. Repeat the following steps L times:

(a) Assume two independent samples from F and G:

(b) Calculate the Ks;l statistic, s = 1; 2 and l = 1; 2; ::L.

(c) Repeat the next three steps B times:

i. For signi�cance levels, we generate bootstrap samples from F , G or

H. For power, we generate bootstrap samples from F , G and H (see

also the comments in Section 2.8.1 under the heading "Power").

ii. Compute K�
b;s;l, b = 1; ::; B.

iii. The (1� �)th percentile of the K�
b;s;l; is the critical value, K

�
�;s;l:

(d) Record I
�
Ks;l > K

�
�;s;l

�
.

2. The estimated signi�cance level (or power) is given by

(1=L)
XL

l=1
I
�
Ks;l > K

�
�;s;l

�
: (A.90)
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A.3 General

Calculation 1: Smooth bootstrap Throughout the thesis, we used a smooth boot-

strap. Smooth bootstrap gives a continuous estimation for the distribution and is

therefore usually the preferred method of bootstrap if the underlying data is continuous

(Davison & Hinkley, 1997). Given a sample V1; : : : ; Vm, a smooth bootstrap sample,

V �, is given by

V �i = Xi + �i; i = 1; :::;m (A.91)

where Xi is sampled with replacement from V , �1;:::; �m is from N(0; h2) and h is

the bandwidth (see e.g. Davison and Hinkley, 1997, p.79). We used the optimal

bandwidth of Wand and Jones (1995, p. 60), h =
�
4
3m

�1=5
sV , assuming that the data

is normally distributed. The density function of V � is precisely the kernel estimator of

the density function of V .

Calculation 2: Calculations for G�1 and F�1: We know that (see e.g. Rice, 1995),

F�1m (
1

m
) = eV(1); :::; F�1m (

m

m
) = eV(m) (A.92)

G�1n (
1

n
) = fW(1); :::; G

�1
n (

n

n
) = fW(n) (A.93)

where eVi = Vi�V
sV

and fWj =
Wj�W
sW

: Therefore, in general we have

F�1m (t) = eV(dmte) (A.94)

G�1n (t) = fW(dnte): (A.95)
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Calculation 3: Calculate the density estimator, bf : Throughout the thesis, we used

kernel density estimation to estimate f and chose the normal kernel and the optimal

bandwidth given by Wand and Jones (1995, p.60), unless stated otherwise. Note that

the optimal bandwidth given by Wand and Jones (1995) assume that the underlying

data is normally distributed. The density estimate of V1; : : : ; Vm will therefore be

bfb(x) = 1

mb

mX
i=1

K0

 
x� eVi
b

!
(A.96)

where

K0(z) =
1p
2�
exp

�
�1
2
z2
�

(A.97)

and

b =

�
4

3m

�1=5
seV : (A.98)

We now �nd the optimal bandwidth for Cauchy distributed data. According to Silver-

man (1986) the optimal bandwidth is.

bopt = �
�2=5

�Z 1

�1
K2
0 (t)dt

�1=5�Z 1

�1
f 00(x)2dx

��1=5
n�1=5 (A.99)

where Z 1

�1
K2
0 (t)dt =

Z 1

�1

1

2�
exp

�
�z2

�
=

1

2
p
� :

(A.100)

The Cauchy probability density function is given by

f(x) =
1




1

�

�
1 +

�
x



�2� = 


� (x2 + 
2) :
(A.101)

The second derivative of f(x) is given by

f
00
(x) =

2
2
�
x2 + 
2

�
2x

� (x2 + 
2)4
(A.102)

=
8


�

1

(x2 + 
2)3 :
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Therefore we haveZ 1

�1
f 00(x)2dx =

64
2

�2

Z 1

�1

dx

(x2 + 
2)6
(A.103)

=
64
2

�2




12

Z 1

�1

d
�
x



�
�
1 +

�
x



�2�6
=

64
2

�2
9

Z 1

�1

dy

(1 + y2)6

=
64
2

�2
9
63

256
�:

The optimal bandwidth is therefore

bopt = �
�2=5

�
1

2
p
�

�1=5�64
2
�2
9

63

256
�

��1=5
n�1=5: (A.104)

Calculation 4: Calculation of supy
��� eFm(y)� eGn(y)��� This supremum will be at one

of the m + n datapoints, and therefore the distribution functions F and G have to be

evaluated at these points only. In other words, calculate

eFm(eV1); :::; eFm(eVm); eFm(fW1); :::; eFm(fWn) (A.105)

and

eGn(eV1); :::; eGn(eVm); eGn(fW1); :::; eGn(fWn) (A.106)

where eV1; :::; eVm are the ordered values of eV and fW1; :::;fWn are the ordered values of

fW: We calculate these as follow
eFm(eV1) = 1

m
; :::; eFm(eVm) = m

m
(A.107)

eGn(fW1) =
1

n
; :::; eGn(fWn) =

n

n
(A.108)

eFm(fW1) =
1

m

mX
j=1

I(eVj � fW1); :::; eFm(fWn) =
1

m

mX
j=1

I(eVj � fWn) (A.109)

eGn(eV1) = 1

n

nX
j=1

I(fWj � eV1); :::; eGn(eVm) = 1

n

nX
j=1

I(fWj � eVm): (A.110)
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APPENDIX B

Technical details of Chapter 3



 



This appendix contains the technical details of Chapter 3.

B.1 Proof of C-Step Lemma

C-step lemma Let

D�1(�(w)) � ::: � D�N (�(w)) (B.1)

and g be an integer with 1 � g � N: Suppose

w0 = fw01; :::; w0Ng (B.2)

is another set of weights such that

w0�i � w�i for i = 1; :::; g (B.3)

and

w0�i � w�i for i = g + 1; :::; N (B.4)

and also X
n

w0n =
X
n

wn: (B.5)

Then X
n

w0nDn(�(w
0) �

X
n

wnDn(�(w)): (B.6)

Proof. For any sets of weights, w = fw1; :::; wNg; let �(w) be the maximiser over � ofP
nwn Dn(�) where Dn(�) is given by (3.2). Then

X
n

w0nDn(�(w
0)) = max

�

X
n

w0nDn(�) (B.7)

165



�
X
n

w0nDn(�(w))

=
X
i

w0�iD�i(�(w))

�
X
i

w�iD�i(�(w))

=
X
n

wnDn(�(w))

where the inequality in the second last line may be argued as follows. To simplify

notation, write D�i = D�i(�(w)). Then we have

gX
i=1

(w0�i � w�i)D�i � D�g+1

gX
i=1

(w0�i � w�i) (B.8)

= D�g+1

24( NX
n=1

w0n �
NX

i=g+1

w0�i)� (
NX
n=1

wn �
NX

i=g+1

w�i)

35
= D�g+1

NX
i=g+1

(w�i � w0�i)

�
NX

i=g+1

(w�i � w0�i)D�i :

Hence,
NX
i=1

(w0�i � w�i)D�i � 0 (B.9)

or X
i

w0�iD�i �
X
i

w�iD�i (B.10)

which proves the lemma:

Comments on the lemma: The Neykov and Muller (2002) C-step proposition is a

special case where the weights wn are restricted to the values 0 and 1. To apply this

lemma to our procedure, for a given G de�ne

wn = 1 for n 2 G (B.11)
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and

wn = � for n =2 G (B.12)

so that

�(w) = ��(G) (B.13)

is the corresponding maximiser over � of l�(�;G): Then get the �i's so that

D�1(�(w)) � ::: � D�N (�(w)) (B.14)

and let

w0�i = 1 for i = 1; :::; g1 (B.15)

and

w0�i = � for i = g1 + 1; :::; N: (B.16)

By the lemma G0 ={�1; :::; �g1} is a better subset in the sense that

l�(�
�(G0);G0) � l�(��(G);G): (B.17)

This is the C-step iteration of the DOUW procedure.

It is interesting to note that the speci�c form of Dn(�) does not in�uence the result of

this lemma. It can therefore be applied to maximisation or minimisation of expressions

of the form
P
nwn Dn(�) in many other situations.
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