
IBIMA Publishing

Communications of the IBIMA

http://www.ibimapublishing.com/journals/CIBIMA/cibima.html

Vol. 2010 (2010), Article ID 340296, 15 pages

DOI: 10.5171/2010.340296

Copyright © 2010 Nehemiah Mavetera and Jan Kroeze. This is an open access article

distributed under the Creative Commons Attribution License unported 3.0, which permits

unrestricted use, distribution, and reproduction in any medium, provided that original work

is properly cited. Contact author: Nehemiah Mavetera. E-mail:

Nehemiah.mavetera@nwu.ac.za

Guiding Principles for Developing

Adaptive Software Products

Nehemiah Mavetera and Jan Kroeze

North-West University, South Africa

Abstract

This paper presents an analysis of problems that are faced by software development

practitioners. While communication, team management, coding and software

documentation are some of the persistent problems, the first and major troubles for

software practitioners is to select appropriate software development approach. This

approach should allow developers to develop adaptive software products. The role of

organizational culture, context, practice and concepts in developing adaptive software

products is also discussed. This qualitative research study interviewed seven software

development practitioners in South Africa, focusing on software developmental methods

that allow the capturing of softer, human elements inherent in organizations and the

accompanying problems that inhibit their inclusion in the resultant software products.

The research used Grounded Theory Method, to construct a framework of requirements

that must be considered when choosing a software development approach that allows the

development of adaptive software products. This framework highlights the importance of

employing a software development approach that is grounded in the relativistic paradigm,

adopting a behavioral systems approach and adopting methods whose communication

techniques and tools can capture the humanist elements that are inherent in organizational

systems.

Keywords: Software Development, Framework, Adaptive Systems, Approach

Introduction

A software development process is

required to come up with a piece of

software. This software development

process can be viewed as a framework or

structure that is used during the

development of a software product. The

field of software development is

characterized by two major groups of

stakeholders: the software developers

and the method engineers (Gonzalez-

Perez and Henderson-Sellers, 2006).

Software developers may be in any one

of the following categories: system

analysts, programmers, business

analysts or system architects. On the

other hand, method engineers define and

prescribe a methodology that is used by

developers in their quest to construct

software products. These two terms, that

is, software developers and method

engineers, refer to the roles played by

either individuals or organizations

involved in the software development

process.

However. the software development

process is faced with a myriad of

requirements that, over the years, have

been found to be very difficult to satisfy.

Examples of such requirements are the

Communications of the IBIMA 2

ability to capture organizational culture,

context, practice, the concepts used in an

organization and the ability to develop

adaptive software products. More

overarching is the failure to capture the

human element inherent in

organizational systems into the software

product. In addition, in the development

of software products, organizational

knowledge is a key factor. This

knowledge is found in the organizational

structures of the system to be developed.

Since information systems must capture

and share this knowledge, the tacit

nature of the knowledge makes it

difficult for system developers to totally

understand the task of software product

development.

The rest of the paper is as follows: The

research method used in this study will

be discussed, Followed by a discussion

on software development issues as

reflected in the literature on software

development. Effective communication is

highlighted as a major driver for

successful software development. As

such, communication issues that are

faced by software developers and which

method engineers should address when

formulating software development

approaches are addressed. Using data

from the empirical study, practitioners’

viewpoints on issues that should be

considered during the development of

software products will be highlighted.

These viewpoints lead to some

propositions that need to be addressed

using the guiding principles for

developing adaptive software products

as proposed herein. The research study

employed Grounded Theory Method

(GTM) and the reporting of the study will

follow the sequence of processes that

were undertaken using this method.

Research method and design

“adequacy of a theory … can not be

divorced from the process by which it is

generated”.

Barney G. Glaser and Anselm L. Strauss,

1967.

Every research process, whether

deductive or inductive type has to use

some theory. As Glaser and Strauss

(1967) put it, if theory generation is the

goal of research, the processes

undertaken in such an endeavor should

be chosen, planned, executed carefully

and documented comprehensively.

These processes will contribute

immensely to the acceptance and final

use of the theory in practice.

When researching phenomena that do

not fall into the functionalist and

positivistic paradigms, researchers find it

compelling to spend some time in

choosing the most appropriate research

methods. Most importantly, if the

research is qualitative and interpretive in

nature, greater emphasis should be

placed on the research design process.

This is an attempt to ensure that two

factors, that is, quality and rigor, are

satisfied.

More often, the philosophical nature of a

research problem dictates the research

approach and methodology that will be

followed. To borrow Glaser (1992)’s

dictum, a methodology can be described

as “a theory of methods”. A single

research project may use one or several

methods. For any particular research

project, it is therefore of paramount

importance to order and describe the

research methods in a coherent way.

In an interpretive research like this one,

the researcher required to constantly

modify the data-gathering process as the

study progresses (Trochim, n.d.). This is

in response to the changing environment

and the understanding of the researcher

as the study progresses. In fact, the

researcher tends to gain greater

understanding of the project being

researched as the research progresses.

This allows the researcher to direct and

redirect the questions to get data that

answers the research questions.

By definition, a research method is a

strategy of inquiry that moves from the

underlying philosophical assumptions to

research design and data collection. It

3 Communications of the IBIMA

may be seen as a “general way of

thinking about conducting qualitative

research” Trochim (n.d.). The choice of

research method influences the way in

which the researcher collects data,

analyses it and the subsequent

presentation of the results. As Myers

(1997) contends, specific research

methods also imply different skills,

assumptions and research practices.

 Research method used in this study

Grounded Theory Method (GTM) was

used as the research method in this

study. There are many different ways of

conducting research using Grounded

Theory Method. Some of these are very

prescriptive (Strauss and Corbin, 1990)

but others leave room for the researcher

to direct his or her research in the way

that suits the research environment. The

proponents of Grounded Theory Method,

however, urge researchers to use the

method flexibly (Glaser and Strauss,

1967; Charmaz, 2006). Charmaz (2006)

also refuses to accept any prescriptive

way of using this GTM. Instead she

regards the method as a guiding

framework, that is, as “a set of principles

and practices” that any researcher can

fine-tune to suit the context of research

under study (Charmaz, 2006).

 Grounded theory method (GTM)

Grounded Theory Method is a research

method that seeks to develop theory that

is grounded in data. According to Olivier

(2004), Grounded Theory Method starts

by observing the field of interest and

theory is allowed to emerge from (is

grounded) what is observed in the data.

The data are systematically gathered and

analyzed.

In addition, Trochim (n.d.) regards

Grounded Theory Method as a generative

method in that its purpose is to generate

or produce theory. Cornford and

Smithson (1996) regard GTM as a

method that can be used to develop

(induce) the final hypotheses,

propositions, themes and classifications

from the data that are gathered and

analyzed as the study progresses.

The main idea of GTM is supported by

Hacking (2002), who, in his discussion of

the “Creation of Phenomena”, asked the

question, “What comes first, theory or

experiment?” He contended that Hall, the

discoverer of the Hall effect in

magnetism, unequivocally supported the

notion that experimentation should be

the beginning of a theory. For anything to

exist, it must be created. This inductive

stance to theory development is

dichotomous to the view that is followed

when using deductive research

approaches.

In terms of research design, Glaser and

Strauss (1967) urge grounded method

theorists not to start with a problem

statement or research questions, but just

an interest in the field will suffice.

Adherence to this requirement

influences the way a grounded

researcher plans and executes the

research study as will be described

below. Contrary to this dictum, Strauss

and Corbin (1990) advise researchers to

have a preliminary hypothesis that

should be used to guide the scope of the

study.

 The research design

Trochim (n.d.) regards research design

as a process or phase that fastens the

project components together. Each

research activity is positioned and

described according to its contribution to

the overall goal of the research. It is a

process of moving from methodological

abstractions to descriptions of the

practical steps that are proposed and

later followed during execution of the

research study. Since our chosen

research method is the Grounded Theory

Method, the research design should meet

the requirements for its use in this

research.

The research started with generic

research questions that were proposed

only as to guide and direct the scope of

Communications of the IBIMA 4

the research (Mavetera and Kroeze,

2009). These research questions

followed Roode (1993)’s process-based

research framework that looks at the

what, why, how and how should, of

software development practices.

The data for this research study were

gathered through the use of unstructured

open interviews. The respondents were

software development practitioners in

South Africa. The interviews were

recorded on tape and later transcribed

with the help of professional

transcription services. After that, the

interview data was loaded as primary

documents for coding into Atlas.Ti, a

qualitative data analysis tool. The first

three interviews were used for open

coding, the remainder being used for

selective coding and for reaching

theoretical saturation. It is important to

note that the process of literature study

was done continuously and in parallel

with the data-gathering and data-

analysis processes. This literature study

increased the theoretical sensitivity of

the researcher. The following section

discusses some software development

issues that are documented in software

development literature books as

affecting the development of adaptive

software products.

Software development issues

 The complex nature of organizational

systems

Organizational systems are examples of

dynamic and complex systems. The

complexity of these systems can be

measured using the concept of requisite

variety as proposed by Rosenkranz and

Holten (2007). Requisite variety views

organizational systems as possessing

several possible states, in terms of

“patterns of behavior” or “number of

manifestations”. During software

development, it is the developers’

intention to capture and maintain these

patterns of behavior (manifestations) in

the resultant software product. However,

during the software development

process, the tasks of modeling, that is, of

developing the analysis, design and

implementation models, tend to reduce

the complexity of these organizational

systems by reducing their requisite

variety. This in turn reduces the possible

behavioral states of the subsequent

software products and information

systems under development. This

process is regarded as the reductionist

principle. Any reduction in the

organizations possible behavioral states

and, hence, in their requisite variety,

reduces in turn the life responsiveness of

the modeled and developed system.

In order to maintain the requisite variety

of organizational systems and to transfer

them to the developed systems, either

the modeled system must have its

requisite variety reconstituted to the

organizational systems’ originally

unmodelled state or the original system

should not be modeled using the

reductionist principle. Another option

would be to allow the implementing

tools used in the system and the users of

the system to have as much of the

requisite variety as the original

unmodelled system possessed

(Rosenkranz and Holten, 2007).

Practically, it is impossible to have tools

and users that have the same behavioral

modes as the original system. In the end,

the only practical way to do this is to find

methods and tools that maintain the

requisite variety during the process of

system development. The requisite

variety of organizational systems is

observed in the culture, context and the

concepts used in the organization.

Culture and concepts in organizations

Another aspect that contributes to the

requisite variety of organizational

systems is culture. Organizational culture

comprises people’s attitudes and

experiences, as well as the beliefs and

values of an organization. It also

embodies the organization’s

interactional behavior with stakeholders.

All organizations are run within certain

cultural boundaries. Organizational

culture is therefore reflected in the

5 Communications of the IBIMA

concepts that are used in these

organizations.

The success of a development team to

build a language community with all the

stakeholders in the development process

and, hence, communicating concepts in

the domain effectively, is regarded as one

of the success metrics of software

development.

Dahlbom and Mathiassen (1993) agree

with Buitelaar et al. (2005) that concepts

are not packages of information defined

by structured complexes of more

elementary concepts. They argue that

concepts are defined by people’s

practices (Buitelaar et al, 2005). These

concepts should satisfy three basic

things, that is, they should have an

intensional aspect, a set of the concept’s

instances (its extension) and a set of

linguistic realizations. Linguistic

realizations refer to the multilingual

terms that are applied to the concept

(Buitelaar et al, 2005). The use of

concepts in a practice defines the

organizational culture. Together they can

be used to define the organizational

context.

 Context in organizational systems

As discussed above, concepts apply to a

specific practice within a certain context.

Roque et al (2003) emphasize the need

for context to be understood if one is to

successfully develop a software artifact.

The software artifact should be

fashioned so that it fits the context in

which it is to be used. It must have

situatedness.

Organizational communication requires

a language to pass information between

actors. To enable the actors to

understand each other, this language

should be “embedded within the context”

of the organization (Malinowski, 1923).

Messages that are communicated in an

organizational system are also situated

in that particular context. As such,

information systems should be tuned in

such a way that they capture this

organizational context. Capturing

organizational context subsequently

captures meaning, a very important facet

that actors need if they are to

communicate. Context building amongst

organizational actors is a process of

weaving different situational

understandings from different actors, of

establishing threads of common

understandings and the inter-subjective

knowledge within the network

9Goldkuhl, 2002; Dilley, 1999). It must

be noted that context is not a static thing.

It is not self evident in a situation but

requires a constructive machinery to

mould the varying situational meanings

into a common understanding. Context

therefore is an object of study that

requires some analysis to have an agreed

and shared understanding. It is the

environment surrounding the meaning of

a situation. At the same time, it is within

the shared meaning of some situatedness

that the said context resides. The next

section is a discussion on other issues

that affect the development of adaptive

software products.

The development problem

Other issues which need consideration

during software development range from

focusing on the design of reusable

components to focusing on the

innovative elements of software product

design. These innovative elements of a

software product represent the domain-

related additions that mark the

difference between different types of

domain packages.

With regard to domain, De Oliveira et al

(2006) regard the lack of domain

knowledge by software developers as the

biggest problem in the development

process. While the process of

requirements elicitation and knowledge

gathering are very laborious, knowledge

sharing and reuse is also very limited. In

these processes, for different software

development projects, though in the

same domain, one needs to explain the

same concepts repetitively to different

software development personnel. In

Communications of the IBIMA 6

addition, developers have to study and

learn the domain while simultaneously

linking them to the tasks to which they

relate. These tasks pertain to the

problem domain that needs to be

addressed by the subsequent software

product (De Oliveira et al., 2006).

Another issue that needs to be addressed

in software development is the issue of

communication.

Communication in software

development

In all development processes, the

analysis phase is tasked with creating a

true reflection of the organizational

system environment. As such, the

analysis phase should result in the

development of an analysis model that is

both descriptive and in the form of a

computationally independent model

(CIM) (Aβmann et al. (2006). The CIM

possesses as little platform information

as possible, at the same time ensuring

that the customer’s viewpoint is

maintained. The computationally

independent viewpoint captures the

system environment and the system

requirements. However, many

techniques have been used in traditional

analysis modeling that ensures that this

analysis model is “expressed in terms of

the problem domain”. Figure 1 depicts

the intended relationship in

communication that should exist

between the analysis model, design

model and the implementation model

during their development

Analysis Model

Implementation

Model

Design Model

Computationally Independent Model(CIM)

{Domain Model + Business Model +

Requirements Model}

Platform Independent Model(PIM)

{Architectural Model }

Platform Specific Model(PSM)

{Populated with Platform Specific Information}

GAP

GAP

C
o

n
ce

n
tr

a
ti

o
n

 in
 P

la
tf

o
rm

 S
p

e
ci

fi
c

In
fo

rm
a

ti
o

n

Minus

Plus

Figure 1 Communication Gap in Software Development

As discussed earlier, the analysis model

is derived from the organizational

system’s environment. This environment

is characterized by the domain and

business information, both of which are

context related. In addition, the system

requirements, which derive their fit from

the organizational context, are added.

The analysis model is intended to

capture the triplet of domain model,

business model and requirements model.

As is common, the requirements model

manifests itself as the system

specification. The design model is the

architectural model of the system and, at

this stage, it should capture the system

from the designers’ viewpoint while at

the same time maintaining its platform

independency. Lastly, the

implementation model derived from the

7 Communications of the IBIMA

design model is gradually populated with

platform specific details as discussed by

Aβmann et al. (2006).

It must be noted that the domain model

is a product of the process of domain

engineering. As Bjorner (2008) submits,

understanding and capturing human

behavior are the prime purposes of this

process. Organizational human behavior

has to be described formally or

informally and communicated

throughout all the software

developmental stages. This same domain

model captures concepts used in the

domain field as well as the relationships

between these concepts. The business

model is tasked with capturing the

company’s rules of business, while the

requirements model, which models the

system specification, is tasked with

capturing the functional and non-

functional system requirements

(Aβmann et al. 2006). Most of the time,

system requirements refer to program

code, hence implying that the

specifications are platform dependent.

For specifications to be platform

independent, some informal specification

methods should be used. Bjorner (2008)

argues that this may require the

specification to be drawn up in a natural

language of some sort. This has not been

the case with all specifications especially

when developers get to the later stages

of development. This Bjorner (2008)

decries and submits that ‘there are very

many aspects of requirements that we

today, 2008, do not know how to capture

formally…”. As a result, many design

specifications do not represent the true

world view of a system.

As is always evident in software

development, developers’ insistency on

formalization results in the development

of mechanistic systems. In these

mechanistic development methods, from

the analysis model through to the

implementation model, platform-specific

information is allowed to creep into the

system as a result of this formalization.

The problem faced by software

developers is that of translating all the

characteristics of the analysis model

(CIM) to the implementation model

through the design model (PIM). This is

normally because, at the end of the

analysis stage, the system requirements

are translated to a specification model

(SM). It must be noted that this SM is an

instantiation of parts of the functions of

the system. This is a persistent problem

in software development and ways of

addressing it are proving to be elusive.

As stipulated by Aβmann et al. (2006) ‘a

specification model is a prescriptive

model, representing a set of artifacts by a

set of concepts, their interrelations, and

constraints under the closed world

assumption’. The failure of the SM to

transfer descriptive information

captured by the analysis model to

subsequent stages poses a serious

problem in software development. The

problems of capturing these issues

during software development and of

maintaining the organizational context in

the software product were included in

the data-gathering interview

questions. The data gathering and its

subsequent analysis revealed a plethora

of issues that are discussed below as

‘practitioner’s perspectives’ to software

development and methods.

Practitioners’ perspectives

Figure 2 depicts four major areas that

were identified by respondents as

warranting attention. These therefore

need to be addressed in any software

development process. As shown in

Figure 2, the respondents identified the

world view, the development paradigm,

the research approach and the research

methods as the four areas that need

consideration when software products

are being developed. They also identified

two world views that are dichotomous

and should also be considered when

software products are being developed.

These world views, the mechanistic and

romantic world views should therefore

be afforded the highest priority (Priority

I in Figure 2) in the development of an

approach to software development. The

romantic world view posits reality as a

Communications of the IBIMA 8

social construction (Struwig and Stead,

2004) and believes in a shared reality

among actors. Most importantly, what

may be considered as knowledge

depends heavily on the context, as well

as on organizational politics and culture.

On the other hand, the mechanistic world

view conceives reality as existing and as

a given (Struwig and Stead, 2004). Using

the results from axial coding, the

mechanistic world view in contrast to the

romantic world view is considered to be

very syntactic.

As shown in Figure 2, every software

development paradigm is associated

with a world view. The second priority

level (Priority II) therefore depicts the

relationship between the world view, the

development paradigm and the software

development approach. The interviewed

practitioners contended that a software

development paradigm must be related

and derived from a world view at the

same time it must lead to the

development of a software development

approach. Therefore, two dichotomous

software development paradigms: the

realistic and the relativistic paradigms

are noted. The choice of a software

development paradigm was raised by the

respondents as a fundamental issue

when software products are being

developed. They noted that many

software products are delivered within

an ill-founded grounding, that is, the

development paradigm.

Furthermore, all the respondents

concurred that, although there is an

association between the development

approach, the development paradigm

adopted and the development method,

development approaches should lie in

between the paradigm and the method.

The development approaches should

derive and share the same philosophical

underpinnings as the paradigm. The

study therefore revealed an existence of

three classes of development

approaches: the structural approach, the

behavioral approach and approaches in

transition. Approaches in transition lie

between the structured and behavioral

approaches.

The class of structured approaches,

usually referred to as traditional

approaches, include the classical

structured approach and the object-

oriented approaches. At the other pole,

we find the behavioral approaches,

which encompass Checkland’s widely

read (but rarely used) soft systems

approach. Behavioral approaches from

which behavioral methodologies are

derived assume a holistic organizational

perspective (Benson and Standing,

2005). They accept the social

construction nature of software products

as well as the information systems they

implement and therefore should assume

a relativistic paradigm and a romantic

world view.

In the middle, the approaches in

transition, we find approaches that

exhibit both the syntactic characteristics

of traditional structured and the softer

humanist elements heavily embedded in

the soft systems approaches. This leads

Brown et al. (2004) to refer to agile

approaches as neo-humanist approaches.

This is in recognition of the fact that

many agile methods are touted to include

techniques that capture the human

aspects of organizations during analysis

although they become very mechanistic

at the design and implementation

phases. This therefore qualifies agile

approaches for inclusion in the

approaches in transition. As the third

level cannot be achieved without

considering the world view and the

development paradigm, we allocate it

priority level III as indicated in Figure 2.

Lastly, the development method lies at

the bottom of Figure 2. The reason for

this stems from the fact that an approach

dictates the group of methods that will

be used at lower levels to develop

software products. An approach which

can erroneously be likened to a

methodology is referred to as a study of

methods. These methods are a way of

selecting and using specific techniques

and tools to accomplish a software

9 Communications of the IBIMA

development project Bjorner (2008). The

methods are therefore at the lower, more

prescriptive phase of software

development phases. There are however

many methods that are considered and

used in software development of which

only communication methods will be

discussed here as it raised a lot of

interest from the interview respondents.

In discussing development methods, the

respondents gave the highest priority to

the need for communication methods

that can transfer the business model

through all the development stages from

analysis to implementation.

The Research Propositions

The study has opted to use propositions

instead of hypotheses strictly because

unlike the former, the later has to be

stated in a testable form, which allows

the relationship between two or more

variables to be examined. In many cases,

a hypothesis is a suggested solution to a

problem. This study is making empirical

generalisations from the facts collected

from software practitioners. These

generalisations are therefore regarded as

propositions, and are derived as a result

of an exercise in deduction after

observing themes and relationships in an

empirical situation.

Based on the open coding and axial

coding results of the first three interview

data samples and closely related to

Figure 2, the following propositions that

Communications of the IBIMA 10

need to be considered during software

development were made. From the

analysis, it was discovered that:

Proposition (P1): The field of software

development lacks the correct paradigm,

that is, it must therefore be positioned in

the relativistic world view instead of the

current realistic world view.

Proposition (P2): The software product

development process requires an

approach that will ensure the capturing of

soft human elements or behavioral states

that are inherent in organizational

systems.

Proposition (P3a): The software

development process requires

communication methods that will ensure

that all the stakeholders in the

development process understand each

other.

Proposition (P3b): The field of software

development requires a method or tool

that will capture the organizational

context during analysis and maintain it

through the subsequent development

stages and the development life cycle of

the system.

Proposition (P4): There are no proper

methods that can be used to develop

adaptive or evolvable software products

that characterize organizations as

dynamic systems. A method is therefore

required to dynamically represent an

organizational system as a dynamic piece

of software.

Proposition (P5): The most important

requirement for a software development

environment is to have a communication

protocol that uses a software model as a

medium for capturing and transferring

the descriptive analysis model

characteristics to the design and

implementation models without losing the

informal domain- and business-related

requirements.

These Propositions are addressed using

elements from the software development

framework discussed below.

The adaptive software development

framework

The propositions made above are

supported by a list of software

development requirements that vary

according to the nature of the software

product under development, the phase of

the software development life cycle and

the general environmental

characteristics of the development

platform. In order to develop adaptive

software products, the following

requirements are mooted in a software

development approach:

Proposition (P1) requirements:

• The development approach

should assume a neo-humanist

stance.

• Software development should be

regarded as a social

construction.

• A relativist approach to reality

should be taken when software

products are developed.

 Proposition (P2) requirements:

• The software development

process should capture the

softer issues of organizations,

together with their

organizational behavior.

• The software development

process should reduce the

dominance of traditional

approaches and move towards

a behavioral type of

development approach.

• There should be a switch from

the hard systems paradigm to

soft system approaches.

• The approach should ensure a

transition from a task-based

approach to a role-based

approach.

• The methodological approach

should have a way of capturing

11 Communications of the IBIMA

the dynamic nature of the ever-

running context in

organizations.

• The approach should ensure

that software developers are

able to study the organizational

environment, live in it so that

they can have a situated

practice and experience this

practice before they embark on

any software development

project.

• The functional requirements and

the system requirements

should be mapped from the

organizational environment to

the systems platform through a

software model that does not

overlook the social or human

aspects of the organizational

system.

• In addition to being able to

modeling behavior, the

organizational culture and

context should also be

captured.

• The software development

process should capture and

maintain the patterns of

behavior of organizational

systems

 Propositions (P3a and b)

requirements:

• The software development

process requires a method that

captures the ever-running

organizational context and

application domain of the

system.

• The software development

process requires a concept

negotiation technique.

• The software development

process requires a knowledge-

sharing platform for all

stakeholders

• A method is required that

captures the semantics of the

system.

• There should be a method that

allows developers to capture

the culture and practice of

organizational system users

and to maintain these in the

software product.

• The software development

process requires a language

that will capture human

behavioral characteristics

during development and allow

their transfer or sharing among

stakeholders.

• In current modern and

pervasive computing

environments which software

development is outsourced

offshore, the development

approach should have a

platform to enable different

developers to share their

understanding of the system

requirements.

• Developers should be able to

build a language community

with all stakeholders, that is,

there should be a linguistic

model that could be used to

negotiate a shared

understanding of the concepts

found in a system. This

requirement supports the need

for improved communication

methods, techniques and tools

that can be used during the

development process.

• The software development

process should have a

developer as a tool that

reduces the communication

gap between systems analysts

and the users. This would

enhance user requirements

gathering and their faithful

transfer to the analysis model.

• Plain language, understood by

all the stakeholders should be

used during communication

when doing requirements

gathering. It is also important

to include a business analyst, a

person with business

orientation to do the analysis.

This is like capturing the

domain and business model of

the system. The systems

analysts can then be

incorporated to capture the

system requirements.

Communications of the IBIMA 12

• There is much mistrust between

developers and users. This lack

of trust leads to poor

communication, resulting in

poor requirements gathering.

There should be a tool that

captures or negotiates between

users and developers.

 Proposition (P4) requirements:

• The software development

process should develop

software products that learn

and adapt to rapidly changing

business environments.

• The software development

process should allow for

system upgrades that are fast

and easy.

• The software development

process should enable

evolvable software products to

be developed.

• There should be a method of

dynamically representing

systems as dynamic pieces of

software.

• There should be a method of

capturing and modeling the

design phase elements of a

system in order to enable all

the intended functions of the

proposed system to be

captured.

• An analysis model, derived from

the domain theory should be

designed for a family of

systems in the same domain.

• The software product should be

able to capture semantic and

pragmatic (tacit) information

in organizations.

 Proposition (P5) requirements:

• There is a need for a software

development tool or language

that is capable of capturing the

human aspect of

communication. This would

capture the informal part of the

system into the software

product.

• Language limitation is the factor

that most inhibits and limits

the ability of software products

to capture informal

requirements in systems. A

language is needed that allows

the building of a language

community and facilitate

knowledge sharing using

concepts.

• A development tool is required

that captures the analysis

model and must have a

requirements repository that

can capture and store user

requirements during analysis.

• This repository should be able to

be consulted at every stage of

the software development life

cycle of the system. Besides

improving on requirements

communication throughout the

project, this would also

increase the time to market

and the quality of the software

product.

• A methodology dictates the way

a software engineering

environment is subsequently

used. It must be noted that,

introduction of software

engineering environment on its

own could cause problems of

fit. Since user requirements

gathering takes up 80% of

development time, it is

important to have a

development tool that speeds

up the process. Without this,

developers run the risk of

rushing the requirements-

gathering process and of

implementing an incorrect

system. Therefore, a software

engineering environment is

required to accompany ant

software development

approach or methodology that

is used.

• There should be a way of

reusing domain knowledge in

software development, as

discussed by De Oliveira et al.

(2006).

13 Communications of the IBIMA

• As De Oliveira et al. (2006)

explains, a common repository,

a guiding framework to the

software process, domain and

task knowledge are

prerequisites for a sound

software development

environment. These should be

captured in a software

development environment

(SDE). The repository is a store

for all information related to

the software development life

cycle (SDLC). In addition, each

software development process

requires knowledge of the

organization. This knowledge

sets the context of the software

product.

• There is a requirement for

checking the quality of the

software product throughout

the development process.

• The software development

process should allow for the

capturing, storage and

maintenance of the

organizational business model

throughout the development

stages.

These propositions while many

researchers and authors have written a

lot on them, they still remain persistent

and solutions to them are increasingly

becoming elusive. It is therefore

paramount to explicitly devote a paper

on their nature and what is needed in

software practice if they are to be

addressed.

Conclusion and discussions

The development of adaptive software

products has been hampered by many

factors. As discussed in this paper,

capturing the culture and organizational

context are among the major issues that

may improve the software development

process. In order to develop adaptive

software products, the propositions

discussed in this paper, have to be

accepted, adopted and remedies found.

As it is difficult to find a development

approach that addresses all the

requirements listed in these

propositions, a gradual approach to

developing methods, techniques and

tools that can be used to develop

adaptive software products should be

followed. Future research looks at

developing a software development

methodology that incorporates most if

not all of the propositions listed herein.

In addition, the techniques and tools

required for one to use the proposed

methodology must be developed as well.

In conclusion, it must be noted that, the

process of software development has

been made difficult by the failure of

developers to capture the continuous

and ever-running context of

organizational systems.

Acknowledgements

This material is based upon work

supported financially by the National

Research Foundation of South Africa.

References

Aβmann, U., Zschaler, S. and Wagner, G.

(2006) “Ontologies, Meta-models and the

Model Driven paradigm”. In Ontologies

for Software Engineering and Software

Technology. (Coral Calero, Fransisco

Francisco Ruiz and Mario Piattini Eds),

Springer Verlag.

 Benson, S. and Standing, C. (2005)

Information Systems: A business

approach, 2nd Ed. Wiley and Sons,

Austarlia.

Bjorner, D. (2008) Software Engineering:

An Unended Quest. A Doctor of

Technology Thesis. Technology

University of Denmark...

Brown, R., Nerur, S. and Slinkman, C.

(2004) “The philosophical Shifts in

Software Development,” Proceedings of

the Tenth Americas Conference on

Information Systems, New York, August

2004.

Communications of the IBIMA 14

 Buitelaar, P., Cimiano, P. and Magnini, B.

2003. Ontology learning from the text:

Overview. In: Ontology learning from

text: Methods, Evaluations and

Applications (Buitelaar, P. Cimiano, P.

and Magnini, B., Eds), IOS Press, 2005.

 Charmaz, K. Constructing Grounded

Theory: A Practical Guide Through

Qualitative Analysis, Sage, 2006.

 Cornford, T. and Smithson, S. Project

research in Information Systems: A

Student Guide. Palgrave, New York, 1996.

 Dahlbom, B. and Mathiassen, L. (1993)

Computers in Context. The Philosophy

and Practice of Systems Design, Chapter

2. Oxford: NCC Blackwell.

De Oliveira, K.M., Villela, K., Rocha, A.R.

and Travassos, G.H. (2006) “Use of

Ontologies in Software Development

Environments”. In: Ontologies for

Software Engineering and Software

Technology. (Coral Calero, Fransisco

Francisco Ruiz and Mario Piattini, Eds),

Springer Verlag.

 Dilley, P. (1999) “Queer theory: Under

construction”. QSE: International Journal

of Qualitative Studies in Education, (12:5),

457-472.

 Glaser, B. G. and Strauss, A. L. (1967) The

Discovery of Grounded Theory:

Strategies for Qualitative Research,

Aldine De Gruyter, New York.

 Glaser, B.G. (1992) Basics of Grounded

Theory Analysis: Emergence vs. Forcing,

Mill Valley, CA, Sociology Press.

Goldkuhl, G. (2002) “Anchoring Scientific

Abstractions: Ontological and Linguistic

Determination Following Socio-

Instrumental Pragmatism”. Proceedings

of the European Conference on Research

Methods in Business and Management

Studies (ECRM 2002), MCIL, Reading, UK.

 Gonzalez-Perez, C. and Henderson-

Sellers, B. (2006) “An ontology for

software development endeavors”. In:

Ontologies for Software Engineering and

Software Technology (Coral Calero,

Fransisco, Francisco Ruiz and Mario

Piattini Eds), Springer Verlag.

 Hacking, I. (2002) Historical Ontology.

Harvard University Press, London.

Malinowski, B. (1923) The Problem of

Meaning in Primitive Languages. The

Meaning of Meaning. C.K. Ogden and I.A.

Richards, Routledge and Keagan Paul,

London, 296-346.

Mavetera, N. and Kroeze, J. (2009)

“Practical considerations in Grounded

Theory Method Research”. Sprouts:

Working Papers on Information Systems,

(9: 32), [Online]. [Retrieved July 10,

2009], http://sprouts.aisnet.org/9-32,

2009. ISSN 1535-6078.

Myers, M. D. (1997) “Qualitative

Research in Information Systems,” MIS

Quarterly Vol.21, No. 2, June 1997, pp.

241-242. MISQ Discovery, archival

version, [Online], [Retrieved April 9,

2008],

http://www.misq.org/discovery/MISQD

_isworld

Olivier, S.M. (2004) Information

Technology Research. A Practical Guide

for Computer Science and Informatics.

2nd ed., Van Schaik, Pretoria, South Africa,

SA.

Roode, J.D. (1993) Implications for

Teaching of a Process Based Research

Framework for Information Systems.

Department of Informatics, University of

Pretoria, 0002, Pretoria, South Africa.

Roque, L., Almeida, A. and Figueiredo, A.

D. (2003) "Context Engineering: An IS

Development Approach", Proceedings. of

the Action in Language, Organisations

and Information Systems, ALOIS’2003,

Linköping, Sweden, 2003, 107-122.

Rosenkranz, C. and Holten, R. (2007),

“Towards measuring the complexity of

Information Systems: A language

Critique Approach.” Proceedings of

15 Communications of the IBIMA

International Resources Management

Association (IRMA) 2007, ISBN: 978-

159904930-4.) 19-23 May 2007,

Vancouver, British Columbia, Canada, 57-

60.

Strauss, A. L. and Corbin, J. (1990), Basics

of Qualitative Research: Grounded

Theory Procedures and Techniques,

Sage, London.

Struwig, F.W. and Stead, G.B. (2004),

Planning, designing and reporting

research, Pearson Eduaction, Cape Town,

South Africa.

Trochim, W. M., n.d. The Research

Methods Knowledge Base, 2nd Edition.

[Online], [Retrieved, 7 April 2008],

http://www.socialresearchmethods.net/

kb/.

