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Abstract
Modelling pulsar emission in the high-energy and very-high-energy regimes

The Fermi Large Area Telescope has revolutionised the γ-ray pulsar field, increasing the population to over
250 detected pulsars. The majority display spectra with exponential cutoffs in a narrow range around a few
GeV. Models predicted cutoffs up to 100 GeV; it was therefore not expected that pulsars would be visible
in the very-high-energy (>100 GeV) regime. Subsequent surprise discoveries by ground-based telescopes
of pulsed emission from four pulsars above tens of GeV have marked the beginning of a new era, raising
important questions about the electrodynamics and local environment of pulsar magnetospheres. I have
performed geometric light curve modelling using static, retarded vacuum, and offset polar cap dipole B-
fields, in conjunction with standard two-pole caustic and outer gap geometries. I also considered a slot
gap E-field associated with the offset polar cap B-field and found that its inclusion leads to qualitatively
different light curves. Solving the particle transport equation shows that the particle energy only becomes
large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this
relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Increasing the
slot gap E-field by a factor of 100 led to improved light curve fits, as well as curvature radiation reaction
at lower altitudes. The overall optimal light curve fit was for the retarded vacuum dipole field and outer
gap model. Recent kinetic simulations sparked a debate regarding the emission mechanism of pulsed γ-ray
emission from pulsars. Some models invoke curvature radiation, while others assume synchrotron radiation
in the current sheet. Detection of the Vela pulsar by H.E.S.S. (20 − 120 GeV) and Fermi provides evidence
for a curved spectrum. We posit this to result from curvature radiation via primary particles in the pulsar
magnetosphere and current sheet. We present energy-dependent light curves using an extended slot gap
and current sheet model and invoking a two-step accelerating E-field as motivated by kinetic simulations. I
include a refined calculation of the curvature radius of particle trajectories, impacting the particle transport,
predicted light curves, and spectra. The model reproduces the decrease of flux of the first light-curve peak
relative to the second one, evolution of the bridge emission, near constant phase positions of peaks, and
narrowing of pulses with increasing energy. We can fundamentally explain the first of these trends, since I
found that the curvature radii of the particle trajectories in regions where the second γ-ray light curve peak
originates are systematically larger than those associated with the first peak, implying a correspondingly
larger cutoff for the second peak. An unknown azimuthal dependence of the E-field as well as uncertainty in
the precise emission locale preclude a simplistic discrimination of emission mechanisms. Finally, H.E.S.S.
recently announced the detection of pulsed emission from the Vela pulsar up to 7 TeV, constraining particle
energies to exceed several TeV. I contributed to a paper invoking synchrotron self-Compton emission to
model this new radiation component, thus providing a consistent framework to describe the TeV emission
from Vela.

Keywords: Gamma rays — Pulsars — Vela pulsar (PSR J0835−4510) — Magnetic fields — Fermi
Large Area Telescope.
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Chapter 1

Introduction

1.1 Recent developments in γ-ray pulsar astronomy

1.1.1 Historical perspective of γ-ray pulsar detections and theoretical expectations

Since the launch in June 2008 of the Fermi Large Area Telescope (LAT; Atwood et al., 2009), a high-energy
(HE) satellite measuring γ-rays in the 20 MeV to > 300 GeV range, there has been a consistent discovery rate
of new pulsars. The Fermi LAT Collaboration has already released two pulsar catalogues (1PC, Abdo et al.,
2010c; 2PC, Abdo et al., 2013) discussing the light curve and spectral properties of these (117 in 2PC) pulsars.
Prior to Fermi, only 7 γ-ray pulsars were known (Thompson et al., 1997). The bulk of the Fermi-detected
pulsars display exponentially cutoff spectra with cutoffs falling in a narrow range around a few GeV. During
this time (early 2000s), there was no detection of TeV pulsed emission.

Earlier pulsar models mostly expected HE emission at tens of GeV, while some made predictions of TeV
emission, but this was rather uncertain. For example, pulsar models (see Chapter 2 for more details), as-
suming the standard outer gap (OG) scenario, predicted spectral components in the very-high-energy (VHE;
> 100 GeV) regime when estimating the inverse Compton scattering (ICS) flux of primary electrons on syn-
chrotron radiation (SR) or other soft photons (Cheng et al. 1986; Romani 1996; Hirotani 2001). This resulted in
a natural bump around a few TeV (involving ∼ 10 TeV particles) in the extreme Klein-Nishina limit. However,
these components may not survive up to the light cylinder1 and beyond, since magnetic pair creation leads to
absorption of the TeV γ-ray flux (Hirotani, 2001). Other studies assumed standard pulsar models and curvature
radiation (CR) to be the dominant radiation mechanism producing γ-ray emission and found spectral cutoffs of
up to 100 GeV. For example, Bulik et al. (2000) modelled the cutoffs of millisecond pulsars (MSPs) that pos-
sess relatively low B-fields and short periods. Their model assumed a static dipole B-field and a polar cap (PC)
geometry, and predicted CR from the primary electrons that are released from the PC and accelerated along
curved B-field lines. Their predicted spectrum cut off at ∼ 100 GeV. The CR photons may undergo magnetic
pair production in the intense low-altitude B-fields, and the newly formed electron-positron secondaries will
emit SR in the optical and X-ray band. Harding et al. (2002a) also found CR spectral cutoffs at energies between
50−100 GeV. Harding et al. (2005) investigated the X-ray and γ-ray spectrum of rotation-powered MSPs using
a pair-starved polar cap (PSPC) model, and found CR cutoffs of ∼10−50 GeV (see also Fra̧ckowiak & Rudak,
2005; Venter & De Jager, 2005). Harding et al. (2008) modelled the optical to γ-ray emission from a slot gap
(SG) accelerator and applied it to the Crab pulsar (assuming a retarded vacuum dipole (RVD) B-field), finding
spectral cutoffs of up to a few GeV. Hirotani (2008a) modelled phase-resolved spectra of the Crab pulsar using
the OG and SG models, and found HE cutoffs of up to ∼25 GeV (see also Tang et al. (2008) who used the RVD
B-field to model phase-resolved spectra of the Crab, finding HE cutoffs around ∼10 GeV). Therefore, it was

1The radius RLC where the co-rotation speed equals the speed of light c.
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more or less the consensus of the field prior to 2008 that the HE emission from pulsars occurred in an energy
band that was perhaps above the detection range of satellite detectors like the Energetic Gamma-Ray Experi-
ment Telescope (EGRET) in some cases, and below that of ground-based Cherenkov detectors that had energy
thresholds above 100 GeV, unless there were TeV spectral components (but the older OG predictions of the
latter had been scaled down based on available upper limits at the time, so this was not a strong expectation).

1.1.2 Observational revolution

In view of the above, it was not strongly expected that pulsars should be visible in the VHE regime. It was there-
fore surprising when the Major Atmospheric Gamma-ray Imaging Cherenkov Telescope (MAGIC) detected
pulsed emission from the Crab pulsar at energies up to ∼25 GeV (Aliu et al., 2008; Aleksić et al., 2011, 2012),
and even more surprising when the Very Energetic Radiation Imaging Telescope Array System (VERITAS)
announced the detection of the same, but up to ∼400 GeV (Aliu et al., 2011). The Crab pulsar is thus the first
source from which pulsations have been detected over almost all energies ranging from radio to VHE γ-rays.

The detection of the Crab pulsar above several GeV prompted Fermi to search for pulsed emission at HEs.
They detected significant pulsations above 10 GeV from 20 pulsars and above 25 GeV from 12 pulsars (Acker-
mann et al., 2013). A stacking analysis involving 115 Fermi-detected pulsars (excluding the Crab pulsar) was
performed by McCann (2015). However, no emission above 50 GeV was detected, implying that VHE pulsar
detections may be rare, given current telescope sensitivities. Notably, pulsed emission was also detected from
the Vela pulsar up to 80 GeV with the Fermi LAT (Leung et al., 2014).

Ground-based Cherenkov telescopes are now searching for more examples of VHE pulsars, and they have
had some success in recent years. In the VHE band, MAGIC detected pulsations from the Crab pulsar at
energies up to 1 TeV (Ansoldi et al., 2016). Pulsed emission from the Vela pulsar was detected in the sub-
20 GeV to 100 GeV range with H.E.S.S. (Abdalla et al., 2018). New observations by H.E.S.S. reveal pulsed
emission from Vela up to several TeV (H.E.S.S. Collaboration, in preparation). VERITAS furthermore detected
no emission from Geminga above 100 GeV (Aliu et al., 2015). However, pulsed emission from the Geminga
pulsar between 15 GeV and 75 GeV at a significance of 6.3σ was recently announced by MAGIC, although
only the second light curve peak is visible at these energies. The MAGIC spectrum is an extension of the
Fermi LAT spectrum, ruling out the possibility of a sub-exponential cutoff in the same energy range at the
3.6σ level (Acciari et al., 2020). H.E.S.S. II furthermore detected pulsed emission from PSR B1706−44 in the
sub-100 GeV energy range (Spir-Jacob et al., 2019).

From these VHE observations, four trends in the energy-dependent pulse profiles seem to emerge: as the
photon energy Eγ is increased (above several GeV), the main light curve peaks of Crab, Vela and Geminga
seem to remain at the same phase positions, the intensity ratio of the first to second peak (P1/P2) decreases with
an increase of Eγ for Vela and Geminga, the inter-peak “bridge” emission evolves for Vela, and the peak widths
decrease for Crab (Aliu et al., 2011), Vela (Abdo et al., 2010d) and Geminga (Abdo et al., 2010b). The second
peak of Crab for MAGIC is harder and extends to a bit higher energy (∼2 TeV) than the first peak. The P1/P2
vs. Eγ effect was also seen by Fermi for a number of pulsars (Abdo et al., 2010c, 2013).

1.1.3 Debate regarding high-energy radiation mechanisms

In general, multi-wavelength pulsar light curves exhibit an intricate structure that evolves with Eγ (e.g., Bühler
& Blandford, 2014), reflecting the various underlying emitting particle populations and spectral radiation com-
ponents that contribute to this emission, as well as the local B-field geometry and E-field spatial distribution. In
addition, Special Relativistic effects modify the emission beam, given the fact that the co-rotation speeds may
reach close to the speed of light c in the outer magnetosphere.

Some traditional physical emission models invoke CR from extended regions within the magnetosphere to
explain the HE spectra and light curves. These include the SG (Arons, 1983; Harding & Muslimov, 2003) and
OG (Romani & Yadigaroglu 1995; Cheng et al. 1986) models. However, they fall short of fully addressing
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global magnetospheric characteristics, e.g., the particle acceleration and pair production, current closure, and
radiation of a complex multi-wavelength spectrum. Geometric light curve modelling (Dyks et al., 2004a; Venter
et al., 2009; Watters et al., 2009; Johnson et al., 2014; Pierbattista et al., 2015) presented an important interim
avenue for probing the pulsar magnetosphere in the context of traditional pulsar models, focusing on the spatial
rather than physical origin of HE photons. More recent developments include global magnetospheric models
such as the force-free (FF) inside and dissipative outside (FIDO) model (Brambilla et al., 2015; Kalapotharakos
& Contopoulos, 2009; Kalapotharakos et al., 2014), equatorial current sheet models (e.g., Bai & Spitkovsky
2010a; Pétri 2012), the striped-wind models (e.g., Pétri & Dubus 2011), and kinetic / particle-in-cell simulations
(PIC; Brambilla et al. 2018; Cerutti et al. 2016a,b, 2020; Kalapotharakos et al. 2018; Philippov & Spitkovsky
2018). Some studies using the FIDO models assume that particles are accelerated by induced E-fields in dis-
sipative magnetospheres and produce GeV emission via CR (e.g., Kalapotharakos et al. 2014). Conversely, in
some of the wind or current-sheet models, HE emission originates beyond the light cylinder via SR by rela-
tivistic, hot particles that have been accelerated via magnetic reconnection inside the current sheet (e.g., Pétri
& Dubus, 2011; Philippov & Spitkovsky, 2018). Other studies assume ICS to be the dominant emission mech-
anism of HE γ-rays in an OG scenario (see Lyutikov et al. 2012; Lyutikov 2013 who modelled the broadband
spectrum of the Crab pulsar). There is thus an ongoing debate regarding pulsar emission mechanisms, and it is
hoped that future observations will help discriminate between models.

1.1.4 Latest NICER results

The Neutron star Interior Composition Explorer (NICER; Gendreau et al. 2016)2 is an instrument that is dedi-
cated to study thermal and non-thermal emission from neutron stars (NS) in the soft X-ray band (0.2− 12 keV)
through soft X-ray timing and a spectroscopy instrument on-board the International Space Station, with excep-
tional sensitivity. NICER has a star-tracker-based pointing system that allows the X-ray timing instrument to
target and track celestial objects over nearly the full hemisphere.

Earlier modelling have long expected multipolar B-fields in MSPs (Ruderman & Sutherland 1975; Arons
1983; Asseo & Khechinashvili 2002). For example, Harding & Muslimov (2011a,b) used a generalised solution
of an offset dipole of which the PCs are assumed to be offset from the dipole axis and applied it to MSPs. Since
MSPs such as PSR J0437−4715 and PSR J0030+0451 are too old to suffer significant cooling, their thermal
X-ray emission is believed to be from hot spots on the PCs. These hotspots may not be strictly antipodal, given
a non-dipolar B-field structure.

Since the launch of NICER in June 2017, the rotation-powered MSPs such as PSR J0030+0451 and
PSR J0437−4715, have been studied in much detail. Modelling of the observed thermal X-ray pulsations
from these sources gave valuable insight into the global B-field structures associated with MSPs. These studies
support the existence of a multi-polar B-field, including offset-dipole plus quadrupole components, that devi-
ates from a centred dipole (e.g., Miller et al., 2019; Riley et al., 2019; see Section 2.6.1) after modelling NICER
X-ray waveforms from PSR J0030+0451. Kalapotharakos et al. (2020) investigated the B-field structure that
includes offset dipole plus quadrupole components using a static vacuum field and FF global magnetosphere
models. They modelled the γ-ray and X-ray emission and compared it to the Fermi data (see also Chen et al.
2020). These observations thus confirm earlier expectations of more complicated, multi-polar B-field structures
in pulsars, the effect of which are particularly evident near the stellar surface.

1.1.5 Upcoming developments

The population of pulsars detected by the Fermi LAT has increased to over 250, leading to the preparation of
the Fermi’s Third Pulsar Catalogue (3PC). This catalogue builds on the 2PC, and will include updated timing
solutions, pulse profiles, spectra, and ancillary data. In addition to an increase in the number of pulsars, the
3PC also includes novel pulsars, e.g., the first radio-quiet MSP and first extra-Galactic γ-ray pulsar (Limyansky,

2https://heasarc.gsfc.nasa.gov/docs/nicer/
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2019). The All-sky Medium Energy Gamma-ray Observatory (AMEGO; McEnery et al. 2019) is a proposed
MeV γ-ray surveyor probe that fills the gap between hard X-ray instruments, e.g., NuSTAR and the HE γ-ray
telescopes, e.g., Fermi LAT and the Astro-Rivelatore Gamma a Immagini Leggero (AGILE), and is planned to
launch in 2029. Current and future missions (including the Square Kilometre Array, SKA) are dedicated to
search for more pulsars over the entire electromagnetic spectrum. More pulsars emitting VHE emission may be
found by present and future ground-based telescopes, e.g., the Cherenkov Telescope Array (CTA), which will
have a ten-fold increase in sensitivity compared to present-day Cherenkov telescopes.

1.2 Problem identification and research aims

The NICER mission shows evidence of MSPs possessing offset-dipole structures. These studies pave the way
for investigating new B-field structures, similar to our study done in Chapter 3. As a first approach, we will
study the effect of the B-field structure on the predicted GeV light curves of the Vela pulsar by developing a
geometric modelling code (Dyks et al., 2004a) based on different B-field solutions, i.e., static dipole, RVD, and
an offset-PC dipole (the latter is additionally implemented; Harding & Muslimov 2011a,b), assuming constant
emissivity �ν. Also, we implement an SG E-field to modulate �ν for such an offset-PC dipole and examine the
effect thereof on the GeV light curves. Since this E-field is relatively low, we will multiply it by a factor 100
and illustrate the effective change in the light curves as well as the best fits of the Fermi data to the model, and
compare our fits to multi-wavelength fits from independent studies.

As we have seen, a few major developments have shaped the field of pulsar science over the past decade.
One of these include the increase in pulsar detections by the Fermi LAT. The light curves and phase-resolved
spectra exhibit unique trends and different cutoffs for each emission peak in the different energy bands. The
phase-resolved spectral cutoff for the second peak appears larger than that for the first peak in many cases, as
well as the trends pointed out earlier. Our main goal for this study is to explain these trends and the spectral
cutoffs for the Vela pulsar in the GeV range (see Chapter 5). Additionally, the more advanced kinetic and global
models led to the debate between emission mechanisms. Given this ongoing debate between the emission
mechanisms of HE emission, our motivation in this study is to explain the curved GeV spectrum and light
curves of Vela as measured by Fermi and H.E.S.S. that result from primary particles emitting CR. Specifically,
by modelling the Eγ-dependent light curves (and P1/P2 signature) and phase-resolved spectra in the CR regime
of synchro-curvature (SC) radiation, we hope to probe whether this effect can serve as a potential discriminator
between emission mechanisms and models (see also the reviews of Harding 2016; Venter 2016; Venter et al.
2017 on using pulsar light curves to scrutinise magnetospheric structure and emission distribution).

To date, four VHE pulsars have been detected, i.e., Crab, Vela, Geminga and PSR B1706−44, being some of
the brightest γ-ray sources. To explain the measured VHE pulsed emission as seen from these pulsars leads to
motivation for updating existing or implementing new spectral components. Harding & Kalapotharakos (2015)
implemented a synchrotron self-Compton (SSC) radiation component that can explain the VHE emission seen
from the Crab pulsar. A follow up paper (Harding et al., 2018) extended the SSC emission code and modelled
the emission for Vela in this same energy range, and will be discussed in greater detail in Chapter 6. The
immense rise in the number of pulsars detected makes population studies possible in order to better understand
pulsar physics.

We have access to an SSC emission code that predicts light curves and spectra, and already includes the SG
current sheet model, FF B-field solution, a constant E� (as motivated by the kinetic models), standard radiation
processes including CR, SR, ICS, and SSC, as well as pair cascades (associated with magnetic pair production
and calculated in a separate code) that originate near the PC (Harding & Kalapotharakos, 2015). In order to
model emission pulse profiles as a function of energy, as well as predicting phase-resolved spectra for Vela, we
will apply this SSC emission code assuming emission from primary particles that emit only CR. Since particles
that emit CR radiation mostly follow the curved B-field lines in the rotating frame, our proposed project involves
implementing a refined calculation of the curvature radius ρc of the particle trajectory. We will investigate the
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behaviour of the light curve peaks as well as the light curve trends as a function of ρc. For the optimal light
curve and spectral fits, we will study the local environment of the peaks’ emission regions, finding a systematic
difference in ρc, particle Lorentz factor γ, and spectral cutoff energy Eγ,CR for the two peaks. Lastly we will
compare our results to measurements of Fermi and H.E.S.S. for the Vela pulsar (see Chapter 5). Our improved
ρc was also one of the adaptions made by Harding et al. (2018), therefore the results we obtained in this study
accompany theirs (see Chapter 6).

1.3 Publications

The publications that emanated directly from this study are listed below.

1.3.1 Peer-reviewed conference proceedings

1. Breed, M.; Venter, C.; Harding, A. K., 2016, Very-high energy emission from pulsars, in Conf. Proc. of
SAIP2015: Proc. of the 60th Ann. Conf. of the South African Inst. of Phys., ed. by M. Chithambo & A.
Venter, pp. 278−283.

2. Barnard, M., Venter, C., & Harding, A. K., 2017, High-energy pulsar light curves in an offset polar
cap B-field geometry, in Conf. Proc. of HEASA2016: the 4th Ann. Conf. on High Energy Astrophys. in
Southern Africa, ed. by M. Boettcher, D. Buckley, S. Colafrancesco, P. Meintjes, & S. Razzaque, id. 42.

3. Barnard, M., Venter, C., Harding, A. K., & Kalapotharakos, C., 2017, Modelling energy-dependent pulsar
light curves due to curvature radiation, in Conf. Proc. of HEASA2017: the 5th Ann. Conf. on High
Energy Astrophys. in Southern Africa, ed. by M. Boettcher, D. Buckley, S. Colafrancesco, P. Meintjes,
& S. Razzaque, id. 22.

4. Venter, C., Barnard, M., Harding, A. K., & Kalapotharakos, C., 2018, Modelling energy-dependent pulsar
light curves, in Conf. Proc. of IAUS No. 337: Pulsar Astrophysics - The Next 50 Years, ed. Weltevrede,
P., Perera, B. B. P., Preston, L. L., & Sanidas, S., 337, 120−123.

1.3.2 Journal articles

1. Barnard, M., Venter, C., & Harding, A. K., 2016, The Effect of an Offset Polar Cap Dipolar Magnetic
Field on the Modeling of the Vela Pulsar’s γ-Ray Light Curves, ApJ, 832, 107.

2. Harding, A. K., Kalapotharakos, C., Barnard, M., & Venter, C., 2018, Multi-TeV Emission from the Vela
Pulsar, ApJ, 869, L18.
My contribution is the calculation of a refined curvature radius ρc as discussed in Chapter 4.

3. Barnard, M., Venter, C., Harding, A. K., & Kalapotharakos, C., 2020, Probing the γ-ray Pulsar Emission
Mechanism via Energy-dependent Light Curve Modeling, in preparation.

1.4 Thesis outline

Chapter 2: This Chapter gives an overview of various topics related to pulsar science, and more specifically,
those that are relevant to this study on pulsar emission modelling, e.g., the history of pulsars, their formation,
different pulsar classes, standard models of pulsar electrodynamics, important radiation mechanisms, later pul-
sar emission models, and models of pulsar magnetospheres.
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Chapter 3: A summary of a published journal article investigating the implication of magnetospheric structures
on pulsar model light curves. Additionally, I studied an offset-PC dipole B-field structure and an SG E-field
solution, and the effect on light curve predictions when I increased such an E-field.

Chapter 4: In this Chapter, I describe the emission modelling code I used to study pulsar emission and explain
the implementation of a more refined ρc calculation. I also discuss additional technical details that this study
entails, such as the calibration of the code and getting the parallelised version thereof running on the local
cluster.

Chapter 5: This Chapter describes first results that followed from the implementations discussed in Chapter 4
for the Vela pulsar, and include the energy-dependent light curve and spectral modelling (Barnard et al., in
prep.). This Chapter highlights the main results of my PhD thesis work, in accordance with the aims set earlier.
The results also accompany those discussed in Chapter 6.

Chapter 6: Here I emphasise my main contribution to the accompanying VHE paper for the Vela pulsar (Hard-
ing et al., 2018).

Chapter 7: Summarises the conclusions drawn from this study.



Chapter 2

Pulsar astrophysics

I give an overview of several relevant pulsar topics in order to provide context for the present study. I briefly
describe the historical development of the pulsar field (Section 2.1.1), the mechanism of pulsar formation (Sec-
tion 2.1.2), different classes of pulsars (Section 2.1.3), the standard braking model that explains the conversion
of rotational energy of pulsars into radiation and particle acceleration (Section 2.2), the traditional Goldreich-
Julian model (Section 2.3), some relevant radiation mechanisms and pair production (Section 2.4), and pulsar
emission models (Section 2.5). Given the fact that this project mainly deals with pulsar magnetospheres and
the HE and VHE γ-ray light curves of the Vela pulsar as measured by the Fermi and ground-based telescopes,
I lastly describe developments in B-field structures and models (Sections 2.6 and 2.7). This Chapter represents
an update on what was presented in Breed (2015).

2.1 Pulsar discovery, formation and classes

2.1.1 A survey of pulsar history

The neutron was discovered by James Chadwick in 1932 (Chadwick, 1932). The concept of a neutron star
(NS) originated more or less at the same time. Chandrasekhar studied stellar evolution and discovered that a
collapsing stellar core consisting of a mass larger than 1.4 M� (the well-known Chandrasekhar limit, applicable
to white dwarf stars) should continue collapsing, since it can not balance its own gravity after all its nuclear fuel
has been exhausted (Chandrasekhar, 1931). Landau (1932) also studied white dwarf stars and speculated on the
existence of a star that could be more dense than white dwarf stars, and is described as a gigantic atom. Walter
Baade and Fritz Zwicky analysed observations of supernova explosions and discovered that supernovae ap-
peared to be less frequent than common novae, and to emit enormous amounts of energy during each explosion
(Baade & Zwicky, 1934b). They also observed that supernovae explode faster than novae. Their calculations
implied that a supernova remnant can not have a larger radius than a nova. Baade and Zwicky proposed that
NSs could form in supernova explosions, since a supernova represents a transition from an ordinary star into a
very dense object with a small radius and mass (Baade & Zwicky, 1934a). In 1939, Oppenheimer and Volkoff
constructed the first models that could describe the structure of an NS, also incorporating general relativity.
They stated that NSs are so dense that spacetime is curved around and within them, motivating the importance
of general relativistic effects (Haensel et al., 2007). They calculated that stars reaching a mass larger than 3
M� (known as the Oppenheimer-Volkoff limit) would undergo gravitational collapse to form a black hole. The
concept of NSs was not taken too seriously until the late 1960s when new discoveries were made in high-energy
(HE) and radio astronomy (Becker & Pavlov, 2002).

Results from HE cosmic-ray experiments implied that there could be astrophysical objects, e.g., supernova
remnants, which could produce high-energy cosmic rays as well as X-rays and γ-rays (Morrison et al., 1954;

7
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Morrison, 1958). In 1962, Rossi and Giaconni confirmed these notions when they detected X-rays from Sco
X-1 (a source located in the constellation Scorpio), the brightest X-ray source in the sky (Giacconi et al., 1962).
These X-rays were believed to be the result of SR by cosmic electrons carrying energies of the order of tens of
keV. Bowyer et al. (1964) detected a second X-ray source Tau X-1, situated in the constellation Taurus. This
source coincided with the Crab supernova remnant. Among all the different theories and processes proposed
for the origin of these X-rays, Chiu & Salpeter (1964) proposed that this was due to thermal radiation emitted
from the surface of a hot NS. Since NSs are expected to appear as point sources and the X-radiation from the
Crab supernova remnant had a finite angular size of ∼ 1�, the existence of an actual NS still remained uncertain.
Hoyle et al. (1964) made the visionary prediction that there could be an NS with a strong B-field of ∼ 1010 G
at the centre of the Crab Nebula.

In 1967, Anthony Hewish directed the construction of a radio telescope at the Mullard Radio Astronomy
Observatory, which was designed to detect interplanetary scintillation from cosmic sources (Hewish et al.,
1968). The first discovery made with this new radio telescope was by Jocelyn Bell, a graduate student from
Cambridge University supervised by Hewish. She detected a weak, variable radio source displaying a series of
stable periodic pulses (Hewish et al., 1968; Hewish, 1975). These radio pulses arrived at a precise period of
1.3373012 s. They jestingly called this source “Little Green Man 1”. After three more similar pulsating radio
sources were detected (PSR B1133+16, PSR B0834+06, PSR B0950+08), it became clear that a new kind of
natural phenomenon was discovered. Another faster pulsar – the Vela pulsar – was discovered in 1968 by the
Molonglo group, possessing a pulse period of 0.089 s and situated near the centre of the Vela X supernova
remnant (Large et al., 1968). Staelin and Reifenstein discovered two more pulsars in 1968, one of which (the
Crab pulsar) was located within 5� from the centre of the famous Crab Nebula, having a period of 33 ms (Staelin
& Reifenstein, 1968). In the same year that the first known pulsar (PSR B1919+21) was discovered, over 100
theoretical papers were published proposing interpretations or models for pulsars (Will, 1994). During this
time, Wheeler (1966) and Pacini (1967) proposed that the energy source in the Crab Nebula could possibly be
a rapidly rotating, and highly magnetised NS. Gold (1968; 1969) suggested that since supernova remnants are
associated with fast rotating NSs, a pulsar is none other than a rotating NS. Therefore, it is believed that NSs are
born in core-collapsed supernovae of highly evolved massive stars. Cocke et al. (1969) next discovered strong
optical pulses from the Crab pulsar. This important discovery that the “remnant star” that survived the Crab
supernova explosion (Minkowski, 1942) was in fact a pulsar, a rapidly rotating NS, therefore solidified the link
between supernovae, NSs, and pulsars. Soon after, Bradt et al. (1969) and Fritz et al. (1969) detected X-ray
pulsations from the Crab pulsar in the 1.5 − 10 keV range, and Hillier et al. (1970) detected γ-ray pulsations at
energies > 0.6 MeV with a significance of ∼ 3.5σ.

During the mid-seventies γ-ray astronomy expanded with the launch of two satellites: Small Astronomy
Satellite 2 (SAS-2) in 1972 (Fichtel et al., 1975), which confirmed the existence of γ-ray emission from the
Crab pulsar (Kniffen et al., 1974) and the Vela pulsar (Thompson et al., 1975), and Cosmic Ray Satellite-B
(COS-B) in 1975, which provided a complete detailed map of the γ-ray sky (Schönfelder, 2001). The number
of detected radio pulsars also increased rapidly in this era. The idea that pulsars have high B-fields (∼ 1012 G)
was confirmed by the Uhuru (i.e., Small Astronomy Satellite 1 (SAS-1)) observation of an accreting X-ray
binary pulsar Her X-1 in the constellation Hercules (Tananbaum et al., 1972). A spectral feature at 58 keV was
interpreted as resonant electron cyclotron emission or absorption in the hot polar plasma of the NS, implying a
B-field of ∼ 6 × 1012 G (Truemper et al., 1978).

The launch of other satellite missions that made important contributions to HE astrophysics, especially
isolated NSs, include High Energy Astrophysical Observatories (HEAO 1, HEAO 2, and HEAO 3), Chandra
X-ray Observatory, and X-ray Multi-Mirror Mission (XMM-Newton; Rudak et al., 2002). The field of γ-ray
pulsars has been revolutionised by the launch of Astro-rivelatore Gamma a Immagini LEggero (AGILE) and
the Fermi LAT, which is much more sensitive than its predecessor, EGRET (Atwood et al., 2009). Very re-
cently, the ground-based imaging atmospheric Cherenkov telescopes, Major Atmospheric Gamma-Ray Imaging
Cherenkov (MAGIC; Aleksić et al., 2011, 2012, 2015; Aliu et al., 2008) and Very Energetic Radiation Imaging
Telescope Array System (VERITAS; Aliu et al., 2011) detected γ-ray pulsations from the Crab pulsar up to sev-
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Figure 2.1: Illustration of the chemical composition of a highly evolved massive star, with each layer repre-
senting a different element, and an iron core at the centre. From Chaisson & McMillan (2002).

eral hundred GeV. Furthermore, the H.E.S.S.-II has earlier detected pulsed emission from the Vela pulsar above
20 GeV (Abdalla et al., 2018), and recently up to 7 TeV (Djannati-Ataı̈ et al., 2017). Pulsed emission was also
detected from Geminga between 15 GeV and 75 GeV by MAGIC (Acciari et al., 2020), and PSR B1706−44 in
the sub-100 GeV energy range by H.E.S.S. II (Spir-Jacob et al., 2019).

2.1.2 Pulsar formation

The formation of pulsars is initiated by the death of high-mass (M > 8M�) stars (Chaisson & McMillan, 2002).
A high-mass star is made up of various layers of elements, starting with the hydrogen surface, then helium,
carbon, oxygen, and other heavier elements at the core, as illustrated in Figure 2.1. There are two mechanisms
operating during the burning and evolutionary stages of such stars, namely fusion and fission. Fusion takes
place during the burning process. Each element (from the outer layers down to the inner layers) burns its
nuclei, causing an increase in temperature with depth. The released nuclear energy produces gas and radiation
pressure which counteracts the star’s gravity. Once a particular element is exhausted, the burning of a heavier
one is initiated by gravitational contraction (Chaisson & McMillan, 2002).

The burning process continues until an iron core is established. Since iron is the most stable element, it
serves as the division between operation of the fusion and fission processes. The iron core becomes unstable
when the star attempts to contract again and the nuclear reactions (which have been supplying energy) cease,
so that all equilibrium is destroyed (Tayler, 1994). The gravity exceeds the gas pressure and the core collapses
in on itself, causing the central regions to reach high densities and extremely high temperatures. After the
collapse, fission takes place and the thermal energy from the core is absorbed to enable the photons to break
the iron up into lighter nuclei, which in turn dissociate into protons and neutrons (a process known as photo-
disintegration, Chaisson & McMillan, 2002). As the temperature and pressure of the core (now consisting of
elementary particles) decrease, the gravitational force becomes stronger and the density increases even more,
allowing the collapse to continue. The compression inside the core causes the protons and electrons to combine,
producing neutrons and neutrinos (the process is known as neutronisation, Tayler, 1994). These neutrinos
escape from the star, carrying energy with them. The pressure decreases again, so that the core collapses to
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Figure 2.2: A pulsar may be compared to a lighthouse. The charged particles are accelerated along the B-field
lines of the rotating NS, producing radiation in the form of beams. Figure from Chaisson & McMillan (2002).

a point were the neutrons make contact with each other, reaching stellar core densities of ∼ 1015 kg m−3.
Neutron degeneracy pressure now opposes further gravitational collapse, slowing it down. The core contracts,
exceeding the equilibrium point, and is accompanied by the release of gravitational binding energy and emission
of neutrinos and gravitational waves (Bowers & Deeming, 1984). A “hydrodynamic bounce” may occur as the
core rebounds and a shock wave will sweep through the star at high speed, outward into the mantle, and may
lead to a spectacular supernova explosion (Bowers & Deeming, 1984; Tayler, 1994).

Historically supernovae have been divided into two classes, i.e., core-collapse and thermal runaway super-
nova, from a physical point of view of their mechanism of explosion. Type I supernovae occur in binary systems
(Palen, 2002) involving white dwarfs, and Type II supernovae involve isolated, highly evolved massive stars.
When a massive star explodes as a Type II supernova, the remains of the star are carried outward into space by
the shock wave. These remains may form a nebula, sometimes observed as being surrounded by a supernova
remnant shell. Nebulae are regions of glowing, ionised gas with the brightness of these clouds depending on
the brightness of the central degenerate NS (Chaisson & McMillan, 2002).

The maximum predicted mass of an NS is between 1.5M� and 2.7M� (Palen, 2002). The highest mass
observed so far is 2.01 ± 0.04M�, for PSR J0348+0431 (Antoniadis et al., 2013)1. For somewhat higher stellar
masses, it is believed that a black hole will be formed after gravitational collapse (Kanbach, 2001). NSs are
small, very dense objects. According to the law of conservation of angular momentum, a rigidly rotating object
will spin faster as it shrinks, implying that the NS rotates very rapidly, with millisecond to subsecond periods,
and having strong B-fields, e.g., B ∼ 108−13 G. Such a rapidly, highly magnetised NS is known as a (rotation-
powered) pulsar that radiates energy into space. The simplest analogy of a pulsar is a lighthouse, as shown in
Figure 2.2.

The magnetic poles of the pulsar are known as polar caps (PCs), from where charged particles may be
accelerated more or less steadily along the B-field lines to very high energies (although newer models prefer
the dominant site of acceleration to be the equatorial current sheet - see Section 2.7). The radio radiation is
emitted in a searchlight pattern, and as the radio beam sweeps past Earth, a pulse is observed. All pulsars
are NSs but not all NSs are (observable as) pulsars, for two reasons. First, an NS only pulses because of a

1https://greenbankobservatory.org/most-massive-neutron-star-ever-detected/
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strong B-field and rapid rotation, which diminish with time, causing the radio pulses to weaken and occur less
frequently. Second, young pulsars are not always visible from Earth because the radio beam is very narrow,
and may miss Earth (Chaisson & McMillan, 2002).

2.1.3 Pulsar classes

Pulsars are generally divided into two categories according to the B-field and age. Canonical pulsars are young
(τ ∼ 103 − 106 yr) and have high B-fields (B ∼ 1012 − 1013 G), while MSPs are old (τ ∼ 108 − 109 yr) and
are characterised by low B-fields (B ∼ 108 − 109 G). Since the launch of several satellite observatories, for
instance Röntgensatellit (ROSAT), Extreme Ultraviolet Explorer (EUVE), Advanced Satellite for Cosmology
and Astrophysics (ASCA), Rossi X-ray Timing Explorer (RXTE), Chandra, XMM-Newton, and the Fermi LAT,
the number of detections of rotation-powered pulsars (RPPs, pulsars driven by the rotational energy of the NS)
has increased dramatically (Becker & Pavlov, 2002). These RPPs have been detected in various energy bands
including radio, X-ray, γ-ray, and optical, enabling the study of multi-wavelength pulsar emission.

The Crab pulsar is a famous canonical pulsar. Its light curves have been detected in radio, optical, X-ray,
and γ-ray bands, all being phase-aligned (Abdo et al., 2010a). Several other pulsars have similar emission
properties as those of the Crab pulsar, including B0540−69, J0537−6909, and B1509−58 (Becker & Pavlov,
2002). Another well-known example is the Vela pulsar (PSR B0833−45), the brightest persistent GeV source
in the sky (Abdo et al., 2009). It has a period P = 0.089 s, period derivative Ṗ = 1.24 × 10−13 s s−1, a
characteristic age τ = P/2Ṗ = 1.2 × 104 yr, and it is also one of the closet pulsars to Earth, lying at a distance
of d = 287+19

−17 pc (Dodson et al., 2003). Vela was first detected emitting HE pulses by SAS-2 (Thompson et al.,
1975), followed by phase-resolved studies with COS-B (Grenier et al., 1988) and EGRET (Kanbach et al., 1994;
Fierro et al., 1998). Vela was the first source investigated by AGILE (Pellizzoni et al., 2009), and the Fermi
LAT used the Vela pulsar as a calibration source. Vela-like pulsars (e.g., PSR B0833−45, PSR B1706−44, PSR
B1046−58, and PSR B1951+32) possess spin-down ages in the range ∼ 104−5 years and are detected in various
wavebands. Another source detected by SAS-2 and COS-B was Geminga, which was identified as a radio-quiet
pulsar when the ROSAT satellite detected pulsed X-ray emission from it (Halpern & Holt, 1992). SAS-2 and
COS-B confirmed, using a timing solution from ROSAT data, that Geminga is also a bright γ-ray pulsar (Mattox
et al., 1992).

A new class of radio pulsars was discovered in 1981 by Backer and his colleagues, following the detection
of PSR B1937+21, which has a period of 1.56 ms (Backer et al., 1982). MSPs originate from ordinary pulsars
that are in binary systems. These normal pulsars “switch off” due to continued rotational energy loss, but
following angular momentum and mass transfer via accretion from their companion star, they “switch on”
again and become visible as MSPs (Alpar et al., 1982). MSPs have relatively short spin periods (P � 10 ms),
small period derivatives (Ṗ ∼ 10−21 − 10−19, i.e., they are very stable rotators), large spin-down ages, and low
B-field strengths compared to those of normal pulsars and magnetars (Alpar et al., 1982).

An interesting new class of pulsars has recently been discovered. These so-called rotating radio transients
(RRATs) are associated with single, dispersed bursts of emission having durations in the range of 2 − 30 ms,
with the average time interval between bursts ranging from a few minutes to hours. It is suggested that these
sources originate from rotating NSs, since radio emission from these objects is usually detectable for < 1 s per
day, with their periodicities ranging between 0.4 − 7.0 s (McLaughlin et al., 2006). RRATs may be examples
of pulsars whose magnetospheres switch between several stable configurations (Keane et al., 2011).

Magnetars, including anomalous X-ray pulsars (AXPs) and soft γ-ray repeaters (SGRs), are NSs that have
extremely strong surface B-fields of B ∼ 1014−15 G, increasing in strength from the surface down to the core
(Duncan & Thompson, 1992). These sources are also characterised by burst-like emission. They exhibit very
strong X-ray emission, which is too high and variable to be explained by conversion of rotational energy alone,
but possibly involve the decay and instability of their enormous B-fields (Rea & Esposito, 2011). They have
long rotation periods that range from 2 − 12 s (exceeding those of radio pulsars), as well as large period
derivatives (Ṗ ∼ 10−13 − 10−9 s s−1; Mereghetti, 2008).
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2.2 Standard braking model for rotation-powered pulsars

Let us consider the NS to be a rapidly rotating object possessing a dipolar B-field. This NS has an angular
momentum J ≈ MiR2

iΩi, which is assumed to be conserved during the collapse of the progenitor, with Mi,
Ri, and Ωi = 2π/Pi the initial mass, radius, angular velocity, and Pi the initial rotational period. The relation
between the initial and final angular velocity is therefore (since Mi ≈ M f )

Ω f ∼ Ωi

� Ri

R f

�2
. (2.1)

This relation states that for values Ri > R f the angular velocity increases so that the rotational period P f

becomes much shorter, ranging from milliseconds up to seconds. The interior of the NS is assumed to be fully
conductive, implying conservation of the magnetic flux Φ =

�
B · da ∼ BiR2

i during the collapse of the core.
The magnitude of the final B-field is then given by

Bf ∼ Bi

� Ri

R f

�2
. (2.2)

From this relation it follows that for Ri > R f the B-field will increase, yielding high values of Bf ∼ 1012 G. The
collapse of a compact neutron core therefore leads to high magnetic strengths and short periods. The rotational
energy of the pulsar will be converted into electromagnetic and particle energy, leading to a slower rotational
rate. The basic outcome of this rotation-powered pulsar model is to predict the rate at which this slow-down
occurs. The angular kinetic energy of the rotating NS is given by

Erot =
1
2

IΩ2, (2.3)

with I ∼ MR2 the moment of inertia. In this model the polar B-field strength at the stellar surface can be
estimated by equating the rotational energy loss rate to the magnetic dipole radiation loss rate Lmd (Ostriker &
Gunn, 1969)

Ėrot =
d
dt

�1
2

IΩ2
�
= IΩΩ̇ = −4π2I

P3 Ṗ≈Lmd = − 2
3c3µ

2Ω4 sin2 α, (2.4)

with µ ≡ B0R3/2 the magnetic moment of the dipole, Ṗ the time derivative of the period in s s−1, B0 the surface
B-field strength (polar B-field strength in Gaussian units), R the stellar radius, α the inclination angle between
the magnetic and spin axes of the NS, and c the speed of light. The magnitude of B0 can now be estimated by
inserting typical values of I = 1045 g cm2, R = 106 cm and α ∼ 90◦, giving

B0 ≈ 6.4 × 1019
�

PṖ. (2.5)

Later calculations by, e.g., Spitkovsky (2006); Li et al. (2012) resulted in Lpf ∝
�
1 + sin2 α

�
, the Poynting flux.

By equating this Ėrot yields a similar value for B0.
We can estimate the pulsar rotational (characteristic) age as follows. Assume that the change in Ω̇ =

−KΩ(n−1) is due to magnetic dipole radiation losses (Bowers & Deeming 1984), where K is a positive constant,
and the parameter n = Ω̈Ω/Ω̇2 is the braking index, which comes from differentiating the equation for Ω̇.
This expression for Ω̇ is motivated by Eq. (2.4), assuming that µ⊥ ≡ sinα stays constant. Next, integrate this
expression and substitute Ω2 = −Ω̇/k1Ω where k1 is a constant (see Eq. [2.4]). The characteristic age is then
given by (Manchester & Taylor, 1977)

τ = − Ω

(n − 1)Ω̇

�
1 −
� Ω
Ω0

�n−1� ≈ − Ω

(n − 1)Ω̇
≡ P

(n − 1)Ṗ
, (2.6)
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Figure 2.3: A PṖ-diagram indicating the two pulsar populations including the canonical pulsars (in the centre)
and the MSPs (in the lower left corner). The black dots are radio pulsars from the Parkes Observatory ATNF
Pulsar Catalogue for Ṗ > 0 (Manchester et al., 2005). The blue solid lines represent constant surface mag-
netic field B0 contours, while the green solid lines represent characteristic pulsar ages τ. The grey area is the
“graveyard” where the canonical pulsars turn off and are spun up again so that they eventually enter the MSP
region. The spin-up line (red line) is the equilibrium period of spin-up by accretion, which is the Keplerian
orbital period at the Alfvén radius (Alpar et al., 1982).

with the assumptions n � 1 and Ω � Ω0, with Ω0 the angular velocity at time t = 0. This is approximately
equal to

τ ≈ − Ω
2Ω̇
≡ P

2Ṗ
, (2.7)

when setting n = 3 for the case of magneto-dipole braking (Becker & Pavlov, 2002). This characteristic age
serves as an upper limit for the true age of the pulsar, since the value for n is chosen to be a constant. However,
when Ω � Ω0, the true age of the pulsar will be smaller than τ.

The evolution and properties of different pulsar populations are best described by drawing a PṖ-diagram
(Figure 2.3, the time derivative of the period Ṗ versus P, using the pulsars from the Parkes Observatory ATNF
Pulsar Catalogue for Ṗ > 0; Manchester et al., 2005). Rotation-powered pulsars could also have Ṗ < 0, e.g.,
when there is acceleration along the line of sight for such objects embedded in a globular cluster. As mentioned
in Section 2.1.3, one can distinguish two pulsar populations: the canonical pulsars and MSPs. The canonical
radio pulsar population is identified with the younger pulsars and is situated at the centre of the PṖ-diagram.
The canonical pulsars typically have high surface magnetic fields of B0 ∼ 1012 − 1013 G and rotational ages of
τ ∼ 103−106 yr (as indicated by the contours of constant B0 and τ). During the evolution of pulsars as they age,
three things happen. First, the magnetic dipole field drops (although the timescale for this process is uncertain),
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Figure 2.4: The pulsar magnetosphere as envisioned by Goldreich & Julian (1969). The corotating zone is
represented by the shaded region within the light cylinder, where the particles corotate with the closed B-field
lines. The B-field lines which go beyond the light cylinder are forced open and the particles escape along them.
The electrons flow out near the PC along the higher-latitude lines, whereas the protons (or possibly iron nuclei)
flow out near the PC angle (θPC) along the lower-latitude lines. These two magnetospheric regions are separated
by the critical field line (which is at the same potential as the interstellar medium). The dashed line represents
the condition where the charge density ρGJ ∝ −Ω · B = 0. Above this dashed line Ω · B > 0 (negative ρGJ), and
below it Ω · B < 0 (positive ρGJ).

second, the pulsar slows down due to energy losses (mostly by dipole radiation and particle loss), causing the
pulse period to increase, and lastly the particles emitted by the pulsar form a pulsar wind. On the PṖ-diagram
there is a “death valley” where the canonical pulsars turn off (Chen & Ruderman, 1993). This turn-off is due to
the fact that the PC potential responsible for electron-positron (e±) pair creation and subsequent radio emission
becomes too low, inhibiting pair production (see Section 2.4.5), and leading to the “death” of canonical radio
pulsars (i.e., they become invisible). Some pulsars inside the death valley are spun up again by the transfer
of mass and angular momentum from a binary companion (Alpar et al., 1982), so that they enter the MSP
region (lower left corner). These MSPs have relatively short periods (P � 10 ms) and lower surface B-fields
(B0 ∼ 108 − 109 G) compared to the canonical pulsars. The spin-up line, representing the spin-up upper limit
of MSPs (via accretion), is also indicated.

2.3 The Goldreich-Julian model

In 1969, Peter Goldreich and William Julian studied a simple model describing the properties of the magne-
tosphere around a highly magnetised, rotating pulsar. In this model, they considered an NS to be a uniformly
magnetised, perfectly conducting sphere, with an internal magnetic field Bin = B0�ez � µ, and with an exter-
nal dipole B-field (e.g., Padmanabhan, 2001). They considered an aligned rotator, i.e., the rotation axis being
aligned with a magnetic dipole vector (Ω � µ; see Figure 2.4). Another assumption is that there are initially no
charges filling the surrounding magnetosphere (Mészáros, 1992).

As the pulsar rotates with a velocity v = Ω × r, the charged particles at the stellar surface will experience
a Lorentz force (q/c)(v × Bin), with q the particle charge. Since the NS is a perfect conductor (Ein · Bin = 0,
implying that the B-field lines are equipotentials) the charges will be redistributed in order for the electric force
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to counter balance the magnetic force, leading to charge separation. This implies

Ein = − (Ω × r) × Bin

c
= −ΩB0r sin θ

c
(sin θ�er + cos θ�eθ). (2.8)

Since ∇ × Ein = 0, we can write
Ein = −∇Φin(r, θ), (2.9)

with Φin(r, θ) the electric potential. After integration, we find

Φin(r, θ) =
ΩB0r2

2c
sin2 θ + Φ0, (2.10)

with Φ0 a constant. This implies a potential difference between the magnetic axis and PC angle (colatitude of
the PC rim, θPC ∼

√
ΩR/c) of

ΔΦin =
1
2

�
ΩR
c

�2
B0R. (2.11)

The external E-field now follows by solving the Laplace equation and requiring a continuous electric potential
at the stellar surface:

Er,out = −9Q
r4

�
cos2 θ − 1

3

�
, (2.12)

Eθ,out = −6Q
r4 cos θ sin θ, (2.13)

with Q = B0ΩR5/6c. Using these expressions for Eout it follows that the electric force on surface charges vastly
exceeds the gravitational force (by a factor of ∼ 5 × 108B12P for a proton and ∼ 8 × 1011B12P for an electron
with B12 = B0/1012 G; Goldreich & Julian, 1969). This constitutes an existence proof for a plasma-filled pulsar
magnetosphere, since the accelerating E-field parallel to the local B-field (E�) will extract particles from the
stellar surface to fill the magnetosphere.

An expression for the charge density in the corotating magnetosphere follows from Eq. (2.8)

ρGJ =
∇ · E

4π
≈ −Ω · B

2πc
. (2.14)

This implies a number density of

ne = 7 × 10−2 B0

P
cm−3, (2.15)

at the stellar surface. Despite its success, the model has a few problems, most notably the question of the return
current (charge neutrality) and its inherent instability, as well as the charge supply (which cannot be only from
the NS surface).

2.4 High-energy radiation mechanisms and pair creation processes

2.4.1 Particle acceleration

Charged particles that are accelerated will emit electromagnetic radiation. If the speed v of the charged particle
is much less than the speed of light in vacuum c, i.e., v�c, the particle is non-relativistic. The power radiated
by such charged particles in the non-relativistic regime is calculated by using the Larmor formula (Jackson,
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1999)

Ptotal =
2q2a2

3c3 , (2.16)

with q the charge of the particle and a its acceleration.
However, when charged particles are accelerated to extremely high energies (GeV−TeV), they will emit

HE γ-ray photons, e.g., those detected by Fermi. At these HEs the particle’s speed becomes relativistic (β ≡
v/c ≈ 1) with a Lorentz factor of γ≡1/

�
1 − β2 � 1. The relativistic Larmor formula (or Liénard formula, see

Jackson, 1999) for these HE particles is as follows

Ptotal =
2q2

3c3 γ
4(a2
⊥ + γ

2a2
� ), (2.17)

with a⊥ the perpendicular acceleration component and a� the parallel acceleration component (with respect to
the particle’s velocity direction). In the following subsections, radiation mechanisms including synchrotron
radiation (SR), curvature radiation (CR), and inverse Compton scattering (ICS), which are relevant for HE
pulsar emission models, are discussed. The first two are due to relativistic particles that are accelerated along
curved paths inside the magnetosphere, whereas the latter occurs due to the interaction between photons and
the relativistic particles. In the last subsection we discuss pair production, where an HE photon converts into
an electron and positron pair.

2.4.2 Synchrotron radiation

SR (magneto-bremsstrahlung) occurs when relativistic charged particles gyrate about a B-field line. For non-
relativistic particles, this is known as cyclotron radiation. When the particle’s perpendicular momentum be-
comes relativistic, it is known as SR (Rybicki & Lightman, 1979). Neglecting radiation losses, the equation of
motion for a relativistic particle reveals that the particle travels at a constant speed parallel to the B-field with
an acceleration perpendicular to the B-field. This implies that the particle will follow a helical path as it gyrates
along a B-field. The gyration angular frequency (rotation around a field line) is given by (Rybicki & Lightman,
1979)

ωB =
qB
γmc
, (2.18)

with m the particle’s mass, and B the magnitude of the B-field. If v · B = 0 the gyroradius is

rB =
v
ωB
. (2.19)

Since the particle is accelerated it will emit radiation and the assumption of no radiation losses will no longer
be valid. The total SR energy loss rate is given by

ĖSR =
2
3c

(r0γBv⊥)2, (2.20)

with v⊥ the charged particle’s speed perpendicular to the B-field (Blumenthal & Gould, 1970) and r0 ≡ e2/mec2

the classical electron radius (with me the electron mass and mec2 its rest-mass energy). For the gyrating com-
ponent we assume a⊥ = ωBv⊥ and a� = 0, then Eq. (2.17) is the total emitted radiation

Ptotal =
2q2

3c3 γ
4
�

qB
γmc

�2
v2
⊥. (2.21)
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When Eq. (2.21) is averaged over all angles, for an isotropic distribution of velocities, the SR power emitted is
(Padmanabhan, 2000)

PSR,total =
4
3
σT(cβ2γ2)UB ∝ E2

e B2, (2.22)

with σT ≡ 8πr2
0/3 the Thomson cross section, Ee the particle energy, and UB = B2/8π the magnetic energy

density.
The radiation emitted by these relativistic particles will be beamed into a cone with an angular width ∼

1/γ around the velocity direction. Since the particle’s acceleration and velocity are perpendicular for SR, the
observed pulses are a factor of γ3 shorter in time than the gyration period, leading to a broader spectrum with
a maximum characterised by a critical frequency

ωc =
3
2
γ3ωB sinαP, (2.23)

with αP = arctan(v⊥/v�) the pitch angle (Rybicki & Lightman, 1979). The total SR power per unit frequency
emitted by a single electron is

PSR(ω) =

√
3

2π
q3B
mec2 sinαPF

�
ω

ωc

�
, (2.24)

with

F(x) ≡ x
� ∞

x
K5/3(ξ)dξ, (2.25)

where K5/3 is the modified Bessel function of order 5/3, and

F(x) ∼
� 4π√

3Γ( 1
3 )

�
x
2

�1/3
x � 1

(π2 )1/2e−xx1/2 x � 1,
(2.26)

with x = ω/ωc. For ω � ωc, F ∝ ω1/3, while for ω � ωc, F ∝ e−(ω/ωc)ω1/2.
In many astrophysical sources, the photon spectra reveal a power law distribution of energies. Assume that

the number density N(Eγ) of particles over some energy range (Ee, Ee + dEe) can be described by a power
law N(Ee)dEe = CE−p

e dEe, with C a constant and p the power-law index of the emitting particles. Following
Rybicki & Lightman (1979), the total SR power radiated per unit volume per unit frequency can be shown to
be a power-law spectrum

PSR(ω) ∝ ω−s, (2.27)

and is only valid between the minimum and the maximum cutoff frequencies depending on the minimum and
maximum values for γ, and with s = (p−1)/2 the index of the energy spectrum. The latter relation implies that
the injection and radiation spectral indices are related in this case.

SR is an important process for pulsars. For example, in PC and SG models primary photons are emitted via
CR and undergo magnetic photon absorption (see Section 2.4.5) to create e± pairs. The perpendicular energy
from these secondary pairs is converted to HE radiation via SR. It is possible that radio photons are absorbed
by charged particles present in the B-field via the process of synchrotron self-absorption (Harding et al., 2008).
The above discussion is only valid for B-field strengths B < 4 × 1012 G. For larger B-fields, a quantum SR
approach is necessary (e.g., Sokolov & Ternov, 1968; Harding & Preece, 1987; Harding & Lai, 2006).
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2.4.3 Curvature radiation

CR is the radiation process associated with relativistic particles that are constrained to move along a curved
B-field line. This implies that its perpendicular velocity component v⊥ = 0, and αP = 0 (see above Sections for
definitions). CR is therefore linked to a change in longitudinal kinetic energy with respect to the B-field, as op-
posed to SR, where there is change in transverse energy (see Figure 2.5). These two processes in fact represent
two limits of the more general synchro-curvature (SC) process (Torres, 2018). In some pulsar models, primary
particles are accelerated from the stellar surface along the open field lines. The kinetic energy longitudinal to
the B-field will exceed the transverse energy (which will be radiated away very rapidly via SR), and therefore
CR will be more important than SR regarding energy loss of primary particles (Sturrock, 1971). The curvature
radius is the instantaneous radius of curvature of the particle trajectory, i.e., ρ = ρc. The critical frequency is
then defined as (Daugherty & Harding, 1982; Story et al., 2007; Venter et al., 2009)

ωCR =
3c
2ρc
γ3, (2.28)

and the critical energy

ECR = �ωCR =
3�cγ3

2ρc
=

3�cγ
3

2ρc
mec2, (2.29)

where h = 6.626 × 10−27 erg s−1 is Planck’s constant, �c ≡ �/mec (with � = h/2π and �c = λc/2π), and λc the
Compton wavelength. The instantaneous power spectrum (in units of erg s−1 erg−1) is given by (e.g., Venter &
De Jager, 2010) �

dP
dE

�

CR
=

√
3α fγc
2πρc

F
�

Eγ
ECR

�
, (2.30)

with α f the fine structure constant, K5/3 the modified Bessel function of order 5/3, x = Eγ/ECR, with Eγ the
photon energy and F given by Eq. (2.25). Similar to SR, for Eγ � ECR, F ∝ E1/3

γ , while for Eγ � ECR,
F ∝ e−(Eγ/ECR)E1/2

γ (see Eq. [2.26], Erber, 1966). The total power radiated by the electron primary can be
determined by integrating Eq. (2.30) over energy. The latter is equal to the total CR loss rate of electrons,

ĖCR =
2e2cγ4

3ρ2
c
, (2.31)

with e the electron charge.
Traditionally, HE emission in standard pulsar models is believed to be from CR of primary electrons accel-

erated tangentially to the B-field in the radiation-reaction regime. The curvature radiation reaction (CRR) limit
is reached when the energy gained via acceleration of relativistic electrons (by an E-field parallel to the B-field)
is equal to the energy loss via radiation, and can be expressed as follows (e.g., Harding et al., 2005)

c|E�| ∼ 2ceγ4

3ρ2
c
, (2.32)

yielding γ = (1.5E�/e)1/4ρ1/2
c , the Lorentz factor corresponding to radiation reaction. For pulsars with surface

magnetic field strengths B0 ∼ 1012 G and electric potentials Φ ∼ 1013 V, the E-field strength is E� ∼ 104

statvolts/cm (for young pulsars E� > 104 statvolts/cm) and depends on B and P. In these strong fields, the
CR spectral cutoffs are therefore around a few GeV for emitting particles with Lorentz factors of γ ∼ 107

(Yadigaroglu, 1997). These high Lorentz factors are connected to beamed radiation in the form of a cone with
an opening angle ∼ 1/γ � 1, implying emission tangentially to the B-field lines. We used this approximation
to simplify the geometric models described in Section 2.5 and Chapter 3. Given the fact that we expect spectral
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cutoffs in the GeV range for typical pulsar parameters, as well as rather hard power-law low-energy tails, this
process has become the standard explanation for HE pulsar spectra such as those observed by the Fermi LAT
satellite (e.g., Abdo et al., 2013).

2.4.4 Inverse Compton scattering and synchrotron self-Compton scattering

Compton scattering involves the collision between HE photons and low-energy electrons, where the photons
transfer some of their momentum p = h f /c = h/λ (with h Planck’s constant, f the frequency and λ the
wavelength) and energy to the electrons. This transfer leads to an increase in photon wavelength, implying
a lower photon energy. The inverse case of Compton scattering is ICS, where the HE electrons scatter the
low-energy photons, resulting in photons with very high energies (i.e., “boosting” of photon energies).

When a relativistic electron with Lorentz factor γ upscatters a photon from a low energy to a high energy,
the energy Eγ of the Compton-boosted photon, with an initial energy �, may be approximated as (Ramana
Murthy & Wolfendale, 1986)

Eγ ∼ �γ2, γ� � mec2 - Thomson limit (2.33)

Eγ ∼ γmec2, γ� � mec2 - Extreme Klein-Nishina limit. (2.34)

The total power lost due to ICS by an electron in an isotropic radiation field of low-energy photons, in the
Thomson limit, is given by

PICS,total =
4
3
σT(cβ2γ2)Urad, (2.35)

which has the same form as Eq. (2.22), but with Urad the soft-photon energy density, and σT the classical
Thomson scattering cross section (see Section 2.4.2). In order to obtain the total radiated Compton spectrum,
we need to integrate the production rate dN�(�, γ)/dEγ, valid for a single electron, over the soft-photon energy
� and the electron energy γ (Blumenthal & Gould, 1970):

�
dN
dEγ

�

total
=

�
Ne(γ)

�
dN�(�, γ)

dEγ

�
dγdγd�, (2.36)

with dNe = Ne(γ)dγ the differential number of electrons in the interval (γ, γ+dγ). Similar to SR (see Eq. [2.27]),
if we assume that the electron spectral energy distribution is a power law, Ne ∼ γ−p with index p, and a
blackbody soft-photon distribution, then it follows from Eq. (2.36) that the ICS spectrum is also power law:

�
dN
dEγ

�

total
∝
�

E−(p+1)/2
γ – Thomson limit

E−(p+1)
γ – Extreme Klein-Nishina limit,

(2.37)

and is valid only in a specified energy range between the minimum and maximum cutoff energy similar to SR.
In the Thomson limit, we follow a classical approach for photon energies γ� � 100 keV for which σT is valid.
However, when we consider target soft photons of higher energies, quantum effects become important and σT
should be replaced by the Klein-Nishina cross section σKN (Rybicki & Lightman, 1979). As the photon energy
increases, the cross section reduces, leading to a steeper photon spectrum (reduced loss rate) in the extreme
Klein-Nishina limit (with σT > σKN) and eventually a rapid spectral cutoff.

The ICS process is important for pulsars. One example is MSPs such as PSR J0437−4715 from which
thermal and non-thermal (possibly SR) X-ray emission have been observed (see e.g., Zavlin et al., 2002).
These energetic photons provide a background field that may be upscattered to TeV energies by relativistic
particles in the magnetosphere. Another example is afforded by the pulsed very-high-energy (VHE) emission
recently observed from the Crab pulsar. This has been explained using a revised OG model (Hirotani, 2008a,b)
that produces IC radiation of up to ∼400 GeV when secondary and tertiary pairs upscatter infrared to ultraviolet
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Figure 2.5: Schematic illustration by Daugherty & Harding (1982) of a photon pair cascade emerging from the
acceleration of a primary electron above the PC along the curved B-field of an NS. Four generations of photons,
including both CR photons γCR and SR photons γSR, are shown.

photons (Aleksić et al., 2012).
Other astrophysical examples include pulsar wind nebulae (PWNe, see e.g., De Jager et al., 1996) and many

other VHE sources which display typical spectral components corresponding to SR and IC radiation as part of
their broadband emission spectrum.

Another suggestion to explain the Crab pulsar’s VHE emission is proposed by Lyutikov et al. (2012),
invoking the SSC radiation process where relativistic pairs upscatter the SR photons emitted previously by the
same particle population. In the SSC process, one needs to calculate the SR from primaries and pairs at each
step along all particle trajectories in the open field volume, since the SR photon density is needed to compute
the SSC radiation. The SR emission is recorded at each location and photon emission direction in the inertial
observers frame. Second, once the SR photon density in all directions at a certain position is determined,
the SSC flux at a certain position and velocity can be calculated (see Harding & Kalapotharakos 2015 and
references therein). In essence, the soft-photon energy density is basically replaced by the SR photon energy
density.

2.4.5 Pair production

Pulsar magnetospheres contain of strong B-fields and E-fields, especially near the NS surface, and the latter
fields can accelerate particles to relativistic energies. Efficient radiation processes (see Sections 2.4.2 to 2.4.4)
and a pair creation mechanism, necessary for particle-photon cascades to ensue, also operate in these extreme
environments (Daugherty & Harding, 1982). There are two different pair creation processes that may occur,
namely single photon (magnetic) and two-photon pair production.

Magnetic (one-photon) pair creation

Magnetic pair production can only occur in the presence of a strong B-field (B⊥ > 109 G, perpendicular to
the photon’s direction of motion) with which the photons, if they have a high enough energy, can interact to
produce e±-pairs. The probability that e±-pairs will be produced via this process is expressed by the photon



CHAPTER 2. PULSAR ASTROPHYSICS 21

attenuation coefficient given by

α�(χ) =
1
2

�
α f

λc

� �
B⊥
Bcr

�
T (χ), (2.38)

which determines the number of pairs np created for each photon that travels a path length d through the B-field
(Erber, 1966):

np = nγ
�
1 − exp[−α�(χ)d]

� � nγα�(χ)d, (2.39)

with α f = e2/�c ≈ 1/137 the fine structure constant, χ ≡ 0.5(hν/mec2)(B⊥/Bcr) the Erber parameter, ν the
photon frequency, Bcr = m2

ec3/eh = 4.414 × 1013 G the critical B-field value in which the electron’s gyro-
energy (cyclotron) equals its rest mass (Daugherty & Harding, 1983), T (χ) a dimensionless function, and nγ is
the photon number density. Sturrock (1971) approximated the threshold condition for magnetic pair production
as

EγB sin θγB = EγB⊥ � 1011.9, (2.40)

with Eγ in units of mec2, θγB the photon propagation angle with respect to the B-field, and B⊥ measured in
Gauss. In the PC model (see Section 2.5.1) primary particles are accelerated from the PC surface along the
curved field lines and CR occurs. When the emitted CR photon energy and the local B-field are high enough
or θγB � 1, magnetic pair production will occur, leading to a cascade of secondary e± pairs that will screen the
E�-field (E-field parallel to the local B-field). An E�-field develops because there is a deficit of negative charges
and due to the backflow of the first generation of pair e+ to the NS surface, a space charge accumulates that
counteracts any charge imbalances and screens out the accelerated E�-field, significantly so above the so-called
pair-formation front (PFF). ICS photons may also be converted into e± pairs. The pair cascade is characterised
by the so-called multiplicity, i.e., the number of pairs spawned by a single primary, as represented in Figure 2.5.

Two-Photon pair creation

Two-photon pair creation is due to a collision between two photons with high enough energies, where the
minimum photon energy required is Eγ = 2mec2 ∼ 1 MeV (for a head-on collision), creating an e± pair. The
cross section for two-photon pair production (in a region devoid of a B-field) in terms of the photon energy
in the centre-of-momentum frame, �cm = [�1�2(1 − cos θ12)/2]1/2, is (Svensson, 1982) (using dimensionless
energies normalised to the electron rest-mass energy)

σ2γ � 3
8
σT

�
(�2cm − 1)1/2 (�cm − 1) � 1

[2 ln(2�cm) − 1]/�6cm �cm � 1,
(2.41)

where �1 and �2 refer to the energies of the photons, and θ12 is the angle between the photon propagation
directions. Two-photon pair production can also take place in the presence of a strong B-field. In this case, the
resulting e± pair will have non-zero velocity to ensure that the energy and parallel momentum are conserved.
In a strong B-field, the requirement for producing a pair in the ground state, using the conservation equations,
is given by (Harding & Lai, 2006):

(�1 sin θ1 + �2 sin θ2)2 + 2�1�2[1 − cos(θ12)] > 4, (2.42)

where θ1 and θ2 are the angles between the photon propagation directions and the B-field. The first term in the
above equation is due to the non-conservation of perpendicular momentum, implying that pair production is
possible when photons travel parallel to each other (θ12 = 0, θ1 = θ2 � 0), an event not permitted in field-free
space.

In the high-altitude SG model, electrons are accelerated away from the NS, such that the angle of each
of the photons to the B-field is too small to tap the perpendicular momentum of the B-field and no pairs are
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Figure 2.6: Schematic view of the different traditional pulsar emission models, with µ the magnetic axis
inclined by an angle α with respect to the rotation axisΩ, and ζ the observer angle measured with respect toΩ.
From Harding (2005).

produced. However, in high-altitude OG model, particles are also accelerated downward so that these particles
(and therefore their emitted CR photons) have large angles with respect to soft photons originating at the hot
stellar surface. The two-photon pair creation process is therefore expected to occur. The resulting pairs play
an important role in gap closure (Hirotani, 2008a). Burns & Harding (1984) found that the one-photon pair
creation process will generally dominate over the two-photon process in B-fields above ≈ 1012 G, since the first
is a lower-order process than the second.

2.5 Traditional pulsar models

Several pulsar emission models have been developed over the last forty years, including the PC, SG, and OG
models. These geometries are illustrated in Figure 2.6. Each model differs in its assumption of the geometry
and location of the acceleration region were HE radiation takes place. To simulate the HE emission from these
physical models, the assumed electrodynamics and B-field structures are important.

2.5.1 Polar cap model

In PC models (Ruderman & Sutherland, 1975; Daugherty & Harding, 1982) HE particles (e±) are assumed to
originate at the NS surface layer. These are then accelerated by large, rotation-induced E-fields at the magnetic
poles (known as the magnetic PCs) up to heights just above the PC (h � R, see Figure 2.6). There exist two
types of polar cap accelerators: the vacuum gaps with Ω · B < 0 (Ruderman & Sutherland, 1975; Usov &
Melrose, 1995) and space-charge-limited-flow (SCLF) gaps with Ω · B > 0 (Arons & Scharlemann, 1979;
Harding & Muslimov, 1998; see Figure 2.7). The formation of these gaps depends primarily on the surface
temperature Ts of the NS, and the thermionic emission temperatures for the charges (electrons and ions) Te,i.



CHAPTER 2. PULSAR ASTROPHYSICS 23

Figure 2.7: Illustration of the two types of PC accelerators, including the SCLF gap on the left (Daugherty &
Harding, 1982), and the vacuum gap on the right (Ruderman & Sutherland, 1975). If the NS surface temperature
Ts exceeds the ion or electron thermionic temperature Ti,e then the SCLF gap will form, otherwise the vacuum
gap will dominate. Figure from Harding (2007).

For the vacuum accelerator the surface temperature Ts < Te,i, causing the charges to be trapped inside the
NS surface and a full vacuum E-field (or potential drop) develops above the surface (Usov & Melrose, 1995).
However, at high surface temperatures, Ts > Te,i the binding energy of the charges due to lattice structures in
strong B-fields is exceeded (Medin & Lai, 2007) and the charges are “boiled off” the surface layers and flow
freely along the open field lines in the SCLF regime. These two acceleration gaps differ primarily in their
surface boundary conditions (at the stellar surface r = R) which state that for the vacuum gap the space charge
ρ(r) = 0 and E�(R) � 0, whereas for the SCLF accelerator the full Goldreich-Julian charge can be provided,
ρ(r) = ρGJ (which may be modified by curvature of B-field lines as well as inertial frame dragging, Muslimov
& Tsygan, 1992) and E�(R) = 0 (Harding, 2007). Both accelerators will be self-limited by the development of
pair cascades (initiated by the conversion of radiated photons into e± pairs; see Section 2.4.5), with the particles
being accelerated to altitudes where they will reach high enough Lorentz factors to radiate γ-ray photons.

The pair production in the vacuum gap differs from that in the SCLF model. In the vacuum gap the potential
breaks down when a random photon crosses the B-field and creates a pair. The resulting electron and positron
are accelerated in opposite directions. This electron and positron can then initiate more pairs since they will
radiate photons that may again be converted into pairs, causing a pair cascade and discharge of the vacuum
gap. In contrast, in the SCLF model electrons and positrons are accelerated from the NS surface upwards until
the radiated photons reach the pair creation threshold. A pair cascade ensues at the PFF. The E� is screened
due to the polarisation of pairs above this front, halting any further acceleration (with the relativistic charges
“coasting” outward, potentially emitting SR). Since these accelerators can maintain a steady current, there will
be an upward current of electrons ( j−� � cρGJ) and also a downward current of positrons ( j+� � cρGJ), which
will heat the PC. The height of the PFF determines the eventual potential of these accelerators. Simulations
of time-dependent vacuum (Timokhin, 2010) and SCLF (Timokhin & Arons, 2013) gaps show that the pair
cascades are non-steady.

2.5.2 Slot gap model

In SG models (Arons, 1983; see Figure 2.6) it is assumed that HE particles originate from the NS surface layer
and are accelerated from the PCs along the last open field lines and up to high altitudes, comparable to the light
cylinder radius RLC = c/Ω (Harding & Grenier, 2011). This SG model is very similar to the SCLF accelerator
of the PC model, except that the SG model extends up to high altitudes. The altitude of the PFF (Figure 2.8)
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Figure 2.8: Schematic view of the SG, which is the region between the PFF and the outer boundary formed
by the last open field lines (with µ the magnetic axis and ΔξSG the gap width). The SG forms a hollow cone
emitting HE radiation. From Muslimov & Harding (2003).

strongly varies with magnetic colatitude across the PC due to the B-field geometry and the boundary conditions
(E� = 0 on the surface and last open B-field lines) assumed for the SG accelerator (Harding & Muslimov,
1998). The PFF will occur at higher and higher altitudes closer to the closed field line region boundary. This
is because the mean free path for magnetic (one-photon) pair production increases as E� decreases toward this
boundary. The radiating particle therefore needs to be accelerated over a longer distance before it can radiate
photons of high enough energy so that pair formation can take place. The mean free path becomes infinite at
and asymptotically tangent to the last open field line. The E� is screened above the PFF, and a narrow gap
surrounded by two conducting walls will form, as represented in Figure 2.8 (Harding & Muslimov, 2003). The
electrons accelerated in the SG will radiate CR, ICR and SR, although their Lorentz factors are constrained
by the CR. We note that new solutions for the E� were determined by Muslimov & Harding (2003, 2004a),
including the general relativistic effect of inertial frame-dragging near the NS surface, enhancing this field
significantly.

2.5.3 Outer gap model

The OG model (Figure 2.6) was introduced by Cheng et al. (1986), initially assuming an inclined rotator with
a charge density of ρGJ . They proposed that when the primary current passes through the neutral sheet (where
Ω · B = 0 and thus ρGJ = 0) the negative charges above this sheet will escape beyond the light cylinder. A
vacuum gap region is then formed (in which E� � 0). Charges will be accelerated in this gap region and will
emit CR photons, the energy of which depends on the E-field strength. Therefore, as the vacuum region grows,
E� will increase, and hence the energy of the CR photons will increase until the photons have enough energy to
produce electron and positron pairs when they collide with the background soft photons via photon-photon (or
two-photon) pair production (see Section 2.4.5, Cheng, 2011).

The outer magnetosphere is conceptually divided into three regions (see Figure 2.9). In region I the primary
electrons and positrons are accelerated in opposite directions due to the E� present in the gap, with the accel-
eration limited by CR losses or ICS on infrared photons. Although some γ-rays undergo pair creation, most of
them move over into region II, where the E� is small and secondary e± pairs are produced, radiating secondary
γ-rays and X-rays via SR. In region III, tertiary e± pairs are created and are responsible for the emission of
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Figure 2.9: Schematic representation of the location of the three regions in an OG model, including the primary
(I) (where primary particle acceleration and pair production occur), secondary (II) (where a small E� is present
and secondary pair production as well as SR occur) and tertiary (III) regions (where tertiary pair production
occurs, producing soft γ-rays). From Cheng et al. (1986).

softer radiation (Cheng et al., 1986). This is also the region where γ-rays are produced by ICS involving the
primary pairs. The radiation in this region may furthermore interact with primary CR γ-rays to create pairs in
region II. Romani (1996) investigated an OG model based on CRR-limited charges (see Section 2.4.3) in the
outer magnetosphere, showing that photon-photon pair production may limit the gap width. He also demon-
strated that radiation efficiency should increase with pulsar age, and discussed spectral variations in the optical
and X-ray SR spectra. More modern approaches have solved the electrodynamical equations of the OG in a 2D
and 3D geometry (e.g., Takata et al., 2004; Hirotani, 2006, 2008a).

2.5.4 Pair-starved polar cap model

The PSPC model for MSPs was first introduced by Harding et al. (2005). They studied X-ray and γ-ray emission
emitted by rotation-powered MSPs (see Section 2.1.3). These MSPs have very low surface B-field strengths
and short periods (compared to younger pulsars). The electrodynamics is based on a (young-pulsar) model that
considers the acceleration of particles and pair production (see Section 2.4) on the open field lines above the
PCs (Muslimov & Harding, 2004b). Harding et al. (2005) assumed a PC geometry (see Section 2.5.1) and a
dipole field (see Section 2.6.1). They found that most MSPs are below the CR pair death line (i.e., the PṖ death
line for creating pairs via CR, see Section 2.2), due to the low surface B-fields (see Eq. [2.40]), implying that
pairs are rather produced by ICS radiation. Since the pair cascade multiplicity is very low in PSPC pulsars, the
accelerating E-field is inefficiently screened by these pairs and no PFF is formed as in the case of young pulsars.
This leads to a pair-starved PC. Therefore, the primary particles and possibly a few pairs continue to accelerate
to high altitudes, up to the light cylinder, over the full open volume (in contrast to the traditional PC model
where particles are only accelerated up to the PFF, and then coast along the field lines after which they escape
from the magnetosphere). There exists a progression between models, depending on the pair multiplicity: the
SG model has very narrow gaps for pulsars with high multiplicity, but these gaps increase in thickness and the
model eventually tends toward a PSPC geometry as pair creation is more and more inhibited (Harding, 2007).
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2.6 Developments in the magnetic field structure calculations

The B-field is one of the basic assumptions of the geometric models (others include the gap region’s location,
and the emissivity �ν profile in the gap). Several B-field structures have been studied, including the static dipole
(Griffiths, 1995), the RVD (a rotating vacuum magnetosphere that can in principle accelerate particles but do not
contain any charges or currents; Deutsch, 1955), the force-free field (FF; filled with charges and currents, but
unable to accelerate particles, since the accelerating E-field is screened everywhere; Contopoulos et al., 1999),
and the offset dipole (to mimic deviations from the static dipole near the stellar surface analytically; Harding &
Muslimov, 2011a,b). A more realistic pulsar magnetosphere, i.e., a dissipative solution (Kalapotharakos et al.,
2012c; Li et al., 2012; Tchekhovskoy et al., 2013; Li, 2014), would be one that is intermediate between the RVD
and the FF fields. The dissipative B-field is characterised by the plasma conductivity σc (e.g., Lichnerowicz,
1967) which can be set in order to alternate between the limiting cases of vacuum (σc → 0) and FF (σc → ∞)
magnetospheres (see Li et al., 2012).

2.6.1 Static dipole magnetic field

The static dipole field has been studied since the calculations are simpler for this B-field. We derive its form
below. In order to obtain an approximate formula for a vector potential associated with a localised current
distribution, valid at distant points, a multipole expansion can be used and the potential is written in the form
of a power series in 1/r, with r the radial distance to the point in question. If r is very large the power series is
dominated by the lowest non-vanishing contribution and the higher-order terms can be ignored. The first term
(which goes like 1/r) in the multipole expansion is called a monopole term, the second term (which goes like
1/r2) the dipole term, and the third term (which goes like 1/r3) the quadrupole, etc. (Griffiths, 1995). The
magnetic monopole term is zero (i.e., ∇ · B = 0). The next term is the magnetic dipole. The vector potential
can be written as a function of position vector r:

Adip(r) =
I
r2

�
r� cos θ�dl� =

I
r2

�
(r̂ · r�)dl�, (2.43)

with r̂ the unit radial vector and I the current. By rewriting this integral, the vector potential becomes

Adip(r) =
µ × r̂

r2 , (2.44)

where µ is the magnetic dipole moment (aligned with the magnetic axis, therefore sometimes defined by the
same symbol) defined as

µ≡ I
c

�
da =

Ia
c
, (2.45)

with a the enclosed area of the current loop, and c the speed of light. To calculate the B-field of a dipole, µmay
be set at the origin, pointing in the z-direction. The vector potential, Eq. (2.44) can then be written in spherical
co-ordinates,

Adip(r) =
µ sin θ

r2 φ̂, (2.46)

hence the dipole B-field is given by (Griffiths, 1995):

Bstatic(r) = ∇ × Adip(r) =
µ

r3 (2 cos θr̂ + sin θθ̂), (2.47)

in the magnetic (µ) frame or where the inclination angle α = 0 (the angle between the rotation Ω and the µ
axes).
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When the light curve shapes and features for the static dipole are compared to those for the other B-fields
(see Chapter 3), the importance of the near-RLC distortions in the B-fields for predicted radiation characteristics
can be gauged (Dyks et al., 2004a). The static (non-rotating) dipole is a special case of the retarded (rotating)
dipole which we consider next.

2.6.2 Retarded vacuum dipole magnetic field

The solution for a B-field surrounding a star rotating in vacuum was first derived by Deutsch (1955). Previous
investigators (Yadigaroglu, 1997, Arendt & Eilek, 1998, Jackson, 1999, Cheng et al., 2000, Dyks et al., 2004a)
implemented methods that considered distortions in the B-field structure due to sweepback of the field lines as
the NS rotates with an angular frequency Ω about the ẑ-axis. The general expression for this RVD field is given
by

Bret = −
�
µ(t)
r3 +

µ̇(t)
cr2 +

µ̈(t)
c2r

�
+ r̂r̂ ·

�
3
µ(t)
r3 + 3

µ̇(t)
cr2 +

µ̈(t)
c2r

�
, (2.48)

with

µ(t) = µ(sinα cosΩtx̂ + sinα sinΩtŷ + cosαẑ), (2.49)

the magnetic moment, with µ̇(t) and µ̈(t) its first and second time-derivatives, and r̂ = r/r the unit radial
vector. The RVD solution can be described by the following B-field equations in spherical co-ordinates in the
laboratory frame (where ẑ � Ω; Dyks & Harding, 2004):

Bret,r =
2µ
r3

�
cosα cos θ + sinα sin θ

�
rn sin λ + cos λ

��
, (2.50)

Bret,θ =
µ

r3

�
cosα sin θ + sinα cos θ

� − rn sin λ +
�
r2

n − 1
�

cos λ
��
, (2.51)

Bret,φ = − µ
r3 sinα

��
r2

n − 1
�

sin λ + rn cos λ
�
, (2.52)

with λ = rn + φL − Ωt, rn = r/RLC, Ω the angular velocity, and φL the phase. These equations can be rewritten
to give the B-field components in Cartesian co-ordinates (where ẑ � Ω; Dyks & Harding, 2004)

Bret,x =
µ

r5

�
3xz cosα + sinα

���
3x2 − r2� + 3xyrn +

�
r2 − x2�r2

n
�
cos
�
Ωt − rn

�

+
�
3xy − �3x2 − r2�rn − xyr2

n
�
sin
�
Ωt − rn

���
, (2.53)

Bret,y =
µ

r5

�
3yz cosα + sinα

��
3xy +

�
3y2 − r2�rn − xyr2

n
�
cos
�
Ωt − rn

�

+
��

3y2 − r2�rn − 3xyrn +
�
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n
�
sin
�
Ωt − rn

���
, (2.54)

Bret,z =
µ

r5

��
3z2 − r2� cosα + sinα

��
3xz + 3yzrn − xzr2

n
�

cos
�
Ωt − rn

�

+
�
3yz − 3xzrn − yzr2

n
�

sin
�
Ωt − rn

���
. (2.55)

The above expressions are obtained when assuming the limit of the Deutsch solution where R/RLC � 1, with
R the stellar radius. By setting rn = 0, the retarded field simplifies to the non-aligned static dipole (α � 0).

The difference between the static dipole and RVD is illustrated in Figure 2.10 for α = 90◦, i.e., field lines in
the equatorial plane. For the static dipole (left) the field lines are symmetric, whereas in the RVD case (right)
the field lines are distorted due to sweepback of the field lines as the NS rotates. This has implications for the
definition of the PC. These distortions in the RVD B-field are illustrated in Figure 2.11 for an α = 65◦ as seen
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Figure 2.10: Illustration of the static dipole (left) and RVD (right) B-field structures in the equatorial plane,
where α = 90◦. The red curve indicates the last closed field line which closes at the light cylinder, where
the corotation speed is equal to c. The sweepback of field lines is evident for the RVD case. The blue circle
indicates a slice through the light cylinder. From Romani & Watters (2010).

from different points of view.

Figure 2.11: Illustration of an RVD B-field for the last closed field lines, inclined with respect toΩ by an angle
α = 65◦. Three projections are presented: (a) looking down Ω, (b) looking down µ, and (c) a 3D view. Strong
distortions are visible as the inclination becomes larger (see Arendt & Eilek, 1998). From Cheng et al. (2000).

2.6.3 Offset-dipole magnetic field

The offset dipole is a heuristic model of a dipolar magnetic structure that is offset from the stellar centre, leading
to PCs offset from the central µ-axis. The B-field lines of an offset dipole field are azimuthally asymmetric
compared to those of a pure dipole field. This leads to field lines having a smaller curvature radius ρc over
half of the PC compared to those of the other half. Such small distortions in the B-field structure are due
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to retardation and asymmetric currents, thereby shifting the PCs by small amounts in different directions. A
detailed study of the effects of this B-field structure on the predicted HE light curves of the Vela pulsar will be
presented in Chapter 3.

2.6.4 A force-free field

The FF B-field structure assumes that the entire pulsar’s magnetosphere is filled with highly conductive and
dense plasma so that the E� is fully screened (i.e., E� = 0; Spitkovsky 2006). This implies that the ideal
magnetohydrodynamic (MHD) condition E · B = 0 is valid everywhere in the magnetosphere (Spitkovsky,
2011).

There are different analytic solutions that have been studied regarding the ideal MHD equation. Michel
(1973b) obtained a split-monopole solution (representing the magnetospheric structure farther from the NS;
see Petrova 2016), whereas Michel (1973a) (see also Michel 1982) found a solution for a corotating relativistic
dipole magnetosphere with zero poloidal current, valid inside the light cylinder. Other solutions include a
slightly perturbed monopole (Beskin et al., 1998), as well as an exact axisymmetric dipole with a differential
rotational magnetospheric velocity distribution and general toroidal structure (Petrova, 2016, 2017).

However, the first numerical solution of the pulsar equation (valid for FF magnetospheres, relating current
and magnetic flux) for a dipole B-field near the NS was found by Contopoulos et al. (1999), and permits a
smooth transition of the field lines at and beyond the light cylinder as well as current closure (see Figure 2.12a).
This solution is characterised by two zones where field lines are closed or open, respectively. Also, as the
poloidal field lines move out to greater distances away from the NS these lines become monopolar at regions
where torodial B-field components exist. There exist time-dependent numerical solutions as well, such as the
oblique rotator (e.g., Spitkovsky 2006; Kalapotharakos & Contopoulos 2009; Contopoulos & Kalapotharakos
2010; Kalapotharakos et al. 2012a; see Figure 2.12b) with B-field lines similar to those of the solution by
Contopoulos et al. (1999), but the current sheet thereof has the shape of a “ballerina skirt” about the rotational
equator.

Figure 2.12: Snapshots of time-dependent FF simulations of the (a) aligned and (b) oblique rotators. In the
first instance, poloidal field lines of the steady-state solution are shown. The thick black line indicates the
boundary of the light cylinder, and the colour the normalised toroidal B-field component. In the second panel,
for an α = 60◦, the B-field lines are shown in the corotating frame where the colour indicates the field strength
perpendicular to the plane (the toroidal field in the aligned rotator case). From Spitkovsky (2006).
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2.7 Recent theoretical developments

2.7.1 A dissipative field

The dissipative B-field solution represents a transition from the vacuum to the FF case, and allows energy dissi-
pation and therefore particle acceleration, which is not the case for the FF solution. Thus, the dissipative B-fields
is characterised by a zero (in vacuum case) to infinite (FF case) macroscopic conductivity, σ (Kalapotharakos
et al., 2012c; Li et al., 2012; Kalapotharakos et al., 2014). The dissipative FF was developed in order to probe
the locations where particle acceleration may take place, as well as the effect of the deviations from ideal MHD
conditions on the magnetosphere structure (Li et al., 2012; Kalapotharakos et al., 2012c). In these approaches,
different methods led to a non-accelerating E-field, e.g., a finite σ alter the current density (Kalapotharakos
et al., 2012c). For increasing σ, the regions containing large charge and current densities also increased in size
and the current sheet became more pronounced, and B-field lines became more straight over farther distances.

Some studies modelled energy light curves as a function of σ. Kalapotharakos et al. (2012b) modelled light
curves assuming a geometric approach and found that peak widths broadened accompanied by a phase lag to
the right with increasing σ. This is ascribed to the effect of the magnetospheric structure on the light curves.
Kalapotharakos et al. (2014) constructed a model assuming dissipative magnetospheres, and incorporating CR
and a slightly new prescription for the current density, as well as different values for the σ based on the region
in the magnetosphere. They studied the particle trajectories together with a self-consistent accelerated E-field,
including CR energy losses. For lower σ values emission was noticed at lower altitudes inside the light cylinder,
and as σ was increased the radiation occurred at higher altitudes near the current sheet where E� is higher. The
latter implies that for a decrease in E� longer acceleration distances need to be followed for particles to acquire
enough energy to emit CR. However, emission from the current sheet was enhanced. Also, small values of
σ were associated with broad light curves, while those corresponding to large σ’s were narrower in some
instances.

Another implementation of the dissipative models is the FIDO models and are defined as FF conditions
existing inside the light cylinder and dissipative conditions outside (FIDO) beyond the light cylinder (into
the current sheet). Thus, a large but finite σ is chosen for the dissipative regions. Brambilla et al. (2015)
calculated phase-averaged and phase-resolved spectra, using a FIDO model, for a few very luminous pulsars
(including Vela; see Figure 2.13) and assuming CR. They found that for a fixed α the spectral cutoff energy
Eγ,CR increased for larger ζ, but decreased for larger σ’s. The FIDO model also predicted that Eγ,CR may
increase near the second light curve peak’s phase. However, this is not always the case. We also demonstrate
that the P1/P2 effect can be explained within an CR emission model framework using a FF B-field and SG
current sheet model (see Chapter 5).

The FIDO model still fails to replicate some trends of the light curve phenomenology as well as the phase-
resolved spectral details. However, the FIDO model does provide good results regarding basic trends. More-
over, a model such as the FIDO is able to replicate the GeV light curve phenomenology relatively well and
impacts future microphysical simulations.

2.7.2 Kinetic models

The kinetic particle-in-cell (PIC) codes model the pulsar magnetosphere from first principles and resolve both
the temporal and spatial scales of the problem (plasma frequency and skin depth) to avoid numerical instabilities
and numerical plasma heating (Brambilla et al., 2018). However, the assumed field values of the latter codes
are unrealistically low. These codes follow a two-step process: first to calculate charge and current densities,
and then the fields based on these; Lastly, the process is iterative, so the influence on of the B-fields and E-
fields on the charges are taken into account, and updated currents and charge densities are calculated. Recent
studies (e.g., Philippov & Spitkovsky 2014; Belyaev 2015; Cerutti & Philippov 2017; Kalapotharakos et al.
2018) concentrated on handling the pulsar electrodynamics self-consistently, including global current closure,
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Figure 2.13: The observed (left) and predicted (right) light curves, and phase-resolved spectral index (top) and
the cutoff energy (bottom) for the Vela pulsar using the FIDO model. From Brambilla et al. (2015).

the contribution of charges of different sign to the current, dissipative processes, electromagnetic emission, and
the effects of pair production and general relativity (for a detailed review see Venter 2016; Cerutti et al. 2020).

Recent reviews, see Brambilla et al. (2018) investigated current composition and flow using a new PIC code
(Kalapotharakos et al., 2018), and focused on the dependence of magnetospheric properties on particle injection
rate. Larger injection rates are achieved by Brambilla et al. (2018) than in previous studies. They obtained a
transition of the magnetospheric solutions from a vacuum to FF solution, invoking two scenarios of particle
injection, e.g., from the NS surface and everywhere in the pulsar magnetosphere. They obtained the highest
dissipation for intermediate injection rates. As they increased injection rate (i.e., equivalent to a macroscopic
σ being increased), E� was gradually (but not fully) screened and the FF current structure was attained. The
dissipation regions also mostly moved to the current sheet. However, these two particle injection scenarios
differ in particle density distribution in the sense that higher multiplicities were reached at the NS surface in
the surface-injection scenario. They also studied the particle trajectories, and could probe some details of the
current composition, e.g., they found that electrons and positrons both flowed out in the PC regions (which may
inhibit two-photon pair production; see Figure 2.14), and lower-energy electrons returned to the NS surface
by crossing the B-field lines close to the return current sheet inside the light cylinder, thus making them good
candidates for emitting SR in the MeV range.

The energetic particles flowing out along the current sheet correspond well to the FIDO model assumption
(Kalapotharakos et al., 2017) that invokes dissipation regions beyond the light cylinder into the current sheet.
This model generally provides a good description of the Fermi pulsar phenomenology. Thus, the latest PIC
simulations are now elucidating and justifying the FIDO macroscopic assumptions and electrodynamical (or
spatial accelerator) constraints derived from the GeV data when assuming CR from positrons in the current
sheet (Kalapotharakos et al., 2018).
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Figure 2.14: The electron and positron components of the current density for magnetospheres close to being
FF, as predicted by the PIC model of Brambilla et al. (2018). One can see that the electrons and positrons both
flowed out in the PC regions. The labels distinguish the cases where pair injection took place only at the surface
vs. everywhere in the magnetosphere. From Brambilla et al. (2018).

2.7.3 Striped-wind models

In these models, the current sheet (equatorial region between B-field lines of different polarities) is considered
to be the main region for the generation of HE pulsed emission (Beskin et al., 1983; Montgomery, 1999). There
are still many open questions regarding the basic understanding of general concepts within the framework of
the current sheet models, e.g., location of the magnetic reconnection, the formation plasmoids via the tearing
instability, the nature of the dissipation, and the effect of internal thermal pressure on the current sheet thickness.
Several studies attempted to answer these questions (e.g., Lyubarskii 1996; Pétri & Dubus 2011; Pétri 2012)
in the context of the “striped-wind” models (Coroniti, 1990; Michel, 1994) (see Pétri 2016 for a more detailed
review).

Some studies have contrasting ideas about the current sheet. Kalapotharakos et al. (2014) notice that the
physical conditions present in the current sheet greatly modifies the global magnetosphere structure. Others,
such as Uzdensky & Spitkovsky (2014), argue that the current sheet is part of a rotating pulsar magnetosphere,
and that the magnetic reconnection dissipates a large fraction of the pulsar spin-down power there. The numer-
ical FF codes cannot treat the current sheet properly, therefore they developed a near-RLC reconnection model
to constrain the local plasma conditions. They stated that reconnection takes place via the formation of plas-
moids (growing “magnetic islands”; Figure 2.15b) of different sizes. These plasmoids are continuously formed
and merging with each other, and are ejected quasi-periodically. The relativistically hot reconnection layers
present in pulsars undergo strong SR cooling, which leads to plasma compression. The particles can indeed
radiate pulsed GeV emission by SR as well as pulsed emission in the TeV-band via ICS of ultraviolet or X-ray
emission from the pulsar (see Chapter 6).
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Figure 2.15: The (a) basic axisymmetric magnetosphere, and the (b) tearing of the equatorial current sheet
(formation of plasmoids). From Uzdensky & Spitkovsky (2014).

2.8 Summary

This Chapter gave a broad overview of pulsar astrophysics such as the pulsar history, formation of pulsars, dif-
ferent pulsar classes, traditional models, etc. Harding & Kalapotharakos (2015) assumed a FF B-field structure
(Section 2.6.4), in an SG and current sheet scenario, in their SSC emission model (Section 2.4) used in this
study (see Chapters 4, 5, and 6). The trends observed using the FIDO model are also seen in the GeV to TeV
light curves (see Chapters 5 and 6).

In Chapter 5 I investigate the P1/P2 effect seen in the light curves and also explain this by investigating
the phase-resolved spectra. This effect is also noted in studies regarding the dissipative models (Section 2.7.1).
Lastly the values chosen for the two-step E� used by Harding et al. (2018) are motivated by values obtained for
the accelerating E-field in the PIC simulations, after suitable scaling of the particle energies to realistic values.

In the next Chapter I will discuss our study concerning the investigation of different B-field structures on the
GeV light curves of Vela. This study deals with the offset-PC dipole field described in Section 2.6.3.



Chapter 3

The effect of an offset-PC B-field geometry on
the predicted γ-ray light curves of the Vela
pulsar

Recent studies using NICER (see Section 1.1.4) data point to pulsars having offset-PC B-field structures (Bilous
et al. 2019; Lockhart et al. 2019; Kalapotharakos et al. 2020). These non-dipolar B-field geometries are
also motivated by earlier observations of thermal X-ray emission, e.g., pulse profiles from MSPs such as
PSR J0437−4715 (Bogdanov et al., 2007) and PSR J0030+0451 (Bogdanov & Grindlay, 2009), with the B-
fields of NSs in low mass X-ray binaries even more distorted (Lamb et al., 2009).

Within the global modelling landscape, numerical magnetic fields such as the FF solution (characterised
by different PC currents than those assumed in space-charge limited flow models; Contopoulos et al., 1999;
Timokhin, 2006) will undergo larger sweepback of field lines near the light cylinder, and consequently display
a larger offset of the PC toward the trailing side (opposite to the rotation direction) than in the RVD field (which
has offset PCs due to rotation alone; see Section 2.6.2).

We investigated the impact of different magnetospheric structures on the predicted γ-ray pulsar light curves.
Using a particular implementation of an offset-PC B-field (see Section 2.6.3 and Section 3.2), we wanted to
constrain the amount of offset using GeV data of the Vela pulsar. We also considered a SG (see Section 2.5.2)
E-field associated with this particular B-field and constrain the E-field magnitudes when multiplying it with a
factor 100. We performed geometric pulsar light curve modelling using different B-field structures in conjunc-
tion with geometric models. Additionally, we incorporated an SG E-field into our geometric modelling code.
The fact that we have an E-field solution enables us to solve the particle transport equation on each B-field line
for the offset-PC dipole and SG model combination for both the relatively low SG E-field and the increased
case.

This Chapter is a summary1 of work presented in Barnard et al. (2016) and will focus on the implementation
of an offset-PC B-field and the results obtained. In this chapter we will briefly describe the offset-PC dipole
B-field structure we considered (Section 3.2) as well as the implementation thereof in our geometric modelling
code, assuming certain geometric models (Section 3.3). This implementation involved a transformation of the
B-field between the magnetic and rotational frames (Section 3.4), as well as finding the PC rim (Section 3.5).
We also describe the calculation of the associated SG E-field and the matching of the low-altitude and high-
altitude solutions using a matching parameter (scaled radius) ηc in Section 3.6. We briefly discuss the χ2 method
we applied in order to find best-fit (α,ζ) for the different model combinations (see Section 3.7). In Section 3.8,

1This Chapter is based on research that was initiated during my MSc (Breed, 2015), as well as research done during the first
year of my PhD.
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we present our solution of the transport equation for the offset-PC dipole B-field for the usual and increased
E-field solutions. This also includes our light curve predictions for two distinct cases: 1) the effect of lowering
the minimum photon energy as well as 2) multiplying the E-field by a factor 100. This is followed by our
best-fit (α,ζ) contours for the Vela pulsar, for both cases where Eγ >100 GeV, before we compare our results
to previous multi-wavelength studies from other works in Section 3.9. Our conclusions follow in Section 3.10.
For an alternative and independent implementation of an offset-dipole geometry, see Kundu & Pétri (2017).

3.1 Introduction

The Fermi’s Second Pulsar Catalogue (2PC; Abdo et al., 2013) describes the properties of more than 150 pulsars
in the energy range 100 MeV to 100 GeV. This catalogue includes the Vela pulsar (Abdo et al., 2009), one of
the brightest persistent sources in the GeV sky. A third catalogue is currently in preparation.

Despite the major advances made after nearly 50 years since the discovery of the first pulsar (Hewish et al.,
1968), many questions still remain regarding the electrodynamical character of the pulsar magnetosphere, in-
cluding details of the particle acceleration and pair production, current closure, and radiation of a complex
multi-wavelength spectrum. Physical emission models such as the SG (Muslimov & Harding, 2003) and OG
(Section 2.5.3; Romani & Yadigaroglu, 1995) fall short of explaining these global magnetospheric character-
istics. More recent developments include the global magnetospheric properties. One example is the force-free
(FF; see Section 2.6.4) inside and dissipative outside (FIDO; see Section 2.7.1) model (Kalapotharakos &
Contopoulos, 2009; Kalapotharakos et al., 2014) that assumes FF electrodynamical conditions (infinite plasma
conductivity σc → ∞) inside the light cylinder and dissipative conditions (finite σc) outside. The wind models
of, e.g., Pétri & Dubus (2011) provide an alternative picture where dissipation takes place outside the light
cylinder. There is also kinetic / particle-in-cell simulations (PIC; Brambilla et al. 2018; Cerutti et al. 2016b,a,
2020; Kalapotharakos et al. 2018; Philippov & Spitkovsky 2018). See Chapter 2 for a more detailed discussion
of these models.

Although much progress has been made using the physical models, geometric light curve modelling still
presents a crucial avenue for probing the pulsar magnetosphere in the context of traditional pulsar models, as
these emission geometries may be used to constrain the pulsar geometry (inclination angle α and the observer
viewing angle ζ with respect to the spin axis Ω), as well as the γ-ray emission region’s location and extent.
This may provide vital insight into the boundary conditions and help constrain the accelerator geometry of
next-generation full radiation models. Geometric light curve modelling has been performed by, e.g., Dyks et al.
(2004a); Venter et al. (2009); Watters et al. (2009); Johnson et al. (2014); Pierbattista et al. (2015) using standard
pulsar emission geometries, including a two-pole caustic (TPC, of which the SG is its physical representation;
Dyks & Rudak, 2003), OG, and pair-starved polar cap (Harding et al., 2005) geometry.

A notable conclusion from the 2PC was that the spectra and light curves of both the millisecond pulsar
(MSP) and young pulsar populations show remarkable similarities, pointing to a common radiation mechanism
and emission geometry (tied to the B-field structure). The assumed B-field structure is essential for predicting
the light curves seen by the observer using geometric models, since photons are expected to be emitted tan-
gentially to the local B-field lines in the corotating pulsar frame (Daugherty & Harding, 1982). Even a small
difference in the magnetospheric structure will therefore have an impact on the light curve predictions. For all of
the above geometric models, the most commonly employed B-field has been the retarded vacuum dipole (RVD)
solution first obtained by Deutsch (1955). However, other solutions also exist. One example is the static dipole
(non-rotating) field (see Section 2.6.3), a special case of the RVD (rotating) field (Dyks & Harding, 2004).
Bai & Spitkovsky (2010a) furthermore modelled high-energy (HE) light curves in the context of OG and TPC
models using an FF B-field geometry (assuming a plasma-filled magnetosphere), proposing a separatrix layer
model close to the last open field line (tangent to the light cylinder at radius RLC = c/Ω where the corotation
speed equals the speed of light c, with Ω the angular speed), which extends from the stellar surface up to and
beyond the light cylinder. In addition, the annular gap model of Du et al. (2010), which assumes a static dipole
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field, has been successful in reproducing the main characteristics of the γ-ray light curves of three MSPs. This
model does, however, not attempt to replicate the nonzero phase offsets between the γ-ray and radio profiles.

The B-field is one of the basic assumptions of the geometric models (others include the gap region’s lo-
cation, and the �ν profile in the gap). Several B-field structures have been studied in this context, including
the static dipole (Griffiths, 1995), the RVD (a rotating vacuum magnetosphere which can in principle accel-
erate particles but do not contain any charges or currents; Deutsch, 1955), the FF (filled with charges and
currents, but unable to accelerate particles, since the accelerating E-field is screened everywhere; Contopoulos
et al., 1999), and the offset-PC dipole (that analytically mimics deviations from the static dipole near the stellar
surface; Harding & Muslimov, 2011a,b). A more realistic pulsar magnetosphere, i.e., a dissipative solution
(Kalapotharakos et al., 2012c; Li et al., 2012; Tchekhovskoy et al., 2013; Li, 2014), would be one that is inter-
mediate between the RVD and the FF fields. The dissipative B-field is characterised by the plasma conductivity
σc (e.g., Lichnerowicz, 1967) which can be chosen in order to alternate between the vacuum (σc → 0) and FF
(σc → ∞) cases (see Li et al., 2012).

We studied the effect of different magnetospheric structures (static dipole, RVD, and offset-PC dipole,
further discussed below) and emission geometries (TPC and OG) on pulsar visibility and γ-ray pulse shape,
particularly for the case of the Vela pulsar. For the static dipole the field lines are symmetric about the µ-axis,
whereas the RVD is distorted due to sweepback of the field lines as the NS rotates. This has implications for
the definition of the PC (see Section 3.5).

3.2 Offset-dipole B-field structure

Harding & Muslimov (2011a,b) considered two cases, i.e., symmetric and asymmetric PC offsets. The sym-
metric case involves an offset of both PCs in the same direction so that the PCs are not antipodal, and applies
to NSs with some interior current distortions that produce multipolar components near the stellar surface (see
Figure 3.1; Harding & Muslimov, 2011b). The asymmetric case is associated with asymmetric PC offsets in
opposite directions and applies to PC offsets due to retardation and/or currents of the global magnetosphere (see
Figure 3.2; Harding & Muslimov, 2011b). Both these cases were modelled by introducing an offset parameter
�. Thus, as seen in Figure 3.1a the global open field lines of a centred dipole are bent toward the dipole axis on
one side and bent away from the dipole axis on the other side of the PC. Therefore, one side of the PC is larger
and the PC is effectively shifted from the centre of symmetry (see Figure 3.1b).

The general expression for a symmetric offset-PC dipole B-field in terms of spherical co-ordinates (r�, θ�, φ�)
in the magnetic frame (indicated by the primed co-ordinates, where ẑ� � µ) is as follows (Harding & Muslimov,
2011b)

B�OPCs(r
�, θ�, φ�) ≈ µ

�

r�3

�
cos θ�r̂� +

1
2

(1 + a) sin θ�θ̂� − � sin θ� cos θ� sin(φ� − φ�0)φ̂
��
, (3.1)

where µ� = B0R3 is the magnetic moment, R the stellar radius, B0 the surface B-field strength at the magnetic
pole, φ�0 the magnetic azimuthal angle defining the plane in which the offset occurs, and a = � cos(φ� − φ�0)
characterises the offset direction in the x� − z� plane. This distortion depends on parameters � (related to the
magnitude of the shift of the PC from the magnetic axis) and φ�0 (we choose φ�0 = 0 in what follows). If φ�0 = 0
or φ�0 = π the offset is in the x� direction (i.e., along the x�-axis). If φ�0 = π/2 or φ�0 = 3π/2 the offset is in the y�

direction.
The general expression for an asymmetric B-field is as follows (Harding & Muslimov, 2011b)

B�OPCa(r�, θ�, φ�) ≈ µ
�

r�3
[cos[θ�(1 + a)]r̂� +

1
2

sin[θ�(1 + a)]θ̂
� − 1

2
�(θ� + sin θ� cos θ�) sin(φ� − φ�0)φ̂

�
], (3.2)

with the distortion of the field lines also occurring in the x� − z� plane. If we set � = 0 both the symmetric
and asymmetric cases reduce to a symmetric static dipole as given in Eq. [(2.47)] with the B-field lines being
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(a) (b)

Figure 3.1: In (a) we illustrate the distorted field lines of the offset dipole B-field having symmetrically offset
PCs in the x� − z� plane, for an offset � = 0.2 (adapted from Harding & Muslimov 2011b). In (b) we represent
the symmetric offset geometrically, where the PCs (grey ovals) are shifted from the magnetic axis in the same
direction, resulting in symmetric PC offsets (red dashed circles). The curved arrow around Ω indicates the
direction of rotation.

(a) (b)

Figure 3.2: In (a) we illustrate the distorted field lines of the offset dipole B-field having asymmetric offset PCs
in the x� − z� plane, for an offset � = 0.2 (adapted from Harding & Muslimov 2011b). In (b) we represent the
offset geometrically, with the PCs (grey ovals) shifted from the magnetic axis in opposite directions, resulting
in asymmetric PC offsets (red dashed circles). The curved arrow around Ω indicates the direction of rotation.



CHAPTER 3. AN OFFSET-PC B-FIELD GEOMETRY 38

distorted in all directions.
The distance by which the PCs are shifted on the NS surface is given by

ΔrPC � RθPC
�
1 − θ�PC

�
, (3.3)

where θPC = (ΩR/c)1/2 is the standard half-angle of the PC, and Ω the angular speed. This effective shift of
the PCs is a fraction of θPC, therefore it is a larger fraction of R for pulsars with shorter periods (Harding &
Muslimov, 2011a). Harding & Muslimov (2011b) found that for the RVD solution, � = 0.03 − 0.1, where
offsets as large as 0.1 are associated with MSPs with large θPC. However, � = 0.09 − 0.2 is expected for FF
fields, with the larger offset values related to MSPs (Bai & Spitkovsky, 2010a). One of the main focus points
of our study was the implementation of an offset dipole B-field, for the symmetric case only.

The difference between our offset-PC field and a dipole field which is offset with respect to the stellar centre
can be most clearly seen by performing a multipolar expansion of these respective fields. Lowrie (2011) gives
the scalar potential W for an equatorially offset dipole (EOD) field

W�(r�, θ�) =
�
µ�

r�2
cos θ� +

µ�d
r�3

sin θ� cos θ� +
µ�d
2r�3

sin2 θ�
�
,

with d being the offset parameter, and with the first few leading terms in d/r� listed above. From this potential,
we may construct the magnetic field using B = −∇W:

B�EOD(r�, θ�) = B�dip(r�, θ�) +
�3µ�d
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1
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�
. (3.4)

This means that an offset dipolar field may be expressed (to lowest order) as the sum of a centred dipole and
two quadrupolar components. Conversely, our offset-PC field may be written as

B�OPCs(r
�, θ�, φ�) ≈ B�dip(r�, θ�) + O

�
�

r�3

�
. (3.5)

Therefore, we can see that the EOD consists of a centred dipole plus quadropolar and other higher-order
components (Eq. [3.4]), while our offset-PC model (Eq. [3.5]) consists of a centred dipole plus terms of order
a/r�3 or �/r�3. Since a ∼ 0.2 and � ∼ 0.2, the latter terms present perturbations (e.g., poloidal and toroidal
effects) to the centred dipole. Harding & Muslimov (2011a,b) derived these perturbed components of the
distorted magnetic field while satisfying the solenoidality condition ∇ · B = 0.

In what follows, we decided to study the effect of the simpler symmetric case (which does not mimic field
line sweepback of FF, RVD or dissipative magnetospheres) on predicted light curves. These complex B-fields
usually only have numerical solutions, which are limited by the resolution of the spatial grid. Hence, it is
simpler to investigate the main effects of these structures using analytical approximations such as the offset-PC
dipole solution. In future, one can also include the more complex asymmetric case.

3.3 Geometric models

Geometric models assume constant emissivity �ν in the rotational frame. We have also incorporated an SG
E-field associated with the offset-PC dipole B-field (making this latter case an emission model), which allows
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us to calculate the �ν in the acceleration region in the corotating frame from first principles. We have only
considered the TPC (assuming uniform �ν) and SG (assuming variable �ν as modulated by the E-field) models
for the offset-PC dipole B-field, since we do not have E-field expressions available for the OG model within
the context of an offset-PC dipole B-field.

The geometric TPC pulsar model was first introduced by Dyks & Rudak (2003). Muslimov & Harding
(2003) revived the physical SG model of Arons (1983), including general relativistic (GR) corrections, and
argued that the SG model may be considered a physical representation of the TPC model. This gap geometry
has a large radial extent, spanning from the neutron star (NS) surface along the last closed field line up to the
light cylinder. The original definition stated that the maximum radial extent reached Rmax�0.8RLC (Muslimov
& Harding, 2004a). This was later extended to Rmax�1.2RLC for improved fits (e.g., Venter et al., 2009, 2012).
Typical transverse gap extents of 1 − 5% of the PC angle have been used (Venter et al., 2009; Watters et al.,
2009).

The OG model was introduced by Cheng et al. (1986) and elaborated by Romani & Yadigaroglu (1995).
They proposed that when the primary current passes through the neutral sheet or null-charge surface (NCS,
with a radius of RNCS, i.e., the geometric surface across which the charge density changes sign) the negative
charges above this sheet will escape beyond the light cylinder. A vacuum gap region is then formed (in which
the E-field parallel to the local B-field, E� � 0). Analogously, the geometric OG model has a radial extent
spanning from the NCS to the light cylinder. We follow Venter et al. (2009) and Johnson et al. (2014) who
considered a one-layer model with a transverse extent along the inner edge of the gap.

We performed geometric light curve modelling using the code first developed by Dyks et al. (2004a) which
already includes the static dipole and RVD solutions. We extended this code by implementing an offset-PC
dipole B-field (for the symmetric case), as well as the SG E�-field corrected for GR effects (see Section 3.6).
We solve for the PC rim as explained in Section 3.5. The shape of PC rim depends on the B-field structure
at the light cylinder RLC. Once the PC rim has been determined, it is divided into self-similar (interior) rings.
These rings are calculated by using open-volume co-ordinates (rovc and lovc). After the footpoints of the field
lines on a (rovc,lovc) grid have been determined, particles are followed along these lines in the corotating frame
and emission from them is collected in bins of pulse phase φL and ζ, i.e., a phase plot is formed by plotting the
bin contents (divided by the solid angle subtended by each bin) for a given α, and it is therefore a projection
of the radiation beam. To simulate light curves, one chooses a phase plot corresponding to a fixed α, then fix ζ
and plot the intensity per solid angle.

The code takes into account the structure/geometry of the B-field (since the photons are emitted tangentially
to the local field line), aberration of the photon emission direction (due to rotation, to first order in r/RLC), and
time-of-flight delays (due to distinct emission radii) to obtain the caustic emission beam (Morini, 1983; Dyks
et al., 2004b). However, Bai & Spitkovsky (2010b) pointed out that previous studies assumed the RVD field
to be valid in the instantaneously corotating frame, but actually it is valid in the laboratory frame (implying
corrections that are of second-order in r/RLC). This implies a revised aberration formula, which we have
implemented in our code.

3.4 Transformation of a B-field from the magnetic to the rotational frame

We implemented an offset dipole B-field for the symmetric case (where the PCs of both hemispheres are offset
in the same direction with respect to the magnetic (µ) axis; see Section 3.2) in our geometric code (Section 3.3).
Since the offset dipole field is given in terms of magnetic frame co-ordinates (ẑ� � µ; Harding & Muslimov,
2011b) it was necessary to transform this solution to the (corotating) rotational frame (ẑ � Ω, withΩ the rotation
axis). In order to do so, we first performed transformations between the spherical and Cartesian co-ordinates
and bases, and then a rotation of the co-ordinate axes to move from the magnetic frame to the rotational frame.
We lastly transformed the Cartesian co-ordinates of the position vector from the magnetic to the rotational
frame. For a more detailed discussion, we refer the reader to Barnard et al. (2016).



CHAPTER 3. AN OFFSET-PC B-FIELD GEOMETRY 40

Consider a general B-field specified in the magnetic frame (indicated by the primed co-ordinates), in terms
of spherical co-ordinates

B�(r�, θ�, φ�) = B�r(r
�, θ�, φ�)r̂� + B�θ(r

�, θ�, φ�)θ̂� + B�φ(r
�, θ�, φ�)φ̂�. (3.6)

This field may then be transformed to a Cartesian basis and co-ordinate system:

B�(x�, y�, z�) = B�x(x�, y�, z�)x̂� + B�y(x�, y�, z�)ŷ� + B�z(x�, y�, z�)ẑ�. (3.7)

This is done using expressions that specify spherical unit vectors and co-ordinates in terms of Cartesian co-
ordinates (see e.g., Griffiths, 1995). Next, one may rotate the B-field components (i.e., the Cartesian frame)
through an angle −α (the angle between the Ω and µ axes), thereby transforming the B-field from the magnetic
to the rotational frame (indicated by the unprimed co-ordinates).

B(x�, y�, z�) = Bx(x�, y�, z�)x̂� + By(x�, y�, z�)ŷ� + Bz(x�, y�, z�)ẑ�. (3.8)

Lastly, we transform the magnetic co-ordinates to rotational co-ordinates:

B(x, y, z) = Bx(x, y, z)x̂ + By(x, y, z)ŷ + Bz(x, y, z)ẑ. (3.9)

3.5 Finding the PC rim and extending the range of �

The object is to find the polar angle θ∗ at each azimuthal angle φ at the footpoints of the last open B-field lines,
lying within a bracket θmin < θ∗ < θmax, such that the field line is tangent to the light cylinder. The PC rim is
thus defined. The magnetic structure at the light cylinder therefore determines the PC shape (Dyks & Harding,
2004; Dyks et al., 2004a).

After initial implementation of the offset-PC dipole field in the geometric code, we discovered that we could
solve for the PC rim in a similar manner as for the RVD B-field, but only for small values of the offset parameter
� (� � 0.05 − 0.1, depending on α). We improve the range of � by varying the colatitude parameters θmin and
θmax which delimit a bracket (“solution space”) in colatitude thought to contain the footpoint of last open field
line (tangent to the light cylinder RLC). We obtain a progressively larger range of � upon decreasing θmin and
increasing θmax. We find a maximum � = 0.18 valid for the full range of α. Choosing a maximal solution bracket
in colatitude would in principle work, but the code would take much longer to find the PC rim compared to
when a smaller bracket (that does contain the correct solution) is used. Therefore, we generalise the search for
optimal θmin and found (by trial and error) that the following linear equation θmin = [(−31/18)� + 0.6]θPC, for
a fixed θmax = 2.0, resulted in θmin that yielded maximum values for �.

If the PC rims (rovc = 1) are viewed in the x� − y� plane (in the magnetic frame) as a function of α and
� (assuming that the µ-axis is located perpendicularly to the page at (x�, y�) = (0, 0) and that φ� is measured
counterclockwise from the positive x�-axis) we note that the PC shape changes considerably. As α and � are
increased the PC offset is larger in the direction of “unfavourably curved” B-field lines (i.e., −x�-axis). For
larger α values irrespective of � the PC shape along the x�-axis becomes narrower and irregular. This narrowing
effect of the PC is also seen along the y�-axis as � increases. We illustrate the PC shape for a few cases of α and
� in Figure 3.3.
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Figure 3.3: PC shapes of the offset-PC dipole B-field for a few cases of α and � in the x�−y� plane assuming that
the µ-axis is located perpendicularly to the page at (x�, y�)=(0,0) and that φ� is measured counterclockwise from
the positive x�-axis. Each PC is for a different value of α ranging between 10◦ and 90◦, with 10◦ resolution.
For each α we plot the PC shape for � values of 0 (green solid circle), 0.09 (red dashed circle), and 0.18 (blue
dasheddotted circle). We note that the reference green PCs are for the static centred dipole. The horizontal line
at x�=0 (black dotted line) serves as a reference line to show the magnitude and direction of the offset as � is
increased.

3.6 Incorporating an SG E-field

3.6.1 Approximate expressions of the associated E-field

It is important to take the accelerating E-field into account when such expressions are available, since this will
modulate the emissivity �ν(s) (as a function of arclength s along the B-field line) in the gap as opposed to
geometric models where we assume constant �ν per unit length in the corotating frame. For the SG case, we
implemented the full E-field in the rotational frame corrected for GR effects (e.g., Muslimov & Harding, 2003,
2004a). This solution consists of a low-altitude and high-altitude limit which we have to match on each B-field
line. The low-altitude solution is given by (Harding, private communication)

E�,low ≈ −3E0νSGxa
� κ
η4 e1A cosα +

1
4
θ1+a

PC

η

�
e2A cos φPC

+
1
4
�κe3A(2 cos φ�0 − cos(2φPC − φ�0))

�
sinα
�
(1 − ξ2∗), (3.10)

with E0 = (ΩR/c)2(Br/B)B0, Br the radial B-field component, νSG ≡ (1/4)Δξ2SG, and ΔξSG the colatitudinal gap
width in units of dimensionless colatitude ξ = θ/θPC. Also, x = r/RLC is the normalised radial distance in units
of RLC. Here, κ ≈ 0.15I45/R3

6 is a GR compactness parameter characterising the frame-dragging effect near
the stellar surface (Muslimov & Harding, 1997), I45 = I/1045 g cm2, I the moment of inertia, R6 = R/106 cm,
η = r/R the dimensionless radial co-ordinate in units of R, e1A = 1 + a(η3 − 1)/3, e2A = (1 + 3a)η(1+a)/2 − 2a
and e3A = [(5 − 3a)/η(5−a)/2] + 2a. The magnetic azimuthal angle φPC is defined for usage with the E-field,
being π out of phase with φ� (one chooses the negative x-axis towards Ω to coincide with φPC = 0, labelling
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the “favourably curved” B-field lines). We define φ� = arctan(y�/x�) the magnetic azimuthal angle used when
transforming the B-field (Section 3.4). Lastly, ξ∗ is the dimensionless colatitude labelling the gap field lines
(defined such that ξ∗ = 0 corresponds to the field line in the middle of the gap and ξ∗ = 1 at the boundaries;
Muslimov & Harding, 2003).

We approximate the high-altitude SG E-field by (Muslimov & Harding, 2004a)

E�,high ≈ −3
8

�ΩR
c

�3 B0

f (1)
νSGxa

��
1 +

1
3
κ
�
5 − 8
η3

c

�
+ 2
η

ηLC

�
cosα

+
3
2
θPCH(1) sinα cos φPC

�
(1 − ξ2∗), (3.11)

with f (η) ∼ 1 + 0.75y + 0.6y2 a GR correction factor of order 1 for the dipole component of the magnetic
flux through the magnetic hemisphere of radius r in a Schwarzchild metric. The function H(η) ∼ 1 − 0.25y −
0.16y2 − 0.5(κ/�3g )y3(1 − 0.25y − 0.21y2) is also a GR correction factor of order 1, with y = �g/η, �g = rg/R,
and rg = 2GM/c2 the gravitational or Schwarzchild radius of the NS (with G the gravitational constant and
M the stellar mass). The factors f (η) and H(η) account for the static part of the curved spacetime metric and
have a value of 1 in flat space (Muslimov & Harding, 1997). The critical scaled radius ηc = rc/R is where
the high-altitude and low-altitude E-field solutions are matched, with rc the critical radius, and ηLC = RLC/R.
This high-altitude solution (excluding the factor xa) is actually valid for the SG model assuming a static (GR-
corrected, non-offset) dipole field. We therefore scale the E-field by a factor xa to generalise this expression
for the offset-PC dipole field. The general E-field valid from R to RLC (i.e., over the entire length of the gap) is
constructed as follows (see Eq. [59] of Muslimov & Harding, 2004a)

E�,SG�E�,low exp[−(η − 1)/(ηc − 1)] + E�,high. (3.12)

A more detailed discussion of the electrodynamics in the SG geometry may be found in Muslimov & Harding
(2003) and Muslimov & Harding (2004a). In the next section, we solve for ηc(P, Ṗ,α, �, ξ, φPC) where P is the
period and Ṗ its time derivative.

3.6.2 Determining the matching parameter ηc

At first, we matched the low-altitude and high-altitude E-field solutions by setting ηc = 1.4 for simplicity
(Breed et al., 2014). However, we realised that ηc may strongly vary for the different parameters. Thus, we
had to solve ηc(P, Ṗ,α, �, ξ, φPC) on each B-field line. In what follows we consider electrons to be the radiating
particles, and our discussion will therefore generally deal with the negative of the E-field. Since particle orbits
approximately coincide with the B-field lines in the corotating frame, it is important to consider the behaviour
of the E-field as a function of s rather than η.

We solved the matching parameter in the following way. First, we calculate E�,low, which is independent of
ηc, along the B-field. If −E�,low < 0 for all η, it will never intersect with E�,high and we set ηc = 1.1, thereby
basically using E�,SG ≈ E�,high. Second, we step through ηc (in the range 1.1−5.1), calculating E�,SG and E�,high
as well as the ratio S i = S (ηi) = E�,SG(ηi)/E�,low(ηi) for i = 1, ..,N at different radii ηi. If S i > 1 we use 1/S i.
We next calculate a test statistic T (ηc) =

�N
i (S i − 1)2/N using only E-field values where −E�,low > −E�,high

(i.e., we basically fit E�,SG to E�,low when −E�,low > −E�,high). We then minimise T to find the optimal ηc
(similar to what was done in Figure 2 of Venter et al., 2009). In Figure 3.4a, the intersection radius ηcut > ηLC
(i.e., E�,low and E�,high do not intersect within the light cylinder) and therefore we impose the restriction that the
solution of ηc should lie at or below 5.1. When −E�,low does not decrease as rapidly (e.g., as in Figure 3.4b)
we find reasonable solutions. We note that E�,SG (referred to as E�,old in Figure 3.4) produces a bump when
−E�,low decreases more rapidly. To circumvent this problem we test whether −E�,SG < −E�,high and in this case
we use the intersection radius ηcut of E�,low and E�,high, rather than ηc, to match our solutions (calling this new



CHAPTER 3. AN OFFSET-PC B-FIELD GEOMETRY 43

Figure 3.4: Examples of the general SG E-field (E�,new, dashed dark blue line) we obtained by matching
E�,low (magenta line) and E�,high (green line). We plotted the negative of the various E-fields as functions of
the normalised s along the B-field lines, in units of R. We indicated the matching parameter ηc (vertical black
line) by using sc/R ≈ ηc − 1 (which is valid for low altitudes). These plots were obtained for the following
parameters: P = 0.0893 s, B0 = 1.05× 1013 G, R = 106 cm, M = 1.4M�, � = 0.18, and ξ = 0.975 (i.e., ξ∗ = 0).
In (a) we chose α = 90◦, and φPC = 0. Here we use ηc = 5.1 since ηcut > ηLC. In (b) we chose α = 15◦, φPC = π.
We find a solution of ηc = 5.1. In (c) we chose α = 30◦, φPC = π. If −E�,low as well as −E�,old (as defined in
Eq. [3.12], light blue line) are below −E�,high beyond some radius η, we use ηcut (in this case ηc = ηcut = 3.7) to
match E�,low and E�,high, resulting in −E�,new (dashed dark blue). In (d) we chose α = 75◦, φPC = π. For large
α we observe that −E�,low changes sign over a small η range. In this case we also use ηc = ηcut = 1.7 to match
the solutions.

solution E�,new; see Figure 3.4c). We lastly observe that for φPC = π (on “unfavourably curved” field lines) for
larger α, −E�,low field changes sign resulting in a small ηc = ηcut = 1.7 value (Figure 3.4d). We determined
ηc (implying E�,new) over the entire φL and ζ range at and within the SG model boundary, as a function of α.
This is necessary for constructing phase plots, i.e., the intensity per solid angle, and light curves, i.e., a constant
ζ-cut (refer to as ζcut) on the phase plot, later on.

Since the E-field solutions have an xa = x� cos(φ�−φ�0) = x−� cos φPC factor dependence, a larger (non-zero)
offset results in different matching solutions vs. the case for � = 0 (see Figure 3 and 4 in Barnard et al. 2016).
In the case of α = 0, the first term ∝ cosα is the only contribution to the E-field, with the factor xae1A (with
an � dependence) being initially larger at low η for φPC = 0 than for φPC = π (xa dominates), but rapidly
decreasing with η (e1A dominates), leading to a lower value of ηc for φPC = 0. One should therefore note that
the magnitude of one instance of the E-field with low ηc may initially be higher than another instance with high
ηc, but the first will decrease rapidly with η and eventually become lower than the second. Therefore, there is no
φPC-dependence for α = 0 for � = 0, which is not the case for � = 0.18. For a slightly larger α the second terms
in Eq. [3.10] and [3.11] start to contribute to the radiation. This is due to the sinα term with an � dependence
that delivers an extra contribution which is zero in the case for � = 0. At α = 20◦ the effects of the first and
second terms seem to balance each other and therefore we find the same solution of ηc = 5.1 everywhere except
on the SG model boundary (at ξ ∈ [0.95, 1.0]) where ηc = 1.1, just as in the case of � = 0 and α = 0◦. For values
of α > 20◦ and � = 0.18 the second term ∼ cos φPC starts to dominate and thus we find solutions of ηc ∼ 5.1 for
φPC � 0 and systematically smaller solutions for φPC � π as α increases and the second term ∝ sinα becomes
increasingly important (in both cases of �). At α = 90◦ we obtain the same solution as in � = 0 case where



CHAPTER 3. AN OFFSET-PC B-FIELD GEOMETRY 44

the second term dominates (for this case −E�,SG < 0 for all η, since the Goldreich-Julian charge density ρGJ
becomes positive). We note that the ηc-distribution reflects two symmetries (one about φPC = π and one about
ξ = 0.975, i.e., ξ∗ = 0, given our gap boundaries): that of the cos φPC term and that of the (1 − ξ2∗) term in the
E� solutions. After solving for ηc, we could solve the particle transport equation along each B-field line (see
Section 3.8.1).

3.7 Chi-squared fitting method

We applied a standard χ2 statistical fitting technique to assist us to objectively find the pulsar geometry (α,ζ)
which best describes the observed γ-ray light curve of the Vela pulsar. We use this χ2 method to determine
the best-fit parameters for each of our B-field and geometric model combinations (spanning a large parameter
space). The general expression is given by

χ2 =

Nbins�

i=1

�
Yd,i − Ym,i

�2

σ2
m,i

≈
Nbins�

i=1

�
Yd,i − Ym,i

�2
Yd,i

, (3.13)

where Yd,i(φL,i) and Ym,i(φL,i) are the number of counts of the observed and modelled light curves (relative units
at phase φL,i), and σm,i(φL,i) the uncertainty of the model light curves in each phase bin i = 1, ...,Nbins, with
Nbins the number of bins. Since we do not know the uncertainty of the model, we approximate the model error
by the data error, assuming σ2

m,i(φL,i) ≈ Yd,i(φL,i) for Poisson statistics. Since we use geometric models, with
an uncertainty in the absolute intensity, we assume that the shape of the light curve is correct. The data possess
a background which is also uncertain. Furthermore, Fermi has a certain response function that influences the
intrinsic shape of the light curve, which reflects the sum of counts from many pulsar rotations. Given all these
uncertainties, we incorporate a free amplitude parameter A to allow more freedom in terms of finding the best
fit of the model light curves to the data. We normalise the model light curve to range from 0 to the maximum
number of observed counts k2 by using the following expression:

Y �m(φL,i) =
Ym(φL,i)
(k1 + �0)

A(k2 − BG) + BG ≈ Ym(φL,i)
k1

k2, (3.14)

with k1 = max(Ym(φL,i)), k2 = max(Yd(φL,i)), �0 a small value added to ensure that we do not divide by zero,
A a free normalisation parameter, and BG the background level of Yd(φL,i). We treat the data as being cyclic
so we need to ensure that the model light curve is cyclic as well. The model light curve has to be re-binned
in order to have the same number of bins in φL as the data (Abdo et al., 2013). We use a Gaussian Kernel
Density Estimator function to rebin and smooth the model light curve (Parzen, 1962). Furthermore, we also
introduce the free parameter ΔφL which represents an arbitrary phase shift of the model light curve so as to
align the model and data peaks. We choose the phase shift ΔφL as a free parameter due to the uncertainty in
the definition of φL = 0 (see, e.g., Johnson et al., 2014 who also used A and ΔφL). Importantly, we note that
we have not changed the relative position (the radio-to-γ phase lag δ), since this is a crucial model prediction.
The radio and γ-ray emission regions are tied to the same underlying B-field structure, and δ therefore reflects
important physical conditions (or model assumptions) such as a difference in emission heights of the radio and
γ-ray beams.

After preparation of the model light curve, we searched for the best-fit solution for each of our B-field and
gap combinations over a parameter space of α ∈ [0◦, 90◦], ζ ∈ [0◦, 90◦] (both with 1◦ resolution), 0.5 < A < 1.5
with 0.1 resolution, and 0 < ΔφL < 1 with 0.05 resolution. For a chosen B-field and model geometry we iterate
over each set of parameters and search for a local minimum χ2 value at a particular α and ζ. Once we have
iterated over the entire parameter space (α,ζ,A,ΔφL), we obtain a global minimum value for χ2 (also called the
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optimal χ2):

χ2
opt ≈

Nbins�

i=1

�
Yd,i − Yopt,i

�2

Yd,i
. (3.15)

If faint pulsars are modelled, Poisson statistics will be sufficient to describe the observations. For the bright
Vela, however we assume Gaussian statistics which yields small errors, since the emission characteristics are
more significant than those of faint pulsars. However, these small errors on the data yield large values for the
reduced optimal χ2 value χ2

opt/Ndof � 1. We therefore need to rescale (to compensate for the uncertainty in
σm,i) the χ2 values by χ2

opt and multiply by the number of degrees of freedom Ndof (the difference between Nbins

and number of free parameters). The scaled χ2 is presented by (Pierbattista et al., 2015):

ξ2 = Ndof
χ2

χ2
opt
. (3.16)

From Eq. [3.16] the ξ2 for the optimal model are as follows

ξ2opt = Ndof
χ2

opt

χ2
opt
= Ndof , (3.17)

with ξ2opt/Ndof = ξ
2
opt,ν = 1 the reduced ξ2opt.

If one wishes to compare the optimal model to alternative models, e.g., in our case a B-field combined with
several geometric models, confidence contours for 68% (1σ), 95.4% (2σ), and 99.73% (3σ) can be constructed
by estimating the difference in the ξ2opt and the ξ2 of the alternative models:

Δξ2 = ξ2 − ξ2opt = Ndof
�
χ2/χ2

opt − 1
�
. (3.18)

The confidence intervals can be estimated by reading the Δξ2 (i.e., Δξ21σ,µdof
, Δξ22σ,µdof

, and Δξ23σ,µdof
) values from

a standard χ2 table for the specified confidence interval at µdof = 2 (corresponding to the two-dimensional (α, ζ)
grid, Lampton et al., 1976). Using these values for Δξ2 and ξ2opt = Ndof, we can determine ξ2 = ξ2opt + Δξ

2 =

Ndof + Δξ
2 (i.e., ξ21σ, ξ22σ, and ξ23σ) from Eq. [3.18], which is the value at which we plot each confidence

contour. To enhance the contrast of the colours on the filled χ2 contours, we plot log10ξ
2 on an (α,ζ) grid,

with a minimum value of log10ξ
2
opt = log10(Ndof) = 1.98 (corresponding to the best-fit solution by construction,

i.e., after rescaling, with Ndof = 100 − 4 = 96 in our study). The best-fit solution is therefore positioned at
ξ2opt = 96 and enclosed by the confidence contours with values of ξ21σ,µdof

= 96 + 2.30, ξ22σ,µdof
= 96 + 6.17, and

ξ23σ,µdof
= 96 + 11.8 (see Eq. [3.18]; Press et al., 1992). We determine errors on α and ζ for the best-fit solution

of each B-field and model combination using the 3σ interval connected contours. We choose errors of 1◦ for
cases when the errors were smaller than one degree (given a model resolution of 1◦). See Section 3.8.3 for the
best-fit solutions we obtained for the offset-PC dipole B-field and SG model solution for two cases, i.e., the
usual E-field, and this same E-field increased by a factor 100.
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Figure 3.5: Plot of log10 of −E�,high (solid cyan line), −E�,low (solid blue line), the general −E�,SG-field (using
ηc as the matching parameter; −E�,old, solid green line) and a corrected E-field in cases where a bump was
formed using the standard matching procedure (i.e., setting ηc = ηcut; −E�,new, dashed red line), gain rate
γ̇gain (solid yellow line), loss rate γ̇loss (solid magenta line), and the Lorentz factor γ (solid black line) as a
function of s/R. In each case we used α = 45◦, P = 0.0893 s, B0 = 1.05 × 1013 G (corrected for GR effects),
I = 0.4MR2 = 1.14 × 1045 g cm2, and ξ = 0.975 (i.e., ξ∗ = 0). On each panel we represent the curves for
� = 0 (thick lines) and � = 0.18 (thin lines). The first row is for the ‘typical’ E�-field whereas the second
row represents the E�-field increased by a factor 100. Each column is for a different field line, i.e., the first
column for “favourably curved” field lines (φPC = 0), the middle column for φPC = π/2, and the last panel for
“unfavourably curved” field lines (φPC = π). These choices reflect the values of φPC at the stellar surface; they
may change as the particle moves along the B-field line, since Bφ � 0.

3.8 Results

3.8.1 Particle transport and testing for curvature radiation reaction

Once we solved ηc (see Section 3.6.2), we could calculate the general E-field (E�,new) in order to solve the
particle transport equation (in the corotating frame) to obtain the particle energy γ(η, φ, ξ∗), necessary for de-
termining the CR emissivity. By rewriting Eq. [2.32] we obtain the following

γ̇ = γ̇gain + γ̇loss =
eE�,new

mec
− 2e2γ4

3ρ2
curvmec

=
1

mec2

�
ceE�,new − 2ce2γ4

3ρ2
curv

�
, (3.19)

with γ̇gain the gain (acceleration) rate, γ̇loss the loss rate, e the electron charge, me the electron mass, and mec2

the rest-mass energy; CRR (taking only CR losses into account) occurs when the energy gain balances the
losses and γ̇ = 0.

In Figure 3.5 we plot the log10 of −E�,high (solid cyan line), −E�,low (solid blue line), the general −E�,SG-field
(using ηc as the matching parameter; −E�,old, solid green line) and a corrected E-field in cases where a bump
was formed using the standard matching procedure (see Section 3.6.2, i.e., setting ηc = ηcut; −E�,new, dashed
red line), γ̇gain (solid yellow line), γ̇loss (solid magenta line), and γ (solid black line) as a function of s/R along
the B-field line. The top panels represents the usual SG E-field case and the bottom panels the increased E-field
case. For each case we show � = 0 (thick lines) and � = 0.18 (thin lines) on the same plot. As an example we
assume α = 45◦ for both cases in order to compare the two cases. We note that the values for φPC representing
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Figure 3.6: Phase plots (first column) and light curves (second column and onward) for the SG model assuming
an offset-PC dipole field, for a fixed value of � = 0.18 and variable �ν. Each phase plot is for a different α value
ranging from 0◦ to 90◦ with a 15◦ resolution, and their corresponding light curves are denoted by the solid red
lines for different ζcut values, ranging from 15◦ to 90◦, with a 15◦ resolution.

each column in the figure are actually values on the stellar surface and indicate different B-field lines.
In the top panels of Figure 3.5 we note that −E�,high displays the following behaviour at low η: for φPC =

0, −E��0
�,high > −E�=0

�,high; these are nearly equal for φPC = π/2, and −E��0
�,high < −E�=0

�,high for φPC = π. For
φPC = π/2, the first term of −E�,high dominates the second, and for φPC = π, the second term of −E�,high is
always negative, but the positive first term dominates and therefore −E�,high does not change sign as η increases.
Similar behaviour is also seen for −E�,low (boosted for non-zero � and φPC = 0). For α = 45◦, the second term
∝ sinα now contributes, stopping −E�,low from changing sign along η for φPC = 0 (vs. the case if α = 0). The
second term of −E�,low ∼ xa cos φPC is comparable to the first at low η, but quickly dominates as η increases for
φPC = 0. The second term of −E�,low remains positive so that we find ηc = 5.1 in this case (see Section 3.6.2).
For φPC = π/2 we note that −E��0

�,low becomes negative with η. For φPC = π, the second term of −E�,low is
negative, forcing this field to change sign; this change takes slightly longer to occur when � � 0. The fact that
−E�,high is positive leads to a “recovery” of the total E-field, so that it becomes positive again at larger η. The
effect of matching the E-field is seen in the evolution of γ(s) since γ is determined by E�.

For the usual SG E-field case we notice that the CRR limit is reached in some cases, but only at high
altitudes (the yellow and magenta lines reach the same value): e.g., beyond η ≈ RLC for φPC = 0 and α = 45◦.
We note the importance of actually solving ηc(P, Ṗ,α, �, ξ, φPC) on each B-field line. Previously we set ηc = 1.4
for all cases and found that the particles did not attain the CRR limit (Breed et al., 2014). Only when we
allowed larger values of ηc was −E�,low boosted and did we find particles reaching the CRR limit in many more
cases. The relatively low SG E-field leads to small caustics on the phase plots constructed for photon energies
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Figure 3.7: The same as in Figure 3.6, but for a lower Emin of 1 MeV.

> 100 MeV (see Section 3.8.2). Thus, we additionally investigate the effect of increasing the E-field.
In the CRR limit we can determine the CR cutoff of the CR photon spectrum as follows, using the formula

of Venter & De Jager (2010)
ECR ∼ 4E3/4

�,4 ρ
1/2
curv,8 GeV, (3.20)

with ρcurv,8 ∼ ρcurv/108 cm the curvature radius of the B-field line and E�,4 ∼ E�/104 statvolt cm−1 the E-field
parallel to the B-field. As a test, we multiply the E-field by a factor 100. Using Eq. [3.20] we estimate the
newly implied cutoff energy ECR ∼ 4 GeV, which is in the energy range of Fermi (>100 MeV). We note that a
higher E-field leads to CRR being reached at lower altitudes as seen in the bottom panels of Figure 3.5. This
also leads to extended caustic structures on these phase plots, resulting in qualitatively different light curve
shapes, as noted below (see Section 3.8.2).

3.8.2 Light curves in different wavebands

In Figure 3.6 we present phase plots and light curves for the offset-PC dipole B-field and � = 0.18, obtaining
a variable �ν(s) due to using an SG E-field solution (with CR the dominating process for emitting γ-rays; see
Sections 3.6). The caustic structure and resulting light curves are qualitatively different for various α compared
to the constant �ν case (see Figure 7 in Barnard et al. 2016). The caustics appear smaller and less pronounced for
larger α values (since E� becomes lower as α increases), and extend over a smaller range in ζ. If we compare
Figure 3.6 with the phase plots when � = 0 (see Figure 8 in Barnard et al. 2016), we note a new emission
structure close to the PCs for small values of α and ζ ≈ (0◦, 180◦). This reflects the boosted E�-field on the
“favourably curved” B-field lines (with E� ∝ xa cosα, with a = −�cos φPC and φPC = 0; see Figure 3.5). In
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Figure 3.8: The same as in Figure 3.6, but for the case where we multiplied E� by a factor 100, yielding a CR
cutoff of ECR ∼ 4 GeV.

Figure 3.6 there is also more phase space filled where the light curves generally display only one broad peak
with less off-peak emission due to this non-zero �. As α and ζ increase, more peaks become visible, with
emission still visible from both poles as seen for larger α and ζ values, e.g., α = 75◦ and ζ = 75◦.

If we compare Figure 3.6 with the case of constant �ν (see Figure 7 in Barnard et al. 2016), we notice that
when we take E� into account the phase plots and light curves change considerably. For example, for α = 90◦

in the constant �ν case a “closed loop” emission pattern is visible in the phase plot, which is different compared
to the small “wing-like” emission pattern in the variable �ν case. Therefore we see that both the B-field and
E-field have an impact on the predicted light curves. This small “wing-like” caustic pattern is due to the fact
that we only included photons in the phase plot with energies > 100 MeV. Given the relatively low E-field there
are only a few photons with energies exceeding 100 MeV.

Since the SG E-field (see Section 3.6) is low, CRR is reached in most cases but only at high η and small α
(Section 3.8.1). This low E-field also causes the phase plots to display small caustics which result in “missing
structure”. Therefore, we investigate the effect on the light curves of the offset-PC dipole B-field and SG model
combination when we lower the minimum photon energy Eγ,min from 100 MeV to 1 MeV above which we
construct phase plots. For our given SG E-field with a magnitude of E� ∼ 102 statvolt cm−1 the estimated
cutoff is ECR ∼ 90 MeV. This leads to pulsar emission being emitted in the hard X-ray waveband, and can not
be compared via χ2 to Fermi (>100 MeV) data for the Vela pulsar. As an illustration, we present the phase
plots and light curves in Figure 3.7 for � = 0.18 and Eγ,min > 1 MeV. If we compare Figure 3.7 with Figure 3.6
we notice that a larger region of phase space is filled by caustics, especially at larger α, e.g., at α = 90◦ the
visibility is enhanced. The peaks are also wider at low α. Sometimes extra emission features appear, leading to
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small changes in the light curve shapes.
We present the phase plots and light curves for this larger E-field (the usual one multiplied by a factor of

100) in Figure 3.8 for the offset-PC dipole and SG model solution with � = 0.18. If we compare Figure 3.8 with
Figure 3.6 we notice that more phase space is filled by caustics, especially at larger α. At α = 90◦ the visibility
is again enhanced. The caustic structure becomes wider and more pronounced, with extra emission features
arising as seen at larger α and ζ values. This leads to small changes in the light curve shapes. At smaller α
values the emission around the PC forms a circular pattern that becomes smaller as α increases. These rings
around the PCs become visible since the low E-field is boosted, leading to an increase in bridge emission as
well as higher signal to noise. At low α the background becomes feature-rich, but not at significant intensities,
though.

3.8.3 χ2(α, ζ) contours and best-fit light curves

In this Section, we present our best-fit solutions of the simulated light curves using the Vela data from Fermi.
We plot some example contours of log10ξ

2 (colour bar) as well as the optimal (α,ζ) combination. We determine
errors on α and ζ for the optimal solution of each B-field and gap model combination using a bounding box
delimited by a minimum and maximum value in both α and ζ which surrounds the 3σ contour (see enlargement
in bottom left corner of contour). We choose errors of 1◦ for cases when the errors were smaller than 1◦ (given
our chosen resolution of 1◦) and indicate our overall best statistical fit for a certain model combination by a
white star.

In Figure 3.9 (top panel left) we present our significance contour log10ξ
2 for an SG model using an offset-PC

dipole field, with � = 0.15 and a variable �ν. The corresponding light curve fit of the model (solid red line) for
the best-fit geometry to the Vela data (blue histogram) is also shown (Figure 3.9 top panel, right). The observed
light curve represents weighted counts per bin as function of normalised phase φL = [0, 1] (Abdo et al., 2013).
For this combination, we find a best-fit solution at α = 76+3

−1
◦, ζ = 48+15

−11
◦, A = 0.7, and ΔφL = 0.55. The

model light curve yields a reasonable fit to the Vela data, exhibiting distinct qualitative features including the
two main peaks at the same phases, as seen in the Vela data. The peaks are lower than expected (constrained
by the low level of off-peak emission, i.e., the χ2 prefers a small value for A), with the first peak being very
broad and a small bump preceding the second peak when compared to the data. We also obtained a better
χ2 best-fit solution for this larger E-field compared to the usual one, for � = 0.00 at α = 75+3

−1, ζ = 51+2
−5,

A = 1.1, and ΔφL = 0.55. In Figure 3.9 (bottom panels) we show our significance contour log10ξ
2 and its

corresponding best-fit light curve. This offset-PC dipole B-field (with � = 0 reduces to the static dipole field)
and SG model for an increased E-field therefore provides an overall optimal fit, second only to the RVD and
OG model combination (see Figure 3.10).

3.9 Comparison of best-fit parameters for different models

We followed the same approach as Pierbattista et al. (2015) to compare the various optimal solutions of the
different models, in two ways: (i) per B-field and model combination, and (ii) overall (for all B-field and model
combinations). We determine the difference between the scaled5 χ2 of the optimal model, ξ2opt and the other
models (ξ2) using Eq. [3.18], substituting Ndof = 96, as summarised in Table 3.1. The best-fit parameters for
each B-field and geometric model combination, including the case for 100E�, are summarised in Table 3.1.
The Table includes the different model combinations, the optimal unscaled χ2 value for each combination,
the best-fit free parameters with 3σ-errors on α and ζ, and the comparison between models per B-field (Δξ2B)
and overall (Δξ2all, with Δξ2 = 0 representing the best-fit solution for each B-field or the overall optimal fit;
Pierbattista et al., 2015). We also include several multi-wavelength independent fits (all for the Vela pulsar).

5We therefore first scale the χ2 values using the optimal value obtained for a particular B-field, and second we scale these using the
overall optimal value irrespective of B-field.
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L

Figure 3.9: Contour plots (left) and the corresponding best-fit light curves (right) for each of the best-fit
solutions we obtained for the offset-PC dipole B-field and SG model solution, for the two separate cases: for
the usual SG E-field and variable �ν with � = 0.15 (top panels), and for the higher SG E-field and variable �ν
with � = 0 when we multiplied the E� by a factor 100 (bottom panels). The contours are on an (α,ζ) grid with
the colour bar representing log10 ξ

2, with 1.98 corresponding to the best-fit solution, indicated by the white
star. The confidence contour for 1σ (magenta line), 2σ (green line), and 3σ (red line) are also shown with an
enlargement in the bottom left corner. The blue histogram denotes the observed Vela pulsar profile (for energies
E > 100 MeV, Abdo et al., 2013) and the red line the model light curve.

In Figure 3.10 we label the different B-field structures assumed in the various models as well as the overall
comparison along the x-axis, and plot Δξ2B and Δξ2all on the y-axis. We represent the TPC geometry with a circle,
the OG with a square, and for the offset-PC dipole field we represent the various � values for constant �ν by
different coloured stars, for variable �ν by different coloured left pointing triangles, and for the case of 100E�
by different coloured upright triangles, as indicated in the legend. The dashed horizontal lines indicate our
confidence levels we obtained by calculating the expected Δξ2 values using an online χ2 statistical calculator6

for Ndof = 96 degrees of freedom7, i.e., using p-values of p1σ = 1−0.682, p2σ = 1−0.954, and p3σ = 1−0.9973.
We found critical values of Δξ2 = 102.06 (1σ), 120.60 (2σ), and 139.05 (3σ) respectively. These confidence

6http://easycalculation.com/statistics/critical-value-for-chi-square.php
7We note that Pierbattista et al. (2015) assumed that Δξ2 follows a χ2 distribution with Ndof degrees of freedom. We will follow

this approximation here, assuming that the best-fit model provides a good fit to the observed light curves. The degrees of freedom may
in reality slightly differ, however, and the matter is complicated by the fact that we want to statically compare non-nested models. A
Monte Carlo approach would be preferable to find these significance levels. However, our main conclusions will not change for slight
changes in these levels (which may be different for each B-field and model combination), and so we do not pursue this matter any
further.
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Figure 3.10: Comparison of the relative goodness of the fit of solutions obtained for each B-field and geometric
model combination, including the case of 100E�, as well as all combinations compared to the overall best fit,
i.e., RVD B-field and OG model (shown on the x-axis). The difference between the optimum and alternative
model for each B-field is expressed as Δξ2B, and for the overall fit as Δξ2all (shown on the y-axis). The horizontal
dashed lines indicate the 1σ, 2σ, and 3σ confidence levels. Circles and squares refer to the TPC and OG models
for both the static dipole and RVD. The stars refer to the TPC (constant �ν) and the left pointing triangles present
the SG (variable �ν) model for the offset-PC dipole field, for the different � values. The upright triangles refer
to our SG model and offset-PC dipole case for a larger E-field (100E�). The last column shows our overall fit
comparison (see legend for symbols).

levels are used as indicators of when to reject or accept an alternative fit compared to the optimum fit. The last
column represents fits for all models, irrespective of B-field.

For the static dipole field the TPC model gives the optimum fit and the OG model lies within 1σ, implying
that the OG geometry may provide an acceptable alternative fit to the data in this case. For the RVD field the
TPC model is significantly rejected beyond the 3σ level (not shown on plot), and the OG model is preferred. We
show three cases for the offset-PC dipole field, including the TPC model assuming constant �ν, the SG model
assuming variable �ν, and the latter with an E�-field increased by a factor 100. The optimal fits for the offset-PC
dipole field and TPC model reveal that a smaller offset (�) is generally preferred for constant �ν, while a larger
offset is preferred for variable �ν (but not significantly), with all alternative fits falling within 1σ. However,
when we increase E�, a smaller offset is again preferred for the SG and variable �ν case. When we compare all
model and B-field combinations with the overall best fit (i.e., rescaling the χ2 values of all combinations using
the optimal fit involving the RVD B-field and OG model), we notice that the static dipole and TPC model falls
within 2σ, whereas the static OG model lies within 3σ. We also note that the usual offset-PC dipole B-field and
TPC model combination (for all � values) is above 1σ (with some fits < 2σ), but the offset-PC dipole B-field
and SG model combination (for all � values) is significantly rejected (> 3σ). However, the case of the offset-PC
dipole field and a higher SG E� for all � values leads to a recovery, since all the fits fall within 2σ and delivers
an overall optimal fit for � = 0, second only to the RVD and OG model fit.

Several multi-wavelength studies have been performed for Vela, using the radio, X-ray, and γ-ray data, in
order to find constraints on α and ζ. We only fit the γ-ray light curve, because we did not want to bias our results
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Table 3.1: Best-fit parameters for each B-field and geometric model combination

Combinations
Models � χ2 α ζ A ΔφL Δξ2B Δξ2all

Static dipole B-field:
TPC ... 0.819 73+3

−2 45+4
−4 1.3 0.55 0.00 108.75

OG ... 0.891 64+5
−3 86+1

−1 1.3 0.05 8.44 126.75
RVD B-field:
TPC ... 3.278 54+5

−5 67+5
−3 0.5 0.05 723.50 723.50

OG ... 0.384 78+1
−1 69+2

−1 1.3 0.00 0.00 0.00
Offset-PC dipole B-field for constant �ν:
TPC 0.00 0.819 73+3

−2 45+4
−4 1.3 0.55 0.00 108.75

0.03 0.834 73+2
−2 43+4

−5 1.3 0.55 1.76 112.50
0.06 0.867 73+2

−2 42+5
−5 1.3 0.55 5.63 120.75

0.09 0.882 73+1
−2 41+3

−5 1.3 0.55 7.39 124.50
0.12 1.000 74+1

−3 42+3
−6 1.4 0.55 21.22 154.00

0.15 0.948 73+1
−2 39+3

−5 1.4 0.55 15.12 141.00
0.18 0.969 73+2

−3 37+4
−4 1.3 0.55 17.58 146.25

Offset-PC dipole B-field for variable �ν:
SG 0.00 1.587 21+3

−3 71+1
−1 0.5 0.85 40.52 300.75

0.03 1.627 73+1
−1 17+4

−3 0.7 0.55 43.96 310.75
0.06 1.525 72+2

−1 14+5
−1 0.5 0.60 35.18 285.25

0.09 1.452 73+1
−1 17+3

−1 0.6 0.55 28.90 267.00
0.12 1.437 74+1

−1 27+1
−7 0.8 0.55 27.61 263.25

0.15 1.116 76+3
−1 48+15

−11 0.7 0.55 0.00 183.00
0.18 1.119 75+2

−1 40+6
−4 0.5 0.55 0.26 183.75

Offset-PC dipole B-field for variable �ν (100Eγ):
SG 0.00 0.581 75+3

−1 51+2
−5 1.1 0.55 0.00 49.27

0.03 0.634 75+2
−2 49+5

−5 1.1 0.55 8.73 62.48
0.06 0.698 75+3

−3 49+5
−6 1.1 0.55 19.39 78.61

0.09 0.774 75+3
−3 50+5

−9 1.1 0.55 31.90 97.54
0.12 0.789 77+2

−3 54+2
−8 1.1 0.55 34.42 101.36

0.15 0.845 77+2
−4 55+1

−14 0.9 0.55 43.62 115.28
0.18 0.834 78+1

−2 55+1
−5 0.8 0.55 41.80 112.51

RVM 1 53 59.5
X-ray torus 2 63.6+0.07

−0.05
RVD & TPC 3 62–68 64
RVD & OG 3 75 64
RVD & Symmetric SG 4 44+4

−1 54+1
−5

RVD & Asymmetric SG 4 65+1
−2 65.5+2

−1
RVD & OG 4 88+2

−3 66.5+1
−1

FF & Symmetric SG 4 15+1
−1 68.5+1

−1
FF & Asymmetric SG 4 55+10

−20 54.5+4
−14

FF & OG 4 80+1
−1 53+1

−1
RVD & PC 5 3+2

−3 4+2
−2

RVD & SG 5 45+2
−2 69+2

−2
RVD & OG 5 71+2

−2 83+2
−2

RVD & OPC 5 56+2
−2 77+2

−2

Note. The table summarises the best-fit parameters α, ζ, A, and ΔφL, for each model combination, with the errors on α
and ζ determined by using the 3σ interval connected contours. We chose a minimum error of 1◦ if the confidence contour
yielded smaller errors. We included the unscaled χ2 to indicate which geometry yields the optimal fit to the Vela data (i.e.,
the OG model and RVD B-field). We included other multi-wavelength fits in the second part of the table.
References. 1 Johnston et al., 2005; 2 Ng & Romani, 2008; 3 Watters et al., 2009; 4 DeCesar, 2013; and 5 Pierbattista
et al., 2015.



CHAPTER 3. AN OFFSET-PC B-FIELD GEOMETRY 54

Figure 3.11: Comparison between the best-fit α and ζ, with errors, obtained from this and other multi-
wavelength studies. Each marker represents a different case as summarised in Table 3.1, with the unscaled
χ2 (×105) value of our fits indicated. For the offset-PC dipole, for both the TPC and SG models we indicate the
average χ2 value over the range of �. We also show our fits for the offset-PC dipole and SG model case with a
larger E�. The two black arrows indicate the shift of the best fits to larger α and ζ if we increase our SG E-field
by a factor 100. The shaded region contains all the fits that cluster at larger α and ζ values.

by using a geometric radio emission model (DeCesar, 2013). However, Johnston et al. (2005) determined the
radio polarisation position angle from polarisation data by applying a rotating vector model (RVM) fit to the
data finding best-fit values of α = 53◦ and ζ = 59.5◦, with an impact angle of β = ζ − α = 6.5◦. Ng & Romani
(2008) applied a torus-fitting technique (Ng & Romani, 2004) to fit the Chandra data in order to constrain
the Vela X pulsar wind nebula (PWN) geometry, deriving a value of ζ = 63.6+0.07

−0.05
◦ represented by the dashed

black line in Figure 3.11. Watters et al. (2009) modelled light curves using the PC, TPC, and OG geometries
in conjunction with an RVD field, thereby constraining the geometrical parameters α, ζ, and also finding small
β in the case of the PC model. They found a good fit for their TPC model at α = 62◦ − 68◦ and ζ = 64◦,
and for the OG geometry at α = 75◦ and ζ = 64◦. We find that our best-fit values for the RVD field, for both
the TPC and OG models, are in good agreement with those found by Watters et al. (2009). DeCesar (2013)
followed a similar approach to ours, but for the RVD and FF B-fields combined with emission geometries such
as the SG (symmetric and asymmetric cases) and OG. They have different free model parameters including α,
ζ, w (gap width), and Rmax (maximum emission radius), and determined errors on their best fits using the 3σ
confidence intervals. They found best-fit solutions for the RVD and OG model at α = 88+2

−3
◦ and ζ = 66.5+1

−1
◦,

which is within 10◦ or less compared to our best-fit solution. Their overall best fit was for the FF B-field and
OG geometry, with α = 80+1

−1
◦ and ζ = 53+1

−1
◦. Pierbattista et al. (2015) found a best-fit solution for Vela

using the RVD field and OG model combination at α = 71+2
−2
◦ and ζ = 83+2

−2
◦, with ζ exceeding the best-fit

solution we found by nearly 15◦. However, they fit both the γ-ray and radio light curves, which may explain
this discrepancy. We summarise all these multi-wavelength fits and more in Table 3.1.

We graphically summarise the best-fit α and ζ, with errors, from this and other works in Figure 3.11. We
notice that the best fits generally prefer a large α or ζ or both. It is encouraging that many of the best-fit
solutions lie near the ζ inferred from the PWN torus fitting (Ng & Romani, 2008), notably for the RVD B-
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field. A significant fraction of fits furthermore lie near the α− ζ diagonal, i.e., they prefer a small impact angle,
probably due to radio visibility constraints (Johnson et al., 2014). For an isotropic distribution of pulsar viewing
angles, one expects ζ values to be distributed as sin(ζ) between ζ = [0◦, 90◦], i.e., large ζ values are much more
likely than small ζ values, which seems to correspond to the large best-fit ζ values we obtain. There seems to
be a reasonable correspondence between our results obtained for geometric models and those of other authors,
but less so for the offset-PC dipole B-field, and in particular for the SG E-field case. The lone fit near (20◦, 70◦)
may be explained by the fact that a very similar fit, but one with slightly worse χ2, is found at (50◦, 80◦). If
we discard the non-optimal TPC / SG fits, we see that the optimal fits will cluster near the other fits at large α
and ζ. Although our best fits for the offset-PC dipole B-field are clustered, it seems that increasing � leads to a
marginal decrease in ζ for the TPC model (light green) and opposite for SG (dark green), but not significantly
(see Table 3.1). For our increased SG E-field case (brown) we note that the fits now cluster inside the grey area
above the fits for the static dipole and TPC, and offset-PC dipole for both the TPC and SG geometries.

3.10 Conclusion

We investigated the impact of different magnetospheric structures on predicted γ-ray pulsar light curve charac-
teristics. We extended our code which already included the static dipole and RVD B-fields, by implementing an
additional B-field, i.e., the symmetric offset-PC dipole field (Harding & Muslimov, 2011a,b) characterised by
an offset � of the magnetic PCs. We also included the full accelerating SG E-field corrected for GR effects up to
high altitudes. For the offset-PC dipole field we only considered the TPC (assuming uniform �ν) and SG (mod-
ulating the �ν using the E-field) models, since we do not have E-field expressions available for the OG model
for this particular B-field. We matched the low-altitude and high-altitude solutions of the SG E� by determining
the matching parameter ηc(P, Ṗ,α, �, ξ, φPC) on each field line in multivariate space. Once we calculated the
general E-field we could solve the particle transport equation. This yielded the particle energy γ(η), necessary
for determining the CR �ν and to test whether the CRR limit is attained. For the case of a variable �ν, we found
that the CRR limit is reached for many parameter combinations (of α, � and φPC; see Figure 3.5), albeit only at
large η. A notable exception occurred at large α where the first term of each E-field expression (e.g., Eq. [3.10]
and [3.11]) became lower and the second term played a larger role, leading to smaller gain rates and therefore
smaller Lorentz factors γ.

We concluded that the magnetospheric structure and emission geometry have an important effect on the
predicted γ-ray pulsar light curves. However, the presence of an E-field may have an even greater effect than
small changes in the B-field and emission geometries: When we included an SG E-field, thereby modulating
�ν, the resulting phase plots and light curves became qualitatively different compared to the geometric case.

We fit our model light curves to the observed Fermi-measured Vela light curve for each B-field and geomet-
ric model combination. We found that the RVD field and OG model combination fit the observed light curve
the best for (α, ζ, A,ΔφL) = (78+1

−1
◦
, 69+2
−1
◦
, 1.3, 0.00) and an unscaled χ2 = 3.84 × 104. As seen in Figure 3.10,

for the RVD field an OG model is significantly preferred over the TPC model, given the characteristically low
off-peak emission. For the other field and model combinations there was no significantly preferred model (per
B-field), since all the alternative models may provide an acceptable alternative fit to the data, within 1σ. The
offset-PC dipole field for constant �ν favoured smaller values of �, and for variable �ν larger � values, but not
significantly so (< 1σ). When comparing all cases (i.e., all B-fields), we noted that the offset-PC dipole field
for variable �ν was significantly rejected (> 3σ).

We further investigated the effect which the SG E� had on our predicted light curves in two ways. First, we
lowered the minimum photon energy from Eγ,min = 100 MeV to Eγ,min = 1 MeV, leading to emission in the
hard X-ray waveband. We noted new caustic structures and emission features on the resulting phase plots and
light curves that were absent when Eγ,min > 100 MeV. Since we wanted to compare our model light curves to
Fermi data we increased the usual low SG E-field by a factor of 100 (with a spectral cutoff ECR ∼ 4 GeV). When
solving the particle transport equation, we noticed that the CRR limit is now reached in most cases at lower
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η. The increased E-field also had a great impact on the phase plots, e.g., extended caustic structures and new
emission features as well as different light curve shapes emerged. We also compared the best-fit light curves
for the offset-PC dipole B-field and 100E� combination for each � (Figure 3.10) and noted that a smaller � was
again preferred (although not significantly; < 1σ). However, when we compared this case to the other B-field
and model combinations, we found statistically better χ2 fits for all � values with an optimal fit at α = 75+3

−1
◦,

ζ = 51+2
−5
◦, A = 1.1, and ΔφL = 0.55 for � = 0, being second in quality only to the RVD and OG model fit.

We graphically compared the best-fit α and ζ, with errors, from this and other works in Figure 3.11. We
noted that many of the best-fit solutions cluster inside the grey area at larger α and ζ. Some fits lie near the
α− ζ diagonal (possibly due to radio visibility constraints in some cases) as well as near the ζ inferred from the
PWN torus fitting (Ng & Romani, 2008), notably for the RVD B-field. There was reasonable correspondence
between our results obtained for geometric models and those of other independent studies. When we discarded
the non-optimal TPC / SG fits, we saw that the optimal fits clustered near the other fits at large α and ζ. For
our increased SG E-field and offset-PC dipole combination (brown) we noted that these fits clustered at larger
α and ζ.

There have been several indications that the SG E-field may be larger than initially thought. For example,
(i) population synthesis studies found that the SG γ-ray luminosity may be too low, pointing to an increased
E-field and / or particle current through the gap (e.g., Pierbattista et al., 2015). Furthermore, if the E-field is
too low, one is not able to reproduce the (ii) observed spectral cutoffs of a few GeV (Section 3.8.2; Abdo et al.,
2013). We found additional indications for an enhanced SG E-field. A larger E-field (increased by a factor of
100) led to (iii) statistically improved χ2 fits with respect to the light curves. Moreover, the inferred best-fit
α and ζ parameters for this E-field (iv) clustered near the best fits of independent studies. We additionally
observed that a larger SG E-field also (v) increased the particle energy gain rates and therefore yielded a larger
particle energy γ (giving CR that is visible in the Fermi band) as well as leading to a CRR regime already close
to the stellar surface. These evidences may point to a reconsideration of the boundary conditions assumed by
Muslimov & Harding (2004a) which suppressed the E� at high altitudes. They assumed equipotentiality of
the SG boundaries as well as the steady state drift of charged particles across the SG B-field lines, implying
E⊥ ≈ 0 at high-altitudes, with the flux of charges remaining constant up to high altitudes. One possible way
to bring self-consistency may be implementation of the newly developed FIDO model that includes global
magnetospheric properties and calculates the B-field and E-field self-consistently.

We envision several future projects that may emanate from this study. One could continue to extend the
range of � for which our code finds the PC rim, since more complex field solutions, e.g., the dissipative and FF
field structures, may be associated with larger PC offsets. However, the offset-PC dipole solutions have limited
applicability to outer magnetosphere emission since they use the static dipole frame and do not model the field
line sweep back. Therefore, it would be preferable to investigate the B-fields and E-fields of more complex
B-field models (see Sections 2.6 and 2.7) and solve the transport equation to test if the particles reach the CRR
limit. The effect of these new fields on the phase plots and light curves can also be studied. There is also
potential for multi-wavelength studies, such as light curve modelling in the other energy bands, e.g., combining
radio and γ-ray light curves (see Seyffert et al., 2010, 2012; Pierbattista et al., 2015). One could furthermore
model energy-dependent light curves, such as those available for Vela and other bright pulsars using Fermi data
(e.g., Abdo et al., 2009). Lastly, model phase-resolved spectra can be constructed which is an important test of
the E�-field magnitude and spatial dependence.

In the next Chapter we will discuss the technical details of the emission modelling code (Harding & Kalapotharakos,
2015; Harding et al., 2018) used in the rest of this study. This emission code is an extension of the geometric
code discussed in Section 3.3 and include a FF solution in a SG model scenario. Since we focus on the particle
emission from CR (Section 2.4.3), we also refined the radius of curvature of the particle trajectories.



Chapter 4

Model description: code setup and
refinements

In this thesis, I modelled pulsar emission by investigating energy-dependent light curves and spectra using a
full emission code. In this Chapter, I specifically discuss the technical details of this emission code, the porting
and local implementation of it, and how I was able to obtain the results presented in Chapter 5. Additionally,
I will give a summary of Harding et al. (2018) in Chapter 6, since those results accompany those in Chapter 5.
In Section 4.1, we give a brief description of the pulsar emission code and the calibration thereof follows
in Section 4.2. Section 4.3 gives a brief description of the parallelised version of the emission code; this is
followed by Section 4.4 where I describe a more accurate computation of the particle trajectories and their radii
of curvature ρc. Section 4.5 summarises the main conclusions.

4.1 An SSC emission modelling code

Harding et al. (2008) used a 3D optical to γ-ray emission model in an SG scenario including two particle
populations, i.e., primaries (leptons) being accelerated from the stellar surface up to altitudes of RLC, as well as
non-accelerated electron-positron pairs radiated up to the same altitudes as the primaries. This model is based
on the geometric model of Dyks et al. (2004a) that assumed an RVD solution for the B-field (see Section 2.6, 3.3,
and 3.5). The open volume coordinates rovc and lovc are associated with the radial (i.e., rings) and azimuthal (i.e.,
arc length along each ring measured in the direction of increasing φPC) coordinates, respectively, as mentioned
in Chapter 3. They also explore the geometry of the radio emission in relation to that of the HE emission.
They included radiation from a geometric radio emission beam model that consists of a core and a single cone
(Rankin, 1993; Gonthier et al., 2004), in order to compute the intensity and angles of radio photons necessary
for the cyclotron absorption /synchrotron emission component. The primary particles are injected at the stellar
surface and are accelerated along the B-field lines in a SG region bounding the last open field lines via a low and
high-altitude SG E-field, that are combined to obtain a total SG E-field over all altitudes (see Section 3.6 and
equations therein). In this model, the SG reaches altitudes of RLC. The electron-positron pairs are produced in
PC and SG pair cascades following from the accelerated primaries. They investigated the CR from primaries,
SR from both primaries and pairs that undergo cyclotron resonant absorption of radio photons and produce
significant increases in pitch angle, as well as nonresonant ICS of radio photons (see Section 2.4 for detailed
discussions about radiation mechanisms). They followed the same particle dynamics calculation as Harding
et al. (2005) but added the CR loss and resonant absorption terms. Due to the large acceleration and SR loss
rates the ICS were neglected for the primary particles and the pairs. This resulted in a broadband spectrum
ranging from infrared to HE γ-rays. There is no SSC calculation considered in this model, however the model
of Harding & Kalapotharakos (2015) does include this radiation component. The model of Harding et al. (2018)
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is based on that of Harding & Kalapotharakos (2015), including extended energy rangy ranges.
Using the emission model of Harding & Kalapotharakos (2015), we study the full particle acceleration

and focus on the CR emission component. The model assumes a 3D FF B-field as the basic magnetospheric
structure. This solution (formally assuming an infinite plasma conductivity, so that the E-field is fully screened)
serves as a good approximation to the geometry of field lines implied by the dissipative models that require
a high conductivity in order to match observed γ-ray light curves (Kalapotharakos et al., 2012c, 2014; Li
et al., 2012). This model is an extended version of the model first used by Harding et al. (2008) with the PC
rim (Section 3.5) being determined in a similar fashion for this FF B-field structure. Both primary particles
and electron-positron pairs are injected at the stellar surface. The primaries radiate CR and some of these γ-
ray photons are converted into pairs in the intense B-fields close to the star. Using an independent code, we
calculate a PC pair cascade that develops, since primaries and pairs radiate SR as well as CR that are converted
into electron-positron pairs, leading to further generations of particles with lower energies. The primaries are
injected with a low initial speed and are further accelerated along the B-field lines by a constant parallel E-field
E� that is parallel to the local B-field lines (used as a free parameter in this model) in an extended SG and current
sheet scenario near the last open field lines. In this model, the SG extends beyond RLC into the current sheet,
reaching altitudes of up to r = 2RLC. All calculations are performed in the laboratory frame. In order to explain
the VHE emission seen from pulsars they included an SSC component (involving energetic primaries and pair
SR) which could reproduce the spectral flux level as observed by MAGIC and VERITAS (see Section 1.1).

Harding et al. (2018) adapted the emission code of Harding & Kalapotharakos (2015) further by updating
the CR component to a SC radiation component, as well as a two step accelerating E-field, i.e., E� inside the
light cylinder and E� beyond the light cylinder and into the current sheet, as motivated by results of global MHD
and PIC pulsar models. Our contribution was an improved calculation of the particle trajectories and their ρc’s.
They presented the broadband spectrum of Vela ranging from infrared (IR) to beyond 10 TeV energies, thereby
explaining the TeV emission recently observed by H.E.S.S. (see Chapter 6 for more details). In Chapter 5 I
focus on the GeV spectrum and energy-dependent CR light curves from the primary particles using the model
of Harding & Kalapotharakos (2015). Additionally, we included the two-step E� to study the effect thereof on
the light curves and spectra. In Chapter 6 I will give a short summary of my contribution to the work published
in Harding et al. (2018), which includes the refined ρc discussed in Section 4.4.

4.2 Calibration of the code

Before the implementation of a refined ρc, I first calibrated the emission code, since it is an essential compo-
nent of evaluating and excluding any uncertainties in the predictions and estimates. I investigated the spectral
output obtained by comparing it with the original data (from our collaborators), using the same version of
the code paired with different compilers. The different choices of compilers produced variations in the model
simulations.

As a test case, I studied the variations in spectra, for the Crab pulsar, for two calculations of the observer
angle ζ. Using the z-component (z�(s)) of the velocity of the particle as a function of s, we calculated ζ =
arccos(z�(s)), and second, we used a linear calculation ζ = (−π/2z� + π/2). Later, I made a cut on ζ so that the
predictions would be observer-specific (characterised by ζcut). Thus, different implementations of the emission
direction of individual photons would influence what a particular observer at a constant ζ would see. This was
to test whether the implementation of the inverse cosine had any impact on the predicted spectrum.

The impact of the compiler choice is illustrated in Figure 4.1 showing the phase-averaged CR spectra for
different compilers assuming α = 45◦, ζcut = 50◦, as well as that the emission originates from primary particles
only. In Figure 4.1 I choose compilers such as GCC, ICC, MVS, and CLANG, for both colatitude calculations.
Additionally, I considered for some compilers the optimised and non-optimised cases to further investigate the
effect thereof on the calculations. The legend indicates our combination choices, where no letter denotes the
simulations done by us and letters A and Z those done by two collaborators. The spectra for the two colatitude



CHAPTER 4. MODEL DESCRIPTION: CODE SETUP AND REFINEMENTS 59

Figure 4.1: An example of the phase-averaged CR spectra for the Crab pulsar assuming α = 45◦ and ζcut = 50◦.
Each curve represents a combination of a compiler with a different calculation of the colatitude, i.e., linear and
inverse cosine. The letters A and Z refer to the results obtained by our collaborators using other compilers.

calculations, regardless of the compiler choice, are distinctively different. However, two exceptions are the
MVS and the optimised ICC compilers, both for the inverse cosine case. For the linear case, the photon flux is
lower than that of the inverse cosine case. Since the emission code uses the inverse cosine calculation and the
output for the majority of compilers agree, I opted for the compiler that yielded results consistent with those of
our collaborators, i.e., GCC.

Another element of calibration is the resolution of the simulations. This is especially important when
constructing results since the emission is followed along each B-field line. Thus the more field line footpoints
there are on the PC, the more emission there is, resulting in better quality phase plots, light curves, and spectra.
To investigate the effect the resolution of the model has on its accuracy, I constructed phase plots for different
grid sizes of azimuthal divisions and the number of rings (self-similar to the PC rim; see Section 3.5). As an
example I illustrate the phase plots for Vela assuming α = 75◦, ζcut = 65◦, and a constant accelerating E�-field,
i.e., eE�/mec2 = 0.25 cm−1. In Figure 4.2 I illustrate the effect on the phase plots for four different resolutions.
The top panels are for a fixed amount of azimuthal divisions, but different amount of rings. The bottom panels
are for a different amount of azimuthal divisions, but fixed amount of rings. If more rings are added there is
more emission that accumulates to form the caustics, thus they appear brighter. This is also the case when
adding more azimuthal bins, although the effect is not as prominent as in the former case. We set the resolution
to 360 azimuthal bins and 7 rings for the results in the Chapter 5, since the shape as well as the emission quality
are reasonable for these choices.

4.3 Running the code on a cluster

The emission code described in Section 4.1 is available in both a serial and parallelised version, with a major
difference in the structure of each code. The parallelised code (hereafter referred to as the parallel code) consists
of several parts to ensure it is computationally effective. Thus, the radiation by particles injected on different
field lines were computed in a distributed and independent fashion, and only later is the emission from all
particles accumulated in a phase plot.

We calibrated the serial and parallel codes to minimise differences in the separate codes and to ensure that
new implementations were not missed. We made some alterations to the parallel code in order to generate
simulations on our local cluster, i.e., at the NWU, Potchefstroom. These modifications include

• The compiler needed for the code is mpiicpc, however the local cluster uses the intel/ mpi compiler.
Thus, the code was slightly adapted, but the outputs were carefully calibrated against the original code.
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Figure 4.2: An example of the phase plots for the Vela pulsar assuming α = 75◦ and ζcut = 65◦. Each phase
plot is for a different resolution, i.e., number of azimuthal divisions and number of rings. Top panels are for
same amount azimuthal divisions, but increasing number of rings. Bottom panels are for different azimuthal
divisions but same amount of rings.

• The original job script uses a Portable Batch System scheduler, i.e., computer software that performs
job scheduling with the primary responsibility to allocate computational tasks on a high-performance
computer. However, the local cluster uses a different job scheduler namely the Sun Grid Engine. The
main difference between the two schedulers is the operation of each.

• We encountered memory issues caused by large dimensional arrays. We reduced the memory consump-
tion significantly and this will be discussed below.

The parallel code uses the mpiicpc compiler on the Discover1 cluster. The serial code is split up in parts
and then parallelised. The ∗.sh files are needed to submit and run the job on the system. The script and code
need to be tailored to each system. However, several of the parameters like rmin

ovc , rmax
ovc , the number of azimuthal

divisions, and the number of rings are set in this file and override what is set in the main code. The code
apportion subcalculations to the number of processors one specifies when you submit the job.

The parallelisation of the code involved splitting the serial code into different parts and then using a Makefile
to compile and create the executable file. All these different parts of code, each serving a specific purpose, are
called in the main code. The local cluster has two different directories. The home directory handles smaller files
such as the source code and sample job script, whereas the scratch directory handles large amounts of data.

In the parallel code the emission of an electron is calculated and then distributed to all frequency bins,
requiring write access to all frequency bins. Since it is binning emission in Eγ, φL, and ζ bins, huge ‘sky cubes’
are produced from which the light curves and spectra are constructed. We take the pair spectrum as an input
(calculated by another code) and then focus on the emission properties. In principle this should allow us to
parallelise the code more easily, since we can distribute the individual B-field lines (spatial parts of the grid,
i.e., stellar surface). Basically, the emission code distributes B-field lines among cores. Particles are transported
along B-field lines and radiate emission that is then binned in a “master matrix” (therefore the need of global

1https://www.nccs.nasa.gov/



CHAPTER 4. MODEL DESCRIPTION: CODE SETUP AND REFINEMENTS 61

Figure 4.3: An example of the newly calculated ρc as a function of normalised arclength s/RLC before (solid
black line) and after (coloured lines) smoothing and matching. Each column represents an arbitrary B-field line,
and each row corresponds to different smoothing parameters, i.e., h = [10ds, 50ds, 100ds, 200ds], increasing
from top to bottom as indicated in the legend.
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Figure 4.4: A comparison of electron position x(s), y(s), z(s), trajectory direction x�(s), y�(s), z�(s) and log10(ρc),
as calculated previously (lime green) and now being refined (magenta), for α = 75◦, along four arbitrary B-field
lines (i.e., field line footpoints with φPC,1 = 45◦, φPC,2 = 135◦, φPC,3 = 225◦ and φPC,4 = 315◦) on the outer
ring of the PC.
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Figure 4.5: Phase plots and pulse profiles for α = 60◦, ζcut = 65◦, and 0.1 < Eγ < 50.0 GeV. This figure serves
as a comparison between phase plots for the previous (left column) and refined (centre column) ρc calculation,
and their associated light curves (right column). The top row is for a constant E� (scenario 1), and the bottom
row is for a two-step E� (scenario 2). We shifted the resulting γ-ray model light curves by −0.14 in normalised
phase to fit the Fermi LAT (Abdo et al. 2010d, 2013,http://fermi.gsfc.nasa.gov/ssc/data/access/
lat/2nd_PSR_catalog/) data points.

memory structures). We have to investigate if this can potentially cause problems. For the serial code, the
‘sky cubes’ are filled by running field lines sequentially. On the cluster, we of course assume that lines are
independent and emission from them can be superposed.

The parallel code calculates the same broadband spectrum expected from a pulsar as the serial code. How-
ever, with the parallel code we experienced memory issues caused by seven-dimensional arrays. We reduced
the memory consumption significantly by allocating the memory dynamically, however it did not fully address
our problems. The dynamic allocation did speed up the code on the other hand, because the compiler did not
optimise the code with the static allocation as done initially. We also encountered errors that explicitly state
“ran out of memory” as well. We solved this by distributing a number of threads over additional nodes, to get
access to more memory.

Since we were limited on time and the modifications needed for the parallel code would be time consuming
we opted to use the serial code. This is acceptable since we only attempted to isolate the first to second peak
(P1/P2) effect seen in the observations assuming that particles emit CR (see Chapter 5 for details). However,
when additional radiation mechanisms are considered such as in Harding & Kalapotharakos (2015) and Harding
et al. (2018) the parallel code is necessary since it saves computational time, and solves more complicated
problems.

4.4 Recalculating the curvature radius ρc

We refine the previous first-order calculation of ρc along the electron (or positron) trajectory, assuming that all
particles injected at the footpoint of a particular B-field line follow the same trajectory, independent of their
energy, since these are quickly accelerated to relativistic energies by the unscreened E-field. This independence
of ρc on energy also reduces computational time significantly, since the calculation is done beforehand. We
furthermore assume that the B-field is strong enough to constrain the movement of the electrons so they will
move parallel to the field line in the co-rotating frame. Thus, there will be no perpendicular motion in the
co-rotating frame, since the perpendicular particle energy is nearly instantly expended via SR. We thus take
into account the perpendicular E × B drift in the lab frame.
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Figure 4.6: Same as Figure 4.5, but for α = 75◦.

To calculate the electron’s trajectory as well as its associated ρc in the lab frame, we used a small, fixed step
size ds (where s is the arclength) along the B-field line. The first derivative along the trajectory (i.e., direction)
is equivalent to the normalised B-field components as a function of s. Next, we smooth the directions using s
as the independent variable, to counteract numerical noise. Second, we match the unsmoothed and smoothed
directions of the electron trajectory at particular s values to get rid of unwanted “tails” at low and high altitudes,
introduced by the use of a Gaussian kernel density estimator (KDE) smoothing procedure. Third, we use a
second-order method involving interpolation by a Lagrange polynomial to obtain the second-order derivatives
of the positions along the trajectory as a function of s (Faires & Burden, 2002). This accuracy is necessary
since ρc is a function of second-order derivatives of the electron position, and instabilities may be exacerbated
if not dealt with carefully. Lastly, we match ρc calculated using smoothed and unsmoothed directions to get rid
of “tails” in ρc at low and high altitudes, as before.

In Figure 4.3 we illustrate ρc (measured in cm) as a function of s/RLC, to show the impact of the smoothing
parameter h on the ρc calculation. This is shown for four arbitrary B-field lines with footpoints along the
outer ring (rim) on the PC, as indicated by different values of the PC azimuthal coordinate φPC. For too
small an h value, e.g., 10ds, there is not a significant amount of smoothing and therefore the ρc vs. s curve is
undersmoothed, and still noisy. As we increase h, the ρc becomes smoother, however for h = 100ds there are
some small instabilities introduced at s/RLC < 0.5. This is due to the tolerance we chose when matching the
unsmoothed and smoothed ρc’s to get rid of the “tails”.

Having a pre-calculated ρc in hand, for a fine division in s along any particular B-field line, I then interpolate
ρc in my particle transport calculations to accommodate an adaptive, variable-ds approach that is used to speed
up the transport calculations, without losing accuracy of the trajectory. In Figure 4.4 the parameters describing
the particle trajectory are compared for the previous and the newly calculated ρc. These include the particle
positions x(s), y(s), z(s) in cm, dimensionless directions or spatial derivatives x�(s), y�(s), z�(s), and log10 of ρc.
This comparison is shown for four arbitrary B-field lines with footpoints along the outer ring (rim) on the PC,
as indicated by different values of φPC. The changes in position and direction are rather minor. However, the
improved calculation smooths out some instabilities in ρc(s). See Appendix A for a more detailed discussion
and calculations.

We present phase plots and light curves for α = 60◦ and α = 75◦ in Figure 4.5 and 4.6, assuming ζcut = 65◦,
rovc = [0.90, 0.96]. We illustrate the effect of the previous and refined ρc calculation on the predicted phase
plots and light curves. In Figure 4.5 and 4.6 the phase plots and light curves associated with the previous
and refined ρc are compared for a constant E�-field and a two-step constant E�-field (hereafter scenario 1
and scenario 2, respectively), for two different values of α. The photon energy Eγ extends over a wide GeV
range from 100 MeV to 50 GeV. For scenario 2, I chose a constant E� inside the light cylinder (Racc,low; the
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acceleration per unit length) and a constant E� outside the light cylinder and into the current sheet (Racc,high).
For scenario 1 (top panels) there appears inter-peak bridge emission at lower energies near the PCs (dark
circles). This is not the case for scenario 2 (bottom panels), since Racc,low is too low at altitudes inside RLC,
resulting in suppression of the emission as well as lowering the first peak’s intensity. The caustics on the phase
plots for the refined ρc calculation, regardless of our choice of α, appear smoother and brighter than for the
previous ρc calculation, although their shape is largely maintained between the two calculations. A small,
additional feature becomes visible near the emission caustic (indicated by a red colour) when using the refined
calculation. The caustics are also generally wider, and appear fuller (more filled out with radiation). The caustic
shape furthermore depends strongly on the choice of α. For α = 60◦ the caustic is more spread out in an S-curve
shape, whereas for α = 75◦ it is rounded and concentrated around the PCs. The respective light curves for the
two calculations are very similar, although they tend to be smoother for the refined calculation. The model
light curves appear later in phase than the data and therefore we shifted the model with −0.14 in phase to fit
the Fermi data. In Figure 4.5 and 4.6 I chose a the same resolution than what will be used in Chapter 5. If I
compare these to Figure 4.2 I notice that our resolution choice is fairly good.

4.5 Conclusion

The full emission code is a complex code that required us to first do a calibration to understand the output. This
calibration included choosing and comparing compilers used between the different systems. Another important
factor was the resolution of the simulations, since higher resolution resulted in better quality light curves and
spectra. Particles that are accelerated tangentially along the curved B-field emit CR. The curvature of the field
lines is characterised by ρc. Thus, I refined the ρc to improve the transport calculation. The need for this will
be discussed in Chapter 5 and 6.

The serial emission code does run for solving simple problems involving single radiation mechanisms.
However, for more complex problems, e.g., simulating emission from primaries and pairs for additional radia-
tion mechanisms, the serial code needs to be parallelised. Due to the complex nature of this code and for it to
work on our local cluster, future updates will be necessary. There are multiple helpful tools available that will
enable us to eliminate problems, e.g., Valgrind and blitz++ that we will investigate in future.

In Chapter 5, we will present the results that we obtained using the serial version of the code described in
Section 4.1. We will investigate the observed light curve trends via energy-dependent light curves and spectra
in the CR regime. I will demonstrate that most of the trends seen in the energy-dependent light curves can be
reproduced using our code, in a CR framework.



Chapter 5

Probing the γ-ray pulsar emission mechanism
via energy-dependent light curve modelling

In this Chapter, I will be focusing on emission from the Vela pulsar in the GeV band. I use a steady-state emis-
sion model (see Section 4.1) to predict Eγ-dependent light curves and spectra that result from primary particles
emitting CR; this model includes my refined calculation of ρc of the particle trajectory (see Section 4.4). In
Section 5.2, I will discuss a “reverse mapping” method used to isolate the spatial origin of the light curve peaks,
and in Section 5.3.1 I performed a small parameter study to find optimal values for the model’s free parameters.
In Section 5.3, I present sample light curves and spectra, showing the behaviour of the peaks as a function of
ρc, as applied to the Vela pulsar. For the optimal light curve and spectral fits, I study the local environment of
the peaks’ emission regions, finding a systematic difference in ρc, γ, and Eγ,CR for the two peaks. Concluding
remarks follow in Section 5.4. This Chapter is a summary of an article in preparation (Barnard et al., in press)
the results of which accompany those of Harding et al. (2018).

5.1 Introduction

The field of pulsar science has been revolutionised by the detection of pulsed emission by ground-based tele-
scopes. In the VHE band, MAGIC detected pulsations from the Crab pulsar at energies up to 1 TeV (Ansoldi
et al., 2016), and H.E.S.S. II detected pulsed emission from the Vela pulsar in the sub-20 GeV to 100 GeV range
(Abdalla et al., 2018). New observations by H.E.S.S. reveal pulsed emission from Vela at a few TeV (H.E.S.S.
Collaboration, in preparation). H.E.S.S. II furthermore detected pulsed emission from PSR B1706−44 in the
sub-100 GeV energy range (Spir-Jacob et al., 2019). Pulsed emission from the Geminga pulsar between 15 GeV
and 75 GeV at a significance of 6.3σ was recently detected by MAGIC, although only the second light curve
peak is visible at these energies. The MAGIC spectrum is an extension of the Fermi LAT spectrum, ruling out
the possibility of a sub-exponential cut-off in the same energy range at the 3.6σ level (Acciari et al., 2020).

Interestingly, as the photon energy Eγ is increased (above several GeV), the main light curve peaks of Crab,
Vela and Geminga seem to remain at the same phase positions, the intensity ratio of the first to second peak
(P1/P2) decreases for Vela and Geminga, the inter-peak “bridge” emission evolves for Vela, and the peak widths
decrease for Crab (Aliu et al., 2011), Vela (Abdo et al., 2010d) and Geminga (Abdo et al., 2010b). The P1/P2
vs. Eγ effect was also seen by Fermi for a number of pulsars (Abdo et al., 2010c, 2013). In general, multi-
wavelength pulsar light curves exhibit an intricate structure that evolves with Eγ (e.g., Bühler & Blandford,
2014), reflecting the various underlying emitting particle populations and spectral radiation components that
contribute to this emission, as well as the local B-field geometry and E-field spatial distribution.

Some traditional physical emission models invoke CR from extended regions within the magnetosphere to
explain the HE spectra and light curves. These include the SG (Arons, 1983; Harding & Muslimov, 2003) and
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Figure 5.1: Example phase plots with (φL, ζ)-“blocks”(or 2D bins) and their associated light curves for α =
75◦, ζcut = 65◦, Racc = 0.25 cm−1, and 0.1 < Eγ < 50 GeV. In order to indicate how we isolated the first
and second light curve peaks (labelled ‘P1’ and ‘P2’), we made cuts in (φL, ζ) as follows: (a) no cut, (b)
φL,P1 = [−100◦,−60◦] and φL,P2 = [−120◦,−90◦] for all ζ, (c) ζP1 = [90◦, 160◦] and ζP2 = [40◦, 90◦] for same
φL as in (b), and (d) φL,P1 = [−90◦,−81◦], ζP1 = [110◦, 120◦], φL,P2 = [−109◦,−103◦], and ζP2 = [60◦, 70◦].
The light curve legend in the lower panel refers to each associated phase plot, for increasingly smaller (φL, ζ)
bins. The Fermi data for Vela are indicated by a grey histogram (Abdo et al. 2013,http://fermi.gsfc.
nasa.gov/ssc/data/access/lat/2nd_PSR_catalog/). We shifted the resulting γ-ray model light curves
by −0.14 in normalised phase to fit the data. This reflects the degeneracy of φL=0 in the data (reflecting the
main radio peak) and φL=0 (the phase of the µ-axis).
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OG (Romani & Yadigaroglu, 1995; Cheng et al., 1986) models. However, they fall short of fully addressing
global magnetospheric characteristics, e.g., the particle acceleration and pair production, current closure, and
radiation of a complex multi-wavelength spectrum.

Geometric light curve modelling (Dyks et al., 2004a; Venter et al., 2009; Watters et al., 2009; Johnson et al.,
2014; Pierbattista et al., 2015) presented an important interim avenue for probing the pulsar magnetosphere in
the context of traditional pulsar models, focusing on the spatial rather than physical origin of HE photons.
More recent developments include global magnetospheric models such as the FIDO model (Brambilla et al.,
2015; Kalapotharakos & Contopoulos, 2009; Kalapotharakos et al., 2014), equatorial current sheet models
(e.g., Bai & Spitkovsky 2010a; Pétri 2012), the striped-wind models (e.g., Pétri & Dubus 2011), and PIC
(Brambilla et al., 2018; Cerutti et al., 2016a,b, 2020; Kalapotharakos et al., 2018; Philippov & Spitkovsky,
2018). Some studies using the FIDO models assume that particles are accelerated by induced E-fields in
dissipative magnetospheres and produces GeV emission via CR (e.g., Kalapotharakos et al. 2014). Conversely,
in some of the wind or current-sheet models, HE emission originates beyond the light cylinder via synchrotron
radiation (SR) by relativistic, hot particles that have been accelerated via magnetic reconnection inside the
current sheet (e.g., Pétri & Dubus, 2011; Philippov & Spitkovsky, 2018). Given the ongoing debate between
the emission mechanisms of HE emission, our motivation in this study is to explain the GeV spectrum and
light curves of Vela as measured by Fermi and H.E.S.S. Specifically, by modelling the Eγ-dependent light
curves (and P1/P2 signature) in the CR regime of SC radiation, we hope to probe whether this effect can serve
as a potential discriminator between emission mechanisms and models (see also the reviews of Harding 2016;
Venter 2016; Venter et al. 2017 on using pulsar light curves to scrutinise magnetospheric structure and emission
distribution).

5.2 Isolating the origin of emission for each of the light curve peaks

Using the model described in Section 4.1, and for a given magnetic inclination angle α = 75◦, we generated
phase plots (observer angle ζ vs. rotation phase φL; Figure 5.1). We inject the primaries into a roughly annular
slot gap situated between rovc = 0.90 and rovc = 0.96 (Dyks et al., 2004a; Harding et al., 2018), and divide
the surface projection of the slot gap situated near the rim of the PC into 7 rings, with each ring having 360
azimuthal segments. We additionally set ds = 10−3RLC with a corresponding h = 50ds. The phase plots are
emitted photon fluxes Ṅγ that have been normalised using the primary particle flux (the appropriate Goldreich-
Julian injection rate at the stellar surface); Ṅγ is collected in bins of ζ and φL. The photon directions have
been corrected for the Special Relativistic effects of rotation and time-of-flight delays. Lastly, Ṅγ per bin is
divided by the solid angle subtended by each phase plot bin, i.e., δΩ = (cos ζ − cos(ζ + δζ))δφL ≈ sin ζδζδφL.
To generate light curves, a constant-ζ cut (ζcut) is made through the respective phase plot (see lower panel of
Figure 5.1).

As mentioned in Section 5.1, the relative fading of peak 1 vs. peak 2 with Eγ seems to be a common
characteristic of HE light curves. We have also been able to reproduce this with the code. In order to probe the
origin of this effect, it is necessary to isolate the spatial origin of each light curve peak. We start by isolating each
peak on the phase plot (using increasingly smaller (ζ, φL) bins) and then apply “reverse mapping” to uncover the
emission’s spatial position. This can be compared to developing a “reverse dictionary” that translate a chosen
(φL, ζ) range into a spatial range within the magnetosphere. In our code, we calculate only the emission from
the northern rotational hemisphere. The contribution of the emission from the southern hemisphere is obtained
taking into account the symmetry with respect to the centre of the star (i.e., Ṡ γ/dΩ(φL, ζ) = Ṅγ/dΩ(φL +

180◦, 180◦−ζ)), where S γ and Nγ indicate the contribution of the southern and northern rotational hemispheres,
respectively. This symmetry exploitation saved computational time, and the corresponding full sky map is
shown in the first panel of Figure 5.1. The implication is that one has to carefully keep track of the (φL, ζ)
coordinates of each peak, and map them back onto the northern-hemisphere caustic (e.g., mapping P1 onto the
northern-hemisphere caustic where ζ > 90◦). Using the latter, one can perform the reverse mapping to find the
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spatial coordinates of this emission.
This reverse mapping procedure is illustrated in Figure 5.1 for a constant acceleration “rate” (acceleration

per unit length) Racc = eE�/mec2 cm−1, with e the electron charge, me the electron mass, and mec2 the rest-mass
energy. The first panel is for the full phase space, whereas panels (b), (c), and (d) are for different (φL, ζ)-
“blocks” or bins. In panel (b), we make a cut in φL for both peaks but keep ζ fixed and see that only the peaks
remain on the corresponding light curve (see bottom panel). If we then narrow the range in ζ for a fixed φL
interval (same as in (b)), we note that the light curve remains the same. Lastly, we make φL and ζ small enough
so that only the maximum of each peak is included in the (φL, ζ) range, as seen in panel (d). These ranges in φL
and ζ are referred to as the “optimal bins” for both peaks and are necessary for constructing the phase-resolved
spectra of each peak. We chose the ζ-range for each peak with width of ±5◦ around ζcut = 65◦, to include the ζ
inferred from the the pulsar wind nebula torus fit of Vela (Ng & Romani, 2008).

5.3 Results

5.3.1 Finding optimal fitting parameters

After having isolated the spatial origin of the emission of each light curve peak as described in the previous
section, we first perform joint light curve and spectral fitting to find optimal model parameters; subsequently,
we will consider the local environments where the respective light curve peaks originate (Section 5.3), given
these optimal parameters. We consider two cases throughout this paper, based on either a constant or a two-step
parametric accelerating E�-field, independent of the φPC, ζ and r. Thus, we choose (and subsequently refer to
this as scenario 1 and scenario 2): (1) a constant Racc from the stellar surface and into the current sheet (see
Harding & Kalapotharakos 2015), and (2) a two-valued Racc, where Racc,low occurs inside, and Racc,high outside
the light cylinder (see Harding et al. 2018). The two-step function for the accelerating E� is motivated by global
dissipative models (Kalapotharakos et al., 2014, 2017; Brambilla et al., 2015) and kinetic PIC models (Cerutti
et al., 2016b; Kalapotharakos et al., 2018), that indicate that the particle acceleration takes place primarily near
the current sheet, outside the light cylinder.

I performed a preliminary parameter study to search for an optimal combination of α, ζcut, and Racc (for
both scenarios, respectively), calibrated against both the observed HE light curves and spectra measured by
Fermi and H.E.S.S. II. We start by fixing ζcut and testing different values of Racc; later, we fix Racc and free ζcut

1.
Figure 5.2 shows the Eγ-dependent light curves for scenario 1 (left column) and scenario 2 (right col-

umn). For scenario 1, we choose four arbitrary constant Racc values, and for scenario 2, seven arbitrary Racc,low
and Racc,high combinations, as indicated in the legends. We also indicate different energy ranges (with the
minimum Eγ increasing from top to bottom), with the first panel showing light curves for a full HE range
Eγ ∈ (100 MeV, 50 GeV). The Eγ ranges correspond to those of the Fermi light curves in Figure 2 in Abdo
et al. (2010d), and Abdo et al. (2013), as well as Eγ >20 GeV to match the H.E.S.S. II data (Abdalla et al., 2018).
The light curves for scenario 1 display bridge emission at φL ≥ 0.25 that diminishes as Eγ increases. For sce-
nario 2, bridge emission develops when Racc,low ≥ 0.10 cm−1 and Racc,high = 0.25 cm−1. For Racc,low = 0.3 cm−1

and Racc,high = 0.25 cm−1 the light curve almost mimics our fit in scenario 1 for Racc = 0.25 cm−1 (since these
respective values are so close). If both Racc,low and Racc,high are small, we obtain light curve shapes that are con-
trary to what is expected (probably because the particles do not reach radiation reaction limit), e.g., choosing
Racc,low = 0.04 cm−1 and Racc,high = 0.1 cm−1, yields an increase of P1/P2 for at Eγ > 8.0 GeV, contrary to what
is observed. For combinations where Racc,low is small and Racc,high ≥ 1.0 cm−1, we see that P1 remains relatively
high for Eγ > 8.0 GeV, instead of following the observed trend. The optimal choice in terms of reproducing

1Given how computationally expensive this exercise is, we only considered a few values of the free parameters. In future, a more
robust method may be considered where parameter space of several free parameters may be searched for optimal joint light curve and
spectral fits. Given the disparate nature of these data, and the complexity of such a joint fit, here we perform a pilot study to indicate
the effect of the different parameters, and to find a reasonable joint fit by eye.
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Figure 5.2: Energy-dependent light curves for α = 75◦ and ζcut = 65◦ for several different combinations of Racc
for both the constant E� (left column) and two-valued E� (right column) case. The top panels are for the full
Eγ-range, and for each panel thereafter, the minimum Eγ is increased as indicated. We are fitting the model
light curves to the Fermi (Abdo et al. 2010d, 2013,http://fermi.gsfc.nasa.gov/ssc/data/access/
lat/2nd_PSR_catalog/), and H.E.S.S. (at Eγ > 20 GeV; Abdalla et al. 2018) data points. We shifted the
predicted light curves by δ = 0.14 in normalised phase. One observes that for some choices of E�, the P1/P2
decrease with Eγ is more apparent than for others.
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Figure 5.3: Model phase-averaged and phase-resolved spectra associated with Figure 5.2 for the same for α,
ζcut and Racc-field combinations, for both scenario 1 (left column) and scenario 2 (right column). In each E�
case the legend indicate the chosen values for Racc, Racc,low, Racc,high, and the flux normalisation factor.The data
points for the phase-average spectra are from Abdo et al. (2013) (see http://fermi.gsfc.nasa.gov/ssc/
data/access/lat/2nd_PSR_catalog/), and the phase-resolved spectra are updated data to those published
in Abdo et al. (2010d)

the P1/P2 effect seems to be (Racc,low,Racc,high) = (0.04, 0.25) cm−1, although the bridge emission is somewhat
underpredicted.

In both scenarios, four main trends are evident in our optimal fits to the light curves as they evolve with
Eγ. First, the model peaks remain at the same phase, i.e., P1 at φL=[0.10,0.18] and P2 at φL=[0.57, 0.60], after
we shifted the model in phase to fit the data. Second, the intensity ratio of P1 relative to P2 decreases as Eγ
increases in some cases, where the peaks are nearly equal in height at lower Eγ. Third, the bridge emission fades
at higher energies, possibly reflecting its softer spectrum and its origin at lower altitudes, where acceleration is
suppressed as compared to the current sheet environment. Lastly, the pulse width decreases with an increase
in Eγ. It is encouraging that the model can broadly reproduce these observational trends. We also note that a
two-step E�-field provides more reasonable light curve shapes, especially at lower photon energies.

The observed phase-averaged CR spectra are characterised by a power law with an (sub)exponential cutoff.
In our model, this spectrum is calculated as the observed Ṅγ at a particular viewing angle ζcut, summing the
fluxes (originating in different parts of the magnetosphere) over φL and dividing by 2πd2, where d (in cm) is the
distance to the source. To calculate the phase-resolved spectra associated with each peak, we limit the φL-range
to include the specific fraction of the emission we want to study. We scaled the phase-resolved flux with the
ratio of the difference in each peak’s φL-range of the Fermi data to the model range. Figure 5.3 shows the
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Figure 5.4: Energy-dependent light curves for α = 75◦ and different ζcut for the optimal values of E�-field
for both scenario 1 (left) and scenario 2 (right). In each Racc case, the legend indicates the chosen values for
ζcut. The first row are for the full Eγ-range, and each panel thereafter is for an increase in the minimum Eγ.
We are fitting the model light curves to the Fermi (Abdo et al. 2010d, 2013,http://fermi.gsfc.nasa.gov/
ssc/data/access/lat/2nd_PSR_catalog/) and to the H.E.S.S. (at Eγ > 20 GeV; Abdalla et al. 2018) data
points, with δ = −0.14.
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Figure 5.5: Model phase-averaged and phase-resolved spectra associated with Figure 5.4 for the same α, ζcut
and optimal Racc choices, for both scenario 1 (left) and scenario 2 (right). In each case, the legend indicates the
chosen values for ζcut. The flux normalisation factor is 5JGJ for the first case and 10JGJ for the second. The data
points for the phase-average spectra are from Abdo et al. (2013) (see http://fermi.gsfc.nasa.gov/ssc/
data/access/lat/2nd_PSR_catalog/), and the phase-resolved spectra are updated data to those published
in Abdo et al. (2010d).

phase-averaged and phase-resolved (for both P1 and P2) spectra per row. These are associated with the light
curves in Figure 5.2, for both scenarios and the same parameter values as in Figure 5.2. The phase-resolved
spectra are taken from Abdo et al. (2010d), but we have removed an incorrect exposure correction that led to
spectral points in the peaks being higher than the phase-averaged spectrum. Since the predicted CR Ṅγ are lower
than the Fermi data points (Abdo et al. 2010d, 2013, http://fermi.gsfc.nasa.gov/ssc/data/access/
lat/2nd_PSR_catalog/), we scaled the model with a flux normalisation factor in terms of JGJ. The flux
normalisation factor is a multiple of the Goldreich-Julian current density JGJ = ρGJc (with ρGJ = −Ω · B/2πc
the corresponding charge density; Goldreich & Julian 1969). This spectrum normalisation has some freedom,
since the actual multiplicity of HE particles in the pulsar magnetosphere is not absolutely certain. In the figure
legend, we indicate [Racc, JGJ] for scenario 1 and [Racc,low,Racc,high, JGJ] for scenario 2.

For scenario 1, at small Racc the model does not fit the data, and the flux is too low, even with a large flux
normalisation factor. This may be addressed in future by invoking SC emission, rather than pure CR (Harding
et al., 2018). As Racc increases, the model better fits the data; however, when it becomes too large, it shifts the
spectra to larger Eγ’s and the spectral shape changes and deviates from the data points. This reflects the fact
that a larger accelerating E-field is implied, leading to a larger particle energy and spectral cutoff. Also, for
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larger Racc the flux normalisation factor becomes smaller. This flux factor should in principle be constant for the
phase-averaged and phase-resolved spectra, but the flux level is not consistent between the different predicted
spectra, e.g., at Racc = 0.25 P1’s model spectra overestimates the data, but not for P2 or the phase-averaged
spectra. This may point to the need for a spatially-dependent normalisation of the current in future.

For scenario 2, most combinations of Racc,low and Racc,high yield a good fit to the data, except when both
Racc,low and Racc,high are small, e.g., Racc = [0.04, 0.1] cm−1, or Racc,high is high, e.g., Racc = [0.04, 2.0] cm−1.
When Racc,low is small and Racc,high is very high, the spectra extend to unreasonably high Eγ. For Racc,low =

0.3 cm−1 and Racc,high = 0.25 cm−1 the spectral fits almost mimic our fits in scenario 1 for Racc = 0.25 cm−1,
although the flux normalisation is a bit lower for scenario 2. In both scenarios, Eγ,CR varies significantly as
we change the parameters, so that for certain choices of Racc, P1 may have a larger cutoff than P2, contrary
to what is observed. Thus, we settle on Racc = 0.25 cm−1 for scenario 1, and Racc,low = 0.04 cm−1 and
Racc,high = 0.25 cm−1 for scenario 2 as optimal values for this paper.

Next, I consider the impact of different values of ζcut on the predicted light curves and spectra, for the
optimal values of Racc. I study the energy-dependent light curves for α = 75◦ and ζcut = [60◦, 63◦, 65◦, 67◦, 70◦]
(Figure 5.4). One notices that P1/P2 decreases with energy at different rates. For larger ζcut (i.e., 67◦ and 70◦),
P1 is relatively higher at lower Eγ. In scenario 2, the same happens at larger ζcut but only at Eγ ≥ 20 GeV.
Also, the level of bridge emission depends on the choice of ζcut. Figure 5.5 indicates spectra for the same
optimal Racc parameters, but for different ζcut values. For smaller ζcut, the model spectra fit the data well, but for
larger ζcut, the model spectral cutoffs extend to higher Eγ, sometimes overshooting the data. Also, these spectra
are lower in flux than those for the smaller ζcut fits (we fixed the flux normalisation for all values of ζcut). In
scenario 2, Eγ,CR varies significantly, so that for certain choices of ζcut, P1 has a larger cutoff than P2. If we
analyse Figure 5.4 and 5.5 concurrently, our optimal fit for both scenarios is for ζcut = 65◦.

5.3.2 Optimal model fit

We perform simulations for the Vela pulsar for the following parameters2: spin period P = 0.089 ms, its time-
derivative Ṗ = 1.25 × 10−13 s−1, and d = 0.29 kpc. We construct all subsequent figures, e.g., phase plots,
light curves, and spectra for optimal values of α = 75◦, and ζcut = 65◦ (we indicate spectra for α = 60◦

for comparison). Additional optimal values are Racc = 0.25 cm−1 and a flux normalisation factor of 5JGJ for
scenario 1, and Racc,low = 0.04 cm−1, Racc,high = 0.25 cm−1, and 10JGJ for scenario 2. These values produce
good fits to the Fermi and H.E.S.S. II data.

In Figure 5.6 we show the energy-dependent phase plots and accompanying light curves for our optimal fit,
for both scenarios. For scenario 1 (left phase plot) the bridge and most of the off-peak emission disappears with
increasing Eγ, although the light curve peak positions for both scenarios remain roughly stable. The other light
curve trends mentioned in Section 5.3.1 are also visible here, i.e., the decrease of P1/P2 and a decrease in peak
width with Eγ.

To test the robustness of the P1/P2 vs. Eγ effect, we studied the light curves at ζcut = 40◦ to obtain a
counter-example. These light curves have a different emission structure than those in Figure 5.6, due to a
different spatial origin of the emission. In Figure 5.7 the observer misses the bridge emission, since emission
radiated at ζcut = 40◦ is farther from the PCs than emission at ζcut = 65◦. The phase plots for scenario 1 remains
brighter than for the second scenario. As the energy increases, the relative flux of P1 becomes larger than that
of P2. A similar study was done by Brambilla et al. (2015) assuming a FIDO model to show that the P1/P2
effect is common, but not universal, since a change in geometry can reverse the effect. Figure 5.7 supports this
finding. We shifted the model light curves by −0.2 in phase to fit the Fermi and H.E.S.S. data. This indicates
the effect of ζ on the degeneracy of φL=0 in the data (reflecting the main radio peak) and φL=0 (the phase of
the µ-axis).

In Figure 5.8, the phase-averaged and phase-resolved spectra are shown for α = 60◦ and ζcut = 65◦. The
model spectra fit the Fermi LAT points for both Racc cases fairly well. In the first scenario, the phase-resolved

2Manchester et al. (2005).
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Figure 5.6: Energy-dependent phase plots and light curves for α = 75◦ and ζcut = 65◦ and for the optimal Racc
for both the first (left column) and second (centre column) scenarios, plus their associated light curves (right
column). The top panels are for the full Eγ-range, and each panel thereafter is for a different sub-band, as
indicated by the labels in the light curve panels. Peaks were shifted by −0.14 to fit the Fermi LAT and H.E.S.S.
data.
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spectra of P1 has a higher flux than that of P2, although the latter has a tail extending to higher Eγ and a
slightly larger Eγ,CR. In Figure 5.9, the phase-averaged and phase-resolved spectra are shown for the optimal
parameters. The model spectra fit the data for both scenarios fairly well. In the first scenario, the phase-resolved
spectra of P1 has a higher flux than that of P2, although smaller than the flux of P1 seen in Figure 5.8. For P2,
the high-Eγ tail extends not as far in Eγ as in Figure 5.8, but Eγ,CR remains larger for P2, with the predicted
cutoff being Eγ,CR ∼ 1 GeV. A larger cutoff for P2 than P1 is expected for this ζcut value, since the second
light curve peak survives longer than P1 as Eγ increases (see Figure 5.2). This may not always be the case, as
pointed out in Figure 5.4 where the P1 remains larger than P2 depending on the choice of ζcut.

5.3.3 Testing the attainment of the CRR limit

We solved the transport equation of a particle as it moves along a B-field line, focusing on CR (e.g., Daugherty
& Harding, 1982; Harding et al., 2005):

γ̇ = γ̇gain + γ̇loss =
1

mec2

�
ceE� − 2ce2γ4

3ρ2
c

�
, (5.1)

with γ̇ the time-derivative of γ, γ̇gain the acceleration rate, and γ̇loss the loss rate. From Eq. (5.1), it is clear that
the γ̇gain is dependent on Racc, and γ̇loss is directly proportional to γ4 and ρ−2

c . Eq. (5.1) may be recast in spatial
terms by dividing by c (assuming relativistic outflow of particles):

dγ
dl
= Racc − 2e2γ4

3mec2ρ2
c
. (5.2)

The CR spectral energy cutoff is defined as follows (e.g., Daugherty & Harding, 1982; Cheng & Zhang,
1996):

Eγ,CR =
3�cγ

3

2ρc
mec2, (5.3)

where �c = �/(mec) is the Compton wavelength, and � the reduced Planck’s constant. The curvature radiation
reaction (CRR) limit is attained when the acceleration rate equals the loss rate. In this limit, the Lorentz factor
is (e.g., Luo et al., 2000)

γCRR =

�
3E�ρ2

c

2e

�1/4
. (5.4)

Substituting Eq. (5.4) into Eq. (5.3), we obtain for a constant E-field (Venter & De Jager, 2010)

Eγ,CR ∼ 4
�

E�
104 statvolt cm−1

�3/4 �
ρc

108 cm

�1/2
, (5.5)

measured in GeV. We generally test if the CRR limit is attained in both scenarios by plotting the log10 of ρc,
γ, γ̇gain, and γ̇loss) along the same field lines chosen in Figure 4.4, checking if the acceleration and loss rates
become equal at large distances. The particle dynamics depend on the ρc, therefore an improved calculation
yielding a smoother ρc has an impact on the particle transport and thus the energy-dependent light curves and
spectra.

In Figure 5.10, the CRR limit is almost immediately attained in the first scenario, since the E� is large
enough to supply the primaries with ample energy at lower altitudes. The rapid rise of γ →∼ 5 × 107 leads to
a rapid increase in γ̇loss, and then the CRR limit is reached around 0.2RLC. However, since ρc oscillates or dips
along some of the field lines, this limit is disturbed (since the loss rate is anti-correlated with ρc) and in some
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Figure 5.7: The same as Figure 5.6 but for ζcut = 40◦ and δ = −0.2.

cases only recovered later on at higher altitudes. Indeed, instabilities in ρc cause similar but anti-correlated
oscillations in γ̇loss. If the E� is lower inside the light cylinder, as in the second scenario, the acceleration of
the primaries is initially suppressed, as is γ̇loss. However, beyond r ∼ RLC, where a higher E� is assumed, the
particles accelerate efficiently, and the CRR limit may be reached around r ∼ 1.5RLC.

5.3.4 Local environment of emission regions connected to each light curve peak

In order to isolate and understand the P1/P2 vs. Eγ effect seen in the light curves of Vela, we investigated
the values of Eγ,CR (Eq. [5.3]), ρc, and γ in the spatial regions where each model peak originates, for the
set of optimal parameters we found as described in Section 5.3.2. Thus, as explained in Section 5.2, we
performed “reverse mapping” and accumulated the range of values that these three quantities assume in the
regions where the photons originate that make up P1 and P2. These binned quantities are presented as Eγ-
dependent histograms below, where we scaled the frequency of occurrence of the quantities using the emitted
Ṅγ to obtain a true relative probability for each chosen energy range.

In Figure 5.11 we show histograms for log10(Eγ,CR/GeV), for different energy ranges. This quantity is
calculated using Eq. (5.3), specifically involving ρc and γ. These quantities are in principle calculated for all
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Figure 5.8: Phase-averaged (top panel) and phase-resolved (bottom panel) spectra for the refined ρc calculation,
for α = 60◦ and ζcut = 65◦. For the first scenario (left column), the flux is normalised using 2JGJ and for the
second case (right column), it is normalised using 5JGJ. The data points for the phase-average spectra are from
Abdo et al. (2013) (see http://fermi.gsfc.nasa.gov/ssc/data/access/lat/2nd_PSR_catalog/),
and the phase-resolved spectra are updated data to those published in Abdo et al. (2010d).

Figure 5.9: The same as Figure 5.8, but for α = 75◦ and ζcut = 65◦. For the first scenario (left column), the flux
normalisation factor is 5JGJ and for the second scenario (right column), it is 10JGJ.
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Figure 5.10: The particle dynamics, along the same B-field lines as in Figure 4.4, are shown for the refined ρc
calculation, for α = 75◦. The quantities plotted are the log10 of ρc (green), γ (red), γ̇gain (magenta), and γ̇loss
(blue), for both scenario 1 (left column) and scenario 2 (right column).
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(a) (b)

Figure 5.11: Energy-dependent histograms for log10(Eγ,CR/GeV) for P1 (blue curve) and P2 (red curve), where
(a) represents scenario 1 and (b) scenario 2. The respective energy bands are indicated as labels in each
panel. The second column in each case represents a zoom-in of the tails of the distributions for large values of
log10(Eγ,cut/GeV).

Eγ, but we subsequently apply cuts in Eγ and then study the resulting distributions of the ρc and γ associated
with photons in a particular chosen band. In the first scenario (left column), there appears two bumps, for
both peaks, at lower Eγ (up to ∼ 5 GeV), situated around log10(Eγ,CR/GeV) ≈ −0.2 and 0.4. The lower
bump disappears with increasing Eγ. In (b), we show scenario 2 where there is a small low-Eγ bump (up
to ∼ 0.3 GeV) at even smaller values of log10(Eγ,CR/GeV) ≈ −1.2. The existence of this bump is probably
because of the lower value of Racc inside the light cylinder that suppresses the low-altitude acceleration and
emission in this scenario. Also, the lower-energy bump disappears as the Eγ is increased, since only photons
from individually-radiated spectra (that make up the cumulative spectrum seen by the observer) with higher
cutoffs are then visible. The log10(Eγ,CR/GeV) of P2 is relatively larger than that of P1 for both scenarios, as
seen in the zoom-ins. This confirms what has already been seen in the light curves in Figure 5.6 and spectra in
Figure 5.9: P2 survives with an increase in energy, since its spectral cutoff is relatively higher than that of P1.
The log10(Eγ,CR/GeV) of P2 reaches values as high as ∼ 101.0 − 101.4, with larger values reached in the first
scenario, given the higher E-field. In Figure 5.12 we show histograms of the relative probability as a function
of log10 ρc for P1 (blue) and P2 (red). For the first scenario in (a), with a zoom-in of the tail of the distributions
(right column), there appears a bump around log10 ρc ≈ 8.5 to 9.0 for P1 at lower Eγ (up to ∼ 3 GeV), which
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(a) (b)

Figure 5.12: The same as Figure 5.11 but for log10(ρc).

disappears with increasing Eγ. In (b) we show scenario 2, where there is no low-Eγ bump at smaller values
of log10 ρc as in the first scenario. This is due to the fact that in the first scenario, the accelerating E-field is
relatively larger at lower altitudes, so that the particles can radiate in the GeV band from these lower altitudes
characterised by lower values of log10 ρc. In the second scenario, however, the small value of Racc,low inside the
light cylinder suppresses emission in the GeV band originating from lower altitudes, hence the missing bump.
Importantly, the log10 ρc of P2 is relatively larger than that of P1 for both scenarios, as seen in the zoom-ins,
with P2’s associated ρc reaching values as high as ∼ 109.8 − 1011.5 cm (indicating relatively less curved orbits).
The ρc values reached in scenario 1 for P2 are also relatively larger than those in scenario 2 for the same peak.
Thus, for sustained acceleration, particles radiating at high energies are moving along slightly straighter orbits
(and radiating from farther out, see Figure 5.14). It is only at energies above 20 GeV that the values of log10 ρc
associated with P1 becomes comparable or larger than those associated with P2.

Similar to Figure 5.11 and Figure 5.12, we show histograms of log10(γ) in Figure 5.13 for different energy
ranges. In the first scenario indicated in (a), there appears a bump around log10(γ) ≈ 7.3 − 7.5 for both peaks
at lower Eγ (up to ∼ 3 GeV), which disappears with increasing Eγ. In (b) we show scenario 2 where there is
no low-Eγ bump at smaller values of log10(γ). There is also a peak in log10(γ) ∼ 8 for P2 in scenario 1, while
log10(γ) is relatively smaller in scenario 2, given the fact that particles experienced less acceleration in that
case. The log10(γ) of P2 is relatively larger than that of P1 as seen in the zoom-ins for both scenarios.

In Figure 5.14(a), (b), and (c) we limit the emission radius r to altitudes at and beyond RLC to investigate the
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(a) (b)

Figure 5.13: The same as Figure 5.11 but for log10(γ).

change in the range of values for the pertinent quantities as compared to the previous cases where we considered
emission from all altitudes. We show histograms for log10 of Eγ,CR, ρc, and γ, respectively, for the first scenario.
At lower Eγ (up to ∼ 3 GeV), the P1 bumps at lower values that we first noticed in Figure 5.11a, 5.12a,
and 5.13a are suppressed. This indicates that photons originating inside the light cylinder come from regions
that are characterised by lower values of Eγ,CR, ρc, and γ. This effect of limiting the emission altitudes is not as
noticeable in the second scenario in Figure 5.15(a), (b), and (c). For Eγ,CR the slight bump (including P1 and
P2 emission) at low values of Eγ,CR disappears at lower Eγ (up to ∼ 0.3 GeV). For ρc and γ the difference is
insignificant, given the fact that the low-altitude E-field already suppresses the emission.

5.4 Conclusion

There is an ongoing debate regarding the origin of the GeV emission detected from pulsars, it being attributed
either to CR or SR (or even IC; see Lyutikov et al. 2012; Lyutikov 2013). One way in which to possibly
discriminate between these options is to model the energy-dependent light curves of several bright pulsars.

We modelled Eγ-dependent light curves and spectra of the Vela pulsar in the HE regime assuming CR
from primaries to see if we can explain the origin of the decreasing ratio of P1/P2 vs. Eγ, expecting that the
answer may lie in a combination of the values of geometric and physical parameters associated with each peak.
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(a) (b) (c)

Figure 5.14: Energy-dependent histograms of (a) log10(Eγ,CR/GeV), (b) log10(ρc), and (c) log10(γ), for P1 (blue
curve) and P2 (red curve). All three cases are for the first scenario at altitudes equal to and beyond RLC, into
the current sheet.
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(a) (b) (c)

Figure 5.15: The same as in Figure 5.14 but for the second scenario.
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Since the light curves probe geometry, e.g., α, ζ and emission gap position and extent, and the spectrum probes
both the energetics and geometry, we simultaneously fit these data with our model to obtain optimal fitting
parameters.

We presented a refined calculation of the ρc of particle trajectories, impacting the CR loss rate and leading to
smoother phase plots and light curves. However, this refinement had a rather small impact, as the broad structure
of caustics and light curves remained similar to what was found previously. We assumed a FF magnetosphere
(implying zero E-fields) as a good first approximation of the true B-field structure, yet considered both a
constant and two-step accelerating E-field. We also found that the CRR limit was easily reached in the first
scenario, and sometimes also in the second. We proceeded to isolate the P1/P2 effect by selecting photons that
make up these two light curve peaks, and investigating the range of associated values of ρc, Eγ,CR and γ. We
found that the phase-resolved spectra associated with each peak indicated a slightly larger spectral cutoff for
P2, confirming that P2 survives with an increase in energy, given its larger spectral cutoff. This was also seen
in energy-dependent histograms of Eγ,CR, confirming that this quantity was systematically larger for P2. The
reason for this became more clear upon discovery that both the ρc and γ were systematically larger for P2, for
both scenarios. If CRR is reached, one expects Eγ,CR ∝ ρ1/2

c for a constant E-field, so the larger ρc would
explain the larger spectral cutoff for P2. Conversely, even if CRR is not attained, Eγ,CR ∝ γ3ρ−1

c . Given the
systematic dominance of γ for P2, and the strong dependence of the third power, the larger spectral cutoff of P2
is thus explained by the larger γ. We also found that the values of ρc and γ remained larger for P2 when only
considering emission beyond the light cylinder; in particular, the largest values of these quantities occurred
there, pointing to dominant emission from that region to make up the GeV light curves.

We thus found reasonable fits to the energy-dependent light curves and spectra of Vela, and our model that
assumes CR as the mechanism responsible for the GeV emission captures the general trends of the decrease
of P1/P2 vs. Eγ, evolution / depression of the inter-peak bridge emission, plus stable peak positions and a
decrease in the peak widths as Eγ is increased. However, an unknown azimuthal dependence of the E-field as
well as uncertainty in the precise spatial origin of the emission preclude a simplistic discrimination of emission
mechanisms. Similar future modelling of energy-dependent light curves and spectra within a striped-wind
context that assumes SR to be the relevant GeV mechanism will be necessary to see if those models can also
reproduce and explain these salient features in the case of Vela and other pulsars.

We note that the drop in P1/P2 vs. Eγ may not be universal, as also found by (Brambilla et al., 2015). We
found a counter-example for a different choice of ζcut, where P1/P2 increases with Eγ. This was also the case
for specific choices of the two-step acceleration E-field. There may also be other parameter combinations that
can yield this behaviour. However, this effect seems prevalent and has been seen in both HE and VHE data of
bright pulsars.

In the next Chapter we will discuss the study done by Harding et al. (2018) to explain the pulsed VHE emission
observed by H.E.S.S. from the Vela pulsar, and our contribution. I will give a summary of their study, the
parameter values assumed, and the implications of our improved calculation of ρc (see Section 4.4) on their
results.



Chapter 6

Modelling the emission from the Vela pulsar
in the TeV band

In this Chapter, I will briefly discuss the work published in Harding et al. (2018). In Section 6.1 an overview
of the study is given that includes the motivation thereof, the refinements made to their SSC emission code, the
assumptions made, as well as the results obtained. Section 6.2 highlights my contribution to the study which
is mainly the refined calculation of ρc of the particle trajectories, as well as its effect on the model light curves
and spectra for different wavebands and radiation components. This is followed by our concluding remarks in
Section 6.3.

6.1 Overview

The Vela pulsar is the first pulsar detected in the VHE range by H.E.S.S. up to energies of a few TeV (Djannati-
Ataı̈ et al., 2017). The pulsed emission at such extreme energies might be either connected to the GeV emission
of Fermi’s spectra or it could be a new radiation component. More details as to the measured spectrum will be
given in a forthcoming paper by the H.E.S.S. Collaboration. The study by Harding et al. (2018) treated it to be
a separate component that is radiated by particles that have been accelerated up to energies of several TeV.

Some studies attempted to model the VHE pulsed emission detected from the Crab pulsar as ICS (Du et al.,
2012; Lyutikov et al., 2012; Harding & Kalapotharakos, 2015). Others modelled the emission from this same
pulsar as cyclotron-self-Compton emission from electron-positron pairs in an OG model, where the pairs scatter
their own SR radiation. Harding & Kalapotharakos (2015) modelled the emission observed from Crab, Vela
and two bright MSPs (i.e., PSR B1937+21 and PSR B182124) in the optical-to-TeV energy range with an SSC
model, where pairs from the PC scatter their own SR in the outer magnetosphere (see Section 4.1). Other
studies have proposed that SR from particles accelerated via reconnection in the current sheet could reach TeV
energies through Doppler boosting (Uzdensky & Spitkovsky, 2014; Mochol & Pétri, 2015). Rudak & Dyks
(2017) modelled Vela’s measured VHE emission in an OG scenario, where primary particles are accelerated
inside this gap and scatter the observed IR to optical emission, that are placed along the inner edge of the
gap and believed to come from SR emitted by pairs also produced in this gap. They showed that primaries,
whose CR spectrum match the Fermi measured GeV spectrum, produce a significant ICS emission component
reaching energies up to ∼10 TeV.

A basic description of the pulsar model has been given in Chapter 4. For more details, see Harding et al.
(2008); Harding & Kalapotharakos (2015); Harding et al. (2018).

Harding et al. (2018) extended the SSC emission code of Harding & Kalapotharakos (2015) To summarise,
the main refinements include the following:
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• The spectral energy range for the radiation calculation was extended to span from IR (10−3 eV) to VHE
(100 TeV) energies. This expanded range is necessary, since it includes more soft photons whose scatter-
ing is in the Thompson limit, and for modelling the SSC emission at the highest energies.

• A more accurate calculation of the particle trajectories and their ρc’s. This in turn gives a more precise
determination of the energy of the accelerated particles and of their emitted radiation spectrum. This im-
proved trajectory calculation is discussed in Section 4.4 and will appear in a forthcoming paper (Barnard
et al. 2020, in preparation).

• The accelerating E� is divided into a two-step E�, i.e., a lower E� inside the light cylinder (mostly SR
emission), and a higher E� at and beyond the light cylinder (into the current sheet, with the GeV emission
mostly from CR). This two-step E-field is utilised in Chapter 5. In Harding & Kalapotharakos (2015),
the E� was set to one constant high value extending from the NS surface to 2 RLC. This change provides
better agreement with recent global MHD and PIC pulsar models showing that the particle acceleration
takes place primarily near the current sheet outside of the light cylinder in near-FF magnetospheres of
young and middle-aged pulsars.

• Another update was the injection of electronpositron pairs only above the PC in regions where the global
FF current density enables pair cascades. Injection was thus only done at selected azimuthal PC angles
(see Harding et al. (2018) for more details).

• The last improvement to the model of Harding & Kalapotharakos (2015) is that the MeV to GeV radiation
from accelerated / relativistic particles inside and outside of the light cylinder are emitted via SC radia-
tion, although their radiation at GeV energies is mostly in the CR limit. In Harding & Kalapotharakos
(2015), both the accelerating primary particles (as well as the pairs) could acquire pitch angles at low
altitudes through cyclotron-resonant absorption of radio photons (as in the 2018 model), but their SR and
CR were treated separately.

Harding et al. (2018) assumed the same parameter values as those used in Chapter 5, except that their
Racc = 0.2 cm−1 is slightly lower than what we used. This also impacts the spectral normalisation factor that
shifts the spectral flux up or down to fit the GeV data points (see Chapter 5 and Harding et al. (2018) for
the explanation thereof). Our normalisation factor for the two-step E� is slightly larger than theirs of 10JGJ.
Figure 6.1 and Figure 6.2 show the first results obtained with the improved code. In Figure 6.1 the Eγ-dependent
model light curves for Vela are illustrated, assuming α = 75◦ and ζcut = 65◦, for the IR/optical (0.1 − 1 eV)
band and three other γ-ray bands ranging between 0.05 GeV and 100 TeV. In Figure 6.2 the phase-averaged
spectrum is represented and includes all the radiation components produced by this model. The primaries
and pairs respectively produce these components via emission mechanisms as discussed in Chapter 2. The
TeV component is specifically produced by primary particles (that produce the GeV component via SC) that
upscatter the pair SR.

6.2 The effect of the refined ρc on the model output

The equations of motion for the Lorentz factor, γ, and perpendicular momentum, p⊥ (in units of mc), of a
particle as it moves along a B-field line are as follow (Harding et al., 2005)

dγ
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=
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Figure 6.1: Eγ-dependent light curves for emission from Vela in the IR/optical band (0.1 − 1 eV), and three
different γ-ray energy bands (ranging between 0.05 GeV-100 TeV), assuming α = 75◦ and ζcut = 65◦. The
phase is in degrees. One notices the relatively small peak separation in the optical; this increases with energy,
and the relatively intensity of P1 decreases with an increase in energy. From Harding et al. (2018).

Figure 6.2: Model phase-averaged spectra for the Vela pulsar assuming α = 75◦ and ζcut = 65◦. The emission
from primaries and pairs are included (as labelled). The solid black lines represent the ICS components from
accelerated SC-emitting (thick line) or CR-emitting (thin line) primaries scattering the pair SR component (blue
solid line), while the dashed and dotted black lines are the spectra from SC-emitting primaries scattering toy-
model soft IR/optical photons with energy range (0.5−4 eV) and (0.005−4 eV), respectively. The model spectra
are fit to the data points from Abdo et al. (2013) (http://fermi.gsfc.nasa.gov/ssc/data/access/lat/
2nd_PSR_catalog/), Shibanov et al. (2003), and Harding et al. (2002b). The H.E.S.S. II detection (Abdalla
et al., 2018) and HE sensitivity are also shown. From Harding et al. (2018).
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In Eq. (6.1), the different terms on the right-hand side are the CR acceleration rate, SR losses, CR losses,
cyclotron/synchrotron absorption, and IC losses. In Eq. (6.2), the various terms on the right-hand side are
adiabatic momentum change along the field line, SR losses, and cyclotron/synchrotron resonant absorption.
The SSC losses are negligible for p⊥.

The refined calculation of ρc is needed to improve the calculation of the particle dynamics that form the
basis to describe the emission from the particles. The particles can emit radiation via CR, SC, SSC and ICS
with a detailed calculation of these processes and their emission directions described in Harding et al. (2008);
Harding & Kalapotharakos (2015); Torres (2018). The CR loss term (see Eq. (6.1) is strongly dependent on γ
and ρc. This loss term influences the particle dynamics due to the coupling between this term and the particle
γ (i.e., the γ(s) at the next step in arclength s along the B-field line is determined by the losses suffered by
the particle at the previous step, in particular the CR loss term). This in turn influences the other radiation
mechanisms’ loss terms, as they also depend on γ(s). The dynamical equations are solved step by step for
each radiation mechanism, so using a refined γ(s) will improve the radiation calculations, i.e., from primary
particles that emit SR, IC, SSC, etc. This also improves spectral calculations, specifically the CR component
which depends on both γ and ρc.

As seen in Figure 4.4 the particle trajectories and ρc calculated previously and now via a refined calculation
deviate slightly from each other. This implies that particles may move “off” the B-field lines in the old calcu-
lation (i.e., the adaptive step length sometimes sampled a particular B-line crudely, especially at high altitudes,
and this led to particles numerically ‘jumping’ to an adjacent field line). Thus, the new calculation impacts the
emission directions (both of the primaries and the pairs), since the new trajectories that are calculated using
fixed but small steps in arclength are slightly different. Therefore, a more accurate calculation of the particle
trajectories and their ρc’s leads to refined phase plots, i.e., the caustic structure is more pronounced, although
the structure remains roughly the same. The respective light curves are also somewhat smoother and occur at
slightly different phase, as shown in Figure 4.6 in Chapter 4. Also, as the Eγ increases the light curve trends
investigated in Chapter 5, in the CR regime, are still present at TeV energies. A different trajectory will in-
fluence the pair dynamics as well to some extent, since it probes a slightly different B-field and radio photon
distribution. It was thus necessary to refine the trajectory and ρc calculation, given the interconnectedness and
dependence of the particle dynamics and emission calculations on these basic spatial calculations.

6.3 Conclusion

This study’s motivation was to explain the TeV emission observed from the Vela pulsar by H.E.S.S. This
observation provided a fundamental lower limit to the relativistic particles of a few TeV. They claimed that in
order to obtain this measurement of several TeV, accelerated particles are needed that obtain such high energies.
These particles will radiate CR at GeV energies, and also give rise to SC, SSC and ICS emission, where the
primary ICS (i.e., SSC by primaries involving the pair SR) component is close to the H.E.S.S. sensitivity. Thus,
the TeV spectrum can be explained within this framework that invokes CR to explain the GeV emission. This
also supports our argument and findings in Chapter 5.

It is important to keep on refining the model calculations, e.g., of particle trajectories. If one can refine
these calculations to get a more accurate model, then data can more directly be used to constrain the unknown
assumptions (radio emission height, pair spectra parameters, etc.), since discrepancies with respect to the data
will more likely be due to model assumptions, and not the model implementation. This is especially impor-
tant since upcoming ground-based telescopes such as CTA should be able to detect more VHE pulsars with its
higher sensitivity than current telescopes.

In Chapter 7 we will give a summary of the aims, the process of achieving them, and the findings from the
study as a whole. I will lastly also give a future outlook on what can still be done.



Chapter 7

Conclusions

Pulsars are dense NSs that spin rapidly and contain strong B-fields, E-fields, and gravitational fields (e.g., Abdo
et al. 2010c). These compact stars emit pulsed emission across the entire electromagnetic spectrum, injecting
HE particles into the local environment. The Fermi LAT has revolutionised the field of pulsar science with
the number of γ-ray pulsar detections increasing from 7 pre-Fermi to 117 (in 2013) to over 250. The ongoing
detections of pulsed VHE emission from pulsars by ground-based telescopes paved the way to explore a new
region of this γ-ray energy range. Light curve profiles in different energy bands and spectral properties from
these pulsars have been studied in great detail. Therefore, energy-dependent light curve and spectral modelling
served as useful tools to constrain the B-field structure, pulsar geometry (α and ζ), constrain the GeV emission
region’s location and extent (i.e., within and beyond the light cylinder), and this may also help to discriminate
between different emission mechanisms (e.g., Dyks et al. 2004a; Venter et al. 2009; Watters et al. 2009; Johnson
et al. 2014; Pierbattista et al. 2015). In this study, I focused on HE and VHE γ-ray emission from the Vela pulsar,
one of the brightest sources detected by Fermi.

7.1 Significant contributions and results

7.1.1 Offset-dipole studies

The first aim of this study was to investigate the impact of different assumed magnetospheric structures on
the predicted HE γ-ray pulsar light curve features of the Vela pulsar as observed by Fermi. I adopted a ge-
ometric pulsar modelling code (Dyks et al., 2004a) that already included the static dipole and RVD B-fields.
I implemented a symmetric offset-PC dipole field (Harding & Muslimov, 2011a,b) characterised by an offset
� from the magnetic PCs. This included transforming the B-field from the co-rotating to the lab frame. For
each B-field, I considered both the TPC and OG models, assuming uniform �ν. Additionally, I implemented
the full accelerating SG E-field corrected for GR effects up to high altitudes, which modulated �ν. For the
offset-PC dipole field I only considered the TPC and SG models, since there are no OG E-field expressions
available for this particular B-field solution. I obtained a general SG E�-field by matching the low-altitude and
high-altitude solutions of this E�-field by determining the matching parameter ηc(P, Ṗ,α, �, ξ, φPC) on each field
line in multivariate space.

After the general SG E-field was calculated I could solve the particle transport equation, which yielded the
particle energy γ(η), necessary for determining the CR �ν and to test whether the CRR limit was attained. I
found that the CRR limit was reached (see Figure 3.5), albeit only at large η. Thus, the SG E-field is relatively
low, therefore the particle energy only becomes large enough to yield significant CR at large altitudes above
the stellar surface and thus particles do not always attain the CRR limit. Given this low SG E-field, I further
investigated the effect that the SG E� had on the predicted light curves in two ways. First, the minimum
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photon energy was lowered from Eγ,min = 100 MeV to Eγ,min = 1 MeV, leading to radiation in the hard X-ray
waveband. Second, since I wanted to compare our model light curves to Fermi data the usual low SG E-field
was increased by a factor of 100 (with a spectral cutoff now at Eγ,CR ∼ 4 GeV).

We fit our model light curves to the observed Fermi-measured Vela light curve for each B-field and geo-
metric model combination. We found that our overall optimal light curve fit to the data was for the RVD field
and OG model as seen in Figure 3.10. For the other B-field and model combinations there were no significantly
preferred model (per B-field), since all the alternative models may provide an acceptable alternative fit to the
data, within 1σ. The offset-PC dipole field preferred smaller values of PC offsets when assuming constant �ν,
and larger values for variable �ν, but not significantly so (< 1σ). When comparing all cases (i.e., all B-field
and model combinations), we found that the offset-PC dipole field for variable �ν was significantly rejected.
When I lowered Eγ we noted new caustic structures and emission features on the resulting phase plots and
light curves that were absent when Eγ,min > 100 MeV. When I increased the SG E-field by a factor of 100,
we found improved phase plots and light curve fits, e.g., extended caustic structures and new emission features
as well as different light curve shapes emerged, as well as CRR being now reached in most cases at lower
η. I also compared the best-fit light curves for the offset-PC dipole B-field and 100E� combination for each
� (Figure 3.10) and noted that a smaller � was again preferred (although not significantly; < 1σ). In particular,
when I compared this case to the other B-field and model combinations, we found statistically better fits for all
� values with this combination being second in quality only to the RVD and OG model fit.

I compared the best-fit α and ζ, with errors, from this and other independent studies ( Figure 3.11) and
noted that many of the best-fit solutions cluster inside the grey area at larger α and ζ. Some fits lie near the
α − ζ diagonal (possibly due to radio visibility constraints in some cases) as well as near the ζ inferred from
the PWN torus fitting (Ng & Romani, 2008), notably for the RVD B-field. Therefore, there was reasonable
correspondence between my results and those of other studies. However, when I discarded the non-optimal
TPC / SG fits, I saw that the optimal fits clustered near the other fits at large α and ζ. For the increased SG
E-field and offset-PC dipole combination, I noted that these fits also clustered at larger α and ζ.

7.1.2 Energy-dependent CR light curves and spectral modelling

The second aim of this study was to investigate the HE light curve trends as a function of Eγ as well as the
phase-resolved spectra so as to contribute to the debate of whether CR or SR is responsible for the HE emission.
As a first approach, I modelled the Eγ-dependent light curves and phase-resolved spectra of the Vela pulsar in
the HE regime assuming CR from primary particles in order to explain the origin of the decreasing ratio of
P1/P2 vs. Eγ as seen in the observations, expecting that it is due to the combination of the values of geometric
and physical parameters associated with each peak. Since the light curves probe geometry, e.g., α, ζ and
emission gap position and extent, and the spectrum probes both the energetics and geometry, I simultaneously
fit our model to the Fermi and H.E.S.S. data points to obtain optimal fitting parameters.

We used a full emission code (Harding & Kalapotharakos, 2015), but only assumed CR, and implemented
a refined calculation of the ρc of particle trajectories, impacting the CR loss rate and leading to smoother phase
plots and light curves. However, this improved ρc had a rather small effect on the spatial distribution of the
emissivity, as the broad structure of caustics and light curves remained similar to what was found previously. I
assumed an SG and current sheet model in an FF magnetosphere (implying an E-field that is fully screened) as a
good first approximation of the true B-field structure, yet I considered both a constant and two-step accelerating
E-field. I solved the particle transport for both cases and found that the CRR limit was easily reached in the
first scenario, but not always in the second. In order to isolate the P1/P2 effect, I selected photons that make up
these two light curve peaks, and investigated the range of associated values of ρc, Eγ,CR and γ for each peak.
I found that the phase-resolved spectra associated with each peak indicated a slightly larger spectral cutoff for
P2, confirming that P2 survives longer with an increase in Eγ, given its larger spectral cutoff. This behaviour
is also seen in the spectral observations by Fermi and other ground-based Cherenkov detectors. This was also
seen in energy-dependent histograms of Eγ,CR, confirming that this quantity was systematically larger for P2.
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The reason for this became more clear upon discovery that both the ρc and γ were systematically larger for P2,
for both E-field scenarios. If CRR is reached, one expects Eγ,CR ∝ ρ1/2

c for a constant E-field, so the larger ρc
would explain the larger spectral cutoff for P2. Conversely, even if CRR is not attained, Eγ,CR ∝ γ3ρ−1

c . Given
the systematic dominance of γ for P2, and the strong dependence of the third power, the larger spectral cutoff of
P2 is thus explained by the larger γ. I also found that the values of ρc and γ remained larger for P2 when only
considering emission beyond the light cylinder into the current sheet. In particular, the largest values of these
quantities occurred there, pointing to dominant emission from that region to make up the GeV light curves.

7.1.3 SSC modelling

The aim of the study done by Harding et al. (2018) was to explain the pulsed emission observed by H.E.S.S.
from the Vela pulsar up to energies of a few TeV (Djannati-Ataı̈ et al., 2017). The pulsed emission at such
extreme energies might be either connected to the GeV emission of Fermis spectra or it could be a new radiation
component. This study by Harding et al. (2018) viewed it to be a separate emission component, i.e., SSC
emission, that is radiated by particles that have been accelerated up to energies of several TeV.

Rudak & Dyks (2017) modelled Velas measured VHE emission in an OG scenario, where primary particles
are accelerated inside this gap and scatter the observed IR to optical emission that are placed along the inner
edge of the gap and believed to come from SR emitted by pairs also produced in this gap. They showed that
primaries, whose CR spectrum match the Fermi measured GeV spectrum, produce a significant ICS emission
component reaching energies up to10 TeV.

We contributed to the study done by Harding et al. (2018). Harding et al. (2018) expanded the SSC emission
code of Harding & Kalapotharakos (2015) and included the following refinements: (1) extention of the spectral
energy range (spanning from IR to VHE energies) in order to include more soft photons, the scattering of
which is in the Thompson limit, and for modelling the SSC emission at the VHE energies, (2) a more accurate
calculation of the particle trajectories and their radii of curvature, giving a more precise determination of the
accelerating particle energy and of their emitted radiation spectrum, (3) a two-step accelerating E�, i.e., a lower
E� inside the light cylinder, and a higher E� at and beyond the light cylinder (this is in agreement with recent
global MHD and PIC pulsar models), (4) the injection spectrum of electronpositron pairs only above the PC
in regions, (5) the MeV to GeV radiation from accelerated/relativistic particles inside and outside of the light
cylinder are emitted via SC radiation, although their radiation at GeV energies is mostly in the CR limit.

Our contribution to the above mentioned study was the refined calculation of the particle trajectories and ρc
as noted in point 2, and was needed to improve the calculation of the particle dynamics that was necessary to
describe the emission from the particles.

7.2 Research implications

7.2.1 Offset-dipole studies

I conclude that the magnetospheric structure and emission geometry have an important effect on the predicted
γ-ray pulsar light curves. However, the presence of an E-field may have an even greater impact than small
changes in the B-field structure and emission geometries: When we included an SG E-field, thereby modulating
�ν, the resulting phase plots and light curves became qualitatively different compared to the geometric case.

There have been several indications that the SG E-field may be larger than initially thought. For example,

• Population synthesis studies found that the SG γ-ray luminosity may be too low, and therefore an in-
creased E-field and / or particle current through the gap are necessary (e.g., Pierbattista et al. 2015).

• If the E�-field is too low the observed spectral cutoffs of a few GeV are not obtained (Section 3.8.2; Abdo
et al., 2013).



CHAPTER 7. CONCLUSIONS 93

• We found additional indications for an enhanced SG E-field. An increased E-field (multiplied by a factor
of 100) led to statistically improved fits with respect to the light curves. This also yielded the second-best
fit, next to the RVD and OG combination.

• Moreover, the inferred best-fit α and ζ parameters for this increased E-field clustered near the best fits of
independent studies.

• We observed that a larger SG E-field also increased the particle energy gain rates and therefore yielded
a larger particle energy γ, leading to particles reaching the CRR regime at altitudes close to the stellar
surface.

The above mentioned arguments may point to a reconsideration of the boundary conditions assumed by Mus-
limov & Harding (2004a) that suppressed the E� at high altitudes, or of the current distribution in the gap. One
possible way to bring self-consistency between B-field and E-field calculations may be to implement the newly
developed FIDO model or PIC models that include global magnetospheric properties.

7.2.2 Energy-dependent CR light curves and spectral modelling

We found reasonable fits to the Eγ-dependent light curves and spectra of Vela as measured by Fermi and
H.E.S.S. and our model that assumes CR as the mechanism responsible for the GeV emission captures the four
general observed trends: (i) the decrease of P1/P2 vs. Eγ, (ii) evolution / depression of the inter-peak bridge
emission, (iii) peak positions remaining at constant phases, and (iv) a decrease in the peak widths with an
increase in Eγ. However, an unknown azimuthal dependence of the E-field as well as uncertainty in the precise
spatial origin of the emission preclude a simplistic discrimination of the emission mechanism responsible for
the GeV emission inside and beyond the light cylinder. Similar future modelling of energy-dependent light
curves and spectra within a striped-wind context that assumes SR to be the relevant GeV mechanism will be
necessary to see if those models can also reproduce and explain these prominent features in the case of Vela and
other pulsars. We note that the drop in P1/P2 vs. Eγ may not be universal, as a study by Brambilla et al. (2015)
points out. We found a counter-example for a different choice of ζcut (where P1/P2 increases with Eγ) as well
as for specific choices of the two-step acceleration E-field. There may also be other parameter combinations
that can yield this behaviour. However, this effect seems prevalent and has been seen in both HE and VHE data
of bright pulsars.

7.2.3 SSC modelling

Harding et al. (2018) modellled the emission from particles that emit radiation via CR, SC, SSC and ICS. Upon
solving the particle dynamics the refined ρc significantly impacted the calculation of γ(s). The CR loss term
strongly depends on γ(s) and ρc and in return influences the particle dynamics due to the coupling between this
term and the particle γ(s). An improved γ(s) would in turn influence other emission mechanisms loss terms,
as they also depend on γ(s). Therefore, if the dynamical equations are solved for each emission mechanism
(using a refined γ(s)) the radiation calculations (from primary particles) would also be more accurate. This also
improved spectral calculations, specifically the CR component.

I found that the inclusion of the refined ρc and more accurate particle trajectories led to refined phase
plots, i.e., the caustic structure was more pronounced, although the shape remained roughly the same. Also,
the respective light curves were also slightly smoother and occurred at a different phase (but not significantly
different). As Eγ was increased the light curve trends remained at TeV energies.
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7.3 Future prospects

There are several future projects that may emerge from this study. The projects related to the study of the
impact of the B-field structure on the light curves include extending the range of � for which our code finds the
PC rim, since more complex field solutions, such as the dissipative and FF field structures, may be associated
with larger PC offsets. However, the offset-PC dipole solutions may be more applicable to MSPs discovered
by NICER. It would still be preferable to investigate the self-consistent B-fields and E-fields of the dissipative
models and solve the transport equation to test if the particles reach the CRR limit. The effect of these new
fields on the phase plots and light curves can also be studied.

The VHE pulsed emission from pulsars depends strongly on the electrodynamics and the magnetospheric
structure. Therefore, one could extend the SSC emission code by implementing more realistic B-field structures
and their associated E-field distributions, thereby constraining the magnetospheric physics. One could use
global dissipative magnetosphere models that represent solutions where a finite conductivity is specified on
B-field lines above the stellar surface. These dissipative solutions fill the gap between the RVD (assuming
zero conductivity) and the FF (assuming infinite conductivity) solutions (see Kalapotharakos et al. 2012b; Li
et al. 2012). In future, an SC radiation mechanism can be incorporated as done by Harding et al. (2018). This
mechanism seems to be able to produce spectra that are relatively higher at lower MeV energies, and that may
provide better fits to the light curve and spectral data. Study the effects of different (azimuthally-dependent)
injection spectra on TeV component.

There is also potential for multi-wavelength studies, such as light curve modelling in other energy bands,
e.g., combining radio and γ-ray light curves (see Seyffert et al., 2010, 2012; Pierbattista et al., 2015). One could
furthermore continue to model energy-dependent light curves, such as those available for other bright pulsars
using data from Fermi and ground-based telescopes (e.g., Abdo et al., 2010a,b). Lastly, model phase-resolved
spectra can be constructed, which will be an important test of the E�-field magnitude and its spatial dependence.
This multi-wavelength study would assist in studying the evolution of P1/P2 with Eγ in more depth and could
shed some more light on the underlying emission geometry and radiation mechanisms responsible for the HE
and VHE emission. For example, modelling of the VHE pulsed emission could scrutinise the general emission
framework of any particular model, as well as constraining particle energetics. Once the model has been thus
tested, we will apply it to future detections of VHE pulsars (expected from the list of potential VHE sources
released by Fermi; Ackermann et al., 2013).

Lastly, the application of the code to jointly fit light curve, spectral, and polarisation data may yield further
constraints. Attempting to reproduce HE phase-resolved spectra, i.e., behaviour of spectral index / cutoff with
phase, may yield important constraints.



Appendix A

Refined calculation of the curvature radius ρc

In this Appendix, I describe the updated procedure to calculate the radius of curvature of particle trajectories in
the lab frame.

We refine the previous first-order calculation of ρc along the electron1 trajectory in the lab frame, assuming
that all particles injected at the footpoint of a particular B-field line on the stellar surface follow the same trajec-
tory, independent of their energy, since these are quickly accelerated to relativistic energies by the unscreened
E-field. We furthermore assume that the B-field is strong enough to constrain the movement of the electrons so
they will move parallel to the field line in the co-rotating frame. Thus, we do not consider any perpendicular
motion in this frame, since the perpendicular particle energy is nearly instantly expended via SR. We thus take
into account the perpendicular E × B drift in the lab frame in which our new calculation for ρc takes place.

To calculate the electron’s trajectory as well as its associated ρc, we first use a small, fixed step size ds
(arclength interval) along the B-field line in the lab frame. The particle is injected at the stellar surface, and we
trace its motion using this step length. Since we are using a numerical solution of the FF B-field at a particular
magnetic inclination angle α, the three Cartesian components of the local first-order derivative of the position
are available at any specified position (albeit that they may have to be interpolated, given the set resolution of
the numerical solution of the FF field). One can thus use this information to map out a particle’s trajectory
for a given step length ds. The particle positions (x,y,z) as well as the local first derivatives (x�,y�,z�) along the
trajectory (i.e., the normalised velocity or the direction of motion), which is equivalent to the normalised B-field
components, as a function of the cumulative arclength s are used to compute both the full particle trajectory
and its ρc(s).

The calculation involves three positions (previous, current, and next, denoted by indices i − 1, i and i +
1, respectively). At injection, let the particle position be (x0, y0, z0). Viewing this position as being at the
‘previous’ step, let us denote this as (xi−1, yi−1, zi−1). The first-order derivatives at this position is also available:
(x�i−1, y

�
i−1, z

�
i−1). We next step along the field line, updating the arclength s. The position was then updated

according to the Euler method:
xi = xi−1 + x�i−1 · ds, (A.1)

and similar for the other two coordinates. The current position and derivative (x�i , y
�
i , z
�
i) were then saved. We

similarly moved to the next position
xi+1 = xi + x�i · ds, (A.2)

also for y and z. We thus have position and local direction components at three adjacent points with which we
start the process.

We step along the particle trajectory (this stepping procedure is repeated until some large radius is reached),
so that the xi+1 becomes the current position, and similar for the first-order derivative.

1We use “electron” to collectively refer to electrons and positrons.
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First, at the current position, we smooth the three spatial coordinates (x,y,z) using s as the independent
variable to counteract numerical noise or uncertainties that may be present in the numerical calculation of the
global B-field structure (and also taking into account the spatial grid on which this B-field was calculated).
The smoothing is performed using a Gaussian Kernel Density Estimator (KDE; Parzen 1962) smoothing pro-
cedure. We choose the smoothing parameter h as a fraction of RLC; this needs to be adapted when increasing
or decreasing the step size. The smoothing parameter used in the KDE procedure sets the level of smoothing
(i.e., the spatial range in s over which smoothing occurs), and needs to be connected to ds to avoid under- or
over-smoothing. After some testing, we set h = 50ds.

Second, we noticed that the our use of a KDE smoothing procedure on the position coordinates intro-
duced some artificial “tails” at low and high altitudes, thus, the procedure is failing at the edges of the position
range. We thus piecewise match (using some small tolerance on the allowed fraction that the smoothed and
unsmoothed positions may differ) the unsmoothed and smoothed spatial positions of the electron trajectory at
particular s values to get rid of these unwanted “tails” and to end up with the most satisfactory set of posi-
tions that constitute three smooth but realistic functions of arclength (i.e., a combination of the smoothed and
unsmoothed positions as functions of s).

Third, we also smooth and then piecewise match the unsmoothed and smoothed directions of the electron
trajectory at particular s values to get rid of these unwanted “tails”, as was done with the position coordinates.

Fourth, we use a second-order method involving interpolation by a Lagrange polynomial to obtain the
second-order derivatives of the positions along the trajectory as a function of s, based on the (smoothed and
matched) first derivatives (Faires & Burden, 2002):

x��(s) =

�
−3x�i−1 + 4x�i − x�i+1

�

2ds
, (A.3)

and similar for y and z. This increased accuracy is necessary since ρc is a function of second-order derivatives
(acceleration) of the electron position, and instabilities may be exacerbated if not dealt with carefully. We do
this both for the smoothed and unsmoothed first-order derivatives of the position. Fifth, with the second-order
derivatives in hand, we calculate two instances of ρc, one involving the unsmoothed (‘us’) and one involving
the smoothed (‘s’) accelerations:

ρc,us(s) =
1�

x��us(s)2 + y��us(s)2 + z��us(s)2
, (A.4)

ρc,s(s) =
1�

x��s (s)2 + y��s (s)2 + z��s (s)2
. (A.5)

Finally, we piecewise match these two results for ρc(s) to get rid of “tails” in ρc at low and high altitudes,
as before.

Having a pre-calculated ρc in hand, as well as a particle trajectory (particle positions), for a fine division
in arclength along any particular B-field line, we then interpolate ρc in our particle transport calculations to
accommodate an adaptive, variable-ds approach that is used to speed up the transport calculations, without
losing accuracy of the trajectory.
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Lockhart, W., Gralla, S. E., Özel, F., & Psaltis, D. 2019, MNRAS, 490, 1774

Lowrie, W. 2011, A Student’s Guide to Geophysical Equations (1st ed.; Cambridge University Press)

Luo, Q., Shibata, S., & Melrose, D. B. 2000, MNRAS, 318, 943

Lyubarskii, Y. E. 1996, A&A, 311, 172

Lyutikov, M. 2013, MNRAS, 431, 2580

Lyutikov, M., Otte, N., & McCann, A. 2012, ApJ, 754, 33

Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, Astron. J., 129, 1993

Manchester, R. N. & Taylor, J. H. 1977, Pulsars (San Francisco: W. H. Freeman)

Mattox, J. R., Bertsch, D. L., Fichtel, C. E., et al. 1992, ApJL, 401, L23

McCann, A. 2015, ApJ, 804, 86

McEnery, J., van der Horst, A., Dominguez, A., et al. 2019, in Bulletin of the American Astronomical Society,
Vol. 51, 245

McLaughlin, M. A., Lyne, A. G., Lorimer, D. R., et al. 2006, Nature, 439, 817

Medin, Z. & Lai, D. 2007, MNRAS, 382, 1833

Mereghetti, S. 2008, Astron. Astrophys. Rev. 15, 225
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