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Abstract 
Ever since it's introduction in 1980 the ray tracing algorithm has been a tricky puzzle. On the one 

hand it offers photo-realistic rendering superior to the more common rasterization algorithm, but on 

the other it's much too slow to serve as a replacement. 

 

Much of the rasterization algorithm's performance advantage lies in the use of special purpose 

hardware. This hardware, known as graphics cards, has evolved rapidly over the past decades, driven 

by demands for ever higher polygon counts. More recently, this pressure has lead to the introduction 

of programmable shader units to the graphics card architecture. 

 

These units became ever more programmable as researchers realized their potential as general 

parallel processing units. Eventually this trend lead to the exploration of the graphics card 

architecture as a ray tracing platform. 

 

This paper aims to explore the advent of this type of ray tracer and explain the developments that 

have been made in this field in order to see what the current state of the art is and where further 

research is required. It will also explore the defects that can be identified in the current literature and 

discuss how to address them. 
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Introduction 
The ray tracing algorithm was first formulated by Turner Whitted in 1980 (Whitted, 1980). This 

algorithm traces the path of light rays based on classical ray optics. Each ray can reflect off the 

surface of an object, or refract through it (Whitted, 1980:344). By modelling the behaviour of each 

individual ray, a highly realistic rendering of the scene can be produced. 

 

Unfortunately, the algorithm proved to be much too slow for use in interactive graphics programs 

(Whitted, 1980:349). This has led to the development of many techniques to speed-up the calculation 

of images by ray tracing. 

 

Recently there has been a lot of interest in the execution of ray tracing algorithms on the graphics 

processing unit (GPU) present on current graphics cards (Horn, Sugerman, Houston & Hanrahan, 

2007). Since these cards are usually built to parallel process huge volumes of data at interactive 

speeds, they may prove to be a good platform for the ray tracing algorithm, which is inherently very 

parallel. 

 

Another attractive aspect of GPU based ray tracing is the fact that GPUs are very good at generating 

rasterized images of three dimensional scenes very quickly. This ability can be used to quickly 

determine the first hit location for a large collection of rays (Horn et al., 2007:169; Purcell, Buck, 

Mark & Hanrahan, 2002:268). Since this is a major part of the work done by a ray tracer, it should 

speed up computation significantly. The ray tracing algorithm can then be used for the parts it excels 

at: perfect specular reflection, refraction, shadows, caustics and the like. In addition, the graphics card 

can be used to perform basic and advanced shading operations (Horn et al., 2007:169), since all ray 

tracers require some form of shading, this capability makes graphics cards attractive platforms for ray 

tracing. 

 

There is also evidence that GPUs are faster than central processing units (CPUs) for at least some 
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tasks (Buck, Foley, Horn, Sugerman, Fatahalian, Houston and Hanrahan, 2004:783). There is also the 

fact that graphics cards have advanced faster than CPUs in the past, since they can always incorporate 

more pipelines, while it is harder to add more transistors to a CPU (Purcell et al., 2002:268). It is 

unclear that this argument still holds in the current day however, since the rise of multi-core CPUs 

has brought some measure of scalability to the CPU. 

 

This paper will review the history of GPGPU ray tracing algorithms after which it will discuss some 

of the shortcomings discovered in the literature. Please note that this paper’s goal is not to discuss the 

difference in performance between GPU and CPU ray tracers, or to draw any type of comparison 

between the two – such a comparison is difficult because there’s very little data in the literature on 

the relative performance of GPU and CPU ray tracers. It would be outside the scope of this paper to 

attempt to reconstruct so many experiments in order to draw these comparisons. However, the 

authors have mentioned comparisons where they are available in the literature. 

Early Predictions 
Prior to the emergence of viable GPU architectures, simulation of the GPU architectures that would 

emerge in the future managed to predict many of their performance aspects. It was predicted that a 

GPU that was capable of branching would be faster than a GPU without it (Purcell et al., 2002:273). 

According to Purcell et al. (2002:273) this would be due in part to extra work and to the coherence 

that is lost when not using the looping algorithm that branching allows (Purcell et al. 2002:275), 

whereas Foley and Sugerman (2005:21) put the inefficiencies in a non-branching architecture down 

to the data that must be re-circulated for every ray. This was later confirmed and the performance 

gains from branching were estimated at a 25 times speed increase (Horn et al., 2007:170). This makes 

sense: loops in computer programs allow for data to be re-used repeatedly in the same context. 

Having to re-execute a program and re-calculate all the data that’s common to each loop will slow the 

process. The coherence that is the foundation of many of today’s performance enhancing 

technologies and algorithms also greatly benefit from a block of code that is obviously going to 

repeated. This advance in the design of programmable GPUs is therefore very important. 

 

It was also predicted that secondary and shadow rays would be less cache friendly than the primary 

rays that spawned them (Purcell et al. 2002:276), this was later confirmed (Horn et al., 2007:170). 

Primary rays that correspond to nearby pixels tend to hit objects close to each other, which are 

usually close in memory. This also generates similar instruction sequences. Both of these situations 

are good for coherence, and therefore performance. But because secondary rays tend to scatter 

because of reflection and refraction, the coherence tends to fall off after the first hit. Naturally this is 

a problem on the CPU as well, but because GPUs are so parallel and based on the very idea of 

coherence, it is a bigger problem on the GPU (Horn et al., 2007;170; Carr, Hall & Hart, 2002:38). 

 

Acceleration data structures were first implemented on a simulated GPU architecture by Purcell et al. 

(2002; Horn et al., 2005:168). This was a huge step forward, since acceleration structures have 

always been so important for performance. Their simulation was also the first GPU algorithm to 

make use of a uniform grid – although they lament the fact that it performs poorly on some scenes 

(Purcell et al. 2002:276). Interestingly, Purcell et al. (2002:276) proposed the use of the rasterizer on 

the graphics card to traverse a uniform grid acceleration structure. To the best of the authors' 

knowledge, this approach has not been implemented, but it sounds promising. It could be an 

interesting research topic to pursue. 

The Stream Model 
The previous section has discussed some of the advantages that might be realised with the use of a 

GPU ray tracer. While these advantages are attractive in theory, extracting them in practice has 

proven to be more difficult. 

 

In part, this difficulty is due to the fact that graphics cards express their programmable units in terms 

of graphics concepts such as textures and shaders. This is not ideal for the design and implementation 

of a ray tracer, since these concepts do not map well to ray tracing. It makes more sense to view a 

GPU as a streaming processor in which data is modelled as streams with specific dimensions that 
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flow through a sequence of kernels (Purcell et al., 2002:270). Each kernel then performs operations 

on its input stream and produces an output steam that serves as input to the next kernel (Buck et al., 

2004:778). 

 

The stream model has several advantages: it encourages independent execution which increases 

parallelism, it forces kernels to do many calculations versus memory bandwidth utilized and it hides 

memory latency with the use of pre-fetching (Purcell et al., 2002:270). 

 

In order to capture these advantages and ease the implementation of general algorithms on the GPU a 

programming environment such as Brook is important. Brook allows programmers to express their 

algorithms in terms of the streaming model (Buck et al., 2004:777) and was implemented on the GPU 

and tested with a ray tracing algorithm as early as 2004 (Buck et al., 2004). Brook would prove to be 

influential in the early research on GPU ray tracing, as it was used by both Foley and Sugerman 

(2005:17) and Horn et al. (2007:167) for their implementations. 

 

Brook has not seen widespread use in the most recent papers, this is likely due to the increasing ease 

of programming that recent GPUs offer. However, the realisation that a generic programming 

language is important likely eased the development of future GPU ray tracers. In the authors’ 

experience, a programming environment that is close to the problem domain is usually very helpful. 

Initial Hardware Implementations 
To the extent of the authors' knowledge, the first use of graphics card hardware in ray tracing was the 

use of the cards' rasterization capabilities to speed up the calculation of eye rays' first hit with scene 

geometry (Carr et al., 2002:38). This was the only part of the ray tracing process accelerated by the 

graphics card in their approach (Purcell et al., 2002:277). This approach has the advantage that the 

CPU can be used for the tasks it is best suited for: complex algorithms and data structures and the 

GPU can be used for the parallel and repetitive tasks for which it was intended (Carr et al. 2002:41). 

Carr et al. (2002:41) achieved good results with this approach, but their ray tracer's performance was 

limited by the slow transfer rates between video card and CPU that was the case at the time. Given 

the recent advances in the technology bridging GPUs and CPUs in the PCI express specification, this 

approach could be revisited. 

 

The first GPU ray tracing algorithm to make use of the k-d tree was described by Foley and 

Sugerman (2005; Horn et al., 2005:168). Due to memory limitations imposed by the GPU hardware 

the generic k-d tree algorithms had to be adapted to run without a stack (Foley & Sugerman, 

2005:15). Typically, an optimized k-d tree will process the child of a node nearest to a ray first and 

place the further child on a stack (Horn et al., 2007:168). These stack operations can be eliminated by 

keeping track of the start and end points of a specific ray, and updating the start point to equal the 

start of the next child's extents when the algorithm finishes with a leaf node (Foley & Sugerman, 

2005:16). When the algorithm then reaches a leaf node with no intersections, it can simply restart 

from the root and quickly find the node it should search next – this technique is called kd-restart 

(Foley & Sugerman, 2005:16). By further manipulating these start and end points, the algorithm can 

determine the parent of the next node to be searched, eliminating a couple of traversal steps (Foley & 

Sugerman, 2005:17) – this optimization is termed kd-backtrack. There is one major problem with kd-

backtrack however, as this strategy requires 256 extra bits of storage (Foley & Sugerman, 2005:18). 

This cost would prove too large for Horn et al. (2007:168), who were worried about the effects it 

would have on packetization and bandwidth. All in all, the loss of a stack only increased the cost of k-

d tree traversal by a linear factor (Foley & Sugerman, 2005:20). While this is impressive, it did set 

the algorithm itself back when compared against the CPU version, which is unfortunate. This is a 

problem with the GPGPU approach – the GPU is not as flexible as the CPU and its memory is 

generally very limited. 

 

A year later, Carr et al. (2006) developed a method based on the idea of storing an acceleration 

structure in a MIP map texture as a geometry image. Their method was able to ray trace dynamic 

scenes and was competitive with other techniques at the time (Carr et al., 2006:207). Unfortunately, 

they could only ray trace scenes containing a single mesh with no sharp edges (Carr et al., 2006:207, 
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Popov et al., 2007). This is probably why their method has fallen by the wayside, despite having 

competitive performance characteristics for the techniques of the time. It is also likely that the 

community's familiarity with k-d trees pushed research in that direction, rather than into novel 

approaches. 

 

Around the same time Huang et al. (2006) developed the traversal field method. This method 

constructs a series of ray relays at the faces of the bounding boxes that enclose objects (Huang et al., 

2006:65). These relays then sample all the possible incoming directions of rays and associate them 

with the triangles they would intersect (Huang et al., 2006:65). While their method had a good 

performance profile when measured against the efforts of Carr et al. (2006), it required user 

intervention (Huang et al., 2006:67) and was subject to aliasing effects caused by the sampling nature 

of the algorithm (Huang et al., 2006:69). The algorithm also had difficulty dealing with convex 

objects (Huang et al., 2006:67) and experienced severe performance and memory footprint penalties 

when the amount of triangles in a scene reached 2
16 

(Huang et al., 2006:70). These difficulties are 

likely the reason that researchers didn't explore this algorithm further. The requirement for user 

intervention alone would make their algorithm unsuitable for use in an interactive program, and the 

convexity requirement and limitation on the amount of triangles would have been a big step 

backward. 

 
The performance figures comparing GPU ray tracing to CPU ray tracing were disappointing at this 

point in history. Foley and Sugerman (2005:21) report that their implementation is an order of 

magnitude slower than a CPU implementation. This large discrepancy was reportedly due to data re-

circulation (Foley & Sugerman, 2005:21) – a problem that was later solved by the use of the new 

looping features on more modern cards (Horn et al., 2007:172). Zhou et al. (2008:126:2) summarily 

states that the algorithms described in Carr et al. (2002), Carr et al. (2006) Purcell et al. (2002), and 

Foley and Sugerman (2005) are slower than heavily optimized CPU ray tracers. However, Buck et al. 

(2004:783) claim significant improvement over a fast CPU implementation on graphics cards with 

lots of memory bandwidth, but their figures compare ray-triangle intersection per second, rather than 

the more common and appropriate frames per second. It is uncertain whether their algorithm 

outperformed the CPU algorithm in terms of animation speed as their focus wasn't on ray tracing, per 

se. 

 

Unfortunately, at this point the potential benefits of a GPU based ray tracer had not been realized yet. 

It would take more research and hardware development to reach acceptable speeds. 

Advanced Implementations 
The case for GPU ray tracing became much stronger in 2007 with the introduction of at least three 

algorithms that outperformed CPU ray tracers – Horn et al. (2007), Chen and Liu (2007) and Popov 

et al. (2007). Horn et al. (2007:171) achieved nearly double the performance for a single Opteron 2.4 

GHz CPU, which is encouraging. Unfortunately there are no figures comparing the performance of 

their algorithm to recent CPUs. 

 

This algorithm consists mainly of refinements to the approach suggested by Foley and Sugerman 

(2005). These refinements are called push-down and short-stack (Horn et al., 2007:167). The focus of 

these algorithms is to exploit the additional functionality that had been introduced into the 

programmable units on the graphics cards from 2005 till 2007 – e.g. looping and branching (Horn et 

al., 2007:167). The short-stack optimization provided the majority of the performance improvement – 

reducing the count of visited nodes by 48 – 52% over the k-d tree with push-down, which had already 

reduced counts by 3 – 22% (Horn et al., 2007:170). This is quite impressive, but the overall 

performance improvement they achieved is largely attributable to the extra capabilities of the 

hardware, and not to new insights into the nature of the ray tracing algorithm on GPUs. 

 

These optimizations together with improvements in the hardware's computational power resulted in 

more than a 25 times performance increase over the work done by Foley and Sugerman (Horn et al., 

2007:170). Most of this performance improvement is due to the introduction of looping into the 

algorithm (this was previously impossible due to limitations present in the platform), which 
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eliminated the data recirculation problems encountered by Foley and Sugerman (Horn et al. 

2007:170). 

 

That said, the hardware still proved to be problematic. The graphics card that was used by Horn et al. 

provided four wide SIMD instructions, but only two scalar operations could be performed at once 

(Horn et al., 2007:170), which slowed down the algorithm when compared with processors that are 

fully four wide. This was a problem with the hardware available at the time, so it should not be paid 

much attention today. 

 

The figures for the packetization introduced by Horn et al. (2007) are less rosy. While there is no real 

penalty or improvement when using ray packets that bounce only once on the GPU, packetization 

becomes more problematic when more bounces are added (Horn et al., 2007:170). This is thought to 

be due to incoherent branching, which is a major problem on the GPU architecture due to its nature 

(Horn et al., 2007:171). Because of this problem and the limited register memory that is available on 

current graphics cards, the use of large ray packets is unfortunately unlikely (Horn et al., 2007:172). 

A modification to the k-d tree that results in larger leaves might alleviate this problem in the future 

(Horn et al., 2007:172). This would again be a very interesting topic to study for future research. 

 

Chen and Liu (2007:1050) report that they were able to get a 62% - 157% performance boost over a 

pure CPU solution from just using the graphics hardware to speed up the first hit calculation, even 

when taking into account the overhead of transferring data between the graphics card and CPU. This 

is very encouraging, and implies that another hybrid approach might be the best way to go for the ray 

tracing community in general. 

 

At the same time Popov et al. (2007) developed an extension to k-d trees that significantly reduces 

the amount of work that is done traversing the tree. In their algorithm, the k-d tree maintains “ropes” 

at its leaf nodes (Popov et al., 2007). These ropes link a leaf node's bounding box faces to the node 

that is on the other side of that face (Popov et al., 2007). This has a number of advantages: first, the 

resulting algorithm does not require a stack, which saves on memory bandwidth and second, it can 

reduce “down”-traversals by 5/6 over the method described by Foley and Sugerman (2005). Since the 

algorithm requires no stack, it could potentially be used as an improvement on the kd-restart, kd-

backtrack, short-stack and push-down algorithms mentioned earlier. 

 

Popov et al. (2007) state that their GPU implementation of this algorithm outperforms the CPU 

implementation. Their figures also indicate that their algorithm beats the performance attained by the 

OpenRT system that is designed for CPUs (Popov et al., 2007). This is certainly encouraging, but a 

comparison with other heavily optimized ray tracers available at the time would have been welcome. 

 

Curiously, the method described by Popov et al. (2007) doesn't seem to have penetrated the ray 

tracing research community, as their research is not incorporated into any later papers to the authors' 

knowledge. It seems like a very effective scheme, however, and more investigation should be done. 

 

The difference in hardware and the algorithms used between the different papers in the literature 

muddy the waters significantly. There is a need for a standardized platform to compare different 

approaches on the same hardware. 

Current State of the Art 
Previous techniques did not fully exploit the highly parallel nature of modern GPUs. Zhou et al. 

(2008) describe a real-time k-d tree construction algorithm that is tailored to this type of architecture. 

The algorithm builds the tree in breadth-first order, instead of depth-first (Zhou et al., 2008:126:1). 

This leads to a large number of threads being spawned, taking advantage of the GPUs high 

parallelism (Zhou et al., 2008:126:1). In addition, the algorithm iterates over primitives for the top 

levels of the trees, making sure that the GPU is fully utilized for the complete run of the algorithm 

(Zhou et al., 2008:126:1). This type of refinement seems characteristic of recent research on GPU ray 

tracing. Earlier worked focused more on adapting CPU-based techniques for the GPU. Researchers 

are now working out the peculiarities of the platform and optimizing for them. 
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These techniques are enough to bring their ray tracer up to speed with CPU techniques, as their 

results trump those of two recently published CPU-based results (Zhou et al., 2008:126:7). However, 

the performance benefit for GPU over CPU ray tracers seems to be anything but clear cut. Even this 

algorithm (which is one of the fastest at  the moment) is inferior to a CPU algorithm running on eight 

cores (Zhou et al., 2008:126:7) for at least one scene. 

 

Using a simulator that makes very favourable assumptions about the memory bandwidth available on 

modern GPUs, it is possible to determine that current techniques are limited by the work distribution 

mechanism on modern graphics cards (Aila & Laine, 2009:146-149), rather than the memory 

bandwidth available on these cards as is commonly thought. 

 

Aila and Laine (2009:147) argue that the work distribution problem is caused by the fact that each ray 

is usually assigned as a packet of work to each of the pipelines on a GPU. However, GPUs execute 

the same instruction on each pipeline at the same time (SIMD). If one ray takes significantly longer 

to compute than another, then most of the pipelines will remain idle (Aila & Laine, 2009:147). 

 

It is therefore possible that Zhou et al.'s algorithm is only utilizing a fraction of the graphics card's 

power. If this is the case, then GPU ray tracing performance could far exceed the performance of 

CPU algorithms in the near future. More research should be done to implement Zhou et al.'s 

algorithm using the work distribution method described by Aila and Laine (2009). 

 

It is entirely possible, however, that Aila and Laine's findings (2009) are not applicable to the 

algorithm introduced by Zhou et al. (2008). Aila and Laine's technique described above makes many 

assumptions and therefore can only provide approximate data (Aila & Laine, 2009:146). Since the 

memory architecture of the simulator used by Aila and Laine (2009) is so optimistic, there is room 

for error in their conclusions. 

 

That said, the results of the optimizations suggested by Aila and Laine (2009) are compelling. The 

situation described above can easily be solved by using persistent threads and utilizing speculative 

traversal (Aila & Laine, 2009:147-149). These improvements bring the performance of GPU ray 

tracers to within 10% of the estimated upper bound on performance as determined by Aila and Laine 

(2009:146). 

 

Ironically, these modifications allow the GPU algorithms to reach an efficiency level where memory 

bandwidth may indeed become a problem (Aila & Laine, 2009:149). Future advances in GPU 

memory bandwidth will therefore be very beneficial to ray tracing. 

 

Kalojanov and Slusallek (2009) also developed a highly parallel construction algorithm, but for 

uniform grids. They reduce the problem of constructing a grid to a sorting problem, that is easily 

solved by an implementation of the radix sort algorithm present in the SDK they were using 

(Kalojanov & Slusallek, 2009:24). They store their acceleration structure in texture memory on the 

graphics card in order to make use of the speedy texture cache (Kalojanov & Slusallek, 2009:26). 

While their construction algorithm is very quick, the results from the ray tracer is not encouraging. 

Kalojanov and Slusallek (2009:26) state that their results are inferior to those already seen on the 

CPU. However, their ray tracer was not as sophisticated and optimized as the ones they were 

comparing against. Their true contribution is the fast construction algorithm, which looks very 

promising. Kalojanov and Slusallek's approach may be useful for dynamic scenes were the 

acceleration structure must be rebuilt quickly – as their approach can completely hide the 

computation done to upload new geometry to the GPU (Kalojanov & Slusallek, 2009:26). However, 

the memory problems they encountered (Kalojanov & Slusallek, 2009:26), together with the slow ray 

tracing speed of their approach will likely mean that their approach will not be used for complex 

scenes. 

 

Most of these approaches have looked at ways to improve the amount of rays that can be traced per 

second. However, there are other factors impacting the performance of a GPU ray tracer that may 
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become stumbling blocks in the future. Further improvements to the GPU ray tracing algorithm may 

include strategies for speeding up the rasterization step, early termination for shadow rays and using 

the GPU's advanced shading capabilities (Horn et al., 2007:172). Research into these ideas may yield 

surprising gains. 

Summary 
The preceding sections of this paper have looked at the development of GPU ray tracing from the 

perspective of various improvements and inventions. This section will take a high-level view to 

illustrate the flaws inherent in the current research paradigm. 

 

 Carr et al. 

(2002) 

Purcell et 

al. (2002) 

Buck et al. 

(2004) 

Foley & 

Sugerman 

(2005) 

Carr et al. 

(2006) 

Huang et al. 

(2006) 

Acceleratio

n Structure 

Type 

Octree & 5-

D ray tree. 

Uniform 

grid. 

Uniform 

grid.
i
 

K-D tree. Bounding 

volume 

hierarchy. 

Traversal 

field. 

Focus of 

Research 

Performing 

ray-triangle 

intersection 

on the GPU. 

GPU 

simulation. 

Measuring 

the 

performance 

of the Brook 

program-

ming 

environment

. 

Application 

of the k-d 

tree 

acceleration 

structure to 

GPU ray 

tracing. 

Storage of 

acceleration 

structure in 

texture 

memory. 

Develop-

ment of the 

traversal 

field 

structure and 

ray relays. 

Interactive 

Rendering 

Speeds 

Achieved 

No. No. No. No. No. No. 

Approxima

te FPS 

N/A.
ii
 N/A.

iii
 N/A

iv
 ~1

v
 N/A.

vi
 2 – 10.

vii
 

Table 1: Comparison of some GPU ray tracers. 

 

Table 1 and table 2 summarize the approaches used by each of the papers discussed earlier. Almost 

every study introduces its own take on performance enhancement, ignoring many of the advances, 

observations and improvements that were made previously – promising results from a previous study 

are rarely developed further. It is possible that incorporating the ideas from previous studies could 

enhance the insights in future studies and make the algorithms developed there even faster. 

 

 Horn et al. 

(2007) 

Chen & Liu 

(2007) 

Popov et al. 

(2007) 

Zhou et al. 

(2008) 

Aila & 

Lane (2009) 

Kalojanov 

& Slusallek 

(2009) 

Data 

Structure 

K-D tree. Bounding 

volume 

hierarchy. 

K-D tree 

with 

“ropes”. 

K-D tree. BVH. Uniform 

grid. 

Focus of 

Research 

Application 

of Foley and 

Sugerman's 

work (2005) 

to a 

branching 

GPU 

architecture. 

Use of the 

hardware Z-

buffer 

algorithm to 

speed up 

first hit 

calculations. 

Developmen

t and 

performance 

analysis of 

the 

improved K-

D tree 

structure. 

K-D tree 

construction 

improve-

ments. 

Work distri-

bution 

improve-

ments. 

Fast 

construction 

of uniform 

grid. 
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Interactive 

Rendering 

Speeds 

Achieved 

Yes. Yes. Yes. Yes. Yes. Yes. 

Approx. 

FPS 

N/A.
viii

 ~10 

depending 

on scene
ix

 

4.0 – 12.7
x
 4.8 – 32.0

xi
 N/A

xii
 3.5 – 7.7

xiii
 

Table 2: Further comparisons of GPU ray tracing techniques. 

 

This is not the only problem, however. There is also a great deal of variation in the experimental 

methods used by each paper. No agreement has been reached in the GPU ray tracing community 

regarding an acceptable standard performance metric or a set of representative and common testing 

scenes. This will be illustrated by tables 3 and 4. 

 

 Carr et al. 

(2002:43) 

Purcell et 

al. 

(2002:275) 

Buck et al. 

(2004:783) 

Foley & 

Sugerman 

(2005:19) 

Carr et al. 

(2006:207) 

Huang et al. 

(2006:72) 

Performanc

e 

Metric 

Rays / 

second. 

SIMD 

efficiency, 

traversal 

steps and 

intersections

. 

Ray / 

triangle 

intersections 

per second. 

Elapsed 

milli-

seconds and 

various 

traversal 

counts. 

Elapsed 

milli-

seconds. 

Rays / 

second and 

inter-

sections / 

ray. 

 Horn et al. 

(2007:170-

171) 

Chen & Liu 

(2007:1049-

1050) 

Popov et al. 

(2007) 

Zhou et al. 

(2008:126:6

-7) 

Aila & 

Lane 

(2009:146) 

Kalojanov 

& Slusallek 

(2009:26) 

Performanc

e 

Metric 

Frames per 

second and 

millions of 

rays / 

second. 

Elapsed 

seconds and 

percentage 

speed-up. 

K-d tree 

statistics, 

traversal 

steps and 

frames per 

second. 

Elapsed 

seconds and 

frames per 

second and 

speed-up 

factor. 

SIMD 

efficiency, 

millions of 

rays / 

second and 

percentage 

of simulated 

performance

. 

Frames per 

second and 

milliseconds

. 

Table 3: Performance metrics used by each paper. 

 

Rays per second, elapsed time and frames per second are used as metrics several times, but there is 

still very little unification between papers. This means that it is very difficult to compare the 

performance of one ray tracer to another. 

 

It is also unclear which of these measurements is the best, and if any of them are suited to the 

comparison of experimental results. There is a need for research to be conducted to investigate which 

of these measurements describes the performance of a ray tracer in the most precise manner. Such a 

metric will have to eliminate as many variables as possible. 

 

 Carr et al. 

(2002:43) 

Purcell et 

al. 

(2002:275) 

Buck et al. 

(2004:780) 

Foley & 

Sugerman 

(2005:19) 

Carr et al. 

(2006:207) 

Huang et al. 

(2006:70) 
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Scenes “Teapot 

room”, 

“office” and 

“soda hall”. 

“Soda hall”, 

“forest” and 

“bunny”. 

“Glassner”xiv “Robots”, 

“kitchen”, 

“Cornell 

box” and 

“Stanford 

bunny”. 

“Stanford 

bunny” and 

“Mult.” 

“Desk”, 

“cube”, 

“teapot”, 

“bear”, 

“venus”, 

“simplified 

bunny”, 

“approxi-

mate 

bunny”, 

“teapot 

house” and 

“bunny 

couple”. 

 Horn et al. 

(2007:170-

171) 

Chen & Liu 

(2007:1049-

1050) 

Popov et al. 

(2007) 

Zhou et al. 

(2008:126:6

) 

Aila & 

Lane 

(2009:146) 

Kalojanov 

& Slusallek 

(2009:26) 

Scenes “Cornell 

box”, 

“kitchen”, 

“robots” and 

“conference

”. 

“Bunny”, 

“dragon” 

and “easter”. 

“Shirley6”, 

“bunny”, 

“forest” and 

“conference

”. 

“Toys”, 

“museum”, 

“robots”, 

“kitchen”, 

“fairy 

forest” and 

“dragon”. 

“Conference

”, “fairy” 

and 

“Sibenik”. 

“Thai 

statue”, 

“soda hall”, 

“conference

”, “dragon”, 

“fairy 

forest”, 

“sponza”, 

“ruins”. 

Table 4: Scenes used by each paper. 

 

Like the performance metrics, there is a wide variety of scenes in use by the ray tracing community. 

While several scenes are used repeatedly, there is still too little correlation to make comparisons 

easily. 

 

If we are to obtain meaningful experimental results that are comparable, then all variables must be 

controlled for. Certainly the use of certain scenes is one such variable. Haines (1987) and Lext, 

Assarsson and Möller (2001) have made some progress towards this ideal, but their scenes are 

seldom used: as shown by table 4 – only “kitchen” and “robots” from Lext et al.'s library is used 3 

times. 

 

The viewpoint from which a scene is rendered is also important. Most of the papers surveyed did not 

specify this viewpoint, even though it is an important variable. Some objects may not even be visible 

from a particular viewpoint, which could heavily influence the performance of certain algorithms. 

More care should be taken in the future with regards to stating the particular viewpoint used in an 

experiment. 
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 Carr et al. 

(2002:44) 

Purcell et 

al. 

(2002:273-

276) 

Buck et al. 

(2004:782) 

Foley & 

Sugerman 

(2005:19) 

Carr et al. 

(2006:206) 

Huang et al. 

(2006:70) 

GPU Radeon 

8500 / 

GeForce 3 / 

GeForce 4 

Ti4600 

Not stated. Radeon 

X800 XT 

Platinum / 

GeForce 

6800 (Pre-

release) 

256 MB ATI 

X800 XT PE  

GeForce 

7800 GTX 

(430 MHz 

clock, 

1.2GHz 

memory 

clock) 

256 MB 

NVIDIA 

6800GT  

CPU Not stated. Not stated. 3 GHz 

Pentium 4 

(875P 

Chipset) 

Not stated. 2.2 GHz 

Athlon 

3500+ 

2 x 3.2 GHz 

Pentium 4 

Memory Not stated. Not stated. Not stated. Not stated. Not stated. 2 GB 

 Horn et al. 

(2007:170) 

Chen & Liu 

(2007:1049) 

Popov et al. 

(2007) 

Zhou et al. 

(2008:126:6

) 

Aila & Lane 

(2009:145) 

Kalojanov 

& Slusallek 

(2009:25) 

GPU 512 MB 

Radeon 

X1900 XTX  

(650 Mhz 

clock & 750 

Mhz 

memory 

clock) 

 

Radeon 

X300SE  

GeForce 

8800 GTX  

768 MB 

GeForce 

8800 

ULTRA 

GeForce 285  

GTX 

1 GB 

GeForce 280 

GTX 

CPU 2 x 2.4 GHz 

Core2 Duo 

1.8 GHz 

Athlon64 

3000+ 

2.6 GHz 

Opteron 

3.7 GHz 

Xeon 

Not stated. 4 x 2.66 

GHz Core2 

Quad 

Memory Not stated. Not stated. Not stated. Not stated. Not stated. Not stated 

Table 5: Hardware used by different papers. 

 

Table 5 illustrates the wide variety of hardware used to test the performance of the various algorithms 

discussed in the papers above. The great difference between the performance of the various 

components identified obscures the differences between the performance of the algorithms discussed. 

 

Ideally, hardware would not be a variable when comparing different algorithms. It could be 

eliminated by running each algorithm on the same hardware, or by some other method. 

Unfortunately, it is difficult to tell which algorithms are superior with the current approach. 

Conclusion 
This paper has presented the development of GPU ray tracing algorithms from their inception to the 

current state of the art. 

Great strides have been made towards a viable real-time ray tracing algorithm on the GPU, but there 

is considerable confusion in the existing literature. The experimental set up for most of the papers 

that have been reviewed here is ad-hoc. Two different algorithms are sometimes compared by their 

performance on completely different hardware platforms. This is unfortunately not a fair comparison, 

and may distort overt or subtle differences in the performance of the various algorithms being 

discussed. 

Advancing hardware is also an issue. It is difficult to compare experiments in this field because the 

algorithms are so heavily dependent on the newest technology. This is especially troublesome for 
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comparing papers that were published several years apart, since computer hardware advances at such 

an incredible pace. 

 

All of these issues make comparisons between algorithms very difficult – even for papers that were 

published only in the last three years. 

 

If the GPU ray tracing community is to learn which algorithms are effective, then it must find a way 

to compare the results from different studies in a fair way. Currently, the literature lacks a 

methodology that is capable of achieving this. 

 

Such a methodology will need to find performance metrics that are independent from the underlying 

hardware and the properties of specific scenes. It will need to be widely acceptable and must be easy 

to use so that it will be used consistently. 

 

It is the author's belief that research into such a methodology will benefit the GPU ray tracing 

community and may lead to great advances in the field. 

 

Another problem in the literature is that many of the recent papers do not incorporate the ideas and 

optimizations from previous ones. It is likely that a much faster GPU ray tracer can be constructed by 

using the core ideas from several algorithms at once. A good example is the load balancing 

improvements made by Aila and Laine (2009) and the k-d tree improvements made by Zhou et al. 

(2008). Superficially, at least, it seems that these insights could be combined to yield a very high 

performing GPU ray tracer indeed. 

 

As such, there is also room for significant research geared towards the integration of compatible ideas 

from the existing GPU ray tracing literature. 

                                                           

i Buck et al. (2004:782) state that they based their ray tracer on Purcell et al.'s work, therefore 

it is assumed that they used the same acceleration structure. 

ii FPS is not stated, but the ray tracer achieved speeds of 100 000 – 200 000 rays per second 

which far exceeded the CPU ray tracers available at the time. 

iii The research does not include any timing information. 

iv The research contains no timing information, but states that between 45 and 186 ray-triangle 

intersections were performed per second (Buck et al., 2004:783). 

v There is no data about FPS in the research per se, but the ray tracer described achieved 

rendering speeds of ~950 ms on the most complex scene rendered. 

vi The research does not include any data on frames-per-second achieved, but states that an 

image was rendered at 1272 x 815 in approximately half a minute. 

vii While the research does not include any data on FPS, it states that the ray tracer involved 

could compute an image in ~100 – 450 ms for one of the scenes. However, this data is only for eye 

rays which makes it an ineffective measure. 

viii The research claims interactive rendering rates and a sustained rate of 15 million rays per 

second, but makes no mention of any timing information (Horn et al., 2007). 

ix There's no timing information in the research, but it does briefly state a computation time of 

115ms on the Stanford bunny scene (Chen & Liu, 2007). 

x These figures are for the ray tracer running on four different scenes with secondary rays and 

packet tracing (Popov et al., 2007). 

xi Four dynamic scenes at 1024 x 1024 resolution (Zhou et al., 2008). 

xii The research reported 20-40 million rays per second presumably with secondary rays (Aila 

& Lane, 2009:149). 

xiii This measurement is only for the generation of eye rays (Kalojanov & Slusallek, 2009:26). 

xiv It is unclear whether any other scenes were used. However, this scene name is mentioned on 

page 780 and the performance graphs suggest that only one scene was used. 
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