
Knowledge Management and Innovation: A Business Competitive Edge Perspective 438

The Advent of GPU Ray Tracers

Kroeze, JCW, North West University, Vanderbijlpark, South Africa, thejcwk@gmail.com

Jordaan, DB, North West University, Vanderbijlpark, South Africa, dawid.jordaan@nwu.ac.za

Pretorius, P, North West University, Vanderbijlpark, South Africa, phillip.pretorius@nwu.ac.za

Abstract
Ever since it's introduction in 1980 the ray tracing algorithm has been a tricky puzzle. On the one

hand it offers photo-realistic rendering superior to the more common rasterization algorithm, but on

the other it's much too slow to serve as a replacement.

Much of the rasterization algorithm's performance advantage lies in the use of special purpose

hardware. This hardware, known as graphics cards, has evolved rapidly over the past decades, driven

by demands for ever higher polygon counts. More recently, this pressure has lead to the introduction

of programmable shader units to the graphics card architecture.

These units became ever more programmable as researchers realized their potential as general

parallel processing units. Eventually this trend lead to the exploration of the graphics card

architecture as a ray tracing platform.

This paper aims to explore the advent of this type of ray tracer and explain the developments that

have been made in this field in order to see what the current state of the art is and where further

research is required. It will also explore the defects that can be identified in the current literature and

discuss how to address them.

Keywords
GPU, GPGPU, Ray Tracing, Computer Graphics.

Introduction
The ray tracing algorithm was first formulated by Turner Whitted in 1980 (Whitted, 1980). This

algorithm traces the path of light rays based on classical ray optics. Each ray can reflect off the

surface of an object, or refract through it (Whitted, 1980:344). By modelling the behaviour of each

individual ray, a highly realistic rendering of the scene can be produced.

Unfortunately, the algorithm proved to be much too slow for use in interactive graphics programs

(Whitted, 1980:349). This has led to the development of many techniques to speed-up the calculation

of images by ray tracing.

Recently there has been a lot of interest in the execution of ray tracing algorithms on the graphics

processing unit (GPU) present on current graphics cards (Horn, Sugerman, Houston & Hanrahan,

2007). Since these cards are usually built to parallel process huge volumes of data at interactive

speeds, they may prove to be a good platform for the ray tracing algorithm, which is inherently very

parallel.

Another attractive aspect of GPU based ray tracing is the fact that GPUs are very good at generating

rasterized images of three dimensional scenes very quickly. This ability can be used to quickly

determine the first hit location for a large collection of rays (Horn et al., 2007:169; Purcell, Buck,

Mark & Hanrahan, 2002:268). Since this is a major part of the work done by a ray tracer, it should

speed up computation significantly. The ray tracing algorithm can then be used for the parts it excels

at: perfect specular reflection, refraction, shadows, caustics and the like. In addition, the graphics card

can be used to perform basic and advanced shading operations (Horn et al., 2007:169), since all ray

tracers require some form of shading, this capability makes graphics cards attractive platforms for ray

tracing.

There is also evidence that GPUs are faster than central processing units (CPUs) for at least some

Knowledge Management and Innovation: A Business Competitive Edge Perspective 439

tasks (Buck, Foley, Horn, Sugerman, Fatahalian, Houston and Hanrahan, 2004:783). There is also the

fact that graphics cards have advanced faster than CPUs in the past, since they can always incorporate

more pipelines, while it is harder to add more transistors to a CPU (Purcell et al., 2002:268). It is

unclear that this argument still holds in the current day however, since the rise of multi-core CPUs

has brought some measure of scalability to the CPU.

This paper will review the history of GPGPU ray tracing algorithms after which it will discuss some

of the shortcomings discovered in the literature. Please note that this paper’s goal is not to discuss the

difference in performance between GPU and CPU ray tracers, or to draw any type of comparison

between the two – such a comparison is difficult because there’s very little data in the literature on

the relative performance of GPU and CPU ray tracers. It would be outside the scope of this paper to

attempt to reconstruct so many experiments in order to draw these comparisons. However, the

authors have mentioned comparisons where they are available in the literature.

Early Predictions
Prior to the emergence of viable GPU architectures, simulation of the GPU architectures that would

emerge in the future managed to predict many of their performance aspects. It was predicted that a

GPU that was capable of branching would be faster than a GPU without it (Purcell et al., 2002:273).

According to Purcell et al. (2002:273) this would be due in part to extra work and to the coherence

that is lost when not using the looping algorithm that branching allows (Purcell et al. 2002:275),

whereas Foley and Sugerman (2005:21) put the inefficiencies in a non-branching architecture down

to the data that must be re-circulated for every ray. This was later confirmed and the performance

gains from branching were estimated at a 25 times speed increase (Horn et al., 2007:170). This makes

sense: loops in computer programs allow for data to be re-used repeatedly in the same context.

Having to re-execute a program and re-calculate all the data that’s common to each loop will slow the

process. The coherence that is the foundation of many of today’s performance enhancing

technologies and algorithms also greatly benefit from a block of code that is obviously going to

repeated. This advance in the design of programmable GPUs is therefore very important.

It was also predicted that secondary and shadow rays would be less cache friendly than the primary

rays that spawned them (Purcell et al. 2002:276), this was later confirmed (Horn et al., 2007:170).

Primary rays that correspond to nearby pixels tend to hit objects close to each other, which are

usually close in memory. This also generates similar instruction sequences. Both of these situations

are good for coherence, and therefore performance. But because secondary rays tend to scatter

because of reflection and refraction, the coherence tends to fall off after the first hit. Naturally this is

a problem on the CPU as well, but because GPUs are so parallel and based on the very idea of

coherence, it is a bigger problem on the GPU (Horn et al., 2007;170; Carr, Hall & Hart, 2002:38).

Acceleration data structures were first implemented on a simulated GPU architecture by Purcell et al.

(2002; Horn et al., 2005:168). This was a huge step forward, since acceleration structures have

always been so important for performance. Their simulation was also the first GPU algorithm to

make use of a uniform grid – although they lament the fact that it performs poorly on some scenes

(Purcell et al. 2002:276). Interestingly, Purcell et al. (2002:276) proposed the use of the rasterizer on

the graphics card to traverse a uniform grid acceleration structure. To the best of the authors'

knowledge, this approach has not been implemented, but it sounds promising. It could be an

interesting research topic to pursue.

The Stream Model
The previous section has discussed some of the advantages that might be realised with the use of a

GPU ray tracer. While these advantages are attractive in theory, extracting them in practice has

proven to be more difficult.

In part, this difficulty is due to the fact that graphics cards express their programmable units in terms

of graphics concepts such as textures and shaders. This is not ideal for the design and implementation

of a ray tracer, since these concepts do not map well to ray tracing. It makes more sense to view a

GPU as a streaming processor in which data is modelled as streams with specific dimensions that

Knowledge Management and Innovation: A Business Competitive Edge Perspective 440

flow through a sequence of kernels (Purcell et al., 2002:270). Each kernel then performs operations

on its input stream and produces an output steam that serves as input to the next kernel (Buck et al.,

2004:778).

The stream model has several advantages: it encourages independent execution which increases

parallelism, it forces kernels to do many calculations versus memory bandwidth utilized and it hides

memory latency with the use of pre-fetching (Purcell et al., 2002:270).

In order to capture these advantages and ease the implementation of general algorithms on the GPU a

programming environment such as Brook is important. Brook allows programmers to express their

algorithms in terms of the streaming model (Buck et al., 2004:777) and was implemented on the GPU

and tested with a ray tracing algorithm as early as 2004 (Buck et al., 2004). Brook would prove to be

influential in the early research on GPU ray tracing, as it was used by both Foley and Sugerman

(2005:17) and Horn et al. (2007:167) for their implementations.

Brook has not seen widespread use in the most recent papers, this is likely due to the increasing ease

of programming that recent GPUs offer. However, the realisation that a generic programming

language is important likely eased the development of future GPU ray tracers. In the authors’

experience, a programming environment that is close to the problem domain is usually very helpful.

Initial Hardware Implementations
To the extent of the authors' knowledge, the first use of graphics card hardware in ray tracing was the

use of the cards' rasterization capabilities to speed up the calculation of eye rays' first hit with scene

geometry (Carr et al., 2002:38). This was the only part of the ray tracing process accelerated by the

graphics card in their approach (Purcell et al., 2002:277). This approach has the advantage that the

CPU can be used for the tasks it is best suited for: complex algorithms and data structures and the

GPU can be used for the parallel and repetitive tasks for which it was intended (Carr et al. 2002:41).

Carr et al. (2002:41) achieved good results with this approach, but their ray tracer's performance was

limited by the slow transfer rates between video card and CPU that was the case at the time. Given

the recent advances in the technology bridging GPUs and CPUs in the PCI express specification, this

approach could be revisited.

The first GPU ray tracing algorithm to make use of the k-d tree was described by Foley and

Sugerman (2005; Horn et al., 2005:168). Due to memory limitations imposed by the GPU hardware

the generic k-d tree algorithms had to be adapted to run without a stack (Foley & Sugerman,

2005:15). Typically, an optimized k-d tree will process the child of a node nearest to a ray first and

place the further child on a stack (Horn et al., 2007:168). These stack operations can be eliminated by

keeping track of the start and end points of a specific ray, and updating the start point to equal the

start of the next child's extents when the algorithm finishes with a leaf node (Foley & Sugerman,

2005:16). When the algorithm then reaches a leaf node with no intersections, it can simply restart

from the root and quickly find the node it should search next – this technique is called kd-restart

(Foley & Sugerman, 2005:16). By further manipulating these start and end points, the algorithm can

determine the parent of the next node to be searched, eliminating a couple of traversal steps (Foley &

Sugerman, 2005:17) – this optimization is termed kd-backtrack. There is one major problem with kd-

backtrack however, as this strategy requires 256 extra bits of storage (Foley & Sugerman, 2005:18).

This cost would prove too large for Horn et al. (2007:168), who were worried about the effects it

would have on packetization and bandwidth. All in all, the loss of a stack only increased the cost of k-

d tree traversal by a linear factor (Foley & Sugerman, 2005:20). While this is impressive, it did set

the algorithm itself back when compared against the CPU version, which is unfortunate. This is a

problem with the GPGPU approach – the GPU is not as flexible as the CPU and its memory is

generally very limited.

A year later, Carr et al. (2006) developed a method based on the idea of storing an acceleration

structure in a MIP map texture as a geometry image. Their method was able to ray trace dynamic

scenes and was competitive with other techniques at the time (Carr et al., 2006:207). Unfortunately,

they could only ray trace scenes containing a single mesh with no sharp edges (Carr et al., 2006:207,

Knowledge Management and Innovation: A Business Competitive Edge Perspective 441

Popov et al., 2007). This is probably why their method has fallen by the wayside, despite having

competitive performance characteristics for the techniques of the time. It is also likely that the

community's familiarity with k-d trees pushed research in that direction, rather than into novel

approaches.

Around the same time Huang et al. (2006) developed the traversal field method. This method

constructs a series of ray relays at the faces of the bounding boxes that enclose objects (Huang et al.,

2006:65). These relays then sample all the possible incoming directions of rays and associate them

with the triangles they would intersect (Huang et al., 2006:65). While their method had a good

performance profile when measured against the efforts of Carr et al. (2006), it required user

intervention (Huang et al., 2006:67) and was subject to aliasing effects caused by the sampling nature

of the algorithm (Huang et al., 2006:69). The algorithm also had difficulty dealing with convex

objects (Huang et al., 2006:67) and experienced severe performance and memory footprint penalties

when the amount of triangles in a scene reached 2
16

(Huang et al., 2006:70). These difficulties are

likely the reason that researchers didn't explore this algorithm further. The requirement for user

intervention alone would make their algorithm unsuitable for use in an interactive program, and the

convexity requirement and limitation on the amount of triangles would have been a big step

backward.

The performance figures comparing GPU ray tracing to CPU ray tracing were disappointing at this

point in history. Foley and Sugerman (2005:21) report that their implementation is an order of

magnitude slower than a CPU implementation. This large discrepancy was reportedly due to data re-

circulation (Foley & Sugerman, 2005:21) – a problem that was later solved by the use of the new

looping features on more modern cards (Horn et al., 2007:172). Zhou et al. (2008:126:2) summarily

states that the algorithms described in Carr et al. (2002), Carr et al. (2006) Purcell et al. (2002), and

Foley and Sugerman (2005) are slower than heavily optimized CPU ray tracers. However, Buck et al.

(2004:783) claim significant improvement over a fast CPU implementation on graphics cards with

lots of memory bandwidth, but their figures compare ray-triangle intersection per second, rather than

the more common and appropriate frames per second. It is uncertain whether their algorithm

outperformed the CPU algorithm in terms of animation speed as their focus wasn't on ray tracing, per

se.

Unfortunately, at this point the potential benefits of a GPU based ray tracer had not been realized yet.

It would take more research and hardware development to reach acceptable speeds.

Advanced Implementations
The case for GPU ray tracing became much stronger in 2007 with the introduction of at least three

algorithms that outperformed CPU ray tracers – Horn et al. (2007), Chen and Liu (2007) and Popov

et al. (2007). Horn et al. (2007:171) achieved nearly double the performance for a single Opteron 2.4

GHz CPU, which is encouraging. Unfortunately there are no figures comparing the performance of

their algorithm to recent CPUs.

This algorithm consists mainly of refinements to the approach suggested by Foley and Sugerman

(2005). These refinements are called push-down and short-stack (Horn et al., 2007:167). The focus of

these algorithms is to exploit the additional functionality that had been introduced into the

programmable units on the graphics cards from 2005 till 2007 – e.g. looping and branching (Horn et

al., 2007:167). The short-stack optimization provided the majority of the performance improvement –

reducing the count of visited nodes by 48 – 52% over the k-d tree with push-down, which had already

reduced counts by 3 – 22% (Horn et al., 2007:170). This is quite impressive, but the overall

performance improvement they achieved is largely attributable to the extra capabilities of the

hardware, and not to new insights into the nature of the ray tracing algorithm on GPUs.

These optimizations together with improvements in the hardware's computational power resulted in

more than a 25 times performance increase over the work done by Foley and Sugerman (Horn et al.,

2007:170). Most of this performance improvement is due to the introduction of looping into the

algorithm (this was previously impossible due to limitations present in the platform), which

Knowledge Management and Innovation: A Business Competitive Edge Perspective 442

eliminated the data recirculation problems encountered by Foley and Sugerman (Horn et al.

2007:170).

That said, the hardware still proved to be problematic. The graphics card that was used by Horn et al.

provided four wide SIMD instructions, but only two scalar operations could be performed at once

(Horn et al., 2007:170), which slowed down the algorithm when compared with processors that are

fully four wide. This was a problem with the hardware available at the time, so it should not be paid

much attention today.

The figures for the packetization introduced by Horn et al. (2007) are less rosy. While there is no real

penalty or improvement when using ray packets that bounce only once on the GPU, packetization

becomes more problematic when more bounces are added (Horn et al., 2007:170). This is thought to

be due to incoherent branching, which is a major problem on the GPU architecture due to its nature

(Horn et al., 2007:171). Because of this problem and the limited register memory that is available on

current graphics cards, the use of large ray packets is unfortunately unlikely (Horn et al., 2007:172).

A modification to the k-d tree that results in larger leaves might alleviate this problem in the future

(Horn et al., 2007:172). This would again be a very interesting topic to study for future research.

Chen and Liu (2007:1050) report that they were able to get a 62% - 157% performance boost over a

pure CPU solution from just using the graphics hardware to speed up the first hit calculation, even

when taking into account the overhead of transferring data between the graphics card and CPU. This

is very encouraging, and implies that another hybrid approach might be the best way to go for the ray

tracing community in general.

At the same time Popov et al. (2007) developed an extension to k-d trees that significantly reduces

the amount of work that is done traversing the tree. In their algorithm, the k-d tree maintains “ropes”

at its leaf nodes (Popov et al., 2007). These ropes link a leaf node's bounding box faces to the node

that is on the other side of that face (Popov et al., 2007). This has a number of advantages: first, the

resulting algorithm does not require a stack, which saves on memory bandwidth and second, it can

reduce “down”-traversals by 5/6 over the method described by Foley and Sugerman (2005). Since the

algorithm requires no stack, it could potentially be used as an improvement on the kd-restart, kd-

backtrack, short-stack and push-down algorithms mentioned earlier.

Popov et al. (2007) state that their GPU implementation of this algorithm outperforms the CPU

implementation. Their figures also indicate that their algorithm beats the performance attained by the

OpenRT system that is designed for CPUs (Popov et al., 2007). This is certainly encouraging, but a

comparison with other heavily optimized ray tracers available at the time would have been welcome.

Curiously, the method described by Popov et al. (2007) doesn't seem to have penetrated the ray

tracing research community, as their research is not incorporated into any later papers to the authors'

knowledge. It seems like a very effective scheme, however, and more investigation should be done.

The difference in hardware and the algorithms used between the different papers in the literature

muddy the waters significantly. There is a need for a standardized platform to compare different

approaches on the same hardware.

Current State of the Art
Previous techniques did not fully exploit the highly parallel nature of modern GPUs. Zhou et al.

(2008) describe a real-time k-d tree construction algorithm that is tailored to this type of architecture.

The algorithm builds the tree in breadth-first order, instead of depth-first (Zhou et al., 2008:126:1).

This leads to a large number of threads being spawned, taking advantage of the GPUs high

parallelism (Zhou et al., 2008:126:1). In addition, the algorithm iterates over primitives for the top

levels of the trees, making sure that the GPU is fully utilized for the complete run of the algorithm

(Zhou et al., 2008:126:1). This type of refinement seems characteristic of recent research on GPU ray

tracing. Earlier worked focused more on adapting CPU-based techniques for the GPU. Researchers

are now working out the peculiarities of the platform and optimizing for them.

Knowledge Management and Innovation: A Business Competitive Edge Perspective 443

These techniques are enough to bring their ray tracer up to speed with CPU techniques, as their

results trump those of two recently published CPU-based results (Zhou et al., 2008:126:7). However,

the performance benefit for GPU over CPU ray tracers seems to be anything but clear cut. Even this

algorithm (which is one of the fastest at the moment) is inferior to a CPU algorithm running on eight

cores (Zhou et al., 2008:126:7) for at least one scene.

Using a simulator that makes very favourable assumptions about the memory bandwidth available on

modern GPUs, it is possible to determine that current techniques are limited by the work distribution

mechanism on modern graphics cards (Aila & Laine, 2009:146-149), rather than the memory

bandwidth available on these cards as is commonly thought.

Aila and Laine (2009:147) argue that the work distribution problem is caused by the fact that each ray

is usually assigned as a packet of work to each of the pipelines on a GPU. However, GPUs execute

the same instruction on each pipeline at the same time (SIMD). If one ray takes significantly longer

to compute than another, then most of the pipelines will remain idle (Aila & Laine, 2009:147).

It is therefore possible that Zhou et al.'s algorithm is only utilizing a fraction of the graphics card's

power. If this is the case, then GPU ray tracing performance could far exceed the performance of

CPU algorithms in the near future. More research should be done to implement Zhou et al.'s

algorithm using the work distribution method described by Aila and Laine (2009).

It is entirely possible, however, that Aila and Laine's findings (2009) are not applicable to the

algorithm introduced by Zhou et al. (2008). Aila and Laine's technique described above makes many

assumptions and therefore can only provide approximate data (Aila & Laine, 2009:146). Since the

memory architecture of the simulator used by Aila and Laine (2009) is so optimistic, there is room

for error in their conclusions.

That said, the results of the optimizations suggested by Aila and Laine (2009) are compelling. The

situation described above can easily be solved by using persistent threads and utilizing speculative

traversal (Aila & Laine, 2009:147-149). These improvements bring the performance of GPU ray

tracers to within 10% of the estimated upper bound on performance as determined by Aila and Laine

(2009:146).

Ironically, these modifications allow the GPU algorithms to reach an efficiency level where memory

bandwidth may indeed become a problem (Aila & Laine, 2009:149). Future advances in GPU

memory bandwidth will therefore be very beneficial to ray tracing.

Kalojanov and Slusallek (2009) also developed a highly parallel construction algorithm, but for

uniform grids. They reduce the problem of constructing a grid to a sorting problem, that is easily

solved by an implementation of the radix sort algorithm present in the SDK they were using

(Kalojanov & Slusallek, 2009:24). They store their acceleration structure in texture memory on the

graphics card in order to make use of the speedy texture cache (Kalojanov & Slusallek, 2009:26).

While their construction algorithm is very quick, the results from the ray tracer is not encouraging.

Kalojanov and Slusallek (2009:26) state that their results are inferior to those already seen on the

CPU. However, their ray tracer was not as sophisticated and optimized as the ones they were

comparing against. Their true contribution is the fast construction algorithm, which looks very

promising. Kalojanov and Slusallek's approach may be useful for dynamic scenes were the

acceleration structure must be rebuilt quickly – as their approach can completely hide the

computation done to upload new geometry to the GPU (Kalojanov & Slusallek, 2009:26). However,

the memory problems they encountered (Kalojanov & Slusallek, 2009:26), together with the slow ray

tracing speed of their approach will likely mean that their approach will not be used for complex

scenes.

Most of these approaches have looked at ways to improve the amount of rays that can be traced per

second. However, there are other factors impacting the performance of a GPU ray tracer that may

Knowledge Management and Innovation: A Business Competitive Edge Perspective 444

become stumbling blocks in the future. Further improvements to the GPU ray tracing algorithm may

include strategies for speeding up the rasterization step, early termination for shadow rays and using

the GPU's advanced shading capabilities (Horn et al., 2007:172). Research into these ideas may yield

surprising gains.

Summary
The preceding sections of this paper have looked at the development of GPU ray tracing from the

perspective of various improvements and inventions. This section will take a high-level view to

illustrate the flaws inherent in the current research paradigm.

 Carr et al.

(2002)

Purcell et

al. (2002)

Buck et al.

(2004)

Foley &

Sugerman

(2005)

Carr et al.

(2006)

Huang et al.

(2006)

Acceleratio

n Structure

Type

Octree & 5-

D ray tree.

Uniform

grid.

Uniform

grid.
i

K-D tree. Bounding

volume

hierarchy.

Traversal

field.

Focus of

Research

Performing

ray-triangle

intersection

on the GPU.

GPU

simulation.

Measuring

the

performance

of the Brook

program-

ming

environment

.

Application

of the k-d

tree

acceleration

structure to

GPU ray

tracing.

Storage of

acceleration

structure in

texture

memory.

Develop-

ment of the

traversal

field

structure and

ray relays.

Interactive

Rendering

Speeds

Achieved

No. No. No. No. No. No.

Approxima

te FPS

N/A.
ii
 N/A.

iii
 N/A

iv
 ~1

v
 N/A.

vi
 2 – 10.

vii

Table 1: Comparison of some GPU ray tracers.

Table 1 and table 2 summarize the approaches used by each of the papers discussed earlier. Almost

every study introduces its own take on performance enhancement, ignoring many of the advances,

observations and improvements that were made previously – promising results from a previous study

are rarely developed further. It is possible that incorporating the ideas from previous studies could

enhance the insights in future studies and make the algorithms developed there even faster.

 Horn et al.

(2007)

Chen & Liu

(2007)

Popov et al.

(2007)

Zhou et al.

(2008)

Aila &

Lane (2009)

Kalojanov

& Slusallek

(2009)

Data

Structure

K-D tree. Bounding

volume

hierarchy.

K-D tree

with

“ropes”.

K-D tree. BVH. Uniform

grid.

Focus of

Research

Application

of Foley and

Sugerman's

work (2005)

to a

branching

GPU

architecture.

Use of the

hardware Z-

buffer

algorithm to

speed up

first hit

calculations.

Developmen

t and

performance

analysis of

the

improved K-

D tree

structure.

K-D tree

construction

improve-

ments.

Work distri-

bution

improve-

ments.

Fast

construction

of uniform

grid.

Knowledge Management and Innovation: A Business Competitive Edge Perspective 445

Interactive

Rendering

Speeds

Achieved

Yes. Yes. Yes. Yes. Yes. Yes.

Approx.

FPS

N/A.
viii

 ~10

depending

on scene
ix

4.0 – 12.7
x
 4.8 – 32.0

xi
 N/A

xii
 3.5 – 7.7

xiii

Table 2: Further comparisons of GPU ray tracing techniques.

This is not the only problem, however. There is also a great deal of variation in the experimental

methods used by each paper. No agreement has been reached in the GPU ray tracing community

regarding an acceptable standard performance metric or a set of representative and common testing

scenes. This will be illustrated by tables 3 and 4.

 Carr et al.

(2002:43)

Purcell et

al.

(2002:275)

Buck et al.

(2004:783)

Foley &

Sugerman

(2005:19)

Carr et al.

(2006:207)

Huang et al.

(2006:72)

Performanc

e

Metric

Rays /

second.

SIMD

efficiency,

traversal

steps and

intersections

.

Ray /

triangle

intersections

per second.

Elapsed

milli-

seconds and

various

traversal

counts.

Elapsed

milli-

seconds.

Rays /

second and

inter-

sections /

ray.

 Horn et al.

(2007:170-

171)

Chen & Liu

(2007:1049-

1050)

Popov et al.

(2007)

Zhou et al.

(2008:126:6

-7)

Aila &

Lane

(2009:146)

Kalojanov

& Slusallek

(2009:26)

Performanc

e

Metric

Frames per

second and

millions of

rays /

second.

Elapsed

seconds and

percentage

speed-up.

K-d tree

statistics,

traversal

steps and

frames per

second.

Elapsed

seconds and

frames per

second and

speed-up

factor.

SIMD

efficiency,

millions of

rays /

second and

percentage

of simulated

performance

.

Frames per

second and

milliseconds

.

Table 3: Performance metrics used by each paper.

Rays per second, elapsed time and frames per second are used as metrics several times, but there is

still very little unification between papers. This means that it is very difficult to compare the

performance of one ray tracer to another.

It is also unclear which of these measurements is the best, and if any of them are suited to the

comparison of experimental results. There is a need for research to be conducted to investigate which

of these measurements describes the performance of a ray tracer in the most precise manner. Such a

metric will have to eliminate as many variables as possible.

 Carr et al.

(2002:43)

Purcell et

al.

(2002:275)

Buck et al.

(2004:780)

Foley &

Sugerman

(2005:19)

Carr et al.

(2006:207)

Huang et al.

(2006:70)

Knowledge Management and Innovation: A Business Competitive Edge Perspective 446

Scenes “Teapot

room”,

“office” and

“soda hall”.

“Soda hall”,

“forest” and

“bunny”.

“Glassner”xiv “Robots”,

“kitchen”,

“Cornell

box” and

“Stanford

bunny”.

“Stanford

bunny” and

“Mult.”

“Desk”,

“cube”,

“teapot”,

“bear”,

“venus”,

“simplified

bunny”,

“approxi-

mate

bunny”,

“teapot

house” and

“bunny

couple”.

 Horn et al.

(2007:170-

171)

Chen & Liu

(2007:1049-

1050)

Popov et al.

(2007)

Zhou et al.

(2008:126:6

)

Aila &

Lane

(2009:146)

Kalojanov

& Slusallek

(2009:26)

Scenes “Cornell

box”,

“kitchen”,

“robots” and

“conference

”.

“Bunny”,

“dragon”

and “easter”.

“Shirley6”,

“bunny”,

“forest” and

“conference

”.

“Toys”,

“museum”,

“robots”,

“kitchen”,

“fairy

forest” and

“dragon”.

“Conference

”, “fairy”

and

“Sibenik”.

“Thai

statue”,

“soda hall”,

“conference

”, “dragon”,

“fairy

forest”,

“sponza”,

“ruins”.

Table 4: Scenes used by each paper.

Like the performance metrics, there is a wide variety of scenes in use by the ray tracing community.

While several scenes are used repeatedly, there is still too little correlation to make comparisons

easily.

If we are to obtain meaningful experimental results that are comparable, then all variables must be

controlled for. Certainly the use of certain scenes is one such variable. Haines (1987) and Lext,

Assarsson and Möller (2001) have made some progress towards this ideal, but their scenes are

seldom used: as shown by table 4 – only “kitchen” and “robots” from Lext et al.'s library is used 3

times.

The viewpoint from which a scene is rendered is also important. Most of the papers surveyed did not

specify this viewpoint, even though it is an important variable. Some objects may not even be visible

from a particular viewpoint, which could heavily influence the performance of certain algorithms.

More care should be taken in the future with regards to stating the particular viewpoint used in an

experiment.

Knowledge Management and Innovation: A Business Competitive Edge Perspective 447

 Carr et al.

(2002:44)

Purcell et

al.

(2002:273-

276)

Buck et al.

(2004:782)

Foley &

Sugerman

(2005:19)

Carr et al.

(2006:206)

Huang et al.

(2006:70)

GPU Radeon

8500 /

GeForce 3 /

GeForce 4

Ti4600

Not stated. Radeon

X800 XT

Platinum /

GeForce

6800 (Pre-

release)

256 MB ATI

X800 XT PE

GeForce

7800 GTX

(430 MHz

clock,

1.2GHz

memory

clock)

256 MB

NVIDIA

6800GT

CPU Not stated. Not stated. 3 GHz

Pentium 4

(875P

Chipset)

Not stated. 2.2 GHz

Athlon

3500+

2 x 3.2 GHz

Pentium 4

Memory Not stated. Not stated. Not stated. Not stated. Not stated. 2 GB

 Horn et al.

(2007:170)

Chen & Liu

(2007:1049)

Popov et al.

(2007)

Zhou et al.

(2008:126:6

)

Aila & Lane

(2009:145)

Kalojanov

& Slusallek

(2009:25)

GPU 512 MB

Radeon

X1900 XTX

(650 Mhz

clock & 750

Mhz

memory

clock)

Radeon

X300SE

GeForce

8800 GTX

768 MB

GeForce

8800

ULTRA

GeForce 285

GTX

1 GB

GeForce 280

GTX

CPU 2 x 2.4 GHz

Core2 Duo

1.8 GHz

Athlon64

3000+

2.6 GHz

Opteron

3.7 GHz

Xeon

Not stated. 4 x 2.66

GHz Core2

Quad

Memory Not stated. Not stated. Not stated. Not stated. Not stated. Not stated

Table 5: Hardware used by different papers.

Table 5 illustrates the wide variety of hardware used to test the performance of the various algorithms

discussed in the papers above. The great difference between the performance of the various

components identified obscures the differences between the performance of the algorithms discussed.

Ideally, hardware would not be a variable when comparing different algorithms. It could be

eliminated by running each algorithm on the same hardware, or by some other method.

Unfortunately, it is difficult to tell which algorithms are superior with the current approach.

Conclusion
This paper has presented the development of GPU ray tracing algorithms from their inception to the

current state of the art.

Great strides have been made towards a viable real-time ray tracing algorithm on the GPU, but there

is considerable confusion in the existing literature. The experimental set up for most of the papers

that have been reviewed here is ad-hoc. Two different algorithms are sometimes compared by their

performance on completely different hardware platforms. This is unfortunately not a fair comparison,

and may distort overt or subtle differences in the performance of the various algorithms being

discussed.

Advancing hardware is also an issue. It is difficult to compare experiments in this field because the

algorithms are so heavily dependent on the newest technology. This is especially troublesome for

Knowledge Management and Innovation: A Business Competitive Edge Perspective 448

comparing papers that were published several years apart, since computer hardware advances at such

an incredible pace.

All of these issues make comparisons between algorithms very difficult – even for papers that were

published only in the last three years.

If the GPU ray tracing community is to learn which algorithms are effective, then it must find a way

to compare the results from different studies in a fair way. Currently, the literature lacks a

methodology that is capable of achieving this.

Such a methodology will need to find performance metrics that are independent from the underlying

hardware and the properties of specific scenes. It will need to be widely acceptable and must be easy

to use so that it will be used consistently.

It is the author's belief that research into such a methodology will benefit the GPU ray tracing

community and may lead to great advances in the field.

Another problem in the literature is that many of the recent papers do not incorporate the ideas and

optimizations from previous ones. It is likely that a much faster GPU ray tracer can be constructed by

using the core ideas from several algorithms at once. A good example is the load balancing

improvements made by Aila and Laine (2009) and the k-d tree improvements made by Zhou et al.

(2008). Superficially, at least, it seems that these insights could be combined to yield a very high

performing GPU ray tracer indeed.

As such, there is also room for significant research geared towards the integration of compatible ideas

from the existing GPU ray tracing literature.

i Buck et al. (2004:782) state that they based their ray tracer on Purcell et al.'s work, therefore

it is assumed that they used the same acceleration structure.

ii FPS is not stated, but the ray tracer achieved speeds of 100 000 – 200 000 rays per second

which far exceeded the CPU ray tracers available at the time.

iii The research does not include any timing information.

iv The research contains no timing information, but states that between 45 and 186 ray-triangle

intersections were performed per second (Buck et al., 2004:783).

v There is no data about FPS in the research per se, but the ray tracer described achieved

rendering speeds of ~950 ms on the most complex scene rendered.

vi The research does not include any data on frames-per-second achieved, but states that an

image was rendered at 1272 x 815 in approximately half a minute.

vii While the research does not include any data on FPS, it states that the ray tracer involved

could compute an image in ~100 – 450 ms for one of the scenes. However, this data is only for eye

rays which makes it an ineffective measure.

viii The research claims interactive rendering rates and a sustained rate of 15 million rays per

second, but makes no mention of any timing information (Horn et al., 2007).

ix There's no timing information in the research, but it does briefly state a computation time of

115ms on the Stanford bunny scene (Chen & Liu, 2007).

x These figures are for the ray tracer running on four different scenes with secondary rays and

packet tracing (Popov et al., 2007).

xi Four dynamic scenes at 1024 x 1024 resolution (Zhou et al., 2008).

xii The research reported 20-40 million rays per second presumably with secondary rays (Aila

& Lane, 2009:149).

xiii This measurement is only for the generation of eye rays (Kalojanov & Slusallek, 2009:26).

xiv It is unclear whether any other scenes were used. However, this scene name is mentioned on

page 780 and the performance graphs suggest that only one scene was used.

Knowledge Management and Innovation: A Business Competitive Edge Perspective 449

References
Aila, T and Laine, S. (2009). ‘Understanding the efficiency of ray traversal on GPUs’. Proceedings of

the Conference on High Performance Graphics 2009, ISBN: 978-1-60558-603-8, 1-3 August 2009,

New Orleans, LA, 145-149.

Buck, I., Foley, T., Horn, D. Sugerman, J., Fatahalian, K., Houston, M. and Hanrahan, P. (2004).

‘Brook for GPUs: stream computing on graphics hardware’. ACM SIGGRAPH 2004 Papers, 8-12

August 2004, Los Angeles, CA, 777-786.

Carr, N.A., Hall, J.D. and Hart, J.C. (2002). ‘The ray engine’. Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, ISBN: 1-58113-580-7, 1-2

September 2002, Saarbrucken, Germany, 37-46.

Carr, N.A., Hoberock, J., Crane, K. and Hart, J.C. (2006). ‘Fast GPU ray tracing of dynamic meshes

using geometry images’. Proceedings of Graphics Interface 2006, ISBN: 978-1-56881-308-0, 7-9

June 2006, Québec, Canada, 203-209.

Chen, C.C. and Liu, D.S.M. (2007). ‘Use of hardware z-buffered rasterization to accelerate ray

tracing’. Proceedings of The 2007 ACM Symposium on Applied Computing, ISBN: 1-59593-480-4,

11-15 March 2007, Seoul, Korea, 1046-1050.

Foley, T. and Sugerman, J. (2005). ‘Kd-tree acceleration structures for a GPU raytracer’. Proceedings

of the ACM SIGGRAPH / EUROGRAPHICS Conference on Graphics Hardware, ISBN: 1-59593-

086-8, 30-31 July 2005, Los Angeles, CA, 15-22.

Haines, E. (1987). ‘A proposal for standard graphics environments’. IEEE Computer Graphics and

Applications, 7(11), 3-5.

Horn, D.R., Sugerman, J., Houston, M. and Hanrahan, P. (2007). ‘Interactive k-D GPU ray tracing’.

Proceedings of the 2007 Symposium on Interactive Ray Tracing, ISBN: 978-1-4244-1629-5, 10-12

September 2007, Ulm, Germany, 167-174.

Huang, P., Wang, W., Yang, G. and Wu, E. (2006). ‘Traversal fields for ray tracing dynamic scenes’.

Proceedings of The ACM Symposium On Virtual Reality Software And Technology, ISBN: 1-

59593-321-2, Limassol, Cyprus, 65-74.

Kalojanov, J. and Slusallek, P. (2009). ‘A parallel algorithm for construction of uniform grids’.

Proceedings of the Conference on High Performance Graphics 2009, ISBN: 978-1-60558-603-8, 1-3

August 2009, New Orleans, LA, 23-28.

Lext, J., Assarsson, U. and Möller, T. (2001). ‘A benchmark for animated ray tracing’. IEEE

Computer Graphics and Applications, 21(2), 22-31.

Popov, S., Günther, J., Seidel, H.P. and Slusallek, P. (2007). ‘Stackless KD-tree traversal for high

performance GPU ray tracing’. Computer Graphics Forum, 26(3), 415-424.

Purcell, T.J., Buck, I., Mark, W.R. and Hanrahan, P. (2002). ‘Ray tracing on programmable graphics

hardware’. ACM Transactions on Graphics, 21(3), 268-277.

Whitted, T. (1980). ‘An improved illumination model for shaded display’. Communications of the

ACM, 23(6), 343-349.

Zhou, K., Hou, Q., Wang, R. and Guo, B. (2008). ‘Real-time KD-tree construction on graphics

hardware’. ACM SIGGRAPH Asia 2008 Papers, ISSN:0730-0301, 10-13 December 2008,

Singapore, Article #126.

