THE CHEMISTRY OF THE BROMINATED DERIVATIVES AND THE CRYSTALLOGRAPHIC DETERMINATION OP THE STRUCTURE OF THE TETRABROMINATED DERIVATIVE OF THE C4-PHOTODIMERS OF 1 , 4-NAPHTHOQUINONE

 by GERT JACOBUS KRUGERSubmitted in partial fulfilment of the requirements for the degree of Master of Science in the Department of Chemistry, Potchefstroom University for Christian Higher Education, Potchefstroom.

JANUARY; 1968

PREFACE

Several attempts were made in the past to synthesize a cyclobutadiene by means of the dehalogenation of tetrahalogenated cyclobutanes. Owing to the instability of cyclobutadiene all these attempts failed, and only in three cases could stable complexes ($\mathrm{I}^{1)}, \mathrm{II}^{2}$), III ${ }^{3)}$) with metal salts be isolated.

AgNO_{3}
I

NiCl_{2}
II

$\mathrm{Ni}(\mathrm{CO})_{3}$
III

It can be assumed that the incorporation of additional stabilizing factors are essential for a cyclobutadiene to exist in an uncomplexed form. The four carbonyl groups, adjacent to the cyclobutadiene ring in hypothetical structure VIII, should have such a stabilizing influence. In order to obtain VIII it is necessary to synthesize and characterise a tetrahalogenated derivative of the C_{4}-dimer of 1, 4-naphthoquinone (IV).

The photolytic dimerization of 1, 4-naphthoquinone (IV) was first reported by Schönberg and Mustafa.4) It was recently established that the dimer formed (V) has an anti configuration. ${ }^{5)}$) The transformation of IV to the isomeric syn dimer (VI) can also be done in the solid state.5) Since both the anti (V) and syn (VI) dimers contain four tertiary hydrogen atoms, bonded to the cyclobutane ring and in an alpha position with respect to the four carbonyl groups, enolization should take place in both isomers. Bromination should therefore be possible, and, in an attempt to prepare the tetrabrominated derivatives of V and VI the same compound, with composition $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{Br}_{4}$, was obtained in both cases. 6,7)

$+$

VI
*

The aim of this study was to gain a better understanding of the chemistry of VII and to determine by means of X-ray diffraction methods the molecular structure and stereochemistry of VII.
Preface (i)
Contents
List of tables (iv)
List of figures (v)
CHAPTER 1
THE BROMINATION OF THE SYN AND ANTI DIMERS OF 1, 4-NAPHTHOQUINONE
1.1 The chemistry of the photodimers of 1, 4-naphthoquinene 1
1.2 The bromination of the anti dimer (V) 2
1.3 The structural relationship between the tetrabromide (VII) 3
and the dibromides (XIV) and (XV)
1.4 Experimental 5
CHAPTER 2
the crystal and molecular structure of the tetrabrominated
PHOTODIMER OF 1, 4-NAPHTHOQUINONE
2.1 Experimental 7
2.2 Determination and refinement of the structure 8
2.3 Discussion of the structure 13
2.4 Conclusion 25
Summary 27
Opsomming 28
Appendix A: Multiple film technique 29
B: Intensity corrections 30
References 31
Acknowledgements 33
LIST OF TABLES
Page No.
I Fractional atomic coordinates and individual 15
temperature factors and their estimated standarddeviations
II Observed and calculated structure factors on 16 an absolute scale
III Intramolecular interatomic distances between 20 non-bonded atoms.
IV Mean values of the estimated standard deviations 20
for various approaches in the molecule

LIST OF FIGURWS

Page No.

1. Structural formula of tetrabromice (VII) (excluding hycrogen atoms) showing the nomenclature used in this analysis.
2. (010) and (00i) projections of the symmetry elements in space group C2/c. ${ }^{18 \text {) }}$
3. (010) and (001) projections of the unit cell contents.
4. Bond lengths and angles for tho asymmetric19 half of the molecule.
5. Displacements (in $\mathbb{A} \times 10^{3}$) of the atoms from the19 mean plane through the cyclobutane ring (left) and from the plane through the benzene ring (right).
6. Bond angles for the bonds between the cyclobutane ring and atoms bonded to it.
7. The geometry of the cyclobutane ring and its22 connecting bonds using the model of Kitaigorodskii. ${ }^{20)}$
[^0]
DIMERS OF 1, 4-NAFHYEOOUIMONS (IT)

1.1 The Chemistry of the photodimers of 1, 4-paphthoquinone (IV)

During a reinvestigation ${ }^{5)}$ of the photolyeis of 1. 4-naththoquinone (IV)
done recently, it was found that of the three different diserg shich are formed, the enti dimer (V) is predominent. The syn dimer VI could be obtained by another method as well, i.e. the sunlight-irradiation of IV in the solid state. ${ }^{5)}$ Preliminary investigation ${ }^{7}$) showed that the third dimer is of the oxetane type (IX).

8) V enolizes fairly easily in alkaline media, produciag tetrahydroxydibensobiphenylene (X). $v \quad \mathrm{OH}^{-} / \mathrm{H}^{+}$

On the basis of simplified calculation, Coulson and coworkers 9) suggeated that the four inner π-bonds of dibenzobiphenylene are highly 1ocalised. Keeping this in mind, Dekicer and coworkers 5) succoeded in ketonining X to V. These results borne out the argument that V hes an anti-configuration. In addition it was ghown ${ }^{5 \text {) }}$ that the isomerimation of
the highly strained ayn dimer (VI) to V can be sccomplished quantitatively in acidic media. Unanbiguous proof of the correctriess of the coufiguration of ∇ was finally obtained ${ }^{5)}$ by Beyer-Villager oxidation of V to the tetralactone XI, phich was trensformed to the tetramethyl ester (XII) of cis-trans-cis-cyclobutane-tetracarboxylic acid.

Both Y and VI can be converted to the diketodihydroxy isomer XIII in dioxane containing hydrochioric ecid. ${ }^{10)}$ The converaion of XIII to the anti dimer (V) was accomplishod by dissolving XII in concentrated sulphuric ecid and adding this solution to excess watar. 10)

XIII

1.2 The bromination of the anti diner (V)

In a series of experimants ${ }^{\text {6) }}$ it was establishod that the nature of the bromination products obtained when V was treated with bromine in acetic acid under different conditions, is highly temperature dependent. A tetrabromo derivetive with composition $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{Br}_{4}$ was obtained when V was treated with four moles bromine at 70°. On the basis of its infrared ${ }^{6}$) and mass ${ }^{7}$) spectra the most probable structure is structure VII. The bis similarity in the infrared spectra of the anti dimer (V) and the tetrabrominated derivative (VII) led to the belief that VII probably exists in the anti coneiguration.

Wen the bromination was carried out at 90°, dibromp darivative $C_{20} E_{8} O_{4} \mathrm{Br}_{2}^{6)}$ was formed. The infmared spectrum indicated the presence of an olefinic unsaturetion ($1630 \mathrm{~cm}^{-1}$), suggesting that this dibromde should have structure XIV. A second dibromo derivative of $V, C_{20} H_{10} 0_{4} \mathrm{Hr}_{2}$. could be obtained ${ }^{6)}$ by treating V with two moles bromine at 90°. A trong hydroxyllc absarption at $3000-3450 \mathrm{~cm}^{-1}$ and the presence of two ralatively strong bands (1635 and $1605 \mathrm{~cm}^{-1}$) in the region associated with $0=0$ stretching vibrations, indicated ${ }^{7}$) that this dibromide most pobably possesses atructure XV.

1.3 The structural relationship betreen the totrabromide (VII) and the dibrouides (XIV) and (XI)
Lapworth ${ }^{21)}$ has shown that the rate-controlling step in the acidcatalysed bromination of a kstone is the formation of the intermediate onol fori of the substrato. The primerily formed snollc intermediate exerts a sucleophlile attacle on Vromese:

Schome I:

fest

Venter found ${ }^{7 \text {) }}$ that both the anti (V) and syn (VI) dimers of $1,4 \sim$ nephthoquinone lead to the same tetrabrono derivative (VII), Kis auggention thet the bromination proceods, in both cases, via tetrabydroxy-dibensobiphenylene (X), seoms doubtiul since it has recently been established ${ }^{10}$) that \mathbb{X} ketonizes fairly rapidiy in hydroxylic solvents such as ethanol, to both V and VI.

One may thus assume that the pollowing equilibrium exists when V is dissolved in acotic acid:

Electrophylic attack of two moles bromine aa XIII would result in the formation of a hypothetical dibronide (XVI), which should enolize to the dibromide (XV). If the conditions are favourable, XV would, on reaction with two more moles bromine lead to the tetrebromide (VII).

Scheme II:

Evidence of the correctness of structure $X V$ as well as the suggested reaction path, was obtained by treating a solution of XV in mothylene chloride with excess bromine at room temperature, whereupon a colourless product, identical to VII, precipitated

Since the bromination of V with excess bromine at 90°, should take place according to Scheme II, the tetrabromide (VII) should be an intermediate in the formation of the olefinic dibromide (XIV). The transformation from "intermediate" VII to the dibromide (XIV) can be explained as a thermal elimination of bromine, which is not an unusual phenomenon, ${ }^{12 \text {) }}$ especially when two cis-orientated bromine atoms have a steric influence upon each other. On refluxing VII in acetic acid, the solution gradually darkened in colour. Evaporation of the solvent led to the isolation of yellow crystals, of which the melting point and the infrared spectrum was identical to that of the dibromide (XIV). The reverse of this dehalogenation, i.e. the bromination of XIV to the tetrabromide (VII), was accomplished by ultra-violet irradiation of a solution of XIV in methylene chloride, in the presence of excess bromine. The colourless product was shown to be identical with VII.

1.4 Experimental

The photolysis of 1,4 -naphthoquinone (IV).
A. solution of IV ($1 \mathrm{g}$.) in acetic anhydride (12.5 ml) was sealed in a Pyrex test tube, and irradiated with a medium pressure U.V. lamp at room temperature for two weeks. The off-white precipitate (V, 0.2 g) crystallised Prom glacial acetic acid in colourless plates, melting with decomposition at $246-8^{0}\left(\right.$ Lit: ${ }^{4)} 244-8^{\circ}$).

The bromination of V with four moles bromine at 70°

A solution of $V(0.1 \mathrm{~g})$ in acetic acid (40 ml) was heated to 90°. Immediately after addition of bromine (0.233 g) the temperature was lowered to 70°. The magnetically stirred solution decolourised within twenty
minutes. The stirring was discontinued and the reaction mixture allowed to cool down slowly. Colourless crystals (VII, 0.18 g) separated, melting with decomposition at $255-8^{\circ}\left(\right.$ Lit: ${ }^{6)} 255-8^{\circ}$).

The bromination of V with four moles bromine at 90°
A solution of $V(0.1 \mathrm{~g})$ in acetic acid (40 ml) was treated with bromine $(0.233 \mathrm{~g})$ at 90°. The temperature was maintained at 90° and the reaction mixture treated as above. The yellow needles (XIV, 0.065 g) melted with decomposition at $276-8^{\circ}$ (Lit: ${ }^{6)} 276-8^{\circ}$).

The bromination of V with two moles bromine at 90°
A solution of $\mathrm{V}(0.1 \mathrm{~g})$ in acetic acid $(40 \mathrm{ml})$ was treated with bromine (0.1045 g) at 90° as above. The yellow needles (XV, 0.054 g) melted with decomposition at $192-4^{\circ}$ (Lit: ${ }^{6}$) $192-4^{\circ}$).

The thermal dehalogenation of the tetrabromide (VII)
A mixture of VII (0.1 g) and acetic acid (50 ml) was refluxed for two hours. The clear solution was concentrated to 20 ml and cooled down to room temperature. The yellow crystalline product (XIV, 0.02 g) was identical to an authentic sample of XIV.

The bromination of the dibromide (XIV)
A solution of XIV (0.05 g) in methylene chloride (25 ml) containing bromine (0.030 g) was irradiated for ten minutes by means of a medium pressure U.V. lamp at room temperature. The tetrabromide (VII, 0.047 g) was obtained on concentration of the solution.

The bromination of the dibromide (XV)
A solution of XV (0.05 g) in methylene chloride (25 ml) containing bromine (0.05 g) was magnetically stirred for one hour. The tetrabromide (VII, 0.039 g) was isolated on concentration of the solution.

PHOTODIMER OF 1, 4-NAPHTHOQUINONE

2.1 Experimental

Most of the techniques used in this analysis are standard crystallographic practices and are described in various textbooks on the subject. ${ }^{13,14,15 \text {) }}$

The tetrabromide (VII) crystallized out as small crystals with an oblique rhombic habit. The β-angle was well defined and all three faces were developed to the same extent. The unit cell dimensions were determined from oscillation photographs about \underline{b} and c, and from (hkO) and ($\mathrm{h} \mathrm{O}_{\mathrm{l}}$) equiinclination Weissenberg photographs.

The crystal belongs to the monoclinic system with cell parameters:

$$
\begin{aligned}
& \mathrm{a}=11.64 \pm 0.05 \AA \\
& \mathrm{~b}=12.70 \pm 0.05 \AA \\
& \mathrm{c}=14.25 \pm 0.05 \AA \\
& \beta=116^{\circ} \pm 1^{0}
\end{aligned}
$$

The conditions for possible reflections were found to be: hkl for $h+k=2 n$, hot for $\mathfrak{l}=2 n$, which defines the space group C2/c, or its noncentrosymmetric counterpart Cc. The latter was ruled out by the successfrul structure analysis using C2/c.

The density was measured by flotation as $2.187 \mathrm{gm} \mathrm{cm}^{-3}$. This agrees fairly well with the density of $2.22 \mathrm{gm} \mathrm{cm}^{-3}$ calculated for four molecules per unit cell.

Two different crystals were used for the data collection; the one mounted along \underline{b}, the other mounted along \mathbf{c}. Three-dimensional intensity data were collected on equi-inclination Weissenberg photographs by using the multiple film technique (see appendix A). Nickel-filtered CuK ${ }_{\alpha}$ radiation were used and three layer lines in the (hO l) zone and eight layer lines in the (hkO) zone were recorded. Measurement of intensities was
done by visual comparison of the spots on the films with a series of standard spots on a calibrated wedge and unobserved reflections were given a value of $1 / 3 I_{\text {min }}$ (16) All the intensities were corrected for Lorentz, polarisation and spotshape factors, making use of the computer program CORRECT, written by E.G. Boonstra for use on the IBM 360/40 (see appendix B). No correction was made for absorption as two different crystals with different sizes were used and the one crystal was mounted in such a way as to invalidate a cylindrical approximation for absorption corrections.

The values of $k I_{\text {corr }}(k=$ scale factor) for the reflections on different layer lines, were scaled internally by comparing the magnitudes of the various sots of reflections having the same indices and which were recorded in both zones. A total of 1397 reflections was obtained, with 372 unobserved.

2.2 Structure determination and refinement

A crystal structure will be completely solved if the electron density function, $\rho\left(x_{p} y, z\right)$, throughout the whole cell can be evaluated. From the theory of X-ray diffraction and Fourier transforms, it can be shown that the electron density distribution at every point in a crystal may be expressed as a Fourier series

$$
\rho(x, y, z)=\sum_{h} \sum_{k} \sum_{i} \frac{F(h k i)}{V} e^{-2 \pi i\left(\frac{h x}{a}+\frac{k y}{b}+\frac{1 z}{c}\right)}
$$

where $\rho(x, y, z)=$ electron density at the point (x, y, z)

$$
\begin{aligned}
&(x, y, z)= \text { fractional coordinates of a point w. } r, t \text {. the unit cell } \\
& \text { origin and axes } \\
& P(h k i)= \text { structure factor of the reflection (hki). } \\
& \text { It is convenient to write this Fourier Series in the form }
\end{aligned}
$$

$$
\rho(x y z)=\sum_{-\infty} \sum_{\infty}^{\infty} \Sigma \cdot \frac{|F(h k \imath)|}{V} \operatorname{Cos}\left[\frac{2 \pi h x}{a}+\frac{2 \pi k y}{b}+\frac{2 \pi t z}{c}-N(h k t)\right]
$$

where α (hki) represents the phase constant associated with the amplitude

Although the observed intensities enables one to calculate $|\mathrm{F}(\mathrm{hk} \boldsymbol{l})|$, no information is provided concerning the relative values of the phase constants. This so-called phase problem can be overcome by various methods, the most convenient being the Patterson synthesis to find the positions of the heavy atoms, which are then used to phase the structure factors.

The Patterson Synthesis

The Patterson function $P(u v W)$, which may be called the weighted average distribution of density of scattering matter about a point (xyz) in the crystal, is defined as

$$
P(u w w)=\frac{1}{V} \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} \rho(x y z) o(z+u, y+v, z+w) d x d y d z .
$$

In this expression, if ($x+u, y+v, z+w$) gives the distribution about (xyz) as a function of the parameters u, v, w, and it represents a distrim bution similar to $\rho(x y z)$ but displaced from the point (xyz) through a distance whose components are (u, v, w). By expanding the two density functions as Fourier series and integrating, the Patterson function reduces to

$$
P(u \nabla w)=\frac{1}{v^{2}} \sum_{h} \sum_{k} \sum_{l} F^{2}(h k l) e^{-2 \pi i\left(\frac{h u}{a}+\frac{k v}{b}+\frac{1 w}{c}\right)}
$$

The function can thus be calculated in terms of the squares of the structure factors, that is, the observed intensities.

The function $P(u v w)$ is of great value in crystal analysis because it can only attain a large value when both $\rho(x y z)$ and $\rho(x+u, y+v, z+w)$ have large values. This will occur when there are atoms situated at both (x, y, z) and ($x+u, y+v, z+w)$, separated by the vector distance (uvw). Thus a maximum in the function $P(u v w)$ at (u_{1}, ∇_{1}, w_{1}) corresponds to an interatomic distance in the crystal defined by a vector whose components are u_{1}, ∇_{1}, w_{1}. The final sumation of this function can therefore be interpreted as a threedimensional interatomic vector map in which the maxima
define vectors from the origin. Because the peak heights are roughly proportional to the products of the atomic numbers of the atoms concerned, the vectors between heavy atoms can usually be easily distinguished. The Pourier coefficients of the Patterson Synthesis are all real, so that it vill always possess a centre of symmetry. This means that the symmetry of the Patterson function is equal to or higher than that of the electron density.

The interpretation of a Patterson synthesis can be carried out by isolating the interatomic vectors between symmetry-related atoms, called the Harker vectors. In the case of the space group C2/c, the symmetryrelated atoms in general positions are situated at

x, y, z	$\frac{1}{2}+x, \frac{1}{2}+y, z$
$\bar{x}, \bar{y}, \bar{z}$	$\frac{1}{2}-x, \frac{1}{2}-y, \bar{z}$
$x, y, \frac{1}{2}-z$	$\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}=z$
$x, \bar{y}, \frac{1}{2}+z$	$\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.

The Harker peaks corresponding to the vectors between them will then be found at the following values of (u, v, w):

$$
\begin{array}{ll}
0,0,0 & \frac{1}{2}, \frac{1}{2}, 0 \\
2 x, 2 y, 2 z & \frac{1}{2}-2 x, \frac{1}{2}-2 y,-2 z \\
-2 x, 0, \frac{1}{2}-2 z & \frac{1}{2}-2 x, \frac{1}{2}, \frac{1}{2}-2 z \\
0,2 y, \frac{1}{2} & \frac{1}{2}, \frac{1}{2}-2 y, \frac{1}{2}
\end{array}
$$

All the intensities measured were used for the calculation of a threedimensional Patterson Syathesis by means of the centrosymmetric Fourier program written by Gantzel and Hope (U.C.L.A.) and modified for use an the $360 / 40$ by Miss J. Hewitt. The function $P(u, \nabla, w)$ had in this case space group symatry $C 2 / \mathrm{m}$, and it was therefore only calculated for the region 0 u $\frac{1}{2}, 0 \quad$ v $\quad \frac{1}{2}, 0 \quad$ w $\quad \frac{1}{2}$.

With 16 bromine atoms in the unit cell, two sets of Harker peaks must be formed, with the two atoms in the asymmetric unit in positions $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$. By compering the strongest peaks along the
edge $w=\frac{1}{2}$ of the plane $u=0$, the vectors $\left(0,2 y, \frac{1}{2}\right)$ could be found. With the y-coordinates of the bromine positions known, the x and y-coordinates were easily found. Their correcness were checked by calculating the direct vectors between the positions $\left(x_{1}, y_{1}, z\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ and comparing these vectors with the peaks formed at the corresponding (u, v, w).

Two possible solutions remained:

$$
\begin{aligned}
& \left(x_{1}, y_{1}, z_{1}\right)=(0.075, \pm 0.095,0.125) \\
& \left(x_{2}, y_{2}, z_{2}\right)=(0.175, \pm 0.150,0.230)
\end{aligned}
$$

Because they are equivalent, there could not be distinguished between them. The coordinates of the heavy atoms in the trial structure were chosen as
and $\quad x=0.175, y=-0.150, z=0.230$.

The Fourier Synthesis

As shown above, the electron density distribution in the crystal may be written as

$$
\rho(x y z)=\sum_{h k \sum_{i}} \frac{\| E\left(h_{k}\right)!}{V} \cos \left\lceil\frac{2 n h x}{a}+\frac{2 n k y}{b}+\frac{2 \pi i z}{c}-\alpha\left(h_{k}\right)\right\rceil
$$

In the centrosymmetrical case the phase angle α (hkt) is restricted to 0 or π, so that

$$
\rho(x y z)=\frac{1}{V} \sum_{h k} \sum_{i} \pm F(h k \imath) \cos 2 \pi\left(\frac{h x}{a}+\frac{h y}{b}+\frac{1 z}{c}\right)
$$

When the position of a heavy atom is known, and included in this summation, its contribution to the average structure factor amplitude will dominate that of the light atoms so that the phase will be approximated. From successive approximations by the Fourier method, with the heavy atoms in the trial structure, the positions of the other atoms can be found. Unfortunately, because the major portion of the structure amplitude is due to the heavy atom contribution, all information concerning the light atoms must be derived from the smaller remaining part of the structure amplitude.

Thus the accuracy of their determination is reduced. The presence of the heavy atom also means a higher absorption coefficient and makes the correction of intensities more difficult.

The square roots of the intensities that were used for the Patterson Synthesis were used for the calculation of the Fourier Synthesis phased by the contribution of the bromine atoms. Again the centrosymmetric Fourier program by Gantzel and Hope was used for the computation, This three-dimensional electron density distribution map immediately yielded all the other atomic positions.

Refinement

The refinement of the trial structure was done on the IBM 360/40 computer of the CSIR, using the full-matrix least-squares program ORFLS of Busing, Martin and Levy and atomic scattering factors as supplied by Hanson et al. 17) (Alterations to ORFLS as well as the function and error program ORFFFS to allow their use on the $360 / 40$ were made by H. Messerschmidt of IBM (S.A.)).

The theory of least-squares refinement is well-known and described in various texts. 4,5) Basically this method changes the atomic coordinates of the trial structures in such a way as to improve the agreement between the observed structure factors (F_{0}) and the structure factor values calculated from the trial structure (F_{c}). The quantity minimized by the program ORPLS is $\sum W\left(F_{0}-k \mid F_{c}!\right)^{2}$, where w is the weight of a particular term and is usually taken as inversely proportional to the square of the standard error in $\left|F_{0}\right|$. The program refines the scale factors, positional atomic parameters, the overall temperature factor, isotropic or anisotropic individual temperature factors as required.

The overall agreement between the observed and calculated structure factors is expressed in terms of the mean discrepancy

$$
R=\frac{\Sigma_{\mathrm{bk} \mid}\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)}{\Sigma\left|P_{0}\right|}
$$

R is called the residual or reliability factor and is usually expressed as a percentage.

Using all the observed intensities, the scale factor, the overall temperature factor, the atomic coordinates and the isotropic individual temperature factors were refined. The value of R at this stage was 16.4%. A. refinement of the anisotropic thermal coordinates was attempted but it yielded a non-positive definite tensor for carbon (2) (see figure 1). Up to this stage of the refinement no differential weighting was applied and W was given a value of 1 for all refleotions. Various weighting schemes were now applied but none of them improved the value of A. This could be a result of absorption effects for which no corrections were applied to the measured intensities. The conformation of the molecule was, however, established beyond any doubt at this stage and the refinement of the isotropic thermal paramoters was taken to completion. Refinement was considered complete when all parameter shifts were less than one tenth of their estimated standard deviations. The value of R remained at 16.3%.

The final atomic parameters and their estimated standard deviations are given in Table I (see figure 1). The observed and calculated structure factors on an absolute $\left(F_{000}=1168\right)$ scale are compared in Table II.

Interatomic approaches and bond angles were calculated by means of the function and error program ORFFP of Busing, Martin and Levy.

2.3 Discusefon of the structure

Two projections of the symmetry elements of the space group C2/c are shown in figure 2 and the same projections of the unit cell contents are shown in figure 3. Comparison of the two figures clearly shows that a crystallographic two-fold axis coincides with a molecular two-fold axis. The molecule is, however, distorted away from the regular centrosymmetrical anti configuration. All bond lengths and angles are shown in figure 4, and all meaningful intramolecular distances between non-bonded atoms are tabulated in Table II. All intermolecular approaches were found to have the normal

Fig. 1. Structural formula of tetrabromide (VII) (excluding hydrogen atoms) showing the nomenclature used in this analysis.

Atom	*	y	z	$B\left(S^{2}\right)$
$\mathrm{Br}(1)$	0.5711	0.5936	0.1241	3.13
	0.0002	0.0002	0.0002	0.06
$\mathrm{Br}(2)$	0.6713	0.3527	0.2267	3.52
	0.0002	0.0002	0.0002	0.06
O(1)	0.6621	0.7254	0.3234	3.79
	0.0016	0.0014	0.0015	0.35
C(2)	0.6123	0.3349	0.4287	4.66
	0.0018	0.0016	0.0016	0.41
C(1)	0.6690	0.6327	0.3397	2.62
	0.0020	0.0018	0.0019	0.40
C(2)	0.5702	0.5617	0.2600	1.38
	0.0015	0.0014	0.0015	0.29
C(3)	0.5743	0.4409	0.2764	2.91
	0.0020	0.0018	0.0020	0.43
C(4)	0.6414	0.4135	C. 3944	3.23
	0.0022	0.0019	0.0020	0.45
C(5)	0.7529	0.4794	0.4595	3.00
	0.0021	0.0019	0.0020	0.43
C(6)	0.8431	0.4365	0.5499	3.89
	0.0024	0.0021	0.0022	0.51
C(7)	0.9563	0.4948	0.6140	4.71
	0.0028	0.0024	0.0025	0.61
C(8)	0.9637	0.5942	0.5886	5.07
	0.0029	0.0025	0.0026	0.66
C(9)	0.8727	0.6431	0.5009	3.92
	0.0025	0.0022	0.0023	0.52
C(10)	0.7658	0.5794	0.4327	2.90
	0.0021	0,0018	0.0020	0.42

TABLE I: Fractional atomic coordinates and individual temperature factors and their estimatec standard deviations

 	7
 	$\%$
 	\％
ッ゙よ 	5
 	\％ \square
 	\％
 	－
 	\％
 	\％
 	\％

Table II．Observed and calculated structure factors on an absolute scale．

Van der Waal's magnitude, and are not listed. The estimated standard deviations averaged over similar types of bond are shown in Table IV.

As shown in figure 4, the lengths of chemically similar, but crystallographically distinct, bonds are nowhere significantly different. The regular variation of the bond lengths in the benzene ring could be meaningful, since the ring is somewhat distorted towards a boat form (see figure 5). The mean plane through the benzene ring is given by

$$
0.7953 u+0.3182 v-0.5160 w=3.759
$$

where u, ∇ and w are orthogonal coordinates (in A units) related to the fractional coordinates x, y and z of the atoms in the monoclinic axial system by the equations

$$
\begin{aligned}
& \mathbf{u}=\mathbf{x a}+2 \mathrm{c} \operatorname{Cos} \theta \\
& \mathbf{v}=\mathbf{y b} \\
& \mathbf{w}=2 \mathrm{c} \sin \beta .
\end{aligned}
$$

The deviations of the atoms from this plane are shown in figure 4, and although they are not beyond experimental error they seem to indicate a localized double bond between C (5) and C (10) when considered in conjunction with the variation in bond lengths. This may be due to the presence of the quinoid system in the contiguous ring.

The most interesting and important structural feature of this molecule is the cyclobutane ring (see figures 4, 5 and 6). This ring is not flat but markedly distorted towards a tetrahedron, as shown in figure 5. The deviations from planarity refer to the mean plane
$-0.3066 u+0.9519 w=1.742$
which also contains the crystallographic and molecular two-fold axis.
The bond lengths in the cyclobutane ring compare well with the corresponding bond lengths in 1, 2, 3, 4-tetraphenylcyclobutane. This structure was determined by Dunitz ${ }^{19)}$ and is also discussed in detail by Kitaigorodskii ${ }^{20}$).

Fig. 2. (010) and (001) projections of the symmetry elements in space group C2/c. ${ }^{18 \text {) }}$

Fig. 3. (010 and (001) projections of the unit cell contents.

Fig. 4. Bond lengths and angles for the asymmetrical half of the molecule.

Fig. 5. Displacements (in $\mathrm{A} \times 10^{3}$) of the atoms from the mean plane through the cyclobutane ring (left) and from the plane through the benzine ring (right).

Contact

$\mathrm{Br}(1)$	\ldots	$\mathrm{Br}(2)$	$3.370 \pm .004$
$\mathrm{Br}(2)$	\ldots	$\mathrm{Br}\left(2^{\prime}\right)$	$4.321 \pm .005$
$\mathrm{Br}(1)$	\ldots	$\mathrm{Br}\left(1^{\prime}\right)$	$4.563 \pm .005$
$\mathrm{Br}(1)$	\ldots	$O(1)$	$3.058 \pm .019$
$\mathrm{Br}(2)$	\ldots	$0(2)$	$3.248 \pm .021$
$\mathrm{Br}(1)$	\ldots	$0\left(1^{\prime}\right)$	$3.538 \pm .023$
$\mathrm{Br}(1)$	\ldots	$0\left(2^{\prime}\right)$	$3.809 \pm .024$
$\mathrm{Br}(1)$	\ldots	$\mathrm{C}\left(2^{\prime}\right)$	$2.824 \pm .019$
$\mathrm{Br}(1)$	\ldots	$\mathrm{C}\left(3^{\prime}\right)$	$2.398 \pm .025$
$\mathrm{Br}(2)$	\ldots	$\mathrm{C}(2)$	$3.024 \pm .018$
$\mathrm{Br}(2)$	\ldots	$\mathrm{C}\left(3^{\prime}\right)$	$3.053 \pm .023$
$\mathrm{Br}(1)$	\ldots	$\mathrm{C}\left(3^{\prime}\right)$	$3.277 \pm .024$
$\mathrm{Br}(2)$	\ldots	$\mathrm{C}\left(2^{\prime}\right)$	$3.930 \pm .021$
$0(1)$	\ldots	$0\left(1^{\prime}\right)$	$3.421 \pm .033$
$0(2)$	\ldots	$0\left(2^{\prime}\right)$	$4.594 \pm .041$
$0(1)$	\ldots	$C(2)$	$2.332 \pm .024$
$0(2)$	\ldots	$C\left(3^{\prime}\right)$	$2.425 \pm .032$
$\mathrm{C}(2)$	\ldots	$C\left(3^{\prime}\right)$	$2.165 \pm .027$

TABLE III: Intramolecular interatomic distances between non-bonded atoms.

$$
\sigma_{\mathrm{m}}
$$

$$
0.004 \AA
$$

$$
0.020 \%
$$

$$
0.022 \AA
$$

$$
0.028 \mathrm{R}
$$

$$
0.035 \AA
$$

$$
1.5^{\circ}
$$

$$
2.0^{\circ}
$$

$$
2.2^{\circ}
$$

TABLi IV: Mean values oi the estimatec standard deviations for various approached in the molecule.

The average value for the bond lengths found in the tetrabromide (IV) is 1.545 A as compared to the average value of 1.570 A obtained by Dunitz. The value found for the separation of diametrically opposed ring atoms is 2.165 A compared to the Dunitz value of 2.2 A .

The reason for the distortion in the structure lies in the positions of the four bromine atoms attached to the cyclobutane ring. For the ideal centrosymmetric structure, the bonds from a flat cyclobutane ring should be at half tetrahedral angles (54.5°) to its plane and their projections on the ring should lie at 45° to the diagonals, according to Kitaigorodskii. 20) An error seems to have crept in, either in translation or in printing, since these projections should lie along the diagonals. Assuming the carbon-bromine bond length, $d(C-B r)$, to be $1.937 A,^{21}$) and $d(C-C)$ cyclobutane to be $1.57 \mathrm{~A},{ }^{20}$) the model which is explained in figure 7 , gives

$$
d(\mathrm{Br}-\mathrm{Br})_{\mathrm{cis}}=\mathrm{d}(\mathrm{C}-\mathrm{C})+2 \mathrm{~d}(\mathrm{C}-\mathrm{Br}) \operatorname{Cos} \omega \operatorname{Sin} \emptyset=3.16 \mathrm{~A}
$$

This bromine-bromine separation is significantly less than twice the Van der Waal's radius of 1.9 A for bromine. ${ }^{22 \text {) This overcrowding of the bromine atoms }}$ is relieved by the tetrahedral distortion of the cyclobutane ring. The parameters on and \varnothing which have the values 54.5° and 45° in the regular centrosymmetric structure, now have the values $\mathrm{c}_{2}=36^{\circ}, \phi_{2}=28^{\circ}$, $m_{3}=59^{\circ}, \phi_{3}=36^{\circ}$ at $C(2)$ and (3) respectively. The separation of the two bromine atoms in cis relationship is increased to $3.370 \pm 0.004 \mathrm{~A}$ by this distortion. Although significantly less than 3.8 A this distance is comparable to the bromine-bromine separation in the overcrowded 1, 2; 4, 5-totrabromobenzene, ${ }^{23)}$ which is $3.377 \pm 0.004 \mathrm{~A}$.

The carbon-oxygen bond length has an average value of $d(C=0)=1.21 \mathrm{~A}$, which fall within the normal range for double bonds between carbon and oxygen, of 1.18 to $1.23 \mathrm{~A} .^{24}$)

The main feature of the structure is thus the overcrowding of the bromine atoms in cis relationship which leads to distortion of the cyclobutane ring and is also reflected in the irregular shape of the quinoid ring.

Fig. 6. Bond angles for the bonds between the cyclobutane ring and atoms bonded to it.

Fig. 7. The geometry of the cuclobutane ring and its connecting bonds using the model of Kitaigorodskii. ${ }^{20}$)

The complete molecular conformation is shown in the perspective view in figure 8. It is interesting to note that this arrangement has been reached only by a distortion of the molecule, especially the cyclobutane ring, and does not involve a lenthening of the carbon-bromine bonds. Within experimental error they correspond in length with the mean $d(C-B r)$ of $1.937 \pm 0.003 \mathrm{~A}$ in polyhalogenated methanes. ${ }^{25}$) The lengthening of the central $C-C$ bonds as predicted by Kitaigorodskii ${ }^{20}$) and Glocker ${ }^{25}$) is also not observed and apart from its non-planarity the cyclobutane ring can be described as a normal singlemonded four-membered ring.

Fig. 8. Perspective view of the molecule to illustrate its conformation.

Wher the structure of the tetrabromide (VII) is examined ciosely the chemical significance of the configuration of the bromine atoms can be recognised. The owercrowding of the bromine atoms creates a strained molecule and this strain could be relieved by elimination of bromine. The successtul thermal dehalogenstion of VII to the dibronaide (XIV) proves this expected reactivity. The stebility against further thermal dehalogenation of XIV shows that the easy remowal of bromine is related to the overcrowding.

With the structure of the tetrabromide (VII) known, a possible mechanism for the synthesis of the suggested cyclobutadien (VIII) by complete removel of the bromine, can be proposed. It has been shown that the higher reactivity of the strained molecule (VII) should make dehalogenation fairly easy. Furthermore, debromination of 1,2 -dibromides with ainc powder or iodide ion is well known. ${ }^{26,27}$) The elimination by means of zinc normally proceeds stereospecifically trans as in the case of the debromination of three-2,3-dibromobutane to cis-2-butime: ${ }^{26}$)

4. simular stereospecificity is observed in the debromination by means of iodide ion. There is reason to belleve that here the mechanism involves the formation of an intermediate bromo-iodide: ${ }^{27}$)
$1^{-}+\mathrm{BrCH}_{2} \cdot \mathrm{CH}_{2} \mathrm{Br} \quad \mathrm{Br}^{-}+1 \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \mathrm{Br}$

I_{2}

The tetrabromide (VII) contains two pairs of trans orientated bromins atoms, so that the trans-eliminstion of bromine can be expected. Treatment of VII with debrominating agents such as zinc or iodide ion can thus result in the synthesis of the cyclobutadiene derivative (VIII):

SUMMARY

Abstract

The chemical investigation of the relationship between the di- and tetrabrominated photodimers of 1, 4-naphthoquinone was undertaken and a mechanism for the bromination introduced. The cryatal and molecular structure of the tetrabromide, $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{Br}_{4}$, was determined by three-dimensional X-ray diffraction methods. It was established that the molecule has the anti conformation in the solid state. It is considerably distorted because of overcrowding of the bromine atoms in cis relationship but the bond lengths are unaffected. The distortion is adequately described in terms of the non-planarity of the cyclobutane ring.

OPS OMMING

'n Chemiese ondersoek na die onderlinge verwantskap tussen. die di- en tetragebromineerde fotodimere van 1, 4-naftakinoon is gedoen en 'n meganisme vir die bromeringsproses is voorgestel. Die kristalen molekul太re struktur van die tetragebromineerde derivaat, $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{Br}_{4}$, is met behulp van drie-dimensionele X-straaldiffraksiemetodes bepaal. Dit is vasgestel dat die molekule in die vaste toestand 'n anti konfigurasie het. Die molekule is aansienlik verwring as gevolg van die onderlinge afstoting tussen die broomatome in cis-verwantskap. Die bindingslengtes is egter nie verander nie. Die verbuiging word duidelik aangetoon deur die feit dat die siklobutaanring nie in 'n plat vlak 18 nie.

APPENDIXA

INTENSITY MEASUREMENTS ON MULTIPLE FILMS. ${ }^{13 \text {) }}$

With this method, a number of films, usually seven, are superimposed on each other in the camera, when recording the reflections. The intensity measurements from the different films of each layer line are placed on the same relative scale by applying factors to the measurements from each film. These interfilmfactors are obtained by taking the mean of the interfilm factors that can be calculated from the measured intensities for all the reflections. The intensity for each reflection is then given by the average of the values over all relevant films, after the filmfactors have been applied. A computer program, FILMPACT, was written by J. Admiraal and used to carry out this computation for each layer line.

With the multiple film method it is possible to obtain a set of uncorrected intensities over a mach wider range than possible on a single photographic film.

\triangle PPENDIXB

CORRECTIONS TO MEASURED INTENSITIES

The corrections which have to be applied to the measured intensity ($I_{\text {meas }}$) of a replection, to yield the corrected intensity ($I_{\text {corr }}$) and hence the observed structure factor (F_{0}), are standard for equi-inclination Weissenberg photographs. The relationship between $I_{\text {meas }}$ and $I_{\text {corr }}$ can be formulated as

$$
I_{\text {corr }}=I_{\text {meas }} \text { S.C. } A^{*} \cdot S^{*} \cdot(L p)^{-1}
$$

where

$$
\begin{aligned}
S= & \text { scale factor applied to the intensities of each } \\
& \text { layer line to get } F_{0} \text { on an absolute scale } \\
\mathrm{C}= & \text { splitting factor, as a result of splitting of } \\
& \text { spots due to the } \mathrm{C}_{1}, \alpha_{2} \text { doublet of } \mathrm{K} \text { radiation } \\
\mathrm{A}^{*}= & \text { absorption correction } \\
\mathrm{S}^{*}= & \text { spot shape factor for higher layer lines (Phillips, 1954) } \\
\mathrm{Lp}= & \text { combined Lorentz and polarization factor (Cochran, 1948). }
\end{aligned}
$$

REFERENCES

1. M. Avram, E. Marice and C.D.Nenitzescu, Chem. Ber., 92, 1088 (1959).
2. R. Criegee and G. Schröder, Ann. 623, 1 (1959).
3. G.F. Emerson, L. Watts and R. Pettit, J. Am. Chem. Soc., 87, 131 (1965).
4. A. Schönberg, A. Sustafa, et al., J. Chem. Soc., 1948, 2126.
5. J. Dekker, P. Janse van Vuuren and D.P. Venter, J. Org. Chem., to be published early 1968.
6. P. Janse van Vuuren, M.Sc. Thesis, Potchefstroom University, 1965.
7. D.P. Venter, M.Sc. Thesis, Potchefstroom University, 1967.
8. J.M. Bruce, J. Chem. Soc. , 1962, 2782.
9. M. Asgar Ali and C.A. Coulson, Tetrahedron, 10, 41 (1960).
10. D.P. Venter, J. Dekker, Unpublished results.
11. A. Lapworth, J. Chem. Soc., 35, 30 (1904).
12. M.J. Buerger, Crystal Structure Analysis, Wiley (1960).
13. H. Lipson and W. Cochran, The Determination of Crystal Structures, Bell (1953).
14. J.M. Robertson, Organic Crystals and Molecules, Cornell University Press, Ithaca, N.I., (1953).
15. W.C. Hamilton, Acta Cryst., 8, 185 (1955).
16. H.P. Hanson, F. Herman, et al., Acta Cryst., 17, 1040 (1964).
17. International Tables of X-ray Crystallography (1952), Vol. III, Kynoch Press, Birmingham.
18. J.D. Dunitz, Acta Cryst., 2, 1 (1949).
19. A.I. Kitaigorodskii, Organic Chemical Crystallography, (Authorized translation from the Russian), Consultants Bureau, New York, N. Y., (1957), p. 172.
20. Tables of Interatomic Distances and Configuration in Molecules and Ions, The Chemical Society, London, (1958).
21. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, N.I., 1939, p. 178.
22. G. Gafner and F.H. Herbstein, Acta Cryst., 13, 706 (1960).
23. J.C.A. Boeyens and F.H. Herbstein, J. Phys. Chem., 69, 2160 (1965).
24. G. Glockner, J. Phys. Chem., 61, 31 (1957).
25. D.J. Cram and G.S. Hammond, Organic Chemistry, McGraw-Hill, New York (1959), p. 400.
26. P. Sykes, A Guidebook to Mechanism in Organic Chemistry, Longmans, Green and Co. Ltd., London (1965), P. 205.

ACKNOWLEDGEMENTS

I wish to gratefully acknowledge my indebtedness to the following persons:

Dr. J. Dekker of the Department of Chemistry of the Potchefstroom University, who acted as promoter and in whose laboratory part of the experimental work was done;

Dr. J.C.A. Boeyens of the National Physical Research Leboratory of the South African Council for Scientific and Industrial Rosearch, who supervised the crystallographic investigation;

Dr G. Gafner of the National Physical Research Leboratory for his active interest and great assistance in this investigation;

Dr. A. Strasheim, Director of the National Physical Research Laboratory, for permission to do the crystallographic investigation in the NPRL and to include the results obtained in this thesis.

Furthermore, I wish to thank the CSIR for the financial support received in the form of a bursaxy.

[^0]: 8.

 Perspective viev of the molecule to illustrate24 its conformation.

