
i

An embedded controller for an

active magnetic bearing and drive

electronic system

A dissertation presented to

The School of Electrical, Electronic and Computer Engineering

North-West University

In partial fulfilment of the requirements for the degree

Magister Ingeneriae

in Electrical and Electronic Engineering

by

Rikus le Roux

Supervisor: Prof. G. van Schoor

Assistant-supervisor: Mr. J. Jansen van Rensburg

Project manager: Dr. E.O. Ranft

November 2009

Potchefstroom Campus

ii

iii

Declaration

I hereby declare that all the material incorporated in this thesis is my own original unaided work

except where specific reference is made by name or in the form of a numbered reference. The

word herein has not been submitted for a degree at another university.

Signed:

Rikus le Roux Date

iv

v

Project information

Personal contact details:

Name : Mr. R.R le Roux

Organization : North-West University, School for Electrical and Electronic

Engineering

Address : Private bag X6001, Potchefstroom 2520

Telephone : (018) 299 4298

Fax : (018) 299 1977

E-Mail : 13077643@nwu.ac.za

Supervisor contact details:

Name : Prof. G. van Schoor

Organization : North-West University, School for Electrical and Electronic

Engineering

Address : Private bag X6001, Potchefstroom 2520

Telephone : (018) 299 1962

Fax : (018) 299 1977

E-Mail : 12134457@nwu.ac.za

Project manager:

Name : Dr. E.O Ranft

Organization : North-West University, School for Electrical and Electronic

Engineering

Address : Private bag X6001, Potchefstroom 2520

Telephone : (018) 299 1975

Fax : (018) 299 1977

E-Mail : 12133094@nwu.ac.za

Assistant-supervisor:

Name : Mr. J. Jansen van Rensburg

Organization : North-West University, School for Electrical and Electronic

Engineering

Address : Private bag X6001, Potchefstroom 2520

Telephone : (018) 299 4298

Fax : (018) 299 1977

E-Mail : 12576786@nwu.ac.za

vi

vii

Summary

The North-West University is currently conducting research in the area of active magnetic

bearings (AMBs). The aim of this research is to establish a foundation for the development of

AMB systems to be used in industrial applications. These systems should be reliable, effective

and economical. The main research objective for this project is to further develop key

technologies in order to realize an economical, reliable high-speed AMB drive system to be

used in high-speed machinery. The proposed system is the AMB and drive electronic system

(ADES), which is a digital control system for controlling AMBs in an industrial environment. The

development of the ADES was a group effort. The focus of this dissertation was on selecting

and implementing a suitable controller to be used in the ADES. The specification for the ADES

was obtained from an industrial high-speed helium blower system.

Selecting the controller was done by concurrently evaluating the conceptual main controller

architectures and proposed system architectures. The system architecture is based on an

industrial form factor, called compact peripheral component interconnect (PCI), or cPCI, which

is an industrial version of PCI. The architectures were evaluated by performing trade-off

studies and by weighing each architecture against a decision matrix, which weighs the

architectures according to robustness, efficiency, cost, risk, reliability, flexibility and

expandability. The selected system architecture includes a single board computer (SBC) with

two PCI mezzanine cards (PMCs); a Virtex
®
-5 field programmable gate array (FPGA) based

PMC module, for scheduling real-time tasks, and a Profibus PMC module, which will be used

in future iterations of this project to interface the ADES with a programmable logic controller

(PLC).

The specified functions were designed, verified and implemented on the selected controller.

The digital control was implemented on the FPGA-embedded PowerPC whereas the

communication and filters were implemented on the FPGA. The sensitivity analysis placed the

system into zone C, which implies a system normally considered unsatisfactory for long-term

continuous operation. The system may operate in this condition for a limited period, until a

suitable opportunity arises for remedial action. It was also determined that the system is stable

for a step-input added to the reference position. Due to the stability of the control, it was

possible to suspend the rotor at its designed rating of 19,000 r/min, but due to the high

sensitivity rating, prolonged operation at this speed is not recommended.

The selected architecture is versatile and powerful. The FPGA as a co-processor can be used

to alleviate the load on the PowerPC, if additional features are required and not enough clock

cycles are left on the PowerPC to implement them. The solution is compact, powerful and

robust. These features, together with the industrial-based architecture of the system, make the

ADES a suitable controller for controlling AMBs in an industrial system.

viii

ix

Acknowledgements

Great thanks go out to M-Tech Industrial, THRIP and the North-West University. Thank you for

funding this project and for the opportunity to further my studies.

I would also like to thank the following people for their contribution, support, knowledge and

expertise throughout this project:

 Prof. George van Schoor, my supervisor, for his guidance, support and advice

 Mr. Jacques Jansen van Rensburg, my assistant-supervisor and friend, for his

insight, advice and friendship

 Dr. Eugén Ranft, project manager, for managing and driving the project

 Mr. Cobus Potgieter, our industrial partner and consultant, who provided technical

expertise, guidance, advice and VHDL training

 Dr. André Niemann, for his invaluable insights, input and for helping to design the

filters

 Mr. Roelof Burger, for his design of the user interface

 Mr. Morné Neser, for his input and help regarding object orientated embedded C, as

well as helping to solve general embedded C issues

 Ms. Elsebi Gadney, for her friendship over the last couple of years. Without her, this

project would have been a whole lot less entertaining.

 My family, for their unwavering love, support, encouragement and prayer

 My girlfriend, Nicolene Swart, for her love, patience and support

 The McTronX research group and in the specific André, Elna, Elsebi, Gordon, and

Kristoff, for their friendship and late night coffee breaks

 I would like to thank everyone who designed, built or implemented components cardinal to the

success of the project. Without your hard work, there would not be a system to control or a

rotor to suspend.

Above all, I would like to thank our Heavenly Father, for this amazing opportunity He bestowed

upon me. ―I can do everything through Him who gives me strength.‖

x

xi

“When you go through deep water and great trouble, I will be with you.
When you go through rivers of difficulty, you will not drown!

When you walk through the fire of oppression, you will not be burned up; the flames will not
consume you.

I will be with you…”
Isaiah 43:2 (LB)

xii

xiii

“There is no extra magic inside the FPGA………
Just the usual magic.”

Göran Bilski (Xilinx Employee)

xiv

xv

Table of contents

Project information ... iii

Summary ... v

Acknowledgements ... ix

Table of contents ... xiv

List of figures ... xviii

List of tables ... xxi

List of abbreviations and acronyms ... xxiii

CHAPTER 1 ... 1

Introduction .. 1

1.1 Digital controllers .. 1

1.2 Background... 2

1.2.1 High speed helium blower ... 2

1.2.2 Active magnetic bearings ... 3

1.2.3 Basic AMB operating principle ... 4

1.2.4 Components of an AMB ... 4

1.3 System architecture .. 5

1.3.1 Current system ... 5

1.3.2 Proposed system ... 6

1.4 Problem statement ... 8

1.5 Issues to be addressed .. 8

1.5.1 Conceptual analysis ... 8

1.5.2 Functional analysis and allocation ... 9

1.5.3 Controller selection .. 9

1.5.4 Hardware preliminary design ... 9

1.5.5 Hardware outsourcing for detail design ... 9

1.5.6 Training in firmware development .. 9

1.5.7 Firmware design and development .. 10

1.5.8 Implementation .. 10

1.5.9 Testing and Evaluation .. 10

1.6 Research methodology ... 10

1.6.1 Conceptual Analysis .. 10

1.6.2 Functional analysis and allocation ... 11

1.6.3 Controller selection .. 11

1.6.4 Hardware preliminary design/sourcing of hardware .. 11

1.6.5 Hardware outsourcing for detail design ... 11

1.6.6 Training in firmware development .. 12

1.6.7 Firmware design and development .. 12

1.6.8 Implementation .. 12

1.6.9 Testing and Evaluation .. 12

xvi

1.7 Dissertation overview ... 13

CHAPTER 2 ... 15

Literature study .. 15

2.1 Embedded control .. 15

2.1.1 Background .. 15

2.1.2 Microprocessor vs. microcontroller .. 17

2.1.3 Digital signal processors and processing .. 18

2.1.4 Fixed-point vs. floating-point .. 19

2.1.5 Controllers .. 23

2.1.6 Design considerations.. 32

2.2 Active magnetic bearing control ... 39

2.2.1 PID controllers ... 40

2.3 Digital filters .. 41

2.4 Object orientated embedded C... 43

2.5 Critical evaluation of literature .. 44

CHAPTER 3 ... 47

Controller hardware selection .. 47

3.1 System specification ... 47

3.1.1 ADE system introduction.. 47

3.1.2 Embedded controller system specification .. 48

3.1.3 Specified ADES system states .. 50

3.2 Control estimation calculations ... 52

3.2.1 PID control algorithm requirement estimation ... 52

3.2.2 Estimated MIMO control requirements .. 54

3.2.3 Other estimated control requirements ... 55

3.3 Estimated signal processing requirements ... 58

3.4 Decision matrices ... 58

3.5 Architectural evaluation .. 60

3.5.1 Main controller architecture ... 61

3.5.2 ADES architecture ... 69

3.6 Selected architecture discussion .. 78

3.6.1 Option 1 ... 79

3.6.2 Option 2 ... 81

3.6.3 Selected architecture discussion ... 84

3.6.4 Conclusion ... 85

CHAPTER 4 ... 87

Controller design.. 87

4.1 Software control flow .. 87

4.2 PowerPC hardware design ... 89

4.2.1 Hardware ... 89

4.2.2 Memory space allocation ... 91

xvii

4.3 Embedded state machine ... 94

4.4 Control algorithm .. 99

4.4.1 PID control ... 99

4.4.2 System timing design ... 101

4.5 Interrupt design ... 102

4.6 Filter design .. 104

4.6.1 IIR notch filter ... 105

4.6.2 FIR low-pass filter .. 106

4.6.3 IIR band-stop filter .. 109

4.7 Conclusion .. 111

CHAPTER 5 ... 113

Controller Implementation ... 113

5.1 System simulation .. 113

5.2 System emulation ... 115

5.3 Control algorithm .. 116

5.3.1 PID implementation with differential pole at -ωp .. 117

5.3.2 Double differential pole PID implementation ... 121

5.3.3 System timing .. 123

5.4 Filter implementation .. 125

5.4.1 Axial AMB filters verification .. 126

5.4.2 Radial filters verification ... 127

5.5 Additional component implementation and verification .. 128

5.6 System execution timing verification .. 129

5.6.1 PowerPC optimization.. 129

5.6.2 FPU vs. emulation .. 129

5.6.3 SDK code optimization... 130

5.6.4 Instruction and data cache ... 130

5.6.5 Execution timing ... 131

5.7 System integration .. 136

5.8 Conclusion .. 138

CHAPTER 6 ... 139

Controller evaluation .. 139

6.1 Evaluation process ... 139

6.2 Controller performance ... 140

6.3 System timing validation ... 140

6.4 Control response verification and controller benchmarks .. 141

6.5 System stability ... 143

6.5.1 Radial AMB 1 ... 145

6.5.2 Radial AMB 2 ... 150

6.5.3 Axial AMB .. 153

6.6 System sensitivity ... 153

xviii

6.6.1 Radial AMB 1 ... 157

6.6.2 Radial AMB 2 ... 158

6.6.3 System sensitivity .. 158

6.6.4 Improving system sensitivity .. 159

6.7 Conclusion .. 160

CHAPTER 7 ... 163

Conclusions and recommendations .. 163

7.1 Conclusions .. 163

7.1.1 Controller selection process .. 163

7.1.2 Controller design .. 166

7.2 Recommendations .. 167

7.2.1 Controller implementation .. 167

7.2.2 Debugging and simulation ... 168

7.3 Future work ... 168

7.3.1 Sensitivity analysis inconsistencies ... 168

7.3.2 Self-diagnostic test ... 169

7.3.3 Condition monitoring .. 169

7.3.4 Real-time sensitivity analysis ... 169

7.3.5 Emergency stop procedure .. 170

7.3.6 Motor control .. 170

7.3.7 Remote-access port ... 170

7.3.8 MIMO control algorithm.. 171

7.4 Closure ... 171

APPENDIX ... 179

Appendix A: BDTI benchmark suite ... 179

Appendix B: Exposition of architecture costs ... 183

Appendix C: Rotor de-levitation sectional view .. 184

Appendix D: Photos of completed system ... 185

Appendix E: Graphical user interface .. 186

Appendix F: Data disc .. 188

xix

List of figures

Figure 1-1: PBMR helium path schematic ... 3

Figure 1-2: Functional diagram of a basic AMB system [9] ... 4

Figure 1-3: Current system used for research ... 6

Figure 1-4: Proposed ADES system.. 7

Figure 1-5: ADES breakdown structure ... 7

Figure 2-1: Numerical bit-weight for positive integer numbers .. 19

Figure 2-2: Example: 1011012 as an unsigned integer ... 20

Figure 2-3: Numerical bit-weight for positive fractions .. 20

Figure 2-4: Example: 0.0101102 as an unsigned fraction ... 20

Figure 2-5: Single precision floating-point number representation .. 22

Figure 2-6: Basic FPGA internal architecture .. 26

Figure 2-7: Xilinx
®
 specific FPGA architecture [36], [38] ... 27

Figure 2-8: Horisontally stacked PC/104 modules .. 30

Figure 2-9: PCI slots on a PC motherboard .. 31

Figure 2-10: Control diagram for the suspension of a rotor in one degree of freedom 39

Figure 2-11: Discrete PID controller block diagram ... 40

Figure 2-12: PID controller .. 41

Figure 2-13: Conceptual representation of a digital filter .. 42

Figure 2-14: Example: Embedded C-class .. 44

Figure 3-1: Proposed system .. 47

Figure 3-2: Functional units of the ADES .. 48

Figure 3-3: Control diagram divided into three sections .. 49

Figure 3-4: Specified system states and transitions .. 51

Figure 3-5: PID control block diagram ... 52

Figure 3-6: Simplified PID controller .. 52

Figure 3-7: Main controller concept architecture 1 .. 62

Figure 3-8: Main controller concept architecture 2: with the (a) main controller and (b) the

FPGA communicating with the communication processor(s). ... 63

Figure 3-9: Main controller concept architecture 3 .. 64

Figure 3-10: Main controller concept architecture 4 .. 65

Figure 3-11: Concept architecture 5 .. 66

Figure 3-12: Main controller concept architecture 6 .. 67

Figure 3-13: Main controller architectural comparison .. 69

Figure 3-14: cPCI architectural layout ... 70

Figure 3-15: System architecture 1.1 .. 71

Figure 3-16: System architecture 1.2 .. 71

Figure 3-17: System architecture 2.1 .. 72

file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/M-projek/Dokumentasie/Verhandeling/Volledig/Verhandeling%20v4.567%20.docx%23_Toc247063993

xx

Figure 3-18: System architecture 2.2 .. 73

Figure 3-19: System architecture 3.1 .. 74

Figure 3-20: System architecture 3.2 .. 75

Figure 3-21: System architecture 4.1 .. 76

Figure 3-22: System architecture 4.2 .. 77

Figure 3-23: System architecture with the T2-6U-cPCI board .. 80

Figure 3-24: T2-6U-cPCI TigerSHARC™ board ... 81

Figure 3-25: System architecture with the PP 41x/03x board ... 82

Figure 3-26: PP 41x/03x board .. 83

Figure 3-27: PMC-VFX70T PMC card ... 84

Figure 4-1: Software control flow ... 88

Figure 4-2: DPR block ... 92

Figure 4-3: DPR memory space allocation .. 92

Figure 4-4: Designed PowerPC address map ... 93

Figure 4-5: Designed DDR SDRAM memory space ... 94

Figure 4-6: Embedded state machine ... 96

Figure 4-7: PID block diagram with differential pole moved to -ωp.. 99

Figure 4-8: 1D second-order structure .. 101

Figure 4-9 : System timing diagram... 102

Figure 4-10: PowerPC interrupt hardware ... 104

Figure 4-11: VHDL interrupt bus.. 104

Figure 4-12: Designed IIR notch filter bode diagram ... 106

Figure 4-13: Simulated magnitude response of FIR low-pass filter .. 107

Figure 4-14: Simulated phase response of FIR low-pass filter ... 108

Figure 4-15: True phase and magnitude of implemented FIR low-pass filter 108

Figure 4-16: FIR low-pass filter response for test input... 109

Figure 4-17: Phase and magnitude of implemented IIR band-stop filter 110

Figure 4-18: IIR band-stop filter response for test input .. 110

Figure 5-1: ModelSim
®
 pcore simulation model .. 115

Figure 5-2: Acromag
®
 EDK module ... 116

Figure 5-3: Differential pole on -ωp PID control emulation setup .. 118

Figure 5-4: Simulated vs. emulated open-loop PID response ... 119

Figure 5-5: Digital closed-loop PID response comparison .. 120

Figure 5-6: Comparison between open and closed-loop digital PID response 120

Figure 5-7: Double differential pole PID control block diagram ... 121

Figure 5-8: Double differential pole PID control response verification 122

Figure 5-9: Sync generator entity .. 123

Figure 5-10: Sync generator timing ... 124

Figure 5-11: Filter and filter controller connectivity .. 125

Figure 5-12: Instantiated filter entity .. 125

Figure 5-13: Axial AMB filters response verification .. 127

xxi

Figure 5-14: Radial filter response verification .. 128

Figure 5-15: PowerPC 440 block diagram .. 131

Figure 5-16: Time Base register and timer facilities relationship .. 132

Figure 5-17: PMC-VFX70T hardware architecture .. 137

Figure 6-1: Execution timing diagram .. 140

Figure 6-2: System stability control configuration .. 144

Figure 6-3: AMB magnetic orientation ... 145

Figure 6-4: Radial AMB 1 x-axis step response comparison .. 146

Figure 6-5: Radial AMB 1 x-axis step response .. 146

Figure 6-6: Radial AMB 1 y-axis step response comparison .. 147

Figure 6-7: Radial AMB 1 y-axis step response .. 148

Figure 6-8: Difference in senor positions ... 149

Figure 6-9: Linear point of operation for the two sensors .. 149

Figure 6-10: Radial AMB 2 x-axis step response comparison .. 150

Figure 6-11: Radial AMB 2 x-axis step response .. 151

Figure 6-12: Radial AMB 2 y-axis step response comparison .. 152

Figure 6-13: Radial AMB 2 y-axis step response .. 152

Figure 6-14: Sensitivity analysis control setup .. 154

Figure 6-15: Non-collocation of the sensors in the AMB system .. 155

Figure 6-16: dSPACE
®
 and ADES sensitivity response comparison 156

Figure 6-17: Bending modes and non-collocation of the sensors ... 156

Figure 6-18: Radial AMB 1 sensitivity.. 157

Figure 6-19: Radial AMB 2 sensitivity.. 158

Figure 6-20: Improved sensitivity on AMB 2 x-axis ... 160

xxii

List of tables

Table 2-1: Brief summary of the microcontroller/microprocessor history [16][17][18][19] 16

Table 2-2: List of microcontrollers and -processors .. 17

Table 3-1: Estimated PID control requirements for one DOF ... 53

Table 3-2: Control response estimation .. 54

Table 3-3: Estimated number of instructions for monitoring conditions 55

Table 3-4: Estimated number of instructions for sensitivity analysis ... 55

Table 3-5: Estimated number of instructions for communication .. 57

Table 3-6: Estimated processor specifications .. 58

Table 3-7: System evaluation criteria .. 59

Table 3-8: Controller architectural evaluation criteria .. 61

Table 3-9: Main controller architecture 1 decision matrix .. 62

Table 3-10: Main controller architecture 2 decision matrix .. 63

Table 3-11: Main controller architecture 3 decision matrix .. 64

Table 3-12: Main controller architecture 4 decision matrix .. 65

Table 3-13: Main controller architecture 5 decision matrix .. 66

Table 3-14: Main controller architecture 6 decision matrix .. 67

Table 3-15: Pros and cons of system architecture 1.1 .. 71

Table 3-16: Pros and cons of system architecture 1.2 .. 72

Table 3-17: Pros and cons of system architecture 2.1 .. 73

Table 3-18: Pros and cons system of architecture 2.2 .. 74

Table 3-19: Pros and cons of system architecture 3.1 .. 75

Table 3-20: Pros and cons of system architecture 3.2 .. 76

Table 3-21: Pros and cons of system architecture 4.1 .. 77

Table 3-22: Pros and cons of system architecture 4.2 .. 78

Table 3-23: Option for system architecture 1.2 ... 79

Table 3-24: Comparison between the two proposed system architectures 84

Table 3-25: Price comparison between the two architectures .. 85

Table 4-1: PowerPC initial configuration ... 90

Table 4-2: Discussion of embedded state diagram (Part 1) .. 97

Table 4-3: Discussion of embedded state machine (Part 2) ... 98

Table 4-4: Discussion of embedded state machine (Part 3) ... 99

Table 4-5: Identified interrupts ... 103

Table 4-6: FIR low-pass filter specification .. 107

Table 4-7: IIR band-stop filter specification ... 110

Table 5-1: Sync generator interface description .. 123

Table 5-2: Filter entity interface description .. 126

Table 5-3: PowerPC clock cycle measurement (Part 1) ... 134

xxiii

Table 5-4: PowerPC clock cycle measurement (Part 2) ... 135

Table 5-5: Average improvement of system optimization ... 136

Table 6-1: Estimated vs. actual clock cycle comparison ... 141

Table 6-2: PowerPC 440 core specifications .. 142

Table 6-3: Estimated vs. capable performance comparison ... 143

Table 6-4: Stability test parameters ... 145

Table 6-5: Radial AMB 1 x-axis control comparison ... 147

Table 6-6: Radial AMB 1 y-axis control comparison ... 150

Table 6-7: Radial AMB 2 x-axis control comparison ... 151

Table 6-8: Radial AMB 2 y-axis control comparison ... 153

Table 6-9: Peak sensitivity at zone levels ... 154

Table 6-10: Sensitivity analysis parameters .. 155

Table 6-11: Prominent critical frequencies of the ADES ... 157

Table 6-12: PID parameters for zone A sensitivity .. 159

xxiv

List of abbreviations and acronyms

(A)GCR - (Advanced) Gas Cooled Reactor

ADC - Analogue to Digital Conversion

ADC - Analogue to Digital Converter

ADE(S) - AMB and Drive Electronic (System)

ADEU - AMB and Drive Electronic Unit

ADI - Analog Devices, Inc.

AIM alliance - Apple, IBM and Motorola alliance

ALU - Arithmetic Devices and Arithmetic Logic Units

AMB - Active Magnetic Bearing

ANSI - American National Standards Institute

API - Application Programming Interfaces

API - Application Programming Interfaces

APU - Auxiliary Processor Unit

ARM - Acorn/Advanced RISC Machine

B/FLOP - Byte per Floating-point OPerataion

BDTI - Berkeley design technology, Inc

BPR - Bandwidth-to-Processing Ratio

bps - bits per second

BRAM - Block RAM

CAD - Computer Aided Design

CAD - Computer-Aided Design

CAN - Control Access Network

CAT - Computed Axial Tomography

CISC - Complex Instruction Set Computer

CLB - Complex Logic Block

CMOS - Complementary Metal-Oxide Semiconductor

COTS - Commercial Off-The-Shelf

cPCI - compact PCI

CPLD - Complex Programmable Logic Device

CPU - Central Processing Unit

DAC - Digital to Analogue Converter

dB - Decibel

DC - Direct Current

DCM - Digital Clock Management

DCM - Digital Clock Management

DDR SDRAM - Double Data Rate Synchronous Dynamic Random

xxv

 Access Memory

DIMM - Dual In-line Memory Module

DOF - Degree Of Freedom

DPR - Dual Port Random Access Memory

DSP - Digital Signal Processor

EDK - Engineering Design Kit

EEMBC - EDN Embedded Microprocessor Benchmark

 Consortium

FCB - Fabric Coprocessor Bus

FFT - Fast Fourier Transform

FIR - Finite Impulse Response

FLOPS - FLoating-point Operations Per Second

FPGA - Field Programmable Gate Array

FPR - Floating-Point Register

FPU - Floating-point Unit

FSM - Finite State Machine

GB - Giga Byte

GFLOPS - Giga Floating-point Operations Per Second

GHz - Giga Hertz

GMACS - Giga Multiplications and Accumulation Cycles per

 Second

GPIO - General Purpose Input/Output

GPR - General Purpose Register

GUI - Graphical User Interface

HDL - Hardware Description Language

I/O - Input/Output

IDE - Integrated Development Environment

IEEE - Institute for Electrical and Electronic Engineers

IIR - Infinite Impulse Response

IOB - Input/Output Block

IRQ - Interrupt ReQuest

JTAG - Joint Test Action Group

KB - Kilo Byte

LSB - Least Significant Bit

LUT - Look-Up Table

LVDS - Low voltage Differential Signalling

LVTTL - Low Voltage Transistor-Transistor Logic

MACS - Multiply Accumulation Cycles per Second

MB - Mega Byte

MIMO - Multiple Input and Multiple Output

xxvi

MIPS - Million Instructions Per Second

MPLB - Master Processor Local Bus

MRI - Magnetic Resonance Imaging

MSB - Most Significant Bit

MSPS - Mega Samples Per Second

NWU - North-West University

OPS - Operations Per Second

OS - Operating System

OTP - One-Time Programmable

P.O. - Percentage Overshoot

PA - Power Amplifier

PBMR - Pebble Bed Modular Reactor

PC - Personal Computer

PCB - Printed Circuit Board

PCI - Peripheral Component Interconnect

PI control - Proportional plus Integral control

PID control - Proportional plus Integral plus Derivative control

PLB - Processor Local Bus

PLC - Programmable Logic Controller

PLL - Phase Lock Loop

PMC - PCI Mezzanine Card

PMSM - Permanent Magnet Synchronous Motor

POWER - Performance Optimization With Enhanced RISC

PowerPC - POWER Performance Computing/Chip

PWM - Pulse Width Modulation

RAM - Random Access Memory

RDS - Rotor De-levitation System

RISC - Reduced Instruction Set Computer

ROM - Read Only Memory

RTM - Rear Transition Module

RTOS - Real-Time Operating System

SBC - Single Board Computer

SCADA - Supervisory Control And Data Acquisition

SDK - Student Development Kit

SharC - Super Harvard ARChitecture

SIMD - Single Instruction, Multiple Data

SO-DIMM - Small Outline Dual In-line Memory Module

SOS - Second-Order Section

SPLB - Slave Processor Local Bus

SPR - Special Purpose Register

xxvii

SRAM - Static Random Access Memory

TBL - Time Base Lower

TBU - Time Base Upper

TCP/IP - Transmission Control Protocol/Internet Protocol

TI - Texas Instruments

UPS - Uninterrupted Power Supply

USB - Universal Serial Bus

V/F - Voltage over Frequency

VHDL - VHSIC Hardware Description Language

VHSIC - Very-High-Speed Integrated Circuits

VLIW - Very Long Instruction Word

WiMAX - Worldwide Interoperability for Microwave Access

1

CHAPTER 1

Introduction

This chapter provides background fundamental to understanding various concepts in this

dissertation and project. It starts-off by discussing digital controllers in general and the

advantages gained from using digital controllers. As short discussion on high-speed helium

blowers follows. This is relevant, since the proposed active magnetic bearing and drive

electronics system (ADES) should function in high-speed industrial systems such as the helium

blowers. The requirement specification of the ADES is also based on a helium blower system.

1.1 Digital controllers

Digital system development has had a profound impact on the lives of people, like no other

area of technology [1]. The digital firestorm is driven by [2]:

 Utility - Digital data can be replicated exactly and distributed effortlessly, which gives it

much more utility

 Quality - The quality of digital data exhibits less noise.

 Affordability - Digital data manipulation is a great deal less expensive since it is able

to influence semiconductor economies of scale. The price of digital data manipulation

is dropping every year.

The rapid revolution of digital media and the digitization of consumer products have led to the

improvements of existing digital products as well as the creation of various new products.

Digital products are synonymous with [2]: quality, speed, accuracy, reliability, power, low cost

and superiority.

More and more systems are moving away from analogue communication and control to take

advantage of the above-mentioned characteristics. The same applies to the proposed active

magnetic bearing and drive electronics system (ADES). The proposed ADES system is a

digital system aimed at replacing the current rapid prototyping system with a controller suitable

for usage in an industrial environment. By using digital communication between components

the noise in the system will be reduced. This will lead to a higher bandwidth and more efficient

control.

2

1.2 Background

Before the proposed system is given, it is first necessary to understand why the ADES should

be capable of performing in an industrial environment. The primary intent of the ADES system

is to replicate a high-speed helium blower control system typically used in a nuclear

environment. The helium blower is just one of many applications for an AMB-system and the

ADES will demonstrate AMB-control on an industrial level, regardless of the application.

However, since the specification for the ADES is based on a high-speed helium blower,

background on helium blowers is given to illustrate the usage of AMBs in an industrial

environment.

1.2.1 High speed helium blower

The gas-cooled nuclear reactor (GCR) is just one of the many different types of nuclear

reactors. It is a development of the earlier natural uranium Magnox type reactor, which, in

various forms was the basis of the first nuclear power programme in the United Kingdom [3].

The Pebble Bed Modular Reactor (PBMR) is a new type of high temperature helium gas-

cooled nuclear reactor [4] which falls into generation IV reactors [5], [6] building and advancing

on world-wide nuclear operators' experience of older reactor designs. The most remarkable

feature of these reactors is that they use attributes inherent in and natural to the processes of

nuclear energy generation to enhance safety features.

Figure 1-1 illustrates the flow of helium in the PBMR. The helium gas is passed through the

PBMR into the reactor. Situated inside the reactor are the fuel pebbles in which a chain

reaction takes place. The helium flows over the fuel pebbles and is heated to a temperature of

900 degrees and the pressure is increased to 69 bars inside the reactor. The helium gas then

flows through to the turbine, which drives a generator. The helium gas then goes through to a

recuperator which pre- or re-heats the helium. Inside the recuperator, most of its heat is

transferred to the helium - which is just about to re-enter the reactor. The lower energy helium

gas is then passed to the intercooler, the low pressure compressor as well as the high

pressure compressor, before returning to the reactor core at 540 degrees [7].

In order for the preceding process to function and to keep the PBMR safe, two helium blowers

are required: one to blow the helium through the system, and one to regulate the temperature

of the helium inside the reactor. The position of the helium blower(s) can be seen in Figure 1-1.

(The latter blower is used in conjunction with a heat exchanger to perform the mentioned

function. The heat exchanger is not depicted in the figure). The blowers depicted are said to be

in the primary helium flow cycle – i.e. any cyclic flow of helium where the risk of contamination

exists. These blowers should be high speed and should not contaminate the helium in any

way. The use of active magnetic bearings (AMBs) is thus essential.

3

The possibility of helium blowers used outside the primary helium flow cycle also exists. These

blowers are said to function in the secondary helium flow cycle; where the contamination of the

helium is not critical. These blowers are application dependent, so they are not depicted in the

figure.

Figure 1-1: PBMR helium path schematic

1.2.2 Active magnetic bearings

AMBs are classified as a mechatronic product, because it combines mechanical, electrical and

electronic principles [8], [9]. The term ―active magnetic bearing‖ is due to the fact that the

bearings can actively be controlled by means of a feedback loop [9], [10]. Bearing stiffness,

damping, rotor position and many other features of the magnetic bearing can be adjusted.

Active magnetic bearings were manufactured due to the limitations of conventional bearings.

Whereas conventional bearings are governed by friction and lubrication, AMBs have the ability

to function without friction in vacuum, without any contamination due to lubrication. This makes

AMBs effective in high-speed applications, as well as applications where there is a risk of

contamination such as a high-speed helium blower.

4

1.2.3 Basic AMB operating principle

Unlike conventional bearings, in AMB systems the rotor is levitated by means of a magnetic

field. As the suspension of the rotor is an unstable process, sensors and controllers are

needed for stabilization. This implies that dynamic characteristics like stiffness and damping

properties of the entire system are influenced by the controller [9], [10].

The functional diagram of a basic AMB system is shown in Figure 1-2. The magnetic field

necessary to levitate the rotor is generated by means of an electromagnetic actuator and the

displacement of the levitating rotor from the reference position is measured by means of a

sensor. Various types of sensors can be used. The most common sensors are eddy current,

capacitive, optical, inductive, Hall effect and sensor-less sensors (also known as self-sensing)

[11].

A main controller interprets the signal from the sensor. This main controller is responsible for

deriving a control signal from the signal delivered by the position sensor. This control signal is

sent to a power amplifier (PA) which is used to convert the control signal into a control current

necessary to drive the electromagnetic actuator to effectively suspend the rotor at the

reference position.

Figure 1-2: Functional diagram of a basic AMB system [9]

1.2.4 Components of an AMB

As can be seen in Figure 1-2, a basic AMB system constitutes the following components:

 A rotor

 Sensor(s)

 A main controller

 Electromagnetic actuators

 Electromagnets

5

The critical components in the system are the controller and the PAs. This is due to the power

requirements for frequencies from DC to the kHz range [12].

The main controller can be divided into a few sub-categories:

 Analogue to digital converters (ADCs), depending on the type of sensors used

 Filters

 The main processor

 A co-processor
1

 Digital to analogue converters (DACs), if analogue power amplifiers are used.

The main controller can be any of the following:

 Digital signal processor (DSP)

 A field programmable gate array (FPGA)

 A central processing unit (CPU) such as those used in personal computers (PCs)

 General purpose processor (GPP)

1.3 System architecture

The general AMB system layout was given in preceding sections. The subsequent sections will

focus on the current AMB system implemented for research purposes.

1.3.1 Current system

The current system implemented for research purposes can be seen in Figure 1-3. Currently,

this AMB system is controlled by means of an expensive dSPACE
®
 system. This system

incorporates the use of MATLAB
®
 and Simulink

®
 on a dSPACE

®
 peripheral component

interconnect (PCI) controller card to control the AMBs as well as a permanent magnet

synchronous motor (PMSM). The dSPACE
®
 system includes analogue and digital input and

output (I/O) as well as an on-board microcontroller. A current reference is received by the

dSPACE
®
 system, which uses voltage over frequency (V/F) control to generate a pulse width

modulation (PWM) signal, which in turn drives the three phase motor. The levitation of the

AMB is controlled by means of a PID controller

The problem with this system is that, although it is an effective method of controlling the AMB

system, it is extremely expensive, which makes it unsuitable for commercial use. A variety of

research is underway to reduce the cost of an AMB system. This research include a single

board computer (SBC), or a single controller solution as a replacement for the dSPACE
®

1
 Application dependent

6

system. This controller will replace the entire dSPACE
®
 system, which includes MATLAB

®
,

Simulink
®
 and the ControlDesk

®
.

MATLAB® and
Simulink®

DAC PID ADC

dSPACE®

ControlDesk™

Rotor

PA

Position Signal

To electromagnetic
actuator

AMB

Current Reference

3 phase
motorCurrent Reference

V/FPWM

6 PWM signals

3-Phase H-

bridge

Figure 1-3: Current system used for research

1.3.2 Proposed system

Although an SBC is an effective replacement for the dSPACE
®
 system, it is still an expensive

commercial product. In order to realize the cost of the proposed commercial system, it was

decided to design an electronic package to replace the dSPACE
®
 system with a cost effective,

efficient electronic package to control the AMB system. This electronic package will be called

an ADES or AMB and drive electronic system. The proposed system can be seen in Figure

1-4.

Figure 1-5 shows the breakdown of the proposed ADES system. The components are:

 The main controller – which is responsible for the control of the system

 The sensor driver unit – which is responsible for sensing the rotor position

 PA units – which is responsible for driving the electromagnetic actuators

 The motor drive – which is responsible for driving the three phase motor

 Additional I/O unit – for any additional analogue I/O needed on the system

7

Rotor

Position Signal

AMB

Electromagnetic actuator
control signals

3 phase
motorAdditional I/O

Motor control
signals

AMB Drive Electronics
System (ADES)

Figure 1-4: Proposed ADES system

Figure 1-5: ADES breakdown structure

8

1.4 Problem statement

The purpose of this dissertation is the specification, selection, preliminary design
2
,

implementation and evaluation of an optimal controller suitable for performing the functions of

the main controller of the ADES system. This implies the selection of a controller capable of

performing these functions, the preliminary design of the hardware to accompany the selected

controller and the outsourcing of the preliminary design to an industry partner for detail design

(if necessary) the detail design of the firmware to be implemented in the selected controller,

implementing the designed firmware on the developed hardware and finally the testing and

evaluation of the design and implementation.

The controller should have the following functionality:

 Control of the AMBs and PMSM

 Condition monitoring of the currents, temperatures, speed of the rotor and status

signals of the system

 Give a reference signal to the PAs to drive the electromagnetic actuators

 Perform self-diagnostic testing

 Perform sensitivity analyses

 Interface with memory modules

The aim of the ADES project as a whole is to take the level of control even closer to industrial

system specifications and to address the cost-constraints of the system in future iterations in

order for the ADES system to be commercially competitive. The primary aim of application is in

high-speed systems such as a helium blower.

1.5 Issues to be addressed

This project proposes a few issues to be addressed in order to complete the project

successfully. This section discusses these issues.

1.5.1 Conceptual analysis

Various concepts of the proposed system should be analysed. This is necessary in order to

fully understand the functionality of the proposed system. The conceptual analysis should

include concepts such as: intelligent components, communication speeds and architecture,

processor types, practicality of the proposed concept as well as implementation implications.

2
 Only considered necessary if it is decided to develop the controller in-house

9

1.5.2 Functional analysis and allocation

The concept analysed in the preceding section will be the basis for drawing up numerous

functions. Functional units will be allocated to these functions and allocated certain

performance characteristics. Hardware will in turn be allocated to the functional units.

1.5.3 Controller selection

Selecting the right controller is a fundamental part of this project. The functions analysed and

allocated in the previous section, will aid as a baseline to the controller selection. The controller

needs to be selected on grounds of these functions that need to be performed. These functions

will require certain performance parameters from the controller, and should also be performed

within a specified time frame, which proposes timing issues.

1.5.4 Hardware preliminary design

The primary focus of this dissertation is on the controller selection and the implementation of

the firmware running on the controller. The selected controller can either be a commercial

product, or be developed in-house. If the latter option is selected, a preliminary design is

needed before the hardware could be outsourced for detailed design. If needed, the

preliminary design will consist of a B-spec document, which specifies the functionality of the

proposed system, the performance characteristics of the system, as well as the hardware

necessary to perform these functions.

1.5.5 Hardware outsourcing for detail design

After the preliminary design of the hardware, the hardware should be outsourced for detailed

design i.e. the circuit bord layout design. This implies finding a reliable company with the

necessary experience and acquaintance in designing printed circuit boards (PCBs), as well as

establishing collaboration between the research group and the specified company. If a

commercial controller is selected, this issue will not apply and hardware needs to be procured

from the supplier.

1.5.6 Training in firmware development

The next issue is training in firmware development. This is due to the lack of experience in

certain components which might be used i.e. field programmable gate arrays (FPGAs). This

training could include firmware development in general, as well as training in the corresponding

programming language for the chosen hardware components; such as VHDL (very high-speed

integrated circuits hardware descriptive language) if an FPGA is used. This issue also includes

the procurement of development boards, which will allow for parallel development of the

firmware and hardware. This will be made possible by the fact that the firmware can be

developed on the development boards, while the industry partner is designing the circuit

boards or while waiting for the selected hardware to be sourced.

10

1.5.7 Firmware design and development

After sufficient training in firmware development, the next issue to address is the design and

development of the firmware to be implemented on the developed or sourced hardware. This

development will take place on the development boards, until the circuit design by the industry

partner is complete or until the sourced hardware arrives. The firmware should act as an

operating system and should:

 Contain algorithms for controlling the suspension of the AMBs

 Contain algorithms to generate a current reference to drive the PAs

 Contain PMSM drive algorithms

 Contain functions used in condition monitoring

 Contain functions used in self diagnostic testing

 Establish communication to memory

 Schedule events to trigger at a specified time

1.5.8 Implementation

The following issue is the implementation of the developed firmware on the hardware. The

firmware designed on the development boards should eventually be implemented on the

selected or manufactured hardware. This will occur during the implementation phase. This

implies that all the requirements stated in section 1.5.7 and designed on the development

board(s), be implemented on the developed or selected hardware.

1.5.9 Testing and evaluation

The final issue is the testing and evaluation of the hardware-firmware combination. During this

phase the designed components need to be verified and the specifications of the system will

also be validated by comparing the designed system with the system requirements.

1.6 Research methodology

Section 1.5 discussed the issues to be addressed during this project. Section 1.6 will in turn

discuss how to address these issues.

1.6.1 Conceptual analysis

Before the conceptual analysis can take place, a literature study is needed to elucidate

required concepts of the proposed system. These concepts will include similar systems

developed and used in the industry. The requirements and specification of the proposed ADES

system will also be based on the systems used in the industry. A detailed study of the industrial

systems is thus essential. After defining the specifications and requirements from the literature,

conceptual analysis can commence.

11

The conceptual analysis will include concepts to be analysed. Each concept will be analysed in

terms of effectiveness, practicality and cost. Although cost is not a determining factor for the

initial concept, it will play an important role in future iterations. By means of trade-off studies,

the best concept and architecture will be determined.

1.6.2 Functional analysis and allocation

By analysing the functions of the system as a whole and by dividing the concept evaluated

above into numerous sub-functions, the various functions can be allocated to the functional

units of the system. This will ensure that the required functions are allocated to certain

components.

After allocating the functions, the requirements will be linked to each function and the

requirements document compiled.

1.6.3 Controller selection

In order to select the most suitable processor/controller for the ADES project, the performance

parameters allocated in the previous section, has to be weighed. Each allocated function

requires processing power and must be executed within a certain timeframe. It may also be

that certain functions have specific memory requirements.

All these requirements must be brought into consideration when a processor is chosen. This

will be done by using a timeline depicting the timeframe in which to complete one control cycle.

This timeline will be divided into sections, allocating a part of the timeframe to each function.

This, together with an estimate of the length, type and complexity of the instructions needed to

be executed on the processor, will be used to determine the speed, processing power and type

of the processor.

1.6.4 Hardware preliminary design/sourcing of hardware

If it is decided to develop a controller in-house, a preliminary hardware design is needed for the

outsourced company to do detailed design and development. The preliminary design will state

the type of processor as well as the necessary hardware required in this project. If it is decided

to use a commercial system, the commercial system needs to be procured.

1.6.5 Hardware outsourcing for detail design

The preliminary design will be used by the outsourced company to do a detailed design of the

system. The outsourced company can be an industry partner – who already has a relationship

with the research group – or any other reliable company. If another industry partner is used,

close collaboration should be established via effective and regular correspondence.

12

1.6.6 Training in firmware development

The firmware training can be categorized into two categories: dependent and independent. The

dependent training is any training hosted by an external company whereas independent

training is self-training by means of a variety literature on the subject of firmware, or courses

hosted internally by experts on the area of firmware and the hardware specific programming

language. The dependent training will take place if an external company can be found to host

the course(s). The necessary development kits/boards should also be procured.

1.6.7 Firmware design and development

After the training discussed in the previous paragraph, the firmware design and development

can commence in parallel with the hardware development or sourcing of commercial hardware,

since development kits/boards were procured. The firmware will be developed using an

integrated development environment (IDE) package.

An IDE is a software application extensively used in software development and consists of a

source code editor, a compiler and/or interpreter, build-tools and usually a debugging facility. It

can also incorporate version control software.

Due to the fact that firmware design and development are the main focus of this dissertation,

significant time should be spent on the design and development of the firmware.

1.6.8 Implementation

After the development of the firmware and the hardware procured, integration of the software

and hardware can commence. This implies the implementation of the firmware on the

hardware. The implementation will be made possible by the usage of emulators, programmers

as well as IDE packages.

1.6.9 Testing and Evaluation

The following quotes are from the definitions given for ―verify‖, ―valid‖ and ―validate‖:

“Verify – Making sure or demonstrate that something is true, accurate of justified”

“Valid – Actually supporting the intended point or claim.”

“Validate – Check or prove the validity”.

Concise Oxford English Dictionary

10
th

 edition 2002

13

The verification and validation of this project will be based on the above definitions. Verification

of the project will be done by determining whether the project satisfies the specifications given.

The project will be validated by testing different points and claims made i.e. finding and testing

the truth of statements.

The testing, verification and evaluation will consist of:

 Verifying the hardware design by means of design reviews (if the controller is

developed in-house)

 Verifying the design of the individual components using simulation packages

 Verifying algorithms against speed specifications or number of clock cycles it

takes to execute

 Evaluating system stability by means of step responses

 Sensitivity analyses of the system

 Validating the designed system by comparing it to the specifications given

1.7 Dissertation overview

This dissertation consists of seven chapters. The succeeding chapter layout is as follows:

Chapter 2 discusses the literature surveyed. This literature encapsulates concepts and

information essential to completing this project. Examples of concepts discussed are:

 Embedded control

 Microcontrollers and –processors

 Digital signal processing concepts

 Fixed and floating-point number representation

 The various processors and controllers considered for realizing the ADES

 The different design considerations, such as benchmarking and co-processing

 Digital implementations of PID control, IIR and FIR filters

 Object-orientated embedded C

The design considerations discussed in Chapter 2 are used to select a controller and system

architecture. The selection process is discussed in Chapter 3. It starts off by giving the system

specifications and processor requirements before a controller is selected. The selection

process is performed by evaluating the considered architectures against decision matrices and

by performing trade-offs between architectures. The system and main controller architectures

are evaluated concurrently and the most suitable architecture for both is found.

14

After selecting the most suitable architecture, the hardware was sourced. The next step is

designing the different components necessary for implementation. This is discussed in Chapter

4 which focuses on the design of components such as memory management and allocation,

design of the embedded state machine, the design of the digital PID control, filters and

interrupts. The implementation of these components are discussed in Chapter 5. Each

component is also verified before it is implemented to ensure correct operation before

implementation. The setup of a verification-model is also discussed in this chapter. Verification

is either done by first simulating the component in MATLAB
®
, by using ModelSim

®
 or by using

system emulation.

Chapter 6 evaluates the main controller by first discussing the performance of the controller.

This is done by discussing the execution timing of the controller and by determining whether

the controller is capable of performing multiple input and multiple output (MIMO) control. The

stability of the system is then determined. This is done by determining the step response of the

system. The settling time, percentage overshoot, damping ratio, natural frequency, equivalent

stiffness and equivalent damping is then calculated for the x and y-axis of both AMBs. The

stability-test is followed by a sensitivity analysis. The sensitivity analysis is used to determine

the stability margin of the system according to the ISO CD 14839-3 standard.

The dissertation concludes by giving conclusions and recommendations in Chapter 7. The

issues encountered during the project as well as discrepancies in results are discussed.

Conclusions are drawn regarding the selected processor and its efficiency in controlling the

ADES. Future work is discussed and a closure statement is given.

15

CHAPTER 2

Literature study

This chapter provides insight to concepts necessary for understanding and completing this

dissertation. Since this project is aimed at selecting, developing and implementing an

embedded controller, this chapter is initiated with an overview on embedded control, which

defines certain concepts and discusses different types of controllers and processors. The

design considerations for selecting a controller or processor are also discussed in this chapter.

Lastly, the focus is shifted to active magnetic bearing (AMB) control and digital filters.

2.1 Embedded control

This chapter starts-off by discussing embedded control by first giving background on

microprocessors and –controllers.

2.1.1 Background

Although microcontrollers and microprocessors have distinct features, as will be discussed in

section 2.1.2, microcontrollers have existed ever since the first microprocessors. In November

1971, Intel
®
 released the world‘s first single chip microprocessor. It was a four bit

microprocessor called the 4004. The following years saw the release of the first microcontroller

from Texas Instruments
®
 (TI) dubbed the TMS 1000 as well as eight bit microprocessors from

Intel
®

(the 8008 and 8080). The first Intel
®
 microcontroller was released in 1975 and was called

the 8048. It featured random access memory (RAM) and read only memory (ROM) inclusive

on the chip [13].

Ever since the first microprocessors and microcontrollers arrived on the scene in the 1970‘s,

the world of electronics was changed forever. Numerous companies started developing a large

variety of controllers and processors. The first microprocessors from Intel
®
 were mainly used in

the first personal computers (PCs), whereas the microcontrollers were used to control

electronic apparatus and systems. Table 2-1 depicts a brief summary of the history of

microcontrollers and processors. The main focus of this dissertation is on embedded control.

This implies that an embedded microcontroller and/or -processor will be utilized in an

embedded system. It was considered relevant to give definitions on embedded systems and

control, just to clarify these concepts:

 Embedded system - ―A computer system that is a component of a larger machine or

system. Embedded systems can respond to events in real time‖ [14].

 Embedded controller - ―A device that performs embedded control‖ [15].

16

In this instance, the ADES is classified as an embedded system, whereas the main controller

unit is defined as an embedded controller.

Table 2-1: Brief summary of the microcontroller/microprocessor history [16] [17] [18] [19]

Year Microprocessor/microcontroller Remark

1971-1972 Intel
®
 4004, Intel

®
 4040 4-bit microprocessors

1974 Intel
®
 8080, TMS 1000 8-bit microprocessor

1975 Motorola
®
 6800 8-bit microprocessor

1976 MCS-48, Intel
®
 8085 8-bit microcontroller

1978 8086, Motorola
®
 68000, Zilog Z-8000 16-bit microprocessors

1979 Intel
®
 8088 8 bit microcontroller

1980 Intel
®
 8051 8 bit microcontroller

1982 68010, 6805, 80186, 80188, 80286, 8096 (MCS-96) 16-bit microcontrollers

1984 Motorola
®
 68020 32-bit microprocessor

1985 Intel
®
 80386

PIC microcontrollers by Microchip
®

32-bit microprocessor

8-bit microcontrollers

1987 Zilog Z280 16-bit microprocessor

1989 Intel
®
 80386xx, 80486 32-bit microprocessor

1993 Intel
®
 Pentium™ 32-bit microprocessor

1995 Intel
®
 Pentium™ Pro 32-bit microprocessor

1997 Atmel
®
 8-bit AVR family

Intel
®
 Pentium™ II and Xeon™

8-bit RISC microcontrollers

32-bit microprocessor

1999 Intel
®
 Pentium™ III, Celeron™, Pentium™ III Xeon™ 32-bit microprocessors

2000 Intel
®
 Pentium™ 4 32-bit microprocessor

2003 Intel
®
 Pentium™ M 32-bit microprocessor

2006-2007 Intel
®
 Core™ 2 Duo and Quad 64-bit microprocessor

2008 Intel
®
 Core™ i7 64-bit microprocessor

17

Since the terms ―microcontroller‖ and ―microprocessor‖ is used quite a lot throughout this

dissertation, the next section is dedicated to explaining the difference between a

microcontroller and microprocessor, as well as defining the terms ―microcontroller‖ and

―microprocessor‖.

2.1.2 Microprocessor vs. microcontroller

The significant improvements in technology over recent years have caused the separation-line

between a microcontroller and microprocessor to fade. Initially a microprocessor was defined

as ―a central processing unit (CPU) only‖ [13]. This implies that a microprocessor is simply a

unit that performs processing and all the additional peripherals (such as RAM) are separate

from the processor. A microcontroller, on the other hand, is a device where some of the

peripherals are included onto the chip. Traditionally, these controllers were less powerful than

their processor counterparts. However, over the years the processing power on the

microcontrollers has increased; so much so, that it is comparable to microprocessors. Modern

microprocessors have some peripherals included on chip. A microprocessor is even defined in

[18] as ―a digital machine capable of executing many different software instructions and

controlling a wide variety of electronic devices‖. This can be quite confusing since it implies

that a processor can be used for control and vice versa.

This fine line between microprocessors and microcontrollers deemed it necessary to define a

microprocessor and microcontroller as used in this dissertation. For this dissertation, a

microcontroller is defined as a device that performs control, whereas a microprocessor is a

device that performs processing. Different microcontrollers and microprocessors from various

companies are listed in Table 2-2.

Table 2-2: List of microcontrollers and -processors

Microcontrollers Microprocessors

Supplier Series Supplier Series

Texas Instruments
®
 TMS320C2000 Texas Instruments

®
 TMS320C6000

Analog Devices
®
 MicroConverter Analog Devices

®
 Blackfin™

SHARC™

TigerSHARC™

ADSP-21xx

Microchip
®
 PIC

dsPIC

Intel
®
 Various (refer to Table 2-1)

18

The definitions for embedded controller and embedded processor as used in this dissertation

(based on the definitions given above) are as follows: an embedded controller is an embedded

system dedicated to control whereas an embedded processor is an embedded system

dedicated to processing. The term ―embedded‖ implies a component which is part of a larger

system, such as a processor or controller, where the component is able to respond to

commands in real-time and is generally not programmable by the end-user [20], [21].

The main controller unit for the ADES is classified as an embedded controller. It is thus an

embedded system dedicated to control, regardless of whether a microcontroller or

microprocessor is used to establish control.

2.1.3 Digital signal processors and processing

This section discusses digital signal processors and processing. According to [22], digital

signal processing is ―concerned with the digital representation of signals and the use of digital

processors to analyse, modify, or extract information from signals‖. Smith [23] defines digital

signal processors as ―microprocessors specifically designed to handle digital signal processing

tasks‖. These two definitions define signal processing and digital signal processors

respectively.

Most signals are analogue in nature, and a digital signal processor (DSP) can be used to

derive a digital representation of the analogue signal. If the signal is already in digital form, a

DSP can be used to manipulate, or perform calculations, on the data. As mentioned in 2.1.2, a

processor is extremely powerful and can perform a large number of calculations in a short

period of time. It can be deducted that a digital signal processor is thus a processor optimized

for digital manipulation of data such as [22]:

 Convolution

 Correlation

 Digital filtering

 Discrete transformation

 Modulation

In general, DSPs excel in two broad areas: data manipulation and mathematical calculation,

however, it is extremely difficult to design a device that is optimised for both. This is due to

hardware considerations, the size of the instruction set and how interrupts are handled [23].

The advantages of using a DSP are given in [22] as:

 The accuracy is guaranteed by the number of bits used

 Performance can be reproduced perfectly, since there are no variations due to

component tolerances

 The performance is not influenced by temperature or age

19

 Flexibility is enhanced since any modification in the system is done in software and not

in hardware

 A DSP has increased performance over analogue signal processing since a DSP can

perform functions not possible (or difficult) to perform with analogue signal processing

Since DSPs are digital components, the data used by the DSPs should be represented

digitally, i.e. by means of binary 0‘s and 1‘s. In general, two types of controllers and processors

exist: fixed-point and floating-point. The next section is dedicated to discussing the difference

between these two number formats. Please note that the subsequent section focuses on the

digital signal processing capabilities of either processors of controllers (as defined in section

2.1.2) and not on the physical hardware.

2.1.4 Fixed-point vs. floating-point

DSPs offer two main categories of processors: fixed-point and floating-point. This refers to the

numbering format used by the particular processor. The best way of describing fixed-point

processors are by means of an example: say for instance that a certain company

manufactures a 16-bit fixed-point processor. This implies that 2
16

 = 65,536 different bit patterns

can be used to represent a number (in general, an n-bit number gives 2
n
 different bit patterns).

The number can be represented in the following formats:

 Unsigned integer – This implies any positive integer from 0 to 65,535.

 Signed integer – Two‘s complement is used to represent an integer from 32,768 to

32,767.

 Unsigned fraction – The 65,536 different levels are spread between 0 and 1.

 Signed fraction – The 65,536 levels are spread between -1 and 1.

A positive integer value is normally represented by the numerical weight given to a bit position.

This can be seen in Figure 2-1 [24].

Figure 2-1: Numerical bit-weight for positive integer numbers

The value of the represented value is then given by the sum of the weights:

where b is the bit (0 or 1) in the k
th
 position of the bit string. For example, the binary number

1011012 is represented as depicted in Figure 2-2. It is then summed as:

20

Thus, 1011012 = 4510.

Figure 2-2: Example: 1011012 as an unsigned integer

A positive fraction is represented in the same way as mentioned above, but with the weights

changed as presented in Figure 2-3.

Figure 2-3: Numerical bit-weight for positive fractions

The represented value is then given by:

Figure 2-4 shows an example of a positive fraction: 0.0101102, which can be summed as

follows:

Figure 2-4: Example: 0.0101102 as an unsigned fraction

To represent the negative values of the two formats in signed notation, two‘s complement is

used. To understand this concept, it is first necessary to understand one‘s complement. The

one‘s complement of a binary number is obtained by replacing the 1‘s with 0‘s and vice versa

[25]. Take 45 for example. As discussed previously, it is represented by 1011102
.
 The one‘s

complement of 1011102 is 0100012. To obtain the two‘s complement, one (1) is added to the

one‘s complement. For example:

1011012 Number

0100102 One‘s complement

+ 12 Add one

0100112 Two‘s complement

21

The one‘s complement of 1011012 (as per example above) is 100102. Adding one (1) to this

number, two‘s complement is obtained as: 100102 + 1 = 100112, which is the two‘s

complement representation of 45, or -45.

A simplified method for obtaining the two‘s complement, is to copy the number from right to left

until the first one (1) is copied and then to take the one‘s complement of the rest of the binary

numbers [25]. If the first example of 1011012 is taken:

The same method could also be applied to obtain the negative of the signed fraction notation.

The two‘s complement method is also very useful when two numbers need to be subtracted.

This can be done by adding a two‘s complement of a number to another number to subtract.

These formats (signed/unsigned integer and fraction representations) are collectively called

fixed-point representations [24]. The representation of fixed-point numbers is limited to the bit-

capability of the processor. Floating-point processors, on the other hand, typically use a

minimum of 32-bits to represent a value. This implies that 2
32

 = 4,294,967,296 bit patterns can

be used to represent a value. The most important difference between a fixed and floating-point

processor are that in floating-point processors, the values are not uniformly spaced. The

ANSI/IEEE 754-1985 standard defines the finite positive and negative numbers furthest from

zero as and the positive and negative normalized numbers closest to zero as

. The represented numbers are unevenly spaced between these limits, whereas

the spacing between two integer-values is exactly one [23].

The encoding of floating-point numbers is more difficult than for fixed-point numbers. The basic

idea behind floating-point number representation is fundamentally the same as scientific

notation. In scientific notation, a number is represented as a mantissa multiplied by ten to the

power of an exponent. Take the speed of light (c) for example. The speed of light is given as

299,792,458 m/s. This can be written as: 2.99792458×10
8
, with 2.99792458 the mantissa and

8 the exponent. The fundamental difference between floating-point and scientific number

representation is that floating-point numbers are represented in binary notation in respect to

the decimal notation used in scientific notation. The ANSI/IEEE 754-1985 standard also

defines 32-bit floating-point numbers as single precision and 64-bit floating-point numbers as

double precision. For single precision numbers, the first 23 bits (bits 0 to 22) is used to

represent the mantissa, bits 23 to 30 represents the exponent and bit 31 represents the sign

(positive or negative) of the represented value [23]. This can be seen in Figure 2-5.

One‘s complement of rest of number

Number

0100112

Copy number until first 1 is copied

1011012

22

Figure 2-5: Single precision floating-point number representation

This can be converted into a floating-point number [23]:

with S = 0 to represent a positive number and S = 1 to represent a negative number. E is the

decimal value of the 8-bit exponent and M is the unsigned fraction represented by the 23-bit

mantissa. Since the only non-zero number in binary notation is 1, the leading digit of the

mantissa will always be 1 and does not need to be stored as an explicit bit. This improves

precision with one bit to 23 bits. The mantissa can thus be calculated as:

For double precision, the 64-bits are divided as follows: the first 52 bits (bits 0 to 51) are used

to represent the mantissa, bits 52 to 62 represent the exponent and the last bit, bit 63,

represent the sign bit. Double precision floating-point can represent extremely large and small

numbers. In some applications the resolution or range of single precision is not sufficient and

double precision numbers are then a viable alternative.

All floating-point DSPs have the capability to handle fixed-point as well as floating-point

numbers, since counters, loops and timers require fixed-point numbers. However, this does not

mean that a floating-point DSP can execute the fixed-point instructions as fast as floating-point

instructions, or vice versa. The execution time of a certain instruction, regardless of the number

representation, depends on the internal architecture of the DSP [23].

The question could arise that if a fixed-point processor can represent and manipulate integer

and fractional numbers, what are the advantages gained by using a floating-point processor?

The answer resides in the fact that floating-point processors have a higher precision, higher

dynamic range and a higher signal-to-noise ratio. The reason behind the higher sinal-to-noise

ratio is due to the spacing between two consecutive values. In a fixed-point processor, the

distance (or gap) between two values are exactly one, whereas the distance between two

values in a floating-point processor depends on the size of the numbers. The distance between

two large numbers, is large. The distance between two small numbers, is small. When a

number is stored, it is rounded up or down with a maximum of one half the gap size, thus

adding noise to the number. This occurrence is exactly the same when using fixed-point

values. The only difference being that the spacing between fixed-point values is larger [23].

23

Now that a basic idea of what controllers and processors are, how they work and how they

represent numbers is formulated, the next section focuses on the different types of controllers.

2.1.5 Controllers

The word ―controller‖ as used in this dissertation is defined in section 2.1.2. The selection of a

controller for realising the ADES is not limited to a single DSP, per se, and could also be a

combination of controllers, a field programmable gate array (FPGA) or any controller/processor

with the necessary processing power and DSP capabilities to perform the required functions of

the ADES. This section is dedicated to discussing the different types of controllers.

Digital signal processors (DSPs)

Section 2.1.3 discussed digital processor and digital processing in general and also gave a few

advantages of using digital data over analogue data. The focus of this section is on the

processors: the hardware, architecture, etc.

DSPs are manufactured by various companies. The two major companies in consideration

(due to their powerful range of DSPs) are Analog Devices (ADI) and Texas Instruments (TI).

The SharC™ and TigerSHARC™-ranges of DSPs are manufactured by ADI, whereas the

TMS-range is manufactured by TI.

SharC™

The SharC™-range is a 32-bit DSP from ADI and is based on the super Harvard architecture

(from there the name SharC™ – Super Harvard ARChitecture). It is ADI‘s DSP leader in

floating-point applications and offers high floating-point performance. The range also has

application-specific peripherals included on chip and specifically designed interfaces to reduce

cost. The SharC™ range of DSPs provides high-end DSPs which delivers up to 2.4 GFLOPS

(Giga floating-point operations per second) of processing power running at 400 MHz [26].

SharC™ processors are ideal for [26]:

 Home theatre audio systems

 Professional audio systems

 Automotive audio systems

 Industrial and instrumentation equipment

 Medical imaging

 Telephony

TigerSHARC™

The TigerSharC offers the industry‘s highest performance per watt per square inch of board

space [26], [27], [28] and is very effective in demanding signal and image processing

24

applications. The TigerSHARC™ is very effective in multi-processor systems due to its

patented link-port technology which provides effortless inter-processor communication

between two or more TigerSHARC™s.

The TigerSHARC™ is based on a 128-bit static superscalar architecture and offers native

support for both fixed and floating-point computations. It‘s high I/O bandwidth and high

processing power gives the TigerSHARC™ a high I/O bandwidth-to-processing ratio (BPR). A

BPR of 1 B/FLOP (byte per floating-point operation) implies a well balanced processor suitable

for real time applications. This means a processor is capable of moving 1 byte of data on or off

the chip for every floating-point operation it can perform. A BPR of significantly lower than one,

implies a processor more suitable for batch processing, whereas a BPR higher than one is

better suited for data movement. The ADSP-TS101S TigerSHARC™, for example, has a BPR

of 1, making it an effective processor in real-time applications [29].

TigerSHARC™s are ideal for [26]:

 Wireless infrastructure WiMAX (worldwide interoperability for microwave access)

applications.

 Floating-point, performance density related systems in both single and multiprocessor

systems.

 Medical imaging equipment (such as computed axial tomography or CAT scan,

ultrasound and magnetic resonance imaging (MRI)).

 Military equipment.

 Industrial and instrumentation equipment.

 Automated test equipment.

The TigerSHARC™ was awarded numerous titles and nominations including:

 The industry‘s highest DSP performance [30]

 Top floating-point benchmarking score [31]

 And two nominations for innovation of the year (2002 and 2003) [32], [33]

Although some of these awards and nominations are a bit old, the TigerSHARC™ is still one of

the best processors in the market.

Texas instrument processors

The TI range of controllers and processors has a lot to offer in terms of processing power, but

since it was decided that the main controller unit should be a floating-point processor (for more

information of the choice of processor, refer to Chapter 3), the TI range of DSPs was limited to

the TMS320C67x™ DSP series, since this is the only DSP from TI capable of floating-point

operations. This series are 32-bit DSPs with advanced very long instruction word (VLIW)

25

architecture. VLIW is an instruction consisting of various sub-instructions executed at once.

This series DSPs is also capable of executing eight 32-bit instructions per cycle (by means op

pipelining instructions) and has eight functional units and sixty-four 32-bit registers [34].

Applications for the TMS320C67x include [34]:

 Professional audio mixers

 Mixers

 Audio synthesis

 Instrument/amplifier modelling

 Audio conferencing and broadcast

 Biometrical and medical

 Digital imaging

 Speech recognition

 Voice-over packet

Field Programmable Gate Array (FPGA)

The sections above discussed off-the-shelf DSPs, i.e. processors bought from a supplier

capable of performing DSP instructions. Control of the ADES system can also be performed

using a field programmable gate array (FPGA). FPGA devices were introduced by Xilinx® in

the mid 1980s. FPGAs are silicon devices that can be programmed to be almost any kind of

digital system. The main difference between the DSPs discussed above and the FPGAs

discussed in this section, is that the DSPs of the previous section have fixed hardware

architectures, whereas the hardware architecture of an FPGA is described using a hardware

descriptive language (HDL) called VHDL. The ―V‖ in VHDL stands for another abbreviation:

VHSIC or very high speed integrated circuit, whereas the ―HDL‖ stands for ―hardware

descriptive language‖ as mentioned earlier [35], [36]. The basic internal architecture of an

FPGA can be seen in Figure 2-6 [37].

As can be seen, an FPGA consists of an array of programmable logic blocks (CLBs) as well as

some memory and multiplier blocks. The programmable logic blocks can be programmed to be

any type of logic (such as AND, OR, XOR, etc.). The different blocks are interconnected by a

programmable routing fabric (or switch matrices) which allows the blocks to be connected in

various ways. The I/O blocks in the figure are used to interface the FPGA to the outside world.

The basic internal architecture of a Xilinx

®
FPGA can be seen in Figure 2-7. As can be seen,

the internal architecture of a Xilinx
®
 FPGA is fundamentally the same as the FPGA architecture

seen in Figure 2-6. It also consists of a matrix of complex logic blocks connected using switch

matrices. The other components in the figure are explained below [38]:

26

 IOB – I/O banks

Modern FPGAs include several I/O standards. These I/O standards are grouped in

banks. Each bank is able to support different I/O standards.

 DCM – Digital clock management

DCM is used in most FPGAs to minimize skew and other issues with designing global

FPGA signals.

 SRAM – Static random access memory

The SRAM on the FPGAs are used to store interconnect (switch matrix) configuration

[36]. Since SRAM is volatile, this makes the FPGA volatile, although one-time

programmable (OTP) FPGAs, using flash, are available.

Figure 2-6: Basic FPGA internal architecture

27

Figure 2-7: Xilinx
®
 specific FPGA architecture [36], [38]

The CLBs are the most basic building blocks of any FPGA. The number and features of the

CLBs are device dependent and whereas a programmable logic device (PLD) uses AND gates

followed by OR gates, its operation is based on lookup tables (LUT) [36]. The switch matrices

(or programmable interconnects) are part of the CLBs. They have 4 or 6 inputs and contain

some selection circuitry, like multiplexers, and flip-flops. The switch matrices are modular and

can be configured for combinational logic, shift registers or additional RAM [38].

There are five reasons to use FPGAs in DSP applications and for signal processing [39]:

1. Ability to handle very high computational workloads

Due to the fact that FPGAs are capable of executing concurrent instructions, it is

possible for the sample rate to match the clock rate. It is thus possible to have

performance levels of up to 500 mega samples per second (MSPS). This is ideal for

fast single channel systems or multiple slower channel systems.

2. Reducing computation tasks

The computation intensive tasks can be offloaded from the DSP, which leaves more

cycles to implement other functions.

3. Power efficiency

FPGAs deliver lower power at higher sampling rates.

28

4. The architecture can be customized to suit the ideal algorithm

The configurability of the FPGA allows custom architectures to suit a specific

algorithm.

5. Reduce system cost

FPGAs allows for the integration of external components into a single FPGA. This

reduces the overall system costs. Examples include serial interfaces and PCI express

interfaces

Advanced Reduced Instruction Set Computer Machine (ARM)

As seen from the section heading, ARM is short for Advanced RISC machine, where RISC

stands for reduced instruction set. Prior to becoming Advanced RISC machine, ARM was

known as Acorn RISC machine. ARM processors are 32-bit RISC processors developed by

ARM Limited. Advanced RISC machine Ltd. was founded in 1990 and is owned by Acorn,

Apple Computers
®
 and VLSI Technology [40]. ARM processors is one of the most licensed and

widespread processors in the world [40] and is used in more than 90% of the mobile phone

market [41].

Some features of the ARM architecture are [40]:

 It has 37 pieces of 32-bit registers.

 Have three pipelines for pipelining instructions.

 Have a Von Neumann-type bus structure in the ARM7 processors and Harvard

architecture in the ARM9 processors.

 8/16/32-bit data types.

 7 modes of operation:

 User - Normal program execution state

 Fast interrupt request (FIQ) - Data transfer state (DMA-type transfer)

 Interrupt request (IRQ) - Used for general interrupt services

 Supervisor - Protected mode for operating system support

 Abort mode - Selected when data or instruction fetch is aborted

 System - Operating system ‗privilege‘-mode for user

 Undefined - Selected when undefined instruction is fetched

 It has a simple structure, with reasonable good speed, power and compression ratio.

PowerPC

The PowerPC alliance started in September 1991 when IBM
®
, Apple Computers

®
 and

Motorola
®
 (conjointly known as AIM) announced an alliance to develop emerging technologies

[42]:

29

 Object orientated technology

 Multimedia technology

 Interconnectivity and networking

 Open systems environment

 Microprocessor technology

IBM
®
 and Motorola

®
 (now Freescale Semiconductor

®
) agreed to develop a family of

microprocessors based on IBM
®
‘s POWER™ (which is an acronym for: Performance

Optimization with Enhanced RISC) architecture. The new family of microprocessors was

dubbed the PowerPC (POWER performance computing/chip). The PowerPC processors are

based on the PowerPC architecture which is a RISC architecture optimized for diverse

computing requirements [42].

The PowerPC architecture defines the following [43]:

 Separate 32-entry registers for integer and floating-point instructions

 Instructions for data movement between the memory system and general purpose

registers (GPRs), which holds the data for the integer arithmetic, and floating-point

registers (FPRs), which holds the arithmetic for floating-point instructions

 Uniform-length instructions to simplify instruction pipelining and parallel processing

instruction dispatch mechanisms

 A precise interrupt model

 Floating-point support (including IEEE-754 floating-point operations)

 Single and double precision floating-point capabilities

 A flexible architecture which allows certain feature to be performed in either hardware

or software (with the help of implementation-specific software)

 User-level instructions for storing, retrieving and validating data in the on-chip caches

 Little- and big-endian addressing support

 Harvard architecture and unified cache support

The PowerPC architecture is so modular; PowerPC hardware cores are also included in some

FPGAs as an embedded processor to add additional functionality. It is also possible to install

an embedded or real-time operating system onto a PowerPC processor [44].

Off the shelf solutions

The preceding sections covered the various DSP processors in consideration for the ADES

project. Another possibility for realizing the main controller unit is by purchasing a commercial

off-the-shelf (COTS) component. Various options exist and this section discusses these

options.

30

PC/104

As modern-day applications get more computational intensive, the personal computer (PC)

became more involved than just for desktop applications. By standardizing desktop computer

technology for embedded applications, the development time and cost can be reduced. Since

standardized software and hardware are widely available for the PC architecture, even more

advantage is gained by using the PC architecture [45].

For the abovementioned reasons, more and more companies tried to reap the benefits of the

PC architecture. The main disadvantage of the PC architecture is the bulky backbone

necessary for most PC form factors. The solution to this disadvantage was to design a PC

directly into the product. This in turn had another disadvantage. By designing a PC, chip-by-

chip, into a product borders on the concept of ―reinventing the wheel‖. Management therefore

tries to outsource as many components as possible to reduce time and cost of development

[45].

A need therefore arose for a more compact form factor for the PC bus. This need should be

realised without sacrificing any of the advantages in using the PC architecture. The PC/104

was developed to address this need. It offers full compatibility with the PC architecture, but in a

more compact form factor. The issue of a bulky backbone was addressed by producing

stackable modules which ―piggy back‖ on one another instead of slotting into a backbone [46].

The PC/104 form factor has produced sub-form factors such as PC/104-Plus, PCI-104,

PCI/104-Express, EBX, EPIC and EPIC-Express to address the need of more PC

architectures. PC/104 cards exist with DSP-processors and/or FPGAs incorporated onto the

board, all of which runs on a standardized PC-bus. This makes the PC/104 a viable option.

Figure 2-8 illustrates PC/104 modules stacking on top of one-another [47].

Figure 2-8: Horizontally stacked PC/104 modules

31

PMC DSP module

The peripheral component interconnect (PCI) is a high speed local bus. It is used by a large

variety of processors for communication between components. This communication normally

takes place over a backbone. The PCI specification defines a 106.68mm by 312.42mm board

that slots perpendicularly into a motherboard [48]. The disadvantage of this method is that

these perpendicular boards are not usable in low profile computer applications. Figure 2-9

displays the PCI slots on the motherboard of a desktop PC.

Figure 2-9: PCI slots on a PC motherboard

A slim, modular, parallel mezzanine card was created as a more compact solution to the

perpendicular boards where slim, parallel board mounting is required, such as in a single board

computer (SBC) solution. These mezzanine cards use the logical and electrical layers of the

PCI local bus and are called a PCI mezzanine cards or PMCs. When compared to Figure 2-9,

a PMC would slot into similar slot (only smaller) but whereas a traditional PCI card is

perpendicular to the motherboard, a PMC is parallel to the board hosting the PMC slot.

An adaptation of the PCI standard, CompactPCI (cPCI), is an industrial version of the PCI

standard. It offers a more robust mechanical form factor than PCI and is optimized to function

in a more rugged environment [48]. Electrically it utilizes the same standard as PCI and is

therefore compatible with the PCI standard.

Just as with the PC/104 form factor, PMCs are available in DSP and/or FPGA modules.

32

2.1.6 Design considerations

This section discusses the design considerations. The options for realizing the main controller

unit of the ADES discussed in the preceding sections should be evaluated against the design

considerations in this section to ensure that best possible solution is chosen.

Processor selection

An embedded system is a system targeted at performing a specific task on a specific platform.

This limits the tasks of the processor in the embedded system to a specific range. If a correct

processor or controller is chosen, it will be possible to optimize the system to perform its

specified task(s) efficiently. Although the selection of a controller is a daunting task due to the

sheer amount of controllers and processors in the marketplace, the final selection must pass

four critical tests [49]:

1. Is it available in a suitable implementation?

2. Is it capable of sufficient performance?

3. Is it supported by a suitable operating system?

4. Is it supported by appropriate and adequate tools?

Each of these tests will now be discussed.

1. In some cases, a commercial system is available with enough processing power to

perform the necessary functions and/or calculations of the project. This could reduce

the cost of the final system since the hardware development of a system can be very

high, thus forcing the choice of a COTS system.

2. This could possibly be the most important test a controller or processor should pass. If

a controller is not capable of sufficient performance, there is absolutely no need to

purchase such a controller. A controller should be able to execute a process in

sufficient time not to inhibit the rest of the system performance. A real-time system

should have a controller capable of performing tasks in real-time and a bulk processor

should be capable of performing calculations in sufficient time on the bulk of data it

receives. As embedded systems become more and more complex, it becomes more

difficult to define the tasks a controller should perform and it becomes more difficult to

perform the task on time. These tasks could create bottlenecks which limits

performance. These tasks should thus be managed and a controller with a internal

architecture should be chosen to minimize these bottlenecks.

3. Most of today‘s microprocessors can be equipped witch real-time operating systems

(RTOS) which can be used to simplify the scheduling of real-time tasks. It is easy to

see that the use of a RTOS can have obvious advantages. An RTOS can be come

kind of Linux, a real-time Linux, third party real-time operating system (OS), or a

33

vendor created OS. Examples of RTOSs are QNX, RTLinux, VxWorks and Windows

CE.

An RTOS can give added advantages in the system. The decision to use an RTOS, or

not, as well as which RTOS to use is not a simple decision. Deciding to use an RTOS

can induce a steep learning curve to learn the RTOS. This, together with the initial

complexity of the system, can induce unnecessary complexity in the system.

Although RTOSs are mostly used in PowerPC architectures, it can also be used in a

SBC solution instead of a full operating system. RTOSs can be used where scheduling

of tasks are needed, where speed is of the essence and where hardware

specifications are limited.

4. The quality and availability of a vendor‘s tools can determine the success of a project.

The types of tools needed for a specific project is also dependent on the type of

project. The minimum tools required for a software/firmware project are a good

compiler and good debugging support. Emulators and simulators might also be

needed.

Although these tests are a good indication on what to look for in selecting a processor, the

optimal fit to these criteria is not necessarily the best selection. The final decision in controller

also depends on the cost of the project, the time-to-market, reliability and previous experience.

Co-processing

One of the main considerations when selecting a controller is future expandability. It should

always be kept in mind that the end product might need expansions in the future. What

happens when the selected controller is unable to cope with the expansions? The first way

around this problem is to increase the clock speed. This will allow the processor to execute

instructions and calculations faster, but what happens when the maximum clock rate is

reached? The next option is to replace the controller with a faster one, should one be available

in the same architecture, size and socket.

Another option is to add another processor/controller. This implies additional or redesign of the

hardware to accommodate the additional controller/processor. This adds additional cost to the

project and will require software re-design since the original software was designed and

developed for single controller architecture. Even when a multi-core processor is used to

improve or expand performance, the code will still have to be re-designed to function on

multiple cores in order to obtain additional performance.

Another problem could be that the selected controller is limited to certain functionality. A DSP

is mostly limited to signal processing, has limited parallel processing capability and is limited in

terms of functions such as timers, analogue to digital converters (ADCs), pulse width

34

modulation (PWM) etc. What happens if a certain function is required which the DSP is unable

to perform?

A way to circumvent these problems is to use an FPGA as a co-processor to the DSP [50].

This allows the FPGA to act as an extension to the DSP. Since FPGA are capable of parallel

processing it adds extreme processing power to the DSP. The advantage of this approach

above the multi-processor or multi-core processor is that there is no need to re-design the

code to function on multiple cores. It is only necessary to transfer a certain part of the code to

the FPGA for execution since the FPGA accepts the code as-is [50].

This architectural setup also increases the modularity of the system due to the fact that an

FPGA is a versatile, configurable device. Whereas the DSP is limited to certain functionality,

the FPGA can be programmed to perform virtually any function.

Benchmarking

What is a benchmark? According to Weiss [51], ―benchmarking is a method of measuring

performance against a standard, or given set of standards.‖ He also states that these

―standards‖ originate over time or is purposely developed for a specific application.

Benchmarking a controller or processor, or even when just comparing two controllers,

proposes a few issues. For many engineers and scientists, benchmarking is synonymous with

million instructions per second (MIPS), Dhrystones and Whetstones. As more and more

floating-point and complex processors saw the light of day, benchmarks such as floating-point

operations per second (FLOPS) and multiply accumulation cycles per second (MACS) were

created. This section is dedicated to discussing the various different benchmarks available for

processors.

Million Instructions per Second (MIPS)

If a processor (A) benchmarks against another processor (B) and processor A benchmarks at

2 MIPS while processor B benchmarks at half the MIPS of A, it can be considered that

processor A is a better choice than processor B because it is twice as fast as processor B. This

assumption is not necessarily true, unless both processors have the same internal

architecture.

The term ―MIPS‖ was originally defined in terms of the VAX 11/780 minicomputer. The VAX

was a range of computers released in the 70‘s, and the VAX 11/780 minicomputer was the first

machine that could run one million fixed-point instructions per second. This minicomputer was

thus defined as a 1 MIPS machine [49]. The instructions used in these machines were one-

dimensional metrics and had no reference to the internal architectures of the different VAX

machines.

35

The MIPS benchmark is used today as an indication to how many times faster a certain

processor or controller can execute fixed-point instructions than the original VAX machine. A

processor with a benchmark of 1800 MIPS implies that the processor is 1800 times faster than

the original VAX machine. This, however, is in the ideal case in a specific setup. Modern

benchmarking techniques are optimized to reach extremely high MIPS (or FLOPS etc. as

discussed later). This could either be done by benchmarking the processor executing simple

instructions or by benchmarking the processor while it executes instructions its internal

architecture was optimized to do.

The problem with this approach of benchmarking is that the ideal case does not apply to real

world applications. Another aspect to consider is that RISC (reduced instruction set computer)

and CISC (complex instruction set computer) machines differ in the way they execute

instructions. So, although MIPS are a good indication of the processing speed of a

controller/processor, unless two VAX computers are compared, MIPS is not a good choice of

benchmark.

Dhrystones and Whetstones

The Dhrystone benchmark was created to overcome the shortcomings of the MIPS

benchmark. It is based on a simple C-program that, when compiled, is about 2000 lines of

assembly code. The 1 MIPS VAX 11/70 machine discussed previously was benchmarked

using the Dhrystone and it was determined that the VAX machine could execute 1757 loops in

one second. 1757 thus became 1 Dhrystone [49].

Since Dhrystones is a benchmark for fixed-point processors and controllers, the name

―Dhrystone‖ was chosen as a parody to the floating-point benchmark of that time called the

Whetstone (originally developed in Whetstone, Leicestershire in England). The current version

on Dhrystone is version 2.1, which was developed in 1988 [51].

The problem with the Dhrystone benchmark is that it does not take into account the following

[51]:

 RISC computing

 Availability of sophisticated floating-point processor units inside processors

 Single instruction, multiple data (SIMD) vector processors inside the main processor

 Superscalar RISC designs (multiple execution inside a single processor)

 Very long instruction word (VLIW) processors

 Optimizing controllers

 Large memory subsystems, including processors and subsystems with level 1, 2 and 3

(L1, L2 and L3 respectively) caches

36

 RTOS with sophisticated application programming interfaces (APIs), transmission

control protocol/internet protocol (TCP/IP) functionality and graphical user interfaces

(GUIs)

 Graphics, multimedia and communication-intensive applications

The same applies to the Dhrystone (and Whetstone) benchmarks as with MIPS: it is possible

for a good programmer to optimize code to blast through the code, reaching a high Dhrystone

(or Whetstone) benchmark, which in real-world applications will never be reached. The

shortcomings of these Benchmarks are thus evident and another, better way of determining

the performance of a processor or controller should be found.

EDN Embedded Microprocessor Benchmark Consortium (EEMBC)

To address the short-comings of the previously discussed benchmarks, the EDN Embedded

Microprocessor Benchmark Consortium, or EEMBC
3
 was founded. The difference between the

EEMBC benchmark and the benchmarks discussed previously is that the EEMBC is based on

industry-specific tests. These tests are divided into specific suites such as [49]:

1. Automotive/Industrial

2. Consumer

3. Networking

4. Office Automation

5. Telecommunications

As already mentioned, each of these suites is subdivided into numerous tests relevant to the

application. For example, the automotive/industrial suite is divided into:

 Angle-to-time conversion

 Basic floating-point

 Bit manipulation

 Inverse discrete cosine transform

 Inverse Fast-Fourier transform (FFT) filter

 Matrix arithmetic

 Cache buster

 Pointer chasing

 Control access network (CAN) remote data request

 PWM modulation

 FFT

 Road speed calculation

 Finite impulse response (FIR) filter

3
 Pronounced ―embassy‖

37

 Table lookup and interpolation

 Tooth-to-spark calculation

The EEMBC benchmark uses statistics on the number of times per second the algorithm

executes and the size of the compiled code and since the compiler used can optimize code to

be executed – which could influence the benchmark, each suite of the EEMBC benchmark

contains information on the compiler used.

The main disadvantage of using the EEMBC benchmark is that each suite should be

purchased per application and most manufactures of processors and controllers see this as an

unnecessary expense. The result is that the EEMBC benchmark for most of the processors in

consideration is unavailable, making EEMBC an inefficient parameter for comparing controllers

or processors.

Multiply Accumulate Cycles per Second (MACS)

Although MACS are not a benchmark in the true sense of the word, MACS are normally used

in conjunction with another benchmark (mostly MIPS or FLOPS) to indicate the number of

accumulation and multiplication cycles a processor or controller can execute in one second.

Since DSP operations mostly contain multiplication followed by a summation, most processors

and controllers capable of DSP operations contain MAC units. These MAC units are capable of

performing a certain amount of multiplications and additions in one cycle. The more cycles the

processor or controller can execute in one second, the higher the MACS. A MAC instruction is

given by the following equation:

Floating-point operations per second (FLOPS)

FLOPS are equivalent to MIPS, but whereas MIPS are mostly used to measure the

performance of a fixed-point processor or controller, FLOPS are used to measure the

performance of a floating-point processor or controller. For the same reasons as MIPS, FLOPS

are also an ineffective method of determining the performance of a processor or controller.

Operations per second (OPS)

An operation per second, or OPS, is simply an indication of the number of operations a

processor can execute in a second. These operations could either be fixed or floating-point

operations. Just as with MIPS and FLOPS, this benchmark is dependent on the internal

architecture of the specific controller/processor and does not give an accurate measure to

compare controllers/processors.

38

Berkeley design technology, Inc (BDTI)

Berkeley design technology, Inc. (BDTI) is a company founded in 1991 and provides resources

for [52]:

 Independent benchmarking and competitive analysis

 Advice on creating credible, compelling marketing

 Guidance for confident technology and business decisions

 Expert product development advice

 Seminars and publications on technologies and trends

BDTI realized the shortcomings of other benchmarking techniques and created the

BDTImark™ benchmarking technique in 1997. The BDTImark™ is a composite signal

processing speed metric based on BDTI‘s suite of signal processing algorithm kernel

benchmarks called the BDTI Benchmarks™ [53]. This suite as well as the BDTImark™ was

updated in 1999 to better reflect more modern signal processing applications. The updated

BDTImark™ was called the BDTImark2000™. For a list on the functions included by the

BDTImark™ (and the BDTImark2000™) refer to Table A-1 in the Appendix.

Most of BDTI‘s benchmarking scores are verified on actual silicon chips, but in the cases

where it is not feasible or possible to verify the scores on actual silicon, they have created the

BDTIsimMark2000™. This is equivalent to the BDTImark2000™, but is only verified in

simulation. Care should be taken when comparing the BDTIsimMark2000™ to the

BDTImark2000™ since the speed on the actual silicon may vary and depends on the

fabrication of the chip.

The BDTI benchmarking technique has a few limitations [53]:

 The BDTImark2000™ is a composite metric based on different signal processing

algorithms. It is thus only an indication of signal processing speed and not for a

specific application

 A processors aptitude for a specific application (such as co-processing) is not taken

into consideration by the BDTImark2000™

 The BDTImark2000™ is only an indication of signal processing. Other factors such as

power consumption, price and on-chip integration are not taken into consideration

 It is based on a processors native arithmetic format. Fixed-point processors should

thus be compared to fixed-point processors and vice versa

Despite the limitations of the BDTImark2000™, many companies have adopted the

BDTImark2000™ as another method of benchmarking their processors and/or controllers.

39

Refer to Figure A-1: BDTI speed per dollar ratios for floating-point processors and Figure A-2

in the Appendix for the BDTImark2000™ of the TigerSHARC™ and TMS320C67x.

For instance, the BDTImark2000 for the TigerSHARC™ and TMS320C67x is available at [28].

More specific BDTImark2000™ tests and scores are also available should the developing

companies feel the need to benchmark their processors and controllers in other areas as well

(refer toFigure A-3 in the Appendix for an example how speed per millwatt is benchmarked).

2.2 Active magnetic bearing control

Since control of an active magnetic bearing (AMB) constitutes a major part of this project, this

section is dedicated to discussing control of an AMB.

Figure 2-10 shows a control diagram for a one degree of freedom (DOF) AMB [55]. A sensor

measures the position of the rotor between the AMBs. This position value is converted into a

current value which is subtracted from a reference value. This reference value is the required

position of the rotor and the difference between the reference and actual value gives an error

value. This is the value used by the main controller in a position control algorithm to determine

the current reference (iref). This current reference is then sent to the two power amplifiers which

convert the current reference into a pulse width modulation (PWM) signal to drive the

electromagnetic actuators.

The position control algorithm typically used in AMB control is proportional plus integral plus

derivative (PID) control. The subsequent section is dedicated to discussing PID control.

Figure 2-10: Control diagram for the suspension of a rotor in one degree of freedom

40

2.2.1 PID controllers

The block diagram of a discrete (thus digital) PID controller can be seen in Figure 2-11. The

transfer function of a PID controller is [56]:

 I
P D

K
D w K K w

w
 (2.1)

with KP the gain in the proportional path, KI the gain in the integral path and KD the gain in the

derivative path.

Figure 2-11: Discrete PID controller block diagram

Since ω is a function of frequency, it is easy to see that the gain of the PID controller increases

as frequency increase and is thus not practical. To circumvent this problem, a pole, or poles,

must be added to the derivative term. This results in the following transfer function [56]:

(1)
ω

I D
P

wpi

K K w
D w K

ww
 (2.2)

with ωwpi the pole added at a certain frequency. The norm, however, is only to add a single

pole, thus giving:

(1)
ω

I D
P

wp

K K w
D w K

ww
 (2.3)

with ωwp (the pole) chosen at:

ω2

ω s
wp

T
 (2.4)

with T the sampling interval and , or the sampling frequency. This pole is chosen out of

the system bandwidth and will have no effect on the system response.

A practical PID transfer function can then be obtained by transforming equation (2.3) to the z-

plane. The resulting equation is then:

41

1 1

2 1
P I D

T z z
D w K K K

z Tz
 (2.5)

The first practical method of employing a digital PID controller is by using numerical integration

and differentiation.

Equation (2.3) can also be written as a second order transfer function (2.6) and be

implemented using several second order implementation methods [56]. One method is shown

in Figure 2-12 [56].

1 2

1

2

2 2

1 1

I D I D D
P P

K T K K T K K
K K z z

T T T

z
 (2.6)

Figure 2-12: PID controller

2.3 Digital filters

Since digital filters will play a major role in this project, it was deemed necessary to discuss

digital filter concepts.

According to [22], ―a filter is essentially a system or network that selectively changes the wave

shape, amplitude-frequency and/or phase-frequency characteristics of a signal in a desired

manner‖. The changing of signal characteristics could either be to improve quality, to reduce

the noise, to remove a certain frequency (or frequencies) or to extract certain information from

the signal. Whereas analogue filters normally consists of active components (such as

operational amplifiers (op-amps)), or passive components (such as resistors, capacitors and/or

42

inductors), digital filters are mathematical algorithms implemented in either hardware and/or

software. These digital filters receive a digital signal and produce a filtered digital output.

Digital filters have the following advantages [22]:

 Digital filters have certain characteristics which are not possible with analogue filters

 The performance of digital filters does not vary with environmental changes

 The response of digital filters can easily be adjusted if the filter is implemented in

software

 A single digital filter can take multiple inputs and can be used to filter several signals

without replacing hardware

 Filtered and unfiltered data can be saved for future use

 Advances in very-large-scale integration (VLSI) can be used to create small, low

power, cheap filters

 High precision is achievable

 Digital filters have repeatable performance

 Can be used at low frequencies

Digital filters also have certain disadvantages [22]:

 There is a limitation on the speed digital filters can handle. The maximum bandwidth

digital filters can handle is lower than that of analogue filters. The speed of the digital

filter is limited by the ADC and DAC speed as well as the processing speed of the

microcontroller/-processor.

 Quantization of a continuous signal induces noise. Digital filters are subject to this

noise.

 The design and development time of a digital filter can be longer than that of an

analogue filter.

Two types of digital filters exist [22]: finite impulse response (FIR) and infinite impulse

response (IIR). Each of these filters is a product of their respective impulse response

sequence. This is depicted in Figure 2-13.

Figure 2-13: Conceptual representation of a digital filter

The output of the digital filter is a convolution sum. This can be seen from the following

equations [22]:

43

0

()
k

y n h k x n k (2.7)

1

0

()
N

k

y n h k x n k (2.8)

Equation (2.7) represents the IIR filter and (2.8) represents the FIR filter, with h(k) as defined in

Figure 2-13. As can be seen, the IIR filter‘s response is calculated until infinity. In practice,

however, this is unfeasible. Instead, the IIR filter‘s response is rather calculated in recursive

form [22]:

0 0 1

() ()
N M

k k

k k k

y n h k x n k b x n k a y n k (2.9)

where ak and bk are the IIR filter coefficients. These values, together with h(k), are essential

parameters in digital filter design.

Another crucial difference between IIR and FIR filters is IIR filters (according to (2.9)) are a

function of previous outputs as well as present and past inputs, whereas the output sample of

FIR filters (according to (2.7)) are only a function of present and past input values.

The choice between an FIR and IIR depends on [22]:

 FIR filters are capable of having an exact linear phase response

 FIR filters are more stable since they are realized non-recursively

 Round-off noise and coefficient quantization errors are reduced when a limited number

of bits are used to implement a filter such as in a FIR filter

 FIR filters require more coefficients than IIR to achieve a sharp cut-off

 Unlike FIR filters, IIR filters have an analogue counterpart which makes it easy to

transform analogue filters into equivalent IIR filters

 It is simple to synthesize filters of arbitrary response with FIR filters

 FIR filters are algebraically more difficult to synthesize without computer aided design

(CAD) tools

2.4 Object orientated embedded C

One of the key aspects of good software engineering is the ability to write robust, reusable

code which can easily be reproduced [57], [58]. In an object-orientated environment such as

C++, objects are represented as classes. These classes consist of attributes and behaviours

which make part of the function‘s variables and methods. Object-orientated programming for

embedded systems is limited by intensive platform dependent hardware as well as real-time

specifications. This is due to the fact that the most popular programming language for

44

embedded systems, C, is not inherently object-orientated, regularly rely on global variables

and lacks classes and inheritance [57].

Neser proposes an object-orientated approach to ANS-C in [57], which can be followed for

real-time embedded applications. By using this approach in this project, the code will be made

reusable throughout the development process. Another key feature of using this approach is

maintainability and modularity of the code, since future improvement and expansion of the

code is imminent.

An object consists of data in a set of member variables and methods, which is relevant of the

data. Although objects and classes are not part of the C programming language, this

functionality can be emulated by using structures and methods could be emulated by using

function pointers. Classes in C are thus defined as structures with all their member variables

and function pointers to all their methods. Each class definition and declaration is done in their

own respective header and C-files, named according to the class name.

As an example, the following example of a class in C is given:

2.5 Critical evaluation of literature

The literature survey done was to get a general overview on the discussed subjects. Although

most of the microcontrollers and microprocessors discussed in section 2.1.1 and 2.1.2 are

predominately used in personal computers (PCs), it is invaluable to understanding the

concepts ―microcontroller‖ and ―microprocessor‖. The aim of this dissertation is to select an

embedded controller for an AMB and drive electronics system; thus implying an embedded unit

to perform control. This control can be performed using a microcontroller and/or

// Example: Class in C

#include ―predef.h‖

#ifndef example_h
#define example_h

typedef struct
{
 Int IntVariable ;
 float FloatVariable ;
}

#endif

Figure 2-14: Example: Embedded C-class

45

microprocessor. Since the line between microcontrollers and microprocessors are fading as

more and more processors are acquiring functions normally included in microcontrollers and

microcontrollers are becoming increasingly more powerful, it was necessary to define the

terms ―controller‖ and ―processor‖ from the literature; a ―microcontroller‖ is a device that

performs control, whereas a ―microprocessor‖ is a device that performs processing.

A wide variety of processors and controllers were discussed in this chapter. In general, it can

be divided into two sections: standalone and as part of an off-the-shelf system. It was also

investigated as such, since the off-the-shelf systems contain the standalone controllers

investigated. The standalone controllers investigated are all under consideration for realizing

the main controller unit of the ADES. According to specification, the selected controller should

be capable of performing floating-point calculations, thus all the controllers considered are

capable of floating–point number representation.

The digital signal processors (DSPs) investigated are the SharC™ and TigerSHARC™ DSPs

from Analog Devices
®
, as well the TMS320C67x-range DSPs from Texas Instruments

®
. The

SharC™-range contain a variety of DSPs ranging from entry-level to high-end. The

TigerSHARC™-processors are the most powerful processors in the SharC™-range. The TMS-

range from TI
®
 includes microcontrollers and microprocessors ranging from entry-level to high-

end and even multimedia-processors. The reason why the TMS320C67x-range is considered

is due to their floating-point capability.

Floating-point number representation is important due to the higher resolution obtained when

using floating-point calculations. A higher resolution will lead to better control of the system.

Even though a good resolution can be obtained using fixed-point number representation by

scaling the floating-point number to retain the decimal numbers, it adds unnecessary

complexity to the system. A floating-point processor is also capable of handling true floating-

point numbers and calculations. In a fixed-point processor, this process should either be

emulated, or the floating-point number should be interpreted as two fixed-point values. This

also adds unnecessary complexity and overhead, which inhibits the performance of the

processor.

It was mentioned that a processor should pass the following tests in order to determine the

best controller for the main controller unit:

1. Is it available in a suitable implementation?

Two implementation options are available: designing a main controller in-house using

the best controller from the options listed in this chapter, or as an off-the-shelf

component in PC/104 or cPCI form factor.

46

2. Is it capable of sufficient performance?

Quantifying ―sufficient performance‖ is difficult. As mentioned, performance of a

microcontroller or microprocessor not only depends on the number of MIPS, MACS,

FLOPS etc., it also depends on the internal architecture of the integrated circuit (IC),

the application in which it is used and the instructions executed. An efficient processor

must be selected for the ADES control. Due to the sheer complexity of benchmarking a

controller or processor and even knowing beforehand how powerful a processor is, it is

important to know how the different developers benchmark their product. Developers

can give processor/controller performance in MIPS, FLOPS, MACS, DMIPS, OPS or

BDTI mark. These concepts were discussed in this chapter to better understand these

concepts.

3. It is supported by a suitable operating system?

Some processors discussed in this chapter are capable of handling an operating

system. This might lead to an advantage in certain architectures. This should be kept

in mind when a processor is selected.

4. Is it supported by appropriate and adequate tools?

Although this is not the most important factor in selecting a processor, the adequacy

(or lack there-of) can have an enormous influence on the development time, difficulty

and success of the system.

After determining the most suitable controller for controlling the ADES, the control should be

implemented on the selected controller. This includes the filter(s) to remove noise from the

control-band as well as the PID control. All the components in the control loop will be

implemented digitally. Object orientated embedded C will provide a robust and reusable

implementation of the ADES control. The aim of the ADES is to develop a system to be used in

an industrial environment. Robustness of the written code is thus of great importance. It might

also be necessary to improve or expand the written code. The object orientated approach will

ensure efficient hand-over of the code to another programmer.

Now that the literature essential for the completion of this dissertation was discussed, focus

can now be shifted to selecting a sufficient controller.

47

CHAPTER 3

Controller hardware selection

This chapter discusses the process of selecting a suitable controller based on the

requirements of the ADES. The chapter therefore starts off by first giving an overview of the

general ADES system and then continues by giving the requirements of the main controller

unit. The focus is then shifted to the process of assigning functions to the main controller unit

and then to the selection process.

3.1 System specification

As stated, the main controller unit‘s specification is related to the ADES system specification,

therefore, a quick system specification of the ADES is given. The complete ADES system

requirement specification is available on the data disc. Refer to Appendix F for the location of

the file.

3.1.1 ADE system introduction

As discussed in chapter 1, the primary intent of the ADES is to replace the dSPACE
®
 system

(seen in Figure 1-3) with a compact, reliable and low cost system which is on an industrial

standard. The proposed system is shown yet again in Figure 3-1 for clarity.

Figure 3-1: Proposed system

48

Although the ADES comprises of individual sub-components, the focus of this dissertation is on

the main controller unit seen in Figure 1-5. The ADES with its functional units are shown in

Figure 3-2.

Figure 3-2: Functional units of the ADES

3.1.2 Embedded controller system specification

As given and discussed in the system requirement specification, the main controller unit should

be capable of performing the following functions:

 Controlling the AMBs (F1.1)

o Calculate control response (F1.1.2)

 Monitoring system (F1.3)

o Run self-diagnostic test (F1.3.1)

o Monitor conditions (F1.3.2)

o Sensitivity analysis (F1.3.3)

 Communicate (F1.4)

o Transmit (F1.4.1)

o Receive (F1.4.2)

Each of these functions will now be discussed:

49

Controlling the AMBs

The primary function of the main controller unit is controlling the AMBs. As seen in Figure 2-10,

the AMBs are controlled by means of a current reference generated by a position control

algorithm. It was decided that the position control algorithm for this project is PID control.

Two options exist for implementing the control diagram: closing the current and position control

loops on the main controller unit, or moving the current loop to the power amplifiers. The

second option of implementation was selected, since this will improve communication speed

due to less data needed to be transferred between components. Figure 2-10 can be divided

into three sections, seen in Figure 3-3:

1. Main controller section - which is responsible for generating the current reference by

means of the PID algorithm

2. Power Amplifier 1 section - receives the current reference and generates a pulse width

modulation (PWM) signal by using a proportional-integral (PI) control algorithm

3. Power Amplifier 2 section – which inherently performs the same functionality as power

amplifier 1, only in the opposite direction

Figure 3-3: Control diagram divided into three sections

Monitoring the system

The main controller should be capable of monitoring the system. This implies performing a self-

diagnostic test at start-up, performing condition monitoring and performing a sensitivity

analysis at rotor standstill and at nominal speed. Although complex condition monitoring, such

as monitoring by means of a neural network or statistical analysis, is out of scope for this

dissertation, the selected controller should be capable of general condition monitoring. General

50

condition monitoring includes monitoring the data sent and received and ensuring it is valid,

logging data and/or displaying data on a user interface.

Communicate

High speed, reliable communication is required between the different components of the

ADES. Despite the fact that a designated communication unit is responsible for the

communication between the ADES components, the main controller unit should still be capable

of receiving and interpreting data. It might also be necessary for inter-processor

communication, should a processor and a co-processor be chosen as the main controller unit.

3.1.3 Specified ADES system states

Another important specification of the system is the states in which the system can reside. This

is due to the fact that the system states influence the possible states of the main controller unit.

The specified state diagram can be seen in

Figure 3-4. The transitions to and from each stage is also indicated in the figure. A brief

description of each state is given:

1. Power down

In this mode the ADES is disconnected from the power supply and the controller is non-

operational. The interrogation signal used in the sensitivity analysis is disabled and the

motor speed is zero. Physical maintenance, such as replacements, may be performed in

this state.

2. Standby

The ADES is connected to the power supply and the controller is operational. The AMBs,

however, are non-operational and both the interrogation and control signals are disabled.

The motor speed is still zero.

3. Programming

The power supply is on and the controller is in a configuration state where the firmware

may be upgraded or altered. The AMBs are non-operational and the interrogation and

control signals are disabled.

4. AMBs operational

The power supply is on and the controller is operational. The AMBs are operational which

implies that the rotor is levitated. The interrogation signal is disabled and motor speed is

zero.

51

5. Sensitivity analysis at standstill

This state flows from the previous state where both the controller and AMBs are

operational. The interrogation signal is enabled and the sensitivity analysis is performed

according to the ISO 14839 standard.

6. Normal operation

In this mode the power supply is on, the AMBs are operational and the interrogation signal

is disabled. The motor is running at nominal speed.

7. Sensitivity analysis at nominal speed

This mode is used to perform sensitivity analysis on the system while the system is

operational. This implies that the AMBs are operational and the motor is running at

nominal speed.

8. Maintenance

Although this state is not included in Figure 3-4, a maintenance state is required to allow the

user to perform maintenance on the system.

Power down (1)

Standby (2)

AMBs operational (4)

Normal operation (6)

Programming (3)

Sensitivity (5a)

(standstill)

Sensitivity (5b)

(Nominal speed)

AMB failure

E-stop/

Motor failure

Loss of supply/Controller failure

Power up

ADES
Power down

ADES

Levitate

AMBs
De-

levitate

Configure controller

Initialize controller

Speed

down

motor

Speed

up motor

Activate sensitivity

analysis

Activate sensitivity

analysis

Deactivate sensitivity

analysis

Deactivate sensitivity

analysis

Mode/State Transition Transition

Figure 3-4: Specified system states and transitions

4

4
 As specified in the system requirement specification, which can be found on the data disc

52

3.2 Control estimation calculations

Before it can be determined what processor to use in the system it is necessary to estimate the

number of instructions required to preform specific tasks. This estimation is based on the

requirements of previous projects as well as the number of instructions from a TMS320F/C24x

DSP from Texas Instruments (used in a previous project to control an AMB system). The first

section gives the requirements of the PID control.

3.2.1 PID control algorithm requirement estimation

The block diagram of a PID control algorithm implemented in a previous project can be seen in

Figure 3-5.

Figure 3-5: PID control block diagram

To implement the control algorithm on a DSP, the block diagram has to be simplified to:

1 2

1

2

2 2

1 1 0

I D I D D
P P

K T K K T K K
K K z z

T T T

z
 (3.1)

which can be seen in Figure 3-6.

Figure 3-6: Simplified PID controller

This block diagram is then expanded into its sub-components and the number of cycles

necessary to execute each block. This is calculated in Table 3-1 [59].

53

From the table it can be seen that the number of cycles required for filtering the input (by

means of a low pass filter) and then to control the system by means of PID is estimated to be

1757 for one degree of freedom (DOF). For five degrees of freedom, this value should be

multiplied by 5, thus1757 5 8785 . The chosen sample rate for the ADES system is 20

kHz. This implies that the system performs
31757 5 20 10 175.7 176 MFLOPS .

Thus, in one second, the controller/processor should be capable of 176 million floating-point

operations per second.

The control cycle of the proposed system is 50 µs. It was decided that the main controller

should be capable of calculating the control response in roughly half the control cycle – thus 25

µs – to enable future expansions. Thus, the speed calculated above should be doubled to 352

MFLOPS.

Table 3-1: Estimated PID control requirements for one DOF

Instruction Mnemonic No. of

executions

Cycles

FIR filter before PID (50
th
 order, 50 samples) 1 1438

FIR filter after PID (50
th
 order, 1 sample) 1 118

Read the ADC IN 2 4

Multiply with scaling factor MAC 1 3

Subtract reference SUB 1 2

Calculate PID

Summations MAC 1 14

Divisions SUBC 1 96

Multiplications MAC 1 42

Add to iref for upper AMB ADD 1 2

Subtract from iref for bottom AMB SUB 1 2

Multiply scaling factor for top AMB MAC 1 3

Multiply scaling factor for bottom AMB MAC 1 3

Add biasing constant ADD 1 4

Check range limit for upper AMB BCND 1 8

Check range limit for lower AMB BCND 1 8

Set limit LAR 2 4

Write to DAC OUT 2 6

 Total 1757

54

3.2.2 Estimated MIMO control requirements

At this stage it is also necessary to quantify the control response. Estimation to the number of

accumulations per cycle and multiplications is shown in

Table 3-2. Also indicated are the cycle time, numerical accuracy and number representation for

effective MIMO control. This is significant since the processor selected will be used in future

iterations of this project and even though multiple input and multiple output (MIMO) control is

not implemented during this iteration of the system, it will be investigated in the future.

Table 3-2: Control response estimation

Description Specification

Cycle rate 20 kHz

Type MIMO

Accumulations/cycle 304

Multiplications 484

Numerical accuracy 64-bit
5

Number representation Floating-point

According to the estimation given, the number of multiplications and accumulations per cycle

for the controller is then calculated for a worst case as:

Accumulations Multiplications

+ 304 484 788
cycle cycle

 (3.2)

The number of MACS is then:

1

788 50 µs
1400 MACS

150 µs

50 µs

 (3.3)

By leaving room for error, the total number of MACS is estimated as 1500 MACS.

5
 Recommended numerical accuracy. 32-bit is also sufficient.

55

3.2.3 Other estimated control requirements

This section discusses the other estimated control requirements such as:

 Monitoring conditions - Although complex condition monitoring is out of scope for this

project, enough room on the processor should be provided to implement advanced

condition monitoring at a later stage

 Sensitivity analysis

 Transmitting and receiving data

These estimations are based on diagrams and estimations on the number instructions it will

take. Estimation on the number of instructions necessary to perform the abovementioned

functions can be seen in the Table 3-3 and Table 3-4.

Table 3-3: Estimated number of instructions for monitoring conditions

F 1.3.2 Monitor conditions

 F 1.3.2.1 Rotor position 25

 F 1.3.2.9 Cooling gas temperatures 10

 F 1.3.2.10 Rotor temperature 5

 F 1.3.2.11 Status signals 50

 F 1.3.2.4 Pressures and flow rates 50

 F 1.3.2.2 EM coil currents 50

 F 1.3.2.3 Rotational speed 10

 F 1.3.2.5 AMB coil temperatures 100

 F 1.3.2.7 PMSM winding temperatures 30

Total number of instructions 330

Table 3-4: Estimated number of instructions for sensitivity analysis

F 1.3.3 Sensitivity analysis

 Sine wave function: 50

 Store data to memory: 10

Total number of instructions 60

56

Although the communication is not part of the scope of this dissertation, the communication still

influences the specification on the main controller unit, if it is implemented on the same

processor.

The estimated number of instructions can be seen in Table 3-5. The ―?‖ in the estimation of the

SCADA (supervisory control and data acquisition) and maintenance port are due to the number

of unknowns for these two functions, which complicates the estimation to the number of clock

cycles required.

The total number of instructions needed to be executed during one control cycle for monitoring

the conditions, performing the sensitivity analysis and communicating between components

are estimated as:

 330 60 1925 2315 (3.4)

It is thus, 2315 floating-point operations per cycle. Converting this number to FLOPS:

2315

Operations per cycle
50 µs

 (3.5)

1

2315 50 µs
FLOPS 46,3 MFLOPS

150 µs

50 µs

 (3.6)

To compensate for any possible errors, this estimated number of FLOPS is rounded to 50

MFLOPS.

57

Table 3-5: Estimated number of instructions for communication

F1.4
Communicate

 F 1.4.1 Transmit

 F 1.4.1.18 Tx: current reference x10

 Generate error code 500

 Pack data into buffers 50

 F 1.4.1.19 Tx: PMSM speed reference x1

 Generate error code 50

 Pack data into buffers 5

 SCADA ?

 Maintenance port ?

 F 1.4.2 Receive

 F 1.4.2.9 Rx: current values x10

 F 1.4.2.10 Rx: status

 Pack data from buffer 50

 Run error algorithm 500

 Update status registers 50

 F 1.4.2.11 Rx: Rotor position values x5

 F 1.4.2.12 Rx: status of sensor driver unit

 Pack data from buffer 25

 Run error algorithm 50

 Update status registers 5

 F 1.4.2.13 Rx: PMSM speed value x 1

 F 1.4.2.14 Rx: status

 Pack data from buffer 5

 Run error algorithm 50

 Update status registers 5

 F 1.4.2.15 Rx: Rotor temperature 1x

 F 1.4.2.16 Rx: Cooling gas temperature 2x

 F 1.4.2.17 Rx: AMB coil temperature 10x

 F 1.4.2.18 Rx: PMSM winding temperatures
3x

 F 1.4.2 19 Rx: Pressures and flow rates 10x

 F 1.4.2.19 Rx: status 1x

 Pack data from buffer 160

 Run error algorithm 50

 Update status registers 5

 SCADA

 Maintenance port Store data to DPR 25

 Retrieve Command
data from DPR

50

 Analyse data 100

Total number of instructions for communication 1925

58

3.3 Estimated signal processing requirements

The total number of FLOPS for the processor/controller can then be estimated from section

3.2:

 352 MFLOPS 50 MFLOPS 402 MFLOPS (3.7)

To compensate for errors in the calculations and to ensure that the processor adheres to the

required speed, the number of FLOPS is multiplied by 2:

 402 MFLOPS 2 803 MFLOPS (3.8)

Since the control algorithm requires 803 MFLOPS of processing power, it is estimated that at

least 1 GFLOPS of processing power is required to realize the ADES. The specifications of the

processor can be seen in Table 3-6.

Table 3-6: Estimated processor specifications

Cycle rate 20 kHz

Number of MACS 1000

Numerical accuracy 32/64 bit

Number type Floating-point

FLOPS 1 GFLOPS

3.4 Decision matrices

The selection of the main controller will be evaluated according to certain criteria. Each

criterion will be given a weighted value. The higher the weighted value, the more important the

criterion is.

This section gives and discusses the decision matrix, shown in Table 3-7. This matrix depicts

the criteria and weight against which the system and its individual components should be

measured. This matrix will be used throughout the selection process to perform trade-offs.

59

Table 3-7: System evaluation criteria

Criteria Weight Discussion

Robustness 0.2 Measurement of performance. An algorithm is robust if it

continues to operate despite abnormalities in input,

calculations, etc. Hardware is robust if is environmentally

sound.

Efficiency 0.2 Measurement of performance. An indication to the ability to

control the system and perform the required tasks.

Cost 0.3 This is the cost of the implied system or component.

Risk 0.05 The technical risk of the project. This implies the technical

skill necessary to design the hardware and develop

firmware.

Reliability 0.2 The reliability of the hardware to perform for extended

periods of time without failure.

Flexibility and

Expandability

0.05 The ability to expand the firmware should more complex

algorithms or additional functionality be required, or if the

addition of hardware requires a software change.

Each criterion will now be discussed:

 Robustness – Since the ADES should adhere to industrial standards, the

robustness of the implied system is essential. An industrial environment places

additional strain on a system, due to its harsh conditions. The ADES should thus

be environmentally sound and should be able to operate despite minuscule

abnormalities in the input. The component selection should reflect the robustness

requirements of the ADES.

 Efficiency – The hardware and architecture chosen should be capable of

performing the specified requirements. The main controller should be capable of

proficient control and perform additional tasks specified.

 Cost – Although cost is not the primary drive behind the first iteration of the ADES,

the main aim behind the development of the ADES is to develop a system capable

60

of competing with industrial systems. Consequently, although cost is not a primary

factor, it should be kept in mind for later iterations.

 Risk – The research group has no experience in developing systems with real

time operating systems (such as embedded Linux) or FPGAs with DSP or

PowerPC IP cores. The learning curve and technical skill required for development

should be kept in mind when selecting an architecture and components.

 Reliability – The requirements of the ADES specifies an MTBF of 10 years. This

implies that the system should be highly reliable. The selection of the hardware to

realize the system should reflect the required MTBF.

 Flexibility and expandability – Since this is the first iteration of the ADES, future

iterations of this system require that the system be flexible and expandable, to

provide for additional functionality, expansions in firmware and the capability to

adapt the firmware should additional hardware be added.

3.5 Architectural evaluation

The main controller unit can either be bought as a commercial off-the-shelf (COTS) product, or

be designed in-house and outsourced to be developed. The latter option has the benefit of

establishing additional expertise in the research group. The disadvantages are, that it will take

significantly longer, is a high-risk path and the controller will only be on an industrial level after

a few iterations. This makes the COTS product a more viable option, but before this can be

determined, the architecture of the system and main controller should be evaluated.

The system and main controller architectures are discussed in this section. Due to the direct

correlation between the two architectures, both were evaluated simultaneously. This section

discusses the two architectures by starting with the controller architecture and then the system

architecture. Each architecture will be evaluated according to the decision matrix. However,

since the above decision matrix includes criteria difficult to measure in a conceptual

architecture, a second decision matrix was set up to evaluate the architectures. This matrix can

be seen in Table 3-8. As each architecture is discussed, it will also be evaluated against this

matrix. The higher the score given to each criterion, the more positive the criterion is.

61

Table 3-8: Controller architectural evaluation criteria

Efficiency 0.3 Measurement of performance. An indication to the

ability to control the system and perform the required

tasks.

Cost 0.2 This is the cost of the implied system

Risk 0.2 The technical risk of the project. This implies the

technical skill necessary to design the hardware and

develop firmware.

Flexibility and

Expandability

0.3 The ability to expand the firmware should more

complex algorithms or additional functionality be

required, or if the addition of hardware requires a

software change.

3.5.1 Main controller architecture

Although numerous variations of the main controller architecture exist, the fundamental ideas

behind all the architectures are similar: a processor is needed to perform the control algorithm

and for the scheduling of the real-time tasks and events. The processor can be combined with

a co-processor, such as an FPGA, to improve performance and flexibility. The advantages of

this architecture is discussed in: [39], [50], [60] and [61]. The usage of an FPGA as a co-

processor expands the capability of the main controller without the need to design software for

two controllers. It enables the code designed for a single controller, to be transferred to the

FPGA for execution, with the minimal amount of changes. This will reduce the load on the main

controller. An FPGA is also much more versatile than a single DSP. Whereas the DSP uses

pipelining techniques to establish ―parallel‖ execution, an FPGA is a true parallel device and

has the ability to execute commands in parallel as well as sequentially. A DSP has a limited

number of user-definable input/output (I/O) ports. An FPGA has a tremendous amount of user-

definable I/O ports, when compared to a DSP. This makes the FPGA very versatile and can be

configured to incorporate more UARTs for example.

A method is also needed to establish communication with the external components. This can

either be established using a separated processor with several I/O ports, such as an FPGA, or

incorporated into the main controller or co-processor, depending on the processor(s) used. The

communication controller will have to have at least six UARTs and should be able to function

concurrently. The purpose of each UART is shown as the architectures are evaluated. Also

62

consistent throughout the evaluated architectures is non-volatile memory and an Ethernet

controller. Both these components could also be included in a processor/controller.

Despite the numerous variations available, only the architectures discussed in this section

were considered for the ADES. It is also possible to combine features from different

architectures to define the best architecture.

Concept architecture 1

The first evaluated main controller architecture can be seen in Figure 3-7. It consists of a single

master controller responsible for all real-time scheduling and for performing the position

control. This architecture is weighed in Table 3-9.

Figure 3-7: Main controller concept architecture 1

Table 3-9: Main controller architecture 1 decision matrix

 Score Weight
Weighted

Score
Discussion

Efficiency 40 0.3 12 Single main controller limits future

expansion, flexibility and expandability. Thus

lowers efficiency

Cost 60 0.2 12 Processor dependent. Developments tools

are available for TI‘s DSPs, and the Spartan

3 FPGA.

Risk 60 0.2 15 Below average risk since two processor

architectures should be learned and previous

FPGA experience exist in the group.

Flexibility and

Expandability

20 0.3 6 Expandability and flexibility are governed by

the limitations of the main controller.

Total 45

63

Concept architecture 2

Architecture 2 improves on architecture 1, due to the field programmable gate array (FPGA)

used as a co-processor. Two variations on this architecture exist: with a communication line

between the main controller and communication processor(s) and one with a communication

line between the FPGA and communication processor(s). This is depicted in Figure 3-8 (a) and

(b) respectively. Architecture 2 (b) will most likely be used if an FPGA is used as a

communication processor. This is due to the fact that FPGAs have native communication

standards such as low voltage differential signalling or LVDS which could drastically improve

communication speed between processors. Table 3-10 evaluates this architecture according to

the decision matrix.

Figure 3-8: Main controller concept architecture 2: with the (a) main controller and (b)

the FPGA communicating with the communication processor(s).

Table 3-10: Main controller architecture 2 decision matrix

 Score Weight
Weighted

Score
Discussion

Efficiency 50 0.3 15 Expansion on architecture 1. FPGA as co-

processor improves efficiency. Code can be

off-loaded to the FPGA for added

performance.

Cost 40 0.2 8 Higher cost than architecture 1 due to the

added FPGA.

Risk 50 0.2 10 Previous experience exists in the group with

this type of architecture, thus average risk.

Separate components can induce timing

issues.

Flexibility and

Expandability

70 0.3 21 Added FPGA improves system flexibility and

expandability.

Total 54

64

Concept architecture 3

Concept architecture 3, shown in Figure 3-9, assumes a controller or processor with included

Ethernet and/or USB capabilities can be used as the master processor. This architecture is

evaluated in Table 3-11.

Figure 3-9: Main controller concept architecture 3

Table 3-11: Main controller architecture 3 decision matrix

 Score Weight
Weighted

Score
Discussion

Efficiency 40 0.3 12 Lower efficiency than architecture 2, since

more strain is placed on the main controller

due to the included Ethernet/USB controller.

Cost 50 0.2 10 Average cost, since a processor should be

selected capable of performing both the

control and Ethernet/USB

Risk 70 0.2 14 Depends on the amount and type of

processor(s) used. A single processor has

lower risk. An FPGA as co-processor results

in average risk.

Flexibility and

Expandability

50 0.3 15 Without the co-processor, the flexibility and

expandability is very low, due to the added

stain on the main controller. Adding a co-

processor will result in high flexibility and

expandability.

Total 51

65

Concept architecture 4

Architecture 4, shown in Figure 3-10, takes advantage of the versatility of an FPGA by

instantiating an Ethernet/USB controller on it. By instantiating an Ethernet or USB core on an

FPGA relinquishes the need for another controller. The main processor still handles the AMB

control algorithm and overall scheduling functions. The FPGA now incorporates all

communication control and possible other co-processing functions.

Figure 3-10: Main controller concept architecture 4

Table 3-12: Main controller architecture 4 decision matrix

 Score Weight
Weighted

Score
Discussion

Efficiency 60 0.3 18 Moving Ethernet/USB control from main

controller to FPGA makes this architecture

efficient.

Cost 20 0.2 4 An FPGA large enough to perform the

required functions should be selected, thus

increases cost.

Risk 70 0.2 14 Below average risk due to previous

experience in this type of architecture.

Flexibility and

Expandability

70 0.3 21 High flexibility and expandability because of

the FPGA.

Total 57

66

Concept architecture 5

It is possible to incorporate the control and communication on a single FPGA. This architecture

is an expansion on architecture 2. This setup gives architecture 5 seen in Figure 3-11 and

evaluated in Table 3-13.

Figure 3-11: Concept architecture 5

Table 3-13: Main controller architecture 5 decision matrix

 Score Weight
Weighted

Score
Discussion

Efficiency 50 0.3 15 Even thought efficiency is above average

when a powerful FPGA is selected, it is

impeded by the fact that the control is now

limited to fixed-point, unless it is emulated.

Cost 40 0.2 8 An FPGA large enough to perform the

required functions should be selected, but

the absence of another processor reduces

cost somewhat.

Risk 50 0.2 10 Average risk due to learning curve in single

FPGA architecture.

Flexibility and

Expandability

60 0.3 18 FPGA induces high flexibility and

expandability.

Total 51

67

Concept architecture 6

This architecture expands on architecture 5 by incorporating all the functional requirements

into a single FPGA. It also includes a PowerPC embedded processor and/or DSP core. The

embedded PowerPC is a hardware core included in some of Xilinx
®
‘s top-range FPGAs. This

processor will enable floating-point calculations. It is also possible to instantiate a DSP core on

the FPGA, either by a purchased, or user written core.

This provides the ultimate in flexibility and performance and eliminates bottle-neck and timing

problems that might arise in multi-processor architectures. Powerful FPGAs and IP cores are

available that can happily perform all the functions required.

Figure 3-12: Main controller concept architecture 6

Table 3-14: Main controller architecture 6 decision matrix

 Score Weight
Weighted

Score
Discussion

Efficiency 70 0.3 21 High efficiency if a large FPGA is selected.

PowerPC/DSP core enables floating-point

capability.

Cost 60 0.2 12 Fewer components imply lower cost.

Risk 20 0.2 4 High risk due to FPGA, PowerPC/DSP

learning curve.

Flexibility and

Expandability

80 0.3 24 High flexibility and expandability due to large

FPGA.

Total 61

68

Architecture evaluation

As each architecture is evaluated against the decision matrix, it can be seen in Figure 3-13 that

the top three architectures are:

 Architecture 2

 Architecture 4

 Architecture 6

Architecture 2 and 4 are suitable architectures due to the FPGA co-processor making the

architectures extremely versatile. These architectures take advantage of an FPGA as a co-

processor by improving the expandability of the system. Whereas a DSP is designed for

performing digital signal processing and includes various built-in functionality (such as timers,

PWM generators etc.), an FPGA is a more versatile device and configurable for performing

virtually any function.

For instance, an IP (intellectual property) core can be instantiated on an FPGA to enable

PowerPC capabilities and the pins of an FPGA can be configured for virtually any input/output

such as low voltage differential signalling (LVDS), complementary metal-oxide semiconductor

(CMOS) and low voltage transistor-transistor logic (LVTTL). Some FPGAs even have hardware

PowerPCs instantiated. These two architectures are also relatively low risk due to previous

experience in the research group with these two architectures.

Although architecture 6 is an elegant implementation of the architecture, its drawback is the

high risk. The learning curve is also relatively steep when compared to architecture 2 and 4. A

drawback in using an FPGA is that an FPGA is a raw silicon device and does not include built-

in functions such as a DSP. The programming structure on a DSP is much easier to implement

than on an FPGA. Implementing floating-point calculations on an FPGA is more complex than

on a floating-point DSP, so if a single FPGA solution is used, a PowerPC or DSP core must be

included.

These architectures were reviewed, and it was decided that despite architecture 6 being high

risk, its elegancy and low-cost makes this architecture the most viable architecture. Section 3.6

discusses the correlation between the system and main controller architecture.

69

Figure 3-13: Main controller architectural comparison

3.5.2 ADES architecture

The ADES is a system that needs to adhere to industrial standards. Compact PCI (cPCI) is a

more robust version of compact PCI which is used in industrial environments. cPCI thus meets

the industrial requirements of the ADES and will be used as a backbone of the system. This

backbone will consist of a few basic components:

 A cPCI single board computer (SBC)

The SBC can be used to schedule real and/or non-real time tasks, depending on the

architecture and configuration. The processor situated on the SBC can be a cental

processing unit (CPU) such as a Core™ 2 Duo from Intel
®
, a DSP, an FPGA or a

PowerPC. If a CPU or PowerPC (and certain DSPs) is used, the SBC can either run a

non-real time operating system (OS) such as Windows or Linux, or a real-time OS

such as RTL Linux, Vxworks or Windows CE. If a real-time OS is used, the SBC can

be used to schedule both real-time and non real-time tasks. However, if a non-real

time OS is used, the real-time tasks, such as PID control, should be performed by an

external controller. It is also possible not to use an OS of any sort. In this case, the

real-time scheduling is done using the supplied processor.

 Communication interface

The communication interface can either be situated on the SBC (if enough drivers and

I/O ports are available), or on a separate module. For the cPCI architecture, this

separate module is a PCI mezzanine card (PMC) which slots into a PMC slot on either

the SBC or a cPCI carrier card, if insufficient slots are available.

0

10

20

30

40

50

60

70

1 2 3 4 5 6

P
er

ce
n

ta
ge

Architecture

Efficiency

Cost

Risk

Flexibility and
Expandability

Total

70

 Profibus interface

A Profibus option is included in each architecture evaluated. The Profibus standard

will enable the ADES system to communicate with a programmable logic controller

(PLC). The Profibus option could either be a PMC module such as mentioned above,

or an intellectual property (IP) core instantiated on an FPGA.

The architecture of the proposed cPCI system is shown in Figure 3-14. It depicts an SBC with

two PMC sites which seats two PMC modules. The SBC slots into a cPCI backplane. Two or

more of these systems can be connected via the backplane in a master-slave configuration.

The rear transition module shown in the figure is, as the name suggests, a transition module

which slots into the back of the cPCI backplane. It provides additional functionality and can

provide additional I/O ports.

Figure 3-14: cPCI architectural layout

Just as with the architecture for the main controller, the ADES as a system also have a few

architectures in consideration. These architectures are discussed in this section. The different

options are numbered according to architecture and then according to variation. For example

system architecture 1.2 is architecture 1, variation 2.

System architecture 1.1

The first variation of the system architecture is seen in Figure 3-15 with its characteristics. This

system architecture in its simplest form implies a main controller unit as seen in section 3.5.1,

architecture 1, with a single main controller. The exact architecture of the system could

influence the architecture and decision matrix of the main controller architecture. For instance,

an SBC with a main controller and FPGA co-processor is selected. Then system architecture

1.1 implies main controller architecture 2. The pros and cons of this architecture are given in

Table 3-15.

71

cPCI

SBC

PMC

Coms I/O

R
T

M

A
d

d
iti

o
n

a
l I

O

Backplane

+

Profibus option

Figure 3-15: System architecture 1.1

Table 3-15: Pros and cons of system architecture 1.1

Pros Cons

Fewer cards thus is the system

cheaper.

Requires real time operating system

skills.

Fewer cards imply simpler system

integration.

Steep learning curve.

Compact and elegant.

No different clock domains.

System architecture 1.2

In this variation of system architecture 1, seen in Table 3-16. The pros and cons of this

architecture can be seen in Table 3-16.

cPCI

SBC

PMC

DSP, FPGA

Coms I/O

R
T

M

A
dd

iti
on

al
 IO

Backplane

+

Profibus option

Figure 3-16: System architecture 1.2

 SBCs with a wide variety of processors are available.

 Processors include: Intel
®
 processors, DSPs from TI

®
,

PowerPCs from IBM
®
, etc.

 Real-time OS and user interface running on SBC.

 Data logging on SBC.

 SBC handles real-time and non-real time events.

 PMC mode needed for communication, due to

insufficient amount of drivers and I/O ports on SBC.

 System architecture influences main controller

architecture.

 SBC used to schedule non-real time tasks,user

interface and data logging

 Real-time tasks scheduled on PMC.

 Processors on PMCs include DSPs, FPGAs and

PowerPCs.

 Control algorithm executed on PMC.

 PMC module responsible for communication.

 User interface with data logging on SBC.

72

Table 3-16: Pros and cons of system architecture 1.2

Pros Cons

Fewer cards thus is the system

cheaper.

Less elegant solution than system

architecture 1.1.

Fewer cards imply simpler system

integration.

Little to none PMC modules with DSP,

FPGA and necessary amount of

UART drivers.

Operating system can be non-real

time, such as Windows
®
.

System architecture 2.1

The realization of system architecture 1.2 relies heavily on the fact that an SBC can be found

with 2 PMC sites and that a PMC module with a DSP and an FPGA can be found. As can be

seen from Table 3-16, these PMC modules are difficult to find. Architecture 2.1 and 2.2

compensates for this by including a separate PMC module with floating-point capabilities (in

this case, a PMC module with a PowerPC). The communication PMC in this architecture is

assumed to be an FPGA. System architecture 2.1 can be seen in Figure 3-17 and the pros and

cons of this architecture can be seen in Table 3-17.

cPCI

Carrier card

cPCI

SBC

PMC

Coms I/O

PMC

PowerPC

R
T

M

A
d

d
it
io

n
a

l
IO

R
T

M

O
w

n
 d

e
v
e

lo
p

m
e

n
t

Backplane

+

Profibus option

Figure 3-17: System architecture 2.1

 SBC used to schedule non-real time tasks.

 Insufficient PMC sites on SBC; if the Profibus

option is a PMC module, three is needed and

the most PMC sites per board are two.

 Separate carrier card is needed to site PMCs.

 Real-time tasks scheduled on PMC with

floating-point-capable processor.

 PowerPC on PMC module.

 Insufficient communication drivers on PowerPC

PMC, thus is a separate communication PMC

needed.

 To bypass the cPCI backplane, a RTM needs

to be developed to transmit data from the

PowerPC PMC to the external components via

the communication PMC.

 User interface with data logging still on SBC.

 cPCI backplane used to interface the PowerPC

PMC with the SBC.

 cPCI master/slave configuration of backplane.

73

Table 3-17: Pros and cons of system architecture 2.1

Pros Cons

Control algorithm development

separate from SBC software

development.

More expensive.

Operating system on SBC can be

Windows
®
.

Requires development of custom RTM

card.

PowerPCs have multiple

manufacturers.

System architecture 2.2

The basic idea behind system architecture 2.2, shown in Figure 3-18 is the same as

architecture 2.1. The only difference being the controller PMC used is in this case equipped

with a DSP (such as one from TI
®
). The pros and cons of this architecture are shown in Table

3-18.

cPCI

Carrier card

cPCI

SBC

PMC

Coms I/O

PMC

DSP

R
T

M

A
d
d

it
io

n
a

l
IO

R
T

M

O
w

n
 d

e
v
e

lo
p
m

e
n

t

Backplane

+

Profibus option

Figure 3-18: System architecture 2.2

 SBC used to schedule non-real time tasks.

 Insufficient PMC sites on SBC; if the Profibus

option is a PMC module, three is needed and

the most PMC sites per board are two.

 Separate carrier card is needed to site PMCs.

 Real-time tasks scheduled on PMC with

floating-point-capable processor.

 DSP on PMC module.

 Insufficient communication drivers on PowerPC

PMC, thus is a separate communication PMC

needed.

 To bypass the cPCI backplane, a RTM needs

to be developed to transmit data from the

PowerPC PMC to the external components via

the communication PMC.

 User interface with data logging still on SBC.

 cPCI backplane used to interface the PowerPC

PMC with the SBC.

 cPCI master/slave configuration of backplane.

74

Table 3-18: Pros and cons system of architecture 2.2

System architecture 3.1

While researching different system architectures, numerous PowerPC and DSP SBC‘s with

PMC sites were found which also slots into a cPCI backplane. Since the PowerPC is an

embedded processor capable of taking a real-time OS, it is possible to use these SBCs as in

system architecture 1.1, but the same issues exist as in system architecture 1.1. However, it is

also possible to use a PowerPC without a real-time OS as a standalone processor and system

architecture 3.1 takes advantage of this configuration. This architecture is seen in Figure 3-19

and the pros and cons of this architecture are seen in Figure 3-19.

cPCI

PowerPC

cPCI

SBC

PMC

Coms I/O

R
TM

A
dd

iti
on

al
 IO

Backplane

+

Profibus option

Figure 3-19: System architecture 3.1

Pros Cons

Control algorithm development

separate from SBC software

development.

More expensive.

Operating system on SBC can

be Windows
®
.

Requires development of custom RTM

card.

 Little to none PMCs available with

floating-point capable DSPs.

 SBC used to schedule non-real time tasks.

 Separate cPCI with PowerPC processor.

 Communication processor situated on

PowerPC cPCI board.

 Numerous PowerPC cPCI boards available.

 PowerPC cPCI board can be used as in system

architecture 1.1.

 Data logging and user interface on SBC.

 cPCI backplane master/slave control difficult.

 SBC used for non-real time scheduling.

 PowerPC cPCI board used for real-time

scheduling with no OS.

75

Table 3-19: Pros and cons of system architecture 3.1

Pros Cons

Control algorithm development

separate from SBC software

development.

More expensive.

Operating system on SBC can be

Windows
®
.

PowerPCs are an unknown platform in

the research group.

PowerPC cards are available and

have multiple suppliers.

cPCI Master/slave scheduling of the

SBCs.

System architecture 3.2

As mentioned above, a few SBCs are found with DSPs as their main processor and

functionally this is the only difference between system architecture 3.1 and 3.2. This can be

seen in Figure 3-20 and its pros and cons can be seen in Table 3-20.

cPCI

DSP

cPCI

SBC

PMC

Coms I/O

R
T

M

A
d
d

iti
o
n
a

l I
O

Backplane

+

Profibus option

Figure 3-20: System architecture 3.2

 SBC used to schedule non-real time tasks.

 Separate DSP cPCI board.

 Communication processor situated on DSP

cPCI board.

 Few cPCI boards available with floating-point

DSPs.

 DSP cPCI board can be used as in system

architecture 1.1.

 Data logging and user interface on SBC.

 cPCI backplane master/slave control difficult.

 SBC used for non-real time scheduling.

 DSP cPCI board used for real-time scheduling

with no OS.

76

Table 3-20: Pros and cons of system architecture 3.2

System architecture 4.1

This architecture investigates an architecture similar to the previous two architectures, but with

either no PMC sites on the control DSP SBC. In this case it is necessary to develop an RTM

module to encapsulate the communication drivers and an FPGA used for communication. This

can be seen in Figure 3-21. Its pros and cons can be seen in Table 3-21.

cPCI

SBC

R
T

M

A
d
d

iti
o
n
a

l I
O

R
T

M

O
w

n
 d

e
ve

lo
p
e
d

 C
o

m
s

I/
O

(R
S

4
8
5
)

Backplane

cPCI

DSP

Not available with

PMC sites

+

Profibus option

Figure 3-21: System architecture 4.1

Pros Cons

Control algorithm development separate

from SBC software development.

More expensive.

Operating system on SBC can be

Windows
®
.

cPCI DSP cards found in

investigations have multiple small

floating-point DSPs, which increase

implementation complexity of MIMO

algorithms, or only fixed-point DSPs.

DSP cards are available. cPCI Master/slave scheduling of the

SBCs.

 Separate cPCI board used with no PMC sites

used for scheduling of real-time tasks.

 cPCI SBC still used for non-real time taks.

 Profibus card can be situated on the SBC.

 An RTM should be developed to house the

communication I/O since a direct interface is

required from the DSP cPCI board.

 Master/slave PCI scheduling difficult between

the SBC and DSP cPCI boards.

 Data logging and user interface still on SBC.

77

Table 3-21: Pros and cons of system architecture 4.1

System architecture 4.2

In this variation of system architecture 4, the roles of the two SBC and DSP boards are

inverted. It investigates the possibility to use a DSP-based SBC as the master controller of the

cPCI-bus, if the DSP SBC has no PMC sites and the communication PMC module has to be

situated on the Windows
®
-based SBC. The architecture can be seen Figure 3-22 and its pros

and cons can be seen in Table 3-22.

Figure 3-22: System architecture 4.2

Pros Cons

Control algorithm development separate

from SBC software development.

More expensive.

Operating system on SBC can be

Windows
®
.

cPCI DSP cards found in

investigations have multiple small

floating-point DSPs, which increase

implementation complexity of MIMO

algorithms, or only fixed-point DSPs.

DSP cards are available. cPCI Master/slave scheduling of the

SBCs.

 DSP on cards only have one

manufacturer.

 Roles of SBC and DSP are inverted.

 A cPCI DSP board is used without any PMC

sites.

 The real-time tasks are scheduled on the cPCI

DSP.

 The SBC is responsible for the scheduling of

the non-real-time tasks.

 SBC used to site PMC modules due to the lack

of PMC sites on the DSP.

 Roles of SBC and DSP are inverted.

 DSP board is master on the cPCI backplane.

 SBC needs to be configured as an cPCI slave.

 Communication PMC situated on cPCI SBC.

 Control data needs to be sent to SBC.

cPCI

SBC

R
T

M

A
dd

iti
on

al
 IO

Backplane

cPCI

DSP

Not available with

PMC sites

+

Profibus option

PMC

Coms I/O

78

Table 3-22: Pros and cons of system architecture 4.2

3.6 Selected architecture discussion

Initially the idea was to develop a main controller from scratch i.e. to determine the

components necessary and then to contract an industrial partner to develop the controller. This

proposes some issues. For instance, enough time should be allocated to allow the first

versions of the developed boards to be iterated to eliminate potential problems. This proposes

a high-risk path. In terms of cost, the in-house development of such a controller is also quite

high and a COTS product was selected. This proposes an industrial architecture as discussed

in the previous section.

From the previous section it is evident that only some configurations of the system architecture

are readily available, while some architectures are unnecessary bulky. The aim is to have a

cheaper, more effective industrial controller. After intensive research, numerous discussions

and endless emails to suppliers, the options regarding system architecture were limited to two

variations of architecture 1.2, as seen in Table 3-23.

The components of the two options were chosen on their specification, architecture,

performance and availability (preferably form a local supplier). The following sections discuss

the options for the two different options.

Pros Cons

Control algorithm development separate

from SBC software development.

More expensive.

Operating system on SBC can be

Windows
®
.

cPCI DSP cards found in

investigations have multiple small

floating-point DSPs, which increase

implementation complexity of MIMO

algorithms, or only fixed-point DSPs.

DSP cards are available. DSP as PCI master setup might not

be possible.

 DSP on cards only have one

manufacturer.

79

Table 3-23: Option for system architecture 1.2

Option 1 Option 2

SBC T2-6U-cPCI SBC PP41x/03x

Manufacturer Bittware
®
 Manufacturer Concurrent Technologies

®

RTM N/A RTM AD PP5/002

Manufacturer N/A Manufacturer Concurrent Technologies

Communication

PMC

Various PMCs are

available from Acromag
®
.

Own developed PMC I/O

module.

Communication

PMC

PMC-VFX70T

Manufacturer Acromag
®

Manufacturer Acromag
®

3.6.1 Option 1

Option 1 is the T2-6U-cPCI option form Bittware
®
. It is also based on the 6U cPCI form factor.

The board consists of four ADSP-TS201 TigerSHARC™ DSPs which runs at up to 600 MHz.

Also included are two Xilinx
®
 Virtex

®
-II Pro FPGAs for I/O interfacing and co-processing.

T2-6U-cPCI

Although greatly over powered, the T2-6U-cPCI is one of the few cPCI boards available with

floating-point processors as well as FPGAs. At this stage, no other cPCI board could be found

with both a floating-point DSP and FPGA. This architecture encapsulates the advantages of

main controller architecture 1 and 4. The board also has two PMC sites and could easily site

both a communication and Profibus PMC. If this board is selected, the system architecture will

be as in Figure 3-23.

80

cPCI

T2-6U-cPCI

PMC

Coms I/O

R
T

M

A
d

d
it
io

n
a

l
IO

Backplane

+

Profibus option

Figure 3-23: System architecture with the T2-6U-cPCI board

Since the T2-6U-cPCI board has no I/O to the external components except via the PMC sites,

the communication module has to be situated on a PMC module. Various PMC modules are

available from Acromag
®
 with a wide range of FPGAs. It is also possible to develop a PMC to

attain the requirements of the system. This PMC could include its own processor, but since the

two FPGAs situated on the board is used for I/O interfacing, they can be routed to the external

components via the PMC site using a customized PMC module.

The features of this board include:

 Two clusters of four ADSP-TS201 TigerSHARC™ DSPs which runs at up to 600 MHz.

 28.8 GFLOPS or 3.6 GFLOPS per DSP.

 24 Mbits of on-chip RAM.

 16 link ports of up to 1 GByte per second each.

 Two Xilinx
®
 Virtex

®
-II Pro FPGAs for I/O interfacing and co-processing.

 128 high-performance DIO (single-ended and/or LVDS).

 16 channels RocktIO™ high-speed serial transceivers.

 Static superscalar architecture.

 ATLANTiS™ framework featuring 6 GBytes/s of external I/O throughput via Virtex
®
-II

Pro routing.

The board can be seen in Figure 3-24.

81

.

Figure 3-24: T2-6U-cPCI TigerSHARC™ board

3.6.2 Option 2

Option 2 is the PP 41x/03x SBC supplied by Concurrent Technologies
®
. It is also based on the

6U cPCI form factor. This section is dedicated to discussing this board and the complementary

hardware.

PP 41x/03x

The PP 41x/03x is an Intel
®
 Core™ 2 Duo-processor based cPCI board with two PMC sites.

Although the dual core processor is not essential, the price difference between the single and

dual core processors were minimal. Various configurations of this board exist, but the general

features of the board include:

 2.16 GHz Intel
®
 Core™ 2 Duo processor T7400

 Up to 4 GB of dual channel DDR2 400 MHz
6

 3x 10/100/1000 Mbps Ethernet interfaces

 4x Universal serial bus (USB) 2.0 interfaces (up to 3 if RTM modules are used, 1 via

front panel). The RTM complementing this SBC, is the AD PP5/002 RTM module.

 Keyboard and mouse interface via front panel

 32-64 bit 33/66/100 MHz cPCI interface

 Support for Linux
®
, Windows

®
 2000, XP and Server 2003, Windows

®
 XP Embedded,

QNX
®
 and VXWorks

®
.

The two PMC sites will be used to site the Profibus and communication PMCs. This reflects an

architecture similar to system architecture 1.2
7
. However, since it was impossible to track down

6
 The selected configuration features 1 GB RAM

82

a PMC module with a DSP, FPGA and enough UART drivers, this architecture needed to be

modified. Should this architecture be selected, it will be necessary to select a PMC module

with an FPGA and enough drivers connected to an external I/O port, to be used for

implementing the communication. The FPGA on this module should either have an embedded

PowerPC, or enough resources to implement a DSP core. This will enable floating-point PID

control to be implemented on the module. The PMC selected for control and communication is

the PMC-VFX70T module from Acromag
®
. This unit is discussed in the following section.

This architecture can be seen in Figure 3-25. This system architecture then encapsulates the

advantages and disadvantages of architecture 6, with the exception of the Ethernet/USB

controller moved from the FPGA, since this SBC‘s RTM module has built-in Ethernet and both

SBC and RTM has USB interfaces.

Figure 3-26 shows an image of the PP 41x/03x board.

cPCI

PP 41x/03x

PMC

FPGA Coms I/O

and PowerPC/

DSP core.R
T

M

A
d

d
it
io

n
a

l
IO

Backplane

+

Profibus option

Figure 3-25: System architecture with the PP 41x/03x board

7
 A real-time OS can also be installed on the PP 41x/03x board, enabling migration to system architecture 1.1.

83

Figure 3-26: PP 41x/03x board

PMC-VFX70T

As already mentioned, the communication and control PMC selected to complement the PP

41x/03x SBC is the PMC-VFX70T from Acromag
®
. It was selected on the following criteria:

1. It has multiple I/O pins available for the communication. The number and type of I/O

available depends on the front I/O transition module used. Various front I/O modules

are available
8
. The one selected to be used with the PMC-VFX70T PMC is the AXM-

D03 I/O module. It has 16 digital and 22 differential channels available.

2. The FPGA on this module (the VFX70T) is one of the top-level FPGAs available from

Xilinx
®
 and includes a hardware based PowerPC on chip. As discussed in the previous

section, the included PowerPC is essential if the PP 41x/03x board is selected.

3. The supplier in South Africa is the same supplier as the PP 41x/03x SBC
9
.

The PMC-VFX card can be seen in Figure 3-27.

8
 Other digital communication options available: AXM-D02 with 30 RS-485 differential I/O channels and AXM-D04 with

30 LVDS I/O channels.

9
 Redlinx

®
 is the supplier of Concurrent Technologies

®
-products in South Africa.

84

Figure 3-27: PMC-VFX70T PMC card

3.6.3 Selected architecture discussion

From the previous section, it can be seen that the system and controller architecture selection

narrows down to two options. The other architectures were eliminated due to cost, availability,

implementation, risk and functionality. However, the two proposed architectures have their

advantages and disadvantages. This is shown in Table 3-24.

Table 3-24: Comparison between the two proposed system architectures

T2-6U-cPCI PP 41x/03x and PMC-VFX70T

Advantages Disadvantages Advantages Disadvantages

Powerful architecture. Overpowered. Sufficient number of

built-in

communication

channels.

Steep learning curve due to

single FPGA architecture.

Previous architectural

experience.

Two development

environments need to

be learned

Possible to migrate to

architecture 1.1

which is a more

elegant solution.

Possibility that the

embedded PowerPC is not

powerful enough for the

application.

Communication will either

be established via an RTM,

or a PMC option.

Very expensive. Lower cost.

After intensive debate and a lengthy discussion, it was decided that the single FPGA

implementation of the control and communication is the best alternative, although this is a

higher risk option than the TigerSHARC™ DSP and FPGA board. This decision was made

primarily on the difference in cost between the two systems. The T2-6U-cPCI board is

85

extremely expensive when compared to the PP 41x/03x SBC and PMC-VFT70T. The price

comparison between the two architectures is given in Table 3-25
10

Table 3-25: Price comparison between the two architectures

Option 1 Option 2

T2-6U-cPCI R229,700.00 PP41x/03x R 31,221.43

RTM N/A RTM R 4,782.86

PMC module
11

 R54,331.25 PMC-VFX70T R54,331.25

 AXM-D03 R9,343.75

Development

tools

R85,900.00 Development

tools

R6,417.93

Total cost R369,931.25 Total cost R106,097.22

3.6.4 Conclusion

After discussing the requirements of the ADES main controller and estimating the number of

clock cycles required, the best architecture for the main controller was determined. Since the

main controller architecture cannot exist separately from the system architecture, both

architectures were evaluated simultaneously. After determining the most suitable architectures,

a survey had to be done to determine whether or not the selected architectures are available in

a suitable form factor and configuration. It was decided to use a commercial off-the-shelf

controller to minimize risks and to reduce development time.

Based on the commercial products available in the selected architectures and form factor, the

options were considered. Both options reflect system architecture 1.2. The first option is the

T2-6U-cPCI TigerSHARC™ option from Bittware
®
. This option reflects main controller

architecture 2, due to the DSP/FPGA combination on the board.

10

 Note that the price comparison only includes the hardware discussed in this section. For a comprehensive
exposition of costs, refer to Appendix B.

11

 The assumption is made that the selected PMC is also a top-of the range commercial PMC module. The own
development option will be substantially more expensive on the first iteration.

86

The second option is the PP41x/03x option. Since the PMC module in this architecture will be

used to implement the real-time control of the system and the fact that a hardware PowerPC

440 core is implemented in the FPGA, this system architecture reflects main controller

architecture 6, with the exception that the Ethernet and USB interface(s) are handled by the

SBC and not the FPGA.

Choosing between these two architectures was difficult. The T2-6U-cPCI option is the lower

risk option due to previous experience in the research group in this type of architecture. This

architecture is also extremely versatile due to the added FPGA co-processor. The PP41x/03x

option is an elegant solution and just as versatile as the T2-6U-cPCI option, due to the

hardware PowerPC included. The lack of experience in VHDL and this type of architecture,

increases the risk, should this option be selected.

Eventually, the selection between these to options boiled down to price. The PP41x/03x option

is about 3.5 time more expensive than the T2-6U-cPCI. Even though price isn‘t a major factor

in the first iteration of the project, it should be kept in mind that the ADES is an industrial-based

system and future iterations of this project should be as low cost as possible. This makes the

second option the more viable alternative, despite the high risk involved. The risks involved in

selecting the second architecture should be controlled and managed in order to be minimized.

This can be done by scheduling VHDL courses and training in this type of architecture.

87

CHAPTER 4

Controller design

Although the Acromag
®

PMC module is accompanied by an example design featuring the

setup of certain components such as clock management, PCI-bus interfaces and example

code on how to access the front and rear-I/O modules, certain hardware components should

be added. After setting up the hardware, the code that runs on the hardware can be written.

This code can be divided into two sections: software and firmware
12

. This chapter is dedicated

to the design of the necessary hardware and software components needed. The

implementation of these components is discussed in chapter 5.

4.1 Software control flow

Before any hardware can be designed, it is first necessary to understand and analyse the

software control flow. The software control flow depicts the flow of the control through the

system. Figure 4-1 shows the software design flow. From the control flow, the required

hardware can be deduced.

The units depicted are labelled as follows: The second number indicates functionality whereas

the first number indicates the number of occurrences or instantiations. The best example is the

dual port RAMs (DPRs). DPR Ux.6 will contain the sensor position data and will be instantiated

6 times. U1.6 will contain the x-position from the first sensor. U2.6 will contain the y-position

and U3.6 will contain the z-position. U4.6 to U6.6 will contain the same data as U1.6 to U3.6,

but only for the second sensor.

The focus of this dissertation is on the main controller unit. This includes the control of the

ADES as well as the interfaces to the ADES components part of the control loop. This implies

the DPRs containing the position and pre-filtered data as well as the DPRs housing the data to

be transmitted to the power amplifiers. It also includes the filters and PCI memory interface. A

short review will be given of the data flow through the system.

12

 Firmware is defined as the VHDL code running on the FPGA, whereas software is defined as the C code running on
the PowerPC.

88

UART

Controller

&

Data packet

analyser

DPR
UART 1

with TX

& Rx FIFOs

DPR

DPR

DPR

PID

controller

PCI memory space

PCI drivers

U 1.1
U 1.2

U 1.6

U 1.9

U 1.8

U 1.7

U 3.6

U 4.6

U 6.6

From UART 1

of iSensor

UART

Controller

&

Data packet

analyser

UART 1

with TX

& Rx FIFOs

U 2.1
U 2.2

From UART 1

of iSensor

Filter

controller
DPR

Filter(s)

Packet construct

&

UART control

DPR

UART 3

with TX

& Rx FIFOs

Filter

controller
DPR

Filter(s)

Packet construct

&

UART control

DPR

UART 7

with TX

& Rx FIFOs

To PA 1

To PA 5

U 1.10
U 1.11 U 1.14

U 1.13
U 1.15

U 5.15U 5.14
U 5.13

U 5.11

U 5.10

U 1.12

U 5.12

DPR

DPR

U 1.16

U 5.16

Figure 4-1: Software control flow

89

As discussed in the mentioned example, units 1.6 to 6.6 hold the position data from the

sensors. This data is received from the UART controllers (U1.2 and U2.2). This data will be

used by the PID controller (U1.7) situated on the PowerPC. The PCI memory space will serve

as the interface between the PowerPC and the SBC‘s high-level user interface. This interface

is mostly registers used by the driver software (U1.9) on the SBC to send and receive data

over the PCI bus.

After the PID control has taken place, the resulting current references are written into DPR

units 1.10 to 5.10. These current references will then be filtered to remove frequencies which

could excite the critical frequencies of the mechanical axis resulting in an unstable and/or noisy

system. Lastly, the filtered values are again saved into DPRs (U1.13 to U5.13) from where it is

retrieved and sent to the power amplifiers (PA1 to PA5).

4.2 PowerPC hardware design

The PowerPC hardware design section is divided into two sections. The first section discusses

the hardware and software setup of the PowerPC. The second section discusses the memory

management and assignment.

4.2.1 Hardware

From the software design flow in Figure 4-1, it is easy to see that the following components are

necessary for the main controller unit:

 Dual port RAM

 Filter controllers

 Filters

 An interface with the SBC

The motivation behind instantiating parallel components in VHDL for each software thread is to

take advantage of the FPGA‘s concurrent execution capabilities, which greatly improves

speed. This will ensure the only bottleneck being the PowerPC interface, since the PowerPC is

a sequential processor. It is also evident that an interface of some sort is necessary for the

PowerPC to communicate with the external components.

The foundation of the PowerPC hardware is the example design included with the Acromag
®

PMC module. This example includes the basic setup of the PowerPC, the firmware necessary

for transferring data between the PCI bus and the PowerPC, the firmware used to

communicate with the various front I/O modules available for the PMC module as well as the

instantiation for the PowerPC as a component in VHDL. It also includes the digital clock

90

management (DCM) blocks needed to generate the required frequencies throughout the

system. The configuration of the PowerPC as set up in the example design is given in Table

4-1.

Table 4-1: PowerPC initial configuration

Reference clock frequency 200 MHz

Processor clock frequency 125 MHz

Bus clock frequency 125 MHz

Reset polarity Active low

Floating-point unit Not included

Hardware components

2x UARTs (for RS232 interface)

DDR memory interface

64 kB internal block RAM (BRAM)

BRAM interface controller

PCI bus interface controller (as a pcore)

Master processor local bus (MPLB) controller

Slave processor local bus (SPLB)

Additional components needed include:

 Multiple memory interface controllers to interface with the external DPRs.

 General purpose I/O modules, one for input and one for output.

 Interrupt controller, to connect and manage interrupts.

 A floating-point unit (FPU), since it is not included in the initial configuration.

 A fabric coprocessor bus (FCB) to connect the FPU to the processor core.

 A second PLB bus, since a PLB bus can only connect to 17 components and all the

PowerPC components already instantiated along with the new IPs needed, exceed the

limit.

 A PLB bridge controller to bridge the second PLB to the PLB already instantiated.

The floating-point unit mentioned above is necessary since, as with the case of most

embedded processors, a PowerPC is not capable of true floating-point calculations. When a

floating-point calculation is performed, it emulates the floating-point capability, which takes a

significant amount of time when compared to fixed-point calculations. As can be inferred, it is

possible to add a floating-point unit to the PowerPC as an auxiliary processor unit (APU). This

makes it possible for the PowerPC to perform true floating-point calculations, thus greatly

improving speed.

91

Each of the mentioned components need to be connected to a specialized bus in order to be

accessible by the processor core. This implies each IP needs to have an address assigned to

it. The following section discusses memory space allocation.

4.2.2 Memory space allocation

The memory space of the main controller is distributed over many different components.

Eighteen blocks of dual port RAM (DPR) instantiated in VHDL, external DDR RAM and most

hardware instantiated by using the PowerPC IP cores, all constitute the memory space used

by the main controller unit. It is thus evident that the memory space should be designed and

managed thoroughly

Dual Port RAM

Each of the eighteen instantiated DPRs‘ layout is exactly the same. This simplifies the VHDL

design since only one component needed to be designed and instantiated numerous times. A

basic DPR block can be seen in Figure 4-2 and the basic DPR data layout as used in this

project is seen in Figure 4-3.

As can be seen from the figure, the memory space allocation has two view-points. When the

DPR is viewed from the FPGA, each memory position is referenced by using a numbered

value. For instance, PA true current 2 is referenced using the value 3 (or 0x0000003). When

the DPR is viewed from the PowerPC side, the same position has to be referenced using a

physical address: 0x0000000C. This is due to the fact that the port connected to the PowerPC

is controlled by means of a memory controller. This memory controller is connected to the PLB,

which addresses each component situated on the PLB by means of a physical address.

The CLK pin on the DPR block is used to clock data into the DPR synchronously and the

RESET pin is used to clear the status of the DPR ports. The ADD- pins on the DPR points to

the address where DIN is written or where DOUT is read. For this project, both data and

addresses are 32-bits long. This simplifies connectivity to the PowerPC memory since it also

uses 32-bit data and address busses. The data is written when WE-pins are high and the chip

is enabled (CE is asserted).

92

Figure 4-2: DPR block

An issue experienced connecting one port of the DPR to the PowerPC was the fact that each

address from the PowerPC is 32-bits long and each consecutive PowerPC memory entry,

points to every fourth entry in die DPR. The solution was to shift the PowerPC addresses so

that the least significant bits were ignored. For example (when only looking at the eight least

significant bits (LSBs) of the memory):

Hex value Binary number Binary number (LSB ignored) Memory entry

0x0 000000002 0000002 010

0x4 000001002 0000012 110

0x8 000010002 0000102 210

0xC 000011002 0000112 310

0x10 000100002 0001002 410

Figure 4-3: DPR memory space allocation

93

Double data rate (DDR) synchronous dynamic random access memory (SDRAM)

The interface between the SBC and the embedded system is the DDR RAM. This is due to the

DDR being directly accessible from the PowerPC. The DDR is an external 256 MB small

outline in-line memory module (SO-DIMM) package situated on the SBC. Since the DDR is

mostly used by Windows
®
 XP running on the SBC, it was decided to use the upper half of the

DDR to store the data used by the embedded system and GUI. The memory layout can be

seen in Figure 4-5.

PowerPC hardware memory map

As discussed earlier, the PowerPC hardware is mostly expanded by using IP cores designed

to perform a specific task. Each IP core added to the PowerPC hardware connects to the

processor core by means of a specialised bus. This implies that most IP cores need some form

of addressing. Figure 4-4 shows the designed address map of the PowerPC hardware. The

base address is the starting address of the particular piece of hardware and the bus interface

shows the bus interfacing the piece of hardware to the processor core. The IP type and version

is also given in the figure.

Figure 4-4: Designed PowerPC address map

94

Current ref PA board 1

Current ref PA board 2

Current ref PA board 3

Current ref PA board 4

Sensor1 x-error

Sensor1 y-error

Sensor1 z-error

Sensor2 x-error

Sensor2 y-error

Sensor2 z-error

PA1 error

PA2 error

PA3 error

PA4 error

PA5 error

Sensor1 x-position

Current ref PA board 5

Used by Windows
®
 XP

0x00000000

0x0FFFF58

0x0FFFF5C

0x0FFFF60

0x0FFFF64

0x0FFFF68

0x0FFFF6C

0x0FFFF70

0x0FFFF74

0x0FFFF78

0x0FFFF7C

0x0FFFF80

0x0FFFF84

0x0FFFF88

0x0FFFF8C

0x0FFFF90

0x0FFFF94

0x0FFFF54

Sensor1 y-position

State

State check

Sensor1 z-position

PA 1 actual current

PA 2 actual current

PA 3 actual current

PA 4 actual current

PA 5 actual current

PA 6 actual current

PA 7 actual current

PA 8 actual current

PA 9 actual current

PA 10 actual current

Interrupt: PID

Interrupt: State change

Extra

Radial PID: parameter P

Radial PID: parameter I

Radial PID: parameter D

Axial PID: parameter P

Axial PID: parameter I

Axial PID: parameter D

Sensor2 y-position

Sensor2 z-position

Sensor2 x-position

0x0FFFF98

0x0FFFF9C

0x0FFFFA0

0x0FFFFA8

0x0FFFFAC

0x0FFFFB0

0x0FFFFB4

0x0FFFFB8

0x0FFFFBC

0x0FFFFC0

0x0FFFFC4

0x0FFFFC8

0x0FFFFCC

0x0FFFFD0

0x0FFFFD4

0x0FFFFD8

0x0FFFFDC

0x0FFFFE0

0x0FFFFE4

0x0FFFFA4

0x0FFFFE8

0x0FFFFEC

0x0FFFFF0

0x0FFFFF4

0x0FFFFF8

0x0FFFFFC

Figure 4-5: Designed DDR SDRAM memory space

4.3 Embedded state machine

The specification for the different states and state transitions of the ADES system were given

in chapter 3. These states and state transitions should occur on the embedded controller as

the system changes between states either by the high-level GUI running on the SBC, or by a

PLC registered error. As will be discussed in section 4.5, these state changes will register an

interrupt by the embedded control. If this interrupt occurs, a value is read from the DDR

95

indicating the following state. This induces a state transition. A specific state has three

functions:

 Entry – This function invokes the state specific functions that should occur before the

state run is initialized.

 Run – This encapsulates all the functions that execute while the state is running.

 Request – This function compares the current state to the next state and if these two

states differ, a state change request is issued.

The embedded state machine is seen in Figure 4-6. It shows the states in which the system

can reside, as well as the transitions between states. Please note that another state,

―Maintenance‖ is not shown in the figure. The system should be able to make the transition

from any state after ―Power_Down‖ into the ―Maintenance‖ state should the need for

maintenance occur. This was left out of the figure, since it made it cluttered and difficult to

read.

The functionality of the different states is the same as in the specifications given in chapter 3,

with the exception of the two added states: ―NonCritStop‖ and ―CritStop‖ and some minor

adjustments. These two states were added should a condition occur in which a critical or non-

critical stop is invoked.

Even though the state machine includes states such as ―Programming”, ―Sensitivity_Stand‖,

―Sensitivity_Norm‖ and ―Maintenance‖, time constraints and controller limitations prohibited the

implementation of these states.

A short discussion of the state machine follows Figure 4-6. Where applicable, each discussion

will be divided into the three functions of each state.

96

Figure 4-6: Embedded state machine

97

Table 4-2: Discussion of embedded state diagram (Part 1)

State Functionality Required conditions % Implemented

No_power Not a physical state. This state was brought in

to simplify logistics of the state machine.

No power or UPS fails to deliver power to the

system.

Not implemented – not a physical

state.

Power_Down Power-up state. Name was chosen to

correspond with specified states. State

initializes interrupts, exception handling and

general purpose I/O ports. Self-diagnostic test

and start-up procedures are also performed.

If self-diagnostic test fails, system resides in this

state. If successful, system makes a transition to

Standby

50 % - Self-diagnostic test needs to

be included in future iterations of this

project.

Standby State initializes all PID parameters and enters

the Standby-state. Data logging is enabled and

no current reference is send to the power

amplifiers.

Interrupt for a state change is triggered from the

SBC. Transition to only four states is allowed:

Power_Down, Programming, Sensitivity_stand

and AMBs_Operational.

100% - All functionality is included in

this state.

Programming The programming state of the system. This

state will enable an administrative user to

update the firmware of the system.

Only possible to enter the Programming-state

from the Standby position. A standby-request is

issued form the administrator and the

Programming-state is entered.

1% - State included for future

expansion of the project. Out of

scope for the first iteration of the

system.

Sensitivity_stand The basic idea behind this state was to include

an automatic sensitivity analysis of the system

while in Standby-mode.

State is entered when an interrogation signal is

sent to the main controller during Standby.

1% - Due to time and resource

constraints, all sensitivity analysis

were moved off the embedded

controller. Possible to include in

future iterations.

98

Table 4-3: Discussion of embedded state machine (Part 2)

State Functionality Required conditions % Implemented

AMBs_Operational In this state the AMBs are operational. A

current reference is sent to the PAs which

drives the electromagnetic actuators to levitate

the rotor. PID control is performed and data is

also logged in this state.

This state is entered form Standby if the levitate

command is issued, or from the

Normal_Operation if the motor is stopped.

100% - Although this state is fully

implemented, a few improvements can

be made. For instance the current

references can also be logged.

Normal_Operation The only difference between this state and

AMBs_Operational is a safety lockout which

prevents transition to Standby while the motor

is operational. Currently only the run-function

from AMB_Operational is called.

This state in entered from AMBs_Operational

when the motor is enabled.

80% - In future iterations of this project,

motor control can be included in this

state.

Sensitivity_norm The basic idea behind this state was to include

an automatic sensitivity analysis of the system

while in normal operation.

State is entered when an interrogation signal is

sent to the main controller during

Normal_Operation.

1% - Refer to Sensitivity_stand.

NonCritStop This state is added to provide for a non-critical

stop during normal operation. Should this stop

occur, the system transitions to

AMBs_Operational via this state.

A transition to this state occurs when a non-

critical error is detected and the system is in

normal operation.

1% - Although this state was included,

no action is taken. Future studies can

determine the best course of action for

a non-critical stop.

CritStop Included for the same reason as NonCritStop,

with the exception that the system transitions

to Standby via this state should a critical stop

occur.

A transition to the state occurs when a critical

error is detected during normal operation.

1% - See NonCritStop.

99

Table 4-4: Discussion of embedded state machine (Part 3)

State Functionality Required conditions % Implemented

Maintenance This is the state in which

all maintenance is done.

This also includes

physical maintenance on

the system. At this stage,

this state was out of

scope for this project and

included for modularity.

A transition from any state

can be made to this state if

maintenance is needed.

1% - Although out of

scope for the first

iteration of this

project,

maintenance is a

crucial part of an

industrial system.

This state needs to

be included in future

iterations of this

project.

4.4 Control algorithm

The control algorithm for the main controller is PID control. This first part of the section is

dedicated to the design of the PID control algorithm with an additional pole for stability. Since

system timing is of utmost importance, the second part is dedicated towards designing the

system timing.

4.4.1 PID control

Section 2.2.1 gave an example of a simple discrete PID controller. However, external tests on

the mechanical system using dSPACE
®

deemed it necessary to move the pole of the

differentiator from a fixed position at
2

T
 to an adjustable value: -ωp [56]. This limits the gain

of the differentiator at high frequencies. The PID block diagram with shifted pole is given in

Figure 4-7.

Figure 4-7: PID block diagram with differential pole moved to -ωp

100

If this PID controller is given by:

 () I
p D

K
D s K K s

s
 (4.1)

then a PID controller with a pole at -ωp is given by:

 ()

1

I D
p

p

K K s
D s K

s s
 (4.2)

By using the bilinear transform and replacing
2 1

1

z
s

T z
:

2

2 2

2 4 2 4 8 2 8
()

2 4 (8) 4 4 2 2 4 (8) 4 4 2

P p I p D p P I p D p

p p p p

z K T K T T K z K K T T K
D z

z T z T z T z T

2

2 2 2 4

2 4 (8) 4 4 2

P p I p D p

p p

K T K T T K

z T z T
 (4.3)

If D(z) is written in the form of

1 2

0 1 2

1 2

1 2

()
1

a a z a z
D z

b z b z
 :

0

1

2

1

2

4

2 2 4

2 88

2 4 2 4 2 4

2 2 4
2

2 4 2 4 2 4

8

2 4

2 4

2 4

p

p I D

p

p p

P I D

p p p

p p p

P I D

p p p

p

p

p

T
a K K K

T

T
a K K T K

T T T

T T
a K K T K

T T T

b
T

T
b

T

 (4.4)

101

which can be implemented
13

 by the 1D
14

 second order differential equations [56]:

1 2

0 1 2

1 : 1 2

1 2

D m k x k b m k b m k

y k a m k a m k a m k
 (4.5)

The structure for the 1D second-order module is seen in Figure 4-8.

Figure 4-8: 1D second-order structure

4.4.2 System timing design

As mentioned previously, the control cycle is specified to be 20 kHz. The control, filtering and

communication should execute in this 50 µs control cycle. The primary functions that should

execute, are given in Figure 4-9.

As can be seen from the figure, the control is always a clock cycle behind the current position

data sent from the sensor. From the sensor‘s
15

 communication timeline, it can be seen that the

sensor transmits the current position value at the beginning of the 20 kHz sync signal. Should

the sync signal fail, the UART controller on the main controller unit prompts the sensor board

to transmit data.

13

 The implementation of the PID on the system is discussed in the next chapter.

14
 First direct structure

15
 iSensor in the figure, which is the in-house developed inductive sensor.

102

R
e

c
e

iv
e

p
o

s
it
io

n

P
ID

c
o

n
tr

o
lle

r

L
o

g
 d

a
ta

UART

Control

Sensor transmits position data to UART on

the main controller. UART controller prompts

iSensor should the sync signal fail. Positional

information is sent within this timeframe

UART controller transmits current reference

to power amplifiers and receives PA status.

RX: pos(k)

Use pos(k)

2
0

 k
H

z

c
y
c
le

Use pos(k-1)

RX: pos(k+1)

Use

pos(k+1)

RX: pos(k+2)

TX: iref(k), RX: i(k-2)TX: iref(k-1), RX: i(k-3)TX: iref(k-2), RX: i(k-4)

Control

timeline

iSensor

coms

timeline

PA coms

timeline

Use: iref(k-2), Measure i(k-2)

PA

control

timeline
Use: iref(k-3), Measure i(k-3) Use: iref(k-1), Measure i(k-1)

Sync signal

F
ilt

e
r

o
u

tp
u

t

T
ra

n
s
m

it
 c

u
rr

e
n

t

re
fe

re
n

c
e

R
e

c
e

iv
e

p
o

s
it
io

n

P
ID

c
o

n
tr

o
lle

r

L
o

g
 d

a
ta

F
ilt

e
r

o
u

tp
u

t

T
ra

n
s
m

it
 c

u
rr

e
n

t

re
fe

re
n

c
e

Figure 4-9 : System timing diagram

At the start of the 20 kHz control cycle, the main controller retrieves the previous position data

from the memory. This data is then sent to a PID control algorithm to calculate the current

reference. The current reference is then filtered before it is sent to the power amplifiers. After

the value is sent, the controller logs data into memory to be displayed on the SBC.

By the time the power amplifiers receive the current reference, the current reference is about

two control cycles old and by the time the current reference is used by the control algorithm, it

is about three control cycles old. When the control algorithm elapses, it transmits its current

status back to the main controller unit. This allows the power amplifier‘s actual current to be

viewed on the user interface.

4.5 Interrupt design

Six possible interrupts for the main controller unit were identified. These interrupts were

identified regardless whether or not they will be used. They were selected as such to enable

future upgrades and expansions of the interrupt management. The identified interrupts and

their corresponding variable names are listed in Table 4-5.

.Seeing as these interrupts originate externally from the embedded PowerPC, these interrupts

should be connected to the PowerPC in some way. However, the PowerPC only has one

external interrupt pin, EICC440EXTIRQ [44]. Only one interrupt could thus be connected and

an interrupt controller should be used. The interrupt controller is IP (intellectual property)

available for the PowerPC, which enables the use of numerous interrupts from various

103

sources. This also enables future expansion of interrupts since a wide variety of interrupts can

be connected to this controller and the severity of each interrupt can be set.

Table 4-5: Identified interrupts

Identified interrupt Variable name

New data in units U1.6 to U6.6 DPR_Ux_6_int

New data in units U1.10 to U6.10 DPR_Ux_10_int

New data in units U1.16 to U6.16 DPR_Ux_16_int

A state change from the single board computer (SBC) DDR_int_ST

PID parameter change DDR_int_PID

20 kHz synchronization signal Syncsig

Since each interrupt is generated externally, an interface to the VHDL code is necessary.

Another IP called a general purpose I/O (GPIO) controller is connected to the PowerPC. This

GPIO controller is connected to the processor local bus (PLB) which allows for data to be

transferred internally between the PowerPC and the GPIO controller. The controller also allows

for the connection of an external bus. The width of the external bus is also adjustable. In this

particular case a bus width of eight bits was adequate. This will allow for the connection of the

six interrupt signals. The GPIO controller can also be set-up to generate an interrupt. The

interrupt can be set-up to trigger should any bit on the bus change (either on a rising or falling

edge) or stay the same for a certain amount of time. This triggered interrupt is connected to the

interrupt controller. The advantage of this setup is that the GPIO controller‘s external port can

be expanded to take more (or less) bits and any bit can trigger an interrupt. Interrupts from

other components (such as the PCI bus or RS232 ports) can be connected to the interrupt

controller. The hardware setup of the interrupts is depicted in Figure 4-10. As can be seen, the

GPIO controller is connected to IOINT. IOINT is a signal declared in VHDL with the same width

as the output of the GPIO controller (in this case, eight bits). The GPIO controller is setup so

that a rising edge on any bits in IOINT will trigger an interrupt on IP2_INT_IRPT.

104

Figure 4-10: PowerPC interrupt hardware

 As mentioned, IOINT is a signal of width eight. Each interrupt identified is connected to a bit in

the bus. This is shown in Figure 4-11.

Figure 4-11: VHDL interrupt bus

In order to generate the interrupt if the state is changed or if the PID parameters are updated,

the data sent to the DDR RAM via the PCI bus needs to be decoded. It was decided to trigger

the interrupt if a certain value is written to a specified position in the DDR RAM. The value

decided upon was 0xABCDEF12 at position 0x0FFFFFF4 for the PID parameter change, and

0x0FFFFFF8 for a state change. Should any of these two values be detected at those specific

positions, the state value or new PID parameters should be read from the DDR RAM.

4.6 Filter design

As mentioned earlier, the filters in the control loop are essential not to excite critical

frequencies in the system. It is also necessary to reject high-frequency noise from the control

loop. Three types of digital filters were designed to reject these frequencies: an IIR notch filter,

a FIR low pass filter and an IIR band-stop filter. All FIR filters have a linear phase shift in the

pass-band, which is proportional to the order of the filter. Where the phase shift is critical to the

application, IIR filters are rather used, since the pass-band phase shift is less that those of the

FIR filters.

105

4.6.1 IIR notch filter

A notch filter is a band reject filter with a very narrow band. This filter was selected to filter a

very specific frequency from the control, which excites a critical frequency in the mechanical

axis. The IIR notch filter was selected due to the minimal phase shift it exerts in the control

band. The filter is designed to remove 1.448 kHz with a bandwidth of 200 Hz.

A second order band reject filter is given by [62]:

2 2

2 2

O z

pIN
p

p

V s

V
s s

Q

 (4.6)

where z p . Thus,

22

22

2 (1448)

2 (1448)
2 (1448)

7.24

O

IN

sV

V
s

 (4.7)

By using the bilinear transformation on the transfer function in MATLAB

®
, the transfer function

of the IIR notch filter can be obtained as:

2

2

0.9696 1.742 0.9696

1.742 0.9391

O

IN

V z z

V z z
 (4.8)

The bode diagram of this transfer function is seen in Figure 4-12. In second-order section

(SOS) form, the IIR filter can be written as:

0 1 2 0 1 2SOS a a a b b b (4.9)

where:

2

0 1 2

1 2

1 2

()

() 1

za a z a zy z

x z b z b z
 (4.10)

If the transfer function is quantized with a gain, g, the above equation can be written as:

1 2 1 2

1 2 0 1 2() ()y z g b gz b gz x z a g a gz a gz (4.11)

which can be simplified to:

106

1 2 1 2

0 1 2 1 2

1
() () () () () ()y z x z a g x z a gz x z a gz y z b gz y z b gz

g
 (4.12)

which, together with the parameters from the SOS form, are used in the discrete

implementation of this filter.

Figure 4-12: Designed IIR notch filter bode diagram

4.6.2 FIR low-pass filter

The FIR low-pass filter is used to filter high-frequency noise from the control band. In

contradiction with the notch and band reject filters, the low-pass filter is implemented as a FIR

filter. This is because the pass-band phase shift of the low-pass filter is manageable and does

not influence the control.

The FIR low pass filter was designed using MATLAB
®
s ―fdatool‖. This tool was used to setup

the filter and to generate the coefficients. These coefficients were then implemented in VHDL

using the SOS form of the filter. The specification of the filter can be seen in Table 4-6.

107

Table 4-6: FIR low-pass filter specification

Response type Low pass filter

Design method Least squares

Sampling frequency 20 kHz

Pass frequency 250 Hz

Cut-off frequency 2.5 kHz

Order 9

The filter designed using MATLAB
®
 exhibits the magnitude and phase characteristics depicted

in Figure 4-13 and Figure 4-14. When the filter is exported to VHDL, the implemented filter

should still show these characteristics.

Figure 4-13: Simulated magnitude response of FIR low-pass filter

After the filter coefficients were obtained using MATLAB
®
, the filter needs to be implemented in

VHDL. Before this can be done, the functionality of the filter as implemented in the SOS form

needs to be tested. A MATLAB
®
 program was written to test the functionality. The magnitude

and phase response of the SOS-implemented filter is seen in Figure 4-15.

0 1 2 3 4 5 6 7 8 9

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency [kHz]

M
a
g
n
it
u
d
e
 [

d
B

]

Magnitude Response [dB]

108

Figure 4-14: Simulated phase response of FIR low-pass filter

Figure 4-15: True phase and magnitude of implemented FIR low-pass filter

A signal is generated to test the filter. The test signal is a summation of three sinusoidal signals

of different frequency, followed by a square wave. The input signal consists of:

 A 50 Hz sinusoidal wave quantized to 14-bit signed values.

 A 1448 Hz sinusoidal wave quantized to 12-bit signed values.

 A 430 Hz sinusoidal wave quantized to 12-bits signed values.

 A square wave quantized to 14-bit signed values.

0 1 2 3 4 5 6 7 8 9

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Frequency [kHz]

P
h
a
s
e
 [

ra
d
ia

n
s
]

Phase Response

109

 As can be seen from Figure 4-16 the filter‘s input and output correlates. The filter has a 7.2°

phase shift and almost no loss at 50 Hz, 62° phase shift and 1.5 dB loss at 430 Hz and 201°

phase shift and 32 dB loss at 1448 Hz. These results correlate with the magnitude and phase

response of the filter.

Figure 4-16: FIR low-pass filter response for test input

4.6.3 IIR band-stop filter

The IIR band stop filter is used to attenuate a critical frequency at around 440 Hz in the

system. The filter was also designed using the butter-function in MATLAB
®
 and implemented

using a difference equation. The specification of the band-stop filter can be seen in Table 4-7

and the frequency response of the filter can be seen in Figure 4-17.

The filter was tested by using a 50 Hz sinusoidal wave with a high frequency (430 Hz) noise

signal, seen in Figure 4-18. The 430 Hz signal lies within the stop-band of the filter and as can

be seen, this frequency is filtered from the input. From the Bode diagram, it is found that at 430

Hz an attenuation of 300 dB is experienced by the signal with a phase shift of around -190°.

110

Figure 4-17: Phase and magnitude of implemented IIR band-stop filter

Figure 4-18: IIR band-stop filter response for test input

111

Table 4-7: IIR band-stop filter specification

Response type Band stop

Design method Butterworth

Sampling frequency 20 kHz

Stop frequency 380-500 Hz

Order 2

4.7 Conclusion

After selecting a suitable controller and controller architecture, the necessary components

should be implemented. The component design process was based on the software control

flow shown in Figure 4-1. The Acromag
®
 code accommodating the VFX70T PMC module

includes the general setup of the FPGA and PowerPC. However, additional components are

required:

 Dual port RAMs to interface the PowerPC with the FPGA.

 Filters to filter noise from the control band and to attenuate critical frequencies in the

system.

 Filter controllers which controls the throughput of the data to and from the filters.

 An interface to the SBC used for data logging and interfacing to the GUI.

It was also seen that additional PowerPC hardware components are also needed, which also

includes an FPU and memory interface controllers. Each component added to the PowerPC

requires an address in memory. The PowerPC memory space allocation was also designed in

this chapter.

The next step was designing the software for the PowerPC and the firmware for the FPGA.

The designed embedded state machine is based on the system state machine given in the

system requirements specification. Each state defines a certain operation for the controller.

The next components designed were the PID control, system timing, interrupts and filters. The

next chapter discusses the implementation of the designed components.

113

CHAPTER 5

Controller Implementation

The hardware designed in chapter 4 now needs to be implemented. This chapter discusses

how the different components were implemented on the hardware. Since it is important to

verify the functionality of each component, each component is verified as it is implemented.

Chapter 6 discusses the validation of each component.

5.1 System simulation

Normally when programming in a certain programming language (such as embedded C on the

PowerPC), a certain concept or idea can easily be tested just by compiling the code into

assembly code and running it on the designated platform. When programming in VHDL,

however, it is not that simple. Since VHDL is compiled and synthesized into hardware, this

process takes a significant amount of time. It is thus essential to simulate the code to

determine the reaction before it is implemented on the system. This section focuses on

establishing a simulation model of the system as a whole, before the implementation of the

different components is discussed. Even though the VHDL components can be simulated

separately before it is integrated into the system, the need exists to simulate the components

integrated into the system, as well as the different components‘ interfacing with the PowerPC.

ModelSim
®
 is a powerful software package used to perform behavioural simulation of VHDL

code before it is implemented. The simulation process can be divided into a few sub-

processes:

 Writing the VHDL code to be simulated.

 Writing the test bench used to provide stimuli to the written VHDL code.

 Instantiating the VHDL in the test bench.

 Simulating the test bench with instantiated VHDL code.

 Analysing the results and behaviour of the VHDL code.

From the above list, it can be seen that in order to simulate VHDL code, two basic components

are necessary: the code to be simulated and the test bench. In this case, the code to be

simulated is the modified Acromag
®
 example design and only a test bench is needed.

Designing, coding and using a test bench for such a large design proved to be very exhaustive.

The base design needs to be analysed in order to determine the exact functionality and then to

accurately reproduce the necessary stimuli. It is also possible to generate a test bench using

114

ModelSim
®
. However, ModelSim

®
 only generates stimuli for the PowerPC and if the system is

simulated, an interface to the FPGA components is not available.

After some searching, a demo design from Xilinx
®
 was found where the ML507 development

kit is used and a simulation model is set-up for the PowerPC and VHDL components. The

ML507 development board is a development kit which contains the same VFX70T FPGA as

the PMC module used and is thus a suitable platform to try and get a simulation running. The

main problem with this idea was that the PMC module and ML507‘s architectures were entirely

different. So many modifications were needed to either design, that it will take a significant

amount of time. This defies the point since it will still not be possible to simulate the system as

a whole.

If the PowerPC is simulated separately from the VHDL components, the need still exists to

simulate data coming from the FPGA. An example is the PID control. Typically, it is not feasible

to hardcode a few thousand entries just to simulate the input to the PID control. File handling

will simplify this task significantly. The input values can then be generated using a program

such as MATLAB
®
 and saved to a file, which can be read later as an input to the simulation.

The simulation should thus be capable of file handling. File handling in VHDL is not

synthesizable and only possible during simulation, but since the VHDL interface is not

available during PowerPC simulation (as stated above), this is futile. File handling is possible

in embedded C, but since the PowerPC is embedded on a PMC module, it is difficult to access

an external file on the SBC‘s hard drive. The only way of reading a file using the PowerPC, is

to convert the file into a Xilinx
®
 memory file system (xilmfs) file and then to load it into external

memory.

This, however, was not as easy as it seemed and a lot of effort went into trying to get a

simulation running within the scheduled timeframe. A quick solution was proposed: by using a

pcore, the problem proposed by the PowerPC ModelSim
®
 simulation not being able to

interface with the VHDL components could be bypassed due to the pcore being VHDL written

code. The pcore was set-up with an external bus. This external bus was loaded using the file

handling in the ModelSim
®
 simulation. The input data was then sent to the PowerPC core. This

model can be seen Figure 5-1. By using this model, the PowerPC could be simulated even

without an interface to the VHDL components.

The drawback of this simulation model is that the external VHDL components should be

simulated separated from the PowerPC model. When using this model, the external VHDL

components should be simulated meticulously to ensure correct operation.

115

Figure 5-1: ModelSim
®
 pcore simulation model

Another problem experienced while trying to simulate the PID control, was that, although the

basic functionality behind this model works, the timing between the components was extremely

difficult to accomplish, due to the clock domain differences between the PowerPC and FPGA

which complicates synchronization. The external data bus is synchronously clocked into the

pcore using the system clock, which runs at 133 MHz, whereas the PowerPC is clocked at 200

MHz. In the meanwhile, the code running in the test bench is also running at 133 MHz. A state

machine was implemented on the pcore and test bench in an attempt to solve this problem.

The basic idea was to read the file in the test bench. The test bench should then wait until the

pcore issues a read command. The pcore then loads the data received from the test bench

onto the SPLB. The state machine on the pcore should then wait until the PowerPC is finished

with the data, before it lets the state machine in the test bench know it‘s ready to receive new

data. Throughout this process, the PowerPC should be timed or triggered when new data is

put on the SPLB.

At this stage, a couple of months have been spent trying to establish a working simulation

model for the system and a choice between two options existed: either continue struggling with

the timing between the components (which could have taken a significant amount of time) or

attempt an alternative route; emulation.

5.2 System emulation

The idea behind system emulation is simple: the student development kit (SDK) used to

develop software for the embedded PowerPC has a ―debug on hardware‖ option. What this

entails it that while the FPGA is configured with its configuration bitstream, the PowerPC code

is loaded onto the PowerPC using a JTAG (Joint Test Action Group) interface. The JTAG

116

interface is only an IC debug and probing port. This enables debugging of the software running

on the PowerPC, while the code on the FPGA is running.

By using ―printf‖ or ―xil_printf‖, which is the Xilinx
®
 equivalent ―printf‖ (only with less overhead

and buffering), it is possible to write data via RS232 to a terminal program using Acromag
®
‘s

engineering design kit (EDK). The EDK is a development board which slots into the PMC

module instead of the AXM-I/O module and has two RS232 serial ports and a 32-pin header.

The basic principle behind the EDK is for debugging while in development. The idea behind the

emulation is two-fold; firstly, to debug the PowerPC software and to be able to print data to a

terminal using the RS232 serial port. Although emulation encapsulates both firmware and

software, and although it is possible to determine an FPGA error using emulation, the firmware

should still be simulated using a simulation program (in this case ModelSim
®
), since an error in

VHDL could be difficult to pinpoint and takes a long time to correct due to the synthesization-

time. The EDK board can be seen in Figure 5-2.

Figure 5-2: Acromag
®
 EDK module

5.3 Control algorithm

The derivation of the PID algorithm in section 4.4.1 is for a digital PID controller with a single

pole in the differentiator path at -ωp. However, once this control was implemented, a

mechanical frequency was excited, which induced an audible noise. A second pole was then

introduced to reduce the differential gain at high frequencies. The following two sections

discuss the two implementations of the PID control.

117

5.3.1 PID implementation with differential pole at -ωp

The PID control diagram with the differential pole at -ωp was shown in Figure 4-7. This pole

was moved to a higher frequency to limit the gain of the differentiator at higher frequencies.

This control was implemented by using the two 1D second order differential equations (4.5)

and derived parameters (4.4) given in section 4.4.1. The equations and derived parameters are

shown again for clarity:

1 2

0 1 2

1 : 1 2

1 2

D m k x k b m k b m k

y k a m k a m k a m k

with:

0

1

2

1

2

4

2 2 4

2 88

2 4 2 4 2 4

2 2 4
2

2 4 2 4 2 4

8

2 4

2 4

2 4

p

p I D

p

p p

P I D

p p p

p p p

P I D

p p p

p

p

p

T
a K K K

T

T
a K K T K

T T T

T T
a K K T K

T T T

b
T

T
b

T

The implemented control was tested by replacing U1.6 to 6.6
16

 in Figure 4-1 with six single port

ROMs, pre-loaded with position data. This position data was then used by the PID controller to

perform PID control. The resulting current reference was then sent to a terminal program
17

where it is captured and the response determined by plotting the data. This emulated response

was then compared to MATLAB
®
 simulations. Figure 5-3 shows the setup of the hardware

used to emulate the PID response.

16

 The DPRs containing the position data.
17

 Such as HyperTerminal™ of Docklite™

118

ROM

ROM

ROM

ROM

PID

controller

U 1.6

U 1.7

U 3.6

U 4.6

U 6.6

Terminal program
RS232

(via SDK)

Figure 5-3: Differential pole on -ωp PID control emulation setup

The first verification of the PID controller was done by comparing the simulated and emulated

response of the open-loop system. The input used in both the simulation and emulation is the

start-up response of the system where the rotor is held in its reference position (thus at

position 0) and dropped. Figure 5-4 shows the comparison between the simulated and

emulated response. The pole is placed at 1 kHz on the radial axis and at 2 kHz for the axial

axis. The PID parameters
18

 were:

 KP = 20000

 KI = 3

 KD = 38

The x-axes shows the number of data points evaluated and the y-axes shows the scaled

amplitude of the data points for each graph. Each data point represents an unscaled current

reference sent to the power amplifiers.

18

 The emulation was done on a radial PID controller. These were the applicable parameters.

119

Figure 5-4: Simulated vs. emulated open-loop PID response

The next step was to verify the closed-loop response of the system. This is done by comparing

the PID controller used in the emulation of the system, to the PID controller used in the

simulation in a closed-loop simulation. This comparison is shown in Figure 5-5 against the

normal PID control. The same input and PID parameters were used for the closed-loop

response as for the open-loop response.

As can be seen from both types of responses, the designed PID reacts as expected. It is also

seen that the digital implementation of the PID controller closely follows its analogue

equivalent. Figure 5-6 shows a comparison between the open and closed-loop digital PID

response. The simulated response shown was calculated for a closed-loop system, whilst the

response of the PowerPC was calculated for an open-loop system. It is clear that the closed-

loop response is slower to react than the open-loop equivalent. The negative feedback of the

simulated system results in a more stable system, but the response of the PID is slower.

120

Figure 5-5: Digital closed-loop PID response comparison

Figure 5-6: Comparison between open and closed-loop digital PID response

121

5.3.2 Double differential pole PID implementation

Even though the PID control was designed with the differential pole at ωp, it was necessary to

add a second pole in the differentiator path to reduce the differential gain at higher frequencies.

The block diagram of the PID controller with the two poles at ωp1 and ωp2 in the differential-

path is seen in Figure 5-7.

Figure 5-7: Double differential pole PID control block diagram

If the PID control with the shifted pole is given by (from section 4.4.1):

 ()

1

I D
p

p

K K s
D s K

s s
 (5.1)

by adding another pole, this equation is transformed to:

1 2

()

1 1

I D
p

wp wp

K K s
D s K

s s s
 (5.2)

Using MATLAB

®
 equation (5.2) is first transformed into the z-plane using the Bilinear-

transformation and then, by using the symbolic toolbox, transformed into the form:

1 2 3

0 1 2 3

1 2 3

1 2 3

()
1

a a z a z a z
D z

b z b z b z
 (5.3)

which is implemented using :

3 3

3 3

0 1

() n m

n m

y k b e k n a y k m (5.4)

122

This implementation was verified by using a MATLAB
®
 simulation. The results are seen in

Figure 5-8. The position input is a square wave (seen in red in the figure) and the control

response is seen in blue. As can be seen, the control response follows the input, except for the

overshoot on each transition. While the single additional poles were placed at 1 kHz and 2 kHz

for the radial and axial control respectively, the double pole implementation features these

poles on both radial and axial PID control. The PID parameters for the simulation were based

on the parameters
19

 obtained by suspending the rotor using dSPACE
®
:

 KP = 20000

 KI = 10000

 KD = 55

Figure 5-8: Double differential pole PID control response verification

The double pole simulation was not compared to an emulation equivalent since the double

differential pole implementation was implemented after the single differential pole

implementation was validated. The simulation model was thus implemented and then

validated. Refer to chapter 6 for details.

19

 Also done on a radial PID controller

123

5.3.3 System timing

The system timing is regulated by means of a sync-generator instantiated in VHDL. This sync

generator can be seen in Figure 5-9 and Table 5-1 describes the interfaces to the sync

generator.

Figure 5-9: Sync generator entity

Table 5-1: Sync generator interface description

Port name Type Description

Clock Input This is the reference clock. The synchronous processes, such as

incrementing counters, are driven using this clock.

Reset Input This resets the sync generator. It is an active high signal. All counters

are cleared and the output is initialized to zero when the reset is active.

SyncSig Output This sync signal typically has a 50% duty cycle to ensure effective

propagation to the different components in the ADES system. This

signal is routed to a distribution circuit board from where it is routed to

the different components in the system. It is used to sync the power

amplifiers and sensor board.

SyncPulse Output This is a pulse generated on each rising edge of SyncSig, and is high

for one clock cycle. It is used to trigger the communication controller

(U1.2, U2.2 and U1.14 to U6.14) and components internal to the FPGA,

such as the interrupt to the PID controller (U1.7) which needs only a

single-pulse trigger.

FilterSync Output This is also a pulse, but generated one microsecond prior to SyncPulse.

It is used to trigger the filters controllers (U1.11 to U1.12).

124

A generic parameter is a parameter set during component instantiation and used in the internal

operation of the component. The sync generator has three generic parameters:

 sync_freq – This generic parameter is used to specify the frequency of the sync signal

in kHz..

 sync_high – Specifies the time in micro seconds the sync signal should be high.

 freq – The frequency of the system in MHz.

These generic parameters are used to calculate the values the counter must match to toggle

the output. For instance, freq and sync_freq are used to calculate sync_match in Figure 5-10

by using:

1000

freq

sync_match floor
sync_freq

 (5.5)

Figure 5-10: Sync generator timing

The sync generator generates the output by incrementing a counter on the rising edge of input

clock. If this counter matches a predefined value, the output is toggled to generate the various

sync signals. For instance, the 20 kHz interrupt is generated by the counter counting to

sync_match. For an FPGA running at 133 MHz, sync_match is calculated to be:

133
6650

20

MHz

kHz
. SyncSig, which is initialized to zero when the system is in reset, is inverted

for one clock cycle.

125

5.4 Filter implementation

Units 1.12 to 6.12 in Figure 4-1 depict the filters implemented in the control loop. Each filter is

accompanied by a filter controller (U1.11 to 1.12). The filter controller is responsible for

supplying the filters with the data to be filtered. It reads the current reference from DPR Ux.10

and provides this data to the filters. The filter controller waits while the filtering process

commences. Once the filtering process terminates, a pin is toggled and the filtered data is

written into DPR Ux.13. A segment from Figure 4-1 showing the filter controller, DPRs and

filters are shown in Figure 5-11. Figure 5-12 shows the filter entity (Ux.12) in Figure 5-11

complete with interfaces. The interface description can be seen in Table 5-2.

Figure 5-11: Filter and filter controller connectivity

Figure 5-12: Instantiated filter entity

Each filter entity constitutes two or three separate filters which differ for the radial and axial

implementation of the filters:

126

Radial Axial

 Notch filter Low-pass filter

 Band-stop filter Notch filter

 Band-stop filter

All these filters were implemented using the SOS as discussed in section 4.6. Since it is

possible to simulate the separate entities using ModelSim
®
, these implementations were

verified by using this method. Verification follows Table 5-2.

Table 5-2: Filter entity interface description

Port name Type Description

CLK Input The reference clock. The synchronous processes in the filter

component are clocked using this clock reference.

Input Input The 16-bit data to be filtered is supplied by the filter controller via this

port.

Reset Input This active high signal resets the filter(s)
20

. It initializes the local

variables to zero.

ND Input The filter controller initializes the filter(s) when new data is available

by toggling this active high pin.

Output Output The 16-bit output of the filter.

RDY Output The filter controller waits until the filter-process is completed. By

toggling this pin, the next state in the filter controller is initialized.

5.4.1 Axial AMB filters verification

To verify the filters in ModelSim
®
, a setup similar to that in Figure 5-11 is needed, but since

ModelSim
®
 is capable of file handling, the two DPRs can be replaced with files; DPRx.10 is

replaced by a file containing the input data and DPRx.13 is replaced with a file containing the

results of the filter.

20

 The single filter entity contains two or three filters in cascade.

127

The input file is loaded with a sinusoidal signal containing high-frequency noise. As can be

seen from Figure 5-13, the high frequency noise is filtered with a negligible phase shift and a

maximum reduction of 10% in the amplitude.

Figure 5-13: Axial AMB filters response verification

5.4.2 Radial AMB filters verification

The verification of the radial filters is based on the same ModelSim
®
 setup as the axial filters.

The input to these filters is the same noisy sinusoidal wave as for the axial filters. However,

this time the sinusoidal wave is followed by a step input. The reason for adding the step input

is to verify correct operation of the filters (specifically the notch filter) even for a step input. If

the radial filters‘ reaction to the step input is correct, the axial filters‘ responses will coincide.

The filters‘ responses can be seen in Figure 5-14. As can be seen, the radial filter‘s response

to the sinusoidal input is relatable to that of the axial filters. However, since the radial

implementation of the filters consists of two filters instead of three, the maximum loss of the

radial filters is less than that of the axial filter. The maximum loss of the radial filters is 5%.

128

Figure 5-14: Radial AMB filter response verification

5.5 Additional component implementation and verification

All that remains now is a quick discussion on the implementation and verification of the

memory and memory interfaces, as well as the interrupt.

The implementation of the DPR was done by multiple instantiations of the DPR entity, shown in

Figure 4-2. As can be seen from Figure 4-1, the only DPR set not connected to the PowerPC is

U1.13 to 6.13. By connecting these entities to the PowerPC, the interface between the

PowerPC and DPRs can easily be verified by using the SDK. The SDK features a memory

watch window which can be used to view the contents of the memory. This method is also

used to verify the connectivity to the DDR SDRAM. The FPGA connectivity to the DPRs is

verified by writing a constant value to all the DPRs and reading the value using the PowerPC.

The design of the interrupt was discussed in section 4.5 and the interrupt was implemented

using the sync generator
21

. The verification of the interrupt was done by using system

emulation. A xil_printf was used to display a message on the terminal program each time the

interrupt is triggered. The verification of the sync generator was done by connecting the output

ports of the sync generator to an oscilloscope and verifying that each port switches on the

correct time interval.

21

 Discussed in 5.3.3

129

5.6 System execution timing verification

This section is devoted to verifying the system timing. A pre-requisite for the control loop is that

it should fit within a 20 kHz cycle. This implies that the functions performed during control

should not exceed 50 µs. The PowerPC is clocked at 125 MHz. This implies that one 20 kHz

cycle contains 6250 clock cycles. This section measures the number of clock cycles and

determines whether the implemented control exceeds the allowed 6250 clock cycles.

Before determining the number of clock cycles each function takes to execute, it is first

relevant to discuss how the PowerPC can be optimized to improve performance.

5.6.1 PowerPC optimization

Different ways exist in order to improve the performance speed of the PowerPC. The most

common methods are listed below:

1. Increasing the clock frequency.

2. Using a FPU instead of floating-point emulation.

3. Enabling optimization in the SDK.

4. Using cache.

Since increasing the clock frequency induced timing issues on the PowerPC busses, this

method was not considered to improve the PowerPC performance. The other methods are

briefly discussed before measuring the number of clock cycles the PowerPC takes to execute

each function.

5.6.2 FPU vs. emulation

As mentioned in section 4.2.1, in the absence of a FPU, floating-point capability is emulated by

the PowerPC. This emulation takes a significant amount of time. For example, a single floating-

point instruction such as:

1.0

20000.0
T

takes 51 clock cycles

22
 to perform with the FPU enabled, whereas it takes 1621 clock cycles to

perform using floating-point emulation. This results in a performance increase of ±97% on a

single floating-point divide.

22

 An explanation on how the number of clock cycles is determined follows in section 5.6.5

130

5.6.3 SDK code optimization

It is also possible to optimize the code written for the PowerPC using the SDK. Three different

modes of optimization are available: low, medium and high. Care should be taken when

optimization is enabled and the code is debugged, since it can show unusual behaviour such

as unexpected function calls and jumps due to the optimization, but the code will still react in

the intended way.

5.6.4 Instruction and data cache

The PowerPC has two types of cache: 32 KB instruction cache and 32 KB data cache [63].

The primary usage of the cache is to improve overall performance of memory systems that are

accessed multiple times. Cache devices are normally fast memory components, such as

SRAM, which reduces access latency [19]. During each control cycle data is read from

different memory spaces. Each time the data is read, it adds to the latency of the system due

to each memory space having a setup, read and write time as well as the latency of the bus

connecting the memory to the processor. Cache systems store regularly accessed data from

slower memory into cache. Not only is the cache fast memory components, it is normally

connected to the processor by short busses with low latency.

Figure 5-15 shows a simplified block diagram for the PowerPC 440 [64] [65]. From the block

diagram the two types of cache of the PowerPC can be seen:

 The 32 KB instruction cache (I-Cache) controlled by the I-Cache controller.

 The 32 KB instruction cache (D-Cache) controlled by the D-Cache controller.

As can be seen, the instruction unit connects directly to the I-Cache control and the load/store

pipeline connects directly to the D-Cache control. If cache is used, the data loaded into the

cache, can easily and quickly be used by the instruction unit and load/store pipeline

respectively.

The PowerPC cache is enabled by using two functions [66]:

 void XCache_EnableICache(unsigned int regions);

This function enables the data cache for a specific memory region. Each bit in the

―regions”-parameter represents 128 MB of memory. For example, a value of

0x00000001 caches the first 128 MB of memory (thus 0xF8000000 - 0xFFFFFFFF).

131

 void XCache_EnableDCache(unsigned int regions);

This function enables the data cache for a specific memory region. The same applies

to the ―regions‖-parameter as for XCache_EnableICache.

Before the instruction cache can be used, it should first be invalidated using

XCache_InvalidateICache(void); this invalidates and refills the whole instruction cache.

Figure 5-15: PowerPC 440 block diagram

The PowerPC is set-up as such that it uses its internal block RAM (BRAM) to store most of its

data and instructions. The VHDL instantiated DPR is used to send data throughout the system

and the DDR is used as the interface to the SBC. The software running on the PowerPC,

however, uses the internal BRAM. Caching the instructions and data in the BRAM will result in

a significant improvement in PowerPC speed.

5.6.5 Execution timing

Now that the four ways of improving PowerPC speed have discussed, the timing of the

different PowerPC functions can be discussed. Each function will be measured in the following

way:

132

 The system will be evaluated with no FPU, no code optimization and no cache. This

will result in the worst case timing. Not all functions will be evaluated without FPU.

Only the most significant floating-point instructions will be evaluated without an FPU.

 The first improvement will be to add an FPU, if it was removed for the first test.

 The next improvement is to enable code optimization in the SDK.

 Then the cache is added in two parts: first the instruction cache and then the data

cache.

In order to measure the number of clock cycles a function takes to execute, the time base

register is used. The time base register is a 64-bit register which increments once during each

period of the source clock. The Time Base Lower (TBL) contains the low-order 32-bits and

Time Base Upper (TBU) contains the high-order 32-bits [65]. At the start of each function to be

measured, the TBL and TBU registers are read with in-line assembler function mfspr (move

from special purpose register). At the end of the function, these registers are read again and

the delta determined. This delta is an indication of the number of clock cycles each function

takes to execute. A 20 kHz control cycle contains 6250 clock cycles at 125 MHz.

Figure 5-16 shows the time base register and the relationship to other timer facilities [65]. As

can be seen, the time base register is clocked using the reference clock source. The time base

register can also be used to set-up the Watchdog and Fixed Interval timer. The Decrementer

register shown at the bottom is a register which decrements at the same rate the Time Base

register increments. The Decrementer register can be loaded with an initial value and if zero is

reached, an exception is triggered

.

Figure 5-16: Time Base register and timer facilities relationship

133

Table 5-3 and Table 5-4 show the number of clock cycles measured for the most significant

functions performed during each 20 kHz control cycle. The table starts off by giving the default

amount of clock cycles the function takes. The FPU is then enabled, if it was excluded in the

default reading. An even further improvement is then obtained by enabling code optimization in

the SDK. Lastly, the instruction and data cache were enabled. Note that, unless otherwise

stated, the interrupt was disabled to get an accurate reading.

Even though the method used to measure the number of clock cycles is accurate and adds

very little to the overhead
23

, some discrepancies can occur. When measuring the number of

clocks for a certain function, it can happen that two consecutive measurements vary. This is

due to a few reasons:

 Interrupts; the number of interrupts and time at which they occurred.

 The PowerPC 440 has advanced features such as Branch History Table and branch

Target Address Cache which are used for instruction pre-fetching and are in a random

state at the start of the program. Their initial states influence the program execution

time.

 The refresh rate and cycle rate of the external memory influences program execution

time.

Due to these factors, the clock measurements were done numerous times and in the cases

where the number of clocks varied, the maxima were taken.

It can be seen that by optimizing the PowerPC using the discussed methods have a

tremendous influence on the number of clock cycles the functions take to execute. Without

optimization, it is impossible to fit the required functions into a 20 kHz control cycle. As can be

seen from the table, the run-function takes 265,537 clock cycles to execute without

optimization. By enabling optimization, the amount of clock cycles is reduced to 4,880 giving a

98.1% improvement. This results in 6250 4880 1370 clock cycles left for minor

expansions. Table 5-5 shows the average improvements obtained by enabling each of the

optimization methods. As can be seen, enabling the FPU results in a 46.84% improvement.

On top of that, enabling code optimization results in a 56% overall improvement, whereas

enabling both caches result in an 82.29% overall improvement.

23

 mfspr (move from special purpose register) is an inline assembler function.

134

Table 5-3: PowerPC clock cycle measurement (Part 1)

Function Description Default
24

FPU

enabled

Code

optimization

(High)

I-Cache

enabled

D-Cache

enabled

I-Cache and

D-Cache

enabled

Total

improvem

ent (%)

Read_Position() ; Reads the data sent form the position sensor and

scales this value into a position (in micron)

15,284 15,475 15,151 10,346 11,815 2,595 83.0

PID_Control ; Uses the scaled position values from the

Read_Position() function to perform PID control

for 5-axes.

35,734 6,582 1,094 1,006 554 413 98.8

DPR_Read_Mem() ; Uses a pointer to the memory interface to read

data from the VHDL instantiated DPR into a

variable.

N/A
25

 172 86 58 68 27 84.3

DPR_Write_Mem() ; Uses a pointer to the memory interface to write

data to the VHDL instantiated DPR.

N/A 112 18 5 18 5 95.5

DDR_Read_Mem() ; Uses a pointer to the memory interface to read the

state from the DDR if a state change is needed.

N/A 159 83 54 68 19 88.0

24

 No floating-point unit, code optimization and all cache disabled.
25

 Not tested without FPU since the function contains no floating-point instruction.

135

Table 5-4: PowerPC clock cycle measurement (Part 2)

Function Description Default
FPU

enabled

Code

optimization

(High)

I-Cache

enabled

D-Cache

enabled

I-Cache and

D-Cache

enabled

Total

improvem

ent (%)

DDR_Write_Mem() ; Uses a pointer to the memory interface to write

data to the VHDL instantiated DPR.

N/A 113 18 5 18 5 95.5

AMBs_Normal_

Operation_Run()

The run function of the Normal Operation Mode.

This function encapsulates the reading of the

position data, performing PID control and logging

data.

57,516 23,653 17,094 12,199 13,191 3,595 93.8

Mem_int_handler

(void *callback) This is the function which is executed when the

interrupt triggers. The external interrupt port is

read and the port is masked to determine the type

of interrupt. A specific flag is set for each interrupt.

N/A 1,269 1,234 1,319 1,318 1,226 3.4

AMBs_Normal_

Operation_Run()
26

 ;

The run function of the Normal Operation Mode.

This function encapsulates the reading of the

position data, performing PID control and logging

data.

265,537 137,381 87,344 36,804 27,925 4,880 98.1

26

 Interrupt enabled

136

Table 5-5: Average improvement of system optimization

Enabling the FPU

46.87%

Enabling code optimization

56.00%

Enabling instruction cache

68.21%

Enabling data cache

63.28%

Enabling all cache

82.29%

5.7 System integration

Now that the implementation of the individual components of the main controller were

discussed, a discussion on the system integration is necessary.

The hardware architecture of the selected PMC-VFX70T module is shown in Figure 5-17. As

discussed in section 3.5.2, this module slots into one of the SBC‘s PMC sites. The cPCI

connectors can be seen on the right-hand side of the figure. The smaller, non-user

configurable FPGA
27

 is pre-programmed to supply the user with a PCI bus interface via the

local bus. Also seen in the figure is that the cPCI connector also supplies the user with a rear-

I/O interface via the RTM module. This interface uses LVDS as its electrical signalling system

and although it is not used in this project, this interface could prove valuable in future

expansions of this project.

Shown in the picture is the hardware architecture inside the larger, user programmable FPGA.

This is the hardware used by the PowerPC. The PowerPC 440 core interfaces with the two

SRAM blocks and flash memory, which is used to save the non-volatile program code and

data. The PowerPC also connects to the external DDR2 memory via the Crossbar, which is a

very powerful hardware interface connecting most of the PowerPC hardware interfaces.

The user definable FPGA also interfaces with the front I/O connector. This front I/O connector

is used to connect the AXM-D03 interface module. Its 16 digital and 22 differential channels

will be used to connect the real-time controller to the external peripherals, such as power

amplifiers and sensor drivers.

27

 XC5VLX30

137

 The filters, DPRs and communication controllers are implemented on the FPGA. The position

values are received from the sensors on their respective channels via the AXM front I/O

connector. This position value is then written into the DPR, from where it is read by the

PowerPC. The embedded state machine, as discussed in section 4.3, is implemented on the

embedded PowerPC. The rear cPCI connection is the interface between the real-time

controller and non-real time operating system running on the SBC.

 A state machine identical to the one running on the PowerPC is running on the SBC. A state

change from this state machine will trigger an interrupt on the PCI bus and the embedded state

machine will change state accordingly. Depending on the state the PowerPC resides in, the

position data is treated differently. If the current state is Standby, the data is only logged. If the

state is AMBs_Operational, the data is logged and used to perform PID control. The current

references from the PID control are then saved in DPR, from where it is filtered and then send

to the power amplifiers via the front I/O module.

Figure 5-17: PMC-VFX70T hardware architecture

138

5.8 Conclusion

The components designed in Chapter 4 were verified and implemented into the system as

discussed in section 5.7. Despite the issues regarding system simulation, each component

could effectively be verified by either a ModelSim
®
 or MATLAB

®
 simulation, or by using

emulation.

Even though the PID control was designed to have a differential pole at ωp, it was necessary to

include a second pole in the differentiator path to reduce the gain of the differentiator at higher

frequencies. The PID control was implemented on the PowerPC using the first direct (1D)

second order equations and the derived a0, a1, a2, b1 and b2 parameters. The verification of the

control algorithm was done by using a MATLAB
®
 simulation and by emulating the PID control

on the system. From the results obtained, it was seen that the response of the PID controller

was as expected.

The components in the system is timed by using a VHDL instantiated sync generator. This

sync generator, shown in Figure 5-10, is used to realize the timing designed in section 4.4.2.

The FPGA is a suitable platform for implementing the sync generator since it is capable of

generating signals concurrently. This implies that every component in the system receive the

synchronization signal simultaneously.

The filters were implemented either by using the SOS form or by using a difference equation.

The control of the filters are managed by a filter controller, which is responsible for supplying

the filters with the data to be filtered. The filters were verified using a ModelSim
®
 and/or

MATLAB
®
 simulation. It was seen that the required frequencies were filtered out and the phase

shifts were marginally small.

The memory interfaces and interrupts were verified using the SDK, the memory watch window

and xil_printf‘s to print values to a terminal program. The timing was verified using the time

base registers. It was seen that four methods exist for improving the performance of the

PowerPC. A performance increase of up to 82.29% can be obtained by enabling all the

methods.

After verifying and implementing the designed components, focus can now be shifted towards

evaluating the controller.

139

CHAPTER 6

Controller evaluation

This chapter provides the validation procedures followed to validate the selected controller.

The validation is done by determining the stability and sensitivity of the controller. The

controller is also validated by comparing it to the specifications given.

6.1 Evaluation process

The controller was evaluated by using the following techniques:

1. Discussing controller clock cycles and execution time

Section 5.6.5 was dedicated to verifying the different functions in terms of the number of

clock cycles necessary for performing each function. The results obtained in this section

need to be correlated to the physical system and specifications given.

2. Validating system time

After discussing the controller‘s performance in terms of the number of clock cycles

necessary for performing certain functions, these measured number of clock cycles is

then compared to the estimated number of clock cycles given in section 3.2.

3. Verifying the control response and discussing controller benchmarks

The main controller is then compared to the estimated control response given in Table 3-2

to determine whether or not it is possible to implement MIMO control in future iterations.

4. Determining the stability

The stability was determined by adding a step-input to the position data. From the step

response, the control performance measures are calculated. The stability of the system

can be determined from these parameters.

5. Determining the sensitivity

This is done by adding a frequency sweep to the position reference. The sensitivity

analysis indicates the sensitivity of the system to unbalance excitation at each critical

speed [67].

6. Comparing the controller performance to the specification

On the completion of these tests, the final system needs to be compared to the

specifications given.

140

6.2 Controller performance

As seen in section 5.6.5, the normal operation
28

 of the controller takes 4,880 clock cycles to

execute. This implies 39 µs is needed to read and scale the position data, perform PID control

and to log the necessary data (the position of the rotor and actual currents of the power

amplifiers). The execution timing diagram can be seen in Figure 6-1. The functions shown

inside the bar are measured with interrupts disabled. The time shown for normal operation was

obtained by measuring all the functions shown in the bar with interrupts enabled. The time was

obtained by using the clock cycles shown in Table 5-3 and Table 5-4 and by multiplying the

number of clock cycles with the period of the PowerPC clock.

Figure 6-1: Execution timing diagram

By the time the functions performed during normal operation elapses, 11 µs remain for

expansion or improvement. This signifies 1,375 remaining clock cycles to implement the

functions not implemented. A function such as performing the self-diagnostic test could easily

fit within the remaining clock cycles if a simplistic self-diagnostic test is used. Performing motor

control, however, will not fit into the remaining clock cycles, since an estimated 47 µs is

needed to perform motor control using 3-phase pulse width modulation (PWM) [68].

6.3 System timing validation

Section 3.2 gave an estimate of the number of clock cycles needed to perform the control of

the ADES system. From Table 3-2 it was estimated that 1,757 clock cycles were needed to

perform the PID control. This is comparable to the 1,094 clock cycles measured for PID control

on the PowerPC with code optimization, shown in Table 5-3. However, enabling the cache

reduces this number to 414 clock cycles. The initial estimation, even though it was based on

the TMS320F/C24x DSP instruction set, gave an accurate estimate to the number of clock

cycles needed for PID control.

Table 6-1 shows the comparison between the estimated and actual number of clock cycles.

Due to the fact that condition monitoring wasn‘t explicitly implemented, the exact number of

clock cycles is difficult to determine. However, it was seen in section 5.6.5 and 6.2 that the

remaining clock cycles are sufficient to implement a basic form of condition monitoring.

28

 Function AMBs_normal_Operation_Run() discussed in section 5.6.5

141

Even though the sensitivity analysis wasn‘t implemented as a real-time function, the sensitivity

of the system was determined by adding a sinusoidal wave to the reference position and

determining the response of the system to this input. This was possible within the remaining

clock cycles, if the built-in sin-function of the PowerPC is not used. The sin-function takes

between 11,000 and 13,000 clock cycles to execute, depending on the additional math-

functions included in the sin-function (such as a phase shift or amplitude change). However,

the remaining clock cycles are insufficient to analyse the frequency spectrum of the data. This

makes it impossible to determine the sensitivity in real-time on the main controller. It is clear

that the number of clock cycles for sensitivity analysis was greatly under estimated.

The actual number of clock cycles required for communication, shown in the table, is based on

the number of clock cycles it takes to write data to the memory, since the remaining

communication is handled by the FPGA. Due to the ability of the FPGA to transmit data

concurrently, each time the 20 kHz sync-signal triggers, the various data streams are to the

different components simultaneously. The communication process on the FPGA is

synchronous and each data packet is sent on the rising edge of the FPGA clock. This makes it

difficult to determine the exact amount of clock cycles. It is for certain that the number of clock

cycles estimated for communication was overestimated.

Table 6-1: Estimated vs. actual clock cycle comparison

Estimated number of clock

cycles
29

Actual number of clock

cycles
30

PID control 1,757 1,094

Monitoring conditions 330 Not explicitly implemented

Sensitivity analysis 60 Not explicitly implemented

Communication 1,925 205

6.4 Control response verification and controller benchmarks

Table 3-2 estimated that 304 accumulations and 484 multiplications per cycle are needed to

implement MIMO control. The number of accumulations and multiplications per second

(MACS) was estimated as being 1500 MACS. It was also recommended that a 64-bit floating-

29

 Based on the TMS320F/C24x DSP instruction set.
30

 As measured on the PowerPC using the TBL and TBU registers (without caching)

142

point processor be used for MIMO control. Before it is determined whether or not the selected

controller adheres to these specifications, the benchmarking of the selected controller must

first be discussed.

FPGAs are not benchmarked according to the number of instructions they can perform per

second. This is due to the fact that FPGAs are concurrent devices capable of executing

multiple instructions simultaneously. The code implemented on the FPGA is synthesised into

hardware, which is not benchmarked in the same way as software. The size and power of the

FPGA are indicated by the number of logic cells, slices and flip-flops the FPGA contains. The

higher these numbers are, the more components can be instantiated on the FPGA. The

different ranges of FPGAs also include different memory sizes and different hard and soft IP

cores. Hard IP cores are hardware based IP cores, such as the PowerPC-core whereas soft IP

cores are software based IP cores.

Some of these IP cores and auxiliary processors instantiated on the FPGA can be

benchmarked according to the number of instructions they can perform. For example: the

XC5VFX70T Virtex
®
-5 FPGA situated on the PMC module is equipped with an embedded

hardware PowerPC 440 and DSP-slices. The PowerPC is a 32-bit floating-point processor.

The floating-point capability is either emulated or enabled by instantiating an FPU. This FPU is

capable of performing 34.8 MFLOPS compared to the 6.2 MFLOPS
31

 achieved by using

software emulation [69]. The FPU is capable of double precision (thus 64-bit) floating point

calculations. The specifications of the PowerPC 440 core are seen in Table 6-2 [70]. As can be

seen, the PowerPC is benchmarked using the Dhrystone benchmark version 2.1.

Table 6-2: PowerPC 440 core specifications

Performance (Dhrystone 2.1)
1000 MIPS @ 555 MHz (nominal silicon)

720 MIPS @ 400 MHz (slow silicon)

Frequency
0 – 400 MHz (slow silicon)

555 MHz (nominal silicon)

Power dissipation 2.5 mV/Hz @ 1.8 V

Data bandwidth
Up to 6.4 GB/s via three 128-bit

CoreConnect™ bus interfaces.

The XC5VFX70T Virtex
®
-5 FPGA includes 128 DSP48E DSP-slices. These DSP-slices are

capable of 352 GMACS
32

 [39]. Various functions are available as IP cores for FPGAs with DSP

slices. Functions include: FIR filters, FFTs and multiplier-accumulators. These functions make

FPGAs extremely effective when used as co-processors in DSP systems. The only drawback

31

 Both the emulated an FPU results were benchmarked using double precision floating-point calculations
32

 Based on a high speed grade 5VSX95T FPGA

143

when using FPGAs in a setup such as this is that the floating-point values need to be

represented as fixed-point values before it can be used by the FPGA.

From these results, it can be seen that MIMO control is possible using the VFX70T PMC

module. The DSP-slices on the XC5VFX70T is capable of extremely high MACS and the

estimated 1500 MACS are easily realisable. The FPGA‘s ability to perform instructions and

calculations concurrently makes this the ideal platform for the implementation of MIMO control.

An extremely high cycle rate is also achievable and numerical accuracy can be as high as

required. The only drawback is the difficulty representing the floating-point numbers as fixed-

point. Although the embedded PowerPC can be used in conjunction with the FPGA to simplify

the floating-point calculations, it is not powerful enough to individually perform MIMO control

within the required 50 µs. This is due to the FPU only being capable of 34.8 MFLOPS. This is

significantly lower that the estimated number.

The signal processing requirements estimated in section 3.3, is compared in Table 6-3 to the

performance of the selected controller. As discussed in the preceding paragraph, the specified

number of MACS is easily obtainable when implemented on an FPGA with DSP48E DSP-

slices. The numerical accuracy of the selected controller corresponds to the acceptable

numerical accuracy of 32-bits, but the number of FLOPS is significantly lower than the

specified number. The instantiated FPU is not capable of such high floating-point calculations.

This could be problematic if more intensive floating-point calculations are required. It can be

seen that the selected controller is capable of 20 kHz control cycles as well as floating-point

number representation.

Table 6-3: Estimated vs. capable performance comparison

Estimated Capable

Cycle rate 20 kHz 20 kHz

Number of MACS 1,000 MACS 352 GMACS
33

Numerical accuracy 32/64-bit 32-bit

Number type Floating-point Floating-point

FLOPS 1 GFLOP 34.8 MFLOPS

6.5 System stability

The stability of the system was determined by adding a step with an amplitude of 10 µm as an

input position reference. The response to this step-reference is then measured for each degree

of freedom.

33

 Theoretical maximum obtainable using the high speed grade 5VSX95T FPGA

144

The control configuration for this setup is seen in Figure 6-2. The unscaled position data is sent

from the sensor. These values are then multiplied by a gain and an offset added. This is

needed to convert the position data to a value representing a position in microns. This value is

then subtracted from a reference value, which represents the required position where the rotor

needs to be suspended. In this case, the reference is zero in order to suspend the rotor in the

middle of the sensors. The added step input acts as a changed reference position. It is the

responsibility of the PID control to ensure that the rotor is levitated at the oscillating reference

position.

To log the response of the system and to determine the stability, both the input and position of

the rotor need to be logged. This is done by writing the data to the DDR memory space on

each 20 kHz interrupt. The data is then extracted by the SBC and written into a file. MATLAB
®

is then used to analyse the result and to obtain the settling time (Ts), rise time (Tr), percentage

overshoot (P.O.), the damping ratio (ζ), natural frequency (ωn), equivalent stiffness (keq) and

equivalent damping (beq). These parameters are calculated using the following equations:

21

. . 100P O e (5.6)

4

n

sT
 (5.7)

2

eq nk m (5.8)

 2eq eqb k m (5.9)

where m is the equivalent mass of the rotor. The rotor mass is 47 kg and due to the symmetry

of the rotor, the assumption is made the mass of the rotor is evenly distributed among the two

AMBs. Any inconsistencies in the weight distribution are negligible when compared to the total

weight of the rotor. It is thus assumed that the equivalent masses experienced by the two

AMBs are 23.5 kg each. The stability test parameters are shown in Table 6-4.

Figure 6-2: System stability control configuration

145

Table 6-4: Stability test parameters

Step amplitude 10 µm

PID parameters:

 KP

 KI

 KD

20,000

10,000

30

Differential poles

 ωp1

 ωp2

1 kHz

2 kHz

Position reference 0

Figure 6-3 shows the magnetic orientation of the AMBs. Radial AMB 2 is located on the main

impeller end of the rotor and radial AMB 1 is located at the cooling impeller end
34

. The AMBs

were rotated 45°, since the diagonal orientation of the magnets allows for a more even

distribution of the magnetic forces. The positive direction of the z-axis is to the right in the

figure. This figure will act as a reference to both the stability and sensitivity analyses. A step

response in the positive x-direction of radial AMB 1 will be upwards and 45° right.

Figure 6-3: AMB magnetic orientation

6.5.1 Radial AMB 1

Figure 6-4 shows the comparison between the dSPACE

®
 and ADES step response of radial

AMB 1 along the x-orientation. The two responses are shown separately in Figure 6-5. As can

be seen, the noise on the dSPACE
®
 position signal is substantially more than the noise on the

ADES position signal. The noise-ripple in the steady state area on the dSPACE
®
 system is

15.5 µm compared to the 2.750 µm noise-ripple on the ADES. This is an improvement of about

82.3%. Table 6-5 shows a comparison between the dSPACE
®
 and ADES control performance

measures.

34

 A CAD rendered sectional view of the rotor de-levitation system can be seen in Appendix C.

146

Figure 6-4: Radial AMB 1 x-axis step response comparison

Figure 6-5: Radial AMB 1 x-axis step response

147

Table 6-5: Radial AMB 1 x-axis control comparison

 dSPACE
®
 ADES

P.O. (%) 71.8 34.037

Ts (s) 0.024 0.025

Tr (s) 0.007 0.0011

ζ 0.1048 0.3245

ωn (rad/s) 1,589.268 499.075

keq (N/m) 59,355,697 5,853,273

beq (N.s/m) 7,833.33 7,611.336

The step response of radial AMB 1 along the y-orientation is shown in Figure 6-6. As can be

seen, the same noise levels exist on both signals as with the step response in the x-

orientation. However, a damped oscillation exists in the step response of the ADES system.

The damped oscillation can be seen in Figure 6-7 which shows the two responses separately.

Figure 6-6: Radial AMB 1 y-axis step response comparison

148

Figure 6-7: Radial AMB 1 y-axis step response

The difference between the two responses can be attributed to a difference in the point of

operation between the two systems. The ADES system senses the position of the rotor using

the in-house developed iSensor
35

, whereas dSPACE
®
 uses eddy current sensors. Calibrating

the system to suspend in the middle of the iSensor does not necessarily imply that the system

is suspending in the middle of the eddy current censor, and vice versa. The eddy current

probes are situated on the backup bearing housing which is fitted with elastomeric material to

add damping to the rotor should a rotor drop occur. This implies that the backup bearing

housing, and consequently the eddy current probes, are capable of moving a few micrometers

if a force is applied. The iSensor, on the other hand, is fixed to stator housing.

When these tests were performed, the ADES sensor data were calibrated until dSPACE
®

showed the rotor was suspending in the middle of the backup bearing housing. This is done to

ensure that the rotor doesn‘t touch the backup bearings when it is levitated. As mentioned

above, the centre of the backup bearing housing does not necessary coincide with the centre

of the iSensor. Figure 6-8 shows an example of this configuration. The iSensor is fixed and

measures along the orange dashed line. The eddy current probes‘ measurements are relative

35

 Inductive sensor developed to replace the eddy current sensors.

149

to the position of the backup bearing housing. This configuration shifts the linear point of

operation, illustrated in Figure 6-9, which influences the response of the PID controller when

the step is added. As will be seen, this effect is evident in the response of both AMBs along

both axes, with the exception of radial AMB 1 x-axis.

Figure 6-8: Difference in senor positions

Figure 6-9: Linear point of operation for the two sensors

A comparison between the step responses are shown in Table 6-6. It can be seen that despite

the damped oscillation and higher percentage overshoot of the ADES system, the settling time

is still the same of the dSPACE
®
 system.

150

Table 6-6: Radial AMB 1 y-axis control comparison

 dSPACE
®
 ADES

P.O. (%) 50.86 62.21

Ts (s) 0.025 0.025

Tr (s) 0.0093 0.0061

ζ 0.2104 0.149

ωn (rad/s) 760.49 1,071.0

keq (N/m) 13,591,151 26,955,961

beq (N.s/m) 7520.0 7520.0

6.5.2 Radial AMB 2

This section discusses the step response of radial AMB 2 along the x and y-orientation. The

step response of the x-axis is shown in Figure 6-10. Both step responses exhibit a damped

oscillation before settling, as is seen from Figure 6-11. As can be seen, the settling time for the

ADES is remarkably shorter than that of the dSPACE
®
 system. Table 6-7 shows a comparison

between the two step responses.

Figure 6-10: Radial AMB 2 x-axis step response comparison

151

Figure 6-11: Radial AMB 2 x-axis step response

Table 6-7: Radial AMB 2 x-axis control comparison

 dSPACE
®
 ADES

P.O. (%) 74.21 62.99

Ts (s) 0.0998 0.025

Tr (s) 0.0049 0.0055

ζ 0.9451 0.1456

ωn (rad/s) 424.049 1099.25

keq (N/m) 4,225,721 28,396,082

beq (N.s/m) 1883.77 7520.0

The last step response evaluated is the step response of the second radial AMB in the y-

orientation. The comparison between the ADES and dSPACE
®
 step responses is shown in

Figure 6-12. Figure 6-13 shows the separated step responses. As can be seen, the damped

oscillation before settling is still evident in both responses. The percentage overshoot of the

ADES step response is about half of the dSPACE
®
‘s step response. The settling time of the

ADES is again remarkably quicker than the dSPACE
®
 system. The control comparison is

shown in Table 6-8.

152

Figure 6-12: Radial AMB 2 y-axis step response comparison

Figure 6-13: Radial AMB 2 y-axis step response

153

Table 6-8: Radial AMB 2 y-axis control comparison

 dSPACE
®
 ADES

P.O. (%) 76.04 42.45

Ts (s) 0.049 0.025

Tr (s) 0.0013 0.001

ζ 0.869 0.263

ωn (rad/s) 939.83 608.063

keq (N/m) 20,757,090 8,688,923

beq (N.s/m) 3,836.73 7520.0

6.5.3 Axial AMB

Throughout the above-mentioned tests, the axial AMB was controlled using the dSPACE
®

system. This is due to the fact that, at this stage, it is impossible to accurately sense the axial

position of the rotor using the iSensor. It is thus not possible to control this axis using the

ADES system. The hypothesis for this phenomenon is that the machining of the sensing

surface causes an error on the iSensor, which fluctuates with the rotation of the rotor. Further

study is needed to determine whether this is indeed the case. The axial AMB was also

controlled using dSPACE
®
 while performing the sensitivity analysis.

6.6 System sensitivity

The feedback control in AMB systems provides positive stiffness and damping so that the rotor

can be stably suspended in the centred position. Without feedback control, the magnetic

bearings will have negative stiffness and damping, which would result in an unstable system.

The ISO CD 14839-3 standard defines an evaluation method to determine the stability margin

of AMB systems [67]. The sensitivity function is defined as the ration of VR over VD where VR is

the measured error signal and VD the sinusoidal disturbance. The positions of these signals

are shown in Figure 6-14. The system sensitivity is then calculated, in dB, using equation

(5.10):

()

() 20 log
()

R
s

D

v s
G s

v s
 (5.10)

The ISO CD 14839-3 standard specifies that the sensitivity should be characterized to a

frequency larger than three times the rated speed, or a maximum frequency of 2 kHz. A

frequency sweep from 2 Hz to 2 kHz in increments of 2 Hz and an amplitude of 20 µm is thus

used. Also stated in the standard is that all the axes have to be evaluated independently and

that the overall system sensitivity will be determined by the worst rating of any measured axis.

154

Figure 6-14: Sensitivity analysis control setup

Systems can be grouped into one of four zones [67]:

Zone A: The sensitivity functions of newly commissioned machines would normally fall within

this zone.

Zone B: Machines with the sensitivity functions within this zone are normally considered

acceptable for unrestricted long-term operation.

Zone C: Machines with the sensitivity functions within this zone are normally considered

unsatisfactory for long-term continuous operation. Generally, the machine may be operated for

a limited period in this condition until a suitable opportunity arises for remedial action.

Zone D: The sensitivity functions within this zone are normally considered to be sufficiently

severe to cause damage to the machine.

The zone of the specific system is determined by calculating the worst sensitivity rating of the

individual axes and by comparing it to Table 6-9.

Table 6-9: Peak sensitivity at zone levels

Zone Peak sensitivity level

A/B 8 dB

B/C 12 dB

C/D 14 dB

The parameters used in the sensitivity tests are shown in Table 6-10. The same PID

parameters were used in the sensitivity analysis as in the stability testing.

155

Table 6-10: Sensitivity analysis parameters

Sinusoidal amplitude 20 µm

PID parameters:

 KP

 KI

 KD

20,000

10,000

30

Differential poles

 ωp1

 ωp2

1 kHz

2 kHz

Position reference 0

Figure 6-16 shows a comparison between the dSPACE
®
 and ADES sensitivity response. As

can be seen, the two responses differ greatly. This can be contributed to the non-collocation of

the two sensors [71], illustrated in Figure 6-15.

Figure 6-15: Non-collocation of the sensors in the AMB system

The different positioning of the sensors are clearly shown in Figure 6-15: the eddy current

sensors measure at the end-points of the rotor, whereas the iSensor measure more towards

the middle of the rotor. As the frequency sweep excites the critical frequencies of the system,

the response of the rotor varies between sensors. The effect of the bending modes are also

measured at different positions on the rotor, which gives different sensitivity analysis results.

Figure 6-17 shows the first two bending modes of the rotor. As can be seen, the position of the

sensors have a direct impact on the displacement measured. For example, the eddy current

sensors measure a small displacement for the first bending mode, whereas the iSensor

measures a large displacement.

156

Figure 6-16: dSPACE

®
 and ADES sensitivity response comparison

Figure 6-17: Bending modes and non-collocation of the sensors

Due to this effect, the sensitivity of the ADES will not be compared to the sensitivity of the

dSPACE
®
 system. From Figure 6-16 it can be seen that the profiles of the sensitivity plots

between the dSPACE
®
 and ADES correlate. This verifies the method used to analyse the

sensitivity. The most prominent critical frequencies excited by the frequency sweep was

determined and are listed in Table 6-11 [72]:

157

Table 6-11: Prominent critical frequencies of the ADES

Frequency [Hz] Description

45 1
st
 rigid body mode

60 2
nd

 rigid body mode

220 Unknown
36

400 Impeller critical frequency

780 1
st
 bending mode

1500 2
nd

 bending mode

6.6.1 Radial AMB 1

Figure 6-18 shows the sensitivity of radial AMB 1. As can be seen, the sensitivity gain for the x-

axis is between 8 and 12 dB (11.03 dB to exact) but the sensitivity gain for the y-axis is 13.25

dB. The reason why the sensitivity for the x and y-axis differs is due to the rotor not being

suspended in the middle of the iSensor
37

.

Figure 6-18: Radial AMB 1 sensitivity

36

 Further study is needed to determine the cause of these critical frequencies.
37

 Refer to section 6.5.1 for a complete discussion.

158

6.6.2 Radial AMB 2

The sensitivity of radial AMB 2 is shown in Figure 6-19. As can be seen, the sensitivity for both

the x and y-axis correspond with each other. This implies that the rotor was suspended in the

middle of the iSensor for this test. The sensitivity gain for the second radial AMB is also lower

than 12 dB.

Figure 6-19: Radial AMB 2 sensitivity

6.6.3 System sensitivity

Form the sensitivity plots, it can be seen that the dominant frequency is the unknown 220 Hz.

Further study is needed to determine the exact cause of this frequency. It can also be seen

that the system is insensitive to the first two rigid body modes. The IIR band-stop filter filters

the impeller critical frequency and the second bending mode frequency is filtered using the IIR

notch filter. Frequencies higher that 2.5 kHz is filtered using the low-pass filter.

The ISO CD 14839-3 standard specifies that system sensitivity will be determined by the worst

rating of any measured axis. From Figure 6-18 it can be determined that the system is a zone

C system, since the sensitivity gain of the y-axis of radial AMB 1 is higher than 13 dB. This is

the worst rating of any measured axis, and implies that the system is normally considered

unsatisfactory for long-term continuous operation.

159

It was discussed in section 6.5.1, that the linear point of operation differs for the two systems.

For these tests, the rotor was again suspended in the centre of the backup bearing modules.

This centre is not necessarily the same as the centre of the iSensor. When performing the

sensitivity analysis, the rotor is suspended closer to one bearing than the other, and a

difference in sensitivity is measured.

By moving the linear point of operation for radial AMB 1 closer to the centre of the iSensor,

can improve the sensitivity analysis. It can be seen that the sensitivity gain for radial AMB 1 y-

axis is slightly higher than the 13 dB line. A zone B system is easily achievable. However, it

was specified that the ADES should be a zone A system, since it is newly commissioned. To

achieve such a drastic improvement, the PID parameters should be adjusted. This is discussed

in the subsequent section.

6.6.4 Improving system sensitivity

The ADES is a newly commissioned system and the sensitivity gain of the system was

specified to be lower than 8 dB, thus placing the ADES in zone A. From the analysis above, it

was seen that the ADES is a zone C system. As mentioned, the sensitivity of the system can

be improved by adjusting the PID parameters. For example, adjusting the PID parameters to

those shown in Table 6-12, and measuring the sensitivity on radial AMB 2 using dSPACE
®

delivers the result shown in Figure 6-20. As can be seen, the sensitivity is below 8 dB. This

implies a zone A system, which adheres to the system requirement specification. By increasing

the differential gain and lowering the proportional gain, the damping of the system is increased

and the sensitivity to the sinusoidal input is lowered due to the inertia of the rotor.

Table 6-12: PID parameters for zone A sensitivity

Sinusoidal amplitude 20 µm

PID parameters:

 KP

 KI

 KD

17,000

5,000

50

Differential poles

 ωp1

 ωp2

1 kHz

2 kHz

Position reference 0

When these PID parameters are used to evaluate the sensitivity by means of the ADES, the

system destabilizes when KD is increased above 38. This result indicates that the phase shift in

the ADES system is larger than that of the dSPACE
®
 system. Further work is needed to

establish the source of this phenomenon.

160

Figure 6-20: Improved sensitivity on AMB 2 x-axis

6.7 Conclusion

In section 3.1.2 it was stated that the selected controller should be capable of the following:

 Controlling the AMBs (F1.1)

o Calculate control response (F1.1.2)

 Monitoring system (F1.3)

o Run self-diagnostic test (F1.3.1)

o Monitor conditions (F1.3.2)

o Sensitivity analysis (F1.3.3)

 Communicate (F1.4)

o Transmit (F1.4.1)

o Receive (F1.4.2)

In this chapter, it was seen that the controller performance is sufficient for implementing the

control of the AMBs (F1.1). The performance discussed in section 6.2 is based on the

performance of the PowerPC and it is possible to move some features to the FPGA to leave

more room on the PowerPC for additional floating-point calculations. Take the motor control for

example. It was estimated that 47 µs is needed to perform motor control using 3-phase pulse

width modulation. However, not enough room is left within one 20 kHz cycle to perform motor

control on the PowerPC. The solution is to implement the motor control on the FPGA, or to

161

move some of the fixed-point calculations to the FPGA to make enough room on the PowerPC

for motor control.

Even though the self-diagnostic test (F1.3.1) and condition monitoring (F1.3.2) was not

included in this iteration of the project, the remaining clock cycles are sufficient for

implementing a self-diagnostic test and/or a simple form of condition monitoring. If a more

complex form of condition monitoring, such as neural network based or statistical condition

monitoring is required, the same recommendation as above is made; move some of the

features off the PowerPC and onto the FPGA.

It was also seen that a real-time sensitivity analysis (F1.3.3) on the PowerPC is not possible. If

a real-time sensitivity analysis is required, it is suggested that it should rather be implemented

on the FPGA. Determining the stability and sensitivity of the system was done by adding the

required signal, either step or sinusoidal, to the reference position of the system. The response

of the system was logged and extracted non-real time using the SBC. From section 6.5 it was

determined that the response of the system was stable despite the step added to the

reference. It was also seen that the noise on the ADES is significantly less than on the

dSPACE
®
 system. From the sensitivity analysis, it was determined that the ADES falls within

zone B and is thus considered acceptable for unrestricted long-term operation, even though it

does not adhere to the specifications given in the system requirements. Even though it is

possible to improve the sensitivity response of the system by increasing the differential gain, it

is not possible with the ADES control.

Another requirement was that the selected controller‘s calculation of the control response

should be capable of MIMO control (F1.3.3), even though it was not implemented on the first

iteration of the project. It was seen in section 6.4 that, although difficult, MIMO control will be

possible on the selected controller.

The last function the controller should be able to perform is communicate (F1.4). Even though

the design and implementation of the communication does not fall within the scope of this

dissertation, the selected controller should be capable of receiving (F1.4.2) and transmitting

(F1.4.2) data between components. The communication was implemented on the FGPA, since

it is possible to communicate the data concurrently to the required components. The selected

PMC module is equipped with both front and real I/O interfaces, which can be used to interface

with external components. The front I/O module is the AXM-D03 I/O module. This module has

16 digital and 22 differential channels, which are directly accessible from the FPGA. Data is

sent to and from the sensor and power amplifiers via this I/O module. The rear I/O has low-

voltage differential signalling lines, which is not used at this stage.

163

CHAPTER 7

Conclusions and recommendations

This chapter concludes the dissertation by discussing the controller selection, design and

implementation process. Recommendations are then given to assist in similar projects. Lastly,

the future work is discussed and a closure statement given.

7.1 Conclusions

The aim of this project as a whole was to develop an industrial system capable of controlling

AMBs in high-speed applications, such as a helium blower system. The main controller, as part

of the ADES, should be capable of performing the control of the AMBs, monitoring the system

and communicating values through the system.

7.1.1 Controller selection process

Selecting a suitable controller was based on performing trade-off studies on the system and

main controller architectures. The system and main controller architectures were evaluated

simultaneously using decision matrices. The decision matrices evaluate the architectures on

robustness, efficiency, cost, risk, flexibility and expandability.

From section 2.1.6 it was seen that the final controller selection must pass four critical tests

[49]:

1. Is it available in a suitable implementation?

2. Is it capable of sufficient performance?

3. Is it supported by a suitable operating system?

4. Is it supported by appropriate and adequate tools?

The selected controller will now be discussed using these guidelines;

Is it available in a suitable implementation?

Two implementations were considered during the selection process of the main controller unit

for the ADES; either an in-house developed controller, or a commercial off-the-shelf product.

Since the ADES should adhere to industrial specifications, the latter implementation was

selected. This will ensure an industrial product, while minimizing the risks involving

development and manufacturing of the controller board.

164

The off-the-shelf solution selected is based on an industrial, more robust version of PCI called

compact PCI or cPCI. Various different configurations of the cPCI architecture were

considered. From the system architectural comparison, it was evident that the best architecture

for the system is system architecture 1.2. Two suitable options for this architecture were

considered, shown in Figure 3-23 and Figure 3-24. The first represented main controller

concept architecture 4, shown in Figure 3-10, and the other represented main controller

concept 6, shown in Figure 3-12.

The selected configuration consists of an SBC which slots into a cPCI backplane. The SBC

has two PMC sites; one sites the Virtex
®
-5 PMC module and the other sites the Profibus card,

which will be used to interface the system to a PLC. The SBC is used for scheduling the non-

real time tasks, data logging and as a user interface. The Virtex
®
-5 PMC module is used for

scheduling the real-time tasks such as controlling the AMBs.

The selected architecture is industrial, robust, powerful and expandable. It is thus suitable for

controlling AMBs in an industrial environment.

Is it capable of sufficient performance?

The selected controller should be powerful enough to control AMBs, monitoring the system and

to communicate the requested values to the required components. Monitoring the system

includes performing a self-diagnostic test, monitoring conditions and performing a sensitivity

analysis. It was also specified that the selected controller be capable of MIMO control, for

future iterations of this project. The control cycle for all these requirements are specified at 20

kHz.

The number of clock cycles it takes the PowerPC to perform the implemented functions was

measured and discussed in section 5.6.5. It was seen that it takes 4,880 clock cycles for the

PowerPC to read and scale the position values, perform PID control for five axes and to log the

data. This figure excludes condition monitoring, performing a self-diagnostic test and

performing the sensitivity analysis. Luckily, not all these functions need to be included in the

remaining 1,375 clock cycles. Performing the self-diagnostic test is not required to be a real-

time function. It should be performed during standby, where it is not critical if the process takes

longer than the specified 20 kHz control cycle. The remaining clock cycles are insufficient for

implementing complex condition monitoring and/or real-time sensitivity analysis on the

PowerPC. To implement these functions, some of the features have to be moved from the

PowerPC and implemented on the FPGA.

165

As discussed in section 6.4, the selected architecture is also powerful enough to perform

MIMO control, if the FPGA is used to alleviate the computation-intensive functions from the

PowerPC.

Is it supported by a suitable operating system?

One of the advantages of the selected architecture is that it is very flexible, even in terms of

operating systems. Not only is it possible to install a real-time OS, such as QNX, on the SBC, it

is also possible to use the embedded PowerPC without an OS, or to install a real-time OS.

This enables various combinations of this architecture. Where the SBC is currently used for

scheduling the non-real time tasks, with a real-time OS it will be possible to incorporate real

and non-real time scheduling on the SBC. Installing a real-time OS on the embedded PowerPC

adds additional drivers and features which could improve or enhance the embedded system.

Is it supported by appropriate and adequate tools?

The problem with most tools supporting embedded devices, such as FPGAs and DSPs, are

that the companies manufacturing these tools primarily focus on hardware and not software.

Software is not their primary trademark. The tools are therefore prone to bugs. Even though

third party tools may be available for most of the embedded devices, these tools do not

necessarily include the drivers, IP cores and support the manufacturing company offers. Due

to these added benefits of using the manufacturer‘s software, it was decided that it would be

used. However, some of the issues experienced with the software include:

 Calculating the PID parameters, which include numerous floating-point divisions, was

impossible using Xilinx SDK 10.1. The PowerPC crashes during a floating-point

division. This issue was resolved by upgrading to SDK 11.1.

 The SDK used for developing software for the PowerPC can only debug the code by

simulating the code on hardware. What this entails is loading the developed software

onto the PowerPC using the EDK-board via the JTAG connector. The debug window is

then opened from where the code can be debugged. A ―debug on software‖-mode is

also available, but this mode has so little functionality, that it was impossible to debug

the code. The problem with debugging the code on the hardware is two-fold. The first

is that the EDK-board is necessary for debugging. Since the EDK slots into the same

slot as the AXM module used for external communication from the PMC module,

external communication is not possible when the EDK is used. The other problem is

that if code is already running on the embedded PowerPC, debugging additional code

166

is complicated since this code should be loaded onto the PowerPC to be debugged.

Occasionally inconsistent data is read during this debug method.

These are just some of the issues experienced and as can be seen, the biggest issue

experienced was with debugging with the SDK. Despite the issues regarding tools, most of the

tests were passed and the conclusion can be made that the selected controller is sufficient for

the application.

7.1.2 Controller design

The hardware of the system was designed using the software control flow given in Figure 4-1.

Twenty-four DPR instantiations were needed to facilitate this design. The DPRs were

instantiated in VHDL and they were chosen large enough to contain nine 32-bit values. The

data bus width were chosen as 32-bits to simplify integration with the PowerPC memory

controller, which is also 32-bit. This, however, complicated the integration with the

communication controller, which communicates 16-bit data packages. This meant

concatenating the 16-bit data packages with zeros until it is 32-bits long. The problem with this

approach is that the most significant bit (MSB) in the VHDL bit-vectors can be declared to be

on the left or right side of the bit-vector. The convention used throughout the VHDL code

design was to define the MSB as the leftmost bit in the vector; however, the PowerPC memory

controller does not follow this convention. By the time this was realized, most of the

components in VHDL were already written. The 16-bit data packages should thus not only be

converted to 32-bit values, the order and position of the bits should be correct, or else the

wrong data is read. The same applies to a write. Since the rest of the system uses only 16-bits,

the written data should be positioned in the right half of the data word, or else the wrong data is

truncated.

After designing the DPRs and memory interfaces, the rest of the required components can be

designed. The first was the embedded state machine. This state machine represents the states

the embedded system can reside in. The states contained in the embedded state machine

represent the states specified in the system requirements specification. A state transition

occurs when the GUI issues a state-change interrupt.

Six possible interrupts were identified and even though the final implementation of the system

does not make use of all the identified interrupts, the interface exists and the additional

interrupts can be easily utilized. The interrupts are connected to an external bus. This bus is

connected to the input port of a general-purpose I/O controller, which is set-up to trigger an

interrupt should a rising edge occur on the input port. The triggered interrupt is sent to an

interrupt controller, which handles the external interrupts.

167

7.2 Recommendations

This section discusses the unresolved issues and makes some general recommendations

regarding certain aspects.

7.2.1 Controller implementation

As discussed in the previous section, the hardware of the system was designed using the

software control flow given in Figure 4-1. As can be seen from the figure, six distinct, yet

identical, paths exist; one for each degree of freedom. Identical components also exist in each

path. Each path contains (besides the PID controller and PCI memory space):

 4 DPRs

 A filter controller

 A filter entity containing 2 or 3 filters

A UART controller and packet analyser also exist for each power amplifier and two exist for

receiving the sensor data. This brings the total number of components to:

 24 DPRs

 6 Filter controllers

 6 Filter entities

 7 UART controllers

Instantiating these components individually results in bulky code and a more elegant method

exists. Each type of component can be instantiated using a ―for/generate‖ VHDL statement.

The ―for/generate‖-statement is a concurrent statement which allows for a piece of code to be

repeated a number of times, while creating numerous instances with the same assignments

[36]. A ―for/generate‖-statement will exist for each of the components mentioned above. Take

the DPRs for example. A ―for/generate‖-loop from 0 to 23 will be used to instantiate 24 DPRs.

Each individual DPR will then be identified using the index of the loop.

It is also highly recommended to compile a document describing the interfaces to and from

each VHDL entity. This document should describe the position of the MSB for each port, the

number of bits for each port as well as the connectivity for each port. This document will

ensure that the correct number representation is used by each port and will clarify the naming

convention, especially when a ―for/generate‖-statement is used.

168

7.2.2 Debugging and simulation

As discussed in section 7.1.1 during the test to verify whether adequate tools support the

selected controller, debugging is a problem when using the SDK. The EDK module played an

essential part in debugging the PowerPC code, since no software-debugging mode is available

and the only way to debug the PowerPC code is by loading the code onto the PowerPC using

the EDK module.

The difficulties regarding the setup of a PowerPC simulation were discussed in section 5.1. A

simulation encapsulating both FPGA and PowerPC would accelerate the debugging process

tremendously, since it would be possible to simulate the entire system, without the need for the

SDK module. Even ChipScope™, the on-chip logic and bus analyser developed by XIlinx
®
,

requires the use of a JTAG connector, and since the only available JTAG is on the EDK, it

cannot be used.

Even though emulating the PowerPC code works well to a certain extent, the difficulties in

using the EDK-module is time consuming. A complete system simulation is not impossible to

set up. The only drawback is that a lot of time is needed to thoroughly analyse the stimulants

needed in the simulation and to include the PowerPC. A more effective debugging method will

be timesaving.

7.3 Future work

As with all projects, there is room for improving the ADES system. Some features could not be

included due to time limitations. This section is dedicated to discussing the future work needed

to be done.

7.3.1 Sensitivity analysis inconsistencies

The ADES was specified to be a zone A system in terms of sensitivity. However, the sensitivity

analysis indicated that the ADES is a zone C system, which can be improved to a zone B

system by adjusting the linear point of operation. The cause of the higher sensitivity gain, can

be attributed to the PID control which is incapable of delivering high enough damping. The

possible case was given in section 6.6.4 as a phase shift in the ADES system which is larger

than that of the dSPACE
®
 system. Further study is needed to establish the source of this

phenomenon. A further study is also required to determine the origin of the 220 Hz critical

frequency.

169

7.3.2 Self-diagnostic test

A self-diagnostic test should be performed before entering the “Standby” mode. The basic idea

is to verify that each component is operational before granting the user control over the

system. The general idea behind this test is for the sensor to generate a dummy value. This

value is then propagated through the system until the PID controller is reached. The PID

control then generates a reference value according to the value received. This reference value

is then sent to the power amplifiers, where the control loop is closed. Since all the parameters

are known during the self-diagnostic test, the current values sent back from the power

amplifiers can be evaluated. If the anticipated value is received, it can be concluded that all the

components in the system is functional. This test is concluded without physically suspending

the rotor.

7.3.3 Condition monitoring

One of the requirements of the ADES was that it should be capable of performing condition

monitoring. Condition monitoring is used to monitor certain conditions while the system is

operational. From these conditions, certain characteristics and possible failures can be

determined. Various types of condition monitoring exist, from statistical to ―intelligent‖ methods

using neural networks and fuzzy logic.

Even though condition monitoring is an excellent feature to include in the ADES, if done

properly, the scope for condition monitoring can become quite large. It was thus left out of

scope for this iteration of the ADES, but it could be implemented at a later stage.

The number of clock cycles remaining on the PowerPC is not enough to implement condition

monitoring within the 20 kHz cycle. It should thus be implemented on the FPGA, which

significantly complicates its implementation. sufficient

7.3.4 Real-time sensitivity analysis

Two states were included in the state machine to include a real-time sensitivity analysis at

standby and at nominal speed. However, analysing the frequency spectrum of the result before

obtaining the sensitivity, takes a significant number of clock cycles. It is thus not possible to

implement the sensitivity analysis on the PowerPC in the remaining clock cycles.

Two solutions to this problem exist. The first solution is fundamentally the same

implementation as done in section 6.6. The reference and error values are logged using the

SBC. The sensitivity is then determined using a program such as MATLAB
®
.

170

The second solution is to use the FPGA to analyse the frequency data. The PowerPC can still

be used to log the reference and error values, but the frequency spectrum is determined using

the FPGA. A 64k point FFT is available when using Xilinx
®
‘s ExtremeDSP™ slices [39], which

will be sufficient for determining the frequency spectrum. The result from the error and position

FFT should still be divided, whereafter the log is determined and the result multiplied by 20.

This can either be done using the PowerPC (if enough clock cycles are available) or on the

FPGA. Further study is needed to determine the exact implementation.

7.3.5 Emergency stop procedure

Two states were included in the embedded state machine to provide for two emergency stop

procedures. The first is the emergency stop procedure for a critical failure and the second is

the emergency stop procedure for a non-critical stop. Currently, the only features included in

these two states are a transition to ―Standby‖ for a critical stop, and a transition to

―AMBs_Operational‖ for a non-critical stop. From a mechanical point of view, further study is

needed to determine the correct course of action in a critical or non-critical situation. The

determined course of action should then be implemented in the appropriate state.

7.3.6 Motor control

The proposed system was shown in Figure 1-4. As shown in the figure, the ADES system

should also be capable of controlling the motor. However, this specification was changed for

the first iteration of the ADES. A Siemens
®
 PLC and motor drive is used to control the motor.

The next iteration of the ADES system will use the Profibus PMC card to interface with the

PLC. From there, the whole system, including the motor control will be done via the PLC. This

card must be configured, implemented and connected to the PLC. A project is also underway

to develop a Profibus IP core, which will be implemented on the Virtex
®
-5 PMC module. This IP

core will replace the Profibus PMC module.

7.3.7 Remote-access port

The Ethernet/USB port featuring in the main controller architectural discussion in section 3.5.1,

will be used as a remote-access port in future iterations of the ADES project and will enable

remote control, updates and maintenance of the ADES system. The Ethernet port was

selected above the USB port, due to the network features required. The Ethernet port is

located on the SBC. An application needs to be developed to interface the PMC module with

the Ethernet port.

171

7.3.8 MIMO control algorithm

MIMO control for AMBs is a new field of study within the McTronX research group. The reason

why it was specified that the selected controller should be capable of MIMO control, is to

enable future research in MIMO control on the ADES.

7.4 Closure

The purpose of this project was to develop an AMB and drive electronic system (ADES)

capable of performing in high-speed industrial applications such as a helium blower. The focus

of this dissertation was on the specification, selection and implementation of a controller

suitable for the ADES. The selected controller should be capable of controlling the AMBs,

monitoring conditions, performing self-diagnostic tests, performing real-time sensitivity analysis

and communicating with the external components such as the sensor unit and power

amplifiers. Evaluation of the selected controller indicated that the controller is capable of

monitoring positions, controlling the AMBs, logging data and communicating; all within 50 µs. It

was also determined that the selected controlled adhered to the specifications given, with the

exception of the sensitivity analysis. Despite the higher sensitivity, the control was stable

enough to suspend the rotor at its designed rating of 19,000 r/min, but due to the sensitivity

rating, prolonged operation at this speed is not recommended. It can thus be seen that the

FPGA and embedded PowerPC is a versatile, compact and powerful architecture suitable for

controlling AMBs in an industrial environment.

172

Bibliography

[1] R.F Tinder, Engineering digital design, 2nd ed.: Academic press.

[2] A. Dhir, The Digital Consumer Technology Handbook: A Comprehensive Guide to

Devices, Standards, Future Directions, and Programmable Logic Solutions.

[3] R.M Yeomans, "Advanced Gas-Cooled Reactors (AGR)," in International Atomic Energy

Agency, Austria, 1980, pp. 17-38.

[4] The virtual nuclear tourist. (2009, April) Gas Cooled and Advanced Gas Cooled

Reactors. [Online]. http://www.nucleartourist.com/type/gcr.htm

[5] G.P. Greyvenstein and P.G. Rousseau, "Design and successful testing of a physical

model of the Pebble Bed Modular Reactor," International journal of nuclear power, p.

p2.

[6] Universal Instruments, "Generation IV Nuclear Reactors," Australian Uranium

Association, UIC briefing paper #77 February 2008.

[7] ESKOM. Pebble Bed Reactor Technology. [Online].

http://www.escom.co.za/nuclear_energy/pebble_bed/pebble_bed.html

[8] R.H Bishop, Mechatronics: An Introduction.: CRC Press, 2006.

[9] G. Schweitzer, H. Bleuler, and A. Traxler, Active magnetic bearings: Basics, Properties

and Application of Active Magnetic Bearings, Authors reprint ed. Zürich, 2003.

[10] M. Aenis, E. Knopf, and R. Nordmann, "Active magnetic bearings for the identification

and fault diagnosis in turbomachinery," Mechatronics , vol. 12, p. 1011–1021, 2002.

[11] J. Boehm, R. Gerber, and N.R.C Kiley, "Sensors for magnetic Bearings," IEEE

Transactions on magnetics, vol. 29, pp. 2962-2964, November 1993, No. 6.

[12] H Bleuler, C. Gähler, and R. Hertzog, "Application of digital Signal Processors for

industrial magnetic bearings," IEEE transactions on control system technology, vol. 2,

no. 4, pp. 280-289, 1994.

[13] A. V. Deshmukh, Microcontrollers: Theory and Applications.: McGraw-Hill, 2005.

http://www.nucleartourist.com/type/gcr.htm
http://www.escom.co.za/nuclear_energy/pebble_bed/pebble_bed.html

173

[14] Keep talking. Keep Talking Glossary. [Online]. www.keep-talking.net/glossary.htm

[15] United Electronic Industries. Embedded Controller (definition and description). [Online].

http://www.ueidaq.com/media/static/other/so/embedded-controller.pdf

[16] Intel®. Intel microprocessor hall of fame. [Online].

http://www.intel.com/museum/online/hist_micro/hof/index.htm

[17] Intel®. Intel® microprocessor quick reference guide. [Online].

http://www.intel.com/pressroom/kits/quickrefyr.htm

[18] J. L. Antonakos, The Intel® Microprocessor family: Hardware and software principles

and applications.: Thompson, 2007.

[19] B. B. Brey, The Intel® Microprocessors: Architecture, programming and interfacing, 7th

ed.: Pearson.

[20] BDTI. BDTI's DSP Dictionary. [Online]. http://www.bdti.com/articles/dspdictionary.html

[21] IBM®. IBM® WebSphere Voice Server Information Centre: Glossary. [Online].

http://publib.boulder.ibm.com/infocenter/pvcvoice/51x/index.jsp?topic=/com.ibm.websph

ere.wvs.doc/wvs/glossary.html

[22] E.C. Ifeachor and B.W. Jervis, Digital Signal Processing: A practical approach, 2nd ed.:

Prentice Hall, 2002.

[23] S.W Smith, Digital Signal Processing: A practical guide for scientists and engineers,

Imported edition ed.: Newnes, 2003.

[24] S.A. Ward and Jr. R.H. Halstead, Computation structures, 5th ed.: The MIT press, 1999.

[25] A.R. Hambley, Electrical engineering: principles and applications, 3rd ed.: Prentice Hall,

2004.

[26] Analog Devices Inc., Embedded processors and DSP selection guide, 2008, [Available

on the data disc].

[27] BDTI, Speed per Milliwatt Ratios for Floating-Point Packaged Processors (Berkeley

design Technoloy, Inc.), 2007, [Available on the data disc].

[28] BDTI, Speed Scores for Floating-Point Packaged Processors (Berkeley design

file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/M-projek/Dokumentasie/Verhandeling/Volledig/www.keep-talking.net/glossary.htm
http://www.ueidaq.com/media/static/other/so/embedded-controller.pdf
http://www.intel.com/museum/online/hist_micro/hof/index.htm
http://www.intel.com/pressroom/kits/quickrefyr.htm
http://www.bdti.com/articles/dspdictionary.html
http://publib.boulder.ibm.com/infocenter/pvcvoice/51x/index.jsp?topic=/com.ibm.websphere.wvs.doc/wvs/glossary.html
http://publib.boulder.ibm.com/infocenter/pvcvoice/51x/index.jsp?topic=/com.ibm.websphere.wvs.doc/wvs/glossary.html

174

Technoloy, Inc.), 2007, [Available on the data disc].

[29] J. Milrod, "Continuous real-time signal processing: Comparing the 300 MHz TigerSharC

to the 500 MHz MPC7410 PowerPC and the 1 GHz MPC7455 PowerPC," Bittware, Inc.,

2002.

[30] RadioLocman. (2002, December) Analog Devices TigerSHARC Processor Delivers

Industry's Highest DSP Performance. [Online].

http://www.radiolocman.com/news/new.html?di=24

[31] The Free library. (2004, March) Analog Devices' 600MHz TigerSHARC Earns Top

Floating-Point Benchmark Score. [Online].

http://www.thefreelibrary.com/Analog+Devices'+600MHz+TigerSHARC+Earns+Top+Flo

ating-Point+Benchmark.-a0114746520

[32] BNET. (2003, March) Analog Devices' TigerSHARC Processor and iMEMS Gyroscope

Named 2002 Innovation of the Year Awards Finalists. [Online].

http://findarticles.com/p/articles/mi_m0EIN/is_2003_March_6/ai_98418802

[33] The Free library. (2004, February) Analog Devices' TigerSHARC Processor Named

2003 Innovation of the Year Award Finalist by EDN Magazine. [Online].

http://www.thefreelibrary.com/Analog+Devices'+TigerSHARC+Processor+Named+2003

+Innovation+of+the.-a0112980250

[34] Texas Instruments®. TMS320C67x floating-point DSPs. [Online].

http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?family=dsp§ionId=2&ta

bId=135&familyId=327¶mCriteria=no

[35] B. Mealy, The low-carb VHDL tutorial, 2004.

[36] V.A Pedroni, Circuit design with VHDL. London, Massachusetts, England: MIT Press,

2004.

[37] I. Kuon, R. Tessier, and J. Rose, "FPGA architecture: Survey and challenges,"

Foundations and Trends in Electronic Design Automation, vol. 2, 2007.

[38] Xilinx®. Getting started with FPGAs. [Online].

http://www.xilinx.com/company/gettingstarted/index.htm

[39] Analog Devices Inc.®, "XtremeDSP solutions selection guide," Selection guide 2008.

http://www.radiolocman.com/news/new.html?di=24
http://www.thefreelibrary.com/Analog+Devices'+600MHz+TigerSHARC+Earns+Top+Floating-Point+Benchmark...-a0114746520
http://www.thefreelibrary.com/Analog+Devices'+600MHz+TigerSHARC+Earns+Top+Floating-Point+Benchmark...-a0114746520
http://findarticles.com/p/articles/mi_m0EIN/is_2003_March_6/ai_98418802
http://www.thefreelibrary.com/Analog+Devices'+TigerSHARC+Processor+Named+2003+Innovation+of+the...-a0112980250
http://www.thefreelibrary.com/Analog+Devices'+TigerSHARC+Processor+Named+2003+Innovation+of+the...-a0112980250
http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?family=dsp§ionId=2&tabId=135&familyId=327¶mCriteria=no
http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?family=dsp§ionId=2&tabId=135&familyId=327¶mCriteria=no
http://www.xilinx.com/company/gettingstarted/index.htm

175

[40] V. Pietikäinen, ARM architecture: ARM7, ARM9, TDMI., November 19, 2002, [Available

on the data disc].

[41] ARM. ARM architecture for the digital world. [Online].

http://ir.arm.com/phoenix.zhtml?c=197211&p=irol-homeprofile

[42] C.R Moore and R.C Stanphill, "The PowerPC alliance," Communicaitons of the ACM,

vol. 37, pp. 25-27, 1994.

[43] Freescale Semiconductor®, "Programming Environments Manual for 32-Bit

Implementations of the PowerPC™ Architecture," Freescale Semiconductor®, 2005.

[44] Xilinx®, "Embedded Processor Block in Virtex-5 FPGAs," Xilinx®, Reference guide

UG200 (v1.6), 2009.

[45] PC/104 embedded consortium. Why PC/104? The Need for an Embedded-PC

Standard. [Online]. http://www.pc104.org/specifications.php

[46] PC/104 embedded consortium. PC/104 Specifications. [Online].

http://www.pc104.org/pc104_specs.php

[47] The Free Dictionary. PC/104. [Online].

http://encyclopedia2.thefreedictionary.com/PC/104

[48] IEEE Standards Department, Draft Standard Physical and Environmental layers for PCI

Mezzanine cards: PMC, April 4, 1995.

[49] A.S. Berger, Embedded Systems Design: An introduction to Processes, Tools, and

Techiniques.: CMP Books, 2008.

[50] B. O'Rourke and R. Taylor, "Turbocharging your CPU with an FPGA-programmable co-

processor: Co-processor synthesis adds the optimal programmable resources," Xilinx,

2006.

[51] A.R. Weiss, "Dhrystone Benchmark: History, Analysis, "Scores" and

Recommendations," ECL, LLC, 2002.

[52] BDTI. BDTI company overview. [Online]. http://www.bdti.com/bdti_overview.html

[53] BDTI, "The BDTImark2000™: A summary measure of signal processing speed,"

Berkeley design technology, Inc., Benchmarks 2004.

http://ir.arm.com/phoenix.zhtml?c=197211&p=irol-homeprofile
http://www.pc104.org/specifications.php
http://www.pc104.org/pc104_specs.php
http://encyclopedia2.thefreedictionary.com/PC/104
http://www.bdti.com/bdti_overview.html

176

[54] BDTI, Speed per Dollar Ratios for Floating-Point Packaged Processors, 2007, [Available

on the data disc].

[55] E.O. Ranft, "The development of a flexible rotor active magnetic bearing system," North-

West University, Potchefstroom, Master's dissertation 2005.

[56] C.L Phillips and H.T Nagle, Digital control system analysis and design, 3rd ed.: Prentice

Hall, 1995.

[57] M. Neser, "Object-Oriented Embedded C," North-West University, Potchefstroom,

Technical report.

[58] S.R. Schach, Object-Orientated and Classical Software Engineering, 7th ed.: Mcgraw-

Hill, 2007.

[59] ANON, TMS320F/C24x DSP Controllers Reference Guide: CPU and Instruction Set,

1999, Doc nr. : SPRU160C.

[60] B. Mackin and N. Woods, "FPGA Acceleration in HPC: A Case Study in Financial

Analytics," XtremeData Inc., 2006.

[61] S.Y. Lim and A. Crosland, "Implementing FFT in an FPGA Co-Processor," Altera

Corporation, 2005.

[62] G. Daryanani, Principles of active network synthesis and design.: Wiley, 1976.

[63] Xilinx®, Virtex-5 FPGA Embedded Processor Block with PowerPC 440 Processor,

January 20, 2009.

[64] IBM®. Power Architecture Licensing. [Online]. http://www-

03.ibm.com/technology/power/licensing/cores/ppc440.html

[65] IBM®, "PPC440x4 CPU Core User's Manual," IBM®, User manual 2003.

[66] Xilinx®, Standalone Board Support Package, January 8, 2007, [Available on the data

disc].

[67] ISO, Mechanical vibration — Vibration of rotating machinery equipped with active

magnetic bearings, July 10, 2002, BS ISO 14839.

[68] D. Herbst, "Single board computer based control of an active magnetic bearing," North-

http://www-03.ibm.com/technology/power/licensing/cores/ppc440.html
http://www-03.ibm.com/technology/power/licensing/cores/ppc440.html

177

West University, Potchefstroom, Master's dissertation 2008.

[69] G. Steiner, B. Jones, and P. Alfke, "Floating-Point: Have it your way with FPGA

embedded processors," XCell journal: Solutions for a programmable world, vol. Issue

67, pp. 32-35, 2009.

[70] IBM®, "The PowerPC440 Core: A high-performance, superscalar processor core for

embedded applications," IBM® Microelectronics Division, 1999.

[71] M.D. Noh, "Self-sensing magnetic bearings driven by a switching power amplifier,"

University of Virginia, PhD thesis 1996.

[72] N. Bessinger, "The adaptation of a rotor for active magnetic bearing levitation and the

corresponding auxiliary desing," North-west University, Potchefstroom, Master's

dissertation Current.

179

APPENDIX

The additional information used within this dissertation is given here. Appendix A starts off by

giving supplementary information regarding the BDTI benchmark suite. BDTI benchmarking

examples are also given. Appendix B gives a detailed cost comparison between the two

system architectures considered in section 3.6; the T2-6U-cPCI and the PP41x/03x. Appendix

C shows a computer-aided design (CAD) generated section of the rotor de-levitation system.

Appendix D and E shows photos of the system and graphical user interface (GUI) respectively.

Lastly, Appendix F lists the data on the accompanying disc.

Appendix A: BDTI benchmark suite

Table A-1 shows the list of functions included by the BDTImark2000™. Figure A-1 to A-3

shows examples of different BDTImark2000 benchmarks.

Table A-1: BDTI benchmark™ suite

Function Description Example application

Real block finite impulse
response (FIR)

FIR filter that operates on real
(not complex) data

Speech processing or compression

Single-sample FIR FIR filter that operates on a single
sample data

Speech processing or general filtering

Complex block FIR FIR filter that operates on a block
of complex data

Modern channel equalization

Least-mean square (LMS)
adaptive filter

LMS adaptive filter that operates
on a single sample of real data

Channel equalization, servo control
and linear predictive coding

Two-biquad infinite
impulse response (IIR)

IIR filter that operates on a single
sample data

Audio processing and general filtering

Vector dot product Sum of the point-wise
multiplication of two vectors

Convolution, correlation, matrix
multiplication, multi-dimensional signal

processing

Vector add Point-wise addition of two vectors
to give a third vector

Graphics, combining audio signals or
images or vector search

Vector maximum Find the location of the maximum
value in a vector

Error control coding and algorithms
using floating-point

Viterbi decoder Decodes a convolutional encoded
bit stream

Wired and wireless communication

Control A contrived series of control and
bit manipulation instructions

Virtually all signal processing
applications

256-point fast Fourier
transform (FFT)

An FFT converts an time domain
signal into the frequency domain

Radar, sonar, MPEG audio
compression or spectral analysis

Bit unpack Unpacks words or varying length
from a continuous bit stream

Audio and speech decompression

180

Figure A-1: BDTI speed per dollar ratios for floating-point processors [54]

181

Figure A-2: BDTI speed scores for floating-point packaged processors [28]

182

Figure A-3: BDTI speed per millwatt ratios for floating-point packaged processors [27]

183

Appendix B: Exposition of architecture costs

The two architectures considered in section 3.6 were:

 The T2-6U-cPCI TigerSHARC™ board

 The PP41x/03x Intel
®
 board with Virtex

®
-5 FPGA PMC

A basic price-comparison was given in Table 3-25 between these two options. The table below

give a comprehensive exposition of the architecture costs.

Table D-1: Architectural cost exposition

SBC and assembly components

SBC PP412/032-x2 R 31,221.43

Transition module R 5,000.00

Break out cable R 500.00

HDD R 3,000.00

Assembly kit R 820.00

 Total (excl VAT) R 40,541.43

Case

2U case R 24,000.00

 Total (excl VAT) R 24,000.00

Profibus module

Profibus PMC R 10,800.00

Software R 7,220.00

 Total (excl VAT) R 18,020.00

Acromag
®

FPGA

Virtex
®
- 5 PMC PMC-VFX70 R 55,000.00

Engineering design kit R 10,000.00

Windows drivers R 3,000.00

Virtex
®
- 5 development board R 25,000.00

 Total (excl VAT) R 93,000.00

TigerSHARC option

TigerSHARC™ SBC T2-6U-cPCI R229,700.00

Visual DSP VDSP-TS-PC-FULL R 39,700.00

Emulator ADZS-HPUSB-ICE R 46,200.00

RTM module R 10,000.00

Carrier card R 10,000.00

 Total (excl VAT) R 335,600.00

184

Appendix C: Rotor de-levitation sectional view

Figure B- 1: CAD

38
-rendered sectional view of the rotor de-levitation system

38

 Computer-aided design

185

Appendix D: Photos of completed system

Figure C-1: Rotor de-levitation assembly

Figure C-2: ADES control enclosure

186

Appendix E: Graphical user interface

The graphical user interface (GUI) was developed using an open-source cross-platform

application development framework called Qt
39

. The development environment used was

Microsoft
®
 Visual Studio

®
 2005 Professional edition. The development of the GUI was a rapid

prototype to illustrate functionality. The functionality of the GUI will be replaced by the PLC and

remote access interface.

The control window is seen in Figure D-1. The buttons on the left-hand side of the window is

used to change the states of the system. The colour coding scheme used on the buttons are:

 Green indicates the current state

 Yellow indicates a possible state transition

 Red indicates an invalid state transition

The PID parameters are updated using the right-hand side textboxes. These parameters may

only be updates while the system is in the ―Standby‖-state

Figure D-1: Graphical user interface: control window

The graphs indicating the position of the rotor in the x and y-axis of both radial AMBs, are

shown in Figure D- 2. The orbital movement of the rotor is because the screens were captured

at 4,000 r/min.

39

 Pronounced : ―cute‖

187

Figure D- 2: Graphical user interface: rotor position graphs

Figure D- 3 illustrates the true currents sent from the power amplifiers. As can be seen, 10

currents are received. Current 1 and 2 are received from power amplifier 1, current 3 and 4 are

received from power amplifier 2, etc. The ADES was not used to suspend the rotor axially and

thus are current 6 and 7 equal to zero. The axial position is also monitored and displayed.

Figure D- 3: Graphical user interface: True currents and z-position

188

Appendix F: Data disc

The structure of the data on the disc is as follows:

F.1 System requirements specification

F.2 BDTI documentation

 F.2.1 General

 F2.2 Benchmarks

F.3 Product guides

 F3.1 T2-6U-cPCI

 F3.2 PP41x_03x

F.4 Acromag
®
 demo design and documentation

F.5 Simulations

 F.5.1 Filters

 F.5.1.1 MATLAB
®

 F.5.1.2 ModelSim
®

 F.5.2 PID control

 F.5.2.1 Single pole PID control

 F.5.2.2 Double pole PID control

F.6 Source code

 F.6.1 Main controller

 F.6.2 Sensor

F.7 Stability test data

 F.7.1 dSPACE
®
 step results

F.7.2 ADES step results

F.8 Sensitivity analysis data

 F.8.1 dSPACE
®
 sensitivity results

F.8.2 ADES sensitivity results

189

F.9 Documentation

F.9.1 Project proposal

F.9.2 Dissertation

F.10 Photos

F.11 References
40

40

 Not all references are available on the disc.

