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Abstract

The purpose of this study is to investigate a procedure for estimating the bandwidth in kernel
distribution function estimation based on the bootstrap. To investigate the performance of
the estimator, simulation studies were performed comparing the above mentioned estimator
to estimators suggested by Altman and Léger (1995) and Van Graan (1983). The findings

and conclusion of this study are reported.

i1



Uittreksel

Die doel van hierdie studie is om 'n prosedure wat die bandwydte in kernfunksie-beraming vir
verdelingsfunksies te beraam, te ondersoek. Om die kwaliteit van die beramer te ondersoek
sal dit in 'n simulasiestudie met twee beramers voorgestel deur Altman and Léger (1995) en
Van Graan (1983) vergelyk word. Die bevindinge en gevolgtrekkings van die simulasiestudie

word bespreek.



Summary

The purpose of this study is to investigate a procedure for estimating the bandwidth in kernel
distribution function estimation based on the bootstrap. To investigate the performance of
the estimator, simulation studies were performed comparing the above mentioned estimator

to estimators suggested by Altman and Léger (1995) and Van Graan (1983).

Chapter 1 gives an overview of kernel distribution function estimation, as well as the dis-
crepancy measures commonly used in this estimation. Chapter 2 deals with the classical
bootstrap procedure with some applicaﬁions. Chapter 3 provides an overview of the existing
methods for estimating the bandwidth. Chapter 4 introduces a new procedure based on the
bootstrap for estimating the bandwidth and some of its properties. Chapter 5 describes the

methodology followed in the simulation study as well as the conclusions that can be made.

In Chapter 1 the reader is given an introduction to kernel distribution function estima-
tors where the origin, application and properties of these estimators are described. Several

discrepancy measures commonly used in distribution function estimation are also discussed.

Chapter 2 describes the non-parametric classical bootstrap procedure. It explains various
important aspects of the bootstrap including the plug-in principle and a bootstrap sample

and gives several applications in statistical inference.

Chapter 3 provides an overview of the existing methods for estimating the bandwidth, which
can be classified in two categories, namely those based on estimating an appropriate discrep-

ancy measure and those based on estimating the asymptotical optimal bandwidth.

Chapter 4 introduces a new procedure based on the bootstrap for estimating the bandwidth.
This procedure is investigated in a special case where the distribution is known and its

asymptotical properties are investigated.

Chapter 5 deals with the simulation study used in this study. It explains the outputs, which
can be found in Appendixes A and B, as well as the inputs and the algorithm used by
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Opsomming

Die hoofdoel van die studie is om 'n prosedure wat die strookwydte beraam in kern verde-
lingsfunksie beraming, te ondersoek. Die prosedure, gebaseer op die skoenlusmetode, sal ook
vergelyk word met twee ander prosedures om die strookwydte te kies, naamlik die prosedures

soos voorgestel deur Altman en Léger (1995) en Van Graan (1983).

Hoofstuk 1 bied 'n oorsig oor kernfunksie-beraming sowel as die verlies-funksies wat algemeen
daarmee gepaard gaan. Hoofstuk 2 handel oor die klassieke skoenlusmetode en sommige van
sy toepassings. Hoofstuk 3 gee 'n oorsig van die bestaande metodes om die strookwydte te
beraam. Hoofstuk 4 stel 'n nuwe prosedure voor, gebaseer op die skoenlusmetode, om die
strookwydte te beraam en bespreek sommige kenmerke van die beramer. In hoofstuk 5 word

die simulasiestudie beskryf sowel as die resultate daarvan.

Hoofstuk 1 bied aan die leser 'n oorsig van kernfunksie-beraming, insluitende die oorsprong,
toepassing en kenmerke van die beramers. Daar word ook gekyk na verliesfunksies en hul

gebruik in kernfunksie-beraming.

Hoofstuk 2 beskryf die nie-parametriese skoenlusmetode en verduidelik verskeie aspekte van

die metode asook toepassings daarvan.

Hoofstuk 3 bied 'n oorsig oor die bestaande prosedures om die strookwydte in kernfunksie-
beraming te beraam. Die prosedures kan in twee kategorie verdeel word, naamlik die wat 'n

toepaslike verliesfunksie beraam en die wat die asimptoties optimale strookwydte beraam.

Hoofstuk 5 beskryf die simulasiestudie van die ondersoek. Die algoritme van die program,
wat in die binneblad van die skripsie gevind kan word, word bespreek. 'n Bespreking van die

resultate van die simulasiestudie wat in Bylae A en B gekry kan word, word ook hier gegee.
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Notation

Symbol Description

F(z) The distribution function of a random variable z

X or (X1, Xa,...,X,) | A sample vector of n independent identically distributed
random variables

Fo(z) The empirical distribution function (EDF)

I(A) The indicator function of the event A

Jrn The kernel density function estimator

k(u) The kernel density function

K(u) The kernei distribution function

Fon(z) The kernel distribution function estimator

h The bandwidth of the kernel estimator

The order statistics of X,

5 2 k(2)dz

2 #k(2)K(z)dz

The mean squared error when using bandwidth A

The integrated squared error when using bandwidth A

The mean integfated squared error when using bandwidth A
The average sc;ia:red error when using bandwidth A

The mean average squared error when using bandwidth A

The bootstrap sample vector of size n

The bootstrap expected value of functional t(Fy,)
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Symbol Description

A4(F) [ooo £ (@)W (m)dF (z)

Vi(F) Joo F(@) [1 = F(@)] W (z)dF ()

U3, (F) S5 [ (@) W (z)dF (z)

B;(F) S22 F(@)F9 (w)dF ()

hops [?4%_3} EAEYS

LNO(h) ” Leave-non-out” estimator of ASE

CV(h) ? Cross-validation” criterion

Ban(z, F) The bias of Fy, ()

bo,n(z, By) The bootstrap estimator of B, (z, F)

h The data-driven bandwidth obtained from a procedure
for a random sample X, X5, ..., X, from a distribution F

dass B [ASE (h)]

dass i LIS ASE (hs)

h 5o Yo i

SE Standard error of A in simulation study
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Chapter 1

Introduction

1.1 Distribution function estimators

In the area of statistical inference, estimation of the unknown distribution function F(z),
of a population is important. Other statistical methods that are dependent on knowledge
of the distribution function include hypothesis testing and confidence interval estimation.
Also, if one is interested in estimating the proportion of elements in the population that are

less than or equal to z, then knowledge of the distribution function is essential.

Existing methods to estimate an unknown distribution function from data can be classified
into two groups, namely: parametric and non-parametric methods. Parametric methods
are dependent on the assumption that the functional form of the distribution function is
specified. If it is known that the data are normally distributed with unknown mean and
variance, the unknown parameters can be estimated from the data and the distribution
function is then completely determined. If the assumption of normality cannot be made,
then the parametric method of estimation cannot be used and a non-parametric method of

estimation must be implemented.

Non-parametric methods have the advantage that they are independent of distributional
assuraptions. The best known and simplest non-parametric estimator of the distribution
function is the empirical distribution function (EDF). Let X, X5, ..., X, be i.i.d. random
variables. Then the EDF is defined by



where

1, if A occurs;
I(4) =

0, if A® occurs..

Note that I(X}, < z) are independent Bernoulli random variables such that:

1, with probability F(z);
0, with probability 1 — F'(z).

I(Xk < iE) =

Thus nFy,(z), is a binomial random variable (n trials, probability F'(z) of success) and so

BlRa)] = Flo)
Var [Fy(o)] = ~F(s)[L - F(o)].

Furthermore, E[Fy(z) — F(z)]> = Var [Fy(2)] + [E{FL(z)} — F(z)]?
1

= —F(z)[1—F(z)] —0asn— oo
n
Thus as an estimator of F(z), F,(z) is unbiased and its variance tends to 0 as n — oo.
Also, the Glivenko-Cantelli theorem states that F' can be approximated by F;, in an uniform
manner for large sample sizes such that

lim sup |Fn(z) — F(z)| = 0 almost surely. (1.1)

=00 —po<zr<oo

It was also shown by Jacod and Protter (2000) that the order of convergence is

O(n~*2(loglogn)*/?) almost surely.

Despite its good theoretical properties, the empirical distribution function is a step function.
In many applications, a smooth estimate of F' is desired. Examples include estimating the
tails of F' and in survival analysis, where it would be advantageous to have a smooth estimate
of F. A non-parametric alternative to F, has been introduced in Nadaraya (1964). This
estimator can be derived from the Rosenblatt-Parzen density estimate, see Rosenblat (1956)

and Parzen (1962); namely

1 & —X;
fn,h(x) :%Zk (x A ))

=1

where h = h(n) is a sequence of smoothing parameters (also called the bandwidth), for which
it is required that h — 0 and nh — oo as n — oco. The kernel function & usually satisfies

the requirements:



1. k(u) >0,VueR.
2. 72 %0 k(w)du = 1, hence k is a density function.
3. k(—u) = k(u), hence k is symmetric function.

4. [T uk(u)dz = 0.

The non-parametric kernel distribution function estimator is then defined as

/fnh
= ~Z ( ) (1.2)

where K(u) = [ _k(t)dt, i.e. K is the distribution function corresponding to k.

Fn,h(z)

Il

Note that the kernel distribution function estimator includes the EDFE as an extreme case.

To see this, let h — 0, then

0, if X;> z;
K( . )——— L i X =g
1, ifX; <z

Hence, as h — 0, it can be shown that Fj, ,(z) — Fpo(z) for all z, where
1
= —Z[ (X <2)+SI(X; =)

Van Graan (1983) demonstrated that Fy,o(z) differs from Fj,(z) only when z is equal to one
of the order statistics X1y, X2, .., X, i€,

i—

. . '
Fn,O(CE) = % + '2_17—7: = n2 , ifz= X(’L);
5 = Fo(z), if o # X

Thus kernel distribution function estimators also includes the empirical distribution function

as an extreme case.

In order to compare the kernel distribution function estimator to the EDF, expressions for the
aforementioned estimator will now be derived, see Van Graan (1983). To obtain Var [F), »(z)]

note that (under certain conditions on F' and K)

Var [Fop(z)] = %Var {K (z—hXﬂ

- e{f - BEEAT e




Now

i (552 [ (5) o

Using partial integration, the substitution Z7¥ = 2z and a Taylor series expansion it follows

that

where

“h

Ff”ﬂ
-5 [ Fr (55 o
_ /_ o~ ha)k(2)dz
= /_Z [F(x) — hzf(z) + %hQZQf'(CC) + Ry, 2) | k(z)dz

= F(o) + SKF (@ualk) + O(H), (1.4)
pi(k) = /oo 2k(2)dz for 7 > 1 (1.5)

and R;(z, #) represents a remainder term. From (1.4) it is clear that E[F, ()] and conse-

quently the bias of F, (z) is O(h®), which approaches 0 as h approaches 0.

Using a similar approach as above an expression for E { [K (’”—_5)]2} can be obtained:

{ [« (%5

where

h

)} = L)) ow

= i Lron (55 ()

= 2/00 F(z — h2)K(2)k(2)dz

— / K(z { z) — hzf(z) + %thzf’(x) + hPR(z,2)| dz
~ Fl)-2nf@) [ K@k +00),

= F(z) —2hf(z)D1(K) + O(h?) (1.6)
D;(K) = /00 2k(2)K(2)dz for 5 > 0. (1.7)

Using (1.3), (1.4) and (1.6) an expression for Var [F,, ,(z)] is given by

Var [Fp, p(z)]

2 |Fl@) = 2@ Du(k) + O - { Fla) + 3027 () <>+0<h3>}]

PO T) ot wnym o (L)),
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where 2f(z)D1(K) > 0. The previous result shows that the asymptotic variance of F, j, is
smaller than the variance of the EDF. It is evident that for larger values of h, the quantity
2hf(z)D;(K) increases, resulting in a smaller variance expression but larger bias. This

observation has important implications for choosing the bandwidth.

Several other properties of the estimator F; , have been investigated. Nadaraya (1964),
Winter (1973) and Yamato (1973) proved almost uniform convergence of F, , to F'; Watson
and Leadbetter (1964) established asymptotic normality for F, », and Winter (1979) showed
that F,p has the Chung-Smirnov property. Reiss (1981) pointed out that the loss in bias
with respect to F,, is compensated by a gain in variance. This result is referred to as the
deficiency of F,, with respect to Fpp. Falk (1983) provided a complete solution to the
question as to which of F, or F, j, is the better estimator of /. Using the concept of relative
deficiency, conditions (as n — co0) on K and h = h(n) are derived, which enables the user
to decide exactly whether a given kernel distribution function estimator should be preferred
to the EDF. It is generally accepted that the choice of bandwidth is more important than
the choice of the kernel function K. This study will focus on methods for choosing the

bandwidth.

1.2 Discrepancy measures

In order to propose methods for estimating the bandwidth, discrepancy measures that quan-
tify the quality of F,} as an estimator for F' must be introduced. One such measure is the
mean squared error, which in the case of the kernel distribution function estimator is defined

MSE(h) = E {[Foa(z) — F(z)]*}. (1.8)

However, minimising (1.8) with respect to h will yield a value that depends on z. To
overcome this problem, it is necessary to use a discrepancy measure that measures the
difference between F, ), and F' over all possible values. A global discrepancy measure is the
integrated squared error given by

ISE(h) = / " [Eun(@) — F(2)] da, (1.9)

—oQ

or the mean integrated squared error, defined by

MISE(h) = B { / " [Fon(z) — F(2))? da:} : (1.10)

—CQ
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Since each m~‘}a1ue is weighed equally in the measures above, a more general choice would be
to weigh z-values according to the probability of a particular z-value, i.e., define MISE(h)
as
o0
MISE(h) = E { / [Fon(z) — F(2)])? d,F(x)} : (1.11)
—0
By introducing a nonnegative weight function W(z), the measure in (1.11) can be generalised
to
MISE(R) =E {/ [Fop(z) — F(z)] T/V(x)dF(x)} . (1.12)
The advantage of the discrepancy measure in (1.12) is that it is always bounded. Using the.
results of the previous section the discrepancy measure in (1.11) can be written in one of

two alternative forms, see Van Graan (1983):

MISE(R) = / / [ ( ) - F(:v)rdF(y)dF(x)
+ (1 ~ E) /m M: {K (”’ ;y> ——F(x)} dF(y)rdF(m), (1.13)

MISE(h / / K2< )d (y)dF (z)
Lk (5 arw)] arte
+/:, U_ZK (x;y> “F(-’D)rdﬁ’(w). (1.14)

Sarda (1993) proposed a discrete approximation of the measure in (1.12), known as the

or

' average squared. error

n¥

ASE(R) = = 32 [Fap(X0) — FOG W(XG). (1.15)

i=1
Finally, another discrepancy measure based on the random variable in (1.15), called the
mean average squared error is defined by

MASE(h) = E {% zn: [P () — FX) W(Xi)}

— % Zn: E{[Fnn(XG) — FOGP W)} (1.16)

In literature one of two methods are usually followed for obtaining an estimate of the band-

width. In the first method an estimate of one of the discrepancy measures defined above
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is obtained, and then minimised with respect to 4. The second method consists of finding
an asymptotic expression for (1.11) or (1.12), obtaining an optimal value of h and then

estimating the unknown quantities in this expression.

This study will concentrate on the discrepancy measure defined in (1.16). The main aim of
this study will be to propose an estimator for this measure, minimising the expression with
respect to h, obtaining a data based choice of the bandwidth. The case when both F' and
K are known will be considered in Section 4.3. In order to do this, the expression in (1.16)

must be written in a more manageable form.
We will now derive the following results:

Let W(X;) = 1. Since K is a symmetric distribution function
1 X;— X
FunlXs) = ;;ZK (T)
_ ZK (X — X )
Z#J
1 X;—X;
= ot ZK <—h—> : (1.17)

Using the fact that X;, X5,..., X, are i.i.d. and the result in (1.17)

MASE(h)

=FE {% Zn: [Frn(X;) — F(Xi)]2}

i=1

_ % > EA{Fnn(X) — F(X:))')

=k {[Fn,h(Xl) - F(Xl)]Q}

__-EH%+%£;K(X1;X) — F(X)) 2}
E{ﬁqL%{%iK(Xl;Xi) —F(Xl)}
+{ iK Xl >—F(X1)}2}. (1.18)

i#1
The last two terms in (1.18) will be treated separately. Note that

_ZK X; — X,) POx)

55 e () -

[

)} . (1.19)



and by taking the expected value it follows that

e ()]

" lpx (Xng‘Z) ~LEFRx). (1.20)
'

n>

Using the result in (1.19), the last term in (1.18) can be written as

(i e (7% - szyren]}

o
- 52 [ (B - Egren)]
b e

{K (Xl - Xi) R 1F(X1)} } (1.21)

Expanding the square and taking the expectation of the first term in the previous expression

it follows that

B {%z;‘ [K <X1 ;X> ~ nﬁlF(Xl)r}

-e{e (250} e {rex (B52))

+ni TB{F ()} (1.22)

Similarly it follows that

oS58 () o] () 2o

_=DE-9 [K <X1;X2> K<X1~X3>]

n? h

)} P2, (1.23)

n—1

20D ok

T

X1 —Xo
h

Using the results obtained in (1.18), (1.20), (1.22) and (1.23) and noting that E [F (X1) = §]
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and E [F? (X;) = 3], MASE(R) can be written as

MASE (h) = ”;2 ! [E {K (Xl ;XZ) } +E {K2 (X—l‘hﬁ> H
R edn (55 x (B9}

_¥E {F (X)) K (%ﬂ I (1-?4)

Remarks

1. In Section 4.2 an exact calculation of the MASE discrepancy measure will be done in

a special case, using the expression in (1.24).

2. In Section 4.3 asymptotic theory based on this measure will be developed, using the

expression in (1.24).



Chapter 2

Bootstrap methodology

2.1 Introduction

The classical bootstrap, introduced by Efron in 1979, is described as a non-parametric,
computer intensive statistical methodology used in a wide range of applications. A popular
use thereof is to describe the variance of the data, or to estimate the standard error. The
advantage in using the bootstrap instead of classical statistical theory is that it does not
require any model assumptions, such as assumptions about the statistical distribution of the
population. In practice, one does not always have this information at hand and has to resort
to other methods such as making assumptions that are not always correct. One can then
resort to large sampling theory, but then the statistician has to decide if the sample is large

enough and if his sample too small, what to do then.

The bootstrap, however, does not have these problems, and can be used in cases when
there are small sample sizes involved; in these cases large sample theory will fail. Another
advantage of the bootstrap is that finding the variance or standard error of complex statistics
are relatively easy with the bootstrap. It does, however, require a lot of processing power
and as such its widespread use was only made possible by the power of modern computers.
This chapter will introduce the classical bootstrap procedure as described by Efron and
Tibshirani (1993).

In short, the bootstrap is implemented by sampling from the original sample of size n with
replacement. The size of this sample is usually taken to be n with the classical bootstrap,
but can also be less. Then we refer to the procedure as the modified bootstrap. Interested

readers are referred to (Swanepoel, 1986). This sampling is repeated a large number of times

11



and these are called bootstrap replications. The distribution of these replications serves as

an approximation to the sampling distribution of the statistic under consideration.

The accuracy of the estimator § = t(Fy,), where t is some functional of the population
distribution function F', depends on how well F, approximates F. The Glivenko-Cantelli

theorem given in (1.1) gives an indication of how well this approximation is.

2.2 The classical bootstrap procedure

Let X, = (X1, Xs,...,X,) be an independent, identically distributed sample of data from
the unknown population distribution F. Let F, be the EDF as defined in Section 1.1. As
noted in Section 1.1 nF,(z) is a binomial random variable (n trials and probability F(z)
of a success), with expected value and variance as calculated in Section 1.1. As previously

mentioned one can estimate F(z) using the EDF, which places mass % on each element of

X,.

The empirical distribution can then be used to generate a bootstrap sample denoted by
X = (X}, X2,...,X%), which is the same as sampling with replacement from the data
X1,Xo,...,X,. Stated in terms of probabilities

P*(X’f:Xi):%,Vi,j:l,...,n,

J

where P* is the probability calculated under Fi,.

Now, let T,(X,; F') be some specified random variable that we are interested in. In the
classical bootstrap method the sampling distribution of T,,(X,,; F') under F, will be estimated
by the bootstrap distribution of T,,(X?; F,,) under F,.

The estimate Tp,(X*; F},) depends on how well F,, approximates F' (see section 1.1). One
method of calculation of the bootstrap distribution is with Monte-Carlo approximation meth-
ods. The algorithm is as follows:

1. Generate a bootstrap sample X (1) = (X}, X{,, ..., X$,), from the EDF, F,.

2. From this sample calculate §*(1) = To,(X%(1); F,).

3. Independently repeat steps 1 and 2 a large number of times, (say B), to obtain boot-
strap samples X* (1), X%(2),...,X*(B) and the statistics §*(1),8*(2), .. .,8*(B).

12



4. The distribution of T,(X3}; Fy,) is then estimated by the empirical distribution of
4*(i), i=1,2,...,B.

2.3 The plug-in principle

Consider a parameter of the form 6 = ¢(F), where t is some functional of the unknown pop-
ulation distribution function . The plug-in principle asserts that the bootstrap estimator

of the parameter 4 is:
b =t(F), (2.1)
with F, the EDF.

Let X denote any of the random variables in X,,. It follows that

et (X)] = / " H2)dF ().

—o0

According to the plug-in principle, the bootstrap expected value of ¢ (X*) can be calculated
by

Ba, OO =B (X)) = [ @R

where x; is the observed value of X; and % implies the probability under the empirical
distribution function
1
P (Xr=X;) = ~, Vi, =12, ..,n.

2.4 The bootstrap estimate of standard error

Consider an unknown parameter 8 with corresponding estimate b, = én(Xl,Xz, ooy Xp)-

The idea is then to obtain an estimate of the standard deviation of g, using the bootstrap.

Denote by o(F) the standard deviation of 8,. Now o(F) = +/Vary 8, and by using the

plug-in principle it follows that an estimate of o(F') is
bn = o(Fp)
= 4/ Varg, (9;;)
= 4/ Var, (1’;) .

13



Note that é: =0, (XF, X%,..., X% is calculated using a bootstrap sample. A Monte-Carlo

algorithm for approximating the standard error proceeds as follows:

1. Generate a sample (X7, X3, ..., X}) with replacement from F,.

2. Calculate §*(1) = 6, (XF, X2,..., X5).

~

3. Repeat steps 1 and 2 B times to obtain §*(1),5*(2),. .., 8*(B).

4. Calculate
B
. 1 NUREY
0B = ﬁ; 9(])*‘%.} )
where
. 1 B
n. E . 0 (j)
=1

It follows that 65 — &, as B — oo. According to Efron and Tibshirani (1993) a value

of B between 50 and 200 is usually sufficient.

2.5 The bootstrap estimate of bias

Let 8 be a parameter with corresponding estimate b, = O, (X,.). The bias of the estimator
is given by B(F) = Ep [@n (Xn)] — . Using the plug-in principle, the bias can be estimated
with the bootstrap. The bootstrap estimate of G(F) is

~

/Bn = ﬁ(Fn)
Er, |0n(X5)] 00
= E*(@i) - gm

Il

where §* = 0,(X*) = 6,(XF,X32,...,X*). The Monte Carlo algorithm for approximating

the bootstrap estimate of bias follows:

1. Generate a sample (with replacement) X7, X%, ..., X* from F,.

2. Caleulate 6*(1) = 8, (X, X3, ..., X2).

3. Repeat steps 1 and 2 B times to obtain §*(1), 6*(2),...,6*(B).
4. Calculate
O = R
fe=3 > 6(5) — bn.
J=1

14



2.6 Properties of bootstrap kernel distribution func-

tion estimators

Let X, = (X1, X, ..., X,) be a sample of i.i.d. random variables from the unknown popu-
lation distribution F'. As before let X} = (X7, X%, ..., X}) denote a bootstrap sample from
the EDF, F,,. Considering the bootstrap kernel distribution function estimator, we will now

derive the following results:

It follows from Section 1.1 that

EF [Fn,h(ﬂi)] = EI:

Br, [Fin(@)] = B |Fpu(s)]

E
z—y
= K
[x(3
l —
T
F,

(255
i=1 h
'n:h‘(w)'

The bias of the ordinary kernel distribution function estimator, F, »(z), may be expressed

as

,Bn,h(m, F) = EF [Fn’h(ﬂi)] — F(ZE)
A bootstrap estimator of the bias is then, using the plug-in principle
bon(z, Frn) = Eg, [F;’h(m\l} — Fo(z)

= Fn,h(ﬂi) — Fn(iL‘)

15



Furthermore, it was shown in Section 1.1 that

Varg [Fun(z)] = %Val‘ [K <:c—hX>} )
- el (552 B (2]
- () w3 ()]

Using the plug-in principle once more, it follows that

Varg, [Fff’h(:cﬂ = Var, [F:’h(:c)}
1 < - X; 1

If E, [{F:,h(m) — Fn(m)}z} denotes the bootstrap version of the mean squared error of the

estimator Fy, »(z), then

({7 - Ble)] = 5 LK (252 - L2, + Bant) - B

n

Remark

It can be shown that the bootstrap bias of the kernel density function estimator is zero. The
reason for this is that there is no proxy available for the population density function. The

proxy for F' is the EDF.
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Chapter 3

Bandwidth selection procedures

3.1 Introduction

As opposed to non-parametric distribution function estimation, there is a large volume of
literature available on the choice of the bandwidth in non-parametric density function esti-
mation. It is generally accepted that an optimal choice of the bandwidth in density function
estimation will not necessarily be optimal for distribution function estimation. In the latter
case the existing procedures can be divided in two groups: procedures based on estimat-
ing the asymptotical bandwidth and procedures that estimate an appropriate discrepancy

measure.

3.2 Procedures based on estimating the mean inte-

grated square erszor (MISE)

s

3.2.1 The procedure of Van Graan (1983)

In this procedure a bootstrap estimator for the mean integrated squared error is proposed.

Consider the measure defined in (1.11), i.e.,
J(F,h) = MISE(h)

= B| [ (Fonle) ~ F&)Y P @) (3.1)

where the notation J(F, h) indicates that the expression on the right hand side is dependent
on the unknown distribution function F. In order to obtain a choice of the bandwidth

17



parameter, the expression in (3.1) can be minimised with respect to h. Unfortunately this
cannot be done since F is unknown. Omne possible solution is to estimate J(F,h) by a
bootstrap estimator. Using the plug-in-estimate described in (2.1) and the i.i.d. assumption,

it follows that an estimate (see also (1.12)) for J(F, h) is given by

LUy B L
for A
_ ;LZZ[ = >~Fn<xj>r

- Fu(e)]| dF.)IF()

Ll : {i} { K (¥> - F, (Xj)ﬂz
- Sn s ]
Y [;{m_;@) 4 .

where X(1y, X(2), -, X(n) denotes the order statistics and
_J
E, (XU)) = (3.3)

If the kernel function K is specified, then J(F,, k) can be evaluated as a function of A. It is
then possible to determine that value of A which minimises J(Fy, h).

Remarks

1. The properties of the procedure described above were not investigated in an empirical

study

2. The estimator proposed in (3.2) was actually considered as a first step to determine
the bandwidth. In a next step the idea is to estimate J(F,h) by J(Fpz, h), where §
is the bandwidth determined in the first step. In this way a recursive procedure is
obtained for estimating the bandwidth. This procedure will not be considered in this

study. The interested reader is referred to Van Graan (1983)

3. The estimator in (3.2) will be included in the empirical study of Chapter 5.

18



3.2.2 The procedure of Sarda (1993)

Sarda (1993) considered estimating the mean integrated squared error defined in (1.12), i.e.,

MISE(h) = E [ /_ " {E, 1(z) — F(z)}* W(z)dF(z)]| .

For the discussion below the following conditions are imposed:

1

W is bounded and supported on a compact set.

The set of bandwidths considered is

1 1
Hy=nn™pn™), 7<b<a<s,

where v, and v, are constants.

The function K is absolutely continuous and satisfies

lim K(z)=0 and lim K (z)=1.

For k= K/,
/ zk(z)dz = 0 and / 7?k(z)dz < oo.

—0oQ

. The function F' is twice differentiable and F' and |f] are bounded from below on the

support of W.

Reiss (1981) and Lejuene and Sarda (1992) showed that

MISE (h) = Vi(F)n™' — Vohn™! + Bsh* + Ch%/n + smaller order terms, (3.4)

where V1 (F') and

Vo = 2D1(K)Ao(F), (3.5)
are the variance terms and

By = Ju(H T (F), (3.6)

is the squared bias term. Also, C'= Dy(K)A1(F) — By (F)ua(k) and
WE) = [ F@L- F@IWEPE), (3.7
v = [ eI W), 38)
A(F) = / Z £ (@)W (2)dF () for § > 0, (3.9)
Ey(F) — / : F(z)f9(@)dF (z) for j > 1 and, (3.10)

pi(k) and D;(K) were defined in (1.5) and (1.7).
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Sarda noted that the balance between the variance and bias term occur at the “theoretical

optimal bandwidth”, i.e., the bandwidth minimising the two central terms in (3.4), namely

1/3
£ } n~Y3, (3.11)

hopt = | —
opt { 4 B3
This bandwidth cannot be computed since it depends on the true distribution function F'

As mentioned in Section 1.2, Sarda proposed a discrete approximation (see (1.15)) to the
mean integrated squared error, i.e.,

ASB(R) = = 3 [Fap (56) — FOG) WX,

=1

In order to estimate ASE(h), the unknown distribution function, F' (X;), can be replaced by
the EDF, giving the so-called “leave-none-out” estimator of ASE(h),

LNO() = 2 3[R () = Fu (AP W), (312)

Sarda argued that this measure will produce a very small bandwidth. To overcome this

problem, he introduced a so-called “cross-validation” criterion,

1 n
OV(h) = = > [Frpems(X:) — P X)) W(X3), (3.13)
i=1
where F), 5. is the kernel estimator computed by leaving out X;. The bandwidth minimising
the criterion is then selected. For an account of cross-validation procedures in kernel density

estimation, the interested reader is referred to Bowman (1984) and Marron (1987).

The main result of Sarda (1993) concerns the asymptotic optimality of the bandwidth derived
from (3.13). Define d(F,, F) as one of the measures of accuracy MISE(h), ASE(h) or
ISE(h), where ISE(h) = [ [Fnu(z) — F(z)]> W (z)dF(z). It should be noted that the term

Vi(F)n~t in (3.4) does not depend on h. Now define d'(Fy, , F) = d(Fpp, F) — Vi(F)n™?
which will yield the same minimising bandwidth h as d(F,,, F)). Using these definitions

Sarda proved that the bandwidth A that minimises (3.13) is asymptotically optimal in the

sense that
]_im d/ (Fn,ﬁ’ F)
n—o0 iIlfheHn d/(Fn,h) F)

=1 a.s,

i.e., the bandwidth minimising (3.13) yields a discrepancy that is equivalent to the smallest

discrepancy when the set of bandwidths H, is considered.
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Remarks

1. Altman and Léger (1995) showed that under conditions 1 to 5 that the leave-none-
out criterion, LNO(h), and the cross-validation criterion, CV(h), are asymptotically

equivalent over the set of bandwidths H,, considered.
2. Assuming that:

e [ has five derivatives and that the fifth derivative is bounded,

o the kernel K has a symmetric density with respect to 0 and its fifth moment exist

and,

e the weight function has a finite first moment with respect to F,

Altman and Léger (1995) proved that the expected values of the leave-none-out crite-
rion, LNO(h), and the cross-validation criterion, CV(h), are asymptotically identical

up to smaller order terms.

3. Using the assumptions that the kernel % is symmetric about 0 and that the density has
a continuous first derivative on the support of the function W, it was shown by Altman
and Léger (1995) that the expected value of the derivative of LNO(h) is positive when

n — oo and nh? — oo, making LNO(h) a strictly increasing function of h.

4. Using the results mentioned in remarks 1, 2 and 3 the conclusion can be made that
both the leave-none-out criterion LNO(h) and the cross-validation criterion CV(h) are
likely to perform poorly. This conclusion is in sharp contradiction to the optimality
result for cross-validation derived by Sarda (1993). This result was supported by the

numerical results of Altman and Léger (1995).

3.2.3 The procedure of Bowman, Hall and Prvan (1998)

Bowman, Hall and Prvan (1998) proposed a procedure for obtaining the bandwidth, which
is derived more directly from the general paradigm of cross-validation. In the case of non-
parametric kernel density estimation, the method of cross-validation can be viewed as repre-
senting each observation by a Dirac delta function ¢(z — X;) whose expectation is f(z), and

contrasting this with a density estimate based on the remainder of the data. In the current
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context of non-parametric kernel distribution function estimation, a natural characterisation

of each observation is by the indicator function I(z — X;) defined by

1, z—X;>0

0, otherwise.

It follows that E [I(z — X;)] = F(z), as shown in Section 1. Bowman et al. (1998) considered

the discrepancy measure defined in (1.10), i.e.,

MISE(h) = E [ /_ N {Fop(z) — F(z)}y da| .

A cross-validation function based on a discrete approximation of MISE(h) is then defined as
1 [
aV(h) == ;‘ /_ e =) - Fops(a) da, (3.14)

where Fy, p.—; is the kernel estimator constructed from the data with observation X; omitted.

The bandwidth minimising this criterion is then selected.

To demonstrate heuristically why this procedure can have attractive properties, consider the

expression

H(h) = CV(h) — %Z /_Oo [I(z — =) — F(z)) de. (3.15)

Note that the second term subtracted on the right hand side characterises the performance
of the true F' when compared to the expression in (3.14). This term does not involve h and

so the cross-validation procedure is unaffected. Taking the expected value of H(h), we have

E[H(1)
_ % > [ (e =X = Fopela) - e = X) = F@P) dm]

A Z /00 {Frpiei(@) = 21(z — X3) Fppos() + 21 (2 — X3) Frypos() — F(2)}

=25 [ [B{F (0]} - 2P0 B Fapsle)} + 2%(5) — F(5)]

_E { [ : (Fosn(@) — F(2)} da) | (3.16)

where Fp,_1p(z) denotes a kernel estimator based on a sample size of n — 1. This shows
that the cross-validation function CV(h) produces an unbiased estimator of the discrepancy

measure in (1.10), for a sample size of n — 1 shifted vertically by an unknown constant.
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Remarks

1. It can be shown that under mild regularity conditions

MISE(R) = n tu (F)— 2hn*1D‘1 (K) + bgh* + 0(% + h4), (3.17)
where
o (F) = /_ Z F@)[1 - F()] da, (318
) = [ el (319
b = SRS, (3.20)

and D;(K) were defined in (1.7). It follows from (3.16) that H (k) might be a good
approximation to MISE(h). However, if H(h) is adjusted by adding the quantity

Io= [ UFunla) = FQ@Y ~ B [{Fan(z) - F@)}]] s,

—

which has zero mean and does not depend on h, one of the results in the paper states

that a particular good approximation of MISE(R) is obtained.

2. The result in the previous remark means that cross-validation yields a bandwidth that

is asymptotically equivalent to the one that produces second-order optimality.

3. In the numerical study the method of Sarda was shown to produce very small values of
h, indicating that the resulting estimator is essentially the EDF. The method of Altman
and Léger (1995) (which is to be discussed in the next section) and cross-validation

behaved satisfactorily in the study.

4. Since the method of cross-validation is based on the unweighted criterion (1.10) it will

not be included in the numerical study of Chapter-5.

3.3 Procedures based on estimating the asymptotical

optimal bandwidth

3.3.1 The procedure of Altman and Léger (1995)

Using the assumptions introduced by Sarda (1993) in Section 3.2.2 and the expression for
MISE(h) in (3.4) we have
MISE (h) = WV (F)n=t — Vzhn™! + Bsh* 4+ Ch?/n + smaller order terms,
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where C > 0.

The bandwidth that minimises MISE(h) is the weighted asymptotic mean integrated squared
error (WAMISE) optimal bandwidth hep from (3.11) where

)

B,
hopt = |:4—B3:| n

using the same notation as in Section 3.2.2.

To obtain a plug-in estimate for hep, the variance term V, and the bias term Bz in (3.11)
must be estimated first. Altman and Léger used the kernel estimator for V; as suggested by
Hall and Marron (1987), namely:

~

Vo = 2D:(K)A(F)
X; — X;
= 2Dy(K) ng ;wl (T) W(Xi)], (3.21)

where w; is a kernel function with bandwidth g;. Hall and Marron (1987) proved that the

estimator in (3.21) is consistent when g, satisfies ng; — oo and nig, — 0. The estimator of
Uy (F) is |

Wll(F n3 4 Zw’z <

=1 j=1 k=1

> w) (Xi _ X’“) W (X3), (3.22)

g2

where w} is the derivative of a kernel function wy and gs is the associated bandwidth. These

estimators are then used to calculate a plug-in estimate, har,, of the asymptotical optimal

bandwidth

1
; Va | 2
hat, = = ER 3.23
AL LB ] (3.23)
where By = 1u2(k)¥, 1 (7).

Remarks

1. The procedure proposed by Altman and Léger (1995) required two bandwidths to
obtain the estimator for the asymptotical optimal bandwidth. In their simulation
study a pilot bandwidth of the form g; = go = n™%3 was used. Koekemoer (2004,
Chapter 2) has proposed a data driven approach for estimating these bandwidths,

which will be presented in the next section.
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2. The simulation study of Altman and Léger (1995) included both the leave-none-out and
cross-validation criteria proposed by Sarda (1993). The results obtained by Altman
and Léger (1995) were similar to those obtained by Bowman et al. (1998), discussed in
Section 3.2.3. It was found that for larger sample sizes both these criteria consistently
choose the smallest possible bandwidth as the optimal bandwidth, resulting in the

EDF as an estimator.

3. The proposed plug-in estimator performed satisfactorily in the simulation study for

the sample sizes studied.

3.3.2 The improved procedure of Altman and Léger (2004)

In the previous section the quantity Bz in the expression for Ay, was estimated by By =

Lp2(EYT, 1 (F), where

4
R T T T X,i _ X
Bl = a3k (TR (B w0,

i=1 j=1 k=1

Altman and Léger (1995) calculated the asymptotic mean squared error of @1,1(F) under

the assumptions:

1. The kernel function ws has mean 0, finite variance and w4(0) = 0.
2. The density f has a bounded fourth derivative.

3. The bandwidth g, is a non-random sequence of positive numbers. Also assume that g,
satisfies

lim go =0 and hm ngs = 0.

n—00

—t

Hence go is of the form gs = en™ where 0 <t < 1 and c¢ is a constant.

Then the asymptotic mean squared error (AMSE) of ¥, ,(F) is given by
o 2C &
AMSE [1,(F)] = (ws) / [f @)W (2) do

n2go®

[gzuz W / (@) f" (z) f (2) W (z) dz

2

S [ e dm} ,
where

O(w2>=/°° /Oo /Oo wl, (5) wl, (£) wl, (w) w), (t + u — s) dsdtdu,



and r(f") was defined in (3.19). Minimising the AMSE with respect to g, gives the asymp-
totically optimal bandwidth

_ [50(w) [, (£ W)e]
92 = 203 (w2) ¥ 5(F)

, (3.24)

where

F)= [ ()19 @)W (0)do.

The following discussion is due to Koekemoer (2004) and will be repeated here for the sake

of completeness. If W(z) = 1, a number of simplifications and improvements are possible:

o Define R(f(%)) = = [Z f™(g)f(z)dz = BE[f™(X)], m = 25 and 5 =
0,1,2,.... It follows that Ay(F) = f_oo [f(2)]*dz = 1 can be estimated by the
[-stage estimator suggested by Sheather and Jones (1991), given by

@50(91) = n21g1 ;Zwl (M> .

g1

o The unknown quantity ¥ ,(F) = % [f’ ()]’ f(z)dz may also be estimated using a
[-stage estimator, with a normal reference utilised at stage [. A general estimator for
the quantity U, ,(F) = [7° fi™)(z) f®)(z)f(z)dz is given by

s Xi — X; Xi — Xp,
Uinp(F) = gt 3 mAL Pl ZZZ i ( > wép) <7> ’
gp i=1 j=1 k=1 gs

where ws(-) and ws(-) are possibly different kernel functions with different associated

bandwidths go and gz rgspectively.
\

Now the procedure for [ = 1, wyi(+) = wq(-) = ws(-) = ¢(-), K(-) = ®(-), W(z) =1 and a

normal reference for the unknown density f will be described:

Step 1 Define the N(u,0?) normal density by

g

and let 6™ denote the m® derivative. Now

(—=1)Tml

(20)™H(m/2)I/T

Ym =./_ ¢ (z — )¢z — p)dz =
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Estimate 1, with

a 1
= — . 2
where & is defined as the robust scale estimator
. 73 — § |
6= min { §,— 53 ! —— >, (3.26)
e (§) -2 (1)

see Silverman (1986, p. 47), S is the sample standard deviation, q; and gs are the first and

third sample quartiles and ®(z) the standard normal distribution function.

Step 2 Use 1&2 to estimate 1o = Ag(F') with the estimator

~

do=Aa(F) = 3"y, (G- Xp),

i=1 j=1
where
(=20
= = 3, 3.27
. Liz(cb)lbfj " ( )
and where
1 .
po(¢) =1 and ¢(0)= Nors (3.28)

See also remark 3 at the end of the section. Substituting (3.25) and (3.28) into (3.27) we

obtain
1
Gy = [4\/563} S

Step § Calculating (3.24) using a normal reference gives
¢ 0o =0.97436m~/°.

Now, estimate Uy, (F) = [ [f(z)]* f(z)dz with

. L G Xi—X;\ ,(Xi—X
Vi1 (F) = n—%’é‘ZZZW (T) ¢ (—A—Ji> . (3.29)

=1 j=1 k=1 92

Step 4 Use Ag(F) and ¥y 1 (F) to estimate the WAMISE optimal bandwidth (direct plug-
in), thus:

n=3 (3.30)
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Remarks

1. Note that the only difference between this procedure and the procedure originally
proposed by Altman and Léger (1995) is that the choices of g; and gy are now mno

longer arbitrary.
2. The estimator in (3.30) will be included in the empirical study of Chapter 5.

3. Note that the estimated value of ¢, in (3.29) is obtained from direct application of the
expression

1/(mr+1)
—rly™ (O)} i Y (1)

thr (W) Yo
which represent the asymptotic mean squared error (AMSE) optimal bandwidth, de-

JAMSE,m = {

rived from the estimator

. 1 g g
Imle) = 5> > wf™ (X - Xy),

i=1 j=1
of ¥p,. Here 7 denotes the order of the kernel used.

3.3.3 The procedure of Polansky (1997)

Using the assumptions that
e h = h, is a sequence of bandwidths such that h — 0 and nh — oo as n — oo and

e f is continuous and differentiable with finite mean and has a square integrable deriva-

tive,
Jones (1990) showed that the mean integrated squared error in (1.10) can be written as
MISE (k) = v (F)n= — 2D (K)hnt + 1h4ud(k)r () + o (& + 1*), (3.31)
where v1(F), D1(K) and r(f') were defined in (3.18), (1.7) and (3.19) respectively.

Minimising (3.31) with respect to h gives the optimal value as

[ 2Di(k) 1M°
o= i 2
The value of MISE(h) when using h = hg is
4/3
MISE(ho) = w1 (F)n™" — % {wln(m} {BErE} 7 o (), (3.33)
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so that MISE(hg) = O(n™'), which is the same rate achieved by the empirical distribution
function, thus smoothing has only a second-order effect on the MISE of distribution functions.
However, as was noted in Section 1.1 there exist applications where a smoothed estimate of

the distribution function is required.

One should note that in (3.32), ho still depends on the unknown density function f. This can
be solved by assuming that f follows a certain parametric form and using the corresponding
bandwidth. This is also known as a reference bandwidth. However it can be argued that if
f is known, or even if the form of f is known that it will not be necessary to estimate the

distribution function. For example if f is assumed normal with mean i and variance o2 then

1
T(fl) = 40_37_‘_1/2)

and the corresponding bandwidth is estimated by

FL |:86'3D1(K)7T1/2j|
N = ;
3 (k)

where & is defined in (3.26).
It follows from (3.32) that in order to estimate Ao, an estimate for 7(f') = —y (using the
results in 3.3.2) must be obtained. From the remarks in section 3.3.2 it is clear that in order
to estimate 1, an estimate for 14 will be required if a second order kernel function, such as
the standard normal, is used. In general, an estimate of 9,42 is required for the estimation
of %m. The procedure is therefore recursive. Note that if a normal reference for f is used
then

(D)% ml
(26)m L (m/2)\/7’
where & is defined in (3.26). Note that in general an estimator for v, is given by

1 e X; — X;
gm—l—lZZw(m)( g j)’

i=1 §=1

NR
V' =

(3.34)

-~

o) = —

where g can be determined from the expression

3

20 (m) (O) i| 1/(m--3)

FAMEEm = [—nﬂz (W) Pmi2

in the case of a second order kernel function.

Let w(-) = ¢(-) and K(-) = ®(-). An algorithm for obtaining a I-stage estimator for /g is
described below. Let [ > 0 be an integer:
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Step 1 Calculate P4, using (3.34),

Step 2 Starting with § = [ and iterating until § = 1, calculate Tﬁgj(fygj) where

X 2¢(2j) (0) 1/(25+3)
o {—Wz(cﬁ)wzﬂj

3

where

. | bAE, when j = |
Yojra =< .

Yojaa(fojr2), When j <,
Step § Calculate

?Lb= [ 2D, (K) ]1/3
—nud($)da(Ga) |

Remarks

1. The method proposed by Polansky (1997) is based on the unweighted criterion (1.10)
and will not be included in the numerical study of Chapter 5.

2. Making [ > 2 in the [-stage estimator does not increase the rate of convergence or

decrease the variance. See Polansky (1997) for more details.

3. Since the assumption of normality is made at stage I, this procedure works best for
data that is normal or that can be transformed to normality. The interested reader is
referred to Koekemoer (2004) for more details on transforming the data to normality

using kernel distribution function estimation.

4. The procedure of Polansky behaved satisfactorily in the simulation study with the two-
stage estimator having the lowest estimated mean integrated squared error in most of

the cases.
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Chapter 4

A Procedure based on the bootstrap

4.1 Introduction

The discussion in Chapter 3 revealed that there are mainly two approaches available for
choosing the bandwidth parameter in distribution function estimation, i.e., estimating a
suitable version of a discrepancy measure and estimating the asymptotical optimal band-

width. In this chapter the focus will be on the first approach.

The discrepancy measure that will be considered is the mean integrated squared error (MISE)
defined in (1.10) and the mean average squared error (MASE) defined in (1.16). In Section
4.2 MASE will be calculated in a special case where both the kernel and density functions are
uniformly distributed. In Section 4.3 asymptotic theory will be developed which shows that
MASE is approximately equal to MISE in an asymptotic sense. In Section 4.4 an estimator
for MASE based on bootstrap methodology will be derived.

4.2 Calculation of the MASE discrepancy measure in

a special case

In this section the MASE discrepancy measure defined in (1.24) will be calculated for the
distribution function F' and kernel function K given by

0, ifxz<0
Flz)=< z, f0<z<1 (4.1)

1, ifz>1,
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and

0, if < -3
K(z)={ 22, if —v/3<2<V3 (4.2)
1

: if z < /3.

Each of the terms appearing in the expression for MASE(h) in (1.24), i.e. E [K (%}],

B [K2 (%)k E [K (}(1%}(2) K (%}] and E [K (X—lzﬁ) F(Xl)} will be evaluated ac-

cording to whether (see Figures 4.1, 4.2 and 4.3):

Case 1 0<+3h <1,
or Case2 3 <+V3h<l1,
or Case3 +3h>1,

is applicable. Consider evaluating

e (552)] - [ (5

using the independence of X; and Xs.

T

1 .
| [
I |
| |
| |
|

1_\/§h— —_ = — J—y_=;z‘ t\zrgh _____

| )
| | y
| |

V3hlE — = — + — — o _yfx___\/?h
| |
| |
| |
| |

0 V3h 1-v3h 1

Figure 4.1: Case 1, v/3h < 3

Considering Figure 4.1 it follows that for case 1 we have
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i. 0<z<+3h

(55 = [l

o)

V/3h 2

:/ _x_+5+@ dr
0 4/3h 2 4

. Th?

=

i vV3h<z<1—+/3h

e (%52)] = [ U e [ e

ifi. 1—v3Bh<z <1

=

oo I
zmw‘lwimﬁa:ygw%w

T T 1 1 +/3h
ts——=t;——|dz
V3R 4fh 2v3h 2 44/3h 2 4
2
7h /3R,

lI

Compiling the results it follows that

X —X\] 1
o (2] -1 »
For case 2, following the steps outlined in (i), (ii) and (iii) and using Figure 4.2 we have
X1 — Xy
=[x (357)
1-+/3h  pz+/3h o — /3
dyd
/ / 2f h { t J -
V3h 1 1 T—y
—I—/ [ 3 —I—\/g} dydx

van 2v/3h Jo
z—/3h
}der/ 1dy| dx
0

+/fh [%fh/ fh{
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1 I
| |
y =2+ V3h !
I L _ ]
| |
V3h | |
| |
| | v
| |
| |
-VBh_ _ _ L _ U
| |
| y =z —y3h
| |
0 1-v/3h V/3h 1
Figure 4.2: Case 2,%<\/§h<1
V3h 2 A 1-V3h 1 1
=/ m—-i-z-i-ig— dz—i—/ [ > _ —i——]dz
0 4/3h 2 4 V3h 2v3h  4/3h 2
! 2 1 1 3h
+/ S R +3——+———f dz
1-v3n | 4/3h  2v3h 2 4/3h 2 4
h? 1 1 7 h? 1
= 3h— =~ -h*+V3h+— - —— —V3h+1
4+12\/§h+\/_ 2 4 L 4 123k

1
5

For case 3, in a similar way as for cases 1 and 2, using Figure 4.3 leads to
X1 — Xy

E|K|——=

H (25

1 1
1 [z—y } }

= — +V3|dy p dzx

/0 {/o 2v/3h [ h ’

[l
= - —| az
o L2v3h 4v3h 2
1 +1

" 4/3h  43h 2

1

5

Next, consider evaluating

E {K (X—li-)—@) F(Xl)} - /oo Tk (m - y) (z,y)F(z)dydz




[ T
| |
| /_I
=z+V3
\/gh_ . _l _ _y_ _ _V_}q_ — —
1 I |
| |
| |
| | y
S — :
i Il R
| |
| | y=1x—V3h
| |
-1 0 1 2
1-v/3h V3h

Figure 4.3: Case 3, V3h > 1

using the independence of X; and X,. Considering Figure 4.1 on page 32 it follows that for

case 1 we have

i. 0<z<+3h

E {K <¥> F(Xl)]

V3h z+v3h
T r—y
= + /3| dyd
/0 mh/ { h ] var

V3h 3
= / a —+ V3ha dz
0 4v/3h 4
_17/3R®
B 16
ii. VBh<z<1—1+/3h
Bl (2772) P
1-v3h z+v3h z—v3h
= 3 dy+/ ldy | dx
/\/ﬁh [2\/_h/ ( ) 0
1—V3h
=/ z2dx
V3h

1
= —2v3h% + 3K — V3h + 3
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i, 1—v38h<z<1

B |xe (B57%) rocy)

1
e

. -
Joa

T 1 T —y \/_ z—/3h
L + 3) dy + / 1dy| da
_2\/§h /a:—\/??h ( h Y 0

- + +

I 4+/3h  24/3h
174/3h3  13R2

_ L3R 18R e

z3 72 x> T z  +/3hz
—— 4+ = — dz
2 4/3h 2 4

3h.

16

4

Collecting the results it follows that for case 1

i

X1 ;Xg) F(Xl)‘|

VR

s 1773

For case 2, following the steps outlined in (i), (ii) and (iii) and using Figure 4.2 on page 34

we have

2 [x (P52 e

/1—\/§h T
0 2+/3h

2++/3h
/ [w —y+ ﬁh} dydz
0

V3h 7 1 \/_
+/ —/ T —y++V3h|dydz
1—v3h 2v/3h Jo [ }
1 7 1 \/_ 2—+/3h v
+/ / x—y+V3h|d +/ 1dy | dz
V3h 2\/§h a:—\/ﬁh{ Y ] v 0
V3h 3 2 1—v/3h 9
=/ @t @t V3hz Cm/ [w = +£}dm
0 4\/§h 2 4 V3h 2\/?_>h 4\/?_>h 2
1 3 2 2
+/ e g e s Ve
1—v3n | 43R 24/3h 2 43k 2 4
—\'/ghg__}__i_ 1 +h2_ 1 +\/§h3_5_h2 E__l_
16 12 ' 164/3h 24+/3h 16 4 12 48/3h
_V 1
-8 4 "3

For case 3, in a similar way as for cases 1 and 2, using Figure 4.3 on page 35 leads to

I

B |1 (R522) r)
/Olzfgh/ol [m~y+\/?—>h] dyda:

/1 $2 B T + Edm
o 2V3h 4v3h 2
36




1 1 1

— + —_
4+4/3h  4+/3h 2
1 1

+ .
4 24+/3h

Next, consider evaluating

[ (58] = [ (552
- [ )o)e

using the independence of X; and X,. Considering Figure 4.1 on page 32 it follows that for

case 1 we have

i. 0<z<+3h
) X — X, V8h  pz4+/3R 1 z—7y 2
e (B52)] = [ sl a] e
Vah g3 z? T h
= [36h2+4¢§h+1+4_\/§}d$
15k
16

i. vV3h<z<1—+/3h
X — X
2 1 2
| (252
1—v3h z++/3h 1 [z—vy \/_ 2 z—+/3h
= S ++3 d +/ 1dy | dz
Lo o o) o [
1—/3h A
= T ——|dx
/\/ﬁh { \/5}

4~/3h
%+

£

= 2n" —

s

. 1—v3h<z<1

X1 — Xy
B — =
{ ( h ﬂ
1 1 _ 3, z—/3h
:/ / M dy+/ 1dy | dz
1—v3h | Jo—y/3R 2v/3h 0

_/1 {_m3_m2+m2+m+3m
vanl 36RZ 43R | 12R2 " 9vBR | 4

_m+1_ 1 _5h+ld$
12h? © 36h% 44/3h 44/3 4
4 2
__An ++/3h.

16
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Collecting the results it follows that for case 1

X, — X 3h? A 1
B[220 = - 2
{ < 2 ﬂ 5 V32

For case 2, following the steps outlined in (i), (i) and (iii) and using Figure 4.2 on page 34

we have

(7)) - [ ]
o

+/\/§h \:/:ci\/gh [m__—;,\;%——ﬁ

/\/gh |: 28 72 \/_h
0

dydz

dydzx

2 z—+/3h
dy + / ldy | dz
0

dz

36h2 +4\/§h+ 4+ 12

+/1fh @’ ¢ @ 1 ! +1}d:c
e 1202 T 2Rz T oBn  36h2 4v/Bh | 4

+/1 |:_LE3+LE2_LU2+LU
1—vanl 36R2  12R%2  4/3h  24/3h

3w 1 1 5v/3h
= — + — — + = |dz

4 12n*  36R%  4./3h 12 4
K N 1 N 2h 1+ 11
16 144k /3 2 6/3n T2h2

7h? 1 1
+——fh+1 s Taa

_ 3_hi_i L
8 32

For case 3, in a similar way as for cases 1 and 2, using Figure 4.3 on page 35 leads to
g g2 (Z=Xe
h
2
/ / —y++/3h
©2v3h
_/ $+$+1~1+ldw
~ Jo |12n2  12R% ' 2/3n  36R2  4./3h 4
1 1

AT

dydzx

Next, consider evaluating

o[ (257 < (5]
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=/ / K2 Yk (222) #(a,y, 2)dedyda
—o0 J =00 J—c0 h h

! T—1 T—z

K K dad
(55 K (557 aeve

(52 [ e (57 e
(

|
S
=

using the independence of X3, X5 and X3. Considering Figure 4.1 on page 32 and using the

results for E [K (@)] it follows that for case 1 we have

i. 0<z<+3h

_/*/gh zt N z8 372  +/3hz  3h? "
“Jo |48W2 4B 8 T 4 16
_93+/3h3

80

ii. V8h<z<1—+/3h

i () (552 - "
- [

= —2v/3K + 3K — Bh+ %

. 1—v3h<z<l1

[ (B < (F52)

2
! 2 ‘ 1 1 +/3h
=+/ S +E_—+~—L dz
13w | 4V3h  2v/3h 2 4/3n 2 4
_— /1 ': :I;4 :I;B — jZ;B + 11}2 + 3_:1;2 + II}_2 + z
 Jiovan 48k 43R 12k 43R 8 8h?  4./3h

LT T 16 IV T T

93/3h  Th?
_ _ 3.
) 5 +V3

T T V3hz 3h? /3R 1 3 1
+ - = dz
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Collecting the results it follows that for case 1

X; — X 3h? h 1
92 1 2 2 -
E[K ( 7 N = 3 \/§+2.

For case 2, following the steps outlined in (i), (ii) and (iil) and using Figure 4.2 on page 34

ol (57 1 (5572
v/3h 2 1-+/3h 2
=/ @ & V3h d+/ {$~1+E}da;
0 44/3n 2 4 vin  L2v/3h  43h 2
1 2 2
+/ _ z + z +E_L+l_@ dx
1van | 4v3h 23k 2 43k 2 4

_/ﬁh - + - i3 +\/_h$+3—hz dz
/s 48h? © 4+/3n 8 4 16

we have

+/1ﬂ AN SR S N S
V3h 12h?  12h%2  +/3h 4 4+/3h  48K?

+/1 [m4_m3_a;3+a;2 +3—a;2+a;—2+$
1—v3n | 48R 44/3R  12h%  4y/3n 8  8h?  44/3h

3h h? 3h. 1 3 1
(oo VEhe 3 VSh L 2t | de
4 12h2 4 16 4 4/3n 48h2
3v/3h3 1 oh 1 1 1
— + +—=—=+ — 5
80 2402 /3 2 8/3h 144h
3 h3 h? 1 1
ve —VBh+1— + s
0 T2 6v/3h = 240k

_3\/§h3+ 1 _i+l_ 1 h?
40 7202 /3 2 244/3h ’

For case 3, in a similar way as for cases 1 and 2, using Figure 4.3 on page 35 leads to

Xl——Xz X1~X3
B | (B2 (2572
| v 1]2
dx
2\/§h 4\/_h
/1 JLro o1y
. 12h2 12h2 ﬁh 47 43 dsnz|

1
el 144h2

I

Summarising,

B [F(Xl) _ %] (4.42)

E {F2(X1) = %} (4.4b)



o [re(B572) = 3],

BB 0B <)

X —X
E{K<_1h_2>F(X1)J: VBB 1l /Bl
%"I" 24\1/§h if V3h > L

. 8% _ V3R L if0<+/3h< 1
E{KQ(#)}: %ﬁ_@+% if1<+Bh<1l

l .
1yt if v/3h > 1,

o[ (5572 ¢ (257

13v/3r®  B? | 1
40 713

f0<Vv3h<i

_ 34/3h3 1 A 1 1 o oarl
= 2t et am T 1f§§\/§h<1
1y L if v/3h > 1.

(4.4c)

(4.4d)

(4.4e)

(4.4f)

Using (4.4a) to (4.4f), (1.24) for the uniform population/uniform kernel in case 1 can be

written as

MASE(R) = 4%2*“ (”n; Vg [K (Xl th” - %E[F(Xl)]Jr

n2 n

n? h

ol (252)] Sl e (259) v

euron)] + B [ (B2 (B )]

- w2 ]

n—1[1 3r% +Br| 2-1)[vBW 1 W

T3 {§+ 8 3 J~ n s T3 7
17, (n—1)(n—2) |1 A% 13V3K3

+M+ w372 4

8vBR® 171 29v8A% 1A A
40 'nl|6 40 8 V3
1 [_i_ 1152 K 13\/§h3}

12 8 +ﬁ+ 20

41



Similarly for case 2

MASE(R) — 4;

n_

n2

lg [KQ (Xl

(n—1)(n

1, (n;zl) . [K (Xl ;X2>

;Xgﬂ 2(n

For case 3

MASE(h) =

17 1
+E{_§+ 08
1[1+5_h2_i_3\/§h3
V3 20

n2

(252
3] -3l

3v/3h8
\/_+

1 h 1 1

(n—1)(n—2) 3
~] T [_ 40
1338

1 1
720R?

19+/3h3

R+t s — —

40 6 V3

13h?

e

h2
2002 V3 2 24van 7}
.
24+/3h
2h 1 1
240h2 " 8+/3h

4 8

prev e EF(

—Xo

1 1
360R2 12\/§h]

)] e+

Pl (P o)

(R >}
+B[FR()] + B
1 +(

4n?

+

253 ]

2 (22 (22

3
1 n—1

— +
12 12+/3hn

4
n—1
144h%n -

42

nrr;l E“L 721h2} — n [_+24\1/§hj
+H +(n~1)gn—2) F+

1
144h?



Summarising:

( 3v/3h3 11 29+/3h3 11h2? h
40 +E[§_T+T_W}
AR 0< Vah < }
_ 13v/3h8 2,14 1 h 1
MASE(h) = < 0 TR e T Vs T e (4.5)
+1[_1+M_M+&_;+;}
n 3 40 8 V3 240h2 8v3h
1|1, 5hr? h 3v/3h3 1 1 e 1
"‘F[Z"“s‘_ﬁ_ 20 +360h2_12\/§h:| if 3 <VBh <1
1 _n-1, 1 4ol 1 if V3h > 1.

\ 12 n 12v3h n 144p2
From Van Graan (1983) it is known that

(3vEh® | 1 [_13/@h3 | 2 _ 1 - 1
TJFE[—TJFT—ﬁJFE] if 0<vBh <3

_ 13+/3h8 2.1 1 h 1
40 +h’+6+720h2 V3 24y/3h

MISE(R)=q o o "] 1 - (4.6)
+H[ 40 “?_720h2+24\/§h] if 3 <VBh<1
L T1§_12\1/§h+n7+1'14ih2 if V3h > 1.

It can be seen in Figures 4.4 — 4.8 which represents MASE(h) and MISE(h) for n = 10,
n = 20, n = 50, n = 100 and n = 500 that MASE(h) tends to MISE(h) as n increases.

0.018

0.016

0.014

0.012 ey

=]
o
=

0.008

MISE(h)/ MASE(h)

0.006

0.004

0.002

0 Q.05 a1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
h

~MASE(h) — MISE(h) ]

Figure 4.4: MASE(h) and MISE(h) with n=10
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0.014

0.012

0.01

0.008

0.006

MISE(h) / MASE(h)

0.004

0.002

0.01

0.008

0.008

0.007

0.006

0.005

MISE(h) / MASE(h)

0.004

0.003

0.002

0.001

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
h

'MASE(h) —— MISE(h)
Figure 4.5: MASE(h) and MISE(h) with n=20

0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45
h

MASE(h) —MISE(h)]

Figure 4.6: MASE(h) and MISE(h) with n=50
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0.009

0.008

0.007

0.006

0.005

MISE(h) / MASE(h)

0.004

0.003

0.002

0.001

0.01

0.009

0.008

0.007

0.006

0.005

MISE(h) / MASE(h)

0.004

0.003

0.002

0.001

~ MASE(h) —MISE(h)

Figure 4.8: MASE(h) and MISE(h) with n=500
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Figure 4.7: MASE(h) and MISE(h) with n=100
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Now that we have expressions for MASE(h) and MISE(h) we can obtain the optimal values
Paiase and hyse that minimises the functions MASE(h) and MISE(h). Differentiating the
expressions in (4.5) and (4.6), equating to 0 and solving we find that for 0 < v/3h < %

h _ 55—55n-+/360n°—816n21550n—05
MASE 3v/3-(3n2—29n1-26) ;

and

—354++/360n—335

fise = 3v/3-(3n—13)

Optimal values hyase and hypsg for different values of n are shown in Table 4.1.

n havise | haase
10 0.251 | 0.202
15 0.218 | 0.181
25 0.180 | 0.155
50 0.138 | 0.122
100 0.103 | 0.094
500 0.050 | 0.048
1000 | 0.036 | 0.035

Table 4.1: Optimal values of the bandwidth

Remarks

1. Inspection of the expressions for MISE(h) and MASE(h) for V3h > 1, shows clearly
that the measures MISE(h) and MASE(h) tends to each other for increasing values of

7.

2. Table 4.1 shows that hyasg < hyasg for typical values of n. Furthermore, larger values
of n produce smaller values of hyrasg/hyrse- This is in agreement with the observation

that as n — oo then h — 0.

4.3 Asymptotic Theory

In this section the asymptotic properties of MASE will be investigated. To evaluate the

expression for MASE(h) in (1.24), each of the terms, ie., E [K (£252)], B [K? (£1:%2)],

E [K (57%2) K (£15%)] and B [K (¥552) F(X;)], will be treated separately.
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The following notation will be used in the derivation of the results. Let

(k) as defined in (1.5), (4.7a)
D;(K) as defined in (1.7), (4.7b)
A;(F) as defined in (3.9), (4.7¢)

E;(F) as defined in (3.10). (4.7d)

Assume that the kernel K has a symmetric density with respect to 0 and that its fifth
moment exists. Assume also that F' has five derivatives and that the fifth derivative is

bounded.

In addition, we will need the following lemma:

Lemma 1. Let po(k) and Dy(K) be defined as in (1.5) and (1.7). Then

Dy(K) = Spa(k)

Proof:
Do(K) = [% 2%k(2)K(2)dz. Using the substitution ¢t = —z and the fact that k(-) is the

symmetric around zero kernel density it follows that

Dy(K) = / " k() K (=)t

—00

_ / " 2k 1 — K1) dt

—00

= / ” 2k (t)dt — / ” 2k (t) K (t)dt

—0

= pa(k) — Dao(K),

from which the result can be obtained.
k4

Using the method of intégration by parts, we find that

Do (K) = /_OOK(z)zc(z)dz
1

= 3 (4.8)
Furthermore, using the same method as above it follows that
/_ : F@)dF(a) = s, (4.9)
and
[ Z FA(@)dF(z) — % (4.10)
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The function F'(z — hz) can be written as follows using a Taylor series expansion

F(z — hz)

— F(z) — haf() + %h?zz () — -

6h3z3f”($) -+ 21_4h4z4f///(m) —I—th(ZE,Z), (411)

where R(z, z) is a remainder term depending on both z and 2.

The following result will be used several times in this section. Using integration by parts,

the substitution *7% = » and the Taylor series expansion in (4.11)

o[ (257)]
=/_:K <$;y> f(y)dy
=5 [ ron ()

= /oo F(z — h2)k(2)dz

—0oQ

_ /oo l:F(m) . h,zf(m) + %hzzzf'(a:) . éhiaziaf//(m)

—

= F@)+ 511 @) [

-

+ 2i4h,4z4 (@) + B R(z, 2)| k(2)dz

Ph(2)ds + o7 (2) / Ak(2)dz + O(h)

o0

LA 5@ pa(k) + O (), (4.12)

— P(a) + 57 (@)pmE) + oy

where R(z, 2) denotes a remainder term. Using the results in (4.9) and (4.12), as well as the

independence of X; and X5, we find that

ofe (255
G

y) f(z,y)dzdy

h
- {K (“’ y) f(y.)dy] F(a)da
=/_Z {F(m>+%h2f'(x)ug(k) h4f”'(m) ne >+O(h5>J Flz)de
_ / :F(x)f(a:)der “rua(k) [ [ PE@) e+ _m / 1) () 1 ()
= % + %hzuz(k)Al(F) + 21—4h4A3(F) +O(hS). (413)

Using integration by parts, the substitution 2% = #, (4.8) and the Taylor series expansion
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in (4.11) it can be shown that

=2 [F(z) — hzf(z) + %thQf’(a:) — %h?’z?’f”(z)

2—4h4 2*f"(z) + hSR(z, z)} K(2)k(z)dz

o0

2R () / K(2)k(2)dz — 2hf(2) /_ ZzK(z)k(z)dz+h2f’(az) / 2K () k(2)de

-0
o

3h3f”( 7) /_Oo P K(2)k(2)dz + 1%]24]””’(33) / #K(2)k(2)dz + O(R?)

—0

— 9F(2) Do(K) — 2hF(2) D1 (K) + B2F'(2) D (K) — %hﬁ £(2)Ds(K)

b4 () Du(K) + O(H9)
= F(z) — 2hf(z)D(K) + h*f (z)D2(K)
—%ha F()Ds(K) + —1—h4 F(@) Da(K) + O(h5). (4.14)

Using the results in (4.9) and (4.14), as well as the independence of X; and X5, we find that

= (252)]
w/_iKZ("’ﬂ) (z,y)dzdy
e (552 s e

[ P@)ar() - 20D(K / £(@)dF ()

=

I

I
— S

88

88

8

+h2Dy(K /_ ” f'(z)dF(z) — %haDg /~ " " (z)dF(z)
i Du(E) [ Z F(2)dF () + O ()
- % — 2hD1(K) Ao(F) 4 h2Dy(K) AL (F)
—%hP’Dg(K)Az(F) 11—2h4D4(K )A3(F) 4+ O(h®). (4.15)

Using (4.10), (4.12) and the independence of Xy, X, and X3, we find that

x (B35 x (B2
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=[w/_meK<xhy>K<I;z> f(z,y, 2)dadydz
“’”h?f dH ( )()dz}f(z)dm

(@) + SR ()alk) + g F(@)a(l) + Oz ﬂ # (&)

I
PR

I
P

89 88 88 88

'N
,_./—\/—\
3]

I
P

F*(z) + B'F(z) f' () pa(k) + l2h4F( z) £ (@) pa(k)

1
1\
pL

b2 () {7/(0)) + o<hﬁ>} #(@)da
-/ " P @)dF() + K u(®) / " Fln)f'(a)dF (&) + hA0) / T @Y dFE)
+

Hua®) [ P@) (@)@ + 0
L Kl B () S5 / {#(2))* dF(z)
ok (B) B (F) + O(A). o (418)

Finally, using (4.10), (4.12) and the independence of X; and X, it follows that
Pl (757 re)
/ / ( > f(z,y)dzdy
= [ re| [ x (25 ] i

:/_:F(w){F(H;hf() 2(k) + 5 h4f() (k) + O(R%) | f(z)dz
Z/OOFQ( JaF(z )+%hznz(k)/_ooF( )f'(z)dF(z)

+214h4y4(1») /_ZF(m)f”’(m)dF(m) + O(h®)
= %Jr ;h pa (k) En (F) + ih‘*m(ls)Eg(F) + O(h%). (4.17)

Substituting the results obtained from (4.13), (4.15), (4.16) and (4.17) into (1.24) we obtain

MASE(h)

2 o (22 ol (55

L -Yn-2) {K <X1;X2> o (f)bcﬁxgﬂ

n2

—Z(HT—I)E[F(XQK<X1;X2> +£—i+%
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— F 1 —1—h2p,2(k)Al (F) + %h"‘Ag(F) + O(hs)}

2 2

+nn——;1 l:% — 2hD1(K)Ao(F) + hQDz(K)Al (F) — %—h:ng(K)AQ(F)

+1—12—h4D4(K)A3(F) +O(h9)

2 =) E R a(R)BL(F) 4 () Bu(F) + O(hﬂ

(n—1)(n-2)

% + B2 pa () By () + %h"‘ui(k) @Y dF ()

+

—OQ

+11—2-h4p,4(k)E3(F) + O(hf’)} .

Using the result in lemma 1, (4.18) simplifies to

MASE(h) |
N % B 1—21{2 - Q%Dl(ff )Ao(F) + %h"‘ué(k) /_ [f'(z))* dF(z)
22 A - wm ()] +o (%),

Remarks

1. Comparison of (3.4) to (4.19) leads to the conclusion that

2
MASE(h) = MISE(R) + O (iz + h—) :
n n

(4.18)

(4.19)

The MASE(h) measure picks up an extra O(=;) term and the constant before the

O(%z) term becomes twice as large.

2. Under the usual assumptions, it follows that the asymptotic optimal bandwidth deter-

mined from MASE(h) will be as in (3.11).

3. From the analysis above it can be concluded that the MASE(h) and MISE(h) measures

are asymptotically equivalent. In the next section, a bootstrap estimator for MASE(A)

will be introduced.
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4.4 A Bootstrap Estimator for MASE

Consider an unknown distribution function F that we wish to estimate with £, 5. One way

to measure the discrepancy between F and F, j is the average squared error (ASE) or

n

ASE(h) = % D [Fan(X) — FX)).

i=1
However, this is still a random variable. Taking the expected value of this function the mean

average squared error (MASE) or
1« -
)l N F(X 4.20
MASE(h) =E {n i=§ l [Frn(Xs) — F(X5)] } (4.20)

is obtained. For more details on ASE and MASE, see Section 1.2.

Applying the plug-in principle from (2.1) to (4.20), using the definition of F, p, in (1.2) the
bootstrap estimator of MASE(h) becomes:

1va\\SE(h)
= E, —Z{Fnh (X*)}]
-7, 2{ ZK () - Fn(X:‘)}z
=E, { ZK( X - X;>~F(Xi*)}2
Xr— X3 R
_g, { Z#:K ( > +%K(O) Fn(X,L)}
—E, {%Z;: {K (X:;X?> + nilK(O) - nﬁ an(X:)H
~ E. _E* {%2;; {K (X;‘ - X}‘) - L _K(0) - #Fn(Xi)} }2)(,{‘ . (421)
Now let X7 = z and define
T, (X = K (m —hX; ) + fEOi - 2 Fy(o). (4.22)

Using E (X?) = Var (X) + [E(X))?, where X is any random variable, the inner expected

52



value in (4.21) can be written as follows

E, H%% {K (w —th> + n—iIK(o) - nian(x)} ﬂ
= i)
&, H =y }

1753

2

B (n— 1 Var, [¥

L (Ve 00 1 g <Xf>]}2}
B n—l {E* {\I! DY B[, (Xf)]}2+{E*[\IJx(Xf)]}2}

n—1 n—1

¥ - % @ oy + o

[
Le, (o)) + P i g ey

n2

L, [{v, {E. [T, (X7)]}*

= ,,;1; +(X5) + ”*1 { qu (4.23)
Substituting (4.22) and (4.23) into (4.21)
MASE(h)
-5 {%Z{%ZK =5 —Fn<X:>}
ISty [0 + B2, H;iwx i)
n—l 1 n—l n—2) 1|1 2
_zljzwx EZ}{TLZ@X }
—nn—‘llz;z:\lfx 1 zn;{i;i[/x XJ}
n—l K (0 n 2
G Z;z_;{ ( >+n—(i_n—1F”(X"')}
+(n—17)1§ *2)2{2 {K (Xi;Xj)Jrf_(Oi_nﬁan(Xi)” . (424)

Replacing X1, Xo, ..., X, with the order statistics X(1), X(9) ..., X(n) and using the property
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that F, (X)) = £ the bootstrap estimator of MASE(h) becomes:

NMASE(h)
TL—]_ n_on X(z) X(J) K(O) n :lg
J=1 i=1 {K< ) —-l_fn,_an (X(1)>
2
(n—l)(n 2) < n Xy — X¢5) K(0) n i\
nd : / K 3 +TL—1 . n( ())
=1 j=1
n_'l n n X('L) X(j) K(O) Z 2
B n* JZ=;7.Z=1:|:K< h >+’n:~1—fn,_.]_
2
(n=Dn—2) s~ |5 X — Xg) 1 __J ]
' n? j=1 ;K h ~{—’fb—le) n—1
nolgey X — Xa) 1 ;12
= ;; 1—K< - )-n_lK(o)Jrn_l
2
— . n n . __X 1 '
+(n 1)(n—2) e Xa) 0 . () - j
" j=1 \(i=1 h n—1 n—1

_ nT;l Z}; {K (X(j);X(i)> _fﬁoi +z’;’ri41-1r
: {K (X(i) ;X@)) +Tff£oi B nil]}z

+D;§n: {znj [K (X@ ;X@) = %: ?] }2, (4.25)

=1 U i=1

since K(z) is symmetrical about 0 and where

Ch = _1andD' (n —1)(n—2)'
n4

n

Y
The expression in (4.25) can now be used to estimate MASE(h) and when minimised with

respect to h, should yield an estimate of the optimal bandwidth.

Remark

Van Graan (1983) proposed an estimator for MISE(h) which was first given in (3.2), i.e

.12
J(Fuh) = GZZ{ (0 X@) ﬂ

=1 i=1

2
" X — X j
[ (a2 1)

j=

54

L



Where C,, = % and D, = %2, Tt can be seen that (3.2) and (4.25) are similar in form.
Noting the results in the last section, it can be expected that the large sample behaviour of

(3.2) and (4.25) will be the same.
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Chapter 5

Simulation Study

5.1 Introduction

A simulation study was performed to study the small to medium sample behaviour of the

three bandwidth selectors:

e The bandwidth selector defined in (4.25) was derived by proposing a bootstrap esti-

mator for the MASE discrepancy measure.

e The bandwidth selector defined in (3.2) that was derived by proposing a bootstrap

estimator for the MISE discrepancy measure.

e The plug-in bandwidth selector obtained by estimating the asymptotical optimal band-
width defined in (3.11). The procedure of Altman and Léger (1995) in its improved

form (see Section 3.3.2) will be used in the simulation study.

Unless mentioned otherwise, the bandwidth selectors defined in (3.2) and (4.25), were calcu-
lated as follows: the normal distribution function K(z) = ®(z), — oo < z < co was used to
compute the kernel distribution function estimator and the plug-in bandwidth selector was

implemented as discussed in section 3.3.2.

Samples from four distributions were used in the simulation study. These were: standard
normal distribution, exponential distribution, skewed unimodal distribution #2 and the
asymmetric bimodal distribution #8. The last two distributions are from the examples of
normal mixtures given in Marron and Wand (1992). The cumulative distribution functions

are listed in Table 5.1
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Name Distribution Function

Standard normal distribution N(0,1)
Standard exponential distribution | Exp(1)
Skewed unimodal distribution #2 | #N(0,1)

; N
Skewed bimodal distribution #8 | 2N(0,1)

N(

+ )+ EN(E 8)
+ )

)
bl

WOl—= Ol

= L Y o
Mo N

Table 5.1: Distribution functions used in the simulation study. Plots of normal mixtures

densities are in Marron and Wand (1992).

To generate observations from a normal mixture of the form (1 — €)N(u1, 02) + eN{ua, 03),
the following procedure was followed: Generate an uniformly distributed random number
between 0 and 1. If the number is less than (1—¢) generate a random variable from N(p1, %),
otherwise generate a random variable from N(uo,03). This procedure can also be extended

to include more complicated normal mixtures like the skewed unimodal distribution #2.

In Section 5.2 it will be discussed how the optimal bandwidths for the distributions studied

in this chapter were obtained.

Section 5.3 describes how the asymptotical optimal bandwidth was obtained and gives the
values of the asymptotical optimal bandwidth for the distributions and sample sizes studied.

Since two of the procedure are based on estimating MISE(h) or MASE(h), the efficiency
of the chosen bandwidth will depend on how well the procedures estimates MISE(h) or
MASE(R). In Section 5.4 this aspect will be considered.

All that remains is to compare the different procedures to each other. This will be done in
Section 5.5 where the bandwidths obtained from the simulation study, that will be described
later in this chapter, and the discrepancy measures associated with the bandwidths will be

compared for the different procedures, distribution functions and sample sizes.

5.2 Computation of the optimal bandwidth

The optimal bandwidth Aysg is defined as the bandwidth minimising MISE(h) and hyase
as the bandwidth that minimises MASE(h), i.e.,

hMISE = arg m}}n NHSE(}'L), (51)
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and
hMASE = arg mhin N[ASE(]’L) (52)

The bandwidth selectors defined in (3.2) and (4.25) are aimed at finding estimators for
(5.1) and (5.2). In Section 4.2 an exact theoretical calculation was performed to evaluate
MASE(h) when both F and K are known. However, it is difficult to perform this calculation
for more involved choices of F' and K. Therefore, to obtain values for hyse and hyase
for different choices of F, K and n a Monte Carlo simulation procedure is proposed to
obtain approximations to hynsg and Amasg. The following algorithm was used to obtain

approximations to the values hynsg and hyass:

1. Let hgy be a fixed value of the bandwidth parameter and X, X, ..., X, i.i.d. random
variables from a certain distribution F. Let F, 5, ;(z) be the non-parametric kernel dis-
tribution function estimator calculated for the i Monte Carlo sample, 1 =1,..., MC.
Define

BE(ho) = | [Fans(@) ~ Fl@) dF (o),

—0

and

™

ASE;(ho) = Z [Fr o (X5) — F(X)).

J=1

2. The Monte Carlo estimates of MISE and MASE at hg can be calculated as

MISE (ko) = Z ISE;(ho),

and

MASE (ho) = —ZASE (ho).

3. The calculations in the previous steps were performed for a fixed value of the bandwidth
parameter, i.e., h = hg. The calculations can be performed for a range of values of h,
say h € [0.01,0.02,...,7] where r depends on the sample size. Monte Carlo estimates

of haynise and hyase can be obtained as
FLMISE = arg IIJ}%Il mS\E(h),
and

EMASE = arg m’%n m<h)
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The bandwidths contained in Table 5.2 are the Monte Carlo estimated bandwidths that
minimises MISE(h) and MASE(h) for the distributions in Table 5.1 and the normal kernel.
The number of Monte Carlo trials were set at MC = 500.

n Normalﬁ ExponentiaT Skewed Unimodal | Skewed Bimodal

20 | 0.63 0.33 0.42 0.80
haise | 100 | 0.34 0.13 0.25 0.40

200 | 0.28 0.09 0.20 0.28

500 | 0.20 0.06 0.14 0.20

20 | 0.54 0.27 0.36 0.61
haiass | 100 [ 0.82 0.12 0.24 0.32

200 | 0.27 0.09 0.18 0.23

500 | 0.20 0.06 0.14 | 0.17

Table 5.2: Optimal bandwidths

Remarks

1. From Table 5.2 it follows that hyass < ;LMISE for the combinations of sample sizes and

distribution functions considered.

2. Furthermore, from Table 5.2 it is clear that both of hamse and hMASE tends to zero as

n tends to infinity. Also, hyrase — hamse s m — oo.

5.3 Asymptotical optimal bandwidth

The direct plug-in estimate in (3.30) estimates the asymptotical optimal bandwidth and for

comparison purposes the asymptotical optimal bandwidth needs to be calculated for the

distributions contained in the simulation study.

It was shown in (3.11) that the asymptotical optimal bandwidth Aoy can be written as

W 1/3 s
hopt— [E} n )

where B; and V; were defined in (3.5) and (3.6) respectively. Note that since f/(z) = 0 for

the uniform distribution, the asymptotical optimal bandwidth cannot be computed using
(3.11).
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In the case of the normal distribution, it was shown by Van Graan (1983) that

1

Vy = —
2T o

and
1

By = ——+,
’ 24+/37
which results in the asymptotical optimal bandwidth

1

hopt = 1.7321n7% .

In the case of the exponential distribution analytical calculations yield

and

which results in the asymptotical optimal bandwidth
Pops = 0.9459n7%.

Values of V5 and Bs for the skewed unimodal and skewed bimodal distributions were cal-
culated using numerical integration techniques. Values of V5 and Bj for the distributions
considered in the simulation study are summarised in Table 5.3. The asymptotical optimal
bandwidths calculated with (3.11) using the results in Table 5.3 are summarised in Table
5.4.

Distribution Vs Bz

Normal 0.1592 | 0.0077
Exponential 0.2821 | 0.0833
Skewed Unimodal | 0.0867 & 0.0025
Skewed Bimodal | 0.1025 | 0.0033

Table 5.3: The values of V5 and By

Remarks

1. In the case of a normal population distribution, there are noticeable similarities between
the optimal bandwidth EMISE in Table 5.2 and the asymptotical bandwidth Aqp, in Table

5.4 for the different sample sizes.
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n | Normal | Exponential | Skewed unimodal | Skewed Bimodal
20 0.64 0.35 0.76 0.73
100 | 0.37 0.20 0.44 0.43
200 | 0.30 0.16 0.35 . 0.34
500 0.22 0.12 0.26 0.25

Table 5.4: Asymptotical optimal bandwidths

2. Tt is reasonable to expect that the asymptotical optimal bandwidth, hep, and the
optimal bandwidth determined from the MISE critgrion, haise, should be relatively
close to each other for large sample sizes. Inspection of Tables 5.2 and 5.4 reveals that
sample sizes larger than 500 will be necessary to observe this property in the case of

the skewed distributions.

5.4 Estimation of the measures MISE and MASE

In section 5.2 computation of the optimal bandwidth was considered. If the true distribution

F'is unknown, then the values of hynsg and haase are also unknown.

The measures MISE(h) and MASE(h) cannot be computed since F' is unknown. Therefore
(3.2) and (4.25) can be used to estimate the unknown MISE(h) and MASE(h). If the
bandwidth selection procedures are to be good procedures in the sense that the selected
bandwidths should be in the region of (5.1) or (5.2), then the expected values of (3.2) and
(4.25) should also be similar in form to MISE(h) and MASE(h) in the region of (5.1) and
(5.2).

In the case of an uniform F and K, exact expressions for MASE(h) and MISE(h) are
available (see (4.5) and (4.6) respectively). Note that analytical expressions for MASE(h)
and MISE(h) are available only for the case mentioned previously. Approximations for other
combinations of F' and K can be obtained using the algorithm described in section 5.2. Note
that the optimal bandwidths in section 5.2 were obtained from approximations of MASE(h)
and MISE(h) for the distributions considered there and a normal kernel. Denote (4.25) by

J'(Fyn, h), then the following algorithm can be employed to obtain an approximation to the
values of B [J(Fy, h)] and E[J'(Fy,, h)]:

1. Let hp be a fixed value of the bandwidth parameter and X, X, ..., X, i.i.d. random
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variables from a certain distribution F, with associated order statistics
Xy, X(@) - -1 X(n)- Define J;(Fy, ho) and J{(Fn, ho) to be (3.2) and (4.25) calculated
for the i** Monte Carlo sample, 7 = 1,..., MC and h = hy.

2. The Monte Carlo estimates of E [J(F,, k)] and E [J'(F,, hg)] are then given by

o ] Mo
ElJ ) =T~ i\L'ny 3
[J(Fny ho)] = 175 ; Ji(Fr, ho)
and G
T 1 /
B (F, ho)l = 175 D i (B o)
i=1

3. It follows that E[J(F,,h)] and E[J'(F,, h)] can be calculated for a range of values
h = ho (see section 5.2). Now define

—

hyuse = arg m}%n E[J(Fy, h)],

and

e —

hriase = 8rg mfl;nE [J' (Fn, b))

For the case of a uniform population and a uniform kernel, estimates of E [J(F,, h)] and
E[J'(Fy,h)] are shown in Figures 5.1 to 5.4 for different choices of the sample size. The
bandwidths minimising these functions are summarised in Table 5.5. For the case of a
normal population and a normal kernel, the same estimates were calculated for the same
choices of sample size. In both of the cases the number of Monte Carlo trials were set at
MC = 500. The results are shown in Figures 5.5 to 5.8. The bandwidths minimising these

functions are summarised in Tables 5.6 and 5.7.

Note that in Figures 5.1 to 5.8 the red line represents the MISE discrepancy measure (as a
function of h), the blue line the MASE discrepancy measure (as a function of k), the green
line the estimate of E [J'(F,, k)] and the black line the estimate of E[J(F,, h)].
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65



0.012
0.009
5 \— N N
—
MASE(h)
‘ " MISE(h)
0.006 ' i~ E[J(Fn,h)
—E U(Fn,h)]
0.003
0.000 -
0 02 04 h 06 0.8 1
Figure 5.5: Comparison for n=20, normal population, normal kernel
0.006
0.0045
MASE(h)
MISE(n)
0.003 E [J(Fn,h)]
—E [J(Fn,h)]
—— o -
0.0015 2 -
0 : , : .
0 02 04 h 06 08 1
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n | haise | Mass | Pvase | Puase
20 | 0.20 | 0.14 | 0.17 | 0.10
100 | 0.10 | 0.08 | 0.09 0.07
200 | 0.08 | 0.06 | 0.07 0.05
500 | 0.05 | 0.04 | 0.05 0.04

Table 5.5: Uniform population, uniform kernel

Normal Exponential | Skewed Unimodal | Skewed Bimodal

n | hyse hyise hase | Phase hyise hise haise | Phase
20 | 0.63 | 0.44 | 0.33 | 0.20 | 0.42 0.33 0.80 0.50
100 | 0.34 | 029 | 0.13 | 0.09 | 0.25 0.20 | 0.40 0.26
200 | 0.28 | 0.23 | 0.09 | 0.07 | 0.20 0.16 0.28 0.21
500 | 0.20 | 0.17 | 0.06 | 0.04 | 0.14 0.11 0.20 0.14

Table 5.6: hyuss, Rynsg with a normal kernel

Normal Exponential | Skewed Unimodal | Skewed Bimodal

n | haase | hyass | Pvase | Pyass | Puvase (iase | Puase | Pass
20 0.54 0.33 0.27 0.15 0.36 0.25 0.61 0.36
100 | 0.32 0.25 0.12 0.08 0.24 0.17 0.32 0.23
200 | 0.27 0.21 0.09 0.06 0.18 0.14 0.23 0.19
500 | 0.19 0.16 0.06 0.04 0.14 0.12 0.17 0.14

Table 5.7: hyase, Ryrasy With a norrhal kernel
-

Remarks

1. In the case of a uniform population and uniform kernel, inspection of Figures 5.1 to 5.4
reveal that E [J(F,, h)] and E[J'(F,, k)] tend to MISE(h) and MASE(h) respectively
as n increases. It can be seen from Figure 5.4 the different lines can no longer be
distinguished. This behaviour is also evident in Table 5.5 where hyusg — hgep and
FLMASE — hiyase 88 1 takes on larger values. Also, there seems to be a bias present in

that hyeg < EMISE and Ayacp < Patasg for the values of n considered there.
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2. Inspection of Figures 5.5 to 5.8 and Tables 5.6 and 5.7 shows that the same behaviour
continues to hold for the normal kernel and the other distributions and sample sizes

considered there.

5.5 Comparison of methods

The final part of the simulation study is to compare the different procedures which were
discussed in this study with each other. In order to compare the different procedures to each
other a relevant criterion must be used. It was decided that a measure based on the average

squared error

ASE(R) = %Xn: [Frn(Xs) — F(X3),

i=1

will be used (see also (1.15)). For any competing procedure, let A be the data-driven band-

width obtained from the procedure for a random sample X;, Xo, ..., X, from a distribution
F. Let
. 1 & 2
ASE(R) = =3 [Foa(X0) - F(X)] (5.3)

i=1
The criterion that will be used is based on the mean value of the random variable defined

in (5.3), i.e.,
E [ASE (h)] = dase. (5.4)

The distributions considered here are those stated in Table 5.1 and the sample sizes are the
same as that in Tables 5.2 and 5.4. The following algorithm, for which the Fortran 90 source
code for the program can be found on the CD attached to the back cover of this dissertation,

was employed to calculate the criterion in (5.4) and the related quantities:

1. Let X1,X5,...,X, be an i.i.d. random sample from a certain distribution F', with
associated order statistics X1y, X(2), - - -, X(n)- Define J;(Fy, ) and J;(F,, ) to be (3.2)
and (4.25) calculated for the i Monte Carlo sample, i =1,...,MC.

2. For the i* Monte Carlo sample, let A; denote that value of A which minimises the
functions J;(Fy, ) or Ji(Fy, 1) or let h; denote the direct plug-in bandwidth obtained by
using the algorithm in Section 3.3.2. The functions J;(F, ) and J/(F, 1) are calculated

over a range of values of h, where h € [0.01,0.02, ..., 7| where r depends on the sample
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size. The method of minimisation consisted of both a traditional as well as the golden

section method.

. Fori=1,...,MC and for each of the competing procedures, calculate

ASE(h;) = % i Fr) — F(Xﬂ}z :

and

) 1 MC )
dase = 17 > L ASE (hi> , (5.5)
i=1

where cfASE represent the Monte Carlo estimate of the mean average squared error

dasw. Also calculate

1 MC
T_ " 5.6
h MC;% (5.6)

the average bandwidth for each of the procedures. The Monte Carlo estimates of SE
(standard error) for (5.5) and (5.6) are respectively

MC

SE (&ASE) - \/;I_C \I = Cl_ : Z [ASE (h,) - JASET“, (5.7)

e —

and

MC 5

—= 1 1 .
SE(E):MJMC_lg[hrh}. (5.8)

In all cases the number of Monte Carlo simulations was chosen to be 1000. The following

abbreviations will be used for the different procedures:

¢ New to indicate the procedure in (4.25)
¢ VG to indicate the procedure in (3.2)

e AL to indicate the direct plug-in bandwidth procedure in Section 3.3.2.

The results for the simulation study in this section will be shown in Appendixes A and B.

As an example of the tables that will appear in Appedix A and the figures that will appear
in Appendix B consider Table 5.8 and Figure 5.9.

In Table 5.8 the optimal bandwidth column refers to the values of hyase, hamse and hopt for

the normal distribution when n = 20. The column containing & refers to (5.6), and the next
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Figure 5.9: The bandwidths obtained from the New, VG and AL procedures for the normal
distribution and n=20

column to the estimated standard error in (5.8). The last two columns refers respectively to
dasg, defined in (5.5), and its estimated standard error defined in (5.7). Figure 5.9 shows
the distribution of the bandwidths obtained from the different procedures. Note that the

horizontal lines indicate the values of the optimal bandwidths EMASE, ﬁMISE and Agpt.

Procedure | Optimal | SEx1072 | dagg X 10~2 | SEx10~2
bandwidth
New 0.54 0.377 0.457 0.686 0.2438
VG 0.63 0.491 0.532 0.678 0.2387
AL 0.64 0.650 0.446 0.676 0.2305
Table 5.8: Normal distribution, n=20
—— i HMISE Tt
] ) EMASE
New V‘G A'L

— Mean [_] Mean+SD _1_ Mean+1.96*SD

5.6 Conclusions

1. The criterion in (5.4) was formulated in order to measure the average squared dis-
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bandwidth from the theoretical distribution function, both evaluated in the sample
observations. Other criteria to measure the performance of the bandwidth selectors
can be formulated. In the simulation study a criterion based on the ” integrated squared
error concept” was also used, but similar results was obtained. Thus it will not be re-

ported.

. Inspection of the tables in Appendix A shows that the estimated measure in (5.5) do
not differ much for the procedures New, VG and AL in the cases where the normal,

skewed unimodal and skewed bimodal distributions are considered.

. In the case of the exponential distribution, the New and VG procedures outperforms

the AL procedure even for sample sizes as large as n = 200

. It has been mentioned in Section 4.3 that the measures MASE(h) and MISE(h) are
asymptotically equivalent measures. It is to be expected that the bandwidths deter-
mined from the procedures New and VG should approximately be the same for larger
sample sizes. This behaviour can be seen in the tables of Appendix A by noting that

the values of h tends to each other for larger sample sizes.

. Furthermore, it should be remembered that bandwidths determined from the AL pro-
cedure are estimates of the asymptotical optimal bandwidth. The same behaviour that

was noted in the previous conclusion can also be seen in the case of the AL procedure.

. Inspecting the boxplots in Appendix B which reflects the distribution of the estimated
bandwidths determined from the different procedures, shows that most of the distri-

butions are skewed with respect to the optimal values EMISE, FLMASE and fqps.

. In most cases the optimal values BMISE and Ayasg are located in the upper 256% of the
distribution. This might be an indication that there is a bias present in the procedures

New and VG when determining the values of the respective bandwidths.

. In the case of the skewed unimodal distribution the value of hopt is more than at least
two standard deviations away from h*for all sample sizes considered in the simulation
study. This observation indicates that convergence of the sample bandwidth to the

optimal bandwidth might be very slow.
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5.7 Recommendations

In view of the results obtained from the simulation study, the following recommendations

can be made:

1. As was noted in point 3 of the previous section, the AL procedure does not perform as
well as the other procedures for the exponential distribution. It is recommended that
one of the other procedures be used in cases where the data seems to come from an

skewed distribution.

2. The difference between the New and VG procedures are negligible, especially for larger

sample sizes.

3. The procedures in this study are not dependent on assumptions about the distribu-
tional form of the underlying distribution function F'. However, the simulation results
suggest that the form of the underlying distribution or density function has an impact
on the performance of the proposed procedures (see point 1). The results suggest that
the procedures tend to differ not much for larger sample sizes in the case of non-skewed
symmetrical distributions. The interested reader is referred to Koekemoer (2004) for
more information on transformation to normality, which might help to improve the

performance of the procedures.
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Appendix A

Tables of simulation study

Procedure | Optimal | SEx1072 | dagg x 1072 | SEx1073
bandwidth
New 0.54 0.377 0.457 0.686 0.2438
VG 0.63 0.491 0.532 0.678 0.2387
AL 0.64 0.650 0.446 0.676 0.2305
A.1 Normal distribution, n=20
Procedure | Optimal h SEx102 ciASE x 1072 | SEx 104
bandwidth
New 0.32 0.255 0.185 0.138 0.4545
VG 0.34 0.290 0.195 0.137 0.4526
AL 0.37 0.369 0.131 0.136 0.4453
A.2 Normal distribution, n=100
Procedure | Optimal | % | SEX1072 | dags x 1073 | SEx10~4
bandwidth
New 0.27 0.210 0.127 0.688 0.2004
VG 0.28 0.232 0.128 0.685 0.2000
AL 0.30 0.292 0.076 0.683 0.1998
A.3 Normal distribution, n=200
Procedure | Optimal h SEx10~3 ciASE x 1072 | SEx107°
bandwidth
New 0.20 0.162 0.726 0.296 0.9109
VG 0.20 0.174 0.734 0.295 0.9105
AL 0.22 0.215 0.381 0.295 0.9097

A.4 Normal distribution, n=500
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Procedure | Optimal | & | SEx1072 | dagg x 1072 | SEx1073
bandwidth
New 0.27 0.188 0.304 0.725 0.2481
VG 0.33 0.247 0.392 0.721 0.2453
AL 0.35 0.478 0.445 0.811 0.2369
A.5 Exponential distribution, n=20
Procedure | Optimal | & | SEx1072 | dagg x 102 | SEx10™4
bandwidth
New 0.12 0.093 0.101 0.148 0.4646
VG 0.13 0.104 0.112 0.148 0.4640
AL 0.20 0.228 B 0.095 0.168 0.455&
A.6 Exponential distribution, n=100
Procedure | Optimal 7| SEx1078 | dasg x 1072 | SEx10—4
bandwidth
New 0.09 0.067 0.589 0.740 0.2024
VG 0.09 0.073 0.637 0.740 0.2024
AL 0.16 0.167 0.497 0.831 O.205u
A.7 Exponential distribution, n=200
Procedure | Optimal | A | SEx1072 | dagp x 1072 | SEx107®
bandwidth
New 0.06 0.043 0.301 0.315 0.9154
VG 0.06 0.045 0.318 0.314 0.9150
AL 0.12 0.110 0.212 0.3;43 0.9075

A.8 Exponential distribution, n=500
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Procedure | Optimal k| SEx1072 | dagg x 1072 | SEx 103
bandwidth
New 0.36 0.278 0.354 0.629 0.2080
VG 0.42 0.361 0.406 0.625 0.2059
AL 0.76 0.491 0.359 0.639 0.2033
A.9 Skewed unimodal distribution, n=20
r—Procedure Optimal h SEx10~2 JASE x 1072 | SEx10™*
bandwidth
New 0.24 0.177 0.140 0.141 0.4682
VG 0.25 0.200 0.148 0.140 0.4665
AL 0.44 0.265 0.103 0.140 0.4623
A.10 Skewed unimodal distribution, n=100
Procedure | Optimal | B | SEx1073 | dagg x 1073 | SEx10~4
bandwidth
New 0.18 0.148 0.889 0.733 0.2261
VG 0.20 0.162 0.920 0.732 0.2263
AL 0.35 0.209 0.620 0.734 0.2276
A.11 Skewed unimodal distribution, n=200
Procedure | Optimal | & | SEx107° | dpsg x 1073 | SEx10~*
bandwidth
New 0.14 0.111 0.541 0.317 0.1013
L va 014 |0.119| 0.549 0.317 0.1012
AL 0.26 0.151 0.295 0.316 0.1007

A.12 Skewed unimodal distribution, n=500
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Procedure | Optimal | A | SEx1072 | dagg x 1072 | SEx1072
bandwidth
New 0.61 0.410 0.522 0.664 0.2210
VG 0.80 0.542 0.608 0.652 0.2155
AL 0.73 0.743 0.420 0.645 0.2034
A.13 Skewed Bimodal distribution, n=20
Procedure | Optimal | % | SEx1072 | dagg x 1072 | SEx10~*
bandwidth
New 0.32 0.245 0.210 0.135 0.4171
VG 0.40 0.278 0.233 0.135 0.4137
AL 0.43 0.404 0.114 0.135 0.3989
A.14 Skewed Bimodal distribution, n=100
Procedure | Optimal h | SEx1072 | duysp x 1073 | SEx10~*
bandwidth
New 0.23 0.195 0.137 0.721 0.2280
VG 0.28 0.213 0.149 0.719 0.2273
AL 0.34 0.309 0.075 0.726 0.2227
A.15 Skewed Bimodal distribution, n=200
Procedure | Optimal | & | SEx107% | dygg x 1072 | SEx107°
bandwidth
New 0.17 0.140 0.766 0.300 0.9251
VG 0.20 0.148 0.806 0.300 0.9243
AL 0.25 0.213 0.448 0.302 0.9185

A.16 Skewed Bimodal distribution, n=500
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Appendix B

Figures of simulation study
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B.1 The bandwidths obtained from the New, VG and AL procedures for the normal
distribution and n=20
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B.3 The bandwidths obtained from the New, VG and AL procedures for the normal
distribution and n=200
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B.5 The bandwidths obtained from the New, VG and AL procedures for the exponential
distribution and n=20

81



0.30 T T

0.28

0.26

0.24 r

022 r

0.20 Mgt

0.18 ¢
0.16 r
0.14 -
0.12

Dyise
Prase

0.10

0.08

0.06
0.04 -

0.02 r

0.00 L : :
New VG AL
— Mean [_] Mean+SD _T_ Mean+1.96*SD

B.6 The bandwidths obtained from the New, VG and AL procedures for the exponential
distribution and n=100
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B.7 The bandwidths obtained from the New, VG and AL procedures for the exponential
distribution and n=200
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B.9 The bandwidths obtained from the New, VG and AL procedures for the skewed
unimodal distribution and n=20

83



0.45 —

hopt

0.40

0.35 +

0.30 +

0.25

b.MlSE

4 hvase

020 |

0.15 |

0.10 1

0.05 - d

0.00

New VG AL
— Mean ] Mean+SD __ Mean+1.96*SD

B.10 The bandwidths obtained from the New, VG and AL procedures for the skewed
unimodal distribution and n=100
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B.11 The bandwidths obtained from the New, VG and AL procedures for the skewed
unimodal distribution and n=200
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