A multi-period stochastic programming approach to
integrated asset and liability management of
investment products with guarantees

Helgard Raubenheimer (B.Sc, M.Sc)
11937440

Thesis submitted for the degree Doctor of Philosophy in Risk Analysis
at the Potchefstroom Campus of the North-West University

Promoter
Prof. Machiel F. Kruger

October 2009



Contents

Contents iii
List of Figures vii
List of Tables » Xi
Abstract xiii
Uittreksel XV
Acknowledgements xvii
1 Introduction 1
1.1 Thesis background and contribution . . . ... ... ... ... ... 2
1.1.1 Investment products with guarantees . . . . . . ... ... .. 2

1.1.2 Yield curve scenariogeneration. . . . . .. .. .. ... ... 4

1.2 Literaturereview . . . . .. . L L 6
1.2.1 Stochasticprogramming . . . . . . . .. ... ... ... ... 6

1.2.2 Scenariogeneration . . . ... ... ... ... ... ..... 14

1.2.3 Yieldcurve modelling . . ... ... ... .. .. ....... 17

1.3 Conclusion andthesisoverview . . . . . . . . . . .. ... ... ... 17



iv CONTENTS

2 Moment-matching yield curve scenario generation 19
21 Introduction . . .. ... 19
2.2 The moment-matching scenario generation method . . . ... ... 20
2.21 Thescenariotree structure . . . .. ... ... ... ... .. 20
2.2.2 The scenario generation method . . . . .. .. ... ..... 23
2.2.3° Generating single- and multiple-period scenario trees . . .. 25
2.3 Generatingyield curve scenarios . . . . ... ... ... ... .... 27
2.3.1 Scenario generation optimisation . . . . . ... ... .. ... - 27
2.3.2 Scenario generation algorithm (1) . . ... ... ... .. .. 28
2.3.3 Scenario generation algorithm 2y ..o 33 J
234 Arbitrage .. .. ..o 35 ",%
235 Backtesting . . . . .o 36 |
24 Conclusion . . . ... e 46 )
3 Macro-economic interest rate scenario generation 47 ‘
3.1 Introduction . . . . .. L 47
3.2 Yields-onlymodel . .. ... ... | 50
3.21 TheKalmanfiter . . .. .. .. ... .. ... ... ..., 50
3.2.2 Factorrepresentation . ... ... .. ... 51
3.2.3 Three-factor mode! estimation . . ... ... ... .. .... 53 £
3.2.4 Four-factor model estimation . . . .. ... ... ... 63 .
3.3 Macro-economicmodel . . . . ... L. oL oo | 67
3.31 Yields-macromodel . . ... ... ... ... ......... 67

3.3.2 Out-of-sampletesting . ... ... ... ... .. ... ... 71



CONTENTS \

3.4 Scenariogeneration . ... ... .. oo 75
3.4.1 Yield curve scenariogeneration. . . . ... ... L. 75
3.4.2 Arbitrage . .. ... 78
343 Backtesting ... ... ... L . 80

3.4.4 Moment-matching versus macro-economic scenario generation 84

3.5 Conclusion . . . . . .. 88

4 Liquid asset portfolio 91
41 Introduction . . . . . . .. 91
4.2 Scenario optimisation framework . . . . .. ... L. 94
421 Modelfeatures . . . .. ... . ... ... ... 96

4.2.2 Model variables and parameters . . . .. ... ... ... .. 97

4.2.3 Instrumentpricing . ... ... ... ... ... 99

4.2.4 Variable dynamicsand constraints . . . .. .. ... ... .. 100

425 Objectivefunction . ... ... ... ... ... .. ... ... 104

43 Results . .. .. 105
431 Dataandinstruments . ... .. .. ... ... ........ 105

4,32 Back-testingresults . .. ... ... ... .. L. ... 106

4.4 Conclusion . .. ... ... 114

5 Insurance products with guarantees 115
51 Introduction . . . . .. 116
5.2 Scenario optimisation framework . . . . . . ... ... ... .. 118
521 Modelfeatures . .. ... . .. ... ... L. 118



vi

523 Bondpricing . ....... ... . ...

5.2.4 Variable dynamics and constraints

5.2.5 Objectivefunction ... ... ... .....
53 Results . ... ... .. oL
5.3.1 Dataandinstruments ... .........
5.3.2 Back-testingresults . ... ... ......

54 Conclusion . ... .. ..

A Minimum guarantee - model formulation

A.1 Variable parameters ofthemodel . . . . . ... ..

A.2 Model formulation . . ... ... ... ... ..

Bibliography

CONTENTS



List of Figures

1.2.1

122

123

2.21

222

223

2.3.1

23.2

2.3.3

234

235

23.6

237

2.3.8

3.2.1

Graphical representation of a scenariotree . . . . . .. ... ... 8
A finite filtration and its associated scenariotree . . . . . ... .. 9
Cash flow balance and inventory balance at decision times . . . . 11
Graphical representation of a scenario structure . . . . .. .. .. 21
Graphical representation of a yield curve scenariotree . . . . .. 22
Sequential and overall approach to constructing a scenariotree . 26

Scenario generation approach (with quarterly intermediate nodes) 29

Svensson yield curve representation using all 27 yields and seven

vields . . . . e e 37
Moment-matching scenario back-testingresuits . . . ... .. .. 40
Average efficient frontier with 5% and 95% confidence bands. .. 42

Extract: Average efficient frontier with 5% and 95% confidence
bands. . .. . ... 42

Moment-matching scenarios at first decision period (tree-string (8.8),
monthly data with quaterly rebranching) . . . . . . . .. .. .. .. 43

Evolution of different moment-matching scenarios from root to first
decisionperiod . . . . . ... . L 44

Moment-matching scenarics at the leave nodes of the scenario
tree for low and average probabilites . . . . ... 45

Yield curves, August 1999 to February 2009 . . .. .. ... ... 53

Vi



viii

3.2.2

3.2.3

3.24

3.2.5

3.2.6

3.2.7

3.2.8

3.2.9

3.3.1

3.3.2

3.3.3

3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

3.4.6

421

4.31

43.2

LIST OF FIGURES

Median yield curve with point-wise interquartile ranges . . . . .. 54
Estimates of the level, slope and curvature factors . . . . . .. .. 60
THree—factor yields-only model level factor and empirical estimates 61
Three-factor yields-only model slope factor and empirical estimates 61

Three-factor yields-only mode! curvature factor and empirical es-
timates . . . . . .. 62

Nelson-Siegel fit versus Svensson fir for the yield curve . . . . . . 63
Four-factor yields-only model level factor and empirical estimates 66
Four-factor yields-only model slope factor and empirical estimates 66
Mean predicted errors and confidence bands at 5% and 95% . . . 71
Quantile-quantile plots for maturities 3, 60, 120 and 228 months . 74

Quantile-quantile plots for maturities 3, 60, 120 and 228 months

with samplingfromerrors . . . . . ... ... ... 74
Graphic representation of scenarios . . . . . .. ... 76
Two methods of simulating scenarios . . . . ... .. ... .... 76
Macro-economic scenario back-testingresults . . . .. .. .. .. 82
Average efficient frontier with 5% and 95% confidence bands. . . 83

Moment-matching versus macro-economic scenario back-testing
results . . . . .. L 85

Moment-matching and macro-economic average efficient frontier
with 5% and 95% confidence bands. . . . . ... ......... 87
Graphical representation of a yield curve scenariotree . . . . . . 96

Expected average shortfall for different levels of alpha and min-
imum liquid asset requirement growth rate (MLR), at February 2007 107

Expected cost for different levels of alpha and minimum liquid asset
requirement growth rate (MLR), at February 2007 . . ... .. .. 108



LIST OF FIGURES ix

4.3.3 Expected average shortfall for different levels of alpha and min-
imum liquid asset growth rate (MLR), at February 2008 . . . . .. 109

4.3.4 Expected cost for different levels of alpha and minimum liquid asset
requirement growth rate (MLR), at February 2008 . . .. ... .. 109

4.3.5 Asset allocation for different levels ofalpha . . . . . .. ... ... 110

4.3.6 Asset allocation for different levels of minimum liquid asset require-
ment growthrate (MLR) . . . . . . .. ... ... oL 110

4.3.7 Actual average shortfall for different levels of alpha and minimum
liquid asset requirement growth rate (MLR) . . . . . ... ... .. 111

4.3.8 Actual cost for different levels of alpha and minimum liquid asset
requirementgrowthrate . . . . . .. ..o oo oo Lo 112

4.3.9 Wealth and liability accounts at 7% minimum liquid asset growth rate112

4.3.10 Wealth and liability accounts at 11% minimum liquid asset growth
rate ... 113

4.3.11 Wealth and liability accounts at 15% minimum liquid asset growth
rate . ... e e 113
5.2.1 Graphical representation of a yield curve scenariotree . . .. .. 119

5.3.1 Shareholders annual excess return on equity for different levels of
minimum guaranteeata=0.5 . . . ... ... ... ... ... .. 129

5.3.2 Cost of equity for different levels of minimum guarantee at @ = 0.5 130

5.3.3 Assetand liability account at 1%, 9% and 15% minimum guarantee
ata=0.5. .. .. . . 131

5.3.4 Liabilities with different bonus options at 1% minimum guarantee . 132
5.3.5 Asset allocation for different levels of minimum guarantee at « = 0.5 133

5.3.6 Shareholders annual excess return on equity for different levels of
risk-aversion . ... ... L e 134

5.3.7 Cost of equity for different levels of risk-aversion . . . ... .. .. 134

5.3.8 Asset and liability account at different levels of risk-aversion. . . . 135



List of Tables

2.31

23.2

2.3.3

234

2.3.5

2.3.6

3.21

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

3.3.1

3.3.2

3.3.3

3.34

3.3.5

3.3.6

Tree structure for differentback-tests . . . . . ... ... ... ..
Descriplive statistics oflogchanges . . . .. . .. ... ... ...
Historical correlations oflogchanges . . . .. ... ... ... ..
Mean reversion parameterestimates . . . . . ... .. ... ...
Moment-matching portfolio allocation stability statistics . . . . ..

Moment-matching efficient frontier stability statistics . . . . . . ..

Yield curve descriptive statistics . . . . . ... ... ... ... ..
Three-factor yields-only model estimates . . . . . . ... ... ..
Three-factor yields-only estimated @ matrix . . . . ... ... ...
Summary of statistics for predicted errors of yields (percent)

Four-factor yields-only model estimates . . . . .. . .. .. .. ..
Four-factor yields-only estimated Q@ matrix. . . .. . ... ... ..
Four-factor yields-macro model estimates . . . . . . .. ... ...
Four-factor yields-macro estimated Q@ matrix . .. ... ... ...
One year out-of -sample forecastingresults . . . . . ... ... ..
Two year out-of -sample forecastingresults . . . . ... ... ...
Three year out-of -sample forecastingresults . . . . ... ... ..

Four year out-of -sample forecastingresults . . . . . .. ... ...

Xi



Xii

3.4.1
3.4.2
3.4.3
344

3.4.5

4.31

5.31

LIST OF TABLES

Tree structure for different back-tests . . . . ... ... ... ... 87
Macro-economic portfolio allocation stability statistics . . . . . .. 82
Macro-economic efficient frontier stability statistics . . . . . . . .. 83
Portfolio allocation stability statistics . . . . ... ... . ... ... 86

Moment-matching and macro-economic efficient frontier stability
statistics . . . . .. .o 87

Tree structures used for back-testing the minimum liquid asset
portfolio . . . . . .. 106

Tree structure used for back-testing . . ... ... ... ...... 127



Abstract

In recent years investment products have become more complex by providing in-
vestors with various guarantees and bonus options. This increase in complexity has
provided an impetus for the investigation into integrated asset and liability manage-
ment frameworks that could realistically address dynamic portfolio allocation in a
risk-controlled way.

This thesis presents two stochastic programming frameworks for the asset and liab-
ility management of investment products with guarantees. The asset side of these
products usually contains fixed income securities. For this reason we are concerned
with the stochastic evolution of the shape of the term structure of interest rates (or
vield curve) over time. Literature in the field of scenario generation for multi-period
stochastic programs has stated that the generation of a set of scenarios, which
represents the uncertainty in the evolution of these risk factors over time, is one
of the most important and critical steps in the multi-stage stochastic programming
approach. The first part of this thesis presents two methods for yield curve scenario
generation. The first method uses a moment-matching approach and the second
a simulation approach which takes the movement of macro-economic factors into
account.

In asset and liability management under uncertainty, using stochastic programming,
it is sometimes necessary to take into account flexible risk management actions,
for example the reinvestment of coupons or the payment of liabilities at time steps
smaller than those at which portfolio rebalancing {or restructuring, i.e. changing the
portfolio composition) takes place. The yield curve scenarios at these intermediate
time points have to be path dependent. Firstly this thesis proposes a moment-
matching approach fo construct scenario trees with path dependent intermediate
discrete vield curve outcomes sufficient for the pricing of fixed income securities.

As part of the second approach we estimate an econometric model that fits the
South African term structure of interest rates, using a Kalman filter approach. The
proposed model includes four latent factors and three observable macro-economic

xiii



xiv Abstract

factors (capacity utilisation, inflation and repo-rate). The goal is to capture the dy-
namic interactions between the macro-economy and the term structure. The result-
ing model can be used to generate interest rate scenario trees that are suitable for
fixed income portfolio optimisation. An important input into our scenario generator
is the investor's view on the future evolution of the repo-rate. In practice most finan-
cial institutions have views on the macro-econcmy. These views are produced by
means of an economic scenario generator (ESG) or expert opinion. These ESG’s
only produce forecasts for macro-economic factors, for example the repo-rate and
not a complete yield curve.

The second part of this thesis infroduces and solves two asset and liability prob-
lems. The first problem is the asset and liability management of minimum liquid
asset portfolios found in the banking environment and the second problem is the
asset and liabllity management of insurance products with minimum guarantees.
We discuss the formulation and implementation of these multi-stage stochastic pro-
gramming models and back-test both models on real market data.

Maintaining liquid asset portfolios involves a high carry cost and is mandatory by
law for some financial institutions. Taking this into account, a financial institution’s
aim is to manage a liquid asset portfolio in an "optimal" way, such that it keeps
the minimum allowed liquid assets to comply with regulations. This thesis pro-
poses a multi-stage dynamic stochastic programming model for liquid asset portfo-
lio management. The model allows for portfolio rebalancing decisions over a multi-
period horizon, as well as for flexible risk management actions, such as reinvesting
coupons at intermediate time steps.

The second problem is the asset and liability management of insurance products
with minimum guarantees. This thesis proposes a multi-stage dynamic stochastic
programming model for the integrated asset and liability management of insurance
products with guarantees that minimise the down-side risk of these products. We
investigate with-profits guarantee funds by including regular bonus payments while
keeping the optimisation problem linear. The main focus is the formulation and
implementation of a multi-stage stochastic programming model.

Dynamic optimization is perceived to be foo difficult ... If would be nice to have a
generic ‘sledge hammer approach for aftacking this sort of problem. 1

A. D. Smith (1996), p. 1085

"Taken from Dempster ef a/. (2008) - Global asset and liability management.



Uittreksel

Beleggingsprodukte het in die afgelope paar jaar meer kompleks geword, deur on-
der andere 'n verskeidenheid waarborge en bonus opsies aan beleggers te bied.
Die toename in kompleksiteit dryf die motivering vir die ondersoek na geintegreerde
bate- en lastebestuursraamwerke. Hierdie raamwerke behoort die dinamiese porte-
feulje toewysing realisties, op 'n risiko-beheerde wyse, aan te spreek,

Hierdie tesis bied twee stogastiese programmeringsraamwerke aan vir die bate-
en lastebestuur van investeringsprodukte met waarborge. Die bate sy van hierdie
produkte bevat gewoonlik vaste inkomste sekuriteite. Vir hierdie rede bestudeer
ons die stogastiese evolusie van die vorm van die rentekoerstermynstruktuur. In
die veld van scenario generering vir multi-periode stogasties programmering, is
die literatuur van mening dat die generering van scenarios, wat die onsekerheid
in die evolusie van risiko faktore oor tyd voorstel, een van die belangrikste en krit-
jese stappe in die multi-periode stogastiese programmeringsbenadering. Die eer-
ste gedeelte van die tesis stel twee metodes voor vir die scenario generering van
opbrengskurwes. Die eerste metode maak gebruik van 'n moment-passings be-
nadering en die tweede metode maak gebruik van 'n simulasie benadering wat die
beweging van makro-ekonomiese faktore in ag neem.

In stogastiese bate- en lastebestuur, waar van stogastiese programmering gebruik
gemaak word, is dit soms nodig om van buigsame risikobestuursaksies gebruik te
maak. Soos byvoorbeeld die herinvestering van koeponne of die betaling van laste,
op tydstippe korter as die waar portefeuljeherbalansering of -herstrukturering plaas-
vind. Die opbrengskurwe scenario’s by die intermediére tydstappe moet padaf-
hanklik wees. Die tesis stel 'n moment-passings benadering voor om scenariobome
te genereer met padafthanklike intermediére diskrete opbrengskurwe uitkomstes,
wat geskik is vir die prysing van vaste inkomste sekuriteite.

As deel van die tweede benadering beraam ons 'n ekonometriese model wat die
Suid-Afrikaanse rentekoers termynstruktuur pas, deur gebruik te maak van 'n Kal-
man filter benadering. Die voorgestelde model sluit vier latente faktore en drie

XV
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makro-ekonomiese faktore (kapasiteitsgebruik, inflasie en repokoers) in. Die doel
~ is om die dinamiese interaksie tussen die makro-ekonomie en die termynstruktuur
vas te vang. Die resulterende model kan gebruik word om rentekoers scenario
bome te genereer wat geskik is vir die prysing van vaste inkomste sekuriteite. 'n
Belangrike inset in ons scenario generator, is die investeerder se vooruitskatting
van die evolusie van die repokoers. Meeste finansiéle instellings het in die praktyk
verwagtinge oor die makro-ekonomie. Hierdie sieninge word gewoontelik deur eko-
nomiese scenario generators (ESG) verskaf of deur middel van ekspert opinies. Die
ESG’s voorsien gewoontelik vooruitskattings van die makro-ekonomiese faktore,
byvoorbeeld die repokoers, en nie die hele termyn struktuur nie.

Die tweede gedeelte van hierdie tesis bestudeer twee bate- en lastebestuurs prob-
leme en los dit ook op. Die eerste probleem is die bate- en lastebestuur van min-
imum likiedebate portefeuljes wat in die bank industrie voorkom. Die tweede prob-
leem is die bate- en lastebestuur van versekeringsprodukte met minimum waar-
borge. Ons bespreek die formulering en implementering van die multi-periode sto-
gastiese programmeringsmodelle en toets albei modelle op historiese mark data.

Die instandhouding van likiedebate portefeulies is gemoeid met 'n ho& drakoste
en is volgens wet verpligtend vir sommige finansiéle instellings. Dus is die doel
van ’'n finansiéle instelling om op 'n optimale wyse hierdie portefeulje te bestuur,
sodanig dat die minimum likiedebates gehou word, om aan die regulasies te vol-
doen. Hierdie tesis bied 'n multi-periode dinamiese stogastiese programmerings-
model aan vir likiedebate portefeuljebestuur. Die model maak voorsiening vir multi-
periode portefeuljeherbalansering, asook vir buigsame risikobestuursaksies, soos
die herinvestering van koeponne, by intermediére tydstappe.

Die tweede probleem is die bate- en lastebestuur van versekeringsprodukte met
minimum waarborge. Die tesis bied 'n multi-periode dinamiese stogastiese pro-
grammeringsmodel aan, vir die geintegreerde bate- en lastebestuur van versekerings-
produkte met waarborge. Hierdie model minimeer die negatiewe (onderkant) risiko
van hierdie produkte. Ons bestudeer waarborgfondse met winste, met gereelde
bonus betalings, en hou die optimerings probleem linieér. Die hooffokus is die
formulering en implementering van die multi-periode stogastiese programmerings-
model.

Dynamic optimization is perceived to be too difficult ... It would be nice to have a
generic ‘sledge hammer' approach for attacking this sort of problem.

A. D. Smith (1996), p. 1085

"Taken from Dempster et al. (2006) - Global asset and liability management.
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Chapter 1

Introduction

l/7 r.ecem‘ years investment products have become more complex by
prowdmg investors with various guarantees and bonus options. This
increase in complexity has provided an impetus for the investigation into
integrated asset and liability management frameworks that could realis-
tically address dynamic portfolio allocation in a risk-confrolled way.

In this thesis we present two stochastic programming frameworks for
the asset and liability management of investment products with guaran-
tees. The asset side of these products usually contains fixed income
securities. For this reason we are concerned with the stochastic evolu-
tion of the shape of the term structure of interest rates (or yield curve)
over time. Literature in the field of scenario generation for multi-period
stochastic programs has stated that the generation of a set of scenarios,
which represents the uncertainty in the evolution of these risk factors
over time, is one of the most important and critical steps in a multi-stage
stochastic programming approach. The first part of this thesis presents
ftwo methods for yield curve scenario generation. The first method uses
a moment-matching approach and second a simulation approach which
takes the movement of macro-economic factors into account.

The second part of this thesis introduces and solves two asset and
liability management problems. The first problem is the asset and liahil-
ity management of minimum liquid asset portfolios, found in the banking
environment, and the second problem is the asset and liability man-
agement of insurance products with minimum guarantees. We discuss
the formulation and implementation of these multi-stage stochastic pro-
gramming models and back-test both models on real market data.

In this introductory chapter we will discuss the background of the
problem and highlight the contributions of this thesis. We also present
an introduction to stochastic programming and its uses in asset and li-
ability management and highlight the importance of scenario generation
as input to these models. We will conclude with an overview of what is

to follow in this thesis.



2 1. INTRODUCTION

14 Thesis background and contribution

In this section we will discuss the background to the problem and highlight the

contributions of this thesis.

1144 Investment products with guarantees

Liquid asset portfolio

Banks are deposit-taking institutes and when a run on the bank occurs, due to any
adverse movements of a risk factor, the bank needs to have enough liquid assets
to meet public demand. The South African Banks Act (Banks Act, 94/1990) and
Regulations Relating to Banks (SA, 2008) protect the public by requiring banks to
keep a minimum amount in liquid assets. Liquid assets are assets which are easily
redeemable for cash and are defined in Section 1 of the Banks Act as:

« Reserve Bank notes, subsidiary coins,

« Gold coin and bullion,

Any credit balance in a clearing account with the SARB,

Treasury bills of the RSA,

Securities issued by virtue of section 66 of the Public Finance Management
Act, 1999

Bill issued by the Land Bank

Securities of the SARB.

The minimum nominal amount required in liquid assets, is stipulated in Section
72 of the Banks Act (Banks Act, 94/1990) and Regulation 20 of the Regulations
Relating to Banks (SA, 2008). The Banks Act (Banks Act, 94/1990) stipulates, that
a bank shall hold liquid assets with respect to the value of its liabilities as may be
specified by regulations. Regulation 20 of the Regulation Relating to banks (SA,
2008), requires a bank to hold over a period of one month an average daily amount
of liquid assets equal to no less than 5% of its reduced liabilities. For this purpose
a bank needs to keep a statutory portfolio, also called a liquid asset portfolio.



1.1. THESIS BACKGROUND AND CONTRIBUTION 3

The liquid assets that are available for inclusion into the liquid asset portfolio are
interest rate sensitive, low (credit) risk financial instruments. Raving a low risk im-
plies having a small return, so keeping the portfolio is mostly unprofitable. The port-
folio is funded by a pool of funds with a cost equivalent to the bank’s interdivisional
borrowing rate. Maintaining a liquid asset portfolio involves a high carry cost, thus
making it expensive to hold. However, as mentioned above, the portfolio is man-
datory. Taking this and the high carry cost of the portfolio into account, the bank’s
aim is to manage the liquid asset portfolio in an "optimal” way, such that it keeps
the minimum allowed liquid assets to comply to regulations, whilst maximising the
portfolio return to cover at least the carry cost.

To manage this portfolio in an "optimal” way the bank will need to rebalance or re-
structure, i.e. changing the portfolio cornposition, on a regular basis. Changing the
portfolio composition will depend on certain aspects such as expert views on risk
factor movements, legislation and regulations. With these legislation and regula-
tions to adhere to and uncertainties to consider the liquid asset portfolio manage-
ment problem can be described as a multi-stage decision problem in which portfolio
rebalancing actions are taken at successive future discrete time points.

This thesis will investigate the use of stochastic programming in addressing all of
these aspects in a realistic way. We propose a multi-stage dynamic stochastic
programming model for liquid asset portfolio management. The model allows for
portfolio rebalancing decisions over a multi-period horizon, as well as for flexible
risk management actions, such as reinvesting coupons, at intermediate time steps,
i.e. between decision times. We show how our problem closely relates to insurance
products with guarantees and utilise this in the formulation. Furthermore we discuss
our formulation and implementation of a multi-stage stochastic programming model
that minimises the down-side risk of these portfolios and illustrate by means of back-
testing, over a period of two years, rebalancing every quarter, that the proposed
model addresses the risk management of these portfolios in a reasonable way.

Insurance products with guarantees

Inspired by the research of Dempster et al. (2006) and Consiglio ef al. (20086), this
thesis further proposes a multi-stage dynamic stochastic programming model for
the integrated asset and liability management of insurance products with guaran-
tees that minimises the down-side risk of these products. As proposed in Dempster
et al. (2006), the model allows for portfolio rebalancing decisions over a multi-period
horizon, as well as for flexible risk management actions, such as the reinvestment
of coupons at intermediate time steps. We investigate with-profits guarantee funds
as in Consiglio ef al. (2006), by including regular bonus payments. Once these
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4

bonuses have been declared, the bonus becomes guaranteed.

Our main contribution in this area is that we keep the optimisation problem linear, by
changing the way bonuses are declared. The problem is kept linear for two‘ reasons.
The first is that, by keeping the problem linear, we can model the rebalancmg‘of the
portfolio at future decision times explicitly. By doing so the dynamic‘stooha.stlc pro-
gramming model automatically hedge the first stage portfolio allocation against pro-
jected future uncertainties in asset returns (see Dempster et al., 2003 and 20086).
The second reason is that the model is flexible enough to take into account portfo-
lio constraints such as the prohibition of short-selling, transaction costs and coupon
payments. Although our bonus payments may seem unrealistic, we show that our
bonus assumption mimics those proposed by Consiglio et al. (2006).

Furthermore we discuss the formulation and implementation of the multi-stage
stochastic programming model. We also demonstrate the model's features at dif-
ferent levels of minimum guarantee and different levels of risk-aversion. Again we
illustrate by means of back-testing, over a period of five years, that the proposed
model addresses the risk management of these portfolios in a reasonable way.

1.1.2 Yield curve scenario generation

Moment-matching

One of the main sources of uncertainty in analysing the risk and return properties
of investment products with guarantees is the stochastic evolution of risk factors.
The asset side of these products usually contains fixed income securities. For
this reason we are concerned with the stochastic evolution of the shape of the term
structure of interest rates (or yleld curve) overtime. Literature in the field of scenario
generation for multi-period stochastic programs has stated that the generation of 5
set of scenarios, which represents the uncertainty in the evolution of these risk
factors over time, is one of the most important and critical steps in the multi-stage
stochastic programming approach (see Dupatova et al., 2000: Kouwenberg, 2001).

In this thesis we apply a moment-matching procedure for the generation of yield

curve scenarios. We discuss the moment-matching procedure and propose an al-

gorithm to produce yield curve scenarios with path dependent intermediate nodes
sujtable for the pricing of fixed income securities. In asset and liability manage-
ment under Uncertainty, using stochastic programming,

it is sometimes necessary
to take into account flexible risk management actions, for

example the reinvestment
of coupons or the payment of liabilities, at time steps smaller then those at which
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of severa| back-tests.

Macro-economic simulation

South African term structure of interest rates. We describe g Kalman filter state-
Space modelling approach for the basic three-factor yields-only mode| used by
Diebold ef a/, (2008). The yields-only model uses only three latent factors of the

Furthermore we introduce a four-factor model based on the yield curve model of
Svensson (1994). The four-factor model is introduced because the Nelson and
Siegel (1987) mode! is not flexible enough to get an acceptable cross-sectional fit
to the South African term structure.

Our goal is to capture the dynamic interactions between the macro-economy and
the term structure in such a way that the resulting model can be used to generate
interest rate scenario trees that are suitable for fixed income portfolio optimisa-
tion. We incorporate three macro-economic factors (capacity utilisation, inflation
and repo-rate). According to Diebold ef al. (2006) these three macro-economic
factors are considered to be the minimum set of fundamentals needed to capture
the basic macro-economic dynamics (see also Rudebusch and Svensson, 1999;
Kozicki and Tinsley, 2001). For scenario generation it is not only important to cap-
ture the dynamics of the yield curve reasonably well in-sample, but it is also import-
ant to forecast the dynamics of the yield curve reasonably well out-of-sample. We
show that the estimated model fits the term structure reasonably well in-sample and
performs reasonably well in out-of-sample forecasting. An important input into our
scenario generator is the investor's view on the future evolution of the repo-ratfa. in
practice most financial institutions have views on the macro-economy. These vne\./vs
are produced by means of an economic scenario generator'(ESG) or expert opin-
ion. These ESG's only produce forecasts for macro-economic factors, for example
the repo-rate and not a complete yield curve. By usihg the Kalman fllter to mc;d;l
the yield curve in a bidirectional approach, it is poss@e to close this loop an
produce a full yield curve given a set of macro-economic forecasts.

Lastly we present a parallel simulation and randomised clustering approach to gen-
erate scenario trees, which are the input for financial optimisation problems. Fur-
thermore, we discuss the existence of arbitrage in the scenario trees and propose
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a method to eliminate arbitrage opportunities. We illustrate by means of several

back-tests the stability of the scenarios generation method and compare the results

to those of the moment-matching scenario generation method. We also discuss

and compare the two proposed methods in terms of back-testing and stability.

1.2 Literature review

in this section we present an introduction to Stochastic Programming and its uses
in asset and liability management and the importance of scenario generation as

input to these models.

1.2.1 Stochastic programming

Multi-stage dynamic stochastic programming has over the past few decades be-
come a popular tool for asset and liability management. Recognised in the 1970’s,
Crane (1971) presents a discrete stochastic programming model for commercial
bank portfolio management. Crane (1971) shows that this model explicitly takes
into account the dynamic nature of these types of problems and incorporates risk
by treating future cash flows and interest rates as random variables. Bradley and
Crane (1972) presents a more dynamic model for bond portfolio management,
where the bond portfolio problem is viewed as a multi-staged decision problem.
Kusy and Ziemba (1986) developed a multi-stage stochastic linear programming
model for the asset and liability management of a bank. Their model includes
the uncertainties of institutional, legal, financial, and bank-related policies. They
demonstrate that the asset and liaE)ility model developed, is theoretically and op-
erationally superior to deterministic programming models (e.g. mean variance,
Markowitz, 1952). Some other notable financial planning applications can be found
in Mulvey and Viadimirou (1989) and Mulvey and Vladimirou (1892).

Several authors highlighted the advantages of multi-stage dynamié stochastic pro-
gramming in asset and liability modelling (see for example Mulvey et al., 2003).
|r.1 contrast to the usual mean-variance approach (Markowitz, 1952) with a myopic
view of managing investment risk over a single period, dynamic stochastic optim-
isation provides the asset manager with an integrated way to model both assets
and liabilities in a flexible manner that takes into account multi-period dynamic as-
set allocation and the valuation of liabilities under future market conditions. Using
this approach the rebalancing of the asset portfolio is modelled explicitly.
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Abstract

In recent years investment products have become more complex by providing in-
vestors with various guarantees and bonus options. This increase in complexity has
provided an impetus for the investigation into integrated asset and liability manage-
ment frameworks that could realistically address dynamic portfolio aliocation in a
risk-controlled way.

This thesis presents two stochastic programming frameworks for the asset and liab-
ility management of investment products with guarantees. The asset side of these
products usually contains fixed income securities. For this reason we are concerned
with the stochastic evolution of the shape of the term structure of interest rates (or
yield curve) over time. Literature in the field of scenario generation for multi-period
stochastic programs has stated that the generation of a set of scenarios, which
represents the uncertainty in the evolution of these risk factors over time, is one
of the most important and critical steps in the multi-stage stochastic programming
approach. The first part of this thesis presents two methods for yield curve scenario
generation. The first method uses a moment-matching approach and the second
a simulation approach which takes the movement of macro-economic factors into

account.

In asset and liability management under uncertainty, using stochastic programming,
it is sometimes necessary to take into account flexible risk management actions,
for example the reinvestment of coupons or the payment of liabilities at time steps
smaller than those at which portfolio rebalancing {or restructuring, i.e. changing the
portfolio composition) takes place. The yield curve scenarios at these intermediate
time points have to be path dependent. Firstly this thesis proposes a moment-
matching approach to construct scenario trees with path dependent intermediate
discrete yield curve outcomes sufficient for the pricing of fixed income securities.

As part of the second approach we estimate an econometric model that fits the
South African term structure of interest rates, using a Kalman filter approach: The
proposed model includes four latent factors and three observable macro-economic

xiii



xiv. Abstract

factors (capacity utilisation, inflation and repo-rate). The goal is to capture the dy-
namic interactions between the macro-economy and the term structure. The result-
ing model can be used to generate interest rate scenario trees that are suitable for
fixed income portfolio optimisation. An important input into our scenario generator
is the investor’s view on the future evolution of the repo-rate. In practice most finan-
cial institutions have views on the macro-economy. These views are produced by
means of an economic scenaric generator (ESG) or expert opinion. These ESG'’s
only produce forecasts for macro-economic factors, for example the repo-rate and
not a complete yield curve.

The second part of this thesis introduces and solves two asset and liability prob-
lems. The first problem is the asset and liability management of minimum liquid
asset portfolios found in the banking environment and the second problem is the
asset and liability management of insurance products with minimum guarantees.
We discuss the formulation and implementation of these muiti-stage stochastic pro-
gramming models and back-test both models on real market data.

Maintaining liquid asset portfolios involves a high carry cost and is mandatory by
Jaw for some financial institutions. Taking this into account, a financial institution’s
aim is to manage a liquid asset portfolio in an "optimal" way, such that it keeps
the minimum allowed liquid assets to comply with regulations. This thesis pro-
poses a multi-stage dynamic stochastic programming model for liquid asset portfo-
lioc management. The model allows for portfolic rebalancing decisions over a muiti-
period horizon, as well as for flexible risk management actions, such as reinvesting
coupons at intermediate time steps.

The second problem is the asset and liability management of insurance products
with minimum guarantees. This thesis proposes a multi-stage dynamic stochastic
programming model for the integrated asset and liability management of insurance
products with guarantees that minimise the down-side risk of these products. We
investigate with-profits guarantee funds by including regular bonus payments while
keeping the optimisation problem linear. The main focus is the formulation and
implementation of a multi-stage stochastic programming model.

Dynamic optimization is perceived to be too difficult ... It would be nice to have a
generic ‘sledge hammer’ approach for attacking this sort of problem.

A. D. Smith (1996), p. 1085

Taken from Dempster ef al. (2006) - Global asset and liabllity management.



Uittreksel

Beleggingsprodukte het in die afgelope paar jaar meer kompleks geword, deur on-
der andere 'n verskeidenheid waarborge en bonus opsies aan beleggers te bied.
Die toename in kompleksiteit dryf die motivering vir die ondersoek na geintegreerde
bate- en lastebestuursraamwerke. Hierdie raamwerke behoort die dinamiese porte-
feulje toewysing realisties, op 'n risiko-beheerde wyse, aan te spreek.

Hierdie tesis bied twee stogastiese programmeringsraamwerke aan vir die bate-
en lastebestuur van investeringsprodukte met waarborge. Die bate sy van hierdie
produkte bevat gewoonlik vaste inkomste sekuriteite. Vir hierdie rede bestudeer
ons die stogastiese evolusie van die vorm van die rentekoerstermynstruktuur. In
die veld van scenario generering vir multi-periode stogasties programmering, is
die literatuur van mening dat die generering van scenarios, wat die onsekerheid
in die evolusie van risiko faktore oor tyd voorstel, een van die belangrikste en krit-
iese stappe in die multi-periode stogastiese programmeringshenadering. Die eer-
ste gedeelte van die tesis stel twee metodes voor vir die scenario generering van
opbrengskurwes. Die eerste metode maak gebruik van 'n moment-passings be-
nadering en die tweede metode maak gebruik van 'n simulasie benadering wat die
beweging van makro-ekonomiese faktore in ag neem.

In stogastiese bate- en lastebestuur, waar van stogastiese programmering gebruik
gemaak word, is dit soms nodig om van buigsame risikobestuursaksies gebruik te
maak. Soos byvoorbeeld die herinvestering van koeponne of die betaling van laste,
op tydstippe korter as die waar portefeuljeherbalansering of -herstrukturering plaas-
vind. Die opbrengskurwe scenario’s by die intermediére tydstappe moet padaf-
hanklik wees. Die tesis stel 'n moment-passings benadering voor om scenariobome
te genereer met padafhanklike intermediére diskrete opbrengskurwe uitkomstes,
wat geskik is vir die prysing van vaste inkomste sekuriteite.

As deel van die tweede benadering beraam ons 'n ekonometriese model wat die
Suid-Afrikaanse rentekoers termynstruktuur pas, deur gebruik te maak van 'n Kal-
man filter benadering. Die voorgestelde model sluit vier latente faktore en drie
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makro-ekonomiese faktore (kapasiteitsgebruik, inflasie en repokoers) in. Die doel
is om die dinamiese interaksie tussen die makro-ekonomie en die termynstruktuur
vas te vang. Die resulterende model kan gebruik word om rentekoers scenario
bome te genereer wat geskik is vir die prysing van vaste inkomste sekuriteite. 'n
Belangrike inset in ons scenario generator, is die investeerder se vooruitskatting
van die evolusie van die repokoers. Meeste finansiéle instellings het in die praktyk
verwagtinge oor die makro-ekonomie. Hierdie sieninge word gewoontelik deur eko-
nomiese scenario generators (ESG) verskaf of deur middel van ekspert opinies. Die
ESG's voorsien gewoontelik vooruitskattings van die makro-ekonomiese faktore,
byvoorbeeld die repokoers, en nie die hele termyn struktuur nie.

Die tweede gedeelte van hierdie tesis bestudeer twee bate- en lastebestuurs prob-
leme en los dit ook op. Die eerste probleem is die bate- en lastebestuur van min-
imum likiedebate portefeuljes wat in die bank industrie voorkom. Die tweede prob-
leem is die bate- en lastebestuur van versekeringsprodukte met minimum waar-
borge. Ons bespreek die formulering en implementering van die multi-periode sto-
gastiese programmeringsmodelle en toets albei modelle op historiese mark data.

Die instandhouding van likiedebate portefeuljes is gemoeid met 'n hoé& drakoste
en is volgens wet verpligtend vir sommige finansiéle instellings. Dus is die doel
van ’'n finansiéle instelling om op 'n optimale wyse hierdie portefeulje te bestuur,
sodanig dat die minimum likiedebates gehou word, om aan die regulasies te vol-
doen. Hierdie tesis bied 'n multi-pericde dinamiese stogastiese programmerings-
model aan vir likiedebate portefeuljebestuur. Die model maak voorsiening vir multi-
periode portefeuljeherbalansering, asoock vir buigsame risikobestuursaksies, soos
die herinvestering van koeponne, by intermediére tydstappe.

Die tweede probleem is die bate- en lastebestuur van versekeringsprodukte met
minimum waarborge. Die tesis bied 'n multi-periode dinamiese stogastiese pro-
grammeringsmodel aan, vir die geintegreerde bate- en lastebestuur van versekerings-
produkte met waarborge. Hierdie model minimeer die negatiewe (onderkant) risiko
van hierdie produkte. Ons bestudeer waarborgfondse met winste, met gereelde
bonus betalings, en hou die optimerings probleem linieér. Die hooffokus is die
formulering en implementering van die multi-periode stogastiese programmerings-
model.

Dynamic optimization is perceived fo be foo difficult ... It would be nice to have a
generic ‘sledge hammer’ approach for attacking this sort of problem. 1

A. D. Smith (1996), p. 1085

"Taken from Dempster et al. (2006) - Global asset and liability management.
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Chapter 1

Introduction

In recent years investment products have become more complex by
providing investors with various guarantees and bonus options. This
increase in complexity has provided an impetus for the investigation into
integrated asset and liability management frameworks that could realis-
tically address dynamic portfolio allocation in a risk-controlled way.

in this thesis we present two stochastic programming frameworks for
the asset and liability management of investment products with guaran-
fees. The asset side of these products usually contains fixed income
securities. For this reason we are concerned with the stochastic evolu-
tion of the shape of the term structure of interest rates (or yield curve)
over time. Literature in the field of scenario generation for multi-period
stochastic programs has stated that the generation of a set of scenarios,
which represents the uncertainty in the evolution of these risk factors
over time, is one of the most important and critical steps in a multi-stage
stochastic programming approach. The first part of this thesis presents
two methods for yield curve scenario generation. The first method uses
a moment-matching approach and second a simulation approach which
takes the movement of macro-economic factors into account.

The second part of this thesis infroduces and solves two asset and
liability management problems. The first problem is the asset and liabil-
ity management of minimum liquid asset portfolios, found in the banking
environment, and the second problem is the asset and liability man-
agement of insurance products with minimum guarantees. We discuss
the formulation and implementation of these multi-stage stochastic pro-
gramming models and back-test both models on real market data.

In this introductory chapter we will discuss the background of the
problem and highlight the contributions of this thesis. We also present
an introduction to stochastic programming and its uses in asset and Ii-
ability management and highlight the importance of scenario generation
as input fo these models. We will conclude with an overview of what is
fo follow in this thesis.



2 1. INTRODUCTION

1.1 Thesis background and contribution

In this section we will discuss the background to the problem and highlight the
contributions of this thesis.

1.1.1 Investment products with guarantees

Liquid asset portfolio

Banks are deposit-taking institutes and when a run on the bank occurs, due to any
adverse movements of a risk factor, the bank needs to have enough liquid assets
to meet public demand. The South African Banks Act (Banks Act, 94/1990) and
Regulations Relating to Banks (SA, 2008) protect the public by requiring banks to
keep a minimum amount in liquid assets. Liquid assets are assets which are easily
redeemable for cash and are defined in Section 1 of the Banks Act as:

Reserve Bank notes, subsidiary coins,

Gold coin and bullion,

Any credit balance in a clearing account with the SARB,

Treasury bills of the RSA,

Securities issued by virtue of section 66 of the Public Finance Management
Act, 1999

Bill issued by the Land Bank

Securities of the SARB.

The minimum nominal amount required in liquid assets, is stipulated in Section
72 of the Banks Act (Banks Act, 94/1990) and Regulation 20 of the Regulations
Relating to Banks (SA, 2008). The Banks Act (Banks Act, 94/1990) stipulates, that
a bank shall hold liquid assets with respect to the value of its liabilities as may be
specified by regulations. Regulation 20 of the Regulation Relating to banks (SA,
2008), requires a bank to hold over a period of cne month an average daily amount
of liquid assets equal to no less than 5% of its reduced liabilities. For this purpose
a bank needs to keep a statutory portfolio, also called a liquid asset portfolio.
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The liquid assets that are available for inclusion into the liquid asset portfolio are
interest rate sensitive, low (credit) risk financial instruments. Having a low risk im-
plies having a small return, so keeping the portfolio is mostly unprofitable. The port-
folio is funded by a pool of funds with a cost equivalent to the bank’s interdivisional
borrowing rate. Maintaining a liquid asset portfolio involves a high carry cost, thus
making it expensive to hold. However, as mentioned above, the portfolio is man-
datory. Taking this and the high carry cost of the portfolio into account, the bank’s
aim is to manage the liquid asset portfolio in an "optimal" way, such that it keeps
the minimum allowed liquid assets to comply to regulations, whilst maximising the
portfolio return to cover at least the carry cost.

To manage this portfolio in an "optimal" way the bank will need to rebalance or re-
structure, i.e. changing the portfolio composition, on a regular basis. Changing the
portfolio composition will depend on certain aspects such as expert views on risk
factor movements, legislation and regulations. With these legislation and regula-
tions to adhere to and uncertainties to consider the liquid asset portfolio manage-
ment problem can be described as a multi-stage decision problem in which portfolio
rebalancing actions are taken at successive future discrete time points.

This thesis will investigate the use of stochastic programming in addressing all of
these aspects in a realistic way. We propose a multi-stage dynamic stochastic
programming model for liquid asset portfolio management. The model allows for
portfolio rebalancing decisions over a multi-period horizon, as well as for flexible
risk management actions, such as reinvesting coupons, at intermediate time steps,
i.e. between decision times. We show how our problem closely relates to insurance
products with guarantees and utilise this in the formulation. Furthermore we discuss
our formulation and implementation of a multi-stage stochastic programming model
that minimises the down-side risk of these portfolios and illustrate by means of back-
testing, over a period of two years, rebalancing every quarter, that the proposed
model addresses the risk management of these portfolios in a reasonable way.

Insurance products with guarantees

Inspired by the research of Dempster ef al. (2006) and Consiglio et al. (2006), this
thesis further proposes a multi-stage dynamic stochastic programming model for
the integrated asset and liability management of insurance products with guaran-
tees that minimises the down-side risk of these products. As proposed in Dempster
et al. (2006), the model allows for portfolio rebalancing decisions over a multi-period
horizon, as well as for flexible risk management actions, such as the reinvestment
of coupons at intermediate time steps. We investigate with-profits guarantee funds
as in Consiglio ef al. (2006), by including regular bonus payments. Once these
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bonuses have been declared, the bonus becomes guaranteed.

Our main contribution in this area is that we keep the optimisation problem linear, by
changing the way bonuses are declared. The problem is kept linear for two reasons.
The first is that, by keeping the problem linear, we can model the rebalancing of the
portfolio at future decision times explicitly. By doing so the dynamic stochastic pro-
gramming model automatically hedge the first stage portfolio allocation against pro-
jected future uncertainties in asset returns (see Dempster et al., 2003 and 2006).
The second reason is that the model is flexible enough to take into account portfo-
lio constraints such as the prohibition of short-selling, transaction costs and coupon
payments. Although our bonus payments may seem unrealistic, we show that our
bonus assumption mimics those proposed by Consiglio ef al. (2006).

Furthermore we discuss the formulation and implementation of the multi-stage
stochastic programming model. We also demonstrate the model’s features at dif-
ferent levels of minimum guarantee and different levels of risk-aversion. Again we
illustrate by means of back-testing, over a period of five years, that the proposed
model addresses the risk management of these portfolios in a reasonable way.

1.1.2 Yield curve scenario generation

Moment-matching

One of the main sources of uncertainty in analysing the risk and return properties
of investment products with guarantees is the stochastic evolution of risk factors.
The asset side of these products usually contains fixed income securities. For
this reason we are concerned with the stochastic evolution of the shape of the term
structure of interest rates (or yield curve) over time. Literature in the field of scenario
generation for multi-period stochastic programs has stated that the generation of a
set of scenarios, which represents the uncertainty in the evolution of these risk
factors over time, is one of the most important and critical steps in the multi-stage
stochastic programming approach (see Dupafova et al., 2000; Kouwenberg, 2001).

In this thesis we apply a moment-matching procedure for the generation of yield
curve scenarios. We discuss the moment-matching procedure and propose an al-
gorithm to produce yield curve scenarios with path dependent intermediate nodes
suitable for the pricing of fixed income securities. In asset and liability manage-
ment under uncertainty, using stochastic programming, it is sometimes necessary
to take into account flexible risk management actions, for example the reinvestment
of coupons or the payment of liabilities, at time steps smaller then those at which
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rebalancing takes place. For this reason we propose a scenario generation al-
gorithm that generates a balanced scenario tree with path dependent intermediate
time nodes. We illustrate the stability of the scenario generation method by means
of several back-tests.

Macro-economic simulation

As part of the second approach, we estimate an econometric model that fits the
South African term structure of interest rates. We describe a Kalman filter state-
space modelling approach for the basic three-factor vields-only model used by
Diebold ef al. (2008). The yields-only model uses only three latent factors of the
yield curve and does not include macro-economic factors. One of our main con-
tributions in this area is the model estimation for the South African term structure.
Furthermore we introduce a four-factor model based on the yield curve model of
Svensson (1994). The four-factor model is introduced because the Nelson and
Siegel (1987) model is not flexible enough to get an acceptable cross-sectional fit
to the South African term structure.

Our goal is to capture the dynamic interactions between the macro-economy and
the term structure in such a way that the resulting model can be used to generate
interest rate scenario trees that are suitable for fixed income portfolio optimisa-
tion. We incorporate three macro-economic factors (capacity utilisation, inflation
and repo-rate). According to Diebold ef al. (2006) these three macro-econcrmnic
factors are considered to be the minimum set of fundamentals needed to capture
the basic macro-economic dynamics (see also Rudebusch and Svensson, 1999;
Kozicki and Tinsley, 2001). For scenario generation it is not only important to cap-
ture the dynamics of the yield curve reasonably well in-sample, but it is also import-
ant to forecast the dynamics of the yield curve reasonably well out-of-sample. We
show that the estimated model fits the term structure reasonably well in-sample and
performs reasonably well in out-of-sample forecasting. An important input into our
scenario generator is the investor's view on the future evolution of the repo-rate. In
practice most financial institutions have views on the macro-economy. These views
are produced by means of an economic scenario generator (ESG) or expert opin-
jon. These ESG's only produce forecasts for macro-economic factors, for example
the repo-rate and not a complete yield curve. By using the Kalman filter to model
the yield curve in a bidirectional approach, it is possible to close this loop and to
produce a full yield curve given a set of macro-economic forecasts.

Lastly we present a parallel simulation and randomised clustering approach to gen-
erate scenario trees, which are the input for financial optimisation problems. Fur-
thermore, we discuss the existence of arbitrage in the scenario trees and propose
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a method to eliminate arbitrage opportunities. We illustrate by means of several
back-tests the stability of the scenarios generation method and compare the results
to those of the moment-matching scenario generation method. We also discuss
and compare the two proposed methods in terms of back-testing and stability.

1.2 Literature review

In this section we present an introduction to Stochastic Programming and its uses
in asset and liability management and the importance of scenario generation as
input to these models.

1.2.1 Stochastic programming

Multi-stage dynamic stochastic programming has over the past few decades be-
come a popular tool for asset and liability management. Recognised in the 1970’s,
Crane (1971) presents a discrete stochastic programming model for commercial
bank portfolio management. Crane (1971) shows that this model explicitly takes
into account the dynamic nature of these types of problems and incorporates risk
by treating future cash flows and interest rates as random variables. Bradley and
Crane (1972) presents a more dynamic model for bond portfolic management,
where the bond portfolio problem is viewed as a multi-staged decision problem.
Kusy and Ziemba (1986) developed a multi-stage stochastic linear programming
model for the asset and liability management of a bank. Their model includes
the uncertainties of institutional, legal, financial, and bank-related policies. They
demonstrate that the asset and liability model developed, is theoretically and op-
erationally superior to deterministic programming models (e.g. mean variance,
Markowitz, 1952). Some other notable financial planning applications can be found
in Mulvey and Vladimirou (1989) and Mulvey and Vladimirou (1992).

Several authors highlighted the advantages of multi-stage dynamic stochastic pro-
gramming in asset and liability modelling (see for example Mulvey et al., 2003).
In contrast to the usual mean-variance approach (Markowitz, 1952) with a myopic
view of managing investment risk over a single period, dynamic stochastic optim-
isation provides the asset manager with an integrated way to model both assets
and liabilities in a flexible manner that takes into account multi-period dynamic as-
set allocation and the valuation of liabilities under future market conditions. Using
this approach the rebalancing of the asset portfolio is modelled explicitly.
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According to Zenios (2008), at each decision date the portfolio manager needs to
assess the current state of the economy (i.e. interest rates and market prices), he
also needs to assess future fluctuations in interest rates, market prices and cash
flows at possible states of the economy at the next decision date. This information
on the current state and possible future states of the economy needs to be incorpor-
ated into a the investment decision of buying and selling securities, and short-term
borrowing or lending. At the next decision date the portfolio manager is faced with
new information and possible future states that need to be incorporated into the
new investment decision.

The stochastic programming model specifies a sequence of investment decisions at
each of the discrete trading times. At each decision period in the scenario tree, the
investment decision is made given the current state of the portfolio and a set of pos-
sible scenarios at successor states. Thus the current portfolio composition depends
on the previous decisions and the realised scenarios in the interim. The model will
determine an optimal decision at each state in the scenario tree, given the inform-
ation available at that state. Given that there are a multitude of succeeding future
states of the economy, the optimal decision will not depend on clairvoyance, but
should anticipate the future states of the economy (Zenios, 2008).

Zenios (2008) discusses the basic stochastic programming optimisation for dy-
namic portfolio strategies. Zenios (2008) considers the following event tree or
scenario tree. A scenario tree or event tree is a discrete approximation of the
joint distribution of random factors (yield curve and stock indices). We represent
the scenario tree in terms of states (nodes) s;’(t), where time ¢t =0,1,2,...,T and
v(t) =0,1,2,...,N; the numbers of the states at time ¢. The set of states at time ¢
are denoted by >; = {s;’(t)h; t)=0,1,..., Nt}. The set of all states in the scenario
tree is denoted by & = UL 5. Links ¢ C & x %, indicate the possible transitions
between states. To enforce non-anticipativity, i.e. to prevent foresight of uncertain
future events, we order the elements of £ in pairs (sf(t) ssz'l)) where the depend-
ence of the index v (t) on t is explicitly indicated. The order of the states indicates

v(EHD) at time ¢ + 1 can be reached from state s?®) at time ¢. 5?4 is

that state s;};
the successor state and sl’(t) the predecessor state. By using the superscript “+"
to denote the successor states, and the superscript *-" to denote the predecessors,

v+ _ 'v(t+1) and s 'v(t+)— _

we have s; ”(t) Each state sl’(t) has an associated
probability pf, for s e ity SUCh that Z pt = 1. Random factors in the scen-
ario tree may be denoted by X7, where tlme index t takes values over the times
t=10,1,2,...,T, and states index s from the set =, = { sy (1) =0, 1,...,Nt}.
Figure 1.2.1 gives an example of a two stage scenario tree, where the stages rep-
resents the decision times or times when branching occurs in the scenario tree

(t=0,1).
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0
82

Figure 1.2.1: Graphical representation of a scenario tree

A scenario w, is a path through the event tree or scenario tree and denoted by
the sequence {53(0), 'O S;(T)}, such that (sf(t), s;’ffl)> € ¢ forallt =
0,1,...7 —1, with an associated probability P (w). The scenarios are indexed by w
from a finite sample set 2, and the probabilities satisfy Zweﬂ P (w) =1. The state

visited by scenario w, at time ¢ are denoted by n; (w), such that n; (w) = sf(t) for all
t=0,1,...,T. Zenios (2008) states that by defining scenarios using an event tree,
itis clear that some scenarios have common states up to a given decision time and
that trading strategies will be the same for these scenarios up to this time.

This concept of non-anticipativity, meaning that decisions cannot depend on as yet
observed scenarios (see Censor and Zenios, 1997), which is linked to the scenario
tree structure, may be expressed in probabilistic terms as the measurability of the
random factors with respect to a filtration. Following Pliska (1997) we can model
the uncertainty about the interest rates and market prices with a stochastic process
over the tme ¢ = 0,1,2,...,T, that supports a finite probability space (Q,F, P),
where Q = {w1,...,wny} is a finite sample space and P is a probability measure
on Q with P (w) > 0 for all w € Q. Acollection F of subsets of Q) is called an algebra
on Q if:

e N eF

e if i€ F then F*=Q\F € F, and
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Figure 1.2.2: A finite filtration and its associated scenario tree

o fFand Ge Fthen FUG € F.

Given an algebra 7; on §2, one can always find a unique collection of subsets {F,},
such that

e cach subset I, € 7,
e the subsets {F,}, are disjoint, and

e the unjon of the subsets { £, }, equals Q.

Thus every algebra F; corresponds to a unique partition of Q. In the scenario
tree described above their is a one-to-one mapping between the states s € &,
and the partition {F,}, for each time ¢ = 0,1,2,...,T (see Figure 1.2.2). There is
also a one-to-one correspondence between the partitions of  and the algebras on
. The scenario tree can be organised as a sequence {F;} of algebras, and the
corresponding filtration is F = {F;£=0,1,2,...,T}.

A random variable X is said to be measurable with respect to a filtration F if the
function w — X (w) is constant on any subset in the partition corresponding to
the algebra 7. This ensures that for each partition {F},}, and consequently each
corresponding state s € ¥;, we can associate a realisation of the random variable
X (w). In particular, if the decision-maker knows in which state the economy is,
he/she will have knowledge of the current security prices, and furthermore, since
the information process is made up by a nested sequence of sets, he/she will also
have knowledge of past security prices (see also Consiglio and Staino, 2008).
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We are now ready to state the basic asset and liability problem in mathematical
terms. The following notation makes the transition to mathematical programming
languages, such as SAS/OR PROC OPTMODEL, very easy. Therefore it is used
throughout the thesis.

Consider the following variables and parameters for the stochastic programming
model, where the time index ¢ takes values over the times ¢t = 0,1,2,...,T, and
states index s from the set X, = {sf(t)h) t)=0,1,..., Nt}:

Time sets

T={0,1,2,...,T} : setof all times considered in the stochastic program;
Index sets

Y= {sf(t)h) (t)=0,1,2,... ,Nt} : set of states at period ¢;

I : set of all instruments;

Parameters

T8 : risk free rate of return at period ¢ in state s;

Fs : cash flow per unit face value of asset 7 € I at period ¢ in state s;
Py Ptb,f : ask or bid price of asset 7 € I at period ¢ in state s;

fa/ T : proportional transaction costs on ask or bid transactions;

i : probability of state s at period #;

Li : liability due at period ¢ in state s;

Decision variables

T = {a;‘g,i el : face value of assets bought at period ¢ in state s;
vi = {yf,;} | : face value of assets sold at period ¢t in state s;
e
Zy =2, : face value of assets held at pericd ¢t in state s;
e fser
s : cash invested in short term deposits at period ¢ in state s;
c; ® : cash borrowed in short term deposits at period ¢ in state s;

Zenios (2008) mentions that there are two basic constraints in stochastic program-
ming models for portfolio optimisation. The first considers the cash flow accounting
for risk-less assets and the second is inventory balance equations for different as-
set classes in each state at decision times. Figure 1.2.3 illustrates the flow of cash
and the inventory of assets in each state at decision times.

The formulation of the stochastic programming model is described below:

Cash balance constraints. The cash balance constraints ensure that at decision
times the amount of cash that is received from selling assets, cash flows generated
from holding assets and cash that was invested in the previous period are equal to



1.2. LITERATURE REVIEW

States
A

s
C onl
Lending

Cashflow balance at
Sales period ¢ in state s

#5,

+5

¢y
Lending

Coupons, .
s dividends, ed "
Bor_r:owing Borrowing
C ot lend
!
Liability
initial sta’%e L Purchases
S g I
| | Trading times
Start date t
States
A
r Sales Asset inventory balance

Initial state

0
Sp

at period ¢ in state s

Inventory i Inventory
e ) Z,

4
Purchases
X

»

Start date

Figure 1.2.3: Cash flow balance and inventory balance at decision times

l |

t

Trading times

11



12 _ 1. INTRODUCTION

the amount of new assets bought, cash invested in the risk-less asset and liability
payments:

— a —+0
ZiEI Pg,’ioyg,i +e¢ ¢ O= ZieI Po,’iomg,i + ¢ +L3fort € {0} and s € S = {s91,

b - - - -
ZiEI Pyyis + ZEI Fim_y it (1 + Tf~1> i
- - +s
= Zie[ Pt‘?’%sm?’i + (1 + Tf—l + 5) C?__l + Ct +Lf,
fort € T\ {0} and s € %4.

where § is the spread over risk-less lending used for borrowing and ¢y denotes the
initial cash.

Inventory constraints. The inventory constraints give the quantity invested in each
asset in each state at each time period:

20 =boq+xd; —ys, fort € {0} and s € Ty,

zlf,i = Z-f:l,i +.’E?’i '—yzi’ fOl”i c I, t e T\{U} and s E Et,
where by, for i € I, denotes the initial portfolio.

End-of-horizon constraints. The terminal wealth of the portfolio is evaluated at the
end of the planning horizon in each state s € ¢ and is given by:

S b,s s~ s 8" 57 +s™ s
Wr = ZieI FPriizr_1:+ ZieI Erizr a4+ (1 + 7"2“—1) crly — L

Objective function. A utility function, U, is used to incorporate risk-aversion in the
dynamic portfolio asset allocation. The objective is to maximise the expected utility
of the terminal wealth
max »  pU (W5).
SETT
Other objective functions may be used that are more appropriate depending on the
application.

In this example of the stochastic programming formulation for portfolio optimisa-
tion only two constraints where considered, namely inventory balance and cash
flow constraints. Depending on the application other constraints may be modelled.
Other conditions that may be included as constraints are the handling of different
cash accounts, the restriction of short selling and the inclusion of portfolio con-
straints to limit the position in a given asset.
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A wide variety of literature on the application of stochastic programming to as-
set and liability management problems exits. In particular, Consigli and Dempster
(1998) presents the computer-aided asset/liability management (CALM) model for
pension fund management. Klaassen (1998) considered the problem of a sequence
of liability payments in the future and the construction of a portfolio to meet these
liabilities. Kouwenberg (2001) and Gondzio and Kouwenberg (2001) propose a
multi-stage dynamic stochastic programming model for the asset and liability man-
agement of an actual Dutch pension fund. They also present essential elements in
order to tackle large-scale problems (see Gondzio and Kouwenberg, 2001). Drijver
et al. (2001) formulate a multi-stage mixed-integer stochastic program to model the
asset and liability process of a pension fund. Dempster et al. (2003) introduce
a dynamic stochastic programming model for strategic dynamic financial analysis.
Dempster et al. (2003) furthermore show that the dynamic stochastic programming
model will automatically hedge the current portfolio allocation against future uncer-
tainties in asset returns and costs of liabilities over the analysis horizon.

Applications of dynamic stochastic programming in the area of fixed-income port-
folios are found in Hiller and Eckstein (1993), Mulvey and Zenios (1994), Worzel et
al. (1994), Zenios et al. (1998) and Consiglio and Zenios (2001). Other applications
in international portfolio management are presented in Topaloglou et al. (2002),
Topaloglou et al. (2004) and Topaloglou et al. (2008). A large variety of compilations
on the application and implementation of dynamic stochastic programming in the
area of finance are available in Ziemba and Mulvey (1998), Zenios and Ziemba
(2008), Zenios and Ziemba (2007) and Zenios (2008), among others.

Examples of the use of dynamic stochastic programming models for asset and li-
ability management in the insurance industry are the Russell-Yasuda Kasaj medel
by Carifio and Ziemba (1998) and Carifio et al. (1998) and the Towers Perrin model
by Mulvey (1996), Mulvey and Thorlacius (1998) and Mulvey ef al. (2003). Hoy-
land and Wallace (2001a) apply dynamic stochastic programming to analyse the
implications of legal regulations in the Norwegian life insurance market.

Several applications of dynamic stochastic programming exist in the area of model-
ling the assets and liabilities of insurance products with guarantees, to which our
two problems are closely related, such as Consiglio et al. (2001), Consiglio et al.
(2003), Hochreiter ef al. (2007) and Consiglioc and De Geovanni (2008). More re-
cent contributions specifically in the area of insurance products with minimum guar-
antees (related to our problem) using dynamic stochastic programming as an asset
and liability management tool are Dempster ef al. (2006) and Consiglio et al. (2006).

More specifically, Dempster et al. (2006) propbsed an asset and liability manage-
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ment framework and gave numerical results for a simple example of a closed-end
guaranteed fund where no contributions are allowed after the initial cash outiay.
They demonstrated the design of investment products with a guaranteed minimum
rate of return focusing on the liability side of the product. Through back-testing
they show that the proposed stochastic optimisation framework addresses the risk
created by the guarantee in a reasonable way. Consiglio ef al. (2008) study the
same type of problem by structuring a portfolio for with-profit guarantee funds in the
United Kingdom. The problem results in a non-linear optimisation problem. They
demonstrated how the model can be used fo analyse the alternatives to different
bonus policies and reserving methods. Consiglio et al. (2001) investigate the asset
and liability management of minimum guarantee products for the Italian Industry.

It is important to note that pricing of contingent claims and dynamic management of
portfolios are fwo sides of the same coin. The main differences between the valu-
ation of insurance products and dynamic pertfolio management are highlighted by
Consiglio et al. (2006). The literature on pricing products with guarantees assumes
that the reference portfolio is given exogenously (e.g. equities 60% and bonds
40%), and does not address the problem of structuring this portfolic optimally. The
possible upside potential is ignored. According to Dempster et al. (2008): “This is
where the asset manager has a potential advantage. He or she can provide the
protection while still exposing the client to high-risk markets through active asset
allocation to potentially higher returns”. Consiglio et al. (2001) have shown that
the financial institution could substantially increase shareholder value by structur-
Ing the reference portfolio by viewing it as an integrated asset and liability man-
agement optimization problem. Long-term options, which forms the backbone of
valuation methods, are in general only available as OTC contracts. This adds a
credit risk component to the problem that is largely ignored. The replicating port-
folio approach used to value these products assumes continuous rebalancing. This
assumption and the other assumptions of the Black-Scholes market are unrealistic.

1.2.2 Scenario generation

One of the main sources of uncertainty in analysing the risk and return properties of
investment products with guarantee is the stochastic evolution of risk factors. Lite-
rature in the field of scenario generaﬁon for multi-period stochastic programs has
stated that the generation of a set of scenarios, which represents the uncertainty in
the evolution of these risk factors over time, is one of the most important and critical
steps in the multi-stage stochastic programming approach (see Dupacova et al.,
2000; Kouwenberg, 2001).
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Zenios (2008) describes scenarios as the evolution of random variables over time
and states that they are not forecasts of these random variables. A forecast is the
prediction that the random variable will take on a specific value, whereas scenarios
are possible events with certain probabilities. Zenios (2008) states further that we
may not know which event will occur, but we know plausible events and the likeli-
hood of each one.

Zenios (2008) lists the following properties for scenarios in order to be useful for
financial optimisation:

Correctness: Scenarios should conform to the derived prevalent theories that
model the underlying random variables. These scenarios should be derived from
the correct theoretical models of these random variables (to the extend that these
models are correct). The scenarios should capture at the same time the relevant
past history and furthermore adequately depict the anticipated evolution of the un-
derlying financial drivers and be consistent with current market conditions.

Accuracy: Scenarios should accurately approximate the theoretical model from
which they are derived. As scenarios are the discrete approximations of continuous
distributions, errors are inevitable. Accuracy can be ensured when first or higher or-
der moments of the scenarios are matched with those of the underlying distribution
or when a large number of scenarios are used and a fine discretisation grid.

Consistency: Scenarios that model more than one variable should ensure that the
values of these variables are internally consistent.

Another requirement in financial optimisation is that these scenarios should satisfy
the no-arbitrage properties. Ingersoll (1987) distinguishes between two types of
arbitrage. The first type is an opportunity to construct a zero-investment portfolio
that has nonnegative payoffs in all states of the world, and a strictly positive payoff
in at least one state. The second type is an opportunity to construct a negative
investment portfolio (i.e. providing an immediate positive cash flow) that generates
a nonnegative payoff in all future states of the world (also see Klaassen, 1997 and
1998). If such an opportunity would exist an optimisation program will take advant-
age of it.

Various scenario generation approaches for single- and multi-period stochastic pro-
gramming have been reported in literature. Zenios (2008) discusses three ap-
proaches. One approach is bootstrapping historical market data (see for example
Mulvey and Vladimirou, 1989; Beltratti et al., 2004). it assumes that historical obser-
vations are events that provide a representative set of likely future events. Zenios
(2008) highlights that this approach is both correct and consistent, since the scen-
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arios consist of market data that has been observed. Another advantage is the sim-
plicity of the approach. A disadvantage of this approach is the inability to provide
any causal relationship among random variables. Furthermore the approach leaves
no room for expert intervention. Koskosides and Duarte (1997) address this prob-
lem by introducing forward expectation-based forecasting into the scenario genera-
tion, by adjusting the historical data with investors’ future views. Another approach
is the statistical analysis of historical market data where scenarios are sampled for
the fitted distributions. Methods such as factor analysis (see for example Bertocchi
et al., 2000) and principal components (see for example Mulvey and Vladimirou,
1989 and 1992) are used to decrease the dimensionality of these distributions.
Zenios (2008) highlights that this approach is correct if distributions with the correct
theoretical properties are selected and accuracy can be ensured if the distribution
is accurately fitted. Consistency is more difficult to achieve, and requires consist-
ency constraints in the multivariate distribution estimation. Examples of model-
based scenario generation in the insurance industry can be found in Consiglio ef al.
(20086), who use the Wilkie model (Wilkie, 1995) to generate scenarios, and Demp-
ster ef al. (2006), who use a Kalman filter approach to mode! the term structure and
asset prices. The third approach is to develop discrete approximations of continu-
ous distributions. This is done by sampling from the fitted continuous distributions
of the underlying market data. Zenios (2008) states that this approach satisfies all
three properties of correctness, accuracy and consistency, but errors may arise dur-
ing sampling. For examples see the Towers-Perrin model by Mulvey and Thorlacius
(1998) and the Yasuda-Kasai model by Carifio and Ziemba (1998).

Other scenario generation techniques described in literature is the moment-matching
method and lattice structures. In the moment-matching scenario generating method,
introduced by Heyland and Wallace (2001b) for multi-period problems, the decision-

maker specifies the statistical properties for the random variables relevant to the

optimisation problem. These properties can be specified directly or can be derived

from the marginal distributions. The scenario tree is generated in such a man-

ner that these specified statistical properties are preserved. Hgyland and Wallace

(2001a) implement this approach for insurance problems. The procedure was fur-

ther specialised by Heyland et al. (2003).

Lattice structures are also commonly used in the stochastic evolution of term struc-
tures and widely used in fixed income portfolio optimisation. Examples where lattice
structures are used in fixed income portfolio optimisation can be found in Worzel ef
al. (1994) and Consiglio and Zenios (2001). Dupacova et al. (2000) and Gulpinar
et al. (2004) also discuss different scenario generation procedures.
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1.2.3 Yield curve modelling

One of the main sources of uncertainty in analysing the risk and return properties
of a portfolio of fixed income securities is the stochastic evolution of the shape of
the term structure of interest rates (or yield curve, later on in the thesis the words
yields and zero-rates are used interchangeably). Diebold et al. (2006) characterise
the yield curve using three latent factors, namely level, slope and curvature. To
model the dynamic interactions between the macro-economy and the yield curve,
they also included observable macro-economic factors, specifically real activity, in-
flation and a monetary policy instrument. Other examples where a latent factor
model approach is used to characterise the yield curve and that explicitly include
macro-economic factors can be found in Ang and Piazzesi (2003), Hordahl et al.
(2004) and Wu (2002). These examples, however, only consider a unidirectional
linkage between the macro-economy and the yield curve. Kozicki and Tinsley
(2001), Dewachter and Lyrio (2004) and Rudebusch and Wu (2003) allow for im-
plicit feedback.

To capture the dynamics of the yield curve, Diebold et al. (2006) do not use a
no-arbitrage factor representation such as the typically used affine no-arbitrage
models (see for example Duffee, 2002; Brousseau, 2002) or canonical affine no-
arbitrage models (see for example Rudebusch and Wu, 2003). Instead of using
a no-arbitrage representation Diebold et al. (2006) suggest using a three-factor
term structure model based on the yield curve model of Nelson and Siegel (1987),
as used in Diebold and Li (2006), and interpret these factors as level, slope and
curvature. Diebold and Li (2006) propose a two-step procedure o estimate the dy-
namics of the yield curve. The procedure firstly estimates the three latent factors
and secondly estimates an autoregressive model for these factors. Diebold and
Li (2006) use these models to forecast the term structure. Diebold et al. (2006)
proposed a one-step approach by introducing an integrated state-space modelling
approach which is preferred over the two-step Diebold-Li approach. This Kalman
filter approach simultaneously fits the yield curve and estimates the underlying dy-
namics of these factors. The model also incorporates the estimation of the macro-
economic factors and the link between the macro-economy and the latent factors
driving the yield curve.

1.3 Conclusion and thesis overview

In this chapter we have presented an overview of stochastic programming and its
uses in asset and liability management and the importance of scenario generation
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as input to these models. We also highlighted the main contributions of this thesis.

As scenario trees are the input to our portfolio optimisation problems we start off
in Chapter 2 and 3 by presenting two methods for yield curve scenario generation.
Since fixed income securities are usually contained in the asset side of the as-
set and liability management of investment products with guarantees, we are con-
cerned with the stochastic evolution of the shape of the term structure of interest
rates (or yield curve). Chapter 2 presents a moment-matching scenario generation
approach and Chapter 3 a simulation approach which includes macro-economic
factors.

In Chapter 4 and 5 we will present two stochastic programming frameworks for the
asset and liability management of investment products with guarantees. Chapter
4 presents a stochastic programming framework for the asset and liability man-
agement of minimum liquid asset portfolios found in the banking environment, and
Chapter 5 deals with insurance products with minimum guarantees. We will discuss
the formulation and the implementation of the multi-stage stochastic programming
models that minimises the down-side risk of these products.

Concluding remarks are presented Chapter 6.



Chapter 2

Moment-matching yield curve
scenario generation

One of the main sources of uncertainty in analysing the risk and re-
turn properties of investment products with guarantees is the stochastic
evolution of risk factors. Literature in the field of scenario generation for
multi-period stochastic programs has stated that the generation of a set
of scenarios, which represents the uncertainty in the evolution of these
risk factors over time, is one of the most important and critical steps in
the multi-stage stochastic programming approach. In this chapter' we
present a moment-matching approach fo construct scenario trees with
path dependent intermediate discrete yield curve outcomes sufficient for
the pricing of fixed income securities.

2.1 Introduction

One of the main sources of uncertainty in analysing the risk and return properties of
investment products with guarantees is the stochastic evolution of risk factors. Be-
ing that fixed income securities are contained in these portfolios we are concerned
with the stochastic evolution of the shape of the term structure of interest rates (or
yield curve). Literature in the field of scenario generation for multi-period stochastic
programs has stated that the generation of a set of scenarios, which represents the
uncertainty in the evolution of these risk factors over time, is one of the most im-
portant and critical steps in the multi-stage stochastic programming approach (see
Dupatova ef al., 2000; Kouwenberg, 2001).

A paper based on the work done in this chapter has been presented at the International Confer-
ence on Mathematics in Finance, South Africa, 2005.

19
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Zenios (2008) describes scenarios as the evolution of random variables over time
and states that they are not forecasts of these random variables. A forecast is the
prediction that the random variable will take on a specific value, whereas scena-
rios are possible events with certain probabilities. Zenios (2008) states further that
we may not know which event will occur, but we know plausible events and the
likelihood of each one. In Chapter 1 we provide a literature review on scenario
generation methods and discuss different properties for scenarios to be useful for
financial optimisation.

The scenario generation approach proposed in this chapter is based on the moment-
matching approach proposed by Hegyland and Wallace (2001b). In asset and liabil-
ity management under uncertainty, using stochastic programming, it is sometimes
necessary to take into account flexible risk management actions, for example the
reinvestment of coupons or the payment of liabilities, at time steps smaller then
those at which rebalancing takes place. For this reason we propose a scenario
generation algorithm that generates a balanced scenario tree with path dependent
intermediate time nodes.

2.2 The moment-matching scenario generation method

In this section we describe the moment-matching scenario generation method intro-
duced by Hgyland and Wallace (2001b). The general idea of the method described
is to generate a scenario tree with specified statistical properties. We implement
this method to generate yield curve scenario trees in the subsequent sections. We
start this section with a general description of the scenario structure.

2.2.1 The scenario tree structure

A typical scenario structure that is used is a fan structure, with a single common
starting node (see Figure 2.2.1). In a multi-period setting where rebalancing is
allowed (multiple decision times) after the first-stage, even the most carefully con-
structed model will have arbitrage (see Thorlacius, 2000). Since after time zero
a specific scenario will realise and perfect information is revealed about the sub-
sequent periods. Because a single path is known, knowledge of the second period
information determines all subsequent information and thus by using this informa-
tion a trading strategy can be designed to create arbitrage. In order to model the
non-anticipativity of trading strategies, meaning that decisions cannot depend on
as yet observed scenarios (see Censor and Zenios, 1997), a tree structure is used
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Root
node

3 t=T =0 t

Scenario fan Scenario tree

Figure 2.2.1. Graphical representation of a scenario structure

where multiple branching of the scenarios at each decision time occurs (see Figure
2.2.1). The existence of arbitrage in tree structures are discussed in Subsection
2.3.4.

A scenario tree or event tree is a discrete approximation of the joint distribution
of random factors (yield curve and stock indices). We represent the scenario
tree in terms of states (nodes) s;’(t), where time ¢t = 0,4, 5,...,T and v (¢) =
0,1,2,...,NN; the numbers of the states at time £. The set of states at time ¢ are
denoted by ©; = {sf(t)h; (t) = O,l,...,Nt}. The set of all states in the scenario
tree is denoted by & = UL ;. Links e C & X X, indicate the possible transitions
between states. To enforce non-anticipativity, i.e. to prevent foresight of uncertain
future events, we order the elements of € in pairs (sf(t), sfff“l)) where the depend-
ence of the index v (¢) on ¢ is explicitly indicated. The order of the states indicates
that state s*("™ at time ¢ + 1 can be reached from state s} at time ¢. s?%) is
the successor state and sf(t) the predecessor state. By using the superscript “+”
to denote the successor states, and the superscript “-” to denote the predecessors,
we have s?®F = (B0 ang 2D~ — 0 Each state s} has an associated

probability pj, for s € T, such that 3 pf=1.
8 t

A scenario w, is a path through the event tree or scenario tree and denoted by
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the sequence {88(0)1811;(1)7.”)8;(7’)}’ such that (s;’(t),s;’ffl)> € g foralt =
0,75, 5, --,1 with an associated probability P (w). The scenarios are indexed

by w from a finite sample set Q, and the probabilities satisfy ZMEQ P(w)=1.The

state visited by scenario w, at time ¢ are denoted by n; (w), such that n; (w) = sl’(t)

forall ¢t = 0,1,...,7 — 1. Zenios (2008) states that by defining scenarios using
an event tree, it is clear that some scenarios have common states up to a given
decision time and that trading strategies will be same for these scenarios up to this
time. The property of non-anticipativity may be expressed in probabilistic terms as
the measurability of the random factors with respect to a filtration (see Subsection
1.2.1).

87
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Figure 2.2.2: Graphical representation of a yield curve scenario tree

A T-period scenario tree structure is represented as a tree-string which is a string
of integers specifying for each decision time ¢; = 0,1,2,...,7 — 1, i.e. the an-
nual decision times at which the fund will trade to rebalance its portfolio, the num-
ber of branches (or branching factor) for each state in the set of states &;, =
{sfd(td)w (t4) =0,1,.. .,Ntd}. This specification gives rise to a balanced scenario
tree, in which each sub-tree in the same period has the same number of branches.
Let tree-string & = (ko, k1, .., key, - - -, kr—1) denote a typical tree-string, then the
branching factor for decision time t4, is given by k. Figure 2.2.2 gives an example
of a scenario tree with a (3,2) tree-string, i.e. kp = 3 and k; = 2.
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2.2.2 The scenario generation method

A moment-matching scenario generating method was introduced by Hayland and
Wallace (2001b) to generate scenario trees for multi-stage decision problems. In
the moment-matching scenario generating method the decision-maker specifies the
statistical properties for the random variables relevant to the optimisation problem.
These properties can be specified directly or can be derived from the marginal dis-
tributions. The scenario tree is generated in such a manner that these specified
statistical properties are preserved. The method, based on non-linear program-
ming, has the random variables and their probabilities in the scenario tree as de-
cision variables. The basic idea is to minimise some measure of distance, such as
the square norm, between the specified statistical properties and that of the con-
structed scenario tree. The general form of the algorithm generates the outcomes
of the random variables simultaneously together with their probabilities.

The procedure was further extended by Hayland et al. (2003). In short the new
procedure generates one marginal at a time and creates the joint distribution by
putting the marginal distributions together. All the marginal distributions are simu-
lated with the same number of outcomes, and the probability of the i'th outcome is
the same for each marginal distribution. The 7'th scenario, that is the i'th outcome
of the of the joint distribution, is then created by using the 7'th outcome from each
marginal distribution, and given the corresponding probability. Various transforms
in an iterative loop are used to fit the moments and correlations. Kaut (2003) further
updates this method which leads to the improved performance of the algorithm.

Although the second method proposed by Hayland et al. (2003), is numerically
more stable and executes much faster than the original Hayland and Wallace (2001b)
method, we use the Hayland and Wallace (2001b) method in our proposed scenario
generation algorithm for the following reason. In the Hayland et al. (2003) method
it is assumed that decision-makers are able to express their expectations of the
market in terms of the marginal distributions of the interest rates (or returns on
other asset classes). These expectations are then converted into scenarios which
can be used in stochastic programming models. The Hayland and Wallace (2001b)
method also allows decision-makers to specify these expectations, but in addition
allows decision-makers to include worst case outcomes to ensure extreme events.
In our discussions with decision-makers (mainly in the banking sector), we have
found that most decision-makers do not have expectations on the marginal distri-
butions of the interest rates but rather have a specific view of interest rates (e.g.
repo-rate), or have interest rate forecasts produced by economic scenario gene-
rators at their disposal. By using the first Hgyland and Wallace (2001b) method we
can include this view as one of the scenarios in the scenario generation process.
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The general idea of the method described in Hgyland and Wallace (2001b) is to
generate a scenario tree with specified statistical properties. These specified prop-
erties can partially describe the known or unknown underlying distribution of the
random variables relevant to the optimisation problem. We assume a balanced
tree, where the number of branches is the same for all conditional distributions in the
same period (see Figure 2.2.2). Let SP be the set of all specified statistical proper-
ties, and let SV; be the specific value of statistical property i, where 7 € SP. Define
x to be the ocutcome vector of dimension I x kg+1 X kg X k1+...+I X kg X ...X kr_1 and
p to be the probability vector of dimension kg + kg x N1+ ... + kg X k1 X ... X kp—1,
where k& = (ko, k1, ..., kty, - - ., kr—1) is the tree-string defining the tree structure.
Furthermore, let f;(x, p) be the mathematical expression for statistical property 4,
i € SP. Finally let w; be the weight of statistical property 7, i € SP. The objective
is to construct x and p such that the specified statistical properties are matched as
accurately as possible. This is done by minimising a measure of distance between
the statistical properties of the constructed distribution and the specified statistical
properties, subject to probability constraints. Using the square norm to measure
the distance, the optimisation problem can be written as

min Y wi(fi(x,p) — SV;)? (2.2.1)
x,p ieSP
s.t. Zp -M=1

p=>0

where M is a matrix of zeros and ones, with its number of rows equal to the length
of p and number of columns equal to the number of nodes in the scenario tree. M
is constructed such that the each column in M extracts the conditional probabilities
in the scenario tree.

The specified statistical properties that the general method uses are any central mo-
ments and co-moments in any period. In later periods, specifications can be given
over all outcomes or over outcomes with a common history. For the latter, statistical
properties can be either conditional on, or independent of, the outcomes of earlier
periods. The statistical properties can be specified directly by the decision-maker,
derived from the marginal distributions or calculated from empirical data. In ad-
dition worst case outcomes and expected outcomes can be included. In general, p
is treated as a variable of the optimisation problem, but may also be freated as a
parameter.

Due to the non-convexity of the non-linear optimisation problem, the solution al-
gorithm might converge to a local optimum. But for the purpose of constructing
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yield curve scenarios for portfolio optimisation it is satisfactory to have a distribu-
tion equal or close to the specified distribution. An objective function value equal
or close to zero indicates a perfect or good match with the specified distribution. In
case of a lack there of, because of the non-convexity or inconsistent specification,
the weights w; can be used to incorporate the relative importance of some of the
specified properties. In general, if the specified statistical properties are meaning-
ful, a full or close match of the specified properties can be produced by solving
the problem repeatedly from a new set of starting values until it is obtained. Kaut
and Wallace (2007) state that one should not be too concerned about how well the
distribution is approximated, as long as the scenario tree leads to a “good” decision.

Heyland and Wallace (2001b) discuss some pitfalls in the specification of the statis-
tical properties. One can either overspecify the problem, meaning that the specified
properties are too extensive relative to the size of the scenario tree, or underspe-
cify the problem, meaning that the number of scenarios is large relative to the
requirements of the specifications. Hgyland and Wallace (2001b) suggest the idea
of counting the degrees of freedom to make a guess about the size of the scenario
tree, i.e. to match the number of variables in the scenario tree with the number of
specifications. Furthermore Hgyland and Wallace (2001b) show that the relevant
statistical properties needed depend on the optimisation problem at hand. Given
the optimisation problem and its objective function different scenario sets can be
generated using the same statistical properties. The stability of the objective func-
tion can then be evaluated over the different set of scenarios. If the stability in the
objective function is not satisfactory more statistical properties may be added. Hay-
land and Wallace (2001b) further suggest a sampling approach where smaller trees
are generated with the same statistical properties and aggregated to one large free,
while preserving the statistical properties.

2.2.3 Generating single- and multiple-period scenario trees

A single period scenario tree can be constructed by solving Problem 2.2.1 to match
the specified properties. There are two alternative ways of applying the moment-
matching scenario generation method to construct a multi-period scenario tree.
Constructing a multiple period tree can be done in one large overall optimization
or in several smaller optimisations using a sequential approach. The sequential ap-
proach specifies stafistical properties for the first period and generates first period
outcomes that are consistent with these specifications. For each generated first
period outcome, specify conditional distribution properties for the second period
and generate second period conditional outcomes that are consistent with these
specifications. This is repeated for all periods. Modelling the conditional properties,
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features such as mean reversion can be included. As opposed to the sequential ap-
proach, an overall approach that constructs the entire tree in one large optimisation
can also be used (see Figure 2.2.3).

<=

<§

Sequential approach Overall approach

Figure 2.2.3: Sequential and overall approach to constructing a scenario tree

Although the sequential approach has a numerical advantage due to the decom-
position of the problem into single period trees, it requires the distribution propérties
to be specified locally to each node in the scenario tree, lacking direct control of the
statistical properties defined in the later periods (¢ > 0) over all the outcomes of the
scenario tree. Furthermore the sequential approach involves a more rigid optimisa-
tion scheme, where the first period trees might satisfy the first period specifications,
but lead to conditional second period specifications which make it impossible to
obtain a perfect match. In this aspect an overall approach is more realistic than
sequential approach (Hgyland and Wallace, 2001b).

Heyland and Wallace (2001b) highlight that the main disadvantage of the overall
approach is the degree of non-convexity and a perfect match may be difficult to
compute. Furthermore, the sequential approach allows for easy updating of the
statistical properties at each node of the scenario tree as input to the problem,
whereas overall approach includes an updating procedure as a function in the op-
timisation problem. Due to the numerical advantage, we follow the sequential ap-
proach to construct scenario trees, by solving the problem from a new set of starting
values until a full or close match is obtained.
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2.3 Generating yield curve scenarios

In this section we apply the moment-matching scenario generation method dis-
cussed in Section 2.2 to generating yield curve scenarios with path dependent in-
termediate time nodes. Gilpinar ef al. (2004) also applied this approach and model
the conditional first moment with an exponential growth curve. The yield curve we
are considering to generate scenarios for, has a term structure of zero-rates. The
generated scenario tree must be suitable for pricing fixed income securities such
as government bonds. We follow the sequential approach to construct the scenario
tree.

2.31 Scenario generation optimisation

The scenario tree structure is described in Subsection 2.2.1. For the central mo-
ments and co-moments we assume that the first four central moments, i.e. expected
value, standard deviation, skewness and kurtosis, and correlations are relevant. To
generate yield curve scenarios we will generate scenarios for the log changes in the
zero-rates. The objective is to generate scenarios for the log changes in the yield
curve, denoted by z,, + ; with maturities m; (in months), wherei € I = {1, ...,d} and
their associated probabilities p;+ for 7 = 1, ..., k¢ (k being the number of scenarios).
Let MOMm,»,, for n = 1,2,3,4, be the first four central moments of the current
conditional distribution for the log changes in the yield curve. The correlation of the
log changes is denoted by R, m; -

The scenarios, =, + j, and their associated probabilities, p;, are decision variables
in the following non-linear optimisation problem:

d 4
: 2
min Z Z Wing n(MOM; 0 — MOMpm, 1)

X
P i=1 k=1

2
+ Z Wrnymy (Tmamy ¢ — Py m)

ilel, i<l

ki
s.t. ij,t = 1,
i=1

kit

momm;,t,l = mei,t,jpj,tz 1€ I: (231)
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where Wy, and wm, ., are weights of the central moments and correlations re-
spectively. Gllpinar et al. (2004) define the weights to be wp,, = M&UT;;,M and

w! . . L
w;; = w2 in which w} and w}, are the relative importance of the central mo-
] -Rm. my k 7.,l

ments and correlations respectively. In the case of a lack of a perfect fit of the

specified statistical properties these weights are used.

2.3.2 Scenario generation algorithm (1)

Our objective is to construct a balanced scenario tree with path dependent inter-
mediate time nodes (see for example Figure 2.2.2). In asset and liability manage-
ment under uncertainty, using stochastic programming, it is sometimes necessary
to take into account flexible risk management actions, for example the reinvestment
of coupons or the payment of liabilities, at time steps smaller then those at which
rebalancing takes place. For this reason we propose a scenario generation al-
gorithm that generates a balanced scenario tree with path dependent intermediate
time nodes.

In order to construct the path dependent intermediate time nodes we start off by
constructing a balanced branching scenario tree, using the seqguential approach,
that branches at intermediate time steps during the decision period. A clustering
{or grouping) algorithm is then used to reduce the scenarios to single paths with
intermediate time nodes. This procedure is then repeated in a sequential manner
until the entire tree is constructed (see Figure 2.3.1 for an example with quarterly
intermediate nodes).

Denote ¥; = {Ymi,t}t=o,1—g,...,t’ to be the historical yield curve data up to and includ-
ing time ¢, where Y, + are the historical zero-rates with maturities m; in months,
where ¢ € I = {1,...,d}, d the number of zero-rates and m; < ... < mqg. Fur-
thermore we consider X; = {Xml,t}t=o,1—12,...,t to be the corresponding historical log

changes in the yield curve up to and including time ¢, where X, + = (lnyyi'l’"” > .
t—-n,m.;'
We present the scenario generation algorithm for monthly data, without loss of gen-

erality.

Denote yf = {yfnm}, to be the outcomes for the zero-rates at time = in state s €
= {s?(T) =0,1,...,k; ¢ inthe scenario tree, z;,, ., to be the outcomes for the log
changes at time 7 at state s € X, in the scenario tree and pZ, to be the probabilities
of the outcomes attime 7 in state s € 2, for r = t+5,t+ %, ..., t +T. Furthermore
dencte MOM?E = {MOani,n,T}, to be the specified central moments at time 7 in

state s € 2, inthe scenario tree for7 =+¢,t+1,...,t + 17 — 1.
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Figure 2.3.1: Scenario generation approach (with quarterly intermediate nodes)
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At time ¢ we estimate the central moments, MOM,y,, ,, for n = 1,2,3,4, and the
correlations Ry, ,, of the historical data X;. These statistical properties are used
for the first period scenaric generation. To simplify the problem we only assume
the expected values to be state dependent, while the other statistical properties
are assumed to be independent of the state. We fit a mean reversion process to
the historical yield curve log changes in order to update the conditional expected

values. The expected value MOM; in state s € 5, for 7 > 0 is given by

T

MOM;S, 1, = (1 — MRFpn,) X MRLy, + MRF, X @5, 1, (2.3.2)

where M RF,,, is the mean reversion factor parameter and the M RL,,, the mean
reversion level parameter.

The scenario generation algorithm described below is divided into three parts:

Repeat Steps 1 to 3 for each decision node in the scenario tree s € &, and 7 =
t,t4+1,.,t+T—1

Step 1: Scenario generation. In order to construct the path-dependent intermediate
time nodes we start by constructing a balanced branching scenario sub-tree, using
the sequential approach. The sub-tree branches at intermediate time nodes during
the decision period. The states in the sub-tree are denoted by 51’,@') where ¢/ =
7,7+ 35, T+ 2, ., T+ land v (¢) = 0,1,2,..., N; the number of states at time ¢,
and the set of states at time ¢ are denoted by 5; = {Ez(tl)w (Y =0,1,..., Nt} and

indexed by § (see Figure 2.3.1). Now, let y5 = {yfni’t,} be the outcomes for the
zero-rates at time ¢ in state § € Sy in the sub-tree, let mfni’t, be the outcomes for
the log changes at time ¢’ in state § € 3 in the scenario tree and let 5, be the
probabilities of the outcomes attime ¢/ in state § € Sy fort/ = 7+ 55, 7+ 5, .., T+1.
Furthermore denote MOM} = {MOan

at time 7 in state § € 3. in the scenario free for ¢ = 7,7+ &, 7+ &, ..., 7 + 35

to be the specified central moments

. 1
z:n:t !

Repeat for each decision node in the scenario sub-tree § € 5y and t/ = 7,7 +
1 2 11
E,T'{— ﬁ7...,’7‘+ 13-

Step 1.1: Find the scenarios z5* ., and probabilities pf,"', for decision node

it

§ € 3y by solving the optimisation problem (Problem 2.3.1).

Step 1.2: Update the first moment for each scenario generated (Equation
2.3.2).

Step 2: Rollup of scenarios. In order to reduce the scenarios to single paths at
intermediate time nodes a clustering {or grouping) algorithm is used to group the
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generated scenarios according to a distance measure. We calculate the “distance”
between the discounting factors of the yield curves and that of a chosen pivot yield
curve, by:

d 2

1 1
D= |3 (ET M

=1

with p the current pivot. Intuitively, the "distance" will give us an indication of the
difference in fixed income security prices using the different scenarios. The scen-
arios are grouped according to the distance measure rather than taking the average
over the sub-trees generated. This will ensure that extreme scenarios are grouped
together, rather than averaged out over the sub-trees. The choice of distance meas-
ure does not influence the statistical properties (see discussion below).

Step 2.1: Calculate the corresponding zero-rate, yfni «, for each log change
scenario generated, =%, ,, where ¢, , =y exp mii,t’> for 5 € Sy and

=7+ le—,'7'+'12—2,...,'7'+1.

Step 2.2: From the leave nodes in the sub-treg, § € i'r+1: choose an arbitrary
yield curve out of the IV; generated yield curves as the first pivot.

Step 2.3: Calculate the distance D; from the first pivot to the remaining yield
curves (leave nodes)

Step 2.4: Choose the second pivot as the yield curve with the largest distance
to the first pivot.

Step 2.5: Calculate the distances D; of the remaining yield curves to current
pivots.

Step 2.6: Assign the remaining curves to the closest pivot, forming disjoint sets
(not necessarily of equal size).

Step 2.7: The next pivot is chosen as the yield curve with the largest distance
to the current pivots.

Step 2.8: Repeat Steps 2.5 to 2.8, ill k- (branching factor at time 7) disjoint
sets are formed.

Step 3: Aggregation. The last step aggregates the grouped scenarios into single
paths with intermediate time nodes and updates the expected values. The grouped
scenarios are aggregated in reverse order from the leave nodes. The aggregation
process will change the conditional statistical properties (see discussion below).
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Step 3.1: Starting at the leave nodes, § € f)TJrl, for each group of scenarios,
calculate the average scenario using the scenarios and their associated path

Y3 P o3 Py
s — mytt Py 5 :Z mit' 7 ond ps =
probabilities. Where y7 . E T ses py andpy
§
EEspt’-

Step 3.2: Repeat Step 3.2 for each time step in descending order, ¢/ = 7 +
.7+ 8, ., 7+ 3, by grouping the scenarios according to their successor
scenarios and using the leave node path probabilities (i.e. in the intermediate

nodes a single node may be used more than once).

Step 3.3: Update the expected values for each aggregate leave node s € X1
(Equation 2.3.2).

The rollup part of the algorithm is largely based on the interest rate sampling meth-
ods of Chueh (2002). The main differences between our application of the algorithm
and that proposed by Chueh (2002) is that our scenarios are not equally probable
and that we use a different measure of distance. Chueh (2002) discusses several
other distance methods for interest rate sampling. Our distance method relates
closely to the refative present value distance method discussed by Chueh (2002),
in the sense that the distance measure of Chueh (2002) is based on one-year
short-term interest rates and our distance measure uses zero-rates. The distance
measure D; may be seen as the sum of the squared differences between discount-
ing factors with the different scenario yield curves. This will give us an indication of
the difference in fixed income security prices using the different scenarios. Other
distance measures that measure the distance between two vectors may be con-
sidered in this context. The choice of distance measure does not influence the sta-
tistical properties, but consideration should be given to aspects such as preserving
extreme scenarios.

All unconditional statistical properties (variance, skewness, kurtosis and correl-
ations) of the sub-tree will be preserved during the aggregation process. The
conditional statistical properties (means) at intermediate times of the aggregated
sub-tree will be altered to be conditional on the statistical properties of the previ-
ous intermediate time, i.e. MOMpy,1¢ = (1 — MRFy;) X MRLy, + MRFy, X
MOlei,l’t,___Tlﬁ, as the aggregation process reduces the generated sub scenario
tree into single paths with intermediate time nodes (see Figure 2.3.1). This concept
is also used in the next subsection. The conditional properties for the next decision
period are then conditional on the final outcomes of the aggregated sub scenario
tree.

The choice of the branching factor for the intermediate scenario frees, needs to
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be such that the number of leave nodes in the sub-tree are sufficient for the rollup
procedure. For [arger scenario trees, as those used in our optimisations, the choice
of branching factor may be too large, which may lead to overspecified problems
(see Hgyland and Wallace, 2001b). The second drawback for larger scenario trees
is the time aspect. Although solving Problem 2.3.1 for a branching factor of five
may take a few milliseconds, doing this thousands of times may take several days
to construct a scenario tree. Hgyland ef al. (2003) also states that the algorithm
presented by Hgyland and Wallace (2001b) becomes slow when the number of
random variables increases. For reasons mentioned in Subsection 2.2.2 we use
the Hgyland and Wallace (2001b) method.

In the next subsection we suggest a shortened version of our algorithm in order to
address these problems.

2.3.3 Scenario generation algorithm (2)

In this subsection we present a shortened version of the algorithm presented in
the previous subsection. Instead of generating a balanced branching tree for each
decision period and using a clustering algorithm to construct the path dependent
sub-trees, we generate the entire sub-tree in one optimisation. This again is re-
peated to construct the entire scenario tree.

To incorporate the mean-reversion of the first moment in the decision sub-tree the
expected values MOM,,, 1 », for intermediate times ¢/ = 7 + 1—12,7- + 1—22, e, T 11N
the decision sub-tree is given by

MOMpm 1 = (1 — MEFp,) X MRLm; + MRFi; X MOMyp 10 2. (2.33)

Thus the statistical properties at intermediate times in the sub-tree will not depend-
ent on a specific outcome in the previous intermediate time but only on the stat-
istical property of the preceding intermediate time, this was also a result of the
aggregation step in the pervious algorithm. In order to generate the sub-trees in
one optimisation, the non-linear problem 2.3.1 is modified to be

7+1 d 4
. 2
min E g Wins,n (MO mtt — MOMm, )
P tl=7'+'1l2‘ =1 n=1
2
+ E Wrng my (Tmgmy et — Bomimy) (2.3.4)
el i<l

s.t. Z pgl = 1,

SEXy
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MOMim; 1,60 = Z mfni’t/pf,’ i€l
SEX
7 .
MOMm, k! = Z (:rfni,t, — mommi,l,t/) pf,’ 1€l, n=2,3,4,
SEX
Tmsmut = Z <‘Tini,t’ — mommi,l,t/) (mfn“t, — momml,l,t'/) p; ,lelandi<!
sEX
pf/ > 0, se Xy
MOMppny = MOMpn
1 2
fortY = 74+ —, 74+ —,.., 7+ 1L
12’ 12777

The probabilities pf, are assumed to be the same for the intermediate times ¢’ =
T4+ 5T+ %, T+1land s € T, = {sz(ﬂ = O,l,...,kT}. The first moments
MOM;, 1 ., at state s € X, for decision times 7 =¢,t +1,...,t + T — 1 is given by

MOMS, 1 = (1 — MRFpn,) X MRLyn, + MRFp, X @5, . (2.3.5)

The scenario generation algorithm is described as follows:

Repeat for each decision node s € =, = {sz(T) = O,l,...,kT}, and 7 = t,t+
Lo, t+T—1

Step 1: Calculate the first moments MO M, ; ¢ for the current decision sub-
tree (Equation 2.3.3), where M OMp,; 1, = MOM;

mialyT.

Step 2: Find the scenarios Ty, 40 and probabilities p5, where t/ = 7 + —115,7- +
125, ..., T+ 1 for decision node s € 3, by solving the optimisation problem (Prob-
lem 2.3.4).

Step 3: Update the first moment for each scenario generated (Equation 2.3.5).

For scenario trees with large branching factors Hgyland and Wallace (2001b) further
suggest a sampling approach where smaller trees are generated with the same sta-
tistical properties and aggregated to one large tree, while preserving the statistical
properties. Thus, Step 1 may be repeated several times using the same statistical
properties to generate several smaller trees. These smaller scenario trees are then
aggregated in order to construct the desired sub scenario tree while preserving the
statistical properties. ’
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2.3.4 Arbitrage

Klaassen (2002) illustrates that the method proposed by Hayland and Wallace
(2001b) can result in arbitrage opportunities in the scenario tree if only statistical
properties are imposed. Klaassen (2002) shows that arbitrage opportunities can
be detected ex post by checking for solutions to a set of linear constraints or be
excluded by including non-linear constraints in the scenario generation process.

Klaassen (2002) proposes linear constraints for two types of arbitrage. Ingersoll
(1987) distinguishes these two types of arbitrage. The first type is an opportunity
to construct a zero-investment portfolio that has nonnegative payoffs in all states of
the world, and a strictly positive payoff in at least one state. The second type is an
opportunity to construct a negative investment portfolio (i.e. providing an immediate
positive cash flow) that generates a nonnegative payoff in all future states of the
world.

Foliowing the notation of Klaassen (2002), let r,,, be the return on asset class
k(k=1,.., K) between time t and ¢ + 1 if state n (n =1,..., N) of the world ma-
terialises at time ¢ 4 1. Klaassen (2002) mentions a useful result, that if the set of

equations
S (L) =1forall k=1,..,K
ne=1 n k,t-]—l 1%y 3
has a strictly positive solution v, for all n (n =1,..., N), then no arbitrage oppor-

tunities of the first or second type exist

(also see Ingersoll, 1987). Taking r7,,, to be the return on a zero-coupon bond
with maturity & = +, then
PRy (r—1)
1 n — t+1
+ T'T,t-l-l Pt (7_) 3
where P; (1) = exp (—7y: (7)) is the price at time ¢ of a zero-coupon bond with
maturity — and y; (7) the zero-rate time t with maturity 7. Thus if the set of equations

N
E | Un @XPp (—(r = D)y (1 — 1)) = exp (—7y: (1)) for all maturities 7,
n=

has a strictly positive solution v, foralln (n = 1,..., V), then no arbitrage opportun-
ities of the first or second type exist in our yield curve scenarios.

Klaassen (2002) proposes that one may include these equations in the scenario
generation process. This can be achieved by adding these equations as constraints
to Problem 2.3.1 and 2.3.4. To avoid making the model more complex, we use these
equations to check ex post for arbitrage in our scenario trees. [f arbitrage exits we
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re-run the scenario generation method. Portfolio constraints in the optimisation
problem, such as the restriction of short-selling and the inclusion of bid and ask
spreads, will also eliminate some arbitrage opportunities.

2.3.5 . Back-testing

To test our scenario generation methodology we implemented the multi-stage sto-
chastic optimisation problem described in Dempster et al. (2006). Dempster et al.
(2006) propose an asset and liability management framework and give numerical
results for a simple example of a closed-end guaranteed fund where no contri-
butions are allowed after the initial cash outlay. They demonstrate the design of
investment preoducts with a guaranteed minimum rate of return focusing on the Ii-
ability side of the product (see Appendix A for the model formulation). We use our
scenario generation approach to generate the input scenarios for the optimisation
problem. The mean reversion parameters are estimated using the market data up
to an initial decision time ¢ and scenario trees are then generated from time ¢ to
some chosen horizon ¢ + T'. The optimal first stage/root node decision is then im-
plemented at time ¢ and we measure the success of the portfolioc implementation
by its performance with historical data up to time ¢ + 1. This whole procedure is
rolled forward for T' trading times. At each decision time ¢, the parameters are
re-estimated using the histerical data up to and including time ¢.

We back-test over a period of five years, from February 2004 through to Febru-
ary 2008, and use different tree structures with approximately the same number of
scenarios and minimise the expected average shortfall for an annual guarantee of
7% and include transaction costs. The tree structures are described in Table 2.3.1.
Bonds with 5, 7, 10, 15 and 19 year maturities as well as the FTSE/JSE Top 40 in-
dex are included in the portfolio. Scenarios for the Top 40 index are generated along
with the yield curve using the second scenario generation algorithm in Subsection
2.3.3.

Table 2.3.1: Tree structure for different back-tests
Year Set1 Set2 Set3

February04 | 5.5.5.5.5=3125 | 13.4.4.4.4=332 | 200.2.2.2.2=3200
February05 | 8.8.8.8=4096 | 15.6.6.6=3240 | 400.2.2.2=3200
February06 | 15.15.15=3375 | 30.10.10=3000 400.3.3=3600
February07 56.56=3136 160.20=3200 800.4=3200
February08 3125 3328 3200
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Figure 2.3.2: Svensson yield curve representation using all 27 yields and seven
yields

We use the Perfect Fit Bond Curves, one of the five BEASSA Zero Coupon Yield
Curve series of yield curves (see BESA, 2003a) with maturities 1, 2, 3, 6, 9, 12,
15, 18, 21, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204,
216 and 228 months. The curves are derived from government bond data and the
technical specifications are described in BESA (2003b). We use end-of-month data
from August 1999 through to February 2008.

In order to decrease the dimensionality of the problem we only use the 1, 3, 12,
60, 120, 180 and 228 month yields. After scenarios have been generated for these
seven yields the rest of the yield curve is interpolated using the Svensson yield
curve parameterisation (see Svensson, 1994). The seven yields that are used,
consisting of short, medium and long maturities, are sufficient to construct the 27
yields that we require scenarios for. In Figure 2.3.2 this is illustrated. As can be
seen the interpolated yield curve, were only seven yields where used to estimate
the Svensson yield curve parameters, fits the actual yield curve just as well as the
yield curve where all 27 yields where used to estimate the Svensson parameters.

Descriptive statistics for the log changes of the yields and the Top 40 index (mean,
standard deviation, skewness, kurtosis, minimum, maximum and autocorrelations
for one month) and correlations over the entire period of back-testing are provided
in Table 2.3.2 and Table 2.3.3.
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Table 2.3.2: Descriptive statistics of log changes

| Maturity | Mean | Std. Dev. | Skew | Kurt Min Max | p(1) |
™ -0.0010 | 0.0393 | -1.2356 | 3.2950 | -0.1444 | 0.1140 | 0.3474
3M -0.0014 | 0.0391 -1.1648 | 2.9384 | -0.1380 | 0.0957 | 0.4101
12M -0.0040 | 0.0490 |-0.3146 | 2.0638 | -0.1498 | 0.1383 | 0.3206
60M -0.0043 | 0.0456 0.2221 | 2.4157 | -0.1587 | 0.1709 | 0.1416
120M -0.0041 0.0431 0.1667 | 2.2940 | -0.1475 | 0.1505 | 0.0995
180M -0.0042 | 0.0432 |-0.1681 | 1.9487 | -0.1515 | 0.1207 | 0.0630
228M -0.0045 | 0.0441 -0.2608 | 1.9998 | -0.1553 | 0.1302 | 0.0413
Top40 0.0086 0.0598 | -0.3793 | 0.2190 | -0.1614 | 0.1369 | 0.0753

Table 2.3.3: Historical correlations of log changes
\ 1M | 3M 12M | 60M | 120M | 180M | 228M | Top40 \
™ 1.000 | 0.935 | 0.584 | 0.337 | 0.201 | 0.161 | 0.143 | 0.155
3M 0.935 | 1.000 | 0.796 | 0.454 | 0.264 | 0.211 | 0.185 | 0.183
12M 0.584 | 0.796 | 1.000 | 0.722 | 0.517 | 0.450 | 0.405 | 0.188
60M 0.337 | 0.454 | 0.722 | 1.000 | 0.931 | 0.872 | 0.816 | 0.079
120M | 0.201 | 0.264 | 0.517 | 0.931 | 1.000 | 0.978 | 0.932 | 0.022
180M | 0.161 | 0.211 | 0.450 | 0.872 | 0.978 | 1.000 | 0.984 | 0.012
228M | 0.143 | 0.185 | 0.405 | 0.816 | 0.932 | 0.984 | 1.000 | -0.010
Top40 | 0.155 | 0.183 | 0.188 | 0.079 | 0.022 | 0.012 | -0.010 | 1.000

Furthermore, in Table 2.3.4 we provide the estimated mean reversion parameters
over the back-tested period. The mean reversion parameters are fitted using least
squares. With exception of the180 and 228 month zero-rates and the Top 40 index,
all mean reversion level parameters are not statistically significantly from different
zero. This is also apparent in Table 2.3.2 where it can be seen that the means
are close to zero. This is expected, considering that we are working with the log
changes in the zero-rates. Some of the mean reversion factor parameters are stat-
istically significantly different from zero. Furthermore it is apparent from the mean
reversion factor parameters, that there is a high level of mean reversion (1— M RF),
this can also be seen in Table 2.3.2 where there is a low level of persistence when
we observe the autocorrelations. '

Figure 2.3.3 illustrates back-testing results for all three scenario sets. The res-
ults are consistent with those in Dempster et al. (2006). Although Dempster et al.
(2006) minimise the expected average shortfall and maximises the expected ter-
minal wealth of the portfolio, and distinguish between them using a risk-aversion
parameter, we only minimise the expected average shortfall to test the model’s per-
formance. Only shortfall is used as it plays an important role in our applications. The
model performs well staying above the guarantee, although the system involves the
inclusion of transaction cost which puts downward pressure on the portfolio wealth.
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Table 2.3.4: Mean reversion parameter estimates

Parameters | 5 Year 4 Year 3 Year 2 Year 1 Year
— -0.008 | -0.007 | -0.007 | -0.004 | -0.001

(0.008) | (0.008) | (0.006) | (0.006) | (0.006)
T RE 0437 | 0.397 | 0375 | 0395 | 0.356

(0.125) | (0.115) | (0.108) | (0.100) | (0.093)
SMMRL oty | ooo | 000n | 0006) | (0009
3 M MRF (gj:gg) (gjﬁg) (gi?gg) (giggg) (gtggg)
ZMMRL | oo | 000f) | (0007 | (0008 | (0009
12 MMRFE - (8%2) (gtfg:f) (giﬁg) (gﬁgi) (gfgg%
AR A AR
60 M MRF (8:122) (8%2) (8:1?421) (8:182) (8:(1)8;)
o g0 | o | am T S0
120MMRE | 005 | oMo | (0114 | (0408 | (0100
OMMRL | 5008 | (o0 | (000 | (0004 | (2008
BOMMRE | 5350 | @129 | 0115 | 0108 | @00
228 M MRL (-g.ggf) <3§31> (-g.'ggf) (ggc?f) (gggf)
228 MMRF | (_g.ﬁgg) (8:(1);2) o115 (8:333) (8%3)
TopdOMRL | 0006 | (0008 | (0007) | (0.008) | (0.009
rns | O | o | ot | ome | s

Note: Bold entries denote parameters estimates significant at five percent using a t-test
statistic. Standard errors appear in parentheses



40 2. MOMENT-MATCHING YIELD CURVE SCENARIO GENERATION

170
— Guarantee

160
150

T —Set1
== /ﬂmﬁ%
140 -f\, ~
130 W /
120 /‘/J/\ /
110 N /\/
/

90

80 T T T T i T T T T
Feb-04  Aug-04 Mar-05  Sep-05 Apr-06 Oct-06 May-07  Dec-07 Jun-08 Jan-09

Figure 2.3.3: Moment-matching scenario back-testing results

Table 2.3.5: Moment-matching portfolio allocation stability statistics

Objective | 040 | sy | 7v | 10v | 15y | 19y
function
Mean 202634 | 0.0027 | 06928 | 0.0 | 0.0 | 0.0 | 0.2685
Std. Dev. 0.038 0.0028 | 0.0858 | 0.0 | 00 | 00 | 0.0706
Min 201636 | 0.0000 | 0.2464 | 0.0 | 0.0 | 0.0 | 0.159%
Max -0.3757 | 0.0105 | 0.8172 | 00 | 0.0 | 0.0 | 0.6291

Furthermore, in Table 2.3.5 we present back-testing stability statistics (Hgyland and
Wallace, 2001b, uses similar statistics to report stability). The model was solved
for 100 different scenario sets, with a tree-string of (40.3) (120 scenarios) using all
available data for model fitting. We present the mean, standard deviation, minimum
and maximum of the objective function and the first stage portfolio allocations. The
first stage portfolio allocation seems consistent with small standard deviation. The
objective function also has a small standard deviation with no outliers when we look
at the minimum and maximum, indicating the stability of the scenario generation.

The scenario generation is further tested by solving the model for 100 different
scenario sets and for different number of final nodes, 120, 500, 1000 and 2000.
Dempster et al. (2006) minimise the expected average shortfall and maximises the
expected terminal wealth of the portfolio, and distinguish between them using a risk-
aversion parameter (alpha). For each scenario set the model is solved ranging the
risk-aversion parameter from 0 to 1 in steps of 0.1 (1 being the most risk-averse).
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Table 2.3.6: Moment-matching efficient frontier stability statistics

120 Scenarios | 500 Scenarios | 1000 Scenarios | 2000 Scenarios

Std. Std. Std. Std.
Alpha | Mean Dev Mean Dev Mean Dev Mean Dev

0 343.41 | 1.432 | 343.33 | 1.090 | 343.45 | 0.659 | 343.54 | 0.538

0.1 308.98 | 1.292 | 308.91 | 0.982 | 309.02 | 0.594 | 309.10 | 0.484

0.2 | 27456 | 1.151 | 27449 | 0.874 | 27458 | 0.529 | 274.66 | 0.431

0.3 | 240.13 | 1.010 | 240.08 | 0.766 | 240.15 | 0.463 | 240.22 | 0.377

04 | 205.71 | 0.869 | 205.66 | 0.657 | 205.72 | 0.396 | 205.78 | 0.324

0.5 17129 | 0.728 | 171.25 | 0.548 | 171.30 | 0.332 | 171.35 | 0.270

0.6 136.88 | 0.587 | 136.84 | 0.439 | 136.88 | 0.266 | 136.92 | 0.217

‘ 0.7 | 10247 | 0.446 | 10244 | 0.332 | 102.47 | 0.200 | 102.50 | 0.161

0.8 668.08 | 0.307 | 68.06 | 0.224 | 68.08 | 0.136 | 68.10 | 0.109

0.9 33.73 | 0.181 | 33.70 | 0.122 | 33.71 0.077 | 33.72 | 0.058

1 -0.26 | 0.038 | -027 | 0.023 | -0.27 0.016 | -0.273 | 0.013

Table 2.3.6 presents the mean, standard deviation, for the different number of final
nodes. In Figure 2.3.4 we display the mean frontier, by averaging the objective
function values obtained over the 100 different scenario sets, and the confidence
bands covering 95% of the resuits (Kaut et al., 2007; Consiglio and Staino, 2008,
uses a similar approach for scenario and model stability testing). The frontier is a
decreasing function of the risk-aversion parameter alpha. If the value of alpha is
closer to 1, more importance is given to the shortfall of the portfolio and less given
to the expected wealth and hence a more risk-averse portfolio allocation strategy
will be taken and vice versa. In the extreme case where alphais 1 only the shortfall
will be minimised and the expected wealth will be ignored, and where alpha is 0,
the unconstrained case only maximises the wealth. For a 1000 final nodes the 95%
region, at its maximum (alpha at 0), is 0.685% wide (a reduction of 0.4% from 500
final nodes), ensuring that the randomisation error is bounded enough (Figure 2.3.5
displays the frontier for alpha values of 0 to 0.2 for a better view). In Table 3.4.3
we also observe that the standard deviation reduces as the number of final nodes
increases. The reduction is less when we increase the number of final nodes from
1000 to 2000, again ensuring that the randomisation error is bounded encugh, and
achieves stability.

Although back-testing assumes that the past describes the future and can in no
means guarantee the success of the outcomes of these models in practice, it
provides us with a way to assess the performance of the proposed algorithm.
Through back-testing we see that the proposed scenario generation algorithm per-
forms well on a portfolio optimisation problem in literature; similar results are ob-
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Figure 2.3.4: Average efficient frontier with 5% and 95% confidence bands.
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Figure 2.3.6: Moment-matching scenarios at first decision period (tree-string (8.8),
monthly data with quaterly rebranching)

tained as in Dempster et al. (2006). We also see that stability in the objective is
obtained by increasing the number of scenarios. The amount of the final number
of scenarios necessary to achieve this stability may depend on the optimisation
problem in question.

Figures 2.3.6 to 2.3.8 visually illustrate the scenarios generated by the proposed
algorithm. Figure 2.3.6 presents the scenarios at the first decision period of a
scenario tree and the root with a tree-string of (8.8) using monthly data and re-
branching quarterly. The probabilities are presented in parentheses next to each
scenario. Plausible scenarios are generated with no extreme scenarios and appro-
priate probabilities. Figure 2.3.7 presents the evolution of three scenarios (upwards,
downwards and small movements) from the root to the first decision period. The
evolution of the scenario from the root to the first decision period seems realistic,
and shows the path dependency of the scenario generation method. Also note that
the scenario generation method does not only produce parallel shifts in the level of
the yield curves but also slope and curvature changes. In Figure 2.3.8 we present
the scenarios at the leave nodes of the scenario tree. The scenarios are split into
two groups, low probability and average probability. Some scenarios with larger
movement from the root are generated with lower probability than at the first de-
cision period, and scenarios with average movement from the root have mostly the
same probabilities.
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2.4 Conclusion

In this chapter we have presented a moment-matching scenario generation method
for generating yield curve scenarios. We proposed two methods, both generating
scenarios by matching the principle moments of the underlying distributions of the
log changes of the yield curve. These methods generate yield curve scenario trees
with path dependent yield curves at intermediate time ncdes, and where each node
in the scenario tree represent the term structure of interest rates (yield curve). The
second scenario generation method is preferred to the first, as it consumes less
time to generate larger yield curve scenario trees.

Our proposed method uses the scenario generation method proposed by Hayland
and Wallace (2001b) as apposed to the a second method proposed Hgyland et al.
(2003). The second method proposed by Hgyland ef al. (2003) is in most if not all
respects better than the first method introduced by Hgyland and Wallace (2001b).
We used the first method for its ability to include decision-makers expected views
or forecasts from economic scenario generators. Further investigations should con-
sider making use off the Hayland ef al. (2003) method instead of the Hgyland and
Wallace (2001b) method. By doing so a large reduction in computational time will
be achieved.

Although back-testing assumes that the past describes the future and can in no
means guarantee that success of the outcomes of these models in practice, it
provides us with a way to assess the performance of the prbposed algorithm.
Through back-testing we have shown that the proposed scenario generation al-
gorithm performs well on a portfolio optimisation problem in the literature. We also
have shown that stability is obtained by increasing the number of scenarios. The
amount of the final number of scenarios necessary to achieve this stability may
depend on the optimisation problem in question.

In the next chapter we investigate the inclusion of macro-economic factors into the
generation of yield curve scenarios. de Pooter et al. (2007) argues that models
which include macro-economic factors seem more accurate in sub-periods where
there is substantial uncertainty about the future path of interest rates. Our goal
is to capture the dynamic interactions between the macro-economy and the term
structure in such a way that the resulting model can be used to generate interest
rate scenario trees that are suitable for fixed income portfolio optimisation.



Chapter 3

Macro-economic interest rate
scenario generation

One of the main sources of uncertainty in analysing risk and return
properties of a portfolio of fixed income securities is the stochastic evol-
ution of the shape of the term structure of interest rates. In this chapter’
we estimate a model that fits the South African term structure of interest
rates, using a Kalman filter approach. Our model includes four latent
factors and three observable macro-economic factors (capacity utilisa-
tion, inflation and repo-rate). Our goal is to capture the dynamic interac-
tions between the macro-economy and the term structure in such a way
that the resulting model can be used to generate interest rate scenario
trees that are suitable for fixed income portfolio optimisation. An import-
ant input info our scenario generator is the investor’s view on the future
evolution of the repo-rate.

3.1 Introduction

One of the main sources of uncertainty in analysing the risk and return properties
of a portfolio of fixed income securities is the stochastic evolution of the shape
of the term structure of interest rates (or yield curve). Many yield curve models
for example, Knez et al. (1994), Duffie and Kan (1996), and Dai and Singleton
(2000) consider models in which unobserved factors explain the entire set of yields.
These factors are often given the labels level, slope and curvature. The factors in
these models are however not linked to macro-economic factors. Examples where

1A paper based on the work done in this chapter has been presented at the ASSA Convention,
South Africa, 2008 and received the “Best First-Time Paper” award. The paper has also been accep-
ted for publication in the South African Actuarial Journal.
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a latent factor model approach is used to characterise the yield curve and that
explicitly include macro-economic factors can be found in Ang and Piazzesi (2003),
Hordahl ef al. (2004) and Wu (2002). These examples, however, only consider a
unidirectional linkage between the macro-economy and the yield curve. Kozicki and
Tinsley (2001), Dewachter and Lyrio (2004) and Rudebusch and Wu (2003) allow
for implicit feedback. Tilley (1992) provides an actuarial layman’s guide to building
stochastic interest rate generators.

Bernaschi ef al. (2008) analyses and shows that besides the relation with the ECB
(European central bark) official interest rate, it is extremely difficult to find, using
simple linear regression analysis, a convincing relation among the parameters that
describe the Italian term structure and macro-economic factors that drive the dy-
namics of the term structure itself. Bernaschi et al. (2008) concludes that a pos-
sible solution is to resort to more complex interaction models based on non-linear
impulse-response functions. Ang and Piazzesi (2003) further argue the importance
of describing the joint behavior of the yield curve and macro-economic factors for
bond pricing, investment decisions and public policy. They state that although many
term structure models use latent factors to explain term structure movements and
some interpretations to what these factors mean (e.g. level slope and curvature),
the factors are not given direct comparisons with macro-economic factors. These
models describe the effect the latent factors have on the yield curve rather than
describing the economic sources of the shocks. Ang and Piazzesi (2003) consider
a unidirectional linkage between the macro-economy and the yield curve.

de Pooter et al. (2007) argues that models which include macro-economic factors
seem more accurate in sub-periods where there is substantial uncertainty about
the future path of interest rates. Furthermore models that do not include information
about the macro-economy perform well in sub-periods where the term structure has
a more stable pattern.

Inspired by the research of Diebold ef al. (2006) we estimate a model that fits

the South African term structure of interest rates, using a Kalman filter approach.

Diebold et al. (2006) characterise the yield curve using three latent factors, namely

level, slope and curvature. To model the dynamic interactions between the macro-

economy and the yield curve, they also included observable macro-economic factors,
specifically real activity, inflation and a monetary policy instrument.

To capture the dynamics of the yield curve, Diebold ef al. (2006) do not use a
no-arbitrage factor representation such as the typically used affine no-arbitrage
models (see for example Duffee, 2002; Brousseau, 2002) or canonical affine no-
arbitrage models (see for example Rudebusch and Wu, 2003). Instead of using
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a no-arbitrage representation Diebold et al. (2006) suggest-using a three-factor
term structure model based on the yield curve model of Nelson and Siegel (1987),
as used in Diebold and Li (2006), and interpret these factors as level, slope and
curvature. Diebold and Li (2006) propose a two-step procedure to estimate the dy-
namics of the yield curve. The procedure firstly estimates the three latent factors
and secondly estimates an autoregressive model for these factors. Diebold and
Li (2006) use these models to forecast the term structure. Diebold et al. (2006)
propose a one-step approach by introducing an integrated state-space modelling
approach which is preferred over the two-step Diebold-Li approach. This Kalman
filter approach allows for a bidirectional linkage between the macro-economy and
the yield curve and simultaneously fits the yield curve and estimates the underly-
ing dynamics of these factors. The model also incorporates the estimation of the
macro-economic factors and the link between the macro-economy and the [atent
factors driving the yield curve.

In the South African yield curve context, to name a few, Maitland (2002) provides
a principle component analysis approach for interpolating the South African yield
curve. The methodology proposed by Maitland (2002) provides a way in which the
yield curve can be interpolated from a restricted number of modelled yields, and at
the same time minimises the number of yields from which to estimate the remainder
of the curve. Given the first and second principal components, Maitland (2002)
shows that the short rate and the long-bond yield could be used to reconstruct the
South African yield curve. Stander (2000) discusses bond indices in South Africa.
Using a survey, Stander (2000) establishes inadequacies in the indices as well as
possible changes that should be considered. Stander (2000) further addresses
criticism of the Bond Exchange-Actuaries yield curve and presents alternative em-
pirical yield-curve models and equilibrium models. These contributions focus on
the characterisation of the yield curve and do not consider forecasting or scenario
generation.

In Section 3.2, we describe the Kalman filter state-space modelling approach for
the basic three-factor yields-only model proposed by Diebold et al. (2006). Their
model uses only three latent factors of the yield curve and does not include macro-
economic factors. We will describe the model estimation for the South African term
structure and introduce a four-factor model based on the Svensson (1994) yield
curve model. We introduce the four-factor model after showing that the Nelson and
Siegel (1987) model is not flexible enough to get an acceptable fit to the South
African term structure.

In Section 3.3, we incorporate macro-economic factors (capacity utilisation, inflation
and repo-rate) in the yields-macro model. Our goal is to capture the dynamic inter-
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actions between the macro-economy and the term structure in such a way that the
resulting model can be used to generate interest rate scenario trees that are suit-
able for fixed income portfolio optimisation. Section 3.4 describes our approach.
An important input into our scenario generator is the investor's view on the future
evolution of the repo-rate. In practice these views are produced by means of an
economic scenario generator (ESG) or expert opinion. We also discuss the exist-
ence of arbitrage in the scenario trees and propose a method to eliminate arbitrage
opportunities. ’

3.2 Yields-only model

In this section we introduce the factor model representation of the yield curve. Fol-
lowing Diebold et al. (2006), we start with the yields-only model using the three-
factor representation of Nelson and Siegel (1987) and use this as a benchmark
for the four-factor representation of Svensson (1994). By using the more flexible
four-factor model, we obtain a better cross-sectional fit. Since all the models that
are described in this section are fitted using a Kalman filter approach, we start this
section with an overview of the Kalman filter.

3.2.1 The Kalman filter

The Kalman filter, introduced by Kalman (1960), is a popular technique used in sig-
nal processing, control engineering and other fields. The main idea is to represent
a dynamic system in terms of states (the unobserved underlying Markov process).
The state equation (or transition equation) describes the dynamics of this process
while the observation equation (or measurement equation) relates the observables
with the unobserved states. The advantage of using a state-space representation
(defined below) is that it allows the modeller to infer the properties of the unob-
served yield curve drivers from the observed interest rates or yields.

Following Hamilton (Hamilton, 1994, Chap 13), let 4 denote a vector of variables
(yields in our case) observed at date ¢ that can be described in terms of f;, a vector
of unobservable states. The state-space representation of the dynamics of y is then
given the following system of equations:

fi = Afi—1 + n, (Transition equation)

yt = Bz + Afe + e (Measurement equation)
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where the matrices A, B and A have appropriate dimensions, z; is a vector of
exogenous variables. The disturbances 7, and &; are vector white noise processes:

Q fort=r
E ) =
(merr) { 0 otherwise
H fort=r
E(gel) = ,
(eee7) { 0 otherwise

where the matrices @ and H have appropriate dimensions. The disturbances 7,
and &; are also assumed to be uncorrelated at all lags:

E (ner) = 0,for all t and 7.

The Kalman filter is a sequential algorithm that calculates the best predictor of the
unobserved states, given all previous observations. The details will be given later.

3.2.2 Factor representation

The main aim of the factor model approach is to represent the term structure (a
large set of yields with various maturities) as a function of a smaller set of unob-
servable factors. The Nelson-Siegel representation (Nelson and Siegel, 1987) pro-
duces reliable and reasonable estimation results and has become one of the pop-
ular approaches adopted by central banks for yield curve estimation (BIS, 1939).
The Nelson-Siegel model, derived from a parametric functional form for the forward
rates, uses only four parameters to define a parsimonious and stable representation
of the whole term structure:

AT 1— —AT
y(1)=B1+Bo (%) + B3 (+—6~AT>)

where y (1) is the zero coupon yield with maturity ~ and g,, f,, S5 and X are the
model parameters. As demonstrated by Diebold and Li (2006), the parameters 3,,
B and B3 of the Nelson-Siegel representation of the yield curve, can be interpreted
as level, slope and curvature and the terms that multiply these factors are factor
loadings. The parameter A determines the shape of the curve and does not have
a direct economic interpretation. To give meaning to the parameters 3, 5 and S5,
Diebold and Li (2006) rewrite the representation as

1— e—)«r 1— e—A'r _
yt(T)=Lt+St<——/\7_ )+Ot<—/\7_ —6)\7—)7
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where Lt, S¢ and G are the, time-varying parameters, 54, 8, and B3, and are
considered unobserved factors.

Diebold et al. (2006) describe the state-space system as follows: The dynamics
of the unobservable factors, L, S; and Gy, are modelied as a vector autoregress-
ive process of the first order which forms a state-space system. The ARMA state
vector dynamics may be of any order, but the VAR(1) assumption is maintained for
transparency and parsimony. The dynamics of the state vector is governed by the
transition equation

Li — py, a11 612 a13 Lg1— g, n5 (L)
Ste—ps | = | as1 ase am Se1—pg |+ | (S |
Ct — g a3l as2 0433 Ci1— po 7: (C)

wheret =1,...,T'and ur, ug and s the means of the unobservable factors, Ly, St
and C.

By fixing the parameter A (fo be specified later), the measurement equation, which
relates a set of NV vields of the yield curve, with maturities 74, ..., 7y, o the three
unobserved factors, are

PR —_e—A —

n (,7_1) 1 1 ;Tl 71 1 ;T&Tl — e—ATL . &t (,7.1)
—eg— X —e —

Yt (7-2) 12 ;7_2"’2 : /6\7_21’2 — e Et (TZ)

. = . . St )
: : : C,

—e— g -

Vs ('TN) 1 1 ;TNTN 1 ;TNTN —e ATN £t (7- N)

where ¢t = 1, ...,7. The state-space system can be written in matrix notation as

(fi — 1) = A(fem1 — 1) + 14,

1y = AMfi + &,
where
] l=e?m leeTdm Am
A’r& AT
ailr alz ais 1 l—e~?7T2 l—e=*T2 e—AT2 L
Y pY
A= | am ag ags |, A=| . i = and ft= | St
a a a ’ ) ’ G
31 G322 433 | lmeN leeN ey ¢
ATN ATN

The white noise disturbances in the transition and measurement equations are re-
quired to be orthogonal to each other and to the initial state for the linear least-
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squares optimality of the Kalman filter:

oy WN 0 ’ @ 0 ,

€t 0 0 H

E (foﬂ;) = O>

E (foey) = 0.

Il

Diebold et al. (2006) assume that the ) matrix is non-diagonal to allow the shocks
to the three term structure factors to be correlated. The H matrix is assumed to
be diagonal, which implies that the deviations of the yields of various maturities
from the yield curve are uncorrelated. This is quite standard and as in estimating
no-arbitrage term structure models, i.i.d "measurement errors" are added to the
observed yields. Given the large number of observed yields, this is also required
for computational tractability (Diebold et al., 2006).

3.2.3 Three-factor model estimation

10"
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Figure 3.2.1: Yield curves, August 1999 to February 2009
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Figure 3.2.2: Median yield curve with point-wise interquartile ranges

We use the Perfect Fit Bond Curves, one of the five BEASSA Zero Coupon Yield
Curve series of yield curves (see BESA, 2003a), with maturities 1, 2, 3, 6, 9, 12,
15, 18, 21, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204,
216 and 228 months. The yields curves are zero-rates and compocunded semi-
annually. The yields are converted to continuous compounded yields for analysis
purposes. The curves are derived from government bond data and the technical
specifications are described in BESA (2003b). We use end-of-month data from
August 1999 through to February 2009. Figure 3.2.1 provides a three dimensional
plot of the yield curve data.

The variation in the level of the yield curve is visually apparent as is the vari-
ation in the slope and curvature of the yield curve. Descriptive statistics for the
yields (mean, standard deviation, minimum, maximum and autocorrelations for one,
twelve and thirty months) are provided in Table 3.2.1. It is clear that the typical yield
curve is humped shape with a negative hump at about 20 months and a positive
hump at about 120 months. The short rates are less volatile than the long rates
but less persistent when comparing the autocorrelation with a lag of fwelve months.
This is the opposite compared to the U.S. term structure (see Diebold and Li,
2008). This may due to the little amount of data available. The level is persistent
and varies moderately relative to its mean and the slope and the curvature are the
least persistent. The slope is highly variable relative to its mean as is the curvature.
In Figure 3.2.2 the median yield curve together with point-wise interquartile ranges
are displayed. The humped shaped pattern, with short rates less volatile than long
rate, is apparent.
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Table 3.2.1: Yield curve descriptive statistics

55

[ Maturity [ Mean [ Std. dev. | Minimum | Maximum | 5(1) [ #(12) | p(30)
1 9.225 1.835 6.542 12.437 0.974 | 0.272 | -0.335

2 9.215 1.806 6.554 12.383 0.975 | 0.271 | -0.337

3 9.199 1.774 £6.565 12.329 0.974 | 0.269 | -0.334

6 9.127 1.672 6.604 12.223 0.968 | 0.268 | -0.301

9 9.054 1.586 6.574 12.092 0.956 | 0.268 | -0.242
12 9.003 1.533 6.531 12.058 0.945 | 0.272 | -0.175
15 8.981 1.509 £6.509 12.024 0.936 | 0.280 | -0.113
18 8.977 1.499 6.385 11.989 0.931 | 0.293 | -0.058
21 8.987 1.498 6.347 11.954 0.928 | 0.309 | -0.011
24 9.005 1.502 6.295 11.918 0.927 | 0.327 | 0.030
36 9.108 1.546 £6.638 12.107 0.930 | 0.403 | 0.142
48 9.219 1.606 8.912 12.615 0.937 | 0.463 | 0.194
60 9.311 1.660 £6.980 12.959 0.943 | 0.501 | 0.219
72 9.381 1.702 7.026 13.190 0.946 | 0.524 | 0.232
84 9.432 1.733 7.055 13.350 0.948 | 0.538 | 0.237
96 9.466 1.756 7.072 13.466 0.949 | 0.548 | 0.236
108 9.483 1.773 7.076 13.553 0.950 | 0.554 | 0.231
120 9.481 1.789 7.089 13.621 0.950 | 0.560 | 0.225
132 9.462 1.805 7.051 13.676 0.950 | 0.565 | 0.216
144 9.427 1.823 7.023 13.721 0.951 | 0.570 | 0.207

( 156 9.380 1.842 6.987 13.759 0.951 | 0.574 | 0197
168 9.325 1.863 6.945 13.792 0.952 | 0.579 | 0.186
180 9.266 1.885 6.898 13.820 0.952 | 0.583 | 0.174
192 9.204 1.907 6.847 13.845 0.953 | 0.588 | 0.162
204 8.141 1.931 6.794 13.866 0.953 | 0.591 | 0.150
216 9.077 1.956 6.698 13.886 0.954 | 0.594 | 0.138
228 9.015 1.981 6.581 13.903 0.954 | 0.597 | 0.126
Level 9.232 1.571 6.818 12.821 0.958 | 0.575 | 0.138
Slope 0.184 2.140 -3.760 4.093 0.965 | 0.261 | -0.336
Curvature | -0.204 1.376 -5.409 2.847 0.852 | 0.016 | -0.102
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As in Diebold et al. (2006), the yields-only model forms a state-space system, with
a VAR(1) transition equation summarising the dynamics of the vector of latent vari-
ables, and a linear measurement equation relating the observed yields to the state
vector as described above. In the entire model there are 46 parameters that need fo
be estimated by the numerical optimisation of the relevant likelihood function. Let
be the vector of all parameters that need to be estimated. These parameters are the
rine parameters contained in transition matrix 4, the three parameters contained in
the mean state vector p, and the one parameter ) contained in the measurement
matrix A. Furthermore the transition disturbance covariance matrix @ contains six
parameters, and the measurement disturbance covariance matrix H contains 27
parameters (one variance for each of the 27 yields). Given that the matrices 4 and
A are affine and assuming that the distributions of 7,, e: and fy are normal, the
model is referred to as a linear Gaussian state-space model (Lemke, 2006).

It follows by assumption that the transition density » (f:+1//f:) and the measurement
density p (v f:) are jointly normal. This implies that the prediction and filtering
densities are normal,
felVp1 ~ N (ft|t—l> E1t|t—1> ,
eV~ N (ft|t, E1&|1t> )
Ye| Vi1 ~ N (Qt]t—l:Ft) )

where )V, = {w1,...,:} is taken to be the sequence of observations available for
estimation and ft|t—1: Fer Jyje—1 @nd Bye_1, By, Fy the sequences of conditional.
means, and covariance matrices respectively. These quantities can be obtained by
employing the Kalman filter for a given set of parameters .

The Kalman filter algorithm can be described as follows (see Lemke, 2006):
Step 1: Set fyp = fo, Zojp = Zo and set t = 0.

Step 2: ft_1|t_1 and ¥;_,;; are given values, but y; has not been observed
yet. Compute
(ft]t~1 - M) =A (ft—l]t—l - M) )
Byjp1 = ADyqpa A+ Q,

Utje—1 = Afy—q, and

Ft = Azﬂt._.lAl + H
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Step 3: y; has been observed. Compute
Ky = Sy AF,

ft|t = ft|t—1 + Kt (gt — Gae—1) »
By = Byyp1 — KAy 1.

Step 4: Ift < T, sett:=1+ 1, and go to Step 2; else, stop.

Hence the Kalman filter delivers the sequence of means and covariance matrices
for the conditional distributions of interest for a given set of parameters 7). The
Kalman filter is initialised by setting fo and £ to the unconditional mean and un-
conditional covariance matrix of the state vector respectively. Under the normality
assumption, the distribution of 3, conditional on Y;_;is the N-dimensional normal
distribution with mean 9;,_;and covariance matrix F;. The conditional density of y;
given Y;_; and 1) can be written as (see Lemke, 2006)

p (Y| Vo5 %) = [(%)N/ 2/ iFtl} o exp [ —% (96— Dgs-1) Fi * (v — Guje—)

Accordingly, the log-likelihood function becomes

N T _
InL () =———Ilog2r — = Z log | Fy| — Zt=1 vy F g,
where v; = (y; — 9y;—1) Is the vector of prediction errors.

For a given set of parameters ¢, the Kalman filter is used to compute the predic-
tion errors v; and their covariance matrix #;, after which the log-likelihood function is
computed. The parameters are estimated by maximising the log-likelihood function,
using either the Nelder-Mead Simplex or Newton-Raphson algorithms. For more
details on Kalman filtering see Harvey (1989) and Lemke (2006). Non-negativity
constraints are imposed on all the variances. As in Diebold et al. (2006), we obtain
starting parameters using the two-step Diebold-Li method and initialising the vari-
ances to 1.0. As in Diebold and Li (2006) we initialise the value of X\ at 0.0609 to
maximise the loading on the curvature factor at exactly 30 months, i.e. the maturity
at which the hump occurs in the yield curve.

In Table 3.2.2 and Table 3.2.3 we present the estimation results for the three-factor
yields-only model. In Table 3.2.2 the estimate of the 4 matrix indicates the highly
persistent dynamics of Z;, S; and Cy, with estimated own lag coefficients 0.945,
0.987 and 0.953 respectively. Cross factor dynamics between S; and L; and S;
and C; appear to be important with statistically significant effects. The mean of
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Table 3.2.2: Three-factor yields-only model estimates
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K Ly Sgo1 Cra 2
. 0.945 0.007 -0.022 8.568
\ ® 1 (0.026) | (0.020) | (0.014) | (0.8886)
\ g | 0.091 0.987 0.110 0.039
®1 (0.083) | (0.025) | (0.018) | (0.723)
[ » -0.137 -0.213 0.953 -0.988
©| (0.078) | (0.059) | (0.043) | (0.597)

Note: Bold entries denote parameters estimates significant at five percent using a t-test
statistic. Standard errors appear in parentheses

Table 3.2.3: Three-factor yields-only estimated Q matrix

([ L | & | G|
o | 0161 -0.163 0.003J
¢ 0.021 0.024 0.046
SJ 0.265 | -0.015
¢ 0.035 0.059

1.476
Cﬂ 0.196

Note: Bold entries denote parameters estimates significant at five percent using a t-test
statistic. Standard errors appear in parentheses

the level is approximately 8.5 percent, the mean of the slope and the mean of the
curvature do not seem statistically significant different from zero and appear to be
reasonable if compared to the mean values of the empirical estimates in Table 3.2.1.
The largest eigenvalue of the A matrix is 0.96 and ensures the stationarity of the
system. In Table 3.2.3 the estimates of the Q matrix indicate that transitional shock
volatility increases as we move from L; to §; to C; as measured by the diagonal
elements. There are no significant covariance terms in the Q matrix. The estimate
for A is 0.0916 which implies that the loading on the curvature factor is maximised
at a maturity of 19.85 months. This can be seen in Figure 3.2.2, where the first
{(inverted) hump occurs at around the maturity of 20 months.

Table 3.2.4 contains the means and standard deviations of the predicted errors
(also called measurement errors, which is measured as the difference between
the actual yields and the predicted model yields) for the yields-only model and the
yields-macro model (macro-economic factors included, which is presented in the
next section). The three-factor yields-only model fits the yield curve reasonably
well in the short maturities but less so in the longer maturities, with the standard
deviation also increasing for longer maturities. The results is similar to the yields-
only model of Diebold et al. (2006).
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Table 3.2.4: Summary of statistics for predicted errors of yields (percent)

Maturity Yields-only Yields-macro |

Three-factor Four-factor Three-factor Four-factor

Mean | Std | Mean | Std | Mean | Std | Mean | Std

1 -0.052 | 0.377 | -0.048 | 0.491 | 0.001 | 0.431 | -0.008 | 0.399

2 -0.011 | 0.358 | -0.008 | 0.449 | 0.004 | 0.438 | 0.003 | 0.410

3 0.017 | 0.359 | 0.020 | 0.430 | 0.010 | 0.317 | 0.021 | 0.311

6 0.047 | 0.385 | 0.054 | 0.431 | -0.011 | 0.338 | 0.030 | 0.318

9 0.037 | 0.407 | 0.051 | 0.462 | 0.006 | 0.323 | 0.026 | 0.313

12 0.023 | 0.432 | 0.044 | 0.499 | 0.016 | 0.321 | 0.022 | 0.315

15 0.018 | 0.456 | 0.045 | 0.528 | 0.026 | 0.337 | 0.013 | 0.336

18 0.019 | 0.476 | 0.048 | 0.550 | 0.020 | 0.357 | 0.009 | 0.362

21 0.023 | 0.493 | 0.052 | 0.566 | 0.015 | 0.377 | 0.009 | 0.383
} 24 0.030 | 0.506 | 0.055 | 0.576 | 0.014 | 0.393 | 0.011 | 0.400 |
36 0.064 | 0.537 | 0.049 | 0.594 | 0.016 | 0.408 | 0.014 | 0.415 \
43 0.104 | 0.551 | 0.027 | 0.596 | 0.019 | 0.421 | 0.017 0.4@

60 0.141 | 0.556 | 0.002 | 0.597 | 0.024 | 0.432 | 0.019 | 0.440

72 0.168 | 0.557 | -0.018 | 0.604 | 0.049 | 0.466 | 0.023 | 0.475

84 0.186 | 0.558 | -0.028 | 0.612 | 0.083 | 0.487 | 0.017 | 0.493

96 0.195 | 0.560 | -0.028 | 0.619 | 0.118 | 0.496 | 0.010 | 0.498

\ 108 0.192 | 0.560 | -0.021 | 0.623 | 0.149 | 0.500 | 0.006 | 0.499
120 0.174 | 0.560 | -0.013 | 0.627 | 0.170 | 0.501 | 0.007 | 0.499
132 0.141 | 0.559 | -0.007 | 0.629 | 0.180 | 0.502 | 0.013 | 0.498
144 0.095 | 0.560 | -0.005 | 0.632 | 0.177 | 0.503 | 0.020 | 0.499
156 0.038 | 0.565 | -0.005 | 0.634 | 0.159 | 0.504 | 0.026 | 0.501
f 168 -0.025 | 0.574 | -0.005 | 0.636 | 0.128 | 0.505 | 0.029 | 0.503
180 -0.091 | 0.589 | -0.005 | 0.638 | 0.085 | 0.509 | 0.030 | 0.506
192 -0.160 | 0.608 | -0.004 | 0.639 | 0.033 | 0.518 | 0.030 | 0.509
204 -0.229 | 0.633 | -0.002 | 0.641 | -0.024 | 0.532 | 0.029 | 0.511
216 -0.298 | 0.661 | 0.001 | 0.644 | -0.085 | 0.553 | 0.028 | 0.514
228 -0.365 | 0.693 | 0.004 | 0.647 | -0.146 | 0.579 | 0.029 | 0.517
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We use the Kalman filter fixed-interval smoothing algorithm to obtain optimal ex-
tractions of the latent level, slope and curvature factors. The algorithm consists of a
set of recursions which start with the final quantities given by the Kalman filter and
work backwards (Harvey, 1989). The equations are

ft|T = ft|t + 3 (ft+1|T - ft+11t) , and

Eyr = Zep + 2f (Et+1|T - Et+1|t) %y

where ¥} = ¥, A’ Et+1|t Figure 3.2.3 plots the three smoothed estimated factors
together and in Figure 3.2.4 to Figure 3.2.6 we present the three factors together
with various empirical proxies and related macro-economic factors. The level factor
in Figure 3.2.3 is in the neighbourhood of 8 percent and displays persistence. The
slope and the curvature factors vary around zero with positive and negative values
and appear less persistent. The slope factor is more persistent than the curvature
factor but has a lower variance. This seems consistent if compared to the mean
and autocorrelation values of the empirical estimates in Table 3.2.1.
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Figure 3.2.3: Estimates of the level, slope and curvature factors

Figure 3.2.4 displays the estimated level factor and two related comparison series.
The first one is a commonly used empirical proxy for the level factor namely the
average of the short-, medium- and long-term yields, (y (3) + y (24) + y (228)) /3.
The second is the annual percentage change in the consumer price index. There
is a high correlation of 0.89 between the level factor and the empirical proxy. The
correlation between the level factor and the inflation is 0.51. As stated by Diebold et
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Figure 3.2.4: Three-factor yields-only model level
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Figure 3.2.5: Three-factor yields-only model slope factor and empirical estimates
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Figure 3.2.6: Three-factor yields-only model curvature factor and empirical estim-
ates

al. (2006) this is consistent with the Fisher equation, which suggests a link between
level of the yield curve and inflationary expectations.

In our estimates of the of the empirical level, slope and curvature we use the 228
month zero-rate and not the 120 month zero-rate as Diebold et al. (2006). The use
of the 228 month zero-rate instead of the 120 month zero-rate has very little effect
on the results.

Figure 3.2.5 displays the estimated slope factor and two related comparison series.
The first is the empirical proxy for the slope factor namely the difference between
the short- and long-term yields, y (3) —y (228). The second is an indicator of macro-
economic activity namely the demeaned manufacturing capacity utilisation. There
is a high correlation of 0.97 between the slope factor and the empirical proxy. The
correlation between the slope factor and the capacity utilisation is 0.36. Diebold et
al. (2006) states that, as with the level factor, there is a connection between the
yield curve and the cyclical dynamics of the economy.

Figure 3.2.6 displays the curvature factor and the empirical proxy for the curvature
of the yield curve, which is 2y (24) — y (3) — y (228). There is a correlation of 0.97
between the curvature factor and the empirical proxy. Diebold et al. (2006) report
no reliable macro-economic links to the curvature factor.
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3.2.4 Four-factor model estimation

In Table 3.2.4 we have shown that the three-factor model fits the yield curve reason-
ably well in the short maturities but less well at the longer maturities. We extend
the three-factor model to a four-factor model using the Svensson representation
(Svensson, 1994) of the yield curve

1— ~A\T 1— -7 R 1 — —AoT r
y(T)=ﬁ1+ﬁ2</\j_T>+ﬁ3<—e—“e )‘1>+ﬁ4<#~5 )‘2>;

/\1’7‘ /\2'7'

where y (7) is the zero coupon yield with maturity 7 and B;, 85, B3, B4, A1 and Ay
are model parameters. Figure 3.2.7 illustrates an example fit of both the Nelson-
Siegel curve and the Svensson curve on an arbitrary yield curve in our dataset.
It is clearly visible that the Svensson curve is more flexible and provides a better
cross-sectional fit to the South African term structure than the Nelson-Siegel curve.
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Figure 3.2.7: Nelson-Siegel fit versus Svensson fir for the yield curve

As for the Nelson-Siegel parameterisation, we rewrite the Svensson the represent-
ation as

1-— eM)\lT 1 1- 6_)\17_ =17 2 1— e_)\2T —AoT
Ye () = Lg+5e </\—17_>+Ot </\1_7_—5 +C Togr € ,>’

where L;, S;, G} and G? are the, time-varying parameters, 8, B, Bs and B, re-
spectively. We interpret the factors L¢, S;, CF and C?as level, slope, curvature one
and curvature two. The state-space system can be extended as

(fe —w) = A(fe — 1)+,

I L T T 2 S S
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ys = Afy + &,

() ((0)(52))

where f; = (L, St, Cf, OL?)'. The dimensions of 4, u, 7, and @ are increased as
appropriate. A is changed to be

1—e~™71 1—e=M7T1 g7 l—eT271 —A2T1
Yt <Tl) 1 )\17;\1 )\17;\1 € )\27;\1 - L
1l—e~ 72 l—e=M72 _  —Xi170o 1—e™?272 _  —JpTo
yt (7—2) . l )\1'7“2 )\1'7“2 € )\27‘2 e St
: : : . Ct
1ogm TN 1—eTMTN g7y l—eR2TN —daTn 2
Y <TN> 1 MTN ALTN e oty © Ci
Et (T1>
Et <T2)
et (Tv)

In Table 3.2.5 and Table 3.2.6 we present the estimation results for the four-factor
yields-only model. In Table 3.2.5 the estimate of the A matrix indicates high per-
sistent own dynamics of L;, S;, C} and G2, with estimated own lag coefficients
of 0.981, 1.019, 0.809 and 0.992 respectively. Some cross factor dynamics seem
significantly important. The estimates indicate the persistence in L;, C} and C? de-
creases and an increases in S: as measured by the diagonal elements. The mean
of the level is approximately 5.9 percent and is statistically significant different from
zero. The mean of the slope is 2.612 percent, the mean of the first curvature factor
is -0.529 percent, which are not statistically significant different from zero. The
mean of the second curvature factor 8.009 percent and is statistically significant
different from zero. The largest eigenvalue of the A matrix is 0.986 and ensures the
stationarity of the system. In Table 3.2.6 the estimates indicate an increase in the
transitional shock volatility as we move from L; to S; to C} to G2. The estimate for
A1 is 0.088 which implies that the loading on the first curvature factor is maximised
at a maturity of 20.38 months and the estimate for A\, is 0.015 which implies that
the loading on the second curvature factor is maximised at a maturity of 119.55
months. Referring to Figure 3.2.2 it can be seen that the first hump is at about 20
months and the second hump at 120 months. As shown in Table 3.2.4, the four-
factor yields-only model improves on the means of the predicted errors, especially
for the long maturities.
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Table 3.2.5: Four-factor yields-only model estimates

L1 Si1 Cy1 Ciy L
B 0.981 0.045 -0.026 0.000 5.871
© 1 (0.044) | (0.025) | (0.018) | (0.005) | (1.588)
s | 0.004 1.019 0.102 -0.043 2.612
£ (0.037) | (0.026) | (0.021) | (0.015) | (1.336)
o | 0202 -0.223 0.809 0.046 -0.529
£ (0.089) | (0.047) | (0.039) | (0.012) | (0.348)
o2 | 0284 0.275 -0.081 0.992 | 8.009
£ (0.055) | (0.023) | (0.031) | (0.041) | (2.855)

Note: Bold entries denote parameters estimates significant at five percent using a t-test

Note: Bold entries denote parameters estimates significant at five percent using a t-test

statistic. Standard errors appear in parentheses

Table 3.2.6: Four-factor yields-only estimated @ matrix

Ly Sy Ct C?
L. | 0547 -0.057 0.036 -0.007
£ (0.096) | (0.131) | (0.054) | (0.071)
g 0.490 -0.102 | -0.021
¢ (0.076) | (0.057) | (0.011)
o 1.538 0.077
g (0.084) | (0.090)
) 4.545
Ci (0.382)

statistic. Standard errors appear in parentheses
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Again we plot the estimated smoothed level and slope factors against empirical
proxies and macro-economic factors in Figures 3.2.8 and Figure 3.2.9. We omit
the curvature factors as there is no reliable macro-economic link to them. In Figure
3.2.8 we plot the estimated level factor against the empirical proxy and annual per-
centage change in the inflation index. There is a correlation of 0.67 between the
estimated level factor and the empirical proxy. The correlation between the estim-
ated level and the inflation is 0.28, which again suggests that inflation is linked to
dynamics of the yield curve.
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Figure 3.2.8: Four-factor yields-only model level factor and empirical estimates
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Figure 3.2.9: Four-factor yields-only model slope factor and empirical estimates
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Figure 3.2.9 shows the estimated slope curve together with the empirical proxy and
demeaned manufacturing capacity utilisation. There is a 0.84 correlation between
the estimated slope factor and the empirical proxy, and a 0.30 correlation between
the estimated slope factor and capacity utilisation. This also suggests a link between
the capacity utilisation and the dynamics of the yield curve.

3.3 Macro-economic model

In this section we relate the four unobserved factors, level, slope and the two
curvature factors, that provide a good representation of the yield curve, to the
macro-economic factors. . This can be done by extending the state-space moedel
in the previous section. We also present out-of-sample forecasting results to as-
sess how well the four-factor yields-macro model forecast the dynamics of the yield
curve.

3.3.1 Yields-macro model

We include the following three macro-economic factors: manufacturing capacity
utilisation (CU;), which represents the level of real economic activity relative to
potential; the annual percentage change in the inflation index (IF}), which repre-
sent the inflation rate; and the repo-rate (R.R;), which represents the South African
monetary policy instrument. According to Diebold ef al. (2006) these three macro-
economic factors are considered to be the minimum set of fundamentals needed to
capture the basic macro-economic dynamics (see also Rudebusch and Svensson,
1999; Kozicki and Tinsley, 2001). We extend the four-factor yields-only model, to the
four-factor yields-macro model, to incorporate the three macro-economic factors.
This is done by adding the macro-economic factors to the set of state variables.
The state-space system is extended as follows:

(fe— 1) > _ ( A1 (fr1— 1) ) 4 ( Az (1 — V) ) 4 ( T )
(s —v) A1 (fr—1— 1) Aga (-1 — V) T )

ye = Afy + &,
T 0 Q K 0
Y | M WN 0|, K J © ,

Et 0 0 0 H
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where f; = (Ly, Sy, G}, C2) and oy = (CUy, IRy, RRy)'. Where Ay, Ago, Aoy, Ags,
WV, T Ve @, K and J have appropriate dimensions. A stays unchanged. This
Is consistent with the view that only four factors are needed to distil the information
in the yield curve (Diebold ef al., 2006). In the four-factor yields-macro model the

matrix
Q K
KJ

is assumed to be non-diagonal and H is assumed to be diagonal.

As previously stated it follows by assumption that the transition density p (fit1|f:)
and p (z441|z:) and the measurement density p (y:|f;) are jointly normal. This im-
plies that the prediction and filtering densities are normal,

ff f fy

Tt ft Bipon D D
zf Y

Tt gt—l ~ N Tt Et]t—l Eaf—l Etlt—l !
yf yz vy

Yt Yt Si-1 D1 Dgen

fi|Ge ~ N <ft|t72{]{> ;

where Gy = {y1,-..,yt, 21, - .. 1 1iS taken to be the sequence of observations avail-
able for estimation. These guantities can be obtained by employing the Kalman
filter for a given set of parameters 1.

The Kalman filter algorithm is updated as follows:
Step 1: Set fo[o = fo, Egljg =3pand sett=0.

Step 2: ft—l[t—l and E{fllt_l are given values, but y; and z; has not been

observed yet. Compute
(ft]t—l - M) = An1 <ft—1]t—1 - /~6) + Agp (T3 — V),

(Zge—1 — 1) = Ans (]Et—llt——l - /L) + Azz (w-1 — ),

Dije—1 = A-ft]t—-lz

o ff
Dy = An¥yly An+ 0,
i1 = AQlE{jl[t—lAIZI +J,
— AT
Sty =A%y N+ H,

fe ff
Doy = A1y o+ K,

f — ff
Dijp_1 = Ty A’ and
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C;iy _b fx ’
Ty = Dy AN

Step 3: y; and z; has been observed. Compute

-1
T Emy 5
;7 fz fy tlt—1 t|t—1 Yt — Ytjt—1
ft|t = ft|t—1 + ( Et t—1 Et —1 ) ( Y vy > ( - ’
| | Biio1 Y-t Tt — Tgft—1

-1
L Y z f
==l - ( She S ) ( Zie1 Dep- > ( Et|}—1 )
t t|t— — — YT vy Y )
Et]t—l Et]t—l Et]t—l

Step 4: Ift < T, sett:=t+ 1, and go to Step 2; else, stop.

Accordingly, the log-likelihood function becomes

NT 1T v} Efi{
InL(y) = ——log27r——2_ log{ ( ;I:;— yly_l
2 2=l Et|t—1 E7&[7&—1
-1
1T o ( i Ef#—l ) s
— YT ?
2 =1 Et|t—1 Efﬁ—l
where v; = w- th't*l is the vector of prediction errors.
Tt — Tfg—1

In Table 3.3.1 and Table 3.3.2 we present the estimation results for the four-factor
yields-macro model. The estimate of the A matrix again indicates high persistent
own dynamics for S, C}, G2, CU; and IF;. Some of the cross-factor dynamics
are significantly important for most factors. The estimates also indicate an increase
in the transitional shock volatility as we move from L; to S; to G} to G? all being
statistically significant different from zero, and a decrease in the transitional shock
volatility as we move from CU; to IF; to RRy, all being statistically significant dif-
ferent from zero. There are small changes in the mean of the slope and the two
curvature factors. The largest eigenvalue of the 4 matrix is 0.98 and ensures the
stationarity of the system. None of the covariance terms in the @ matrix are statist-
ically significantly different from zero.

As shown in Table 3.2.4, the four-factor yields-macro model reduces on most of the
means slightly but reduces the standard deviations of the predicted errors indicating
a better fit. We also provide the means and standard deviations of the predicted
errors for the three-factor yields-macro model, again the four-factor yields-macro
model fits the yield curve better than the three-factor yields-macro model. The
estimates for the level, slope and two curvature factors of the four-factor yields-
macro model are very similar to those of the four-factor yields-only model.
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Table 3.3.1: Four-factor yields-macro model estimates

Lt-l St—l Oél__l 01;2_1 CUt IFt RRt 2

I 0.621 -0.279 -0.022 -0.008 0.065 -0.005 0.310 4.769
t (0.064) (0.030) (0.029) (0.024) (0.058) (0.052) (0.071) (11.625)

g 0.313 1.162 0.116 0.003 -0.059 0.094 -0.310 2.878
¢ (0.164) (0.074) (0.039) (0.008) (0.089) (0.060) (0.123) (12.272)

cl 0.293 0.183 0.960 0.027 -0.063 -0.175 -0.212 0.472
¢ (0.2086) (0.084) (0.049) (0.053) (0.112) (0.077) (0.178) (8.078)

G2 1.420 1.406 0.108 0.877 -0.565 -0.027 -1.588 8.419
¢ (0.139) (0.112) (0.014) (0.077) (0.155) (0.091) (0.271) (19.528)
ou, 0.281 0.205 0.023 0.019 0.928 -0.062 -0.232 86.338
(0.117) (0.077) (0.017) (0.012) (0.039) (0.033) (0.086) (3.465)

IF, 0.643 0.392 0.105 0.048 0.055 0.888 -0.303 5.389
(0.1486) (0.074) (0.020) (0.008) (0.033) (0.030) (0.040) (1.323)

RR, 0.334 0.187 0.117 0.016 -0.022 0.023 0.725 7.491
(0.072) (0.008) (0.005) (0.009) (0.027) (0.020) (0.062) (2.563)

Note: Bold entries denote parameters estimates significant at five percent using a t-test

statistic. Standard errors appear in parentheses

Table 3.3.2: Four-factor yields-macro estimated @ matrix

Liq Si—1 CL, C? . CU; IFy RR;

I 0.559 -0.001 0.000 0.000 0.000 0.000 0.000
t (0.078) | (0.036) | (0.087) | (0.112) | (0.077) | (0.019) | (0.042)

< 0.635 0.000 0.000 0.000 0.000 0.000
E (0.093) | (0.060) | (0.171) | (0.038) | (0.051) | (0.011)
o 1.762 0.000 0.000 0.000 0.000
t (0.216) (0.167) (0.097) (0.198) (0.150)
o2 4.780 0.000 0.000 0.000
¢ (0.38) (0.100) | (0.195) | (0.165)
0.197 0.000 -0.001
O (0.028) | (0.021) | (0.011)
0.250 0.001
IF: (0.040) | (0.010)
0.104
Rh (0.013)

Note: Bold entries denote parameters estimates significant at five percent using a ¢-test

statistic. Standard errors appear in parentheses
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Figure 3.3.1: Mean predicted errors and confidence bands at 5% and 95%

Figure 3.3.1 presents the mean predicted error and the associated upper and
lower 95% confidence bands for the four-factor yields-only (Y/O) and the four-factor
yields-macro (Y/M) models. Here we can clearly see that there is little difference in
the means of the two models. But as mentioned before, there is less variance in
the yields-macro model especially in longer maturities, indicating a better fit. The
subsequent analysis will use the four-factor yields-macro model.

3.3.2 Out-of-sample testing

For scenario generation it is not only important to capture the dynamics of the yield
curve well in-sample, but it is also important to forecast the dynamics of the yield
curve well out-of-sample. For this reason we estimate the four-factor yields-macro
model on truncated or curtailed data sets. Using the estimated parameters we
forecast the yield curve repeatedly for one, two, three and four years ahead over
the period of February 2004 through to February 2009, using monthly intervals.
For the purpose of asset and liability management it would be of importance to
use longer periods for out-of-sample testing, but our lack of data for model fitting
restricts this period. Diebold and Li (2006) model and forecast the Nelson-Siegel
factors as univariate AR(1) processes for one month, six months and twelve months
ahead. The model proposed by Diebold and Li (2006) outperforms other models for
yield curve forecasting on all maturities. Thus we model and forecast the Svensson
factors as univariate AR(1) processes in order to compare their model against our
four-factor yields-macro model.
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Table 3.3.3: One year out-of -sample forecasting results
Maturity Four-Factor Svensson - AR(1) Four-Factor |

with repo-rate
Mean | Std. Dev. Mean | Std. Dev. Mean | Std. Dev.

\ 3 -1.053 1.562 -1.338 2.213 -0.395 1.164
T 12 -0.686 1.103 -1.281 1.909 -0.021 0.742
36 -0.706 0.605 -1.666 1.417 -0.046 0.408

60 -0.929 0.593 -2.036 1.166 . | -0.276 0.573
120 -1.009 0.741 -2.277 0.972 -0.364 0.837
180 -0.932 0.649 -2.292 0.969 -0.291 0.752
228 -0.854 | 0.524 -2.274 1.022 -0.217 0.621

Table 3.3.4: Two year out-of -sample forecasting results

'T\ﬂaturity Four-Factor Svensson - AR(1) Four-Factor
with repo-rate
Mean | Std. Dev. | Mean | Std. Dev. | Mean [ Std. Dev. |
3 -0.881 2.004 -1.585 2.273 -0.178 1.564 |
12 -0.578 1.547 -1.576 1.951 0.164 1.235
36 -0.822 1.089 -2.124 1.763 -0.074 0.815
60 -1.195 -1 1.000 -2.611 1.853 -0.459 0.638
120 -1.4086 0.984 -2.947 1.951 -0.688 0.639
180 -1.289 0.954 -2.895 1.935 -0.592 0.622 |
228 -1.141 0.950 -2.784 1.800 -0.459 0.646T

Table 3.3.5: Three year out-of -sample forecasting results
F\naturity Four-Factor Svensson - AR(1) Four-Factor

with repo-rate

Mean | Std. Dev. | Mean | Std. Dev. | Mean [ Std. Dev. |
3 -0.472 1.892 -1.235 2.013 0.120 1.539

12 -0.195 1.343 -1.290 1.720 0.417 1.134 |

36 -0645 | 1144 | -2.061 | 2233 | -0.056 | 0.668 |

60 -1.173 1.460 -2.703 2.835 -0.605 0.827 |
120 -1.506 1.710 -3.166 3.284 -0.967 1.095
180 -1.394 1.638 -3.107 3.234 -0.882 1.040
228 -1.218 1.515 -2.954 3.088 -0.725 0.936
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Table 3.3.6: Four year out-of -sample forecasting results
Maturity Four-Factor Svensson - AR(1) Four-Factor
: with repo-rate

Mean | Std. Dev. | Mean | Std. Dev. Mean | Std. Dev.
3 0.067 1.258 -0.511 1.376 0.451 1.381
12 0.067 0.817 -0.887 1.682 0.469 1.069
36 -0.617 1.247 -1.907 3.382 -0.230 0.630
60 -1.212 2.220 -2.620 4.627 -0.842 1.555

[ 120 | 1671 | 3.011 | 3212 | 5663 | -1.323 | 2.379
" 180 | 1573 | 2.860 | -3.152 | 5564 | 1.243 | 2.260
228 | 1420 | 2.611 | -3.004 | 5308 | -1.104 | 2.033 |

In Table 3.3.3 to Table 3.3.6 we present the out-of-sample forecasting results for
maturities 3, 12, 36, 60, 120, 180 and 288 months. We define the forecast errors
attime ¢+ A to be yprn (7) — 94 (1), where ¢ is the time of parameter estimation and
h the length of the period forecasted. We report the mean and standard deviation
of the forecast errors. The four-factor yields-macro model outperforms the AR(1)
model. The standard deviations for the AR(1) model are also larger than that of
the four-factor yields-macro model. In particular the four year ahead forecast of the
four-factor yields-macro model is better than that for the AR(1) model.

In practice most financial institutions have views on the macro-economy. These |
views are produced by means of an economic scenario generator (ESG) or expert
opinion. These ESG’s only produce forecasts for macro-economic factors, for ex-
ample the repo-rate and not a complete yield curve. By using the Kalman filter to
model! the yield curve in a bidirectional approach, as mentioned in the introduction,
it is possible to close this loop and to produce a full consistent yield curve given a set
of macro-economic forecasts. This is done by including the macro-economic fore-
casts produced by such an ESG in the forecasting of the yield curve rather than the
forecasted macro-economic factors of the model. Either all three macro-economic
factors or only a selection thereof can be replaced. By lack of real ESG forecasts
for the repo-rate we include the actual repo-rate. In Table 3.3.3 to Table 3.3.6 we
present out-of-sample forecasting results where the actual repo-rate was included
in the forecasting instead of the forecasted repo-rate from the model. As can be
seen the forecasting error reduces, especially for the longer maturities, compared
to the other models. Thus by including these forecasts a better yield curve forecast
can be made.

In Figure 3.3.2 we present the quantife-quantile plots for maturities 3, 60, 120 and
228 months. We set the quantiles of the empirical distribution against the quantiles
obtained by averaging over a set of scenarios generated by the four-factor yields-
macro model, we also plot the 5th and 95th percentiles. The four-factor yields-
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Figure 3.3.3: Quantile-quantile plots for maturities 3, 60, 120 and 228 months with
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macro model better reproduce the empirical distribution in the medium term rates
than in the short and long rates. In Figure 3.3.3 the quantile-quantile plots for 3,
60, 120 and 228 maturities are presented where the scenarios were generated by
sampling from the residuals instead of using normal errors. As can be seen little
improvement is gained by sampling from the residuals as apposed to using normal
errors.

3.4 Scenario generation

In this section we describe the scenario generation algorithm that we use to gen-
erate yield curve scenario trees for fixed income portfolio optimisation problems.
We use the four-factor yields-macro model to generate yield curve scenarios. The
existence of arbitrage in the scenario trees is discussed and a method to eliminate
arbitrage opportunities is proposed. We also demonstrate that the scenarios are
stable by using back-testing.

3.41 Yield curve scenario generation

We start this section by describing a procedure based on the parallel simulation and
randomised clustering approach proposed by Gilpinar et al. (2004) to generate a
scenario tree which is the input for financial optimisation problems. The basic data
structure is the scenario tree node, which contains a cluster of yield curve scen-
arios, one of which is designated as the centroid or representative. The final tree
consists of the centroids of each node, and their branch probabilities. Gulpinar et al.
(2004) introduced a randomised clustering algorithm. This differs from the approach
proposed by Dupagova et al. (2000) which determines clusters that are optimal by
some measure. Our approach is to group the scenarios into equal groups rather
than using a clustering approach as these approaches may need a very large num-
ber of scenarios to be generated at the root node to ensure sufficient scenarios at
the leaf nodes.

The specific scenario tree structure that we are interested in is a yield curve scen-
ario tree. A T-period scenario tree structure is represented as a tree-string which is
a string of integers specifying for each state s = 1,2, ..., 7T the number of branches
(or branching factor) for each node in that state (see Dempster et al., 2006). This
gives rise to balanced scenario trees, in which each sub-tree in the same period
has the same number of branches. Let ks denote the branching factor for state s,
then Figure 3.4.1 gives an example of a scenario tree with a (3,2) tree-string, i.e. k;
=3 and ky = 2.
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Figure 3.4.1: Graphic representation of scenarios

LY 11 i J1
VA JI11W, THW 7118
TIw TR TN VAR
pay \\\\\ Ay l\\\\ BANRRN ST 1\\\\
/:/"‘\.\.\ /:llll\.\.\ /./IH\.\.\\ /./I'\\.\.\
Parallel simulation Sequential simulation

Figure 3.4.2: Two methods of simulating scenarios
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It is important to point out that the generated trees are non-recombining. Given
that we use four latent factors and three macro-economic factors in our yield curve
model, it is very difficult to construct a recombining tree. Even having only three
latent factors it is notoriously difficult to construct a recombining tree. Furthermore
non-recombining trees are used in the fixed income portfolio optimisation problems
as the portfolio composition is path-dependent.

Figure 3.4.2 illustrates the methods of scenario simulation, namely parallel and
sequential. We use the parallel method for simulation as this method will produce
more realistic extreme events in the scenario tree. The reason is that, with the

" number of simulations growing smaller down the tree in the parallel method, the
centroids that eventually represent the scenario groups are drawn from a smaller
sample size and in the sequential method, at every stage the simulated scenarios in
all of the clusters are discarded, and the next simulation restarted from the centroid,
which will prevent any extreme variation {(Gulpinar et al., 2004).

In order to group the scenarios a measure of relative position is used where we
calculate the “distance" between the discounting factors of the yield curve and that
of the average by:

1 1
.D =2 ((1 +y(M) (+yM (T))T> ’

where y (1) is the zero-rate with maturity ~ and y* () the average zero-rate with
maturity 7. Note that the relative distance D can be negative and positive, which
means that a yield curve can be positioned to the “left" or to the “right" of the aver-
age yield curve. This is to ensure realistic extreme events. Chueh (2002) discusses
several other distance methods for interest rate sampling. Our relative distance
method relates closely to the relative present value distance method in Chueh
(2002). It is necessary to represent each group of scenarios with a single point,
which becomes the data in the scenario tree. Gllpinar et al. (2004) argue that
to prevent the scenario tree from containing scenarios that are not consistent with
the simulation parameters, the centroid should not be taken to be the centre of the
group, but rather the simulated scenario closest to the centre. We use the mean of
the group as the notion of the centre, other notions of the centre that can be used
are the median and the mode.

The main steps of our algorithm can be outlined as follow:

Step 1: At s = 0 create a root node group containing IV scenarios. Generate
all the scenarios using Monte Carlo simulation and the four-factor yields-macro
model. Each scenario is equally likely and consists of T' + 1 sequential yield
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curves with the same starting point, the current yield curve (in total (' + 1) x N
yield curves are generated).

Step 2: Set s := s + 1 and for each group in the previous stage, calculate the
average scenario and calculate the relative position (defined above) of each
scenario with respect to the average scenario.

Step 3: For each group, sort the scenarios in descending distance (relative
position) order and group them into &k, equal sized groups.

Step 4: For each new group, find the scenario closest (in absolute value) to
average of the group, and designate it as the centroid. Assign a probability of

—1
( Pty ki) to each centroid.

Step 5: If s < T', go to Step 2, else stop.

3.4.2 Arbitrage

Filipovic (1999) and other researchers such as Diebold ef al. (2006) show that the
Nelson-Siegel family of yield curve models does not impose absence of arbitrage,
although these models estimate and forecast the yield curve better than arbitrage-
free models (Duffee, 2002, noted that the canonical affine arbitrage-free modeis
demonstrate disappointing out-of-sample performance). In light of this, the scen-
arios generated are not arbitrage free. Klaassen (2002) shows that arbitrage op-
portunities can be detected ex post by checking for solutions to a set of linear
constraints or be excluded by including non-linear constraints in the scenario gen-
eration process. Christensen et al. (2007) derive a class of arbitrage-free affine
dynamic term structure models that approximate the Nelson-Siegel yield curve spe-
cification. Christensen et al. (2008) extend these models to include the Svensson
extension of the Nelson-Siegel yield curves.

We propose a method to reduce the presence of arbitrage ex post, without extend-
ing our models to the class of arbitrage-free models. We reduce the presence of
arbitrage ex post, as apposed to excluding it by means of including non-linear con-
straints during the scenario generation process. This approach has no additional
effect on the computational difficulty of the model estimation process and the data
requirements. As the scenario generation process is a discrete approximation of
the continuous evolution of the term structure, extending the models, used in the
simulation process, to a class of arbitrage-free models will not ensure the exclusion
of arbitrage in the generated scenarios.
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Klaassen (2002) proposes linear constraints for two types of arbitrage. [ngersoll
(1987) distinguishes these two types of arbitrage. The first type is an opportunity
to construct a zero-investment portfolio that has nonnegative payoffs in all states of
the world, and a strictly positive payoff in at least one state. The second type is an
opportunity to construct a negative investment portfolio (i.e. providing an immediate
positive cash flow) that generates a nonnegative payoff in all future states of the
world.

Following the notation of Klaassen (2002), let i1 D€ the return on asset class
k(k=1,..,K)betweentimetandt+ lif state n (n =1,...,N) of the world ma-
terialises at time ¢ + 1. Klaassen (2002) mentions a useful result, that if the set of -
equations
N
Zn=l U (L+1Ry) =1forallk=1,., K,

has a strictly positive solution v, foralln (n =1, ..., V), then no arbitrage opportun-
ities of the first or second type exist (see also Ingersoll, 1987). Taking 77, ; to be
the return on a zero-coupon bond with maturity k£ = 7, then
PR, (r—1)
nooo_ ItV 7/

1+ T+l 22 (’I’) 3
where P; (1) = e~¥:(7) is the price at time ¢ of a zero-coupon bond with maturity 7.
Thus if the set of equations

N
E | Un €XP (—=(r = Dypy (r — 1)) = exp (—7y: (1)) for all maturities 7,
n=

has strictly positive solution v, for all n (n = 1, ..., N), then no arbitrage opportunit-
ies of the first or second type exist in our yield curve scenarios.

The class of arbitrage-free affine dynamic term structure models that Christensen
et al. (2007) and Christensen et al. (2008) derive, for the Nelson-Siegel family of
yield curves, differs from the Diebold et al. (2006) models only in the inclusion of an
additional yield-adjustment term which depends only on the maturity of the zero-
coupon bond. As this term is dependent on the maturity of the bond, it can be seen
as a shift in the slope of the yield curve. Now let

Up = o (—y: (1)) foralln (n=1,...,N),
N
then, if we can find yield curve shifts c;41 (7) such that

%2:;1 exp (—(7—1) (g, (T — 1) +eeqa (1)) = % for all maturities r,
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no arbitrage opportunities exist in the yield curve scenarios. Thus, if for a zero
coupon bond with maturity =, the mean of the calculated present values, using
different scenarios, equals the current price, for all maturities =, no arbitrage op-
portunities exist in the yield curve scenarios (this is consistent with no-arbitrage
literature).

Given the small size of branching factors of the scenario trees generated it may
not be possible to find realistic solutions to the yield curve shifts c:11 (7). Thus to
eliminate most of the arbitrage opportunities in the scenario trees we propose the
following algorithm:

Step 1: At the root node create a group of NV scenarios. Generate all the
scenarios using Monte Carlo simulation and the four-factor yields-macro model
(as for the scenario tree). Each scenario is equally likely and consists of T
sequential yield curves.

Step 2: At each branching time of the scenario tree calculate the average of
the N generated scenarios (at the root node the current yield curve is used).

Step 3: Then for each average vyield curve and the corresponding one-period
ahead scenarios solve

exp (—7y: (7))

1 N n _
5 Doy & (= 1) (i (= e (1) = T2

for all maturities, to obtain the yield curve shifts ¢.1 (7).
Step 4: Add the amount ¢ (1) to the original scenario tree yield curves.

The described methed removes most of the arbitrage opportunities in the scenario
tree with a few opportunities left in sub-trees. For scenario trees with a short horizon
all opportunities may be removed. We judge this reduction of arbitrage opportun-
ities as sufficient since portfolio constraints in optimisation problems, such as the
restriction of short-selling and the inclusion of bid and ask spreads, will eliminate
the remaining arbitrage opportunities.

3.4.3 Back-testing

To test our scenario generation methodology we implemented the multi-stage sto-
chastic optimisation problem described in Dempster ef al. (2006). Dempster ef al.
(2006) propose an asset and liability management framework and give numerical
results for a simple example of a closed-end guaranteed fund where no contri-



82 3. MACRO-ECONOMIC INTEREST RATE SCENARIO GENERATION

250
240 4 =——Guarantee =

230 | —Set 1
220 1| sor2 AR
200 1 —Set 3 //’-\/\/'37/\,\}‘5, N~
190
180 NS
170
160 VA /A
140 =/
130 7:2

/
120
110 ﬁ
100 o
90 e

80 T T T T T T T T T
Feb-04  Aug-04 Mar-05  Sep-05 Apr-06 Oct-06 May-07  Dec-07 Jun-08 Jan-09

Figure 3.4.3: Macro-economic scenario back-testing results

Table 3.4.2: Macro-economic portfolio allocation stability statistics

Cf’l:’r’]i‘;tc')‘;e Top40d | 5Y 7Yy | 10vY | 15Y | 19y
Mean 20.325 00135 | 09619 | 0.0018 | 0.0 | 0.0 | 0.0051
Std. Dev. 0.221 0.0035 | 0.0176 | 0.0093 | 0.0 | 0.0 | 0.0063
Min 201929 | 0.0057 | 0.8945 | 0.0000 | 0.0 | 0.0 | 0.0000
Max 04283 | 0.0248 | 0.9990 | 0.9808 | 0.0 | 0.0 | 0.0228

minimum and maximum of the objective function and the first stage portfolio alloc-
ations. The first stage portfolio allocation seems consistent with small standard de-
viation. The objective function also have small standard deviations with no outliers
when we look at the minimum and maximum, furthermore indicating the stability of
the scenario generation.

The scenario generation is further tested by again solving the model for 100 differ-
ent scenario sets and for different number of final nodes, 120, 500, 1000 and 2000.
Dempster et al. (2006) minimise the expected average shortfall and maximises the
expected terminal wealth of the portfolio, and distinguish between them using a risk-
aversion parameter (alpha). For each scenario set the model is solved ranging the
risk-aversion parameter from 0 to 1 in steps of 0.1 (1 being the most risk-averse).
Table 3.4.3 presents the mean, standard deviation, for the different number of fi-
nal nodes. In Figure 3.4.4 we display the mean frontier, by averaging the objective
function values obtained over the 100 different scenario sets, and the confidence
bands covering 95% of the results (Kaut ef al., 2007; Consiglio and Staino, 2008,
uses a similar approach for scenario and model stability testing).
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butions are allowed after the initial cash outlay. They demonstrate the design of
investment producté with a guaranteed minimum rate of return focusing on the li-
ability side of the product (see Appendix A for the model formulation). Ve use our
scenario generation approach to generate the input scenarios for the optimisation
problem. The four-factor yields-macro model is fitted to market data up to an initial
decision time ¢ and scenario trees are generated from time ¢ to some chosen hori-
zon t + T. The optimal first stage/root node decision is then implemented at time
t and we measure the success of the portfolio implementation by its performance
with historical data up to time ¢+1. This whole procedure is rolled forward for T" trad-
ing times. At each decision time ¢, the parameters of the four-factor yields-macro
model are re-estimated using the historical data up to and including time ¢.

We back-test over a period of five years, from February 2004 through to Febru-
ary 2009, and use different tree structures with approximately the same number
of scenarios. The tree structures are described in Table 3.4.1. Bonds with 5,
7, 10, 15 and 19 year maturities as well as the FTSE/JSE Top 40 index are in-
cluded in the portfolio {Dempster ef al., 2006, include bonds with different maturit-
ies and an equity index). In order to generate scenarios for the Top 40 index, the
index is modelled using a simple linear regression model incorporating the three
macro-economic factors. We minimise the expected average shortfall for an annual
guarantee of 9% and include transaction costs.

Table 3.4.1: Tree structure for different back-tests
Year Set1 Set2 Set3

February04 | 5.5.5.5.5=3125 | 13.4.4.4.4=332 | 200.2.2.2.2=3200
February05 | 8.8.8.8=4096 | 15.6.6.6=3240 | 400.2.2.2=3200
February06 | 15.15.15=3375 | 30.10.10=3000 400.3.3=3600
February07 | 56.56=3136 160.20=3200 800.4=3200
February08 3125 3328 3200

Figure 3.4.3 illustrates the back-testing portfolio values and the minimum guaran-
tee for all three scenario sets. The results are consistent with those in Dempster et
al. (2008). Although Dempster ef al. (2006) minimise the expected average short-
fall and maximises the expected terminal wealth of the portfolio, and distinguish
between them using a risk-aversion parameter, we only minimise the expected av-
erage shortfall to test the model’'s performance. Only shortfall is used as it plays
an important role in our applications. The model performs well staying above the
guarantee at all times, achieving a high terminal wealth.

In Table 3.4.2 we present back-testing stability statistics. The model was solved
for 100 different scenario sets, with a tree-string of 40.3 (120 scenarios) using all
available data for model fitting. Table 3.4.2 presents the mean, standard deviation,
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Table 3.4.3: Macro-economic efficient frontier stability statistics
120 Scenarios | 500 Scenarios | 1000 Scenarios | 2000 Scenarios }
Std. Std. Std. Std.
Alpha | Mean Dev Mean Dev Mean Dev Mean Dev
0 377.92 | 2.848 | 376.75 | 2.754 | 377.27 | 2.319 | 37717 | 2.347
0.1 339.80 | 2.711 | 338.75 | 2.621 | 338.22 | 2.209 | 33913 | 2.234
0.2 301.69 | 2.567 | 300.74 | 2.482 | 301.47 | 2.093 | 301.09 | 2.116
0.3 263.58 | 2414 | 262.73 | 2.178 | 263.12 | 1.970 | 263.06 | 1.991
0.4 22547 | 2252 | 224.73 | 2.009 | 225.08 | 1.839 | 225.02 | 1.857
0.5 187.36 | 2.077 | 186.72 | 1.970 | 187.03 | 1.698 | 186.98 | 1.714
0.6 149.26 | 1.887 | 148.72 | 1.825 | 148.99 | 1.546 | 148.95 | 1.557
0.7 111.16 | 1.676 | 110.72 | 1.622 | 110.95 | 1.377 | 110.92 | 1.384
0.8 73.08 | 1.433 | 72.73 | 1.394 | 72.91 1186 | 72.89 | 1.187
0.9 35.21 1.055 | 34.90 | 1.051 | 34.97 | 0.916 | 3495 | 0.893
1 -0.325 | 0.221 -0.37 | 0.228 | -0.37 0.192 -0.39 0.186
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Figure 3.4.4: Average efficient frontier with 5% and 95% confidence bands.



84 3. MACRO-ECONOMIC INTEREST RATE SCENARIO GENERATION

The frontier is a decreasing function of the risk-aversion parameter alpha. If the
value of alpha is closer to 1, more importance is given to the shortfall of the port-
folio and less given to the expected wealth and hence a more risk-averse portfolio
allocation strategy will be taken and vice versa. In the extreme case where alpha is
1 only the shortfall will be minimised and the expected wealth will be ignored, and
where alpha is 0, the unconstrained case only maximises the wealth. For a 1000
final nodes the 95% region, at its maximum (alpha at 0), is 4.9% wide (a reduc-
tion of 2% from 500 final nodes), ensuring that the randomisation error is bounded
enough. In Table 3.4.3 we also observe that the standard deviation decreases as
the number of final nodes increases. The reduction is less or none at all when
we increase the number of final nodes from 1000 to 2000, again ensuring that the
randomisation error is bounded enough, and achieves stability.

Although back-testing assumes that the past describes the future and can in no
means guarantee that success of the outcomes of these models in practice, it
provides us with a way to assess the performance of the proposed algorithm.
Through back-testing we see that the proposed scenario generation algorithm per-
forms well on a portfolio optimisation problem in literature, similar results are ob-
tained as in Dempster et al. (2006). We also see that stability in the objective is
obtained by increasing the number of scenarios. The amount of the final number
of scenarios necessary to achieve this stability may depend on the optimisation
problem in question.

3.4.4 Moment-matching versus macro-economic scenario generation

In this section we compare the moment-matching scenario generation method de-
scribed in Chapter 2 with the macro-economic scenario generation method presen-
ted in this chapter.

In Figure 3.4.5 we present the back-tested portfolio results for the moment-matching
scenario generation method and the macro-economic scenario generation method,
using scenario set 1 (see Table 3.4.1). Also included in Figure 3.4.5 are the port-
folio values if we where to invest all the funds only in one of the assets, namely 5,
7,10, 15, 19 year bonds and the Top 40 Index. From Figure 3.4.5 it is clear that,
with both scenario generation methods, the optimisation model performs well with
no shortfall. It is also clear that when the macro-economic scenarios are used the
model allocates more funds to the risky asset, achieving a higher terminal wealth.
The model mainly invests in bonds when the moment-matching scenarios are used.
The model clearly performs better, in terms of the portfolic value, when the macro-
economic scenarios are used. This difference in the allocation of fewer funds to
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Figure 3.4.5: Moment-matching versus macro-economic scenario back-testing res-
ults

the risky asset, when using the moment-matching scenarios, may be due to the
moment-matching scenario generation method producing realistic extreme scen-
arios for the risky asset, which the model will take into account (remember that we
are looking at the most risk-averse case). We further see that when the macro-
economic scenarios are used, the model shifts the portfolio allocations from the
risky asset to bonds after the third year. It may be that the macro-economic scen-
ario generation method produces more realistic extreme scenarios for the risky
asset from this point onwards. A reasonable explanation for this may be the small
amount of data available in order to fit the macro-economic models, which improves
as time increases. Also our main focus is on the scenario generation of the yield
curve and not the risky asset.

In Table 3.4.4 we present back-testing stability statistics for the moment-matching
and macro-economic scenario generation methods. The model was solved for 100
different scenario sets for each scenario generation method, with a tree-string of
(40.3) (120 scenarios) using all available data for model fitting. We present the
mean, standard deviation of the objective function and the first stage portfolio alloc-
ations. In Tables 3.4.4 we observe stability in the both the objective function and the
first stage portfolio allocations, for both methods. The optimisation model allocates
more funds to the risky asset when the macro-economic scenarios are used, as
mentioned previously.

Furthermore, we compare the moment-matching and macro-economic scenario
generation methods in terms of the stability of the efficient frontier. The model
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Table 3.4.4: Portfolio aIIocation’ stability statistics

Objective | 40| sy 7Y | 10Y | 15Y | 19Y
function

Moment-matching

Mean -0.2643 0.0027 | 0.6928 | 0.0000 0.0 \ 0.0 0.2685

Std. Dev. 0.0015 0.0028 | 0.0858 | 0.0000 | 0.0 | 0.0 0.0706

Macro-economic

Min -0.3246 0.0135 | 0.8619 | 0.0018 | 0.0 0.0 0.0051

Max 0.0024 0.0035 | 0.0176 | 0.0093 | 0.0 0.0 0.0063

is solved for 100 different scenario sets, where for each set the model is solved
ranging the risk-aversion parameter from 0 to 1 in steps of 0.1 (1 being the most
risk-averse). Table 3.4.5 presents the mean and standard deviation, for a 1000 final
nodes, for the moment-matching and macro-economic scenario generation meth-
ods. Both the moment-matching and macro-economic scenario generation meth-
ods displayed sufficient stability when the final number of nodes where increased to
1000. In Table 3.4.5 we observe that model produces a lower efficient frontier when
using the moment-matching scenarios. This may be due to the model allocating
less funds to the risky asset when the moment-matching scenarios are used. It
is also clear that the model displays less variance in the efficient frontier when the
moment-matching scenarios are used and indicates more stability. This can also be
seen in Figure 3.4.6 where we display the mean frontier, by averaging the objective
function values obtained over the 100 different scenario sets, and the confidence
bands covering 95% of the results, for both scenario generation methods. To get a
better view we only display the results for a risk-aversion parameter of between 0 to
0.4. The 95% region, at its maximum (alpha at 0), is 0.685% wide for the moment-
matching scenarios and 4.9% wide for the macro-economic scenarios, showing
that the randomisation error is bounded more when using the moment-matching
scenarios. ' '

From the results it is clear that both scenario generation methods display stability
in the objective function and the portfolio allocations. We observe that the objective
function is more stable when the moment-matching scenarios are used. In terms
of back-testing the macro-economic scenarios performs better achieving a higher
terminal wealth. Gulpinar ef al. (2004) investigates different scenario generation
methods. They state that although the moment-matching approach is arguably the
most theoretically sound way to generate scenario trees, the effort (in terms of
time spent) yielded no perceptible gains in back-testing over the faster simulation
approach. Gllpinar ef al. (2004) only use the Hgyland and Wallace (2001b) method
in their investigation. By using the Hgyland ef al. (2003) method, which is more
stable and executes faster, one might come to a different conclusion.
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Table 3.4.5: Moment-matching and macro-economic efficient frontier stability stat-

istics
Moment-matching | Macro-economic
Alpha | Mean | Std. Dev| Mean | Std. Dev
0 343.450 0.659 377.269 2.319
0.1 309.015 0.594 339.220 2.209
02 | 274.582 0.529 301.171 2.093
0.3 240152 0.463 263.123 1.970
0.4 | 2056.724 0.396 225.076 1.839
0.5 171.300 0.332 187.030 1.698
0.6 136.882 0.266 148.986 1.546
0.7 102.472 0.200 110.946 1.377
0.8 68.075 0.136 72.913 1.186
0.9 33.707 0.077 34.966 0.916
1 -0.274 0.016 -0.374 0.192
400 - - - +Mean - Moment-matching
380 ~ — - -Upper 95% - Moment-matching
T~~~ — - -Lower 5% - Moment-matching
360 = ~2 o= -~ Mean - Macro-economic
S 340 S = \\ = — — Upper 95% -Macro-economic
L * ~ -~
b 320 §“=-~ —_— ~ >~ — — Lower 5% -Macro-economic
:::-’ * * - =~ ~ Ny >~ -
é 300 5~_k~‘ \T\ ~_
gzao ‘\,\$ \:‘\\\\
O 260 ~ = = =
\‘ ~ ~ g ~
240 2 =
\‘_\. ~= \~
220 =~
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200 T T —
0 0.1 0.2 0.3 0.4
Alpha

Figure 3.4.6: Moment-matching and macro-economic average efficient frontier with
5% and 95% confidence bands.
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Both methods further enable the decision-maker to specify their view on the future
movement of the yield curve in some way. In the first moment-matching approach
this can be done by keeping the view on the interest rates fix in the optimisation
and in the second macro-economic approach it is done by including the view on the
macro-economic factors. The moment-matching method may also be used instead
of the simulation method in the macro-economic approach. This can be done by us-
ing the Kalman filter approach in order to estimate the statistical specifications of the
distribution and using these specifications in the moment-matching scenario gener-
ation approach. Gllpinar et al. (2004) also proposes a hybrid approach where the
scenarios are generated using the simulation approach. The probabilities are then
determined using the moment-matching approach. It is the purpose this chapter
and Chapter 2 to propose suitable methods for yield curve scenario generation and
further investigation on the different approaches and the mixing thereof, might be
fruitful.

3.5 Conclusion

This chapter considered the estimation and characterisation of the South African
term structure with respect to macro-economic factors and its use in scenario gen-
eration for fixed income portfolio optimisation. We have estimated a yield curve
model that incorporates four yield curve factors (level, slope and two curvature
factors) and three macro-economic factors (real activity, inflation and the stance
of monetary policy). The estimated model fits the term structure reasonably well in-
sample as shown in the results. We also test the model in out-of-sample forecasting
for horizons up to four years. For the purpose of asset and liability management it
would be of importance to use longer periods for out-of-sample testing, but the lack
of data for model fitting restricted this period. The model also performs reason-
ably well in out-of-sample forecasting. We have shown that better performance can
be realised by inciuding forecasts for the macro-economic factors generated by an
economic scenario generator. By lack of forecast data we used the actual repo-rate.

We also proposed a parallel simulation approach for yield curve scenario tree
generation. The procedure was tested and the performance was measured by out-
of-sample back-testing in terms of the value of a fixed income portfolio optimization
problem described in the literature. Although back-testing assumes that the past
describes the future and can in no means guarantee that success of the outcomes
of these models in practice, it provides us with a wéy to assess the performance
of the proposed algorithm. Through back-testing we have shown that the proposed
scenario generation algorithm performs well on a portfolio optimisation problem in
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literature. We also have shown that stability is obtained by increasing the number
of scenarios. The amount of the final number of scenarios necessary to achieve
this stability may depend on the optimisation problem in question.

The existence of arbitrage in the scenario trees was discussed and a method to
eliminate arbitrage opportunities ex post was proposed. Future consideration may
be given to other methods in order to exclude arbitrage opportunities either during
simulation or removing the arbitrage opportunities ex post.

Furthermore we compared the moment-matching scenario generation method to
the macro-economic scenario generation method in terms of back-testing and sta-
bility. From the results it is clear that both scenario generation methods display
stability in the objective function and the portfolio allocations. The objective func-
tion is more stable when the moment-matching scenarios are used. In terms of
back-testing the macro-economic scenarios performs better achieving a higher ter-
minal wealth. It was the purpose this chapter and Chapter 2 to propose suitable
methods for yield curve scenario generation and further investigation on the differ-
ent approaches and the mixing thereof, might be fruitful.

In this chapter and the previous chapter we have presented two methods for yield
curve scenario generation. In the next two chapters we will use these methods as
input to our multi-stage stochastic programming models. To illustrate the suitability
of both methods, to portfolio optimisation with fixed income instruments, we will use
the moment-matching approach in Chapter 4 and the macro-economic approach
in Chapter 5. The moment-matching approach is used in Chapter 4, as the liquid
asset portfolio has a the horizon between one and two years. The macro-economic
approach is used in Chapter 5, as the guarantee fund has a much longer horizon.



Chapter 4

Liquid asset portfolio

Maintaining liquid asset portfolios involves a high carry cost and is
mandatory by law for most financial institutions. Taking this into account
a financial institution’s aim is to manage a liquid asset portfolio in an
“optimal” way, such that it keeps the minimum required liquid assets
to comply with regulations. In this chapter' we propose a multi-stage
dynamic stochastic programming model for liquid asset portfolio man-
agement. The model allows for portfolio rebalancing decisions over a
multi-period horizon, as well as for flexible risk management decisions,
such as reinvesting coupons, at intermediate time steps. We show how
our problem closely relates fo insurance products with guarantees and
utilise this in the formulation. We model the uncertainty in terms of
scenario trees by using the moment-matching techniques introduced in
Chapter 2.

We will discuss our formulation and implementation of a multi-stage
stochastic programming model that minimises the down-side risk of these
portfolios. The model is back-tested on real market data over a period
of two years

4.1 Introduction

In a publication by the Basel Committee on Banking Supervision (BCBS, 2000) [i-
quidity is defined as the ability to fund increases in assets and meet obligations
as they come due, without incurring unacceptable losses. Managing this liquidity
is one of the most important activities in a bank. This also entails a bank to not

'Papers based on the work done in this chapter has been presented at the SPX! Conference,
Austria, 2007 and the MMEI Conference, Czech Republic, 2008. A paper on this chapter has also
been accepted for publication in a special issue of the journal Kybernetika containing selected papers
from the MME! Conference, 2009.
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only measure its liquidity position on an ongoing basis, but to assess the evolution
of funding requirements under different scenarios and adverse conditions. BCBS
(2008a) reviews the Sound practices for managing liquidity risk in banking organisa-
tions (see BCBS, 2000). One of the findings in BCBS (2008a) is that many barks
considered severe and prolonged liquidity disruptions as improbable and did not
conduct stress tests, which takes into account the probability of market wide strain
or the severity and the duration of these disruptions. BCBS (2008b) expands the
guidance of BCBS (2000) in a number of key areas. One area is the maintenance
of an adequate level of liquidity, including a cushion of liquid assets. BCBS (2008b)
provides guidance around seventeen principles for managing liquidity risk. Two of
these principles are as follow:

Principle 1:

A bank is responsible for the sound management of liquidity risk. A bank should
establish a robust liquidity risk management framework that ensures it maintains
sufficient liquidity, including a cushion of unencumbered, high quality liquid assets,
to withstand a range of stress events, including those involving the loss or impair-
ment of both unsecured and secured funding sources. Supervisors should assess
the adequacy of both a bank’s liquidity risk management framework and its liquidity
position and should take prompt action if a bank is deficient in either area in order
to protect depositors and to limit potential damage to the financial system.

Principle 12:

A bank should maintain a cushion of unencumbered, high quality liquid assets to be
held as insurance against a range of liquidity stress scenarios, including those that
involve the loss or impairment of unsecured and typically available secured funding
sources. There should be no legal, regulatory or operational impediment to using
these assets to obtain funding.

Principle 12 in BCBS (2008b) states further that the continuous availability of an
adequate cushion of unencumbered, high quality liquid assets, that can be sold or
pledged to obtain funds in a range of stress scenarios, is a critical element in the
bank’s resilience to liquidity stress. BCBS (2008b) also provides guidance on the
size of the cushion of liquid assets. To guard it self against the most sévere stress
scenarios, the bank should hold a portfolio of the most reliably liquid assets, such
as cash and high quality government bonds or similar instruments. There should
furthermore be no legal, regulatory or operational impediment to the use of these
assets to obtain funding, and these assets should be used in the event of severe
liquidity stress. Thus, this cushion of liquid assets serves as insurance in the event
the no other funding can be obtained for liquidity purposes.
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In South Africa the South African Banks Act (Banks Act, 94/1990) and Regulations
Relating to Banks (SA, 2008) requires banks to keep a minimum amount in liquid
assets. Liquid assets are assets which are easily redeemable for cash, and are
defined in Section 1 of the Banks Act as:

+ Reserve Bank notes, subsidiary coins,

¢ Gold coin and bullion,

¢ Any credit balance in a clearing account with the SARB,
¢ Treasury bills of the RSA,

¢ Securities issued by virtue of section 66 of the Public Finance Management
Act, 1999

¢ Bill issued by the Land Bank

e Securities of the SARB.

The minimum nominal amount that is required, in liquid assets, is stipulated in Sec-
tion 72 of the Banks Act (Banks Act, 94/1990) and Regulation 20 of the Regulations
Relating to Banks (SA, 2008). The Banks Act (Banks Act, 94/1990) stipulate, that
a bank shall hold liguid assets with respect to the value of its liabilities as may be
specified by regulations. Regulation 20 of the Regulation Relating to banks (SA,
2008), requires a bank to hold over a period of one month an average daily amount
of liquid assets equal to no less than 5% of its reduced liabilities. The reduced
liabilities are defined as follow:

Liabilities (on balance sheet)

— amount of funding received from head office and other branches
in the same group

— amount owing by banks, branches and mutual banks in the RSA

= reduced liablilities

Regulation 20 of the Regulation Relating to banks (SA, 2008) further states that a
bank shall not pledge or otherwise encumber any portion of the liquid assets held
by it in compliance with this provision. For this purpose a bank needs to keep a
statutory portfolio, also called a liquid asset portfolio. Since a bank may not pledge
or otherwise encumber any portion of the liquid asset portfolio, we analyse the
portfolio separately from the bank’s other portfolios, i.e. as a stand-alone portfolio.
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From a management perspective, with respect to the calculation of the weighted
average cost of funds, it may also be necessary to keep the portfolio separate in
order to determine the costs of the fund. Given the regulatory background and the
liquid asset requirement our main objective in this chapter is the management of
the liquid asset portfolio and not the adequacy of the liquid asset requirement.

The liquid assets that are available for inclusion into the liquid asset portfolio are in-
terest rate sensitive, low (credit) risk financial instruments. Having a low risk implies
having a small return, so keeping the portfolio is mostly unprofitable. The portfo-
lio is funded by a pool of funds with a cost equivalent to the bank’s interdivisional
borrowing rate. Maintaining a liquid asset portfolio involves a high carry cost, thus
making it expensive to hold. However, as mentioned above, the portfolio is man-
datory. Taking this into account and the high carry cost of the portfolio the bank’s
aim is to manage the liquid asset portfolio in an "optimal® way, such that it keeps
the minimum required liquid assets to comply to regulations, whilst maximising the
portfolio return to cover at least the carry cost.

To manage this portfolio in an "optimal" way the bank will need to rebalance or
change the composition of the portfolio on a regular basis. Changing the portfolio
composition will depend on certain aspects such as expert views on risk factors
movements, legislation and regulations. With these legislation and regulations to
adhere to and uncertainties to consider, the liquid asset portfolio management prob-
lem can be described as a multi-stage decision problem in which portfolio rebalan-
cing actions are taken at successive future discrete time points. At each decision
period it needs to be decided which assets to buy, which to sell and which to hold.

The aim of the manager of the liquid asset portfolio, is to identify and minimise
risks by analysing the market, legislation, portfolio data, and many other factors.
This Chapter wil! investigate the use of stochastic programming in addressing all
of these aspects in a realistic way. In Chapter 1 we provide a literature review
on Stochastic Programming and discuss the basic stochastic programming optim-
isation for dynamic portfolio strategies. In Section 4.2 we discuss the formulation
and implementation of the multi-stage stochastic programming model. Section 4.3
presents back-testing results. The back-tests are done on real market data over a
pericd of two years.

4.2 Scenario optimisation framework

In this section we discuss the formulation of a multi-stage stochastic programming
model that minimizes the down-side risk of liquid asset portfolios. As mentioned in
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the introduction the liquid assets that are available for inclusion into the liquid asset
portfolio are interest rate sensitive, low (credit) risk financial instruments. Having
a low risk implies having a small return, so keeping the portfolio is mostly unprofit-
able. The portfolio is funded by a pool of funds with a cost equivalent to the bank’s
interdivisional borrowing rate, i.e. the portfolio is funded internally by the bank. This
can be seen as the department responsible for keeping the liquid asset portfolio,
borrowing funds form other divisions in the bank in order to fund the portfolio. Thus
capital that may have been invested in other securities can now only be invested in
liquid assets. Thus maintaining this portfolio involves a high carry cost, and makes
it an expensive portfolio to hold.

The value of the liquid asset portfolio is bounded from below by the liquid asset re-
guirement. The liquid asset requirement as mentioned in the introduction depends
on the liabilities of the bank. This requirement grows over time as the bank’s busi-
ness grows, i.e. as the bank takes on more clients with deposit facilities, the amount
of liabilities increases and thus the liquid asset requirement increases. Thus the
funds invested by the bank for the purpose of meeting the liquid asset requirement,
needs to have a growth rate of at least the rate at which the bank’s liabilities are
growing.

In this light our liquid asset problem can be seen as an minimum guarantee prob-
lem. Where the bank can be seen as a client investing an up-front amount of money,
equal to the liquid asset requirement, into a guarantee fund, where the guaranteed
rate of return is equal to the growth rate of the liabilities of the bank. Dempster et al.
(2006) propose an asset and liability management framework for a simple example
of a closed-end guaranteed fund where no contributions are allowed after the initial
cash outlay, which can be adapted to address our problem. They demonstrate the
design of investment products with a guaranteed minimum rate of return focusing on
the liability side of the product. Through back-testing they show that the proposed
stochastic optimisation framework addresses the risk created by the guarantee in
a reasonable way. We propose a similar framework for the asset and liability man-
agement of the liquid asset portfolio problem. Other than Dempster et al. (2006) we
will assume that any shortfall in the portfolio will be funded by the bank, and that
the funds provided by the bank for the purpose of the liquid asset requirement will
carry some sort of liability payment equal o the interdivisional borrowing rate.

In the next subsections we will discuss the model features, the model variables and
parameters and its dynamics together with its constraints. We will also discuss the
objective function.
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Figure 4.2.1: Graphical representation of a yield curve scenario tree

4.2.1 Model features

We investigate the optimal asset allocation of a bank’s liquid asset portfolio. It
is assumed that the portfolio will be funded up-front by the bank and this will be
assumed to be a liability for the portfolio. This liability will grow at the maximum
of the one month zero-rate, rf’%z_ (assumed to be the interdivisional borrowing rate)
and the minimum liquid asset growth rate g, throughout the lifetime of the portfolio
and is payable at the end of the horizon. By minimising the shortfall of the portfolio
we will ensure that the assets will cover at least the maximum of the minimum liquid
requirement or the liabilities at the cost of the interdivisional borrowing rate. The
portfolio will be rebalanced quarterly. Any shortfall in the portfolio, at rebalancing,
will be funded by the bank. This is to ensure that the minimum liquid requirement
is achieved. The shortfall payments will accrue to a shortfall fund separate from
the fliabilities, which will grow at the one month zero-rate. The time horizon of the
portfolio is 1" years and we will use three asset classes as liquid assets namely,
(semi-annual) coupon bearing government bonds, gold and three and six month
treasury bills.
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To represent uncertainty, we generate the future yield curves and construct a scen-
ario tree. A scenario tree is a discrete approximation of the joint distribution of
random factors (yield curve and gold prices). To facilitate the mathematical for-
mulation of the optimisation problem, we represent the scenario tree in terms of
states (nodes) st , Where time t = 0,%,%,...,Tand v(¢) = 0,1,2,...,N; the
numbers of the states at time t. The set of states at time ¢ are denoted by &; =
{sf(t)}v t)=0,1,..., Nt}. The set of all states in the scenario tree is denoted by
¥ = UL ;. Links € € & x 3, indicate the possible transitions between states. To
enforce non-anticipativity, i.e. to prevent foresight of uncertain future events, we
order the elements of ¢ in pairs (s;’(t), stffl)) where the dependence of the index

v(t41) at

v (t) on t is explicitly indicated. The order of the states indicates that state 53
time £+1 can be reached from state st( ) v(t+1) s the successor state and

”(t) the predecessor state. By using the superscript “+” to denote the successor
states and the superscript “-" to denote the predecessors, we have s; v+ stffrl)

and syiq vlt1)-— t(t). Each state st() has an associated probability p§, for s € %,
[ —
such that Zsezt pf=1

attimet. s,

The quarterly decision times tq = 0,%,3,...,T — %, are the times which the fund
will trade to rebalance its portfolio. We represent the branching of the tree structure
with a tree-string, which is a string of integers specifying for each decision time 1,
the number of branches for each node in state ¥;. This specification gives rise to a
balanced scenario tree where each sub-tree in the same period has the same num-
ber of branches. Figure 4.2.1 gives an example of a scenario tree with a (3,2,2,2)
tree-string, giving a total of 24 scenarios.

4.2.2 Model variables and parameters

The following notation will be used for variables and parameters of the model, where
the time index ¢ takes values over the times ¢ = 0, %, 5,..., T, and states index
s takes values from the set Z; = {s¥|v =1,2,..., N;:} (The following notation easy
translates to mathematical programming languages, such as SAS/OR PROC OPT-

MODEL, and are therefore used):

Time sets
Tt = {0, %,...,T} :setofall times considered in the stoohastlc program'
T ={0,3,},...,7—%}  :setof decision times;

= Ttotal\ Td : set of intermediate times;
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Index sets

Si={sflv=1,2,...,N:} :setofstatesattimet;

B ={B;} : set of government bonds with maturity denoted by r;
GZ : set of gold prices;

M3 : set of 3 month treasury bills; -

M6 = {M63pr, M6gpr} : set of 6 month treasury bills with time to maturity;

I=BUGZUM3UMG6 :setofall instruments;

Parameters

g, : coupon rate of a government bond with maturity +;

Fg, : face value of a government bond with maturity 7;

D3 g, : coupen payment date of a government bond with maturity
at time ¢ in state s;

Fyraums : face value of a treasury bills;

Tir : zero-rate with maturity  at time ¢ in state s;

gi : minimum liquid asset growth rate at time ¢ in state s;

mg; = max (gg? 7‘2%) : liability growth rate at time ¢ in state s;

Pt‘ff/ng - ask or bid price of asset i & I attime ¢ in state s;

fal 1o : proportional transaction costs on ask or bid transactions;

o : probability of state s at time ;

Lg : initial liability at the root node;

29 = {zo’i}ieI - initial quantities of assets at the root node;

MLAg : initial minimum liquid asset requirement;

Decision variables

zi = {mf’i et : quantities of assets bought at time ¢ in state s;
yi = {yfl e : quantities of assets so/d at time ¢ in state s;
zf = {zf’i}ig : quantities of assets held attime ¢ in state s,
from time tto t + &;

W§ : value of portfolio wealth at time ¢ in state s;

7 : value of liability account at time ¢ in state s;
EBEEf : value of the shortfall fund at time ¢ in state s;;

¢

ci : amount of extra cash provided at time ¢ in state s;

SEf : amount of shortfall at time ¢ in state s;
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4.2.3 Instrument pricing

We assume all bonds to pay semi-annual coupons at rate ¢g_ and derive bid and
ask prices by adding a spread, sp, to the zero-rates. Let PtagT denote the ask price
of a coupon bearing bond with maturity = at time ¢:

F t?};,- = Fp, exp (_ (r—1) (T‘ZT—‘[I + SP))

1
T2l g g2,y 505, FBe (= m =) (rimeg +50))

fort e 7% and s € 5,

where the principal amount is discounted in the first term and the coupon payment
stream in the second term. The integral part is denoted by |.]. Let PtbgT be the bid
price of the bond with maturity + at time ¢:

PZ};T = Fp_exp (— (r—1) ('rfﬁ_t — sp))

1 S
F D i g ) 598 0 (= (= 8) (g — o9) )

fort € Tt and s € 4.

The use of a bid or ask price when including transaction costs are not always neces-
sary in this context as transaction costs are sufficient to prevent the simultaneous
buying and selling of assets in the optimisation model. However transaction costs
on bonds are relatively low compared to the bid/ask spread. In South Africa the
typical bid/ask sprevad on bonds is 0.5% and transaction costs are 0.012%.

Treasury bills, with maturities of three and six months, are assumed to be sold at a
discount. Furthermore we assume treasury bills to be held until maturity and then
sold at the face value. Let Py, denote the ask price of a three month treasury bill

attime ¢
, 3 3 12t rotal
Pt[j]&—?):FMgeXp (—7‘17‘5’7_1),7‘1=1—2+E|_—3—J—tf0rtEToa, and s € X,

and Ptlj’]fﬁ denote the bid price of a three month treasury bill at time ¢:

3 12
Ptlj’]fm = Fr3 exp (—Tgfrfm) ,To =T — TQ—L%J fort € T** and s € 3.

Six month treasury bills are split into two sets. The first set contains six month
treasury bills which have time to maturity of six months on the previous decision
time and the second set contains six month treasury bilis which have time to matur-
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ity of three months on the previous decision time. Let Pt‘f}jfsm denote the ask price
of a six month treasury bill at time ¢, with a time to maturity of six months on the
previous decision time:

3

a,8

12¢
Py bers = = Fiyrg exp ( Tlrfm) , Ty = |_ |—tforte 7%l and s € Ty,

and Ptb]f,m denote the bid price of a six month treasury bill at time ¢, with a time
to maturity of six months on the previous decisicn time:

3,127
Ptbff/fssM = Fyrq exp (~Tz7‘fm) ,To=T1 — —|_—1J fort € Tt%l and s € T
Furthermore let Py~ denote the ask price of a six month treasury bill at time ¢,

with a time to maturity of three months on the previous decision time:

2
16 3 LHJ tfor t € T*%! and s € oy,

a,s _ S —
Py 6y, = £ €XP (—Tlrt’ﬂ) y TL=

and Pf:’]f,IGSM denote the bid price of a six month treasury bill at time ¢, with a time
to maturity of three menths on the previous decision time:

17'1

Ptbzf/fssM Fygexp (—r§,),Ta =71 — —|_ | fort e Tt and s € T

4.2.4 Variable dynamics and constraints

To simplify cur notation, we assume all face values to be 100. We further assume
all bonds to pay semi-annual coupons at rate §p_. At coupon payment times ¢,
Dj g, = 1 if a coupon is due at time ¢ in state s and D3, = 0 otherwise. The bond
cash flows, C'Fy;, per unit face value are then calculated as:

1
CFf = Df,@cfiFi, forie B, te T and s € 5.

The variable dynamics and constraints for the minimum liquid asset problem are:

Cash balance constraints. The cash balance constraints ensure that the amount of
cash that is received, from selling assets, coupon payments at decision times and
extra cash supplied for shortfall, is equal to the amount of assets bought:

Z IPtzytZ fb)+z O'th-rzo"_l_ct Z Ptalswtz 1+fa,)

fort € {0} and s € &4,
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S B = )+ S, O, e =3 PRt (L4 fa),
fort € T¢ \{0} and s € 2.

Short sale constraints. The short sale constraints eliminate the possibility of short-
selling assets in each state at each time period:

z5; >0, foralli € I, t € T\ {T} and s € 3,
yi; >0, forallie I, t € TN\ {T} and s € &y,

z5; >0, forallie I, t € 7%\ {T} and s € 5.

Inventory constraints. The inventory constraints give the quantity invested in each
asset in each state at each time period. The inventory constraints for bonds, gold
and the three month treasury bills are straight forward, as the quantity of assets that
are held for the next time period equals the quantity that was held in the previous
time period plus the quantity bought minus the quantity sold:

2 = 20, + Ti; — Uiy, Tori € IN{M6}, t € {0} and s € 554

2= el yi, fori € I\{M6}, t € T***\{0} and s € &y
As mentioned previously treasury bills are held to maturity. Due to the quarterly
rebalancing of the portfolio, the six month treasury bills are split into two sets. The
first set contains six month treasury bills which have time to maturity of six months
on the previous decision time and the second set contains six month treasury bills
which have time to maturity of three months on the previous decision time.

The inventory constraints for the six month treasury bills with time to maturity of
three months are:

25, = 20,4, fori € {M6spr}, j € {M6enm}, t € {0} and s € Ty,

2= z::%’j, fori e {M6sn}, 7 € {M6gar}, t € TN\{0} and s € ;.

Furthermore the inventory constraints for the six month treasury bills with time to
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maturity of six months are:
2, =i, fori € {M6en}, t € {0} and s € Iy,

Zi=x", , forie{M6ey}, t € T\{0} and s € T;.
131

This enables us to distinguish between six month treasury bills that mature at the

current decision time an those that only mature at the next decision time. For inter-

mediate time periods the inventory constraints are the same as for the rest of the

instruments:

2 =7,  + i —yi fori€ M6, t € T and s € T
12!
Information constraints. As the portfolio is only rebalanced at decision times, the
information constraints ensure that the portfolio can not be changed between de-
cision times:
wi; =yi;=0forie I\{B}, teT?and s € 5.

The information constraints for bonds are included in the coupon reinvestment con-
straints. '

Coupon reinvestment constraints. The coupon reinvestment constraints ensure that
the coupons that are paid at the coupon times are reinvested in the same coupon
bearing bonds:

C_F"ts 5=

2, 1
1%L
vl

z, ,forie {B},teT and s € =,

fTRF I+ fa)
ys; =0, fori € {B}, te T and s € 5,
Rollover constraints. Rollover constraints ensure that treasury bills are sold at ma-

turity. |
Yii = 204, fori € {M3,M63,}, t € {0} and s € Iy,

Vi =7_y p fori € {M3,Mbsm}, t € T4 {0} and s € 54,
‘Tf,i = 0) forie {MGBM}7 t e Td and s € Et,
yi; =0, fori e {M6gp}, t € T?and s € 2.

Portfolio wealth constraints. The portfolio wealth constraints determine the value of
the liquid asset portfolio in each state at each time period. The value of the portfolio
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wealth is determined after rebalancing, i.e. any extra cash ¢ that has been provided
to fund shortfalls below the minimum liquid asset requirement, is taken into account
by the cash balance constraints:

Z [ Pir s (L+ fa), fort € T%N\T and s € 5.
The terminal portfolio wealth is given by:

Wi = pgf 21 (1= fo) +D oy Oy pfors € r

Liability account constraints. The liability account constraints determine the value of
the liability account in each state at each time period. The liabilities are assumed to
grow at liability growth rate, mgy = max (gt,r 1 ) the maximum of the one month
zero-rate and the minimum liquid asset growth rate

L} = Ly, fort € {0} and s € 34,
— 1 — total
Li= L;_% exp (Emg:_%?) , fort € T%**\ {0} and s € 5;.

Shortfall fund constraints. The shortfall fund constraints determine the value of the
shortfall fund in each state at each time period. The shortfall fund is assumed to
grow at the one month zero-rate plus any extra cash ¢j that has been provided to
fund shortfalls below the liability:

EFf =¢i, fort € {0} and s € &4,

EF{ =EF,”, exp <irs:_1_ ) + ¢, fort € Tt {T} and s € 5.

12 12 t—5t
Shortfall constraints. The shortfall constraints determine the shortfall of the portfolio
with respect to the liabilities and the shortfall fund in each state at each time period.
By including the shortfall fund, when calculating the shortfall, and by minimising the
shortfall we will encourage growth in portfolio wealth to cover not only the liabilities
but also extra costs. The shortfall is calculated by using the value of the portfolio
wealth after transaction:

SES +W$ > MLAS + EES, fort € T%% and s € Ty,

where SEf > 0 fort € T*% and s € %

Shortfall funding constraints. The shortfall funding constraints determine the amount
of extra cash needed at decision times to ensure no shortfall below the liabilities.
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The amount of extra cash is calculated by using the value of the portfolio wealth
before transaction:

¢ +Wp > L5, fort € T™ and s € T,
where
bs _ b, (1 _ Sy
Wy* = ier By z0 (1= fo)+ ZiE{B} CF; Fizo4,
with ¢ > 0for¢ € {0}, and s € &,

and
bs __ b,s_s— _ Ff.z>~
Wi = ZiEI P Pl (L= fo) + Zie{B} ¢ 8% L

with ¢ > 0 fort € 7%\ {0}, and s € %4,

is the value of the portfolio wealth before transactions.

Portfolio composition constraints. Portfolio composition constraints can be intro-
duced in order to reduce concentration risk. The following portfolio constraints are
taken into account:

, PSS,
% < 0.5, fort € T% and s € T,
I3

> Pz,
zeMBUMIV}fg BE T 0.7, teT%and s € Ty,
£

2 ieM3UMS Pz,
1€ P 503, teT?and s € Iy,
W

the first constraint ensures that the amount held in gold is restricted to be no more
than 50% of the total portfolio wealth and the remaining two ensure that the amount
held in treasury bills is between 30% and 70%.

4.2.5 Objective function

When managing the minimum liquid asset portfolio there are two main goals to take
into account. The first aim is the management of the investment strategies of the
fund in order to comply with the minimum liquid asset requirement and the liability.
To manage the risk of underperforming, the shortfall was defined to be amount by
which the portfolio’s wealth falls below the liabilities (accruing at the maximum of
the minimum liquid asset growth rate and the interdivisional borrowing rate) and the
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shortfall funding account. To quantify this risk we consider the expected average
shortfall over all times (see Dempster ef al., 2006). Another measure of risk that
may be considered is the conditional value-at-risk (CVaR), which in it self is also a
expected shortfall measure. The second aim is to minimise the extra cost necessary
o stay above the minimum liquid asset requirement, i.e. the extra cash that needs to
be borrowed. The objective we consider is the minimum average expected shortfall
over all periods and the average expected extra cash that is needed for shortfall
funding. Dempster et al. (2006) have shown that monitoring shortfall at intermediate
nodes improve results. The objective function is given as:

E : Z SF?
ax { Q teTtotcLl SED: E’TZZT-’[)? }
m 3
— St o8
{ Biir Yijn Zi } A=) D D s, et

icI,teTU{T},s e

where the value of 0 < a < 1 sets the level of importance of the expected average
shortfall relative to the cost. If the value of « is closer to 1, more importance is given
to the shortfall and less given to the extra cost of the portfolio and visa versa. The
value of & may not be equal to 1, as this will result in the problem to be infeasible,
because there is no restriction on the amount of extra cash.

4.3 Results

In this section we discuss the performance of the model. The first part explains the
data and instruments that are used to generate scenario trees, which is the input to
the mathematical optimisation problem. In the second part we present back-tested
results for the model for different levels of the minimum liquid asset requirements
and different levels of alpha.

4.31 Data and instruments

We use eight different assets, namely, (semi-annual) coupon bearing bonds with
maturities 5, 7, 10, 15 and 19 years, gold and three and six month treasury bills.
We use the Perfect Fit Bond Curves, one of the five BEASSA Zero Coupon Yield
Curve series of yield curves {(see BESA, 2003a), with maturities 1, 2, 3, 6, 9, 12,
15, 18, 21, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192,
204, 216 and 228 months. The curves are derived from government bond data
and the technical specifications are described in BESA (2003b). We decrease the
dimensionality of the problem by using the 1, 3, 12, 60, 120, 180 and 228 months
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Table 4.3.1: Tree structures used for back-testing the minimum liquid asset portfolio

Year Tree-string
February07 | 9.3.3.3.2.2.2.2=3888
May07 18.3.3.3.2.2.2=3888

August07 36.3.3.3.2.2=3888
Novemeberd7 72.3.3.3.2=3888

February08 144.3.3.3=3888
May08 432.3.3=3888
August08 432.9=3888
November08 3888

yields. After scenarios have been generated for these seven yields the rest of the
yield curve is interpolated using the Svensson yield curve parameterisation (see
Svensson, 1994). The gold returns are generated together with the yield returns.
We use end-of-month data from August 1999 through to February 2009. The tree
structures used in back-testing are displayed in Table 4.3.1.

We use the moment-matching scenario generation approach, described in Subsec-
tion 2.3.3 of Chapter 2, to generate the input scenarios for the optimisation prob-
lem. The mean reversion parameters are fitted to the market data up to an initial
decision time ¢ and scenario trees are generated from time ¢ to time T'. The optimal
first stage/root ncde decisions are then implemented at time ¢. The success of the
portfolic strategy is measured by its performance with historical data up to time
t+ 13—2 This whaole procedure is rolled forward. At each decision time ¢, the mean
reversion parameters are re-estimated using the historical data up to and including
time ¢.

4.3.2 Back-testing results

We perform back-tests over a period of two years, from February 2007 through to
February 2009. We assume the growth rate for the minimum liquid asset require-
ment to be constant over the entire period, gi = g. We back-test for different levels
of minimum liquid asset requirement growth rate and for different levels of alpha.
For each of these back-tests, at different levels, we report the expected average
shortfall (EAShf), taken to be

SES .
> > Wpt

teTtotal s€X;
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at each decision time and the actual average shortfall, taken to be

T SF
2T

We also report the expected cost of the portfolio taken to be the expected present
value of the final shortfall fund

S
Z EFZ, P
s€EXT T 1 s‘:’(‘) !
[Te1exp <ﬁ e+

v L
where <sf(t), stJ(ri”)> € ¢ and the actual cost of the portfolio, taken to be
12
EFr
T (1
[T=1 (12Tt,t+%>
The following portfolio composition constraints were included, the amount of funds

invested in gold and treasury bills were restricted to be no more than 50% and
between 30% and 70% respectively.
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Figure 4.3.1: Expected average shortfall for different levels of alpha and minimum
liquid asset requirement growth rate (MLR), at February 2007

In Figure 4.3.1 we present the expected average shortfall for different levels of alpha
and minimum liquid asset requirement growth rates (MLR) at February 2007. As
expected the expected average shortfall increases as the requirement increases
and decreases as alpha increases and more importance is given to the minimum
shortfall in the objective. Aiso note that the expected average shortfall is very similar
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Figure 4.3.2: Expected cost for different levels of alpha and minimum liquid asset
requirement growth rate (MLR), at February 2007

for minimum liquid asset requirement growth rates of 1% to 7%. This is due to
the one month zero-rate, which is above 7% resulting in the liability growth rate to
be above 7%. Also in Figure 4.3.1 it is clear that the expected average shortfall
decreases as alpha increases and more importance is given to minimum shortfall.
Figure 4.3.2 presents the expected cost for different levels of alpha and minimum
liquid asset requirement growth rates at February 2007. It is clear the expected
costs increase as the requirement increases and as alpha increases and more
importance is given to minimum shortfall.

Figures 4.3.3 and 4.3.4 present similar results for the expected average shortfall
and expected cost for different levels of alpha and minimum liquid asset require-
ment growth rates at February 2008. It is also apparent that the expected average
shortfall decreases considerably as soon as shortfall is being minimised in the ob-
jective function, showing the advantage of minimising shortfall and not only the extra
cash that is needed for shortfall funding. Also remember that shortfall was defined
to be the amount that the wealth portfolio is below the liabilities and the shortfall
fund in each state at each time period and that the extra cash needed for shortfall
is calculated by only using the shortfall below the liabilities. By minimising only the
extra cash needed for shortfall below liabilities will result in a larger shortfall below
liabilities when including the shortfall fund. As more importance is given to the min-
imum shortfall in the objective the expected average shortfall decreases less. There
is also a slow increase in the expected cost as alpha increases. Also note that ex-
pected average shortfall increases over time and the expected cost decreases over
time.
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Figure 4.3.3: Expected average shortfall for different levels of alpha and minimum
liquid asset growth rate (MLR), at February 2008
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Figure 4.3.4: Expected cost for different levels of alpha and minimum liquid asset
requirement growth rate (MLR), at February 2008
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Figure 4.3.5: Asset allocation for different levels of alpha
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Figure 4.3.6: Asset allocation for different levels of minimum liquid asset require-

ment growth rate (MLR)
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in Figure 4.3.5 we present the asset allocation for different levels of alpha at a min-
imum liquid asset requirement growth rate of 9% at February 2007 and February
2008. As expected less funds are allocated to gold (which is a more risky asset)
as alpha increases and more importance is given to the minimum shortfall. Fig-
ure 4.3.6 presents the asset allocation for different levels of minimum liquid asset
requirement growth rates, at alpha of 0.6, at February 2007 and February 2008.
More funds are allocated to gold as the minimum liquid asset requirement growth
rate increases. At the offset of the portfolio funds are allocated only to gold and
treasury bills, where over time more funds are allocated to bonds. In Figure 4.3.5
we see that as alpha increases less funds are allocated to gold and three month
treasury bills and more funds are allocated to six month treasury bill and five and
ten year bonds.

In Figure 4.3.6 we see that as the minimum liquid asset requirement growth rate
increases more funds are allocated to gold and five and ten year bonds and less
are allocated to treasury bills.
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Figure 4.3.7: Actual average shortfall for different levels of alpha and minimum liquid
asset requirement growth rate (MLR)

Figures 4.3.7 and 4.3.8 present the actual average shortfall and cost for different
levels of alpha and minimum liquid asset requirement growth rates. The average
shortfall decreases as alpha increases and more importance is given to minimum
shortfall. For minimum liquid asset requirements of 11% and below no shortfall is
reported and the shortfall increases as the requirement increases from 11%. The
cost of the portfolio increases as alpha and the minimum liquid asset requirement
increases. From minimum liquid asset requirements of 9% and above, extra costs
are needed to stay above the requirement.
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Figure 4.3.8: Actual cost for different levels of alpha and minimum liquid asset
requirement growth rate
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Figure 4.3.9: Wealth and liability accounts at 7% minimum liquid asset growth rate
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Figure 4.3.10: Wealth and liability accounts at 11% minimum liquid asset growth
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Figure 4.3.11: Wealth and liability accounts at 15% minimum liquid asset growth

rate
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In Figures 4.3.9, 4.3.10 and 4.3.11 we present the wealth account, liability account
{including the liability account and shortfall fund account) and minimum liquid re-
quirement account for 7%, 11% and 15% where alpha is taken to be 0.5. As men-
tioned above no shortfall is reported for requirements of below 11% and extra cash
is required to stay above the requirement at 11% and 15%. At 15% shortfall be-
low the minimum liquid requirement is funded. It is also not possible to ensure
no-shortfall below the requirement and the shortfall fund.

4.4 Conclusion

This chapter presented a multi-stage dynamic stochastic programming model for
the integrated asset and liability management of minimum liquid asset portfolios.
The model allows for portfolio rebalancing decisions over a multi-period horizon,
as well as for flexible risk management decisions, such as reinvesting coupons, at
intermediate time steps. We have shown that our problem is related to insurance
products with guarantees and utilised this in the formulation.

We have shown the model features at different levels of alpha (importance of min-
imum expected average shortfall) and minimum liquid asset requirement growth
rates. The model performs as expected with average shortfall decreasing and cost
increasing as alpha increases. Also the average shortfall and cost increase as the
minimum liquid asset requirement growth rates increase.

This model can also be used when analysing the investment decision made by the
financial institution and may play an important role in liquidity management, when
concerning different levels of liability growth rates.

In the next chapter we present a stochastic programming framework for the asset
and liability management of insurance products with guarantees.



Chapter 5

Insurance products with
guarantees

In recent years insurance products have become more complex by
providing investors with various guarantees and bonus options. This in-
crease in complexity has provided an impetus for the investigation into
integrated asset and liability management frameworks that could real-
istically address dynamic portfolio allocation in a risk-controlled way.

In this chapter! we propose a multi-stage dynamic stochastic pro-
gramming model for the integrated asset and liability management of
insurance products with guarantees that minimises the down-side risk
of these products. We investigate with-profits guarantee funds by in-
cluding regufar bonus payments while keeping the optimisation problem
linear.

The uncertainty is represented in terms of scenario frees using a
four-factor term structure model that includes macro-economic factors
(inflation, capacity utilisation and repo-rate). We construct scenario
trees with path dependent intermediate discrete yield curve outcomes
suitable for the pricing of fixed income securities. The main focus of this
Chapter is the formulation and implementation of a multi-stage stochastic
programming model. The model is back-tested on real market data over
a period of five years.

A paper based on the work done in this chapter has been presented at the ASSA Convention,
South Africa, 2008. The paper has also been accepted for publication in the South African Actuarial
Journal.
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5.1 Introduction

In recent years muiti-stage dynamic stochastic programming models have become
a popular tool for integrated asset and liability modelling. In contrast to the usual
mean-variance approach (Markowitz, 1952) with a myopic view of managing in-
vestment risk over a single period, dynamic stochastic optimisation provides the
asset manager with an integrated way to model both assets and liabilities in a flex-
ible manner that takes into account multi-period dynamic asset allocation and the
valuation of liabilities under future market conditions. Using this approach the rebal-
ancing of the asset portfolio is modelled explicitly. Examples of the use of dynamic
stochastic programming models in asset and liability management can be found in
Kouwenberg (2001) and Mulvey et al. (2003). Dempster et al. (2003) show that
the dynamic stochastic programming model will automatically hedge the current
portfolio allocation against future uncertainties in asset returns and costs of liabil-
ities over the analysis horizon. These models are also flexible enough to take into
account multi-period horizons, portfolio constraints such as no short-selling, trans-
action costs and the investor’'s level of risk-aversion and utility.

Insurance products have become more complex by providing investors with vari-
ous guarantees and bonus options. This increase in complexity has provided an
impetus for the investigation into integrated asset and liability management frame-
works that could realistically address dynamic portfolio allocation in a risk-controlled
way. Examples of the use of dynamic portfolio optimisation models for asset and
liability management in the insurance industry are the Russell-Yasuda Kasai model
by Carifio and Ziemba (1998), the Towers Perrin model by Mulvey and Thorlacius
(1998) and the CALM model of Consigli and Dempster (1998). More recent con-
tributions specifically in the area of insurance products with minimum guarantees
using dynamic stochastic programming as an asset and liability management tool
are Dempster et al. (2006) and Consiglio et al. (2006).

Dempster ef al. (2006) propose an asset and liability management framework and
give numerical resuits for a simple example of a closed-end guaranteed fund where
no contributions are allowed after the initial cash outlay. They demonstrate the
design of investment products with a guaranteed minimum rate of return focusing on
the liability side of the product. Through back-testing they show that the proposed
stochastic optimisation framework address the risk created by the guarantee in a
reasonable way.

Consiglio et al. (2006) study the same type of problem by structuring a portfolio
for with-profit guarantee funds in the United Kingdom. The optimisation problem
results in a non-linear optimisation problem. They demonstrate how the model
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can be used to analyse the alternatives fo different bonus policies and reserving
methods. Consiglio et al. (2001) investigate the asset and liability management of
minimum guarantee products for the Italian Industry.

Inspired by the research of Dempster et al. (2006) and Consiglio et al. (20086), we
propose a multi-stage dynamic stochastic programming model for the integrated
asset and liability management of insurance products with guarantees, that minim-
ises the down-side risk of these products. As proposed in Dempster et al. (2006),
our model also allows for portfolio rebalancing decisions over a multi-period hori-
zon, as well as for flexible risk management decisions, such as the reinvestment
of coupons at intermediate time steps. We investigate with-profits guarantee funds
as in Consiglio et al. (2006), by including regular bonus payments. Once these
bonuses have been declared, the bonuses become guaranteed. To keep the op-
timisation problem linear, we change the way bonuses are declared. We keep the
problem linear, for two reasons. The first is that, by keeping the problem linear, we
can model the rebalancing of the portfolio at future decision times. By doing so the
dynamic stochastic programming model automatically hedges the first stage portfo-
lio allocation against projected future uncertainties in asset returns (see Dempster
et al., 2003 and 2006). The second reason is that the model is flexible enough
to take into account portfolio constraints such as the prohibition of short-selling,
transaction costs and coupon payments.

For the South African insurance market Katz and Rosenberg (2005) use a sample
smoothed bonus annuity contract to illustrate the weaknesses of traditional pricing,
valuation and risk management tools used by life offices particularly in a low interest
rate environment. Furthermore Katz and Rosenberg (2005) describe, iliustrate and
argue the merits of a coherent pricing, valuation and risk management framework
for managing smoothed bonus contracts.

Pricing of contingent claims and dynamic management of portfolios are two sides of
the same coin. The main differences between the valuation of insurance products
and dynamic portfolio management are highlighted by Consiglio et al. (2006). The
literature on pricing products with guarantees assumes that the reference portfolio
is given exogenously (e.g. equities 60% and bonds 40%), and does not address
the problem of structuring this portfolio optimally. The possible upside potential is
ignored. According to Dempster ef al. (2006): “This is where the asset manager
has a potential advantage. He or she can provide the protection while still exposing
the client to high-risk markets through active asset allocation to potentially higher
returns”. Consiglio et al. (2001) have shown that the financial institution could sub-
stantially increase shareholder value by structuring the reference portfolio. This can
be done by viewing it as an integrated asset and liability management optimization
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problem. Long-term options, which form the backbone of valuation methods, are
in general only available as OTC contracts. This adds a credit risk component to
the problem that is largely ignored. The replicating portfolio approach used to value
these products assumes continuous rebalancing. This assumption and the other
assumptions of the Black-Scholes market are unrealistic.

Foroughi ef al. (2003) explore the risks faced by South African life insurance com-
panies arising from the provision of investment guarantees in these products. Fur-
thermore Foroughi et al. (2003) examine various forms of investment guarantees
available in South Africa and the business issues created by writing these products.
They compare existing methods used to value these products and discuss prac-
tical issues around the building of such asset and liability models. Feroughi ef al.
(2003) identified, non-profit immediate annuities, participating immediate annuities,
unit-linked saving products with a maturity guarantee and smoothed-bonus savings
products with a maturity guarantee as the main four products with investment guar-
antees scld in South Africa.

We represent the uncertainty in terms of scenario trees by using a four-factor term
structure model that includes macro economic factors (inflation, capacity utilisation
and repo-rate). We construct scenario trees with path dependent intermediate dis-
crete yield curve outcomes suitable for the pricing of fixed income securities (see
Chapter 3).

The rest of this chapter is structured as follows. In Section 5.2 we discuss the
formulation and implementation of the multi-stage stochastic programming model.
Section 5.3 presents back-testing results. The back-tests are done on real market
data over a pericd of five years.

5.2 Scenario optimisation framework

In this section we propose a linear multi-stage dynamic stochastic programming
model! for the integrated asset and liability management of insurance products with
guarantees, that minimises the down-side risk of these products.

5.2.1 Model features

As in Consiglio ef al. (2008) we investigate the optimal asset allocation of with-
profits guarantee funds, by including regular bonuses. The fund is operated by a
proprietary company on a 90/10 basis, where policyholder benefits in 90% of the
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growth in asset share and the share holders 10%. It is assumed that there is a co-
hort of policyholders, paying a single up-front premium and that no contributions are
allowed thereafter. At maturity there is an underlying guarantee to pay a minimum
rate of return of g on the initial premium. In addition to receiving a guaranteed
rate of return on the initial premium, policyholders also receive several bonuses.
Bonuses are meant to reflect the overall performance of the firm's portfolio, and
to correspond to "Policyholders’ Reasonable Expectations”. Two types of bonuses
are received by the policyholder, namely regular bonuses (declared annually) and
terminal bonuses (awarded upon maturity). Regular bonuses are "vesting", in other
words they are guaranteed once declared and cannot be reduced (Consiglio ef al.,
2006). The time horizon of the fund is T years. We use two asset classes, namely,
(semi-annual) coupon bearing bonds and equities modelled using indices.
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Figure 5.2.1: Graphical representation of a yield curve scenario tree

To represent uncertainty, we simulate the future yield curves to construct a scen-
ario tree. A scenario tree is a discrete approximation of the joint distribution of
random factors (yield curve and stock indices). To facilitate the mathematicai for-
mulation of the optimisation problem, we represent the scenario tree in terms of
states (nodes) sf(t), where time ¢ = 0,4, %,...,Tand v () = 0,1,2,..., IV the
numbers of the states at time t. The set of states at time ¢ are denoted by 3; =
{sz(t)lv &=0,1,..., Nt}. The set of all states in the scenario tree is denoted by
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¥ = UL,3;. Links € € & x %, indicate the possible transitions between states. To
enforce non-anticipativity, i.e. to prevent foresight of uncertain future events, we

order the elements of e in pairs (s'®, 2 where the dependence of the index
p t+1 p
v (t) on t is explicitly indicated. The order of the states indicates that state st vt at

t+1) ;

time ¢t+1 can be reached from state s v at time . st( is the successor state and

st () the predecessor state. By using the superscript “+” to denote the successor

states, and the superscript “-" to denote the predecessors, we have s, v+ stfﬂ)
and s (tH) (t). Each state st() has an associated probability pf, for s € 3,

such that Z s o =1.
s t

The annual decision times t; = 0,1,2,...,T — 1, are the times which the fund will
trade to rebalance its portfolio. We represent the branching of the tree structure
with a tree-string, which is a string of integers specifying for each decision time
tq the number of branches for each state s € ;. This specification gives rise to
a balanced scenario tree where each sub-tree in the same period has the same
number of branches. Figure 5.2.1 gives an example of a scenario tree with a (3,2)
tree-string, giving a total of 6 scenarios.

5.2.2 Model variables and parameters

The following notation will be used for variables and parameters of the model, where

the time index ¢ takes values over the times ¢ = 0, 112, i5,..., T, and states index
s takes values from the set &; = {s}|v =1,2,..., N;} (The following notation easy

translates to mathematical programming languages, such as SAS/OR PROC OPT-
MODEL, and are therefore used):

Time sets
T’*"*"l {0, %, 12, ., T} :setofall times considered in the stochastic program;
={0,1,2,...,T — 1} : set of decision times;
T = Treetal\7d : set of intermediate times;
Te={%3%,...,7T-1} : set of coupon payment times between decision times;
Index sets
={sflv=1,2,...,N¢} :setofstates attime;
SI : set of stock indices;
B ={B;} : set of government bonds with maturity 7;

I=SIUB : set of all instruments;
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Parameters

éB, : coupon rate of a government bond with maturity 7;
Fg, : face value of a government bond with maturity 7;

Tir : zero-rate with maturity = at time ¢ in state s;

g : minimum guaranteed rate of return;

0 : regulatory equity to debt ratio;

Tib : benchmark rate at time ¢ in state s;

¥ : policyholders’ rate of participation in the profits of the firm;
B : target terminal bonus;

Pt"‘f/Pt’?f : ask or bid price of asset : € I at time ¢ in state s;

fo/ fo : proportional transaction costs on ask or bid transactions;
i : probability of state s at time ¢;

Decision variables

SF?
RB;
T Bs.

: quantities of assets bought at time t in state s;
: quantities of assets sold at time ¢ in state s;
: quantities of assets held at time t in state s,
fromtime tto ¢t + 3;
: value of assets account at time ¢ in state s;
: value of liability account at time ¢ in state s;
: value of equity account at time ¢ in state s;
: amount of equity provided by shareholders at time ¢ in state s;
: amount of shortfall at time ¢ in state s;

: regular bonus payment declared at time ¢ in state s;
: policyholders’ terminal bonus at time T in state s;

5.2.3 Bond pricing

We assume all bonds to pay semi-annual coupons of §g_and derive bid and ask
prices by adding a spread, sp, to the zero-rates. Let Pf}i denote the ask price of a
coupon bearing bond with maturity ~ at time ¢:

Pt(jg,- = Fp.exp (— (1 —1) (Tf,r—t + SP))

.....

fort e T*% and s € %,
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where the principal amount is discounted in the first term and the coupon payment
stream in the second term. The integral part is denoted by |.]. Let Ptb,’;T be the bid
price of the bond with maturity = at time ¢:

P, tlj’lgr = Fp, exp (— (T —1) (Tf,r—t - SP))

1 8
+ Zm={%ﬂ+%,%ﬂ+1,...,%ﬁ+T} §5BTFBT exp <— (m —1) <Tt,(m—t) — 3p>> ,

fort € 7% and s € &

The use of a bid or ask price when including transacticon costs are not always neces-
sary in this context as transaction costs are sufficient to prevent the simultaneous
buying and selling of assets in the optimisation model. However transaction costs
on bonds are relatively low compared to the bid/ask spread. In South Africa the
typical bid/ask spread on bonds is 0.5% and transaction costs are 0.012%.

5.2.4 Variable dynamics and constraints

To simplify our notation, we assume all face values to be 100. We further assume
all bonds to pay semi-annual coupons at rate §g, at yearly decision times and
six months in between. The bond cash flows, CF;, per unit face value are then
calculated as:

1
CFj; = 50:F;, forie B, t eT¢UT and s € 5.

The variable dynamics and constraints for the minimum guarantee problem are:

Cash balance constraints. The cash balance constraints ensure that the amount of
cash that is received from selling assets, coupon payments at decision times and
equity supplied for shortfall, is equal to the amount of assets bought:

Z P(?’LS:EO’L 1+fa)—A0fOrt€{O} andSEEt,

ZeIPt'L yi't. 1~fb)+261\{SI}CFf"‘ :_ +Ct Z mtz 1+fa)
fort € 79 {0} and s € ;.

Short sale constraints. The short sale constraints eliminate the possibility of short-
selling assets in each state at each time period:
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z3; >0, foralli€ I, t € T%N\ {T} and s € 5y,

yi; >0, foralli e I, t € 7% {0} and s € %,

z; >0, forallie I, t € T\ {T} and s € 5.

Inventory constraints. The inventory constraints give the quantity invested in each
asset in each state at each time period:

7, = xp; fort € {0} and s € %y,

Zi; = zf__i ;T T —Yis fori€l, t € Tt"t“l\ {0} and s € %.
12°
Information constraints. As the portfolio is only rebalanced at decision times, the
information constraints ensure that portfolio can not be changed between decision
times,
z; =yi;=0foricl, teT"\T%and s € 5.

Coupon reinvestment constraints. The coupon reinvestment constraints ensure that
the coupons that are paid at the coupon times are reinvested in the same coupon
bearing bonds:

OFf25~

5-—1_2’f'ISItTcd )
T Ptals(l"‘f) Oorz e \{ }, S and s € 2.,

v;; =0, fori € IN\{SI}, t € T°and s € &,

zisr =0,%sr=0,t€Tand s € 5;

Asset account constraints. The asset account constraints determine the value of
the asset account in each state at each time period. The value of the asset account
is determined after rebalancing, i.e. any equity ¢ that has been provided by share-
holders to fund shortfalls, is taken into account by-the cash balance constraints:

§=1Lo+ Ej, fort € {0} and s € ;

=3 PUA (1+ o) fort € T\ {T} and s € o
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_ b,s _s— _
Ap =D o Prim (U= Fo) 4 D on CFlwtr_ g pfors € Br

Liability account constraints. The liability account constraints determine the value
of the liability account in each state at each time period. The liability grows at the
guaranteed rate of return plus any regular bonus payments that are declared:

Lg =Ly, fort e {O} and s € X,

Li=L]", exp (11 > + RB;, fort € T\ {T} and s € =,
1z

Equity account constraints. The equity account constraints determine the value
of the equity account in each state at each time period. The equity grows at the
one month zero-rate. The shortfall is funded by the shareholders by the infusion of
additional equity:

E§=cj, fort € {0} and s €

1
E E's~
t 11 eXp <12 t

) + ¢, fort € TN\ {T} and s € 5.

Regular bonus constraints. The regular bonus constraints determine the amount
of the regular bonus payment in each state for each decision time. To determine
the amount of the regular bonus we follow the approach described by Consiglio ef
al. (2008) which is based on that of Ross (1989) where the regular bonuses are
determined by aiming for a target terminal bonus, i.e. the firm wishes the policy-
holders’ terminal benefit to be a fixed portion of the total benefit received. Regular
bonuses are assumed to be declared at decision times only (i.e. annually).

[t is assumed that the asset account will grow constant at the current benchmark
rate, r{,, Up to termination, giving the terminal asset value as:

= A} exp (Tt y(T—1)),

where A¥ =3, ; Pff f_‘_ (1= fo) +2iengsny CFisz 4, is the value of the as-
set account before transacﬂons It is further assumed that the liabilities will grow at
the minimum growth rate, g, up to termination. Furthermore, it is assumed that the
regular bonus payment, RB;, that is declared at time ¢ will stay constant throughout
the remainder of the term and will be invested at the minimum guarantee, g. Thus

the terminal liability value is:

exp (g (T —1t)—
exp (g) —1

- 1
Ly = L:_ll_z exp (g(T~t—|— 12)) + RB} ( +exp(g (T—t))) ,
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where

(expiilgfzgg)—j)l) -1 + exp (g (T — t))> )

is the accumulated value of a constant annuity with payment of one cash unit from
time t to T invested at the minimum guarantee g.

The terminal bonus, T'B% = v (4% — L7.), received by the policyholders need to
constitute 8% of the total amount received by the policyholders:

TBs,

TBe+ g

Solving for RB; yields

v(1-5) Ai”s exp (Tf,b (T — t)) — B+ —-5) L::%z exp (g (T - t—f—%))

RB} =
t (B+y(1—5)) (e"pe,fﬁa‘?}"l +exp (g (T — t)))

When the expected terminal asset amount exceeds the expected terminal liability
amount regular bonuses will increase. Conversely, when the expected terminal liab-
ility amount exceeds the expected terminal asset amount the regular bonus will be
negative. As this will be unfair towards policyholders to declare negative bonuses
the following regular bonus constraint is introduced:

(1= B) 4 exp (g, (T =) ~ (B+ v (L~ B) L~y exp (9 (T —t4+4y)

RB; >=
t B+ (1— ) (LT ey (g(7 — 1)

)

fort e (Td\ {0}) U{T}, and s € &

where RB; >= 0 and RBf = 0 fort € (T*U{0})\{T}, and s € ;. By enfor-
cing the regular bonus constraints the optimisation will determine the regular bonus
amount RB; at each decision period.

Consiglio et al. (2008) also consider the working party approach based on Chad-
burn (1997) which is based on work done by the Institute of Actuaries Working
Party. This approach declares regular bonuses (in return form) to reflect the bench-
mark return subject to the liability account remaining lower than the value of the
reduced asset account, where the reduced assets accumulate at 75% of the return
on assets. Consiglio et al. (2006) test their model with both these features and find
that bonus policies based on aiming for a target terminal bonus outperforms bonus
polices based on the working party approach.

Shortfall constraints. The shortfall constraints determine the regulatory shortfall of
the portfolio in each state at each time period. The shortfall is calculated by using
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the value of the asset account before'transaoﬁon:
SF5 + Lo >= (1+p) L§, fort € {0} and s € 3,

SFf + Ay >= (1+p) Li_ B9, fort e T\ {0} and s € T

where 4% = 3., Pfjfzf_”ll_z’i (1= fo) + Zienisn C’Ff,izf:%’i is the value of the
asset account before transactions and SFf >= 0 fort € Ttotal and s € ;. The
shortfall SF# at decision periods are funded by the shareholders equity payment,
cf, thus ¢f = SFf fort € T9U{T"} and s € 4, and zero at intermediate nodes, ¢f = 0
for t € T8\ {T}, and s € ;. By enforcing the shortfall constraints the optimisation
will determine the amount of equity ¢f to be provided by the shareholders at each

decision period.

Portfolio composition constraints. Portfolioc composition constraints can be intro-
duced in order to reduce concentration risk and to consider the policyholder ex-
pectations on the underlying asset mix. The following constraints are taken into

account: pas s
- T, .
Z’EI—T“<W, forteT?® I cIandse Xy,
Wi
where I may be some subset of I and  the upper limit for the proportion of asset

share invested in the subset of assets I.

5.2.5 Objective function

When managing a minimum guarantee fund there are two main goals to take into
account. The first aim is the management of the investment strategies of the fund.
The second is to maximise the shareholder value taking into account the min-
imum guarantee given to policyholders. The shareholders’ final wealth is given
as (1—7) ((Ar — Br) — L) + BEr where (1 — ) ((Ar — Er) — L7) is the excess
amount they receive after the liability and the equity has been paid. The objective
to consider is the maximum expected excess wealth of the shareholders and the
minimum average expected shortfall over all periods in order to ensure the min-
imum guarantee to policyholders. Dempster ef al. (2006) have shown that monitor-
ing shortfall at intermediate nodes improve results. The objective function is given
as:

max

s SEP
S S S
{ This Ut B g

zteTtotal 2 :SEEt pt Ttotal

i€t eTeU{T}),s€:

{ (- D o (=) (45— Lf) — Bf) }
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where the value of 0 < a < 1 sets the level of risk-aversion and can be chosen
freely. If the value of « is to closer 1, more importance is given to the shortfall
of the portfolio and less given to the expected excess wealth of the shareholders
and hence a more risk-averse portfolio allocation strategy will be taken and vice
versa. In the extreme case where « = 1 only the shortfall will be minimised and the
expected excess wealth will be ignored, and where a: = 0, the unconstrained case
only maximises the expected excess wealth of the shareholders.

5.3 Results

In this section we discuss the performance of the model. The first part explains
the data and instruments we use to generate scenario trees, which is the input to
our mathematical optimisation problem. In the second part we present back-tested
results for the model for different levels of the guarantee rate and different leveis of
risk-aversion.

5.3.1 Data and instruments

We use six different assets, namely, (semi-annual) coupon bearing bonds with ma-
turities 5, 7, 10, 15 and 19 years and the FTSE/JSE Top 40 equity index. Scen-
arios for the equity index are generated along with the yield curve by modelling the
FTSE/JSE Top 40 index with respect to the three macro-economic factors. We use
the Perfect Fit Bond Curves, one of the five BEASSA Zero Coupon Yield Curve
series of yield curves (see BESA, 2003a), with maturities 1, 2, 3, 6, 9, 12, 15,
18, 21, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204,
216 and 228 months. The curves are derived from government bond data and the
technical specifications are described in BESA (2003b). We use end-of-month data
from August 1999 through to February 2009 and a tree structure with approximately
the same number of scenarios. The tree structure used in back-testing is displayed
in Table 5.3.1.

Table 5.3.1: Tree structure used for back-testing
Year Tree-string
February04 | 5.5.5.5.5=3125
February05 | 8.8.8.8=4096
February06 | 15.15.15=3375
February07 56.56=3136
February08 3125
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We use the scenario generation approach, described in Section 3.4 of Chapter
3, to generate the input scenarios for the optimisation problem. We estimate the
yield curve dynamics with the four-factor yield curve representation of Svensson
(1994). The four unobserved factors, level, slope and the two curvature factors,
which provide a good representation of the yield curve, are linked to the macro-
economic factors by means of a state-space model. We include the following three
variables as measures of the state of the economy: manufacturing capacity utilisa-
tion, which represents the level of real economic activity relative to potential; the
annual percentage change in the inflation index, which represents the inflation rate;
and the repo-rate, which represents the monetary policy instrument. According to
Diebold et al. (2006) these three macro-economic factors are considered to be the
minimum set of fundamentals needed to capture the basic macro-economic dy-
namics. The model parameters are estimated using a Kalman filter approach. For
a complete description of the model and the calibration of the model parameters
see Chapter 3. The four-factor yields-macro model is fitted to market data up to an
initial decision time ¢ and scenario trees are generated from time ¢ to some chosen
horizon t 4 T'. The optimal first stage/root node decisions are then implemented at
time £. The success of the portfolio strategy is measured by its performance with
historical data up to time ¢ 4- 1. This whole procedure is rolled forward for T" trading
times. At each decision time ¢, the parameters of the four-factor yields-macro model
are re-estimated using the historical data up to and including time ¢.

5.3.2 Back-testing results

We perform back-tests over a period of five years, from February 2004 through to
February 20089, for different levels of minimum guarantee and for different levels of
risk-aversion. For each of these back-tests, at different levels of minimum guarantee
and for different levels of risk-aversion, we report the annual expected excess return
on equity (ExROE), taken to be

(1—7) (4% - Lf) + B3
T S
\stEET ( E% Pr l’

and the annual actual excess return on equity, taken to be

r/(1—7) (Ar — Lr) +vBr _

1.
Er
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Figure 5.3.1: Shareholders annual excess return on equity for different levels of
minimum guarantee at a = 0.5

We also report the expected cost of the guarantee taken to be the expected present
value of the final equity deducting the regulatory equity or equity at the start

ES
T s
ZSEE v(t) B EO pT’
AT  exp [ £
1=1XP | 13 t,t+li2

wlt4 L
where (sf(t), stfi ‘2)> € ¢ and the actual cost of the guarantee, taken to be
12

Er
T 1
[li=1exp (1_2rt,t+%)

_Eo

In Figure 5.3.1 we present the expected ExROE at decision times and the actual
ExROE for different levels of the minimum guarantee. The model underestimates
the ExROE, the expected ExROE improves as more data becomes available, for
model estimation, after the first decision time. The actual ExROE increases as
the minimum guarantee increases up to 13%, after 13% the ExROE decreases as
the minimum guarantee increases. In Figure 5.3.2 we present the expected cost
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Figure 5.3.2: Cost of equity for different levels of minimum guarantee at « = 0.5

of the guarantee at the decision times and the actual cost of the guarantee. The
model firstly overestimates the cost of the guarantee and as more data becomes
available for model estimation, after the first decision time, the expected cost of the
guarantee improves. For a minimum guarantee of less than 9% the model requires
no additional equity, as the minimum guarantee increases above 13% the amount
of equity required increases.

it is expected that the EXROE will decrease as the minimum guarantee increases
which is in contrast to our results. The increase in the ExROE if the minimum guar-
antee increases up to 13% can be explained from the zero cost of the guarantee for
minimum guarantees of less than 13%. Therefore a higher excess return on equity
can be achieved for higher levels of minimum guarantee if this comes at no extra
cost to the shareholders. If a cost is incurred to ensure a certain level of minimum
guarantee, the ExROE will decrease if the minimum guarantee increases.

Figure 5.3.3 presents the performance of the asset account and the liability account
at 1%, 9% and 15% minimum guarantee. The asset level stays above the liability
level over the entire period. Regular bonuses are paid up to a minimum guarantee
of 15%, and that regular bonuses decrease as the level of minimum guarantee
increases. This is due to the average benchmark rate, the rate used to determine
the regular bonus payments, being around 8%. Thus for lower levels of minimum
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Figure 5.3.3: Asset and liability account at 1%, 9% and 15% minimum guarantee
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guarantee the amount of regular bonus payments declared will be higher.

Consiglio et al. (2006) specify regular bonuses in return form, which is more realistic
than our formulation of discrete annual payments which we define in order to keep
the problem linear. Consiglio ef al. (2006) assume that the bonus return, RB;, that
is declared at time ¢ will stay constant throughout the remainder of the term giving
the terminal liability value as:

L3 = L33 Y exp (RB; (T — t)).

With all other assumptions staying constant the regular bonus yields:

RB; = max [ 1 In ( 7= A?’Sexp <Tts'b (T_t)> ) ,0} .

(T —1) (B+v(1—B))Liexp(g(T — 1))

We have also implemented the liability process proposed by Consiglio et a/. (2006)
and included it in our back-testing performance results. Figure 5.3.4 shows that our
discrete approximation of bonuses mimics the more realistic approach of Consiglio
et al. (2006). Recall that our approach has the added advantage of keeping the
overall problem linear which allows us to include more realistic portfolio manage-
ment constraints.

Figure 5.3.5 shows the first stage optimal asset allocation at the (forward rolling)
rebalancing times for different levels of the minimum guarantee. The February 2004
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Figure 5.3.4; Liabilities with different bonus options at 1% minimum guarantee

asset allocation seems consistent. At reasonable levels of minimum guarantee the
portfolio is less aggressive and allocates lower proportion of asset share to the risky
asset. As the level of minimum guarantee increases more asset share is allocated
to the risky asset up to a proportion of 30% of the portfolio weaith. This is a result
of the portfolio composition constraints, which is set to restrict the proportion of
assets share invested in the equity index to 30%. Also at higher levels of guarantee
more asset share is allocated to long-term maturity bonds. After the first stage the
portfolio invests more asset share in the risky asset for lower levels of minimum
guarantee, this is due to the higher benchmark rate, and is necessary in order to
pay bonuses. Again the proportion of asset share invested in the risky asset is
restricted to 30%. If this restriction is lifted more proportions of asset share will be
allocated to the risky asset. The asset allocation also does not change dramatically
from one year to the next.

In Figure 5.3.6 we present the expected ExROE at rebalancing times and the actual
ExROE for different levels of risk-aversion at a minimum guarantee of 9% and 15%.
The model underestimates the ExROE as previously and the expected ExROE im-
proves as more data becomes available. The ExROE decreases as the level of
risk-aversion increases. For a minimum guarantee of 9% the ExROE remains con-
stant as the risk-aversion level moves from 0 to 0.8 and then suddenly drop in the
most risk-averse case. For a minimum guarantee of 15% the ExROE remains con-
stant as the risk-aversion level moves from 0 to 0.4 and then decreases.

Figure 5.3.7 presents the expected cost of the guarantee at the decision times
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Figure 5.3.5: Asset allocation for different levels of minimum guarantee at « = 0.5

and the actual cost of the guarantee. The model firstly overestimates the cost
of the guarantee and as more data becomes available the expected cost of the
guarantee improves. The expected cost of the guarantee decreases as the level of
risk-aversion increases for a minimum guarantee of 9%. For a minimum guarantee
of 15%, the expected cost of the guarantee increases as the level of risk-aversion
increases from 0.4 to 1.

Because extra equity is now required to achieve a minimum guarantee of 9% the
ExROE will remain constant if the expected cost of the guarantee is included on
the objective function (i.e. « < 1). If only the shortfall is minimised (i.e. « = 1) a
lower ExROE will be achieved. This results from the actual cost of the guarantee
being zero for all levels of risk-aversion at a minimum guarantee of 9%. As a cost
is incurred for a minimum of guarantee 15% if the level of risk-aversion increases
for 0.4 to 1, the ExROE will decrease. A more risk-averse portfolio at much higher
levels of minimum guarantee will require extra equity, as more importance is given
to the shortfall of the portfolio.

Figure 5.3.8 presents the performance of the asset account and the liability account
at 0, 0.6 and 1 level of risk-aversion for a minimum guarantee of 9% and 15%. The
asset level stays above the liability level over the entire period. At levels 0 and 0.6 of
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Figure 5.3.6: Shareholders annual excess return on equity for different levels of
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Figure 5.3.8: Asset and liability account at different levels of risk-aversion

risk-aversion, the model tends to be more aggressive and at level 1 of risk-aversion
the model is more conservative. As mentioned above, for a minimum guarantee
of 9%, a zero cost of the guarantee is achieved for all levels of risk-aversion. The
performance of the asset account and liability account, as well as the payment of
bonuses, are constant for levels of risk-aversion less than 1, due to the zero cost of
the guarantee. If only the shortfall is minimised (i.e. o = 1), the portfolio pays less
bonuses and achieves a lower level of assets at end horizon. The portfolio however
still achieves the minimum guarantee of 9% at no extra cost for the guarantee. For a
minimum guarantee of 15% extra equity is needed for higher levels of risk-aversion
and a lower EXROE is achieved. This is seen in Figure 5.3.8 where we observe that
the model tends to be more conservative from a level of 0.6 of risk-aversion.

Figure 5.3.9 shows the first stage optimal asset allocation at decision times for
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Figure 5.3.9: Asset allocation different levels of risk-aversion at 9% minimum guar-
antee

different levels of risk-aversion for a 9% minimum guarantee. As the level of risk-
aversion increases the portfolio is more conservative and allocates a lower propor-
tion of asset share to the risky asset, this is also apparent form the above discus-
sion. In the most risk-averse situation, where only the shortfall is minimised (i.e.
a = 1), an even lower proportion of asset share is allocated to the risky asset. The
asset allocation further does not change dramatically from one year to the next.
The asset allocation for a minimum guarantee of 15% does not differ much form the
asset allocations for a minimum guarantee of 9% except that more asset share is
invested in longer-term bonds in the first stage (see Figure 5.3.5).

5.4 Conclusion

We have presented a multi-stage dynamic stochastic programming model for the
integrated asset and liability management of insurance products with guarantees
that minimises the down-side risk of these products. We have included regular bo-
nus payments and kept the optimisation problem linear, which enables us to model
the rebalancing of the portfolio at future decision times. Also, by keeping the op-
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timisation problem linear, the model is flexible enough to take into account portfolio
constraints such as the prohibition of shori-selling, transaction costs and coupon
payments. We have also shown that our bonus assumption mimics the more real-
istic bonus payments proposed by Consiglio et al. (2006).

Furthermore, we have shown the model features at different levels of minimum
guarantee and different levels of risk-aversion. The back-testing results show that
the proposed stochastic optimisation framework successfully considers the risks
created by the guarantee and declaration of bonus payments. As Consiglio et al.
(2006) have shown, the model can also be used for analysing the investment de-
cision made by the insurance firm.

The with-profits guarantee funds discussed in this chapter is operated on a 90/10
basis, where policyholder benefits in 90% of the growth in asset share and the share
holders 10%. These products do however occur to a lesser extend in the South
African insurance market. The main goal of this chapter was to extend on the work
of Dempster et al. (2006) and Consiglio et al. (2006). This however provides wide
scope for further research of these products in the South African insurance market.



Chapter 6

Summary and conclusion

In this chapter we summarise by presenting concluding remarks and
end by suggesting further research directions.

6.1 Summary

This thesis presented two stochastic programming frameworks for the asset and
liability management of investment products with guarantees. The first part of this
thesis presented two methods for yield curve scenario generation. The first method
employs a moment-matching approach and second a simulation approach which
takes the movement of macro-economic factors into account.

The second part of this thesis introduced and solved two asset and liability prob-
lems. The first problem was the asset and liability management of minimum liguid
asset portfolios, found in the banking environment, and the second problem was the
asset and liability management of insurance products with minimum guarantees.
We discussed the formulation and implementation of these multi-stage stochastic
programming models and back-tested both models on real market data.

As scenario trees are the input to our portfolio optimisation problems we have star-
ted off in Chapter 2 and 3 by presenting two methods for yield curve scenario gen-
eration. Since fixed income securities are usually contained in the asset side of the
asset and liability management of investment products with guarantees, we were
concerned with the stochastic evolution of the shape of the term structure of in-
terest rates (or vield curve). Chapter 2 presented a moment-matching scenario
generation approach for generating yield curve scenarios. We proposed two meth-
ods, both generating scenarios by matching the principal moments of the under-
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lying distributions of the log changes of the yield curve. These methods generate
yield curve scenario trees with path dependent yield curves at intermediate time
nodes, where each node in the scenario tree represents the term structure of in-
terest rates (yield curve). The second scenario generation method was preferred
to the first, as it consumes less time to generate larger yield curve scenario trees.
The scenario generation method was tested and the performance was measured
by out-of-sample back-testing in terms of the value of a fixed income portfolic optim-
isation problem described in the literature. The results demonstrated a reasonably
sound way to generate stable yield curve scenario trees for fixed income portfolio
optimisation.

Chapter 3 presented a simulation approach which includes macro-economic factors.
The chapter considered the estimation and characterisation of the South African
term structure with respect to macro-economic factors and its use in scenario gen-
eration for fixed income portfolios. We have estimated a yield curve model that
incorporates four yield curve factors (level, slope and two curvature factors) and
three macro-economic factors (real activity, inflation and the stance of monetary
policy). The estimated model fits the term structure reasonably well in-sample as
shown in the results. The model also performs reasonably well in out-of-sample
forecasting. We have shown that better performance can be realised by including
forecasts for the macro-economic factors generated by an economic scenario gen-
erator. We also proposed a parallel simulation approach for generating yield curve
scenario trees. The procedure was tested and the performance was measured by
out-of-sample back-testing in terms of the value of a fixed income portfolio optim-
isation problem described in the literature. The results demonstrated a reasonably
sound way to generate stable yield curve scenario trees. We also discussed the
existence of arbitrage in the scenario trees and proposed a method to eliminate
arbitrage opportunities.

Furthermore we compared the moment-matching scenario generation method to
the macro-economic scenario generation method in terms of back-testing and ste-
bility in Chapter 3. From the results it is clear that both scenario generation methods
display stability in the objective function and the portfolio allocations. The objective
function is more stable when the moment-matching scenarios are used. In terms
of back-testing the macro-economic scenarios performs better achieving a higher
terminal wealth.

In Chapter 4 and 5 we have presented two stochastic programming frameworks
for the asset and liability management of investment products with guarantees.
Chapter 4 presented a stochastic programming framework for the asset and liability
management of minimum liquid asset portfolios found in the banking environment.
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The model allows for portfolio rebalancing decisions over a multi-period horizon,
as well as for flexible risk management actions, such as reinvesting coupons, at
intermediate time steps. We have shown that our problem is related to insurance
products with guarantees and utilised this in the formulation. We have shown the
model features at different levels of importance of the minimum expected average
shortfall and minimum liquid asset requirement growth rates. The model performed
as expected. This model can also be used when analysing the investment decision
made by the financial institution and may play an important role in liquidity manage-
ment, when concerning different levels of liability growth rates.

Chapter 5 presented a stochastic programming framework for the asset and liability
management of insurance products with rminimum guarantees, that minimises the
down-side risk of these products. We included regular bonus payments and kept
the optimisation problem linear, which enabled us to model the rebalancing of the
portfolio at future decision times. Also, by keeping the optimisation problem lin-
ear, the model is flexible enough to take into account portfolio constraints such as
the prohibition of short-selling, transaction costs and coupon payments. We have
shown that our bonus assumption mimics the bonus payments proposed by Con-
siglio et al. (2006). Furthermore we have shown the model features at different
levels of minimum guarantee and different levels of risk-aversion. As Consiglio et
al. (2006) have shown, the model can also be used for analysing the investment
decision made by the insurance firm.

6.2 Future directions

In Chapters 2 and 3 we have presented two methods for the generation of yield
curve scenario trees. In both instances we mentioned the existence of arbitrage in
the scenarios. For the first moment-matching approach the problem is dealt with
easily by either including extra constraints in the scenario generation optimisation
approach or by checking ex post for arbitrage in the scenarios. If any arbitrage ex-
ists, the scenarios are re-generated. For the simulation approach we have presen-
ted a method to eliminate the arbitrage opportunities ex post. Consideration may
be given to other methods in order to exclude arbitrage opportunities either during
simulation or removing arbitrage opportunities ex post.

Our proposed method in Chapter 2 uses the scenario generation method proposed
by Heyland and Wallace (2001b) as apposed to the a second method proposed
Hgyland ef al. (2003). The second method proposed by Hayland ef al. (2003) is
in most if not all respects better than the first method introduced by Hayland and
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Wallace (2001b). We used the first method for its ability to include decision-makers
expected views on the yield curve. Consideration may be given to the Hgyland
et al. (2003) method and possible approaches may be investigated to include the
decision-makers’ expected views on the yield curve.

In Chapter 3 we have shown that better performance can be realised by including
forecasts for the macro-economic factors generated by an economic scenario gen-
erator. By lack of forecast data we use the actual repo-rate. Further investigation
should be given to this idea and the possible advantages of including such forecasts
should be tested on real data.

It was the purpose of Chapter 2 and Chapter 3 to propose suitable methods for
yield curve scenario generation and further investigation may be necessary in the
different approaches and the mixing thereof.

Chapter 4 presented a stochastic programming framework for the asset and liability
management of minimum liquid asset portfolios found in the banking environment.
Gold was included as one of the liquid assets in the portfolio. As gold prices are
quoted in dollars, the inclusion of gold in the portfolio creates currency risk. Con-
sideration may be given to the inclusion of hedging instruments in order to address
this problem. Other hedging instruments may also be considered, such as interest
rate caps and floors to deal with interest rate risk. Note however that the inclusion
of these derivatives may introduce counterparty credit risk.

In Chapter 5 we have presented a stochastic programming framework for the asset
and liability management for insurance products with minimum guarantees. Con-
sideration may be given to the inclusion of other minimum guarantee policy features
such as the attrition of policyholders and the inclusion of other types of bonus fea-
tures whilst still keeping the problem linear.

The with-profits guarantee funds discussed in Chapter 5 is operated by on a 90/10
basis, where policyholder benefits in 90% of the growth in asset share and the share
holders 10%. These products do however occur to a lesser extend in the South
African insurance market. The main goal of this chapter was to extend on the work
of Dempster et al. (2006) and Consiglio et al. (2006). This however provides wide
scope for further research of these products in the South African insurance market.



Appendix A

Minimum guarantee - model
formulation

In this appendix we present the multi-period stochastic programming model of
Dempster ef al. (2006) for minimum guarantees. Given a set of scenarios the
stochastic program results in a large linear program.

A.1 Variable parameters of the model

The following notation will be used for variables and parameters of the model:

Time sets
Tttt = {0,%,&,...,T} :setofall times considered in the stochastic program;
T¢={0,1,2,...,T—1} : setof decision times;
Tt = Ttotal\d . set of intermediate times;
T°={%3,...,T—3} : set of coupon payment time between decision times;
Instruments
St (w) : Stock index level at time ¢ in scenario w;

Bf (w) : Treasury security with maturity 7" at time ¢ in scenario w;

5tBT (w) : coupon rate of Treasury security with maturity 7" at time ¢ in scenario w;
FBT : face value of Treasury security with maturity T

Zt (w) : zero-coupon Treasury security price at time ¢ in scenario w;
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Risk management barrier

Y- (W) :zero-coupon Treasury yield with maturity T at time ¢ in scenario w;
G : annual guaranteed return;
L: (w)  : barrier at time ¢ in scenario w;

Portfolio evolution

A : set of all assets;

Ptljﬁ:y (w) /PEE (w) : buy/sell price of asset a € A at time t in scenario w;

fla : transaction costs of buying and selling;

Tt,q (W) : quantity held of asset a € A between time ¢t and ¢ + 1 in scenario w;
z:’u (w) /z; (w) : quantity bought/sold of asset o € A at time ¢ in scenario w;

W : portfolio wealth at time ¢ € 7% in scenario w;

by (W) = '

max (0, Ly (w) — Wi (w)) : shortfall at time ¢ in scenario w;

A.2 Model formulation

The formulation of the multi-period stochastic programming model of Dempster et
al. (2006) for minimum guarantees are as follow:

max (1-o) [ Do) ¥ Wtw))—a(zp(w) 5 ;:;;4)}
mt,a (W) g (), (@) } weld teTIU{T} weQ teTAU{T}
{ agA,wen,teTIu{T}

subjected to:

;A PR (w) zf, (w) =W, (w) forw e Q,

S L6 (w) Foap, (W) + 3 9P (W) zp, (W) = 3 FRRY (w)ag, (w) forw €
a€A\{S5} ! =Y\ a€A

Q,t € T4 {0}

Wi(w)= 3 fpfjgy (W) Tt o (W) for w € Q,t € T\ {T}
aEA

Wr W)= gPel (Wyzp_ 1 (W)+ Y 368 1 Fozp_ 1, (w)forweQ
aEA ! 12! a€A\(S} 13°

To,0 (W) = zgja (w)fora e A,weQ

Tra (W) = T,_ 1, (W) + o, (W) + a7, (W) forac 4,we,t€ Ttetel\ {0}

12!

o, (W) =z, (W) =0forac A,weQ,te THNT®
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'1—5'1(1-0)}7'”':1: L ()
2% = e )
FPEY (w) fora e A\N{S},weQ,teT

T, (W) =
zi, (W) =0forae A\{S},we,teTe
zfg(w) =z, g(w)=0frae A\{S},we,teTe
ht (W) + Wy (w) > Ly (w) forw € Q,t € Ttotal
bt (w) > 0 forw € Q, ¢ € Ttotel
Li(w) =Wo 1+ &) 2, (w)

=Wo 1+ @)T e vur@)T-1) for o, € Q¢ € Ttotal
0<a<l

Non-anticipatively constraints
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