

Adaptive control of an active magnetic bearing

flywheel system using neural networks

A dissertation presented to

The School of Electrical, Electronic & Computer Engineering

North-West University

In partial fulfilment of the requirements for the degree

Master Ingeneriae

in Computer and Electronic Engineering

by

Angelique Combrinck

Supervisor: Prof. G. van Schoor

Co-supervisor: Dr. P. A. van Vuuren

December 2010

Potchefstroom Campus

i

DECLARATION

I hereby declare that all the material used in this dissertation is my own original unaided work except

where specific references are made by name or in the form of a numbered reference. The work herein

has not been submitted for a degree to another university.

Signed: _______________________

 Angelique Combrinck

ii

SUMMARY

The School of Electrical, Electronic and Computer Engineering at the North-West University in

Potchefstroom has established an active magnetic bearing (AMB) research group called McTronX.

This group provides extensive knowledge and experience in the theory and application of AMBs. By

making use of the expertise contained within McTronX and the rest of the control engineering

community, an adaptive controller for an AMB flywheel system is implemented.

The adaptive controller is faced with many challenges because AMB systems are multivariable,

nonlinear, dynamic and inherently unstable systems. It is no wonder that existing AMB models are

poor approximations of reality. This modelling problem is avoided because the adaptive controller is

based on an indirect adaptive control law. Online system identification is performed by a neural

network to obtain a better model of the AMB flywheel system. More specifically, a nonlinear auto-

regressive with exogenous inputs (NARX) neural network is implemented as an online observer.

Changes in the AMB flywheel system’s environment also add uncertainty to the control problem. The

adaptive controller adjusts to these changes as opposed to a robust controller which operates despite

the changes. Making use of reinforcement learning because no online training data can be obtained, an

adaptive critic model is applied. The adaptive controller consists of three neural networks: a critic, an

actor and an observer. It is called an observer-based adaptive critic neural controller (ACNC).

Genetic algorithms are used as global optimization tools to obtain values for the parameters of the

observer, critic and actor. These parameters include the number of neurons and the learning rate for

each neural network. Since the observer uses a different error signal than the actor and critic, its

parameters are optimized separately. When the actor and critic parameters are optimized by

minimizing the tracking error, the observer parameters are kept constant.

The chosen adaptive control design boasts analytical proofs of stability using Lyapunov stability

analysis methods. These proofs clearly confirm that the design ensures stable simultaneous

identification and tracking of the AMB flywheel system. Performance verification is achieved by step

response, robustness and stability analysis. The final adaptive control system remains stable in the

presence of severe cross-coupling effects whereas the original decentralized PD control system

destabilizes. This study provides the justification for further research into adaptive control using

artificial intelligence techniques as applied to the AMB flywheel system.

Keywords: adaptive control, active magnetic bearing, neural network, system identification.

iii

ACKNOWLEDGEMENTS

King of Kings, You have been my strength and inspiration through so many challenges. I would never

have made it without You.

Prof. George van Schoor, thank you for being so much more than just a project supervisor. I

appreciate all your support. Dr. Pieter van Vuuren, thank you for always asking the difficult questions.

Your insight and guidance go a long way.

Marisha, thank you for all your love and understanding. Esmé and Marné, you both knew exactly

what to say and when to say it. My parents, Henry and Ansie Combrinck, and my brothers, Drikus

and Henry – even from a distance, I knew you were with me every step of the way. Thank you to all

my friends and family.

I would also like to thank Necsa and PBMR Pty. (Ltd.) for their financial support.

iv

“Let the morning bring me word of Your unfailing love, for I have put my trust in You. Show me the

way I should go, for to You I entrust my life.” – Psalm 143:8

v

CONTENTS

Chapter 1: Introduction ..1

1.1 The basics of an AMB system ... 1

1.2 The challenges regarding AMB systems .. 2

1.3 Adaptive control .. 2

1.4 Artificial neural networks ... 3

1.5 AMB flywheel system .. 4

1.6 Research problem .. 5

1.7 Issues to be addressed and methodology ... 5

1.7.1 Adaptive control design .. 5

1.7.2 System identification ... 5

1.7.3 Modelling using neural networks .. 6

1.7.4 Online training .. 6

1.7.5 Implementation ... 6

1.7.6 Performance verification ... 6

1.8 Dissertation overview .. 7

Chapter 2: Literature overview ...8

2.1 AMB control systems .. 8

2.1.1 Introduction ... 8

2.1.2 Characteristics of AMB systems ... 8

2.1.3 Advantages of AMBs .. 10

2.1.4 Shortcomings of AMBs .. 10

2.1.5 Applications of AMBs .. 10

2.1.6 Flywheel energy storage systems .. 11

2.1.7 AMB control methods ... 11

2.2 Adaptive control .. 15

2.2.1 Introduction ... 15

2.2.2 Adaptive control design methods .. 16

2.2.3 Adaptive control versus fixed control ... 18

2.2.4 System identification ... 18

vi

2.2.5 System identification procedure .. 19

2.2.6 Neural networks as model set ... 20

2.3 Neural networks ... 22

2.3.1 Introduction ... 22

2.3.2 Neural network architectures .. 23

2.3.3 Activation functions .. 25

2.3.4 Training neural networks .. 25

2.3.5 Training and testing strategy ... 28

2.3.6 Parameter selection ... 28

2.3.7 Error function .. 28

2.3.8 Neural network control ... 28

2.4 Critical overview and conclusions .. 30

Chapter 3: Architecture selection ..32

3.1 Introduction ... 32

3.2 Architecture features comparison .. 32

3.3 System identification ... 34

3.3.1 Prior knowledge .. 34

3.3.2 Experiment design... 34

3.3.3 Obtaining data ... 36

3.3.4 Choosing a model set .. 37

3.3.5 Choosing a condition of fit .. 42

3.3.6 Calculating the model ... 44

3.3.7 Model validation ... 47

3.3.8 Model revision .. 49

3.3.9 Implementation ... 49

3.3.10 Results ... 52

3.4 Conclusions .. 65

Chapter 4: Adaptive control design ...68

4.1 Introduction ... 68

4.2 Indirect adaptive control ... 69

4.2.1 Using neural networks .. 70

4.2.2 Reinforcement learning ... 71

4.3 Adaptive critic model .. 71

vii

4.4 Control system design ... 72

4.4.1 Lyapunov stability analysis methods .. 73

4.4.2 Observer design... 74

4.4.3 Actor design .. 75

4.4.4 Critic design .. 77

4.4.5 Observer-based ACNC ... 77

4.4.6 Adaptive laws .. 78

4.5 Derivative-free optimization ... 80

4.5.1 Genetic algorithms .. 80

4.5.2 Optimization process ... 81

4.5.3 Initialization and selection .. 81

4.5.4 Crossover and mutation .. 82

4.6 System identification loop ... 82

4.7 Performance verification .. 82

4.7.1 Step response .. 83

4.7.2 Robustness analysis ... 83

4.7.3 Stability analysis ... 84

4.8 Conclusions .. 85

Chapter 5: Simulation results ..86

5.1 Implementation .. 86

5.1.1 Optimization using genetic algorithms ... 86

5.1.2 Initialization of network weights .. 89

5.2 Observer verification ... 89

5.3 Adaptive controller verification ... 93

5.3.1 Step response .. 93

5.3.2 Robustness analysis ... 96

5.3.3 Stability analysis ... 98

5.4 Results assessment ... 99

5.4.1 Step response .. 99

5.4.2 Robustness analysis ... 100

5.4.3 Stability analysis ... 100

5.4.4 Other comments .. 100

5.5 Conclusions .. 101

viii

Chapter 6: Conclusions and recommendations ... 102

6.1 Conclusions .. 102

6.2 Recommendations for future work .. 104

6.2.1 Eliminate need for state information ... 104

6.2.2 Increase hidden layers ... 104

6.2.3 Higher sampling rate for observer .. 104

6.2.4 Improve network weights initialization .. 105

6.2.5 Enhance use of genetic algorithms .. 105

6.2.6 Proven method to select number of neurons ... 106

6.2.7 Adaptive controller order reduction .. 106

Appendix A: Project CD .. 107

References .. 108

ix

LIST OF FIGURES

Figure 1-1: Schematic of electromagnetic suspension .. 1

Figure 1-2: Fly-UPS .. 4

Figure 1-3: Proposed adaptive control system .. 5

Figure 2-1: Direct adaptive control system ... 17

Figure 2-2: Indirect adaptive control system .. 17

Figure 2-3: System identification loop .. 19

Figure 2-4: Feed-forward single-layer network .. 22

Figure 2-5: Recurrent single-layer network .. 24

Figure 2-6: Neural network as function approximator .. 29

Figure 2-7: Neural networks for assistance ... 29

Figure 2-8: Neural networks for control ... 30

Figure 3-1: Simplified discrete-time block diagram of AMB system ... 32

Figure 3-2: Block diagram of single control loop ... 35

Figure 3-3: Given SIMULINK® control system model .. 36

Figure 3-4: Excitation points .. 37

Figure 3-5: FTD architecture .. 38

Figure 3-6: NARX architecture... 38

Figure 3-7: LRN architecture .. 39

Figure 3-8: Window approach .. 40

Figure 3-9: Logsig and tansig activation functions ... 41

Figure 3-10: NARX configurations .. 46

Figure 3-11: Simplified block diagram ... 47

Figure 3-12: Frequency response up to 3 kHz .. 48

Figure 3-13: New system with neural model as plant ... 48

Figure 3-14: Excitation of AMB 1(x) ... 50

Figure 3-15: Architecture selection software execution loop ... 51

Figure 3-16: Excitation signal for AMB 1 .. 52

Figure 3-17: Plant input for AMB 1 .. 52

Figure 3-18: Plant output for AMB 1 .. 53

Figure 3-19: Rotor movement ... 53

Figure 3-20: Data division .. 54

Figure 3-21: FTD training results ... 54

Figure 3-22: Accuracy of first row FTD networks ... 55

Figure 3-23: Accuracy of second row FTD networks ... 55

x

Figure 3-24: Accuracy of final row FTD networks .. 56

Figure 3-25: FTD output ... 56

Figure 3-26: NARX training results .. 57

Figure 3-27: Accuracy of first row NARX networks .. 57

Figure 3-28: Accuracy of second row NARX networks ... 58

Figure 3-29: Accuracy of final row NARX networks ... 58

Figure 3-30: NARX output ... 59

Figure 3-31: LRN training results ... 59

Figure 3-32: Accuracy of first row LRN networks ... 59

Figure 3-33: Accuracy for 2 hidden layers ... 61

Figure 3-34: Original system step response .. 61

Figure 3-35: Rotor movement for original system with step input ... 62

Figure 3-36: FTD step response .. 62

Figure 3-37: Rotor movement for FTD with step input .. 63

Figure 3-38: NARX step response .. 63

Figure 3-39: Rotor movement for NARX with step input .. 64

Figure 3-40: NARX frequency response .. 64

Figure 3-41: NARX frequency response (zoomed) .. 65

Figure 4-1: Indirect adaptive control system (MIMO) ... 70

Figure 4-2: Discrete-time IAC with neural network (MIMO) .. 70

Figure 4-3: Adaptive critic model (MIMO) .. 72

Figure 4-4: Adaptive critic model with observer (MIMO) ... 72

Figure 4-5: Temporary control system design .. 72

Figure 4-6: NARX observer .. 75

Figure 4-7: Actor neural network.. 76

Figure 4-8: Critic neural network.. 77

Figure 4-9: Observer-based ACNC ... 78

Figure 4-10: Measurement of sensitivity data ... 84

Figure 5-1: Optimization of observer parameters ... 86

Figure 5-2: AMB 1(x) observer output at 0 r/min and n = 2 with PE ... 89

Figure 5-3: AMB 1(x) observer output at 2,200 r/min and n = 2 without PE 90

Figure 5-4: AMB 1(x) observer output at 4,000 r/min and n = 2 without PE 90

Figure 5-5: AMB 1(x) observer output at 8,300 r/min and n = 2 without PE 91

Figure 5-6: AMB 1(x) observer output at 31,400 r/min Hz and n = 2 without PE 91

Figure 5-7: AMB 1(x) observer output at 0 r/min and n = 20 with PE ... 92

Figure 5-8: AMB 1(x) observer output at 8,300 r/min and n = 20 without PE 92

Figure 5-9: Step response of PD controller and ACNC with n = 6 ... 94

xi

Figure 5-10: Step response of PD controller and ACNC with n = 12 ... 94

Figure 5-11: Step response of PD controller and ACNC with n = 20 ... 95

Figure 5-12: Step response of PD controller and ACNC with n = 20 for 5 s 96

Figure 5-13: Worst-case sensitivity of PD controller and ACNC with small chirp signal 97

Figure 5-14: Worst-case sensitivity ACNC with large chirp signal ... 97

Figure 5-15: Worst-case gain and phase margins of PD controller and ACNC with n = 20 98

Figure 5-16: AMB 1(y) output for decentralized PD control ... 99

Figure 5-17: AMB 1(y) output for ACNC .. 100

Figure 5-18: Genetic algorithm results for 40 generations ... 101

xii

LIST OF TABLES

Table 2-1: AMB control design methods .. 13

Table 2-2: Summary of neural networks ... 27

Table 3-1: Candidate architectures ... 33

Table 3-2: Comparison of BP algorithms ... 45

Table 3-3: Network parameters... 60

Table 3-4: Network mse values on validation set ... 60

Table 3-5: Response correlation ... 65

Table 4-1: Suggested ranges for design parameters .. 79

Table 5-1: Selected ranges for parameters .. 88

Table 5-2: Optimal values for ACNC parameters... 93

xiii

LIST OF ABBREVIATIONS

ACNC Adaptive critic neural controller

AI Artificial intelligence

AMB Active magnetic bearing

ANN Artificial neural network

BP Backpropagation

CE Certainty equivalence

COG Centre of gravity

DAC Direct adaptive control

DOF Degrees-of-freedom

FESS Flywheel energy storage system

FIS Fuzzy inference system

FLS Fuzzy logic system

FNN Feed-forward neural network

FTD Focused time-delay neural network

GA Genetic algorithm

IAC Indirect adaptive control

ITAE Integral of time multiplied by absolute error

LIP Linearity-in-the-parameters

LQ Linear quadratic

LQG Linear quadratic Gaussian

LTI Linear time-invariant

LRN Layered-recurrent neural network

MIMO Multiple-input multiple-output

MLP Multi-layer perceptron

NARMA Nonlinear auto-regressive moving average

NARX Nonlinear auto-regressive with exogenous inputs

NN Neural network

PA Power amplifier

PD Proportional derivative

PE Persistent excitation

PID Proportional integral derivative

RBF Radial basis function

RNN Recurrent neural network

 ...continued on next page

xiv

SISO Single-input single-output

SOM Self-organizing Map

SVM Support vector machine

UFA Universal function approximation

UPS Uninterruptible power supply

VSC Variable structure control

WNN Wavelet neural network

LIST OF SYMBOLS

iα Learning rate of neural network i

ζ Damping ratio

E Amount of electrical energy

E(i) Mean estimation error of run i

f Magnetic force

fmax Maximum frequency range

g0 Nominal air gap length

gm Gain margin

Gs(s) Sensitivity function

i Instantaneous current

i0ref Bias current

iref Reference current

I Moment of inertia

j Neural network design parameter

km Electromagnetic constant

ki Force-current factor

ks Force-displacement factor

KP Proportional constant

KD Derivative constant

l Length of flywheel

L(s) Loop transfer function

m Mass of flywheel

mse Mean squared error

...continued on next page

xv

M Number of algorithm executions or runs

n Number of state variables

ni Number of hidden layer neurons of network i

φm Phase margin

φi Activation function of network i

P.O. Percentage overshoot

Q(k) Strategic utility function

r Radius of flywheel

std Standard deviation

τ Time constant

Ts Settling time

ˆ
iV Hidden layer weight matrix of network i

ω Rotational speed

ωn Natural frequency

ωgc Gain crossover frequency

ωpc Phase crossover frequency

Ŵi Output layer weight matrix of network i

xs Rotor position

xref Reference position of rotor

x(k) State vector in discrete time

ŷ Estimate of plant output y

CC hh aa pp tt ee rr 11 :: II nn tt rr oo dd uu cc tt ii oo nn

This chapter starts with a brief review of AMB system operation and the challenges associated with

AMB system modelling and control. The focus then shifts to the use of neural networks as part of an

adaptive control design in an effort to improve the control of an AMB system. A short discussion of

the issues specific to this study and their proposed resolutions follow. This introduction concludes

with an overview of the rest of this document.

1.1 The basics of an AMB system

Many challenges are associated with the modelling and control of AMB systems. Before anything can

be said about these challenges, it is important to grasp the basic components and operation of a typical

AMB system. An AMB system consists of a rotor, position sensors, a controller, power amplifiers and

electromagnets. There is no contact between rotor and bearing because the rotor is suspended by

magnetic forces. Figure 1-1 illustrates the principle of electromagnetic suspension [1].

1. A contact-free sensor measures the position of the rotor.

2. This position measurement is used by the controller to derive a control signal.

3. A power amplifier converts the control signal to a control current.

4. The control current generates a magnetic field in the actuating electromagnets.

5. Resulting magnetic forces ensure the rotor remains suspended.

Figure 1-1: Schematic of electromagnetic suspension

Chapter 1: Introduction 2

1.2 The challenges regarding AMB systems

Apart from the fact that AMB systems are inherently unstable, they are also considered multivariable,

nonlinear and dynamic systems. It is not important at this point to understand these system

characteristics or know why they exist in an AMB system – it will be explained in the next chapter.

Simply note that most of the challenges associated with the modelling and control of an AMB system

can be attributed to the above-mentioned system characteristics [1].

Most existing mathematical models of AMB systems are poor approximations of reality which only

adds uncertainty to the control problem. These models are usually linear approximations and their

accuracy can only be ensured close to a specified operating point [1]. In model-based control design

methods, the accuracy of the model has the most significant influence on the success of the design. It

is therefore crucial to have a high quality model when using a model-based control design method [2].

Many of the control design methods applied to AMB systems result in fixed (non-adaptive) control

systems and aim for a high level of robustness [1]. A system is defined as robust when it performs as

desired in the presence of considerable plant uncertainty [3]. This plant uncertainty can be attributed

to unknown phenomena which cannot be modelled. Some control design methods attempt to work

despite the resulting modelling error whereas other methods aim to adapt to the associated

uncertainty. In the latter case, the model used is either a good representation of the system under

consideration or it is continually improved [2].

1.3 Adaptive control

It is clear at this point that a need for more accurate modelling and improved control of AMB systems

exist. The basic idea behind adaptive control involves updating a model using previous estimates as

well as new data to achieve improved control of the system under consideration [4]. According to

Dumont and Huzmezan [5], the use of an adaptive controller is justified if a fixed controller cannot

produce an acceptable trade-off between stability and performance. Consequently, complex systems

with time-varying dynamics were identified by Dumont and Huzmezan [5] as suitable candidates for

adaptive control applications.

Ordonez and Passino [6] also showed that adaptive control is best employed when considering

uncertain nonlinear systems with time-varying structures. Based on the inherent characteristics of an

AMB system, it is indeed a suitable candidate for adaptive control. An adaptive control design aims to

adjust the controller based on updated model information. The resulting control system is adaptive to

a changing environment. Structures well known for their ability to adapt to changes in their

environment are neural networks [7].

Chapter 1: Introduction 3

1.4 Artificial neural networks

Research in artificial neural networks (ANNs) is one of the numerous branches of the field of artificial

intelligence. ANNs are intelligent systems inspired by the workings of biological neural networks.

The basic idea of an ANN is to reproduce the processing power as displayed by nervous systems [8].

Exactly what an ANN looks like and how it works, will be explained in the next chapter. The

capabilities and advantages of an ANN (or simply NN) are of greater significance now.

Most applications of NNs are aimed at solving problems in function approximation, prediction,

optimization, pattern classification, associative memory as well as control [9]. Conventional methods

perform relatively well when used to solve these problems but they do so in properly constrained

environments and performance is far from satisfactory without these constraints. ANNs have the

flexibility and robustness to surpass the performance of conventional methods and provide alternative

(and often better) ways to solve the above-mentioned problems [10].

A neural network can correctly approximate any function when provided with adequate input-output

data and the structure of the network is properly chosen. This ability is called the universal function

approximation (UFA) property and makes the NN a powerful modelling tool. Neural networks are

also applicable to multivariable nonlinear problems such as the modelling and control of an AMB

system [8].

Some researchers are convinced that neural networks are fault-tolerant to some extent. They believe

that if a neural network should become damaged due to a faulty model or external disturbances, the

performance of the network will degrade gracefully [11]. When properly trained, a neural network

generalizes well to data it has never seen before i.e. it behaves as desired when presented with data

different from the training set [8]. The many successful applications of neural networks to nonlinear

adaptive control problems also encourage their use in this study [12-16].

A neural network called an observer1 can be trained online to learn the characteristics of the plant in

an AMB system model [12]. The UFA property of a NN implies that this observer network only needs

enough input-output data from the plant as well as the appropriate structure to be able to model it. The

observer network can supply an adaptive controller with information about the plant and enable the

controller to make adjustments to its parameters as necessary. The controller itself might consist of

one or more neural networks depending on the complexity of the control problem [8].

1 Observer is a term commonly used to refer to the structure which estimates a model of an unknown system [8].

Chapter 1: Introduction 4

1.5 AMB flywheel system

The McTronX research group at the North-West University in Potchefstroom made an AMB system

with a flywheel as the rotor available for this study. The system serves as an uninterruptible power

supply (UPS) because the flywheel can store energy for later use. This AMB system is accordingly

called the Fly-UPS [13].

The system was designed to deliver 2 kW of electricity for a period of 3 minutes during a power

failure. The AMBs were designed to suspend the flywheel up to an operating speed of 31,400 r/min

but due to safety reasons, the flywheel currently spins at a maximum speed of 8,300 r/min. It employs

two radial AMBs and one axial AMB resulting in a 5-DOF2 system as shown in figure 1-2 [13].

Figure 1-2: Fly-UPS

As can be seen in figure 1-2, the control cabinet contains the electronic system of the Fly-UPS. The

electronic system consists of the controller, power amplifiers and sensor units. McTronX was also

kind enough to provide a relatively accurate nonlinear flexible-rotor model of this AMB flywheel

system which makes use of decentralized PD (proportional derivative) control. Only the 2 radial

AMBs are included in the model resulting in a 4-DOF system. This is made possible because the axial

and radial suspensions can be considered separately and independently under certain assumptions [1].

2 The number of degrees of freedom (DOF) refers to the number of motions of a body in space. A rigid body has 6 DOF of
motion. Two radial AMBs each enable movement in the x- and y-axis directions and the axial AMB enables movement in
the z-axis direction [1].

Chapter 1: Introduction 5

1.6 Research problem

The primary objective of this study is to obtain an adaptive controller for the Fly-UPS system using

online system identification3, adaptive control design methods and neural networks. The neural

networks will be used to continually adapt an AMB plant model online and acquire an adaptive

controller for the 4-DOF AMB flywheel system. It is hoped that by using information from a more

accurate model to adapt the parameters of the controller, the overall system control will be improved.

System performance will be verified using step response, robustness and stability analysis. The

proposed control system can be seen in figure 1-3 where the system reference input is represented by

r(t), the control signal by u(t) and the system output by y(t).

Figure 1-3: Proposed adaptive control system

1.7 Issues to be addressed and methodology

This section focuses on the most important issues or challenges to be faced during the course of this

study. The proposed resolution of each issue is also discussed.

1.7.1 Adaptive control design

An adaptive control design method which allows for the use of model information to update the

controller parameters is required. The design method is also required to continually adapt the plant

model using online system identification. The algorithm used to update the model and the controller

parameters should do so while ensuring the stability of the closed-loop system. A comparison of the

various existing designs might reveal the most appropriate method. Only design methods with

comprehensive analytical proofs will be considered.

1.7.2 System identification

The first step of system identification is obtaining data with adequate information about the system

under consideration [14]. The nonlinear flexible-rotor model of the AMB flywheel system provided

by McTronX will be used to obtain the necessary data required for system identification. This model

encompasses all of the nonlinear characteristics of the 4-DOF AMB flywheel system and includes

gyroscopic and unbalance effects [13].

3 System identification is defined as constructing mathematical models of unknown systems using input-output data [14].

Chapter 1: Introduction 6

A way of comparing the new model with the original plant is also essential. Since the behaviour of the

rotor is speed-dependent, a comparison in the time domain will not suffice. Analysis of the new

model’s frequency response will be compared with the frequency response of the original plant.

1.7.3 Modelling using neural networks

Another concern is the type of neural network to be used for online system identification. The

network architecture should have the ability to model the AMB system characteristics as accurately as

possible. A proper review of the various network architectures will be essential. This review will help

to limit the number of possible architectures to those which are recommended for system modelling

and allow for dynamic behaviour.

The candidate architectures have to be properly tested to allow for a fair comparison. This comparison

will enable the selection of the most suitable architecture to model the plant of the AMB flywheel

system. A quick offline system identification experiment can be used to test each of the architectures

and expose their respective strengths and weaknesses.

1.7.4 Online training

An issue arises when considering the time scale of different processes in an adaptive control scheme.

Three different time scales usually exist: underlying closed-loop dynamics, plant identification and

plant parameter variations. If the identification is not faster than the plant variations, instability can

occur [15]. This issue will be resolved by choosing an appropriate training algorithm and sampling

rate for the adaptive controller.

1.7.5 Implementation

The offline system identification experiment will require quick and easy implementation. MATLAB®

contains a neural network software package, the Neural Network Toolbox™, which can be used to

experiment with different network architectures and training algorithms. The adaptive controller has

to be implemented in the same environment as the original model provided by McTronX to allow for

easy comparison. Consequently, SIMULINK®
 will be used to develop the simulation model of the

adaptive control system.

1.7.6 Performance verification

A way of verifying the performance of the resulting adaptive control system is necessary. The

stability and robustness of the original decentralized PD control system and the adaptive control

system will be determined. This will enable a comparison between the original and the adaptive

system and provide a way of verifying the performance of the adaptive control system.

Chapter 1: Introduction 7

1.8 Dissertation overview

Chapter 2 provides a broad overview of the relevant literature. The fields of AMB systems, adaptive

control and neural networks are the main focus. AMB systems in general and the AMB flywheel

system in particular are discussed first. The chapter continues with a discussion on adaptive control of

nonlinear systems and a brief comparison between adaptive and fixed control methods. The final

section introduces artificial intelligence and more specifically, neural networks and neural network

control.

Chapter 3 covers the details of an offline system identification experiment comparing different neural

network architectures. The estimation error and accuracy of each network are used to perform the

comparison. The aim is to obtain the most suitable architecture to model the plant section of the AMB

flywheel system. The neural model is then used in the original system as the plant and the frequency

response of the closed-loop system is determined. The frequency response of the original system is

compared to the frequency response of this new system to validate the neural model.

Chapter 4 starts by describing the system under consideration and reviewing indirect adaptive control

using neural networks. The use of reinforcement learning in an online adaptive control system is

motivated. The focus then shifts to the details of an adaptive critic controller. A discussion on the

chosen adaptive control design follows and finally, optimization of the controller parameters using

genetic algorithms is explained.

Chapter 5 contains the implementation and simulation results of the chosen adaptive controller. The

observer optimization results are presented first. Its response at various rotor speeds is shown and

compared with the original system output. The step response of the new control system is compared

with the step response of the original PD control system. Performance verification continues with

robustness and stability analysis of each control system.

Chapter 6 starts by drawing conclusions using results from the previous chapters. Important issues

addressed during this study are highlighted and the outcome of proposed methodologies discussed.

Concluding remarks continue by discussing the difference in performance between the decentralized

PD control system and the adaptive control system. The chapter closes with recommendations for

future work aimed at improving the adaptive controller as applied to the AMB flywheel system.

CC hh aa pp tt ee rr 22 :: LL ii tt ee rr aa tt uu rr ee oo vv ee rr vv ii ee ww

The objective of this chapter is to provide a broad overview of the three fields associated with this

study: active magnetic bearings, adaptive control and neural networks. AMB systems in general and

the AMB flywheel system in particular are discussed first. The chapter continues with a discussion on

adaptive control of nonlinear systems and a brief comparison between adaptive and fixed control

methods. The final section introduces artificial intelligence and more specifically, neural networks

and neural network control.

2.1 AMB control systems

2.1.1 Introduction

This section provides a short summary of AMB control systems. The characteristics of AMB systems

as well as their advantages and shortcomings are discussed. The application areas of AMBs, including

flywheel systems, are reviewed and conventional AMB control methods are discussed.

2.1.2 Characteristics of AMB systems

The terms used most to describe AMB systems are: unstable, nonlinear and dynamic. Before

explaining why these terms are attributed to an AMB system, it is important to understand what they

mean.

If an LTI (linear time-invariant) system were to be subjected to a bounded input or disturbance and its

response is also bounded, it is called a stable system. In mathematical terms, all the poles of the

system transfer function have to be on the left-hand side of the imaginary axis for a system to be

stable. An unstable LTI system would be exactly the opposite: an unbounded response or poles on the

right-hand side of the imaginary axis [3].

Stability analysis of nonlinear time-varying systems is much more involved and no generally

applicable method exists [8]. A linear system is said to satisfy the principle of superposition and the

property of homogeneity. It simply implies that a linear combination of inputs leads to the same linear

combination of outputs in a linear system. This is not the case for a nonlinear system and the

relationship between the inputs and outputs may not be clearly observable. One or more parameters

vary with time in a time-varying system and adds to the complexity of the system’s behaviour [3].

A system is called static when the output does not depend explicitly on time. The current value of the

output depends only on current values of external signals in such a system. In a dynamic system the

current value of the output also depends on previous values of external signals [14]. Each of these

terms with regard to AMB systems will now be explained.

Chapter 2: Literature overview 9

An AMB has a negative mechanical stiffness which causes a pole in the right-hand side of the

complex domain and makes the AMB inherently unstable. The nonlinearity can be attributed to the

dependency of the magnetic force in an AMB on the size of the air gap between the electromagnet and

the rotor as well as on the current in the coil. Equation (2.1) shows how this magnetic force (f) is

inversely proportional to the square of the size of the air gap (x) as well as proportional to the square

of the current (i) in the coil [1].

2

2m
i

f k
x



 (2.1)

Saturation and hysteresis in the ferromagnetic material of the magnets also contribute to the

nonlinearity of the AMB. An AMB is considered dynamic because magnetic saturation and hysteresis

also make the system’s behaviour time-dependent and builds memory into the system [1].

When AMBs are used to suspend a spinning rotor, the system becomes much more complex. Rotating

systems exhibit speed-dependent dynamic behaviour. Consider a spinning rotor with Iz0 its inertia

about the axis of rotation z and ω the rotational speed in rad/s. According to (2.2), when the speed of

the rotor increases, a gyroscopic term G becomes bigger [1].

 0zI ωG

 (2.2)

When the rotor is more or less disc-like, its inertia Iz0 about the axis of rotation z becomes large and

consequently, G also becomes bigger. Gyroscopic effects are characterized by G and contribute to the

dynamic behaviour of rotor vibrations. These vibrations are called unbalance effects because they are

caused by rotor unbalance [1]. A rotor also becomes more and more flexible as the speed increases

and gives rise to flexible modes [16].

The 4-DOF AMB control system under consideration for this study uses two radial AMBs to direct

the position of a flexible rotor in both the x- and y-axes. Each set of electromagnets (a set for each

AMB in each direction) is controlled independently. Non-contact sensors are arranged

perpendicularly on the x- and y-axes and are used to determine the position of the rotor. This

configuration of magnets and sensors results in a four-input four-output system and characterizes the

AMB system as multivariable [1].

An AMB system is further characterized by various sources of uncertainty. The actuator4 stiffness is

easily affected by static rotor load and anything which changes the air gap in the actuator. Its high

level of sensitivity makes it the most significant source of uncertainty in an AMB system [1].

4 Actuator refers to the combination of the power amplifier and electromagnetic bearing [1].

Chapter 2: Literature overview 10

The damping of flexible modes is sensitive to operating conditions, temperature and aging and makes

it another important source of uncertainty. Other sources of uncertainty include the gain between the

sensors and controller, rotor speed in some systems and in the case of model-based control, the model

used to approximate the plant [1].

2.1.3 Advantages of AMBs

The most significant advantage of an AMB is the fact that it suspends a rotor using only magnetic

fields without any contact from liquid or ball bearings as found in conventional systems. This allows

for high rotational speeds whilst avoiding contaminating wear and greatly reduces maintenance costs.

Operation costs are also reduced because AMBs have 5 to 20 times lower bearing losses than

conventional bearings at high operating speeds [1].

Rotor unbalance vibrations are reduced because the active feedback control of the system can evaluate

and change the system damping and stiffness characteristics. The AMB system provides measurement

information online which allows for immediate diagnosis and improved system reliability [1].

2.1.4 Shortcomings of AMBs

Developing an AMB system sometimes involves demanding software and the associated hardware

costs can be high. Designing an AMB for a specific application requires extensive knowledge of

mechanics, electronics and control in addition to knowledge about the specific application area [1].

Retainer bearings are used to prevent damage to the rotor-bearing system if the AMB becomes

overloaded or it malfunctions. These bearings support the spinning rotor until it comes to a complete

standstill or the system regains control of the rotor. The retainer bearings are problematic because

their design depends on the specific application. Even though solutions to this design problem exist, it

still requires extra attention [1].

2.1.5 Applications of AMBs

Industrial systems such as jet engines, compressors, heart pumps and flywheel energy storage systems

are required to meet stringent specifications: high speed, no mechanical wear, clean environment, low

vibration and high precision. The advantages of AMBs make them useful for a number of industrial

systems [17]. The main application areas for magnetic bearings include: vacuum systems, machine

tools, medical devices, and turbo-machinery [1].

The system under consideration for this study, a flywheel energy storage system, is an example of a

vacuum system. Magnetic bearings are used to suspend the flywheel in a vacuum without lubrication

– a system with no mechanical wear or contamination [18].

Chapter 2: Literature overview 11

Energy losses due to air resistance do not exist in a vacuum and magnetic bearings have relatively low

power requirements. All of these advantages are especially important in a system geared towards

energy storage [18].

2.1.6 Flywheel energy storage systems

Electricity cannot be stored in its original form. The energy has to be converted into a form which can

be stored: mechanical, chemical or thermal. The flywheel can be used in an energy storage system to

store energy mechanically. A typical flywheel energy storage system (FESS) transfers energy to and

from the flywheel using a motor/generator configuration [19].

Electricity supplied to the stator winding of the motor is converted to torque and causes the flywheel

to spin and gain kinetic energy. The generator converts kinetic energy stored in the flywheel to

electricity by applying a torque. The motor/generator set is usually one machine functioning as a

motor or generator depending on the phase angle [20]. Equation (2.3) explains that the amount of

energy (E) stored depends on the moment of inertia (I) of the flywheel and the square of the rotational

speed (ω) of the flywheel [18].

21

2
E Iω (2.3)

In (2.4), the moment of inertia depends on the length (l), mass (m) and radius (r) of the flywheel [18].

2

2

lmr
I  (2.4)

According to (2.3), the ability of the flywheel to store energy can be improved by increasing the

moment of inertia or by spinning the flywheel at higher speeds. Spinning a flywheel at very high

speed results in substantial self-discharge of the flywheel due to air resistance and bearing losses.

These losses in energy are usually minimized by operating the flywheel at very low pressure (in a

vacuum chamber) and using magnetic bearings to suspend the flywheel. The resulting FESS has high

overall efficiency [18].

2.1.7 AMB control methods

Controlling an AMB system is challenging for a number of different reasons. An AMB system

requires feedback stabilization because it is open-loop unstable. SISO (single-input single-output)

control design methods have proven inadequate even though these methods are easier to implement.

The only solution is to use more complex multivariable or MIMO (multiple-input multiple-output)

control design methods [1].

Chapter 2: Literature overview 12

All the system states have to be accessible for state feedback control design methods. Only a limited

number of signals are available in industrial AMB systems, rendering state feedback control design

methods impossible. The number of possible control design methods for an AMB system is further

limited to output feedback control or methods including the estimation of unavailable states [1].

The following different types of AMB control exist: current control, voltage control and flux-

feedback control [16]. The control task remains the design of a controller capable of producing the

correct command signal in each case. Even though current control has fewer advantages than voltage

control, it is the control method of choice in the industry. Voltage control requires more complex

control algorithms than current control and makes it less practical to implement. A number of

technical challenges, including the avoidance of magnetic saturation, still surround the

implementation of self-sensing magnetic bearings. For this reason and because the implementation

platform uses current control, the focus of this study will remain on conventional current control [1].

Designing a controller for an AMB system becomes especially difficult when a flexible rotor is under

consideration. A flexible rotor has a significantly wider mechanical bandwidth than a rigid rotor. This

simply means that a flexible rotor can have much larger gain than the rigid rotor at high frequencies.

The dynamic behaviour of the feedback controller becomes a key issue. The AMB flywheel system is

subject to various excitation sources of which rotor unbalance is the most common. When the

frequency of the excitation source coincides with a natural frequency of the rotor-bearing system,

certain resonance phenomena occur. Each natural frequency has an associated mode shape5 [1].

At each resonant frequency or critical speed, the rotor vibrations cause the rotor to be bent to the

corresponding mode shape. These critical frequencies give rise to the rigid and flexible modes of the

rotor. The rotor exhibits little or no deformation at the rigid modes but significant deformation can be

observed at flexible modes [1]. The flywheel is modelled as a flexible rotor in the given simulation

model since all metals become flexible at high rotational speeds. This means that rigid and flexible

modes are included in the model. In the AMB flywheel system, the first two critical frequencies are

rigid modes and the third critical frequency corresponds to the first flexible mode [21].

In many industrial AMB applications, the sensors and actuators are not collocated axially along the

rotor. This allows the existence of flexible modes with a node between a sensor-actuator pair. These

modes add to the dynamic behaviour of the system when their frequencies are within the controller

bandwidth. These two flexibility effects have to be addressed in the design of an AMB controller for a

flexible rotor [1].

5 A mode shape is defined as an instantaneous image of the rotor deflection curve at maximum vibration strain [1].

Chapter 2: Literature overview 13

The possibility exists for a flexible rotor to become unstable in speed ranges other than the design

range. A popular approach for solving this problem is to design controllers for different speed ranges

and switch between them as necessary. This is called gain scheduling [16]. Another approach is called

linear parameter varying (LPV) control and consists of designing a controller functionally dependent

on the rotor speed [1]. Table 2-1 provides a summary of different AMB control methods and

compares their respective strengths and weaknesses:

Table 2-1: AMB control design methods

Method Properties Strengths Weaknesses Other comments

Proportional
integral

derivative
(PID) control
including PD

control

Output feedback

Low controller order
[22]

System dynamics need to be
well understood [1], [23]

Widely used – most
industrial applications
use decentralized PID

control [17]

Design process ensures
high feasibility [1]

Requires extensive
knowledge and experience

from designer [1], [23]

COG coordinate control
superior over

decentralized scheme [1]

Other forms
include COG

(centre of gravity)
coordinate,

collocated, non-
collocated and

mixed [1]

Extends without
difficulty [1]

Might become insignificant
as robust design methods

become better [1]

Many successful
applications in

decentralized schemes
[1], [22], [24]

Easily applied to
decentralized (SISO)
control schemes [1],

[17]

Controller parameter
selection can be time

consuming without tuning
software [1]

Often combined with
genetic algorithms and
fuzzy logic systems:

[25], [26], [27] Suited to industrial
applications [1], [28]

Potential instability under
certain conditions [1], [29]

H∞
 control

Output feedback

High robustness [30],
[31]

Requires state-space
description [1], [30]

Rarely used in industrial
applications [1]

Works well for MIMO
control schemes and
complex plants [1]

Large computational
resources - high order and

complexity [1]

Mathematically abstract
[1]

Design using
frequency domain

weighting
functions [32]

Weighting functions
determined by

specifications [1], [30]

Very sensitive though
unbalance performance

better than μ-synthesis [1]

Tries to minimize model
uncertainty, steady-state

error, noise and
disturbances [30]

μ-synthesis

Output feedback

Design follows natural
reasoning [1]

Negative unbalance
performance [1] Few examples of

industrial applications
[1]

Directly address
sensitivity issues [1],

[33]

Requires state-space
description [1]

Design using
frequency domain

weighting
functions [32]

Works well for MIMO
control schemes and
complex plants [1] Large computational

resources - high order and
complexity [1]

Powerful theory for
independent

uncertainties [33]

Weighting functions
determined by

specifications [1]

Mathematically abstract

[1]

Chapter 2: Literature overview 14

Method Properties Strengths Weaknesses Other comments

Passive
control

Output feedback
Closed-loop stability

ensured even with
modelling errors [1] Non-ideal dynamics, plant

nonlinearities and digital
control threaten passivity

property [1]

Not feasible under
certain conditions –
relative degree of

system cannot be higher
than one [34] Passivity property

of system used [1]
Used to design zero-
bias control laws [35]

Pole-
placement

State feedback

Closed-loop system
dynamics directly
treated [1], [36]

All system states have to be
available [37]

Familiar method but
rarely used [1]

Place zeros of
characteristic
equation at

desirable locations
[36]

Choosing closed-loop system
poles difficult without

required skill [1] Performance
comparable to sliding

mode control [37] Treatment of bandwidth
limitations and sensor noise

challenging [1]

Linear
quadratic

(LQ) control

State feedback

Weighting matrices
address bandwidth

limitations [1]

All system states have to be
available [36]

Familiar method but
rarely used [1]

Quadratic cost
function is

minimized [36]

Selection of weighting
matrices require skill and

experience [1]

No significant
advantages over

decentralized control
with rigid rotor [1]

Linear
quadratic
Gaussian

(LQG)
control

Output feedback

Observer used to
estimate non-

measurable system
states [36]

Selection of weighting
matrices require skill and

experience

Familiar method but
rarely used [1]

Quadratic cost
function is

minimized [36]

Sensitivity problems due to
uncertainties in observer

dynamics [1]

No significant
advantages over

decentralized control
with rigid rotor [1]

Exact information of plant
dynamics needed [1], [36]

Modification necessary
for flexible rotor [38]

Artificial

intelligence
(Fuzzy logic,

neural
networks)

Systems are
intended to

exhibit adaptive
capabilities in

changing
environments and

possess
knowledge of a

human expert in a
specific field [7]

Different AI approaches
can be combined in

complimentary fashion
[7]

Many AI techniques suffer
from curse of dimensionality

[7]

Many examples in
literature of AI

techniques aiding
conventional AMB

control design methods

Neural networks can
recognize patterns and

continually adapt to
changes in environment

[8]

Determining optimal weights
for network can be a difficult

task i.e. non-trivial [8]

Very few industrial
AMB applications of

neural network control:
[39], [40]

Fuzzy systems
incorporate human

knowledge and have the
ability to reason [7]

Classic fuzzy systems cannot
adapt to changing
environments [7]

Fuzzy logic very often
combined with neural

networks, genetic
algorithms and PD/PID
control [7], [25], [41]

Controllers
using genetic
algorithms

Global
optimization
method [7]

Genetic algorithms
(GAs) are derivative-

free global optimization
methods [7]

Derivative-free optimization
methods take long with large

search spaces [7]

GAs often used to tune
controller parameters for

other methods: [25],
[42], [31]

Chapter 2: Literature overview 15

Method Properties Strengths Weaknesses Other comments

Sliding mode
control

State feedback

Order of controller can
be reduced [43]

All system states have to be
available [1]

Many successful
applications in industry:

[29], [37], [43], [44]

Disturbance rejection
[43]

System dynamics need to be
well understood [44]

Decoupled design
procedure [37]

Low sensitivity to
parameter variations

and unmodelled
dynamics [37], [43]

Existence of sliding mode
controller by static

hyperplane design may not
always exist [45]

Easy to implement [43]
In case of high stiffness,
uncontrollable chattering

renders system unstable [1]

VSC – Variable
structure control [46]

Backstepping

State feedback

Applicable to systems
which are not feedback

linearizable [34]

All system states have to be
available [47]

Many applications in
adaptive schemes: [34],

[47], [48], [49]

Virtual controller
uses latter states

to stabilize
previous one [49]

It should be clear at this point that designing an AMB controller is no easy task. Some researchers

find the idea of an automated approach desirable. This approach consists of combining automated

control design methods with system identification to achieve a self-tuning or adaptive system. The

benefits would include significantly decreased design effort and development time [1]. Adaptive

control systems are fine examples of such an automated approach.

2.2 Adaptive control

2.2.1 Introduction

Every living organism has the fundamental ability to adjust to changes in its environment. Adaptive

control borrows this idea from nature to improve the performance of control systems. A way of

monitoring system performance and converting it to some sort of performance index is essential. The

final step consists of using the performance index to adjust the controller parameters and achieve an

adaptive controller [50]. This is the description of an adaptive control system from the year 1958.

Over 50 years later, researchers have still not agreed on a formal definition of adaptive control but the

main elements seem to be the same [51]. Astrom and Wittenmark [28] have provided a definition

which has become widely accepted: a controller with adjustable parameters and a mechanism for

adjusting the parameters.

Chapter 2: Literature overview 16

Dumont and Huzmezan [5], Sastry and Bodson [4] and Tao [52] also tried to define adaptive control.

The following important details were gleaned from their attempts:

 An adaptive control system consists of a process, a controller and an adaptive law6.

 The process to be controlled is called the plant and its parameters can be known or unknown.

 The controller parameters are updated by the adaptive law to improve performance.

What has changed in the last 50 years? Apart from an exponential increase in the computational

power of hardware, adaptive control theory has extended to the control of nonlinear systems [8]. This

makes sense because the majority of physical systems are nonlinear with unknown or partially known

dynamics.

Nonlinear systems with unknown or partially known dynamics, including AMB systems, are termed

complex according to the definition of a complex system by Narendra, Feiler and Tian [53]. Complex

systems can exhibit time-varying behaviour for a number of different reasons. Input and disturbance

signals (including noise) may have different characteristics at different points in time. System

parameters may also vary with time due to environmental changes [50].

Many researchers believe that complex systems require deeper understanding to improve their control

[4]. In many industrial applications, a careful investigation into the causes of system or environmental

changes might not be possible or simply too expensive. Adaptive control is highly suited to such

circumstances [28].

2.2.2 Adaptive control design methods

With an increase in understanding of complex systems, new control design methods are developed.

This is problematic and beneficial at the same time. The number of available tools to improve system

control become large and makes the selection of an appropriate design method difficult [54].

Some design methods, like gain scheduling, aim for satisfactory performance over a wide range of

operating conditions [54]. Another method, called model reference adaptive control, tries to ensure

that the controlled plant exhibits behaviour close to that of a reference model [4]. Self-tuning

regulators use estimates of plant parameters to calculate the controller parameters [8].

The relevant literature discusses many adaptive control design methods yet it seems that they are all

based on two basic algorithms: direct and indirect [4]. Tao [52] also found that any adaptive control

scheme can be developed using either a direct or indirect adaptive law.

6 An adaptive law is defined as the algorithm used to adjust or tune the parameters of a controller [8].

Chapter 2: Literature overview 17

In a direct adaptive control (DAC) design the parameters of the controller are updated straight from

the adaptive law. The adaptive law is based on the output error between the plant output y(t) and the

reference model output ym(t). Model reference adaptive control is an example of a design method

using a direct adaptive control algorithm [52]. Figure 2-1 illustrates a DAC system.

Figure 2-1: Direct adaptive control system

In an indirect adaptive control (IAC) design the controller parameters are calculated from model

approximations. These approximations are obtained from a model of the plant using system

identification. The adaptive law uses an approximation error representing the mismatch between the

plant output y(t) and the online model approximations from the observer [52]. Self-tuning regulators

employ an indirect adaptive law [8]. Figure 2-2 illustrates an IAC system.

Figure 2-2: Indirect adaptive control system

Two approaches to system identification in adaptive control systems exist. System identification may

take place offline at first to obtain an initial model for the online phase. In the online phase, called

recursive system identification, the model is updated using previous estimates as well as new data [4].

Offline system identification is not compulsory, but it definitely improves the rate of convergence of

the controller parameters online [8].

Since existing AMB models are poor approximations of reality, this study includes a phase dedicated

to system identification. The adaptive control design method will accordingly make use of an indirect

algorithm as the adaptive law.

Chapter 2: Literature overview 18

It should be clear at this point that an adaptive control design method should include steps to

recognize the changes to be adapted to, a means of adjustment and the criteria for adjustment [50]. All

of these choices allow for a large number of possible designs and the numerous methods found in

relevant literature suggest the same.

Apart from gain scheduling, model reference adaptive control and self-tuning regulators, researchers

have also produced the following: adaptive fuzzy control [2], adaptive control using neural networks

[8], adaptive backstepping [47], model predictive control [52], adaptive inverse control [55] and

robust adaptive control [56].

2.2.3 Adaptive control versus fixed control

Selecting and implementing an adaptive control design method can be extremely difficult. This effort

is well justified when comparing the advantages of adaptive control with fixed control. An adaptive

controller is designed to adapt online to parametric, structural and environmental uncertainties while

still ensuring satisfactory system performance. This is perhaps the most significant difference between

adaptive and fixed controllers: a fixed controller is based solely on prior information7, whereas an

adaptive controller is also based on posterior information8 [5].

A well-designed adaptive controller is also more robust than a fixed controller because it remains

stable in the presence of unmodelled dynamics and external disturbances [52]. Fixed models can only

exactly represent a fixed number of environments. A control system using fixed models requires a

large number of models to ensure a small steady-state error [57].

2.2.4 System identification

A system can be described as an entity in which different variables interact to create observable

signals called outputs. External signals called inputs or disturbances affect the system in such a way

that their influence can be clearly observed in the outputs. System identification is defined as

determining a mathematical model of an unknown target system using data – inputs and outputs –

obtained from the system itself [14]. System identification has three main purposes [7]:

 The identified model can be used to predict the target system’s behaviour.

 The model might be able to explain relationships between the input-output data of the target

system.

 The model can be used to design a controller for the target system.

7 Prior information is any data or knowledge obtained from the system or model offline [5].
8 Posterior information is data or knowledge obtained from the system or model online i.e. while in operation [5].

Chapter 2: Literature overview 19

There are two critical steps involved in system identification. The first step is known as structure

identification. Prior knowledge about the system under consideration needs to be applied to determine

candidates for the best model. The second step is called parameter estimation or identification. At this

point, the structure of the model is known and optimization techniques can be applied. The

optimization techniques are used to calculate the best set of parameter values which describe the

system properly [7].

2.2.5 System identification procedure

A significant amount of time and effort goes into successful system identification, especially when a

trial-and-error approach is utilized. To exhaust all the possible solutions and combinations of models

and their structures hardly seems like a practical approach. The system identification loop proposed

by Ljung [14] will be used to resolve this issue. The loop consists of collecting data, choosing a model

set and picking the best model in the set. If the chosen model does not pass validation tests, it is

discarded and the steps of the procedure are revised. The system identification loop is illustrated in

figure 2-3.

Figure 2-3: System identification loop

Chapter 2: Literature overview 20

The data can be obtained either from the normal operation of the system under consideration or from a

specifically designed identification experiment. In the experiment, the user may decide how signals

are measured and specify the types of input signals. The motivation for an experiment is to ensure that

the resulting data contains the maximum amount of information necessary for successful

identification [14].

Choosing the appropriate type of model or model structure is important because trying to identify for

example, a nonlinear system using a linear model would yield poor results. Prior information about

the specific problem and formal properties of models are used to make this choice. The next step is

evaluating the models based on how well they perform when trying to replicate the original data set

according to a chosen condition or criterion. A suitable method i.e. independent of model structure

will have to be devised [14].

After performing these three steps, the chosen model needs to be validated. Validation is a necessary

step because prior to doing so, the chosen model is the one which best fits the data according to a

chosen condition. It has not been tested to see whether it is valid for its intended use, how well it

relates to unobserved data or if it conforms to prior knowledge. The model will be discarded if it

performs poorly but will be accepted and used if it performs in a satisfactory manner. There are

various reasons why a model might perform poorly and be discarded [14]:

 The technique used to find the best model according to specified conditions failed.

 The specified conditions were not chosen properly.

 The set of models was inappropriate and did not contain suitable candidates for the system

under consideration.

 The data set did not contain enough information to ensure the selection of superior models.

Models which are discarded because of poor performance should not be ignored. Their results can be

used in combination with prior information as guidance for selecting new candidate models.

2.2.6 Neural networks as model set

A later section is devoted to more detail on neural networks. This section only aims to explore neural

networks as a modelling tool and motivate their selection as the candidate model set for system

identification in this study. The two most common AI techniques used for modelling are neural

networks and fuzzy logic systems [2].

A fuzzy logic system or fuzzy inference system (FIS) possesses the capability to reason and learn in

an environment characterized by ambiguity and imprecision. However, a FIS cannot adapt to changes

in its environment without some sort of adaptive mechanism [7].

Chapter 2: Literature overview 21

Neural networks are well known for their ability to adapt to changing environments when used in an

online approach [7]. Research clearly reveals that both FISs and NNs are regarded as universal

function approximators [2]. The performance of a FIS depends greatly on the construction of the

system itself. This implies that the universal function approximation property only guarantees the

existence of an optimal fuzzy system – it does not state how such a system is to be found [58].

To find an optimal fuzzy system, an arbitrarily large number of rules could be used initially and then

reduced as fine-tuning progresses [58]. The same holds true for a neural network and its number of

neurons. When properly trained, a neural network generalizes well to data it has never seen before i.e.

it behaves as desired when presented with data different from the training set [8].

Some researchers are convinced that both FISs and NNs are fault-tolerant to some extent. If a rule

were to be deleted in a FIS’s rule base, it would not significantly impact the system’s operation

because of its parallel and redundant architecture. However, the system’s performance does slowly

worsen [7]. If a neural network should become damaged due to a faulty model or external

disturbances, the performance of the network will degrade gracefully [11].

The greatest weakness of a fuzzy system can be found in its rule base. The curse of dimensionality

can be clearly observed when the dimension of the input space increases. As the number of input

variables increases, the number of rules increases exponentially and the fuzzy system can quickly

become very complex [59]. The same holds true for a neural network, its input space and its number

of neurons [7].

NNs are believed to have the flexibility and robustness to surpass the performance of conventional

methods and provide alternative (and often better) ways to solve certain problems [10]. Fuzzy systems

are constructed based on the uncertainties in the inputs and outputs of the system and thus are also

considered robust systems [60].

It should be clear that both neural networks and fuzzy logic systems have useful advantages when

trying to control an AMB system. Even though both structures are applicable to nonlinear control

problems, neural networks are selected as the candidate model set. Neural networks have one specific

advantage crucial to adaptive control - the ability to adapt to changing environments. Literature

abounds with successful applications of fuzzy logic in AMB control but only a few examples of

neural networks. Neural network controllers have been used for disturbance rejection and vibration

suppression [39] and as robust AMB controllers [61]. Further investigation into the application of

neural networks in AMB control is well justified.

Chapter 2: Literature overview 22

2.3 Neural networks

2.3.1 Introduction

Research in artificial neural networks (ANNs) is one of the numerous branches of the field of artificial

intelligence. Support vector machines (SVMs) and fuzzy logic systems (FLSs) are also included. An

intelligent system is an entity which exhibits one or more cognitive capabilities such as learning,

decision-making and classification [8].

ANNs are intelligent systems inspired by the functionality of biological neural networks i.e. the brain.

The basic idea of an ANN is to reproduce the processing power as displayed by nervous systems [8].

Note that from this point forward, weights will be used to refer to the values of a network’s weights

and biases.

The basic components of a neural network are interconnected neuron-like elements. These elements,

also called neurons, are multiple-input single-output units where the output is typically a weighted

sum of the inputs. By adjusting these weights and updating the architecture, the network is adapted to

model a desired function and in this manner the neural network achieves learning. The neurons are

grouped in layers and can be either fully or partially connected [62]. Figure 2-4 illustrates a fully

connected single-layer neural network.

Figure 2-4: Feed-forward single-layer network

Note that the network in figure 2-4 is called a single-layer network because it has only a single layer

of hidden neurons. Other naming conventions would call the same network a two-layer network given

that it has two layers of weights [63]. The first naming convention will be used throughout this

document. The direction of the arrows indicates the flow of information through the network.

Chapter 2: Literature overview 23

Most applications of ANNs are aimed at solving problems in function approximation, prediction,

optimization, pattern classification, associative memory as well as control. Conventional methods

perform relatively well when used to solve these problems but they do so in properly constrained

environments and performance is far from satisfactory without these constraints. ANNs have the

flexibility and robustness to surpass the performance of conventional methods and provide alternative

(and often better) ways to solve the above-mentioned problems [10].

Several steps are involved in the design process of a neural network. The following choices are

considered the most important in this process:

 The neural network architecture as well as the type of activation function used by the neurons.

 The training algorithm which usually depends on the chosen architecture.

 The parameters specific to the chosen architecture and training algorithm.

 The training and testing strategy.

 The error or performance function.

Making the appropriate choices during the design process determines the success of solving the given

problem. The most relevant information to consider during each of these choices will now be

presented.

2.3.2 Neural network architectures

A neural network’s architecture refers to the connection pattern used between the network’s layers

and their neurons. Research clearly shows that architectures can be divided into two broad classes:

feed-forward and recurrent architectures. In a feed-forward neural network (FNN) the information

flows in one direction only i.e. from the inputs through the hidden layer(s) to the outputs. A recurrent

neural network (RNN) has feedback connections and the flow of information occurs in more than one

direction [8].

2.3.2.1 Feed-forward neural networks

In general, FNNs are static because they have no feedback elements and contain no delays –

properties which cause their response to an input to be independent of any previous network state. The

most common FNN is the multi-layer perceptron (MLP) which has multiple hidden layers each with

their own number of neurons. Referring to figure 2-4, note that the layers between the inputs and the

outputs are called hidden layers. FNNs also include single-layer perceptron networks, radial basis

function networks (RBFs), self-organizing maps (SOMs) and wavelet neural networks (WNNs). A

WNN allows for fast convergence rates during training of the network because of its properties of

finite support and self-similarity, but it can only be used for static problems due to its feed-forward

network architecture [64].

Chapter 2: Literature overview 24

RBFs and SOMs also have feed-forward architectures and thus also are not able to model internal

system dynamics [65]. Dynamic feed-forward networks do exist but the dynamics are only present at

the input of the network due to the inclusion of a tapped delay line. This type of network is called a

focused time-delay neural network. When the tapped delay lines are distributed throughout the

network, it is accordingly called a distributed time-delay network. Note that information still only

flows in one direction i.e. forward [9].

2.3.2.2 Recurrent neural networks

The neurons in a recurrent neural network (RNN) form a directed cycle i.e. the flow of information is

in more than one direction. This is achieved by introducing feedback into a FNN in the form of

connections between different layers as well as connections among neurons in the same layer. RNNs

are able to exhibit dynamic behaviour due to this introduction of feedback into the network as shown

in figure 2-5 [8].

Figure 2-5: Recurrent single-layer network

Elman and Jordan networks surfaced in the late 1980’s and are the first examples of RNNs. They also

characterize the two most basic ways to introduce feedback into a network. In an Elman network the

feedback is introduced by connecting a hidden layer to the inputs and consequently, this network

focuses on the sequence of input values. The emphasis in a Jordan network falls on the sequence of

output values because the feedback is introduced by connecting the outputs to the inputs [66].

Chapter 2: Literature overview 25

Today’s RNNs include but are not limited to competitive networks, Hopfield networks, Boltzmann

machines, layer-recurrent networks (LRNs) as well as a number of FNNs which have been modified

to include some form of feedback. An LRN is a more complex version of an Elman network because

each layer (except the last layer) has a single-delay feedback loop around it [9].

2.3.3 Activation functions

The purpose of a neuron’s activation function is to process incoming data and send the result to the

next layer. These functions are also referred to as transfer functions and can be found in the hidden

and output layers of a neural network. Popular candidates for hidden layer activation functions in

multilayer networks are the sigmoidal functions. These functions reduce an infinite input range into a

finite output range and are consequently called squashing functions. The choice of the output layer’s

activation function is relatively simple. It is recommended that a linear type be used for regression

problems and sigmoidal types for classification tasks [62].

2.3.4 Training neural networks

Training a neural network is the process in which the network’s weights are adjusted using a chosen

training algorithm. The algorithm makes use of certain learning rules to adjust the weights according

to the training data provided. The training data usually consists of example patterns representing the

specific task the network is being trained to perform. The weights can be updated in an iterative

manner to improve the performance of the neural network i.e. the network can be trained again and

again. The ability to learn without a specified set of rules makes neural networks superior to

conventional expert systems [10].

Training a neural network successfully involves understanding the environment in which it is to

operate. A model of this environment can then be used to discover what information is available to the

neural network. This model is called a learning paradigm. The different learning paradigms are as

follow [7], [10]:

 Supervised learning – the network is supplied with example patterns of correct behaviour in

the form of input-output pairs and learns to reproduce the relationship present in the data. An

explicit teacher is present.

 Unsupervised learning – the desired outputs are not available during training and the network

learns through self-organizing behaviour using competitive learning rules or a pre-defined

cost function. The network learns to extract features or patterns from input data with no

feedback from the environment about desired outputs.

 Reinforcement learning – a computational agent interacts with its environment and learns

correct actions from a reinforcement signal grading its performance. The aim is to discover a

policy for selecting actions that minimize an estimated cost function.

Chapter 2: Literature overview 26

There are three major practical issues when learning from example patterns: capacity, sample

complexity and computational complexity. First of all, the issue of capacity must be addressed. It

concerns determining how many examples can be stored and what exactly a specific network is

capable of – what functions it can approximate or decision boundaries it can form [10].

The second issue is sample complexity and considers the number of examples necessary to obtain a

network which generalizes well. Computational complexity is the third issue and refers to the time

taken to properly train the network [10]. Addressing these issues can be traced back directly to the

choices in the neural network design process discussed earlier.

2.3.4.1 Training algorithms

A training algorithm or learning rule is a procedure used to adjust the weights of a network i.e. train

the network. The purpose of training is to improve the performance of the network as measured by

some performance or error function. This procedure can be applied to one pattern at a time or a whole

batch of patterns at once. These two training styles are called incremental and batch training

respectively [9].

A multitude of training algorithms abound and an obvious problem is choosing the appropriate one for

the task at hand. This multitude of training algorithms is due to the fact that original algorithms have

been modified, extended or combined into various different forms to achieve whatever tasks they

were intended for. Certain algorithms are appropriate only for certain network types and the choice of

algorithm becomes simpler once a network architecture has been chosen [9].

Table 2-2 provides a summary of network architectures and which training algorithms or learning

rules are commonly used to train each of them. The summary also shows which purpose each network

was initially intended for. As with the multitude of algorithms, network architectures have also been

modified over time and resulted in various different forms. For this reason, the following summary

has been restricted to the original algorithms and architectures.

Note that BP in the summary indicates the backpropagation algorithm – an extremely popular training

algorithm. The second stage of the BP algorithm in which the weights are adjusted can be

accomplished using a variety of different optimization schemes including conjugate gradient methods

as well as evolutionary programming. BP in the summary refers to all of these variations as well as

standard gradient descent. Hagan, Demuth and Beale [9] provided the information for this summary.

Chapter 2: Literature overview 27

Table 2-2: Summary of neural networks

Category Name Algorithm Purpose Behaviour Paradigm

Feed-
forward
neural

networks

Linear

Perceptron Perceptron rule Pattern recognition Static Supervised

Linear layer Widrow-Hoff
rule

Pattern recognition and
function approximation

Static Supervised

Adaline Static Supervised

Multi-layer perceptron
BP

Pattern recognition and
function approximation

Static Supervised

Wavelet Function approximation Static Supervised

Time
delay

Linear with
tapped delay

Widrow-Hoff
rule

Digital signal processing Dynamic Supervised

Focused
time-delay

BP Time-series prediction Dynamic Supervised

Distributed
time-delay

BP Pattern recognition Dynamic Supervised

Radial basis
function
neural

networks

Generalized regression

Orthogonal
least squares /

kernel methods

Function approximation Static Supervised

Probabilistic Pattern recognition Static Supervised

Simple radial basis
Pattern recognition and
function approximation

Static Supervised

Associative
neural

networks

Hopfield Hebb rule
Pattern recognition and

optimization
Dynamic Unsupervised

Simple recall
Outstar
learning

Pattern recall Static Unsupervised

Simple associative
Hebbian
learning

Pattern association Static Unsupervised

Recurrent
neural

networks

Layered-recurrent

BP

Filtering and modelling
applications

Dynamic Supervised

Nonlinear
autoregressive with

exogenous input

Modelling of nonlinear
dynamic systems

Dynamic Supervised

Real-time recurrent BP Real-time applications Dynamic Supervised

Elman BP
Recognition and generation of
spatial and temporal Patterns

Dynamic Supervised

Competitive
neural

networks

Kohonen self-
organizing map

Kohonen
(instar)
learning

Pattern recognition Static Unsupervised

Competitive layer Kohonen
learning

Pattern recognition
Dynamic Unsupervised

Hamming Dynamic Unsupervised

Grossberg
Continuous-
time instar
learning

Clustering Dynamic Unsupervised

Adaptive resonance
theory

Instar / outstar
learning

Pattern recognition Dynamic Unsupervised

Learning vector
quantization

Kohonen
(instar)
learning

Pattern recognition Static Hybrid

Chapter 2: Literature overview 28

2.3.5 Training and testing strategy

Research reveals that the most common training and testing strategy, early stopping, consists of

dividing the available data into three separate sets. These sets are called the training, validation and

test data sets. The training set is used to train the network while the validation set is used to ensure

that the network does not overfit the data. The test set is used to test how well the network generalizes

to data it has never seen before [9].

Overfitting occurs when the error on the training data becomes very small but the error on the

validation data (new data) is large. The network is very accurate when tested using only training data

and cannot generalize when presented with new samples. There are methods to avoid overfitting and

thus improve generalization. These methods include using adequately sized networks, using more

training data as well as techniques called early stopping and regularization [9].

2.3.6 Parameter selection

When the network architecture and training algorithm have been chosen, appropriate values for their

parameters have to be determined. The architecture parameters include the number of layers, the

number of neurons in each layer, the type of transfer function in each layer as well as the weights and

their initial values. The parameters associated with the training algorithm depend on the algorithm

used for training and might include a learning rate or the number of epochs (iterations) used to train

the network [67].

2.3.7 Error function

Calculating the error and consequently the error derivatives of a neural network are perhaps the most

important part in training. These values are used to adjust the weights in an effort to improve network

performance. Generally, if the network is capable and algorithm parameters are chosen correctly, this

error will eventually become zero. In pattern recognition problems, this is desirable though function

approximation applications require better generalization [9]. It should be clear that the error or

performance function is also a way to measure the performance of a network during and after training.

There are many candidates for the error function. Care should be taken when choosing an error

function and implementing it in the training algorithm.

2.3.8 Neural network control

The field of neural networks is quite extensive. The previous sections only serve as an indication of

how many network architectures and training algorithms exist. The number of possible ways to use

neural networks in control systems is accordingly, very large. This section provides an overview in

the two most fundamental ways a neural network can be used in control systems – providing

assistance for an existing controller or being a controller [68].

Chapter 2: Literature overview 29

Assistance is most commonly provided in the form of system identification. The neural network is

used to approximate an unknown function, usually the plant to be controlled, or an unknown

parameter [69]. Figure 2-6 illustrates function approximation using a neural network.

Figure 2-6: Neural network as function approximator

The neural network estimates the plant output, y(t), as ŷ(t). The error between the actual output and

the estimated output is used to adjust or train the weights of the neural network. When a neural

network is used in this manner it is called an observer. The observer weights can initially be adjusted

offline to increase the rate of convergence if the desired output data is available [8].

The neural network observer can be used with other neural networks to synthesize a controller.

Depending on the type of plant to be controlled and signals available for feedback, various design

methods are possible. These design methods include: backstepping [8], sliding-mode [70], NARMA-

L2 or feedback linearization [71], multiple model approach [53], adaptive inverse control, internal

model control, model predictive control, model reference adaptive control and adaptive critic [55].

Figure 2-7 shows the various ways in which a neural network can be used for assistance in a control

system.

Figure 2-7: Neural networks for assistance

Chapter 2: Literature overview 30

In figure 2-7, a grey block indicates a method and the blocks preceding a grey block, are overlapping

features between the different methods. The same applies to figure 2-8 showing the various ways a

neural network can be used to control a system.

Figure 2-8: Neural networks for control

The control objective needs to be achieved while guaranteeing the overall system’s stability. Some of

the mechanisms which cause a system to become unstable are parameter drift, controllability and

transient behaviour. Large initial parameter approximations cause the system to exhibit poor transient

behaviour resulting in modelling errors. Parameter drift is caused by these modelling errors because

the neural network does not exactly match the function it is trying to approximate [69].

2.4 Critical overview and conclusions

The research problem clearly indicated that the most important focus areas for this study are AMB

systems, adaptive control and neural networks. These focus areas were chosen as the relevant fields of

interest to be covered by the literature study. The challenges and considerations associated with the

modelling and control of an AMB flywheel system were investigated in this chapter. Adaptive control

was also discussed and compared with fixed control methods.

Chapter 2: Literature overview 31

The chapter continued with the selection of an indirect adaptive control law for the adaptive

controller. Special attention was given to the system identification loop since it forms an integral part

of indirect adaptive control. The selection of neural networks as candidate models for the plant of the

AMB flywheel section was also explored. The final section of this chapter provided an overview of

neural networks in general. The detailed study on different architectures enables the selection of

suitable network architectures for system identification. Different neural network topics such as

training, testing and control were also discussed.

Any important literature not found in this chapter will be presented in following chapters as

necessary. The following chapter explains how the most suitable neural network architecture to model

the plant of the AMB flywheel system was chosen. An offline system identification experiment

enables a comparison of different architectures as well as the final architecture selection.

CC hh aa pp tt ee rr 33 :: AA rr cc hh ii tt ee cc tt uu rr ee ss ee ll ee cc tt ii oo nn

This chapter covers the details of an offline system identification experiment comparing different

neural network architectures. The estimation error and accuracy of each network are used to perform

the comparison. The aim is to obtain the most suitable architecture to model the plant section of the

AMB flywheel system. The neural model is then used in the original system as the plant and the

frequency response of the closed-loop system is determined. The frequency response of the original

system is compared to the frequency response of this new system to validate the neural model.

3.1 Introduction

The objective of the offline system identification experiment is to obtain a black-box model9 of the

plant section10 of the AMB flywheel system. A simplified discrete-time block-diagram of the AMB

system is illustrated in figure 3-1. A neural network will be used to obtain the model of the plant. This

new model should be able to replace the actual plant in the original control system without causing

considerable changes in the behaviour of the overall system.

Figure 3-1: Simplified discrete-time block diagram of AMB system

The AMB system is considered in discrete-time because samples of data are used to perform the

offline system identification. The plant has all the characteristics of an AMB system described in

earlier sections: dynamic, nonlinear, multivariable and unstable. The neural network architectures

with the abilities to exhibit the same characteristics must be identified.

3.2 Architecture features comparison

The Neural Network Toolbox™ found in MATLAB® will be used for this phase of the study because it

allows for quick implementation and easy comparison between the different architectures. This

software package contains many of the architectures listed in table 2-2.

9 Little or no information is known about a black-box system and its internal process – it is viewed in terms of its inputs,
outputs and transfer characteristics [2].
10 The plant section of the AMB flywheel system consists of the power amplifiers, two radial AMBs, flywheel and position
sensors [13].

Chapter 3: Architecture selection 33

The number of possible architectures for system identification is significantly reduced by noting that

only certain architectures allow for dynamic behaviour. Furthermore, only certain architectures are

recommended for function approximation and modelling. Table 2-2 is repeated as table 3-1 with the

candidate architectures highlighted in grey.

Table 3-1: Candidate architectures

Category Name Algorithm Purpose Behaviour Paradigm

Feed-
forward
neural

networks

Linear

Perceptron Perceptron rule Pattern recognition Static Supervised

Linear layer Widrow-Hoff
rule

Pattern recognition and
function approximation

Static Supervised

Adaline Static Supervised

Multi-layer perceptron
BP

Pattern recognition and
function approximation

Static Supervised

Wavelet Function approximation Static Supervised

Time
delay

Linear with
tapped delay

Widrow-Hoff
rule

Digital signal processing Dynamic Supervised

Focused
time-delay

(FTD)
BP Time-series prediction Dynamic Supervised

Distributed
time-delay

BP Pattern recognition Dynamic Supervised

Radial basis
function
neural

networks

Generalized regression

Orthogonal
least squares /

kernel methods

Function approximation Static Supervised

Probabilistic Pattern recognition Static Supervised

Simple radial basis
Pattern recognition and
function approximation

Static Supervised

Associative
neural

networks

Hopfield Hebb rule
Pattern recognition and

optimization
Dynamic Unsupervised

Simple recall
Outstar
learning

Pattern recall Static Unsupervised

Simple associative
Hebbian
learning

Pattern association Static Unsupervised

Recurrent
neural

networks

Layered-recurrent
(LRN)

BP

Filtering and modelling
applications

Dynamic Supervised

Nonlinear
autoregressive with

exogenous input
(NARX)

Modelling of nonlinear
dynamic systems

Dynamic Supervised

Real-time recurrent BP Real-time applications Dynamic Supervised

Elman BP
Recognition and generation of
spatial and temporal Patterns

Dynamic Supervised

Competitive
neural

networks

Kohonen self-
organizing map

Kohonen
(instar)
learning

Pattern recognition Static Unsupervised

Competitive layer Kohonen
learning

Pattern recognition
Dynamic Unsupervised

Hamming Dynamic Unsupervised

Grossberg
Continuous-
time instar
learning

Clustering Dynamic Unsupervised

Adaptive resonance
theory

Instar / outstar
learning

Pattern recognition Dynamic Unsupervised

Learning vector
quantization

Kohonen
(instar)
learning

Pattern recognition Static Hybrid

Chapter 3: Architecture selection 34

Any architecture in table 2-2 which does not allow for system identification of a nonlinear dynamic

system has been eliminated as shown in table 3-1. Selection of the most suitable architecture has now

been reduced to a performance comparison between the FTD, LRN and NARX architectures.

3.3 System identification

Offline system identification is used to compare the performance of the three identified architectures

when used as modelling tools. The steps outlined in the system identification loop as applied to the

modelling of the AMB flywheel system will now be explained.

3.3.1 Prior knowledge

Prior knowledge about the general characteristics of AMB systems already helped to narrow down the

number of candidate architectures to only three types. Other parts of significant information known

before performing system identification are used in the following sections to make important choices.

3.3.2 Experiment design

The plant of the AMB flywheel system is inherently unstable. This requires the input-output data

needed for system identification to be obtained from the system while in closed-loop operation. A

technique called direct closed-loop identification will be used because it is regarded as “...the natural

approach to closed-loop data analysis.” Direct identification is especially useful for this experiment

because it has the following features [14]:

 No knowledge about the feedback is required.

 The complexity of the controller is not important.

 Consistent results and optimal accuracy is guaranteed if the model represents the true system.

 As long as the closed loop system and the observer remain stable, an unstable plant poses no

problem.

The SIMULINK® model of the AMB flywheel system provided by McTronX will be used to obtain the

data necessary for system identification. The model encompasses nonlinear effects like saturation and

hysteresis as well as modelling eddy currents. The simulation results closely resemble experimental

results and the model accurately reproduces the air gap reluctances in the AMB [13].

Two opposing actuators each consisting of a radial AMB and a current-controlled PA are used in the

simulation model as the control configuration. A single PD controller is used per AMB axis resulting

in four PD controllers since there are four AMB axis directions. Figure 3-2 shows the block diagram

of a control loop containing the controller, actuator and rotor for a single AMB axis [13].

Chapter 3: Architecture selection 35

2
1 1
2
1

m m

s

k i

x

2
2 2
2
2

m m

s

k i

x

m

1

s

1

s

1

 Figure 3-2: Block diagram of single control loop

In figure 3-2, the reference position of the rotor is indicated by xref and the actual rotor position by xs.

The PD controller constants, KP and KD, are used to produce the current reference signal iref. The

bottom PA receives the bias current i0ref minus the current reference signal whereas the top PA uses

the bias current plus the current reference signal. The PA outputs are im1 and im2 respectively.

Electromagnetic constants are represented by km1 and km2 and the nominal air gap between the AMB

and the rotor by g0. The variables m and g are the rotor mass and gravitational constant respectively

and give rise to the gravitational force exerted on the rotor as F = mg [13].

The dependency of the magnetic force in the AMB on the size of the air gap between the

electromagnet and the rotor as well as on the current in the coil is given in (3.1). This nonlinear

magnetic force (f1) is inversely proportional to the square of the size of the air gap (xs1) as well as

proportional to the square of the current (im1) in the coil as given in (3.1). The similarity between (2.1)

and (3.1) is evident.

2
1 1

1 2
1

 m m

s

k i
f

x


 (3.1)

Equation (3.1) can be seen in the actuator of figure 3-2 right after the top PA. This equation is known

as the characteristic equation of the actuator which converts the PA current to a magnetic force. The

top and bottom AMB forces are subtracted from each other because they oppose each other. This

resulting force is divided by the rotor mass m to obtain the rotor acceleration which is used to

determine the rotor position xs [13].

Chapter 3: Architecture selection 36

 Figure 3-3: Given SIMULINK
® control system model

Figure 3-3 shows the given simulation model of the decentralized PD control system in SIMULINK®.

Notice that the given model has already been modified to allow for the injection of an excitation

signal which will be discussed shortly. Four PD control loops for each AMB axis direction and the

flywheel model (grey block) can be seen. The flywheel model allows for rotor unbalance to be

excluded or included during a simulation. The simulation model also allows for the speed in rad/s and

the type of reference signal (step, chirp, multi-sine etc.) to be specified.

3.3.3 Obtaining data

The input-output data for system identification is obtained by introducing a suitable excitation signal11

into the system and measuring the plant’s inputs and outputs. As shown in figure 3-4, the excitation

signal can be injected at point 1, 2, or 3 in the block diagram of a control system [72]. The excitation

signal will be injected at point 2 since it is closest to the component of interest – the plant [73].

11 The aim of an excitation signal is to excite the system under consideration and force it to reveal its characteristics [14].

Chapter 3: Architecture selection 37

 Figure 3-4: Excitation points

The signals u(k) and y(k) will be measured to obtain the input-output data necessary for system

identification. The type of excitation signal injected also determines how informative the data from

the experiment will be. An excitation signal that generates input-output data rich in information about

the system’s behaviour is called a persistently exciting signal [28]. For the majority of system

identification problems, the condition of persistent excitation is compulsory [14].

The following signals are commonly selected as excitation signals: Gaussian white noise, random

binary signals, pseudo-random binary signals, chirp signals and multi-sines. A multi-sine signal is a

sum of sinusoids and each sinusoid differs in frequency and phase. It is considered a natural choice of

excitation. This makes sense considering that Ljung [14] describes a persistently exciting signal as

one which “...contains sufficiently many distinct frequencies.” Identification of higher order models

would therefore require excitation signals with more frequencies [14].

Following recommendations from Ljung [14] and van Vuuren [73], a multi-sine excitation signal will

be injected at point 2 in figure 3-4. The AMB flywheel system currently operates at a maximum speed

of 8 000 r/min which roughly translates to 133 Hz. Incorporating more prior knowledge about the

system, the multi-sine excitation signal will contain frequencies up to a maximum of 133 Hz.

3.3.4 Choosing a model set

This step in the system identification loop consists of specifying the collection of candidate models to

be used in the search for an optimal solution. Though three architectures (FTD, LRN and NARX)

have been selected, the model set is not yet completely specified. Choices regarding the number of

hidden layers, number of neurons in each layer and the type of activation function still have to be

made. Other important considerations include how the weights will be initialized, the learning rate

and the time the network takes to converge to the smallest error possible [62].

Each of the architectures will now be presented in a little more detail. The FTD architecture provided

by the Neural Network Toolbox™ is recommended for time-series prediction. It consists of a static

FNN with a tapped delay line at the input layer. The FTD architecture shown in figure 3-5 is

considered the simplest dynamic network because dynamics are only present at the input, p(t) [74].

Chapter 3: Architecture selection 38

The delay is represented by TDL with b1 and b2 referring to the biases of each layer. The input layer

weights and the output layer weights are referred to by IW and LW respectively. The activation

function for each layer is represented by fi with i = 1,2. The output from layer 1 to layer 2 is

represented by a1(t) and the final output by a2(t).

2 ()a t

()p t

Figure 3-5: FTD architecture

The NARX network architecture is commonly used for time-series prediction, nonlinear filtering and

most significantly, modelling of nonlinear dynamic systems. A feedback connection from the output

to the input makes the network recurrent. Figure 3-6 illustrates the NARX architecture [74].

2 ˆ() ()a t y t

() ()p t u t

Figure 3-6: NARX architecture

The difference equation in (3.2) describes the NARX architecture [8].

() ((1), (2),..., (), (1), (2),..., ()) ()y k f y k y k y k n u k u k u k m d k        (3.2)

Equation (3.2) clearly shows that the next value of the output y(k) depends on the previous values of

the output as well as previous values of the independent input signal u(k). The network is used to

approximate the unknown nonlinear function f(·) and calculate the estimate ŷ(k) of the output y(k).

The disturbance d(k) is an unknown vector acting on the system at time instant k [8].

Chapter 3: Architecture selection 39

The LRN architecture is a more complex version of the Elman architecture and has been applied

successfully to filtering and modelling applications. This architecture has a single-delay feedback

connection around each layer except the output layer. Figure 3-7 illustrates the LRN architecture [74].

2 ()a t

()p t

Figure 3-7: LRN architecture

Armed with a little more knowledge about the candidate architectures, the selection of architecture

parameters becomes a little easier. Most significantly are the number of neurons in each layer and the

number of layers. While it is true that using more neurons requires more computation, it also enables

the network to approximate more complex functions. Using more layers provides the network with the

ability to approximate complex functions more efficiently. The key lies in choosing the number of

layers and the number of neurons which will produce a balanced neural network – not too simple and

not too complex. Networks which are too simple will underfit data and networks which are too

complex will overfit data [9].

Keeping to the principle of trying simpler designs first, a constructive approach will be used to

determine the optimal number of layers and their neurons. The number of hidden layers and neurons

will each start at a small number. The network is trained until the error converges and then the number

of neurons is increased by a specified integer. The number of layers will be increased in the same way

but only one layer at a time. This process continues until the performance of the network stops

improving on both training and validation data. The number of layers and the number of neurons

which resulted in the smallest training and validation error are then considered to be optimal [75].

The approach described above is completely exhaustive – it tries every possible combination of

number of neurons and number of layers. It can be modified and made more effective by searching a

range of possible network sizes, called a window, and focussing only on the best networks. Consider

figure 3-8 describing a window approach.

Chapter 3: Architecture selection 40

Each bubble is a network with the number of neurons written on it. Start with the top 8 networks, train

them and determine each network’s performance. Say, for example, the 3 networks in grey in the first

row performed the best. This indicates that the optimal number of neurons lies somewhere between 20

and 30 neurons. The initial range is expanded using a finer window as indicated by the second row.

The second row of networks is trained and each network’s performance determined. In this example,

the networks with 24 and 26 neurons in the second row performed significantly better than the rest.

The range of the second row is expanded resulting in the third row of networks. Notice that no more

integers exist between the numbers of neurons on each bubble in the third row. The third row

networks are trained and in this example, the network with 25 neurons performed better than the other

two networks. It can be concluded that 25 neurons is the optimal number of neurons.

Figure 3-8: Window approach

If a larger range of neurons is used at the start, this window approach will take longer but the results

might also be different. The time it takes to determine the optimal network is also affected by the

increase in neurons used between one network and the next. If the increase was small and the range

large, many different networks would be trained and the approach reverts back to being exhaustive.

The initial range should be as large as hardware limitations allow to ensure the best results.

This window approach allows for an effective comparison between the different candidate

architectures because only the best networks from each search will be compared. A way to determine

the optimal network size has now been improvised, but the choice of activation function still remains.

Chapter 3: Architecture selection 41

The choices of network initialization and learning rate will be deferred to the model calculation

section because they are usually specific to the chosen training algorithm. Many training algorithms

require the derivative of the error function to be available. This derivative is only possible if the

activation function used by the neural network is differentiable. Only differentiable activation

functions will be considered for this experiment [74].

Sigmoid activation functions are differentiable and are recommended in function approximation

problems [9]. The Neural Network Toolbox™ provides the following two types of sigmoid functions:

logistical sigmoid (logsig) and hyperbolic tangent sigmoid (tansig). These activation functions are

illustrated in figure 3-9. The tansig activation function squashes the input values to the range [-1, 1]

whereas the logsig activation function squashes it to [0, 1].

Figure 3-9: Logsig and tansig activation functions

The tansig activation function will be used for the different network designs because the data used

during training has been normalized to the range [-1, 1] by Neural Network Toolbox™ data pre-

processing functions. The purpose of this experiment is function approximation implying that a pure

linear activation function should be used for the output layer [9]. This ensures that the outputs of the

network can take on any value and will not be limited to only a small range of values. When neural

network training is under consideration, normalization of a data vector is defined as rescaling by the

minimum and range of the vector.

Normalization is used to ensure that all the values lie within a specified range such as [-1, 1]. Since

some data vectors have ranges much larger than others data vectors, say [0, 1000] as opposed to

[0, 1], the neural network might never converge. This problem occurs because some inputs are given

more importance than others due to the relatively large size of their values. Normalizing the data to

[-1, 1] ensures that the variability of a vector, not the size of its values, reflects its importance [76].

All inputs and output are normalized to [-1, 1].

-5 0 5
-1

-0.6

-0.2

0.2

0.6

1
Tansig

Input

O
ut

pu
t

-5 0 5
0

0.2

0.4

0.6

0.8

1

Input

O
ut

pu
t

Logsig

Chapter 3: Architecture selection 42

3.3.5 Choosing a condition of fit

This section discusses the method used to assess a candidate network’s performance using the

available data sets. The error between the actual output and the neural network output, called the

estimation error, should always be as small as possible. Prior knowledge about the system output data

indicates that there will usually be positive and negative values. The Neural Network Toolbox™

compensates for this data characteristic by using the following error functions as the estimation error:

mean squared error, mean absolute error and sum squared error.

The mean squared error (mse) is given in (3.3) and will be used as the estimation error in this

experiment [74]. The variable y(j) is the desired output value and ŷ(j) is simply the actual output value

obtained by the neural network for input sample j. There are n samples in the data set.

    2

1

1
ˆ

n

j

mse y j y j
n 

 
  

 
 (3.3)

A popular method used to avoid overfitting is called early stopping. The available data is divided into

three sets: training set, validation set and test set. The training set is used to iteratively adjust the

network weights and minimize the estimation error on the training set. After a specified number of

iterations, the estimation error on the validation set is calculated to determine how the network

performs on new data. If this validation error increases significantly, the network training is stopped

and the values of the weights are reverted to the values at which they produced the smallest validation

error [9].

The validation error produced by different networks provides a way of comparing the different

designs and then choosing the best one. The estimation error on the third set, the test set, would be a

way to test how well the network generalizes to new data. When the validation and test errors present

more or less the same characteristics and the final estimation error on the training data is small, it

usually indicates that a network has been trained well [9].

The available data will be divided into three different sets using specified ratios and therefore the

number of samples in each set will not always be the same. Since mse uses the mean of the squared

error data, it allows for a fair performance comparison of the network on the different sets regardless

of the number of samples. The optimal size of the data sets used to train, test and validate the network

will differ from model set to model set. Some network designs require more samples to train properly

than others. Again, mse provides a way of comparing how different networks perform on data sets of

different sizes. It is important to note that the number of samples in the different sets should be kept

constant during an iteration of the system identification loop but may be varied from one iteration to

the next [14].

Chapter 3: Architecture selection 43

When training a neural network, the chosen training algorithm can easily get trapped in the local

minima of the error surface. A way to avoid this is by using multiple (10 to 100) random restarts –

reinitializing the same network weights again and again. Obviously, this implies that the same

network could initially perform very poorly but when training arrives at a global minimum, the results

are more than satisfactory [7]. Using mse as a performance measure gives absolutely no indication of

the effect of random initializations in some training algorithms.

It seems that a better method of determining network performance, other than mse, is required.

Zemouri, Gouriveau and Zerhouni [77] provide performance metrics for neural networks which

enable objective comparisons between different networks. Equation (3.4) defines the accuracy of a

neural network [77].

1
Accuracy

Timeliness Precision Repeatability


 
 (3.4)

The probability of a neural network to have an estimate close to the actual value is called the

timeliness of the network. Equation (3.5) defines the timeliness of the network [77].

 
1

1
Timeliness

M

i

E E i
M 

   (3.5)

where M is the total number of times the training algorithm was executed (number of runs) and E(i) is

the mean estimation error of the ith execution producing neural model i.

The precision of a neural network is the probability of the network to produce grouped estimates i.e.

estimates that are close together. Equation (3.6) is used to calculate the precision of the network [77].

 
1

1
Precision

M

i

std std i
M 

   (3.6)

where std(i) is the standard deviation of the ith execution of the training algorithm. Equation (3.7) is

used to calculate the standard deviation [77].

      2

1

1 n

j

std i E i y j
n 

  (3.7)

where n is the number of data samples and y(j) is the jth system output.

Chapter 3: Architecture selection 44

The repeatability of a neural network reveals how reliable the training process is. If the repeatability is

small, training can be done repeatedly and the network will perform more or less the same every time.

The effect of random initializations in some training algorithms can also be seen in the repeatability

parameter. Equation (3.8) defines the repeatability of a neural network [77].

   
Repeatability

2

σ std σ E
 (3.8)

where σ(std) and σ(E) represent the standard deviation of all the std(i) and E(i) values as shown in

(3.9) and (3.10).

    2

1

1

M

i

σ std std std i
M 

 

 (3.9)

    2

1

1

M

i

σ E E E i
M 

  (3.10)

If a neural network has small values for its timeliness, precision and repeatability, it will have high

accuracy according to (3.4) and high confidence in the output estimates. The test data should be used

to determine these performance metrics [77]. The accuracy will be used instead of the mse to

determine a network’s performance since it provides more information about the network and the

training process. Note that the mse is still used by the Neural Network Toolbox™ for early stopping.

3.3.6 Calculating the model

Calculating the model when the candidate is a neural network consists of training the network. Batch

training and incremental training are two commonly used training styles. The network weights are

only updated once all the data samples have been presented when training in batch style. Incremental

training consists of updating the weights after each data sample has been presented. Batch training

cannot be used in an online training scheme because all the data is not readily available. Offline

training can be done using either style though it is mostly done in batch style [9].

Since this system identification experiment is conducted offline, batch training will be used to train

the FTD, NARX and LRN networks. The batch training algorithms in the Neural Network Toolbox™

consist of error backpropagation methods and all its variations. Standard backpropagation consists of

two distinct steps – propagating the error derivatives back through the network and using the values to

adjust the weights according to the gradient descent method [9].

Chapter 3: Architecture selection 45

Gradient descent in the second step can include heuristic modifications like a momentum term and a

variable learning rate to improve network performance. These gradient descent backpropagation

algorithms are very slow and if the algorithm parameters are not chosen properly, the network will

perform poorly. The Neural Network Toolbox™ provides other backpropagation algorithms which use

numerical optimization techniques in the second step of the algorithm [9].

The backpropagation algorithms using numerical optimization techniques converge significantly

faster to a solution even though they require more computational effort. These algorithms include the

following [9]:

 Conjugate gradient backpropagation

 Quasi-Newton backpropagation

 Levenberg-Marquardt backpropagation

Any of the backpropagation algorithms can be used but in an effort to remain practical, the slow-

converging algorithms will not be considered. General requirements for an optimal algorithm are a

fast convergence rate whilst not making unreasonable demands in terms of computer storage and

processing power. It should be obvious that larger and more complicated network designs also

increase computational demands and thus care should be taken to make a balanced decision between

network design and training algorithm [74].

Table 3-2 shows a comparison of the backpropagation (BP) algorithms under consideration. The

function column contains the name of the m-file typed in MATLAB® to use the specified training

algorithm. The algorithms are compared by their convergence rate, optimal network size, intended

application, computational effort and storage requirements.

Table 3-2: Comparison of BP algorithms

Function Type
Convergence

rate
Network

Size
Application

Computational
effort

Storage
requirements

trainbfg Quasi-
Newton

Fast Small
Nonlinear

optimization
High Moderate

trainbfgc

trainlm Levenberg-
Marquardt

Very fast Small
Function

approximation
Very high High

trainbr

traincgb

Conjugate
gradient

Fast Large

Function
approximation

and pattern
recognition

Moderate Moderate
traincgf

traincgp

trainscg

Chapter 3: Architecture selection 46

Literature strongly recommends the conjugate gradient and Levenberg-Marquardt backpropagation

algorithms for function approximation problems such as modelling a nonlinear dynamic system [9].

The Neural Network Toolbox™ documentation [74] also suggests using Levenberg-Marquardt

backpropagation for function approximation since it is the fastest algorithm in the toolbox, but only

when training small-sized networks. Scaled conjugate gradient backpropagation is recommended for

function approximation when training larger networks [74].

The main focus of this offline system identification experiment is architecture selection and

consequently, no in-depth comparison will be performed between the various training algorithms.

Following the recommendations in the relevant literature, Levenberg-Marquardt backpropagation

(trainlm) will be used for networks with 300 weights or less and scaled conjugate gradient

backpropagation (trainscg) for larger networks [74].

Selection of the initial weights and learning rate will be left to the chosen training algorithm. The

values selected by the algorithm are considered to be appropriate for a large range of problems and do

not require modification [74]. The NARX architecture allows for something very special with regard

to training. The network is used in a parallel configuration but trained offline in a series-parallel

configuration. Both configurations can be seen in figure 3-10.

 Parallel

Series-parallel

Figure 3-10: NARX configurations

Using supervised learning, the actual output y(k) of the system is available during training. The series-

parallel configuration enables the network to train using the available actual output instead of the

estimated output ŷ(k). The result is a feed-forward architecture which allows for the use of less

complex training algorithms. The input to the neural network is significantly more accurate in the

series-parallel configuration and helps the network weights to converge faster [74].

Chapter 3: Architecture selection 47

3.3.7 Model validation

The new model has to be validated to see how it affects the original system’s behaviour. The

conformity of the new model will only be proven if it can replace the original plant without causing

considerable changes in the behaviour of the closed-loop control system. A suitable way to compare

the two system behaviours is to simulate them in closed-loop and determine the frequency response of

each system. The frequency response of the AMB control system under consideration is obtained in

accordance with ISO CD 14839-3 [78]. Consider figure 3-11 which shows a simplified block diagram

of a control system.

Figure 3-11: Simplified block diagram

The reference input r(k) to the system should be a sinusoidal disturbance with varying frequency. The

required data should be measured at rotor standstill and/or nominal operating speed but over the

maximum frequency range. The maximum frequency range, fmax, starts at 0 Hz and ends at the

maximum of either three times the rated speed or 2 kHz [78]. Since the maximum speed is 500 Hz,

three times the maximum speed is 1.5 kHz. The maximum frequency range is thus: 0 < fmax < 2 kHz.

It is worth the time and effort to investigate the dynamic behaviour of the original system at various

frequencies. The Shannon theorem states that harmonic signals are only recreated correctly if sampled

at a rate at least twice the signal frequency. The discrete-time frequency response is thus “...only

uniquely defined up to a frequency which corresponds to half the sampling rate...” [1]. The sampling

time of the original system is 100 μs which is equal to a sampling rate of 10 kHz. Half the sampling

rate – the Nyquist frequency – is 5 kHz. A chirp reference input ranging from 0 Hz to 5 kHz over 10 s

is therefore applied to AMB 1(x)12 and the frequency response of the original system determined.

Figure 3-12 shows the frequency response but only up to 3 kHz since little or nothing happens after

this frequency. The current maximum operating speed, 133 Hz, and the rated maximum speed,

500 Hz, can also be seen. Figure 3-12 also shows different peaks or critical frequencies corresponding

to the rigid and bending modes of the rotor. The first two critical frequencies, 35 Hz and 65 Hz, are

the two rigid modes of the rotor. The third critical frequency, 665 Hz, is the first bending mode.

12 From this point forward, AMB 1(x) will refer to the x-axis of radial AMB 1. The same applies to the other AMB and axis
directions. AMB 1 represents the upper AMB and AMB 2 represents the bottom AMB.

Chapter 3: Architecture selection 48

The original AMB flywheel system was designed to operate just below the first bending mode. In

order to keep as close as possible to the practical system, only the first two critical frequencies will be

considered. Since the frequency response between the 133 Hz and 500 Hz is neglibly small, the

current maximum operating speed of 133 Hz will be considered the upper frequency of interest. The

reference input in figure 3-11 will therefore be a multi-sine signal with frequencies ranging from 0 Hz

to 133 Hz.

Figure 3-12: Frequency response up to 3 kHz

The measured output y(k) in figure 3-11 is in the time domain and it is transformed to the frequency

domain using the Fourier transform. This frequency domain data can then be considered the frequency

response of the system. To obtain the frequency response of the system with the neural model as the

plant, the system can be modified as illustrated in figure 3-13. The new system is compared with the

original system by comparing their frequency responses.

Figure 3-13: New system with neural model as plant

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

X: 34.9
Y: 2.244

Frequency (Hz)

M
ag

ni
tu

de

X: 64.5
Y: 3.625

X: 1313
Y: 0.234

X: 2189
Y: 1.424

X: 664.6
Y: 1.644

133 Hz 500 Hz

Chapter 3: Architecture selection 49

3.3.8 Model revision

When a model is deemed to be a poor representation of the system under consideration, it should be

revised. The following changes can be made to the neural network model in order to improve its

performance [74]:

 Re-initialize the weights and train the network again.

 Increase the number of hidden layer neurons or layers.

 Use larger sets of training data i.e. more training patterns.

 Try other training algorithms.

The window approach discussed earlier makes use of the first two changes to improve model

performance. It should be noted that when increasing the number of hidden layer neurons it should be

done gradually. If the network design is too complex the problem can become under-characterized

and the network will have too many parameters to optimize. Also, more training patterns help the

network to improve its generalization capability [9].

If there is a limited supply of data to train the network, there are other techniques to improve

generalization other than early stopping. One such method is to use a training algorithm which uses

regularization – a modification of the performance or error function. Regularization ensures that the

weight values are smaller and the network response much smoother [9].

3.3.9 Implementation

The offline system identification experiment is implemented in MATLAB® making use of built-in

functions as well as the Neural Network Toolbox™. Figure 3-14 illustrates the injection of an

excitation signal into the control loop of AMB 1(x). The other excitation signals are injected in the

same way. Remember that there are four control loops – one for each AMB axis direction.

The Neural Network Toolbox™ does not allow the use of early stopping when training the NARX and

FTD architectures. The goal with these architectures is to achieve an estimation error as small as

possible using the training data. Using early stopping would prevent the estimation error on the

training set from converging to its minimum. However, early stopping is used by the toolbox when

training the LRN architecture [74].

Even though the three architectures cannot be trained in the same way, they are evaluated using the

same model fit. The performance metrics (accuracy, timeliness, precision, repeatability) are all

calculated using the test data set and provide objective comparisons between the architectures [77].

Chapter 3: Architecture selection 50

Figure 3-14: Excitation of AMB 1(x)

A high-level diagram is shown in figure 3-15 which explains the execution of the software loop. The

software consists of functions from the Neural Network Toolbox™ as well as custom-coded functions

indicated by bold text. Before the execution starts, the data is divided into three different sets for early

stopping and normalized to the range [-1, 1] which makes training easier. The loop starts by

initializing a model set according to a specified range of neurons and the number of layers.

The first network is then created using the chosen number of neurons and activation function as well

as initializing the weights. Training of the specified network commences and after each epoch13, the

mean squared error on the validation set is calculated. In the case of an LRN network, the validation

error is tested against the previous epoch’s result. If the validation error increases for more than 6

consecutive epochs, training stops and the results are saved. The FTD and NARX networks are

trained for a fixed number of epochs since early stopping is not used with these two architectures.

The next network goes through the same process until all the candidate models have been trained and

tested for a specified number of runs. The candidate models are selected using the window approach

described earlier to avoid exhausting all the possible combinations of neurons and layers. The final

element of the system identification loop, model revision, is inherent to the window approach because

models are revised by using multiple restarts and increasing the number of neurons and layers.

13An epoch, or one iteration of the training algorithm, is the term used to refer to the point in time when all the data samples
have been presented to the network for training [74].

Chapter 3: Architecture selection 51

Small networks are trained using Levenberg-Marquardt backpropagation and large networks are

trained using scaled conjugate gradient backpropagation. The most suitable networks for the

modelling of the AMB flywheel system are determined by evaluating the results from the software

loop described above. Only these networks are validated according to their frequency response as

discussed in the model validation section.

Figure 3-15: Architecture selection software execution loop

Chapter 3: Architecture selection 52

3.3.10 Results14

The horizontal and vertical directions of an AMB must be excited separately. This is achieved by

applying two multi-sine signals with a 90° phase difference to the AMB [73]. Figure 3-16 shows the

two excitation signals for AMB 1 – the solid line is for the x-axis and the dashed line is for the y-axis.

Notice that the amplitude of an excitation signal is limited to the range [-1, 1] A. Excitation signals

with amplitudes outside this range cause the rotor to move too close to the retainer bearings.

The existing AMB flywheel system uses a sampling rate of 100 μs. The same sampling rate is used

throughout all other simulations. The total simulation time is 0.5 s which is equal to 5 000 samples @

100 μs. The maximum frequency of the multi-sine signal is limited to 133 Hz and it contains 20

different frequencies. The same type of excitation signal is used for AMB 2(x) and AMB 2(y).

Figure 3-16: Excitation signal for AMB 1

Figure 3-17 shows the plant input measured after the injection of the excitation signal for AMB 1. The

signal consists of the excitation signal summed with the PD controller output.

Figure 3-17: Plant input for AMB 1

14 Not all the results are presented here because there are simply too many. Only the best results will be shown.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-1

-0.5

0

0.5

1

Time (s)

C
ur

re
nt

 (
A

)

AMB 1(x)
AMB 1(y)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-2

-1

0

1

2

Time (s)

C
ur

re
nt

 (
A

)

AMB 1(x)
AMB 1(y)

Chapter 3: Architecture selection 53

The plant input is used as the input data for neural network training. Figure 3-18 displays the plant

output or rotor position in response to the multi-sine excitation signal. Notice that it displays two

signals – a solid line for the x-axis of AMB 1 and a dashed line for the y-axis of AMB 1. These

signals are used as output data for neural network training. The excitation signals, plant input and

output for AMB 2 are very similar to those of AMB 1.

Figure 3-18: Plant output for AMB 1

Figure 3-19 shows the rotor’s movement for each AMB in both the x- and y-axis directions. Notice

the dashed circles representing the retainer bearings at 250 μm from the centre [0, 0]. The centre is the

nominal reference point in all simulations conducted during this study.

Figure 3-19: Rotor movement

The input-output data is divided into three sets (training, validation and test) for early stopping in the

training of LRN networks. Figure 3-20 shows how the available input data for AMB 1(x) is divided

into training, validation and test sets according to the ratio 0.7:0.2:0.1. The data for AMB 1(y), AMB

2(x) and AMB 2(y) is divided in the same way.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-2

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-4

Time (s)

Po
si

tio
n

(m
)

AMB 1(x)
AMB 1(y)

-2 -1 0 1 2

x 10
-4

-2

-1

0

1

2

x 10
-4

Horizontal (m)

V
er

tic
al

 (
m

)

AMB 1

-2 -1 0 1 2

x 10
-4

-2

-1

0

1

2

x 10
-4

Horizontal (m)

AMB 2 Movement
Retainer
bearing

Chapter 3: Architecture selection 54

Figure 3-20: Data division

The test data set is used to determine the accuracy, timeliness, precision and repeatability of all three

architectures. Even though the NARX and FTD architectures do not use the validation data set for

early stopping, they cannot use this set in their training. The amount of training data should be the

same for each network to allow for a fair comparison.

The results from the window approach will now be presented. All the networks use a 4-dimensional

input and a 4-dimensional output because there are four AMB axis directions. Figure 3-21 illustrates

the training results for the FTD architecture using 1 hidden layer of neurons – the first model set.

Figure 3-21: FTD training results

Chapter 3: Architecture selection 55

The same network is trained for a number of M = 10 runs15 before moving on to the next network. The

result from each run is saved to be used in the accuracy calculations of a candidate network. As can be

seen in figure 3-21, the initial range of neurons starts at 4 and increases to a maximum16 of 28 using 4

neurons at each increase. Figure 3-22 shows the accuracy of each FTD network from the first row in

figure 3-21.

Figure 3-22: Accuracy of first row FTD networks

The curve indicates that the optimal number of neurons is somewhere between 4 and 12 neurons. This

range is expanded in the second row of figure 3-21 using an increase of 2 neurons from network to

network. The accuracy of the second row of FTD networks can be seen in figure 3-23. The optimal

number of neurons seems to be somewhere between 4 and 8 neurons. The final row of FTD networks

consequently has a range of 4 to 8 neurons with an increase of 1 from network to network.

Figure 3-23: Accuracy of second row FTD networks

15 The number of training runs or executions of the training algorithm is not to be confused with the number of epochs.
16 The maximum number of neurons is chosen as 28 because the LRN architecture displays an out-of-memory error during
training when using more than this number.

5 10 15 20 25
2.41

2.42

2.43

2.44

2.45

2.46

2.47

2.48

2.49

Number of neurons

A
cc

ur
ac

y

4 5 6 7 8 9 10 11 12
2.42

2.43

2.44

2.45

2.46

2.47

2.48

2.49

Number of neurons

A
cc

ur
ac

y

Chapter 3: Architecture selection 56

Figure 3-24 shows the accuracy of the final row of FTD networks. The highest accuracy occurs at 4

neurons and since this is the last row of networks, 4 neurons is considered the optimal number in this

experiment for an FTD network.

Figure 3-24: Accuracy of final row FTD networks

The FTD network using 4 neurons and 1 hidden layer is simulated in open-loop using the validation

data set. Figure 3-25 shows the output of the FTD network against the original system output for

AMB 1 (x). Notice that the output data is dimensionless since it is still normalized to [-1, 1]. The

results for AMB 1(y), AMB 2(x) and AMB 2(y) are similar. The overall mse achieved by the FTD

network is 1.16×10-3

Figure 3-25: FTD output

The training results of the second model set are illustrated in figure 3-26. The NARX architecture

with 1 hidden layer of neurons is used. The same initial range of the FTD architecture is used for the

NARX architecture. The number of runs is also M = 10.

4 5 6 7 8
2.46

2.465

2.47

2.475

2.48

2.485

2.49

Number of neurons

A
cc

ur
ac

y

0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44

-0.5

0

0.5

1

Time (s)

O
ut

pu
t

Original
FTD

Chapter 3: Architecture selection 57

Figure 3-26: NARX training results

Figure 3-27 shows the accuracy of each NARX network from the first row in figure 3-26. The curve

indicates that the optimal number of neurons is somewhere between 4 and 16 neurons. This range is

expanded in the second row of figure 3-26 using an increase of 2 neurons from network to network.

Figure 3-27: Accuracy of first row NARX networks

The accuracy of the second row of NARX networks can be seen in figure 3-28. The optimal number

of neurons seems to be somewhere between 4 and 8 neurons. The final row of NARX networks

consequently has a range of 4 to 8 neurons with an increase of 1 from network to network.

5 10 15 20 25

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Number of neurons

A
cc

ur
ac

y

Chapter 3: Architecture selection 58

Figure 3-28: Accuracy of second row NARX networks

Figure 3-29 shows the accuracy of the final row of NARX networks. The highest accuracy occurs at 4

neurons and since this is the last row of networks, 4 neurons is considered the optimal number in this

experiment for a NARX network.

Figure 3-29: Accuracy of final row NARX networks

The NARX network using 4 neurons and 1 hidden layer is simulated in open-loop using the validation

data set. Figure 3-30 shows the output of the NARX network against the original system output for

AMB 1(x). The results for AMB 1(y), AMB 2(x) and AMB 2(y) are similar. The overall mse achieved

by the NARX network is 1.74×10-1.

4 5 6 7 8 9 10 11 12

0.8

1

1.2

1.4

1.6

1.8

2

Number of neurons

A
cc

ur
ac

y

4 5 6 7 8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of neurons

A
cc

ur
ac

y

Chapter 3: Architecture selection 59

Figure 3-30: NARX output

Figure 3-31 illustrates the training results for the LRN architecture using 1 hidden layer of neurons –

the third and final model set. The same initial range of the FTD architecture is used for the LRN

architecture. The number of runs is also M = 10.

Figure 3-31: LRN training results

Figure 3-32 shows the accuracy of each LRN network from the first row in figure 3-31. The curve

indicates that the optimal amount of neurons is somewhere between 8 and 16 neurons.

Figure 3-32: Accuracy of first row LRN networks

0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44

-1

-0.5

0

0.5

1

Time (s)

O
ut

pu
t

Original
NARX

5 10 15 20 25

2.12

2.13

2.14

2.15

2.16

Number of neurons

A
cc

ur
ac

y

Chapter 3: Architecture selection 60

Training the first row of LRN networks takes considerably longer than training the first row of the

other architectures and warrants an investigation. The excess training time of the LRN networks

cannot be attributed to the training algorithm since the same algorithm is used for all three

architectures. The next logical step is to take a look at the network parameters i.e. the weights and

biases. Table 3-3 shows each network architecture and the number of network parameters for a

specified number of neurons.

Table 3-3: Network parameters

Neurons
Parameters for

FTD
Parameters for

NARX
Parameters for

LRN

10 94 134 194

20 184 264 584

30 274 394 1174

40 364 524 1964

The LRN architecture requires significantly more weights for the same number of neurons than the

other two architectures. This is the reason why training of an LRN network takes so much longer than

training of a NARX or FTD network. The LRN architecture is excluded from the rest of the

experiment because of its high level of computational demand.

Even though the optimal number of neurons have been found for both the FTD and NARX

architectures, it is useful to evaluate the mse on the validation set on last row of networks. Table 3-4

contains the final FTD and NARX networks and their corresponding mse on the validation set.

Table 3-4: Network mse values on validation set

Neurons mse for FTD mse for NARX

4 1.16×10-3 1.74×10-1

5 7.88×10-4 1.38×10-1

6 9.57×10-4 1.39×10-1

7 7.33×10-4 1.05×10-1

8 1.14×10-3 1.07×10-1

When moving on to 2 hidden layers of neurons, the maximum number of neurons has to be decreased

to 20 neurons due to the memory limitations of the personal computer used. Figure 3-33 displays the

accuracy of all three architectures ranging from 4 to 20 neurons using an increase of 4 neurons from

network to network. The window approach is not completed using 2 hidden layers since no significant

increase in accuracy can be seen by adding another hidden layer. For this reason, it is decided to stop

increasing the number of layers.

Chapter 3: Architecture selection 61

Figure 3-33: Accuracy for 2 hidden layers

The optimal FTD and optimal NARX network are now each simulated in the original closed-loop

control system as the plant. Fresh, previously unseen data is presented to each network. The networks

are tested by applying a step reference input at time 0.1 s with an amplitude of 10 μm to AMB 1(x)

and comparing their responses with the original system response. The original system step response

for AMB 1(x) can be seen in figure 3-34.

Figure 3-34: Original system step response

Figure 3-35 shows the movement of the rotor in both the x- and y-axis directions. The step response

of the system using the FTD network as plant against the original system step response can be seen in

figure 3-36. Notice that the response for the system containing the FTD network is considerably

different from the response of the original system.

5 10 15 20

0.8

1

1.2

1.4

1.6

1.8

2

Number of neurons

A
cc

ur
ac

y

NARX

5 10 15 20
2.4

2.41

2.42

2.43

2.44

2.45

2.46

2.47

Number of neurons

FTD

5 10 15 20
2.1

2.105

2.11

2.115

2.12

2.125

2.13

2.135

2.14

Number of neurons

LRN

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5 x 10
-5

Time (s)

Po
si

tio
n

(m
)

Chapter 3: Architecture selection 62

Figure 3-35: Rotor movement for original system with step input

Consider figure 3-37 which shows the rotor movement for the system containing the FTD network as

the plant. The rotor clearly touches the retainer bearings which is not the case for the original system.

Comparing figure 3-37 with figure 3-35 it is clear that the FTD network does not represent the true

plant. The FTD network will not enter the model validation phase since it is now deemed invalid. The

step response of the system containing the NARX network as the plant will now be considered.

Applying the same step reference input to AMB 1(x), the step response using the NARX network

against the step response of the original system can be seen in figure 3-38. Notice the significant

steady-state error produced by the NARX network.

Figure 3-36: FTD step response

0.095 0.1 0.105 0.11
-3

-2

-1

0

1

2

3

4

5x 10
-3

Time (s)

Po
si

tio
n

(m
)

Original
FTD

Chapter 3: Architecture selection 63

Figure 3-37: Rotor movement for FTD with step input

The movement of the rotor in both the x- and y-axis directions is illustrated in figure 3-39. Comparing

figure 3-39 with figure 3-35 it is clear that the NARX network produces a response similar to the

original plant. The NARX network will now enter the model validation phase. The data required to

determine the frequency response of the system is obtained using multi-sine excitation signals at the

reference input and measuring the system output. The multi-sine signals contain 20 frequencies

ranging from 0 Hz to 133 Hz. The same multi-sine signals used for AMB 1(x) and AMB 2(x) are

shifted in phase by 90° and applied to AMB 1(y) and AMB 2(y) respectively. The amplitude of all the

multi-sine signals is 10 μm.

Figure 3-38: NARX step response

Chapter 3: Architecture selection 64

Figure 3-39: Rotor movement for NARX with step input

Figure 3-40 displays the frequency response of the original system against the frequency response of

the system containing the NARX network as the plant. Figure 3-41 also displays the frequency

response of the original system against the frequency response of the system containing the NARX

network as the plant but is has been zoomed in to the frequency range [0, 150] Hz. The frequency

range of interest, 0 Hz to 133 Hz, can now be observed better. The frequency response of the NARX

system for AMB 1(x) and the frequency response of the original system for AMB 1(x) are clearly

similar.

Figure 3-40: NARX frequency response

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7 x 10
-6

Frequency (Hz)

R
es

po
ns

e

Original
NARX

Chapter 3: Architecture selection 65

Figure 3-41: NARX frequency response (zoomed)

The frequency responses for AMB 1(y), AMB 2(x) and AMB 2(y) will not be shown. The correlation

coefficients of the NARX system responses with the original responses are presented in table 3-5

instead. A coefficient of 1 implies perfect positive correlation between the response of the NARX

system and the response of the original system. No correlation is indicated by a coefficient value of 0.

The NARX system response clearly exhibits the same characteristics of the original system since all

of the coefficients are close to 1 [79].

Table 3-5: Response correlation

AMB axis
Correlation
coefficient

AMB 1(x) 0.958

AMB 1(y) 0.965

AMB 2(x) 0.921

AMB 2(y) 0.916

3.4 Conclusions

Prior knowledge about the problem and application area assisted significantly in narrowing the choice

of network architecture. More than 20 architectures and their corresponding training algorithms were

reduced to 3 architectures and 2 training algorithms. Methods of determining network performance

and model validity were also developed using prior knowledge.

The LRN architecture was trained using early stopping whereas the FTD and NARX architectures did

not make use of early stopping for training. This makes sense considering that different network

architectures require training techniques according to their inherent features.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

1

2

3

4

5

6

7 x 10
-6

Frequency (Hz)

R
es

po
ns

e

Original
NARX

Chapter 3: Architecture selection 66

A matrix called the Jacobian, which contains the first error derivatives with respect to the weights and

biases of a network, is calculated and stored for use in Levenberg-Marquardt backpropagation. The

Jacobian matrix becomes quite large for networks using many neurons [74]. This explains why

storage requirements and computational effort increased significantly when using Levenberg-

Marquardt backpropagation on large networks.

The scaled conjugate gradient backpropagation algorithm does not require a computationally

expensive line search at each epoch like all the other conjugate gradient algorithms [74]. This proved

useful since training large networks proved to be time-consuming with Levenberg-Marquardt

backpropagation. Scaled conjugate gradient backpropagation was an effective alternative for training

large networks.

With careful inspection of the figures in the previous section and table 3-4, it can be seen that the mse

was definitely not the best indication of a network’s accuracy. The network which achieved the

smallest mse on the validation data set was not the network which achieved the highest accuracy. It is

important to achieve as small an mse as possible, but not at the cost of network accuracy (timeliness,

precision and repeatability).

Moving on to the next chapter, online system identification and adaptive control will be the main

focus. The chosen architecture should train quickly to adapt to changes in its environment [8]. Since

the LRN requires a high level of computational effort, it was dismissed as a candidate architecture.

Even though the optimal FTD network achieved a higher accuracy and a smaller mse than the optimal

NARX network, it did not work in a closed-loop configuration.

Careful consideration of the inputs and outputs of an AMB system provides some insight. A 1-DOF

AMB control system with PD control is under consideration. The transfer function of the plant Gp(s)

using a linearized model of the system is defined as the ratio of the output to the input in the Laplace

domain in (3.11).

   
  2

2

2
i

p
s

Y s k
G s

U s ms k
 


 (3.11)

where m is the mass of the rotor and ki and ks are electromagnetic constants. All the variables are

given the value of unity, including the sampling time T, to simplify calculations. With the help of

MATLAB®, the variables are substituted with their values and the transfer function becomes (3.12).

 
  2

2

2

Y s

U s s



 (3.12)

Chapter 3: Architecture selection 67

Using inverse Laplace transformation on (3.12), the transfer function in the time-domain is obtained.

The discrete-time transfer function is obtained by substituting t = kT = k in the time-domain transfer

function. The z-transform of the discrete-time transfer function is transformed into a difference

equation using the real translation property of the z-transform. The final difference equation is given

in (3.13).

         1.2 1 1.2 2 4.4 1 2y n u n u n y n y n        (3.13)

Equation (3.13) indicates that the output y(n) depends on previous values of both the input u(n) and

the output. Since the NARX architecture makes use of previous values of the input and the output, it

is able to model the plant of the AMB flywheel system successfully. The FTD architecture only

makes use of previous values of the input and cannot model the plant of the AMB flywheel system

successfully.

The inherent instability of the AMB flywheel system did not pose a problem to the NARX

architecture. According to Ljung [14], unstable systems can be identified under the condition that both

the closed-loop system and observer are stable. Models ideal for this type of problem are the ARX

and ARMAX type as well as their nonlinear versions, NARX and NARMAX [14].

The NARX architecture’s ability to model the plant of the AMB flywheel system has been well

validated even though it produced a significant steady-state error. This steady-state error can be

reduced by using superior training algorithms. The training algorithms used in this chapter are batch

style algorithms meaning they are applied offline. An online observer will require an incremental style

algorithm allowing for fast updates of the neural network. The NARX architecture will be used in the

following chapters as an online observer for the plant of the AMB flywheel system [8].

A final recommendation needs to be made at this point. When training a neural network, the tendency

to get stuck in a local minimum of the error function is significant. The window approach used in this

chapter to determine the optimal network parameters may have been successful, but it still required a

considerable amount of effort. A global optimization method such as a genetic algorithm could be

used instead to determine the optimal network parameters and avoid local error minima [7].

The system identification loop has also proven to be quite effective in obtaining an optimal neural

model for the plant of the AMB flywheel system. The next chapter will discuss the various steps taken

to select a suitable adaptive control design for the AMB flywheel system and integration of the

validated NARX architecture into the chosen design.

CC hh aa pp tt ee rr 44 :: AA dd aa pp tt ii vv ee cc oo nn tt rr oo ll dd ee ss ii gg nn

This chapter starts by describing the system under consideration and reviewing indirect adaptive

control using neural networks. The use of reinforcement learning in an online adaptive control system

is motivated. The focus then shifts to the details of an adaptive critic controller. A discussion on the

chosen adaptive control design follows and finally, optimization of the controller parameters using

genetic algorithms is explained.

4.1 Introduction

The aim of this chapter is to obtain an adaptive controller for the AMB flywheel system. The first step

is to identify the nonlinear, dynamic, multivariable and inherently unstable plant of the AMB flywheel

system online. The discrete time Brunovsky canonical form (4.1) can be used to describe the

nonlinear dynamics of a SISO plant with n system states [8].

1 2

2 3

(1) ()

(1) ()

x k x k

x k x k

 
 

 (4.1)

(1) (()) (()) ()

() (())
nx k f k g k u k

y k h k

  


x x

x

The vector x(k)  Rn is called the state vector and u(k) is the input to the system, also called the

control signal. Functions f(·) and g(·) are unknown nonlinear functions. The output y(k) can be a

function of the system states or have a particular form as given in (4.2) [8].

1() (())y k h x k (4.2)

Equation (4.1) can also be written in MIMO form by defining each system state as a vector where m

indicates the number of inputs as well as the number of outputs in (4.3).

() m
i k Rx (4.3)

Consequently, the state vector becomes a state matrix in (4.4).

() n mk R X (4.4)

Chapter 4: Adaptive control design 69

The MIMO representation of (4.1) now becomes (4.5).

1 2

2 3

(1) ()

(1) ()

k k

k k

 
 

x x

x x

 (4.5)

(1) (()) (()) ()

() (())
n k k k k

k k

  


x f X G X u

y h X

The control signal is now a vector u(k)  R
m. The unknown nonlinear functions become f(·)  Rm an

unknown nonlinear function vector and G(·)  Rm×m a matrix of unknown nonlinear functions.

Equation (4.5) is an appropriate system description of the plant of the AMB flywheel system and will

be used to represent it in the rest of this chapter [8]. It has already been concluded in the previous

chapter that the NARX architecture will be used to model the plant. The key lies in combining (4.5)

with a NARX neural network and using it in an indirect adaptive control system.

Other choices regarding controller design still have to be made. The choices of controller structure

and error system are among these. Equally important is the development of adaptive laws. Analysis of

stability and robustness and evaluation of system performance are also included in the controller

design choices [52].

Adaptive control design is based on the certainty equivalence principle. It focuses on using

approximations of unknown parameters as if they were the correct values of those parameters. The

adaptive law is driven by a system performance function to generate the parameter approximations.

These approximations are also used in a design equation to construct an adaptive controller which

maps the plant approximations to controller parameters. For this principle to be effective, the

approximations of the parameters should satisfy the following: small estimation errors, bounded

parameter estimates and slow parameter variations [52].

4.2 Indirect adaptive control

In an indirect adaptive control (IAC) design the controller parameters are calculated using model

approximations. These approximations are obtained from a model of the plant using system

identification. The adaptive law uses an approximation error representing the mismatch between the

plant output y(k)  Rm and the online model approximations from the observer [52]. Figure 4-1

illustrates an IAC system in MIMO form.

Chapter 4: Adaptive control design 70

Figure 4-1: Indirect adaptive control system (MIMO)

4.2.1 Using neural networks

The NARX architecture is most suitable to model the plant of the AMB flywheel system and it will be

used as an online observer. A NARX neural network can be used as an online observer as illustrated

in figure 4-2. The block diagram is in discrete-time because it represents a simulation model using

sampled data. The controller structure is also chosen as a neural network because this study’s aim is to

incorporate neural networks into an adaptive controller for the AMB flywheel system.

Figure 4-2: Discrete-time IAC with neural network (MIMO)

When using neural networks in an online manner, a significant issue arises. Offline training is made

easy by supervised learning because there is usually a desired output signal to be matched. This is not

the case for an online neural network. Since the nonlinear functions f(·) and g(·) in (4.5) are unknown

in many online problems, it is difficult to provide desired outputs to the network for training [8].

A neural controller can be trained online to mimic an existing controller which provides the desired

output signal, but the whole point is to improve system performance, not match it. Many neural

control methods require online training when no desired output signal is available. For these reasons,

the error system will make use of reinforcement learning [8].

Chapter 4: Adaptive control design 71

4.2.2 Reinforcement learning

“If an action is followed by a satisfactory state of affairs, or an improvement in the state of affairs,

then the tendency to produce that action is strengthened or reinforced (rewarded). Otherwise, that

tendency is weakened or inhibited (penalized).” This is the basic notion behind reinforcement learning

according to Jang, Sun and Mizutani [7]. When the action selections depend upon state information,

the idea is extended to feedback control [8].

A reinforcement signal is used to evaluate the performance of a computational agent interacting with

its environment. The aim is to discover a policy for selecting actions that minimize a specified

performance index [7]. Reinforcement learning methods are considered potentially useful to feedback

control systems since these methods do not require comprehensive information about the system or its

behaviour [8].

During supervised learning with a neural network as the computational agent, the weights are adjusted

in proportion to the output error of the neurons. Something different occurs when using reinforcement

learning – the weights are adjusted according to the reinforcement signal [8]. This is especially useful

since no desired output signals are available online to train a neural controller. The general idea of

reinforcement learning is extended to neural networks using an adaptive critic model [7].

4.3 Adaptive critic model

The adaptive critic model consists of two main components: the critic and the actor. The critic

generates a reinforcement signal estimated from state information and environment inputs – it

evaluates the system performance. The actor (computational agent) uses this reinforcement signal

from the critic to learn correct actions for optimal control [7]. In this study, both components of the

adaptive critic model are neural networks.

The critic neural network uses the standard Bellman equation or a simple weighted sum of the

tracking errors as a performance index. The weights of the critic neural network are updated in such a

way as to minimize this index. At the same time, the critic sends the reinforcement signal to the actor.

The actor neural network is trained using the reinforcement signal and information about the tracking

error to keep the tracking error as small as possible [8].

The reinforcement signal generally carries much less information than the training signal used in

supervised learning. Still, the adaptive critic is very successful in controlling complex systems.

Analytical stability and performance proofs are lacking for many neural control designs. Adaptive

critic neural control does not suffer from this drawback – not even when applied to nonlinear discrete

time systems [8]. Figure 4-3 illustrates the adaptive critic model in MIMO form.

Chapter 4: Adaptive control design 72

()kX

Figure 4-3: Adaptive critic model (MIMO)

The aim of this study is an adaptive controller using output feedback since many practical AMB

systems cannot provide state feedback. Adaptive critic neural control has many useful features but it

requires that state information be sent to the critic. One solution is to make use of system

identification and employ an online state observer. This observer can estimate the plant states and

provide the necessary information the critic requires [2]. Figure 4-4 illustrates the proposed solution

using a NARX neural network as the online observer.

ˆ ()kX

Figure 4-4: Adaptive critic model with observer (MIMO)

4.4 Control system design

In the previous section, the NARX architecture has been integrated into an indirect adaptive control

system as a state observer. This control system employs an adaptive critic model using neural

networks. Figure 4-5 illustrates the proposed adaptive critic neural control (ACNC) system. It has not

yet been decided how the NARX neural network will estimate the states or how all the neural

networks will be updated. These two issues are the focus of this section.

Figure 4-5: Temporary control system design

Chapter 4: Adaptive control design 73

4.4.1 Lyapunov stability analysis methods

Determining the stability of a linear system consists of simply locating the poles of the system transfer

function [3]. Stability analysis of nonlinear dynamic systems is much more involved and no generally

applicable method exists. Lyapunov stability analysis methods can be used in the design of adaptive

controllers and their parameter update laws for linear and nonlinear systems [8].

The Lyapunov approach makes use of passivity notions and provides a way of studying the stability

of complex systems and designing stable controllers. Selecting the correct Lyapunov function is the

key to the approach. This function may be difficult to find when considering nonlinear dynamic

systems since the function has to depend on time. The function may not even exist at all. Lyapunov

proofs are also much more complex for discrete time systems than continuous time systems. Feedback

controllers for nonlinear systems of the type (4.6) can be designed using the Lyapunov approach [8].

(1) (()) (()) ()k f k g k u k  x x x (4.6)

The output feedback control design for nonlinear MIMO discrete-time systems by Jagannathan [8]

will be used in this study. It makes use of the adaptive critic model and a neural network as an online

state observer. The plant to be controlled is assumed to be of the form (4.5) and consequently, (4.6).

The chosen design has a number of useful features for practical applications [8].

First of all, network parameters are tuned online in the chosen control design. Analytical proof of

closed-loop stability even in the presence of unknown but bounded disturbances and neural network

estimation errors using the Lyapunov approach is the second feature of interest. Finally, the design

takes actuator magnitude constraints due to saturation of certain components in the AMB flywheel

system into account [8].

The chosen design makes use of Lyapunov stability analysis methods to prove the closed-loop

stability of the controller. Conventional discrete-time adaptive control presents a number of

challenges. The PE (persistent excitation), LIP (linearity-in-the-parameters) and CE (certainty

equivalence) conditions are always assumed. Making sure that these conditions are satisfied is not

always possible. By making use of a Lyapunov function which contains the system identification and

controller errors, this problem is avoided and the conditions of PE, LIP and CE are relaxed [8].

Using a single Lyapunov function has the potential to guarantee both stable identification and stable

tracking at the same time, but the analytical proofs are much more complex. This design ensures

closed-loop stability in the presence of neural network estimation errors and unknown but bounded

disturbances [8].

Chapter 4: Adaptive control design 74

Previous work on adaptive critic neural control only ensures error convergence in ideal circumstances

which is hardly practical. The boundedness of all closed-loop signals is ensured by using the

Lyapunov approach even though many nonlinear effects may be present. A strategic utility function is

estimated by the critic neural network which is considered a long-term measure of system

performance. By using several neural networks at the same time, multiple nonlinear effects are taken

into consideration [8].

4.4.2 Observer design

The aim of this section is to combine (4.5) with a NARX neural network and design an online

observer for the plant of the AMB flywheel system. To achieve this aim, (4.5) will be used in the form

of (4.7) [8]. The variable n represents the number of system states.

1 2

1

(1) ()

(1) (()) (()) ()

() ()
n

k k

k k k k

k k

 

  


x x

x f x G x u

y x



(4.7)

The state matrix of (4.4) has been changed back into a state vector to serve as input to a single-layer

neural network. It is not the same as the state vector from (4.1) of a SISO system – it now has the

form of (4.8) for a MIMO system [8].

 T T T T
1 2() [(), (),..., ()] nm

nk k k k R x x x x (4.8)

with each () ,m
i k Rx i = 1,...,n representing a system state and m the number of inputs and the

number of outputs. The output   mk Ry is available at the kth time step but the states xi(k), i = 2,...,n

are unavailable. Using (4.7) the state observer in (4.9) can be used to estimate the state vector x(k) [8].

1 2

T T
1 1 1 1

ˆ ˆ() (1)

ˆ ˆ ˆ() (1) ((1))n

k k

k k φ k

 

  

x x

x W V z



(4.9)

with T T T T (1)
1 1ˆ ˆ ˆ(1) [(1),..., (1), (1)] n m

nk k k k R      z x x u the input vector at time instant (k – 1) and

each ˆ () m
i k Rx the estimate of () m

i k Rx , i = 1,...,n. The variable φ1 refers to the activation

function of the observer throughout this design. The hidden layer weight matrix of the observer is

defined in (4.10).

1T (1)
1

ˆ (1) n m nk R   V

(4.10)

with n1 the number of hidden layer neurons used by the observer.

Chapter 4: Adaptive control design 75

The output layer weight matrix of the observer is defined in as:

1T
1

ˆ (1) n mk R  W

(4.11)

The question still remains as to how this observer design can be used with a NARX neural network.

Consider figure 4-6 illustrating a NARX network using the observer design.

ˆ (1)k x

(1)k u

ˆ ()kx

Figure 4-6: NARX observer

For a neural network to have a NARX architecture, the current output should depend on previous

values of the output as well as previous values of the input [8]. The figure clearly shows that this is

the case for the chosen observer design where the output consists of state information and the input is

simply the control signal at time instant (k – 1).

4.4.3 Actor design

The aim of this section is to choose a design for the adaptive critic controller such that it (1) adheres

to magnitude constraints due to saturation; (2) all the signals in the closed-loop system are UUB

(uniformly ultimately bounded); (3) the state x(k) follows a reference trajectory rv(k); and (4) a long-

term system performance index is minimized [8]. Note that the reference trajectory rv(k) has the same

form as the state vector x(k) as given in (4.12).

T T T() [(),..., (1)] nm
v k k k n R   r r r (4.12)

The tracking error between the actual output and the reference is defined as:

() () (1), 1,...,i i vk k k i i n    e x r (4.13)

Since all the system states are not available at the kth time instant, the modified tracking error is used

as an estimate of the tracking error in (4.14).

ˆ ˆ() () (1), 1,...,i i vk k k i i n    e x r (4.14)

Chapter 4: Adaptive control design 76

The control signal produced by the actor network is given by the following equation:

max

max max

(), if ()
()

sgn(()), if ()

k k u
k

u k k u

  


v v
u

v v

(4.15)

where umax is the upper limit defined by the actuator of the AMB flywheel system. The Frobenius

norm  is used throughout this design. The auxiliary control signal v(k) is given by:

T T T
2 2 2 2 2

ˆ ˆ ˆˆ ˆ() () (()) () (())k k φ k k φ k v W V s W s (4.16)

where ˆ()ks is called the actor neural network’s input. This input is given in (4.17).

T T T T (1)
1ˆ ˆˆ ˆ() [(),..., (), ()] n m

n nk k k k R  s x x e (4.17)

The variable φ2 refers to the activation function of the actor throughout this design. The hidden layer

weight matrix of the actor is defined in (4.18).

2T (1)
2

ˆ () n m nk R  V

(4.18)

with n2 the number of hidden layer neurons used by the actor. The output layer weight matrix of the

actor is defined as:

2T
2

ˆ () n mk R W

(4.19)

Figure 4-7 illustrates the actor neural network according to this design. It can clearly be seen that the

current value of the output depends only on current values of the inputs. A simple feed-forward neural

network, the multi-layer perceptron, with a single hidden layer is used as the actor network in this

design [8].

ˆ ()n ke

()ku
ˆ ()kx

Figure 4-7: Actor neural network

Chapter 4: Adaptive control design 77

4.4.4 Critic design

The critic neural network signal is given simply by (4.20).

T T
3 3 3

ˆ ˆ ˆ ˆ() () (())k k φ kQ W V x

(4.20)

where ˆ () mk RQ is the estimate of the strategic utility function () mk RQ at time instant k. The

strategic utility function is actually a sum of future performance indices and is thus considered an

indication of the system’s long-term performance [8]. The variable φ3 refers to the activation function

of the critic throughout this design. The hidden layer weight matrix of the critic is defined in (4.21).

3T
3

ˆ () nm nk R V

(4.21)

with n3 the number of hidden layer neurons used by the critic. The output layer weight matrix of the

critic is defined as:

3T
3

ˆ () n mk R W

(4.22)

Figure 4-8 illustrates the critic neural network according to the chosen design. It can clearly be seen

that the current value of the output depends only on the current value of the input. A simple feed-

forward neural network, the multi-layer perceptron, with a single hidden layer is used as the critic

network in this design [8].

ˆ ()kQˆ ()kx

Figure 4-8: Critic neural network

4.4.5 Observer-based ACNC

The observer-based adaptive critic neural controller (ACNC) from figure 4-5 simply consists of the

observer, actor and critic neural networks from the previous sections as illustrated in figure 4-9. The

observer-based ACNC is expanded to show its three different components and their respective inputs

and outputs. A clear picture of the proposed design can now be formed.

Chapter 4: Adaptive control design 78

ˆ (1)k x

(1)k u
ˆ ()kx

ˆ ()n ke

()ku

ˆ ()kQ

ˆ ()kx

ˆ ()kx

Figure 4-9: Observer-based ACNC

4.4.6 Adaptive laws

The adaptive laws are derived during the Lyapunov stability proofs by Jagannathan [8] which ensure

stable update algorithms for the neural network parameters. Note that these update algorithms are

used online and no offline training phase is required even though it is performed in many adaptive

critic designs. The adaptive law for the observer is given by [8]:

1 1 1 1 1 1 1 1 1 1
ˆ ˆ ˆˆ ˆ(1) () (())(() (()) ())T Tk k α φ k k φ k k   W W z W z j x

(4.23)

The observer input 1ˆ ()kz is defined as:

T T T T (1)
1 1ˆ ˆ ˆ() [(),..., (), ()] n m

nk k k k R  z x x u

(4.24)

The observer estimation error 1()kx is given by:

1 1 1ˆ() () () mk k k R  x x x

(4.25)

The variable 1() m mk R j is a design matrix and 1α R  is the learning rate of the observer. Equation

(4.26) defines the adaptive law for the actor [8].

2 2 2 2 2
ˆˆ ˆ ˆ ˆ ˆ(1) () (())((1) () ())T

n nk k α φ k k k k     W W s e j e Q

(4.26)

Chapter 4: Adaptive control design 79

The modified tracking error at time instant (1)k  is given by:

ˆ ˆ(1) (1) (), 1,...,i i vk k k i i n     e x r

(4.27)

The variable 2 () m mk R j is a design matrix and 2α R is the learning rate of the actor. The adaptive

law for the critic is given by [8]:

1
3 3 3 3

ˆ ˆˆ ˆ ˆ(1) () (())(() () (1))N Tk k α φ k k α k α k     W W x Q p Q

(4.28)

The variable α is a design parameter and 3α R is the learning rate of the critic. The final time is

indicated by N in seconds. The utility function ()kp is given by:

ˆ0, if abs(())
() 1,...,

1, otherwise

i
n

i
k c

p k i m
 

 


e

(4.29)

The variable c R is a pre-defined threshold for the modified tracking error. Table 4-1 summarizes

the suggested ranges for the values of each of the design parameters.

Table 4-1: Suggested ranges for design parameters

Parameter Suggested range

1α 1
1

1
0 α

n
 

2α 2
2

1
0 α

n
 

3α 3
3

1
0 α

n
 

α 2
0 0.7

2
α  

Unfortunately, there is no suggestion for selecting the number of neurons of each network. No more

information is given about the values of 1j and 2j either. It is quite clear that a number of control

design parameters require optimization. As pointed out in the previous chapter, a global optimization

method can be used to avoid the local minima of an error surface and significantly decrease design

effort. Genetic algorithms will be used to optimize the design parameters of the ACNC system.

Chapter 4: Adaptive control design 80

4.5 Derivative-free optimization

The most significant challenge when using gradient-based optimization techniques is to find the

global minimum of the error surface. These deterministic methods guarantee convergence to the

nearest local minimum when used properly, but many local minima may exist. This means that the

nearest local minimum for different initial positions may not be the same minimum and consequently

the algorithm may produce different results [7].

Choosing the initial positions well is clearly an important step but also a difficult one because the

choice is almost never obvious. To avoid using the same initial positions and search in a space which

covers a variety of choices, some type of random initialization method needs to be implemented.

Apart from a proper initialization method, another challenge might be the calculation of the gradient

in some deterministic method. It is often a time-consuming and difficult calculation [80].

Derivative-free optimization methods such as the genetic algorithm have been used to circumvent this

problem though it should be mentioned that these stochastic methods also have their own set of

challenges. Stochastic derivative-free optimization methods have to converge to minima in the error

function without any gradient information and consequently require many function evaluations. This

implies that these derivative-free methods sometimes require more computations than the

deterministic type derivative-based methods to produce satisfactory results [7].

Derivative-free methods have some desirable characteristics and these include [7]:

 No derivative calculations.

 The principles used are of an intuitive nature.

 The objective function does not need to be differentiable and can be as complex as required

by the application under consideration.

 The methods are considered global optimization methods because of their random nature.

4.5.1 Genetic algorithms

Genetic algorithms (GAs) are based on the ideas of natural selection and evolution as proposed by

Darwin and are one of the branches of evolutionary programming. They provide a systematic way of

randomly searching in a population of solutions for the best-performing individual. More efficient

search techniques such as GAs are used when the space of candidate solutions is simply too large for

an exhaustive search. It should be noted though that the final solution is usually less than optimum.

GAs are considered general purpose optimization tools and offer freedom and flexibility in complex

optimization problems because of their derivative-freeness [7].

Chapter 4: Adaptive control design 81

GAs also offer the following useful features [7]:

 Implementation on parallel-processing machines is possible because GAs are parallel-search

procedures. Consequently, the time to converge to a final solution can be drastically reduced.

 Both continuous and discrete optimization problems present no challenge for GAs.

 The ever-present problem of getting trapped in a local minimum can be avoided because GAs

have a random nature.

 GAs can be used for both structure identification and parameter estimation in complicated

models such as neural networks and fuzzy systems.

4.5.2 Optimization process

The following steps describe a simple genetic algorithm used for optimization [7]:

1. Randomly initialize a population of solutions and calculate the fitness of each candidate

solution or individual.

2. Use the best individuals (selection) in the population to produce the next generation:

a. Apply elitism.

b. Apply crossover.

c. Apply mutation.

3. Evaluate the fitness of each individual in the new generation.

4. Repeat steps 2 and 3 until a stopping condition is satisfied.

The concepts mentioned in the steps above will each be given a brief overview but first it is important

to note the meaning of the following terms [7]:

 Each individual or chromosome in the population is just a value or a set of values for the

parameter or parameters which have to be optimized.

 Each chromosome has a fitness value which is usually the inverse of the chosen error function

evaluated using the specific chromosome.

 The population is repeatedly evolved or modified to better overall fitness or reduce total error.

 The new generation is created (reproduction) using crossover and mutation schemes.

 The chromosomes in the current generation with the best fitness values are used as parents in

the next generation to produce new offspring or children.

4.5.3 Initialization and selection

Before the initial population can be generated, the points in the parameter space have to be

transformed into chromosome form i.e. into sets of strings or genes. This is called encoding. After the

population has been generated and each individual’s fitness evaluated, selection has to be performed.

Selection consists of choosing the parents which will be used in reproduction [80].

Chapter 4: Adaptive control design 82

The parents with the best fitness values are selected to ensure that as the population evolves,

chromosomes with above-average fitness will survive. A certain number of the best chromosomes

from the current generation are kept unchanged into the next generation. This “survival of the fittest”

concept is called elitism [80].

4.5.4 Crossover and mutation

Crossover and mutation entails the generation of new chromosomes i.e. children from parent

chromosomes. Crossover ensures that these children will have the best genes from the previous

generation and consequently exploits the current population’s potential. Sometimes the population

does not contain the necessary information to produce an acceptable solution regardless of how

extensively genes are combined and recombined. The genetic algorithm is said to stagnate when

continuous reproduction using crossover does not deliver an acceptable solution [80].

To avoid stagnation, the concept of mutation is employed. Mutation ensures that random new

chromosomes, impossible using crossover, can be generated when necessary. The possibility of large

mutations is kept small to ensure that good chromosomes from the crossover step do not go lost [80].

4.6 System identification loop

The various steps of the system identification loop as presented in previous chapters are addressed in

this section. Experiment design and obtaining data are addressed in the next chapter since these steps

are concerned with implementation. The model sets will consist of NARX networks in the form of

online observers with the number of state variables n varying from set to set. The condition of fit for

the observer will be as small an estimation error as possible. Each neural model will be calculated

using the weight update algorithms outlined in the adaptive control design of Jagannathan [8].

The best observer from each model set will be determined using a genetic algorithm. A model will be

validated only if it can provide the corresponding actor and critic with enough state information to

ensure stable control. If the model in the form of an online observer fails validation, it is deemed

inadequate and the steps of the system identification loop are revised. Revision will occur by

increasing the number of state variables n used by the observer.

4.7 Performance verification

The performance of both the new control system and the original PD control system has to be

evaluated. This section should not be confused with the model validation step of the system

identification loop. Performance verification will only be performed on the final adaptive controller

and will enable a comparison between the new and original controllers. Performance verification

consists of three parts: step response, robustness analysis and stability analysis.

Chapter 4: Adaptive control design 83

4.7.1 Step response

The first test will consist of a step disturbance at the reference input to determine the step response of

each system. Standard performance measures defined in terms of the step response of a system

include: percentage overshoot (P.O.) and settling time (Ts). These two measures provide an indication

of the similarity between the actual response and the step input. The settling time is defined as the

time taken by the system to settle within 2% of the final value. For a second-order system, the

percentage overshoot and settling time are given in (4.30) and (4.31) respectively [3].

. . 100%pM fv
P O

fv


 

(4.30)

where Mp is the peak value of the step response and fv is the final value of the step response.

4
4s

n

T τ
ζω

 

(4.31)

The variables τ, ζ and ωn represent the time constant, damping ratio and natural frequency of the

system respectively.

4.7.2 Robustness analysis

The aim of this section is to determine how the system responds to parameter variations and if it

remains stable despite changes in its environment. This measure of robustness will consist of

determining how sensitive the system is to a chirp input disturbance. Evaluation of the step response

and the sensitivity function ensures that both time and frequency domain analysis are performed.

The sensitivity function in accordance with ISO CD 14839-3 of the AMB control system under

consideration in one axis direction is defined as the ratio of two signals in the frequency domain – the

error signal, E(s), and the reference input signal, R(s), as given by [78]:

   
 

20log in dBs

E s
G s

R s

 
   

 
 (4.32)

The data required for sensitivity is simply the signals r(k) and e(k) as specified in figure 4-10. The

measured data is used to determine the sensitivity of the new control system and compare it with the

sensitivity of the original PD control system.

Chapter 4: Adaptive control design 84

Figure 4-10: Measurement of sensitivity data

The reference input to the system should be a sinusoidal disturbance with varying frequency. The

sensitivity data should be measured at rotor standstill and/or nominal operating speed but over the

maximum frequency range. The maximum frequency range, fmax, starts at 0 Hz and ends at the

maximum of either three times the rated speed or 2 kHz [78].

The ISO CD 14839-3 standard also specifies that the sensitivity of each control loop should be

determined. The overall system sensitivity is taken as the worst of all the measured sensitivities [78].

Since the measured data is in the time domain, it is transformed to the frequency domain using the

Fourier transform. This frequency domain data is used in (4.32) to evaluate the sensitivity function.

The sensitivity function can be visualized using a frequency graph and by examining the peaks,

different conclusions can be drawn about the system’s robustness and performance.

4.7.3 Stability analysis

The stability of each control system will be evaluated by calculating the gain and phase margin of the

system. These margins are based on the Nyquist stability criterion and provide an indication of the

system’s stability in the presence of disturbances. The gain margin gm is defined in (4.33) as the

minimum amount by which the open-loop gain can increase before the closed-loop system becomes

unstable [23].

1

()
m

pc

g
L iω

 (4.33)

The variable ωpc is the phase crossover frequency. This frequency is simply the minimum frequency

where the phase of the loop transfer function L(s) is 180° (or -180°). The phase margin is defined in

(4.34) as the amount of phase lag needed before the closed-loop system becomes unstable [23].

 arg ()m gcφ π L iω  (4.34)

The variable ωgc represents the gain crossover frequency. This frequency is simply the minimum

frequency where the loop transfer function L(s) has a magnitude of 1 [23]. A gain margin larger than

6 dB and a phase margin larger than 30° will indicate an exceptionally robust system.

Chapter 4: Adaptive control design 85

4.8 Conclusions

The observer-based ACNC makes use of online system identification to obtain the state information

required by the adaptive critic controller. The NARX observer uses only input-output data from the

plant of the AMB flywheel system to achieve online system identification. The stability of the

proposed design is proven analytically by Jagannathan [8] using Lyapunov stability analysis methods.

Finally, the design is applicable to the control of multivariable, nonlinear, dynamic and inherently

unstable systems [8]. The proposed adaptive control design clearly conforms to all the requirements of

a controller for the AMB flywheel system. The steps of the system identification loop were also

identified in the application of the chosen adaptive control design.

The stability and performance measures presented in this chapter will be used on the linear PD control

system as well as the non-linear adaptive control system. Though this may seem incorrect, it is

common practice in AMB literature [13]. The next chapter consists of implementation of the

observer-based ACNC in the AMB flywheel system and its performance verification.

CC hh aa pp tt ee rr 55 :: SS ii mm uu ll aa tt ii oo nn rr ee ss uu ll tt ss

This chapter contains the implementation and simulation results of the chosen adaptive controller.

The observer optimization results are presented first. Its response at various rotor speeds is shown

and compared with the original system output. The step response of the new control system is

compared with the step response of the original PD control system. Performance verification

continues with robustness and stability analysis of each control system.

5.1 Implementation

This section addresses the steps of experiment design and obtaining data in the system identification

loop. The chosen control design is implemented in MATLAB® making use of built-in functions as well

as the Genetic Algorithm Toolbox™. The neural networks are coded in level-2 m-file s-functions in

MATLAB® and not using the Neural Network Toolbox™ as in the previous chapter. The Neural

Network Toolbox™ simply does not provide all the functionality required by the chosen design. The

s-functions are used in SIMULINK® to complete a simulation model of the new control system. Since

the original AMB flywheel system uses a sampling time of 100 μs, the new adaptive control system in

SIMULINK® also uses a sampling time of 100 μs.

5.1.1 Optimization using genetic algorithms

Since the observer network uses a different error signal than the critic and actor networks, it can be

optimized separately using a genetic algorithm. The estimation error of the observer, 1(),kx is used in

the genetic algorithm as the function to be minimized. Figure 5-1 shows how the observer is

connected to the original system and simulated in order to determine an optimal set of values for the

parameters, j1 and n1, of the observer. Notice that the observer optimization can be performed in an

open-loop manner since it does not affect the closed-loop system. Performing the optimization offline

at rotor standstill saves time but to ensure the observer’s accuracy, it is still tested in the closed-loop

system at various rotor speeds.

Observer

Plant

u(k) y(k)

+_ 1()kx

Figure 5-1: Optimization of observer parameters

Chapter 5: Simulation results 87

The observer optimization is achieved by injecting multi-sine excitation signals with frequencies

ranging from 0 Hz to 133 Hz as described in the previous chapter to ensure persistent excitation (PE).

Remember that PE is not required for the complete design – it is just used to determine optimal values

for the parameters of the observer. The resulting input and output signals are the same as those used in

the previous chapter for offline system identification.

The difference between the observer in this chapter and the observer in the offline system

identification experiment of the previous chapter can be seen in the network parameters. The offline

observer’s weights were trained up to certain point and then the network was deemed sufficient for

use in the closed-loop system. The design parameters of the online observer in this chapter are

optimized offline but the network weights are always re-initialized and continuously trained when

used in the closed-loop system. The online observer is termed a self-tuning network since adaptation

never stops which makes it ideal for time-varying plants [5].

The next step is the optimization of the critic and actor parameters. The values for the observer

parameters are kept constant since they have already been optimized. The tracking error, e(k), is used

in the form of a performance index as the function to be minimized by the genetic algorithm. A

performance index is simply a quantitative measure of a system’s performance. This index should be

minimized to obtain an optimal control system. The ITAE (integral of time multiplied by absolute

error) performance index reduces the contribution of large transient-state errors and emphasizes errors

in the steady-state response. The ITAE performance index is defined in (5.1) [3].

0
ITAE ()

T
t e t dt  (5.1)

The critic and actor parameters to be optimized are j2, n2, n3 and α. Note that the learning rate of each

network is chosen as shown in (5.2). The tracking error threshold is selected as c = 1×10-20
 m since

position signals can be as small as 1×10-35 m.

1
, 1,...,3i

i

α i
n

  (5.2)

The final parameter which requires selection is the number of system states, n. Equation (5.3)

describes the simple relationship between the state space system order nSP and the number of

mechanical degrees of freedom (DOF). Each DOF has two associated state variables, usually position

and velocity [1].

SP DOF2n n (5.3)

Chapter 5: Simulation results 88

Since the AMB flywheel system has 4 DOF, it requires at least 8 state variables for successful system

identification. The state vector of the observer-based ACNC in (4.8) now becomes:

T T T 8
1 2() [(), ()]k k k R x x x (5.4)

The variables x1(k) and x2(k) are defined as:

11

12
1

13

14

()

()
()

()

()

x k

x k
k

x k

x k

 
 
 
 
 
 

x and

21

22
2

23

24

()

()
()

()

()

x k

x k
k

x k

x k

 
 
 
 
 
 

x






 (5.5)

Equation (5.5) clearly indicates that n = 2 in the ACNC design with each DOF represented by two

state variables, ijx and ijx for i = 1,2 and j = 1,...,4. Note that (5.3) is only an indication of the

minimum number of state variables required – more can be used if necessary.

The number of inputs and the number of outputs of the system are both m = 4. The genetic algorithm

for both optimization processes uses an initial population of 40 real-coded chromosomes. The

algorithm then continues optimization until the number of 20 generations is reached. The best

chromosome of the final population is selected as the best set of parameters.

The population ranges for each of the parameters are selected as shown in table 5-1. These ranges

were selected using a trial-and-error approach. Any parameter values outside these ranges cause

unstable updates to the network weights and consequently, the closed-loop system becomes unstable.

Note that the variable m mR I

represents the identity matrix.

Table 5-1: Selected ranges for parameters

Parameter Selected range

1j 1 1 1where 0 50j j  j I

2j 2 2 2where 0 20j j  j I

1 2 3, ,n n n 4 100 for 1,2,3in i  

α 0.001 0.1α 

Chapter 5: Simulation results 89

5.1.2 Initialization of network weights

According to the design in Jagannathan [8], all of the output layer weights are initialized to zero and

trained online. The hidden layer weights are initialized randomly to a specified range and kept

constant. It is believed that the observer error can be made arbitrarily small by randomly initializing

the hidden layer weights and choosing n1 sufficiently large [8]. The range to which the output layer

weights are initialized is selected by the genetic algorithm along with all the other parameters.

5.2 Observer verification

The observer output obtained using an optimal parameter set as determined by the genetic algorithm is

under consideration. This open-loop output is compared with the original plant output of the AMB

flywheel system at 0 r/min with PE in figure 5-2. The observer with n = 2 used j1 = 20 and n1 = 40.

The hidden layer weights were initialized to [-0.0001, 0.0001]. The final mse obtained by the observer

with n = 2 was 7.446×10-12.

Notice in figure 5-2 how the observer output is almost identical to the original output. This is to be

expected since the condition of PE is satisfied and the observer is only being tested in an open-loop

configuration. Closed-loop tests will soon follow and provide a better method of verifying the

observer’s performance.

Since the genetic algorithm initializes random networks to enable a global search, it does not allow for

repeated initialization of the same network. This implies that the performance metrics used in the

previous chapter – accuracy, timeliness, precision and repeatability – cannot be used here since they

require initialization of the same network again and again [77].

Figure 5-2: AMB 1(x) observer output at 0 r/min and n = 2 with PE

0 0.05 0.1 0.15 0.2 0.25 0.3
-8

-6

-4

-2

0

2

4

6

8 x 10
-5

Time (s)

Po
si

tio
n

(m
)

 Original
Observer

Chapter 5: Simulation results 90

The NARX observer with n = 2 is simulated in the original closed-loop system at each of the rigid

mode frequencies as determined in the previous chapter: 2,200 r/min (35 Hz) and 4,000 r/min (65 Hz).

Figure 5-3 and figure 5-4 show the observer output at each of these rotor speeds without PE. A zero

reference input was applied to each AMB axis direction. Results for the other AMB axis directions are

very similar.

Figure 5-3: AMB 1(x) observer output at 2,200 r/min and n = 2 without PE

Notice the difference in the time scale of the plant dynamics when using a higher rotor speed as seen

by comparing figure 5-3 and figure 5-4. Figure 5-5 shows the observer output with n = 2 at the current

maximum operating speed of 8,300 r/min (133 Hz), also without PE.

Figure 5-4: AMB 1(x) observer output at 4,000 r/min and n = 2 without PE

0 0.05 0.1 0.15
-1.5

-1

-0.5

0

0.5

1

1.5 x 10
-5

Time (s)

Po
si

tio
n

(m
)

 Original
Observer

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-5

0

5 x 10
-5

Time (s)

Po
si

tio
n

(m
)

 Original
Observer

Chapter 5: Simulation results 91

Figure 5-5 clearly shows that the observer produced a very small estimation error at the current

maximum operating speed of 8,300 r/min (133 Hz). Figure 5-6 shows the observer output with n = 2

at the rated maximum operating speed of 31,400 r/min (500 Hz).

Figure 5-5: AMB 1(x) observer output at 8,300 r/min and n = 2 without PE

The NARX observer produced a much larger estimation error at very high rotor speeds as shown in

figure 5-6. Notice also that it was only possible to simulate the original control system using

decentralized PD control for 0.035 s at a rotor speed of 31,400 r/min before it became unstable.

Results for the other AMB axis directions are very similar.

Figure 5-6: AMB 1(x) observer output at 31,400 r/min Hz and n = 2 without PE

0 0.02 0.04 0.06 0.08 0.1 0.12
-4

-3

-2

-1

0

1

2

3 x 10
-5

Time (s)

Po
si

tio
n

(m
)

Original
Observer

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
-6

-4

-2

0

2

4

x 10
-4

Time (s)

Po
si

tio
n

(m
)

Original
Observer

Chapter 5: Simulation results 92

Recall that the order used by the observer is the same as the order used by the controller. Adaptive

controllers with n < 10 were found to be inadequate since they could not stabilize the system. The

rotor delevitates with lower order adaptive controllers. Consequently, the order of the observer had to

be increased until the corresponding controller could provide feedback stabilization. The final

adaptive controller uses n = 20 and the corresponding observer output with PE at rotor standstill can

be seen in figure 5-7. Notice the time delay in the observer output when using a higher order.

Figure 5-7: AMB 1(x) observer output at 0 r/min and n = 20 with PE

Simulating the observer in closed-loop configuration without PE at the current maximum rotor speed

of 8,300 r/min (133 Hz) can be seen in figure 5-8. Note that the low order observers do satisfy the

condition of fit, namely a very small estimation error, but they fail model validation and are not

considered further.

Figure 5-8: AMB 1(x) observer output at 8,300 r/min and n = 20 without PE

0 0.05 0.1 0.15 0.2 0.25 0.3
-8

-6

-4

-2

0

2

4

6

8 x 10
-5

Time (s)

Po
si

tio
n

(s
)

 Original
Observer

0 0.05 0.1 0.15 0.2 0.25 0.3
-1

-0.5

0

0.5

1 x 10
-5

Time (s)

Po
si

tio
n

(m
)

Original
Observer

Chapter 5: Simulation results 93

5.3 Adaptive controller verification

This section presents the adaptive controller results in the form of step response, robustness and

stability analysis. The first results are the step responses of three different adaptive controllers. The

adaptive controllers use n = 6, n = 12 and n = 20 respectively. Various adaptive controllers with n

ranging from 2 as recommended by (5.3) to 30 were tested, but it was found that higher order

controllers provided better performance.

The results of the adaptive controllers with n = 6 and n = 12 are only shown to provide a performance

comparison with the adaptive controller using n = 20. This is to emphasize the improvement in

performance when using more state variables. The step response results are followed by robustness

and stability analysis results of the controller with n = 20.

Once again, only a few results are presented in this section since there are simply too many. Table 5-2

shows the optimal values as determined by the genetic algorithms for each ACNC. The observer

hidden layer weights were initialized to [-0.03, 0.03], the actor hidden layer weights to [-9, 9] and the

critic hidden layer weights to [-0.5, 0.5]. All of the output layer weights were initialized to zero.

Table 5-2: Optimal values for ACNC parameters

Parameter n = 6 n = 12 n = 20

1j 7.8 9.9 2.1

2j 1 1 1

1n 40 100 30

2n 4 4 4

3n 126 82 145

N 5 5 5

α 0.01 0.01 0.01

5.3.1 Step response

A step input at 0.1 s with an amplitude of 1 μm is applied to AMB 1(x). A larger amplitude for the

step input can be used, but the original PD control system destabilizes at some point. The original PD

control system runs longer before destabilizing by using an amplitude of 1 μm for the step input and

allows for a better comparison with the ACNC. The response of the original system and the ACNC

with n = 6 can be seen in figure 5-9.

Chapter 5: Simulation results 94

Figure 5-9: Step response of PD controller and ACNC with n = 6

Notice that the amplitude of the step response using an ACNC with n = 6 only gets larger and larger

with time as shown in figure 5-9. The rotor destabilizes at some point and accordingly, the ACNC

with n = 6 is no longer considered. An adaptive controller with n = 12 is compared with the original

decentralized PD control system in figure 5-10.

Figure 5-10: Step response of PD controller and ACNC with n = 12

When studying figure 5-10, it becomes obvious that the settling time for the ACNC with n = 12 is

much larger than the original PD control system. This ACNC is also disregarded since it does not

provide a level of performance even close to the PD control system’s performance. The performance

of the ACNC with n = 20 will be verified in the following sections. The step response of the final

ACNC with n = 20 can be seen in figure 5-11.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-6

-4

-2

0

2

4

6

8

10 x 10
-6

Time (s)

Po
si

tio
n

(m
)

PD
ACNC
Reference

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4 x 10
-6

Time (s)

Po
si

tio
n

(m
)

PD
ACNC
Reference

Chapter 5: Simulation results 95

Figure 5-11: Step response of PD controller and ACNC with n = 20

The percentage overshoot (P.O.) and settling time (Ts) can be calculated from the step response data

in figure 5-11. The original system has a settling time of Ts = 0.14 s and a P.O. as determined in the

following:

6 6

6

2.4 10 1.6 10
. . 100% 100% 50%

1.6 10
pM fv

P O
fv

 



   
    



The adaptive system has a settling time of Ts = 0.24 s and a P.O. as determined in the following:

6 6

6

5.2 10 2.8 10
. . 100% 100% 86%

2.8 10
pM fv

P O
fv

 



   
    



Analysis of the step response results would clearly indicate that the ACNC does not measure up to the

original decentralized PD control system. The advantages of the ACNC can only be seen by allowing

the AMB system to run a little longer after the step input has been applied.

Figure 5-12 shows how the rotor destabilizes17 after 3 s when using decentralized PD control but

remains stable using the ACNC with n = 20. The system response using the ACNC with n = 20 is so

small, it can almost not be seen in figure 5-12. The reason behind this phenomenon will have to be

investigated.

17 Rotor destabilization refers to the rotor levitating far from its reference point and touching the retainer bearings.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6 x 10
-6

Time (s)

Po
si

tio
n

(m
)

PD
ACNC
Reference

Chapter 5: Simulation results 96

Figure 5-12: Step response of PD controller and ACNC with n = 20 for 5 s

5.3.2 Robustness analysis

A chirp disturbance at the reference input with amplitude 0.001 μm ranging from 0 Hz to 2 kHz is

applied to AMB 1(x) over a period of 40 s. Once again, the very small input amplitude is necessitated

because the rotor destabilizes using decentralized PD control with larger reference input amplitudes.

Figure 5-13 shows the worst-case sensitivity of each control system as well as magnitude limits of

8 dB, 12 dB and 14 dB. These limits indicate different operating zones of an AMB system as defined

in the ISO CD 14839-3 standard. These zones are defined as [78]:

 Zone A – the region below 8 dB. Newly commissioned machines usually fall within this

operating zone.

 Zone B – the region between 8 dB and 12 dB. Machines in this zone are normally accepted

for long-term operation.

 Zone C – the region between 12 dB and 14 dB. Machines in this zone cannot be operated for

long periods of time. Corrective action is required.

 Zone D – the region after 14 dB. Machines in this zone will be damaged severely and cannot

be operated.

The two control systems, one with decentralized PD control and the other with an ACNC, have

differing sensitivities at the critical frequencies identified previously as shown in figure 5-13. The

adaptive control system falls within zone A whereas the decentralized PD system falls within zone D.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-3

-2

-1

0

1

2

3

4

5 x 10
-5

Time (s)

Po
si

tio
n

(m
)

PD
ACNC

Chapter 5: Simulation results 97

Figure 5-13: Worst-case sensitivity of PD controller and ACNC with small chirp signal

At this point, the adaptive controller has not yet been thoroughly tested for stability against external

disturbances. This is clearly visible in figure 5-13 since the sensitivity function of the adaptive control

system never goes past zone A (higher than 8 dB). A larger disturbance amplitude is required but this

means that the decentralized PD control system cannot be tested again. Figure 5-14 shows the worst-

case sensitivity of the observer-based ACNC with a chirp disturbance of amplitude 1 μm.

Figure 5-14: Worst-case sensitivity ACNC with large chirp signal

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-100

-75

-50

-25

0

25

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

PD
ACNC
8 dB
12 dB
14 dB

0 100 200 300 400 500 600 700 800 900 1000
-80

-60

-40

-20

0

20

40

60

80

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

ACNC
8 dB
12 dB
14 dB

Chapter 5: Simulation results 98

The worst-case sensitivity of the adaptive control system with the larger chirp disturbance applied at

the reference input puts the adaptive system in zone D. Note that the sensitivity function is not

calculated across 2 kHz this time. The NARX observer is known to be relatively accurate up to an

operating speed of 31,400 r/min (500 Hz) and consequently, the larger chirp disturbance ranges from

0 Hz only to 500 Hz. The chirp signal is applied to AMB 1(x) over a period of 10 s.

5.3.3 Stability analysis

The gain and phase margins are determined using the data obtained during the first robustness test in

the previous section. This is done to enable a comparison between the original control system and the

adaptive control system. Figure 5-15 shows the gain and phase of both the decentralized PD control

system and the adaptive control system. The gain crossover frequency (ωgc) and phase crossover

frequency (ωpc) are indicated on the figure by GCF and PCF respectively.

Figure 5-15: Worst-case gain and phase margins of PD controller and ACNC with n = 20

The worst-case gain margin achieved by the decentralized PD control system is 9.1 dB and the worst-

case phase margin is 17.7°. The worst-case gain margin achieved by the adaptive control system is

3.7 dB and the worst-case phase margin is also 17.7°.

10
0

10
1

10
2

10
3

-90

-60

-30

0

30

X: 68.75
Y: 0

Gain

M
ag

ni
tu

de
 (

dB
) X: 2.309

Y: 9.106

X: 2.309
Y: 3.662

10
0

10
1

10
2

10
3

0

2000

4000

X: 68.75
Y: 197.7

Phase

D
eg

re
es

Frequency (Hz)

X: 2.309
Y: 180

PD

ACNC
GCF

PCF

Chapter 5: Simulation results 99

5.4 Results assessment

This section aims to evaluate the results of the step response, robustness analysis and stability analysis

of the decentralized PD controller and the observer-based ACNC presented in the previous section.

5.4.1 Step response

The step response of the adaptive control system was clearly not as good as the step response of the

decentralized PD control system. The ACNC settled much slower and overshot the final value

significantly. However, a small settling time and low overshoot mean absolutely nothing if the system

cannot remain stable. Such is the case of the PD control system. It warrants further investigation.

Upon closer inspection of the other AMB axis directions, an interesting occurrence was observed in

AMB 1(y). The position output for AMB 1(y) of the decentralized PD control system can be seen in

figure 5-16. The corresponding position output of the adaptive control system is shown in figure 5-17.

The occurrence of chatter is clearly visible in both figures [1]. Notice that the chatter gradually

disappears using the ACNC but in the decentralized PD control system, the chatter becomes

uncontrollable.

Figure 5-16: AMB 1(y) output for decentralized PD control

The chatter on the AMB 1(y) axis starts out very small, but as time progresses, it becomes large

enough to finally destabilize the rotor along AMB 1(x). This is due to cross-coupling18 effects

between the x- and y-axis directions of AMB 1.

18 Cross-coupling refers to the interaction in terms of coupling between the x- and y-axis directions of an AMB and between
AMB 1(x) and AMB 2(x) as well as AMB 1(y) and AMB 2(y) [1].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2 x 10
-15

Time (s)

Po
si

tio
n

(m
)

PD

Chapter 5: Simulation results 100

Figure 5-17: AMB 1(y) output for ACNC

5.4.2 Robustness analysis

Evaluation of the sensitivity function of each control system verifies that the adaptive control system

is more robust against external disturbances than the decentralized PD control system. This level of

robustness is also exhibited by newly commissioned systems as described in the ISO CD 14839-3

standard [78]. When significantly larger disturbances are applied, the adaptive control system proves

to be only somewhat robust.

5.4.3 Stability analysis

The gain and phase margins achieved by the decentralized PD control system verify a robust system.

The same holds true for the adaptive control system. More significantly, the gain and phase margins

for both systems guarantee closed-loop stability [3].

5.4.4 Other comments

Optimizing the ACNC parameters using genetic algorithms did not deliver consistent results.

Consider figure 5-18 showing the results from a genetic algorithm using 40 chromosomes and 10

generations to optimize the number of neurons for the critic and the number of neurons for the actor.

The z-axis shows the performance achieved by each chromosome during each generation as the

inverse of the ITAE performance index.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1

0

1

2

3 x 10
-16

Time (s)

Po
si

tio
n

(m
)

ACNC

Chapter 5: Simulation results 101

Figure 5-18: Genetic algorithm results for 40 generations

The genetic algorithm results clearly indicate that similar chromosomes did not achieve the same

performance level at each initialization. The only random factor which came into play was the

initialization of the hidden layer weights for each network. A set of network weights for a certain

chromosome was different every time the chromosome was tested. This resulted in significant

performance variations by similar chromosomes.

5.5 Conclusions

This chapter presented the implementation and simulation results of the observer-based ACNC

applied to the AMB flywheel system. The NARX observer was optimized separately and then

integrated into the adaptive controller. Results indicate that significantly more neurons are required

for online neural networks than offline neural networks. This is largely due to the way the online

networks of the observer-based ACNC are trained – quickly and continuously [5].

The adaptive controller was thoroughly tested by means of external disturbances. Robustness and

stability analysis were also performed which verified that the adaptive control system is indeed robust

and closed-loop stable. The final ACNC was of order 80 (n × m = 20 × 4 = 80), which is much higher

than the decentralized PD control system. Since the PD controllers are decoupled and the adaptive

controller uses cross-coupling, the two control approaches cannot be fairly compared. Only the

implementation of each control approach can be used in a comparison. In the next chapter, various

conclusions are drawn regarding the adaptive controller and the decentralized PD control scheme

using the results from this chapter.

0
5

10
15

20
25

30

50

100

150
0

1

2

3

x 10
12

Number of neurons for actorNumber of neurons for critic

Pe
rf

or
m

an
ce

CC hh aa pp tt ee rr 66 :: CC oo nn cc ll uu ss ii oo nn ss aa nn dd rr ee cc oo mm mm ee nn dd aa tt ii oo nn ss

This chapter starts by drawing conclusions using results from the previous chapters. Important issues

addressed during this study are highlighted and the outcome of proposed methodologies discussed.

Concluding remarks continue by discussing the difference in performance between the decentralized

PD control system and the adaptive control system. The chapter closes with recommendations for

future work aimed at improving the adaptive controller as applied to the AMB flywheel system.

6.1 Conclusions

The objective of this study was to obtain an adaptive controller for the Fly-UPS system using online

system identification, adaptive control design methods and neural networks. The neural networks had

to continually adapt an AMB plant model online and acquire an adaptive controller for the 4-DOF

AMB flywheel system. Overall system control in terms of stability and robustness had to be

improved.

An indirect adaptive control design using observer, actor and critic neural networks was selected for

the adaptive controller. This controller was called an observer-based ACNC. The chosen adaptive

design boasted analytical proofs using Lyapunov stability analysis methods which guarantee stable

online system identification and control. The use of state information by the adaptive controller was

the main drawback since the required number of state variables had to be estimated. The complexity

of the neural networks was also limited because the update algorithms of the chosen adaptive design

only allowed for the use of single-layer networks.

Online system identification was achieved using a NARX neural network as the observer. The NARX

observer had to encompass all the effects of the plant of the AMB flywheel system. These effects

included the speed-dependent dynamic behaviour of the flexible rotor in the form of unbalance effects

and flexible modes. The nonlinear magnetic force as well as saturation and hysteresis of the

ferromagnetic material in the magnets are also included. Frequency response analysis provided the

means for validation of the NARX architecture as the most suitable architecture to model the plant of

the AMB flywheel system. The resulting neural model successfully represented the inherently

unstable, nonlinear, dynamic and multivariable plant of the AMB flywheel system.

The differing time scales of various processes in the AMB flywheel system proved to be a problem

when rotor speeds past the current maximum operating speed were considered. The NARX state

observer produced larger and larger estimation errors as the rotor speed increased. The adaptive

control system’s sensitivity to external disturbances increased significantly as the observer’s accuracy

decreased.

Chapter 6: Conclusions and recommendations 103

The adaptive controller was successfully implemented in SIMULINK® and its parameters optimized

with the help of genetic algorithms. The genetic algorithms proved to deliver inconsistent results for

various reasons. One of these reasons was the random initialization of neural network weights. By

improving the use of genetic algorithms, even better results are bound to surface.

The issue of performance verification was addressed in the form of step response, robustness and

stability analysis. The decentralized PD control scheme proved insufficient when faced with severe

cross-coupling effects. The adaptive controller kept the system stable under the same conditions. This

is due to the fact that the decentralized PD control scheme consists of 4 separate controllers which do

not share any kind of information with each other. The PD controllers are purely SISO even though

they are implemented in parallel. The MIMO adaptive controller however, allowed for the

multivariable nature of the AMB flywheel system and kept the system stable in the presence of severe

cross-coupling effects.

A high bandwidth is required by the high closed-loop rigid body modes of the AMB flywheel system.

The occurrence of chatter in the AMB flywheel system is due to unattainable high bandwidths of

certain system components. Chatter can destabilize even a marginally stable closed-loop AMB system

because of the many nonlinear effects in the system [1]. The decentralized PD control system could

clearly not control the chatter and the rotor delevitated. The adaptive controller proved superior to the

decentralized PD control scheme by containing the chatter along the AMB axis directions and keeping

the rotor suspended.

In comparison with the decentralized PD control scheme, the observer-based ACNC had a relatively

high order. Even so, the high computational resources usually associated with adaptive control were

not evident in the observer-based ACNC [28]. The majority of computational effort was caused by the

given simulation model of the plant of the AMB flywheel system. In contrast, the complexity of the

chosen adaptive control design became apparent in the selection of optimal values for the controller

parameters. Tuning of PD and PID controllers have become relatively straight-forward [23].

Comparison of a coupled PD controller with the observer-based ACNC would obviously have

provided more insight into the performance and stability of each non-linear control approach. The

only AMB flywheel system available at the time of this study was the linear decentralized PD control

system. Fortunately, the implementation of each control approach – decentralized PD control and

observer-based ACNC – could be properly compared with regard to the AMB flywheel system under

consideration.

Chapter 6: Conclusions and recommendations 104

It should be clear at this point that the research problem and important issues were addressed

successfully. The adaptive controller displayed an improvement in performance over the decentralized

PD control scheme, even though only in a simulation environment. The observer-based ACNC

adapted to external disturbances and allowed for the AMB flywheel system’s complex behaviour.

This study may have justified further research into adaptive control using artificial intelligence

techniques as applied to the AMB flywheel system.

6.2 Recommendations for future work

This section presents recommendations for future work aimed at improving the adaptive controller as

applied to the AMB flywheel system as well as a few general suggestions.

6.2.1 Eliminate need for state information

A significant drawback posed by the online NARX state observer was selecting the number of

required state variables n. The number of state variables were approximated based on the system’s

DOF. When flexibility is considered, the number of DOF becomes much larger than the 4 DOF of the

AMB flywheel system simulation model. This would imply using more state variables than indicated

by (5.3) to perform state estimation successfully [1].

The question as to how many state variables are required still remains. Future work could include

eliminating the need for state information by using a neural input-output model instead of a neural

state observer. This would necessitate a control design method using output feedback and not state

feedback as required by the adaptive critic model [8].

6.2.2 Increase hidden layers

Only a single hidden layer was used by each network in the chosen adaptive control design. The

approximation capability of a network can be improved by adding another hidden layer. With more

hidden layers, complex functions can be mapped more efficiently. The key lies in choosing the

number of hidden layers which provides an optimal balance between computational complexity and

accuracy [9]. Future work could include modifying the chosen adaptive control design to allow the

use of more than a single hidden layer in each network.

6.2.3 Higher sampling rate for observer

At high rotor speeds such as 31,400 r/min, it became clear that the observer could not keep up. Online

system identification fell behind because the time scales of underlying closed-loop dynamics and

parameter variations became smaller and smaller. The only way to ensure that the identification

occurs faster and avoid instability is to increase the sampling rate of the observer [15].

Chapter 6: Conclusions and recommendations 105

Unfortunately, increasing the sampling rate poses a problem to the practical AMB flywheel system

since it is already set to the highest sampling rate allowed by the hardware. Future work could include

improving the hardware to allow for higher sampling rates and consequently allow faster observer

updates.

6.2.4 Improve network weights initialization

The hidden layer weights of the observer, actor and critic were initialized to random numbers

uniformly distributed between selected ranges. These weights were kept constant while the output

layer weights which were initialized to zero, were updated using the algorithm in the chosen design. It

is believed that the estimation error can be made as small as desired by initializing the weights in this

way and choosing the number of hidden layer weights sufficiently large [8].

It was shown in the previous chapter that random initialization of the hidden layer weights proved a

serious problem. The same ACNC did not produce consistent results when re-initialized and

simulated. Future work could include improving the way the hidden layer weights are initialized. The

following are suggestions to find optimal values for the hidden layer weights:

 Just as the optimal values for the observer were determined offline, optimal hidden layer

weights could also be determined offline. The method proposed by Yam and Chow could be

used if desired output data were available or could be generated accurately [81].

 The hidden layer weights do not have to be kept constant – they could also be trained online

like the output layer weights and in doing so, eliminate the need to improve the weights

initialization method [82]. This would unfortunately also add to the computational effort

required by the ACNC.

 Training the hidden layer weights online requires an extremely fast convergence rate since

the AMB system is inherently unstable. Decentralized PD control could be used to initially

stabilize the rotor while the neural network controller learns. A switching algorithm can be

used to determine when to switch to the neural controller [53].

All of these recommendations to avoid the problems caused by randomly initializing the hidden layer

weights obviously require more effort than indicated by the chosen control design. This extra effort is

necessitated by the complexity of the AMB flywheel system.

6.2.5 Enhance use of genetic algorithms

If computer memory and time were not as limited as in this study, the genetic algorithm parameters

could be modified to allow for a better search. The search space could be enlarged to allow for more

possible chromosomes or the population size could be increased to test more chromosomes. The

number of generations could also be increased to allow the algorithm to search longer for a solution.

Chapter 6: Conclusions and recommendations 106

The relationships between the various parameters of the chosen adaptive control design were more

often than not, ambiguous. The effect on control system performance of varying a certain parameter

was also repeatedly unclear. This necessitated the use of an iterative optimization method for the

controller parameters since tuning by hand would have taken much too long.

As explained previously, the use of an iterative optimization method presented its own problems. The

genetic algorithm results clearly indicated that the same adaptive controller did not always deliver the

same level of performance. Future work could include the computation of the relationships between

parameters as well as the effects of different parameters on system performance. This would enable

improved parameter selection for the adaptive controller. A multi-objective genetic algorithm could

even be used since it allows for more than one error function to be minimized [42].

6.2.6 Proven method to select number of neurons

Global optimization of the number of hidden layer neurons using genetic algorithms became very

time-consuming especially when the search space was large. Some executions of the genetic

algorithm took up to 30 hours on a high-performance personal computer. To avoid this problem in

future work, a proven method to select the number of neurons in the hidden layer of a neural network

is required. Ways to address the minimum number of required neurons do exist but these boil down to

educated guesses [8].

No generally applicable method exists to explicitly decide the size of a neural network i.e. the number

of hidden layers and the number of neurons [8]. Future work could include the analytical derivation of

a method to determine, not just iteratively optimize, the number of hidden layer neurons in a neural

network.

6.2.7 Adaptive controller order reduction

Clearly, a controller of order 80 will not suffice for practical applications. The physical

implementation platform of the AMB flywheel system only allows for a maximum order of 19 at the

current sampling time of 100 μs. For the adaptive control design of this study to be practically

feasible, a way of reducing its order should definitely be investigated in future work.

Since the random initialization of hidden layer weights produced inconsistent results, the full power of

the GAs in terms of optimization could not be realized. It is hoped that future work to improve the

way the weights are initialized will lead to better optimization results by the GAs and consequently, a

low-order adaptive controller. Controller order reduction would enable physical implementation of an

observer-based ACNC and allow the potential of adaptive control using artificial intelligence

techniques to be fully realized.

AA pp pp ee nn dd ii xx AA :: PP rr oo jj ee cc tt CC DD

The project CD contains all the files necessary to reproduce the results found in this document. Some

of these files were given in which case it is indicated and others were programmed. The folders on the

CD are as follow:

A.1 MATLAB® files:

a. Architecture selection

b. Adaptive control design

c. Performance verification

A.2 SIMULINK® files:

a. Architecture selection

b. Adaptive control design

c. Performance verification

A.3 Nonlinear model (given)

A.4 Documentation

a. Dissertation

b. Important literature

c. Proposal

RR ee ff ee rr ee nn cc ee ss

[1] G. Schweitzer and E. H. Maslen, Magnetic Bearings: Theory, Design and Application to

Rotating Machinery. Heidelberg, Germany: Springer, 2009.

[2] J. T. Spooner, M. Maggiore, R. Ordonez, and K. M. Passino, Stable Adaptive Control and

Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques. New York,

USA: John Wiley and Sons, 2002.

[3] R. C. Dorf and R. H. Bishop, Modern Control Systems, 10th ed. Upper Saddle River, New

Jersey: Pearson Prentice Hall, 2005.

[4] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and Robustness, T. Kailath,

Ed. Englewood Cliffs, New Jersey: Prentice Hall, 1989.

[5] G. A. Dumont and M. Huzmezan, "Concepts, Methods and Techniques in Adaptive Control," in

American Control Conference, Vancouver, Canada, 2002, pp. 1137-1150.

[6] R. Ordonez and K. M. Passino, "Indirect Adaptive Control for a Class of Non-linear Systems

with Time-varying Structure," International Journal of Control, vol. 74, no. 7, pp. 701-717,

2001.

[7] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing. Upper Saddle River,

New Jersey: Prentice-Hall, 1997.

[8] S. Jagannathan, Neural Network Control of Nonlinear Discrete-Time Systems. Boca Raton,

Florida: Taylor and Francis Group, 2006.

[9] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design. Boston, USA: PWS

Publishing Company, 1996.

[10] A. K. Jain, J. Mao, and K. M. Mohiuddin, "Artificial Neural Networks: A Tutorial," IEEE

Computer, pp. 31-44, Mar. 1996.

[11] Y. Diao and K. M. Passino, "Intelligent Fault-tolerant Control using Adaptive and Learning

Methods," Control Engineering Practice, no. 10, pp. 801-817, 2002.

[12] S. Zerkaoui, F. Druaux, E. Leclercq, and D. Lefebvre, "Stable Adaptive Control with Recurrent

Neural Networks for Square MIMO Non-linear Systems," Engineering Applications of Artificial

Intelligence, no. 22, pp. 702-717, 2009.

[13] S. Myburgh, "The development of a fully suspended AMB system for a high-speed flywheel

application," North-West University Dissertation, 2007.

[14] L. Ljung, System Identification - Theory for the User. Upper Sadle River, New Jersey: Prentice

Hall, 1999.

[15] B. D. O. Anderson, "Failures of Adaptive Control Theory and their Resolution,"

References 109

Communications in Information and Systems, vol. 5, no. 1, pp. 1-20, 2005.

[16] G. Li, "Robust Stabilization of Rotor Active Magnetic Bearings Systems," PhD Dissertation,

University of Virginia, 2007.

[17] J. Ritonja, B. Polajzer, D. Dolinar, B. Grcar, and P. Cafuta, "Active Magnetic Bearings Control,"

in 29th Chinese Control Conference, Beijing, China, 2010, pp. 5604-5609.

[18] P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy, and Y. Liu, "Energy Storage Systems for

Advanced Power Applications," Proceedings of the IEEE, vol. 89, no. 12, pp. 1744-1756, Dec.

2001.

[19] H. Ibrahim, A. Ilincaa, and J. Perronb, "Energy storage systems - Characteristics and

comparisons," Renewable and Sustainable Energy Reviews, no. 12, pp. 1221-1250, 2008.

[20] B. Bolund, H. Bernhoff, and M. Leijon, "Flywheel energy and power storage systems,"

Renewable and Sustainable Energy Reviews, no. 11, pp. 235-258, 2007.

[21] E. O. Ranft, "The Development of a Flexible Rotor Active Magnetic Bearing System," North-

West University Dissertation, 2005.

[22] J. Ritonja, B. Polajzer, and D. Dolinar, "Decentralized Control for Active Magnetic Bearings," in

Power Electronics and Motion Control Conference, Portoroz, 2006, pp. 1413-1418.

[23] K. J. Astrom and R. M. Murray, Feedback Systems: An Introduction for Scientists and

Engineers. Princeton, New Jersey, USA: Princeton University Press, 2008.

[24] R. P. Jastrzebski and R. Pollanen, "Centralized Optimal Position Control for Active Magnetic

Bearings: Comparison with Decentralized Control," Electrical Engineering, vol. 91, no. 2, pp.

101-114, Aug. 2009.

[25] H.-C. Chen, "OPTIMAL FUZZY PID CONTROLLER DESIGN OF AN ACTIVE MAGNETIC

BEARING SYSTEM BASED ON ADAPTIVE GENETIC ALGORITHMS," in Seventh

International Conference on Machine Learning and Cybernetics, Kunming, 2008, pp. 2054-

2060.

[26] C.-T. Lin and C.-P. Jou, "GA-Based Fuzzy Reinforcement Learning for Control of a Magnetic

Bearing System," in IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART

B: CYBERNETICS, 2000, pp. 276-289.

[27] M. Golob and B. Tovornik, "Modeling and control of the magnetic suspension system," in ISA

Transactions, 2003, pp. 89-100.

[28] K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. New York, USA: Prentice Hall,

2008.

[29] N.-C. Tsai, C. W. Chiang, and C. H. Kuo, "Robust Sliding Mode Control for Axial AMB

Systems," in 5th Asian Control Conference, 2004, pp. 64-69.

References 110

[30] N. S. Gibson, "HINF CONTROL OF ACTIVE MAGNETIC BEARINGS: AN INTELLIGENT

UNCERTAINTY MODELING APPROACH," PhD Dissertation, North Carolina State

University, Raleigh, 2004.

[31] R. P. Jastrzebski, "Signal-based Hinf optimal control for AMB system based on genetic

algorithm," in IEEE International Conference on Control and Automation, Christchurch, New

Zealand, 2009, pp. 715-721.

[32] P. Lundstrom, S. Skogestad, and Z.-Q. Wang, "UNCERTAINTY WEIGHT SELECTION FOR

H-INFINITY AND MU-CONTROL METHODS," in Conference on Decision and Control,

Brighton, England, 1991, pp. 1537-1542.

[33] Y. Uchimura and H. Kazerooni, "A mu-synthesis based control for compliant manoeuvres," in

IEEE International Conference on Systems, Man, and Cybernetics, 1999, pp. 1014-1019.

[34] P. V. Kokotovic, "The joy of feedback: nonlinear and adaptive," IEEE Control Systems

Magazine, vol. 12, no. 3, pp. 7-17, 1992.

[35] P. Tsiotras, "Zero- and Low-Bias Control Designs for Active Magnetic Bearings," IEEE

Transactions on Control Systems Technology, vol. 11, no. 6, pp. 889-904, Nov. 2003.

[36] C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, 3rd ed. Saddle

River, New Jersey, USA: Prentice Hall, 1995.

[37] A. M. Beizema, J. M. Echeverria, M. Martinez-Iturralde, I. Egana, and L. Fontan, "Comparison

between Pole-Placement Control and Sliding Mode Control for 3-Pole Radial Magnetic

Bearings," in International Symposium on Power Electronics, Electrical Drives, Automation and

Motion, 2008, pp. 1315-1320.

[38] B. Shafai, S. Beale, P. La Rocca, and E. Cusson, "Magnetic Bearing Control Systems and

Adaptive Forced Balancing," IEEE Control Systems, pp. 4-13, Apr. 1994.

[39] X. Chen, L. Ji, and K. Liu, "A BP Neural Network Controller for Magnetic Suspended Flywheel

System," in IEEE International Conference on Computer Science and Information Technology,

2010, pp. 448-452.

[40] T. W. S. Chow and S.-Y. Cho, Neural Networks and Computing: Learning Algorithms and

Applications, W.-K. Chen, Ed. London, UK: Imperial College Press, 2007.

[41] S.-S. Yu, S.-J. Wu, and T.-T. Lee, "Optimal Fuzzy Control of Radial Active Magnetic Bearing

Systems," in IEEE International Symposium on Computational Intelligence in Robotics and

Automation, Kobe, Japan, 2003, pp. 1393-1398.

[42] P. Schroder, A. J. Chipperfield, P. J. Fleming, and N. Grum, "Multi-Objective Optimisation of

Distrubuted Active Magnetic Bearing Controllers," in Genetic Algorithms in Engineering

Systems: Innovations and Applications, 1997, pp. 13-18.

[43] G. Song and R. Mukherjee, "Integrated Adaptive Robust Control of Active Magnetic Bearings,"

References 111

in IEEE International Conference on Systems, Man, and Cybernetics, 1996, pp. 1784-1790.

[44] A. R. Husain, M. N. Ahmad, and A. H. Mohd. Yatim, "Sliding Mode Control with Linear

Quadratic Hyperplane Desing: An application to an Active Magnetic Bearing System," in The

5th Student Conference on Research and Development, 2007, pp. 1-6.

[45] S. Sivrioglu and K. Nonami, "Sliding Mode Control With Time-Varying Hyperplane for AMB

Systems," IEEE/ASME Transactions on Mechatronics, vol. 3, no. 1, pp. 51-59, Mar. 1998.

[46] X. Yu and O. Kaynak, "Sliding-Mode Control With Soft Computing: A Survey," IEEE

TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 56, no. 9, pp. 3275-3285, Sep. 2009.

[47] S. Sivrioglu, "Adaptive backstepping for switching control magnetic bearing system with

vibrating base," IET Control Theory Applications, vol. 1, no. 4, pp. 1054-1059, 2007.

[48] S. Sivrioglu and K. Nonami, "Adaptive Output Backstepping Control of a Flywheel Zero-Bias

AMB System with Parameter Uncertainty," in 42nd IEEE Conference on Decision and Control,

Maui, Hawaii, 2003, pp. 3942-3947.

[49] S. You, "ADAPTIVE BACKSTEPPING CONTROL OF ACTIVE MAGNETIC BEARINGS,"

Cleveland State University Dissertation, 2007.

[50] J. A. Aseltine, A. R. Mancini, and C. W. Sarture, "A Survey of Adaptive Control Systems," IRE

Transactions on Automatic Control, vol. 6, no. 1, pp. 102-108, Dec. 1958.

[51] C. Li and L.-L. Xie, "On Robust Stability of Discrete-Time Adaptive Nonlinear Control,"

Systems and Control Letters, vol. 55, no. 6, pp. 452-458, Jun. 2006.

[52] G. Tao, Adaptive Control Design and Analysis. Hoboken, New Jersey: John Wiley and Sons,

2003.

[53] K. S. Narendra, M. J. Feiler, and Z. Tian, "Control of Complex Systems Using Neural

Networks," in Modeling and Control of Complex Systems. Boca Raton, USA: CRC Press, 2008,

ch. 2, pp. 13-98.

[54] K. J. Astrom, "Adaptive Feedback Control," Proceedings of the IEEE, vol. 75, no. 2, pp. 185-

217, Feb. 1987.

[55] M. T. Hagan and H. B. Demuth, "Neural Networks for Control," in American Control

Conference, 1999, pp. 1642-1656.

[56] F. Gang and L. Rogelio, Adaptive Control Systems. Oxford, UK: Newnes, 1999.

[57] K. S. Narendra and J. Balakrishnan, "Adaptive Control using Multiple Models," IEEE

Transactions on Automatic Control, vol. 42, no. 2, pp. 171-187, Feb. 1997.

[58] S. N. Sivanandam, S. Sumathi, and S. N. Deepa, Introduction to Fuzzy Logic using MATLAB.

Berlin, Germany: Springer, 2007.

[59] K. M. Passino and S. Yurkovich, Fuzzy Control. Menlo Park, California, USA: Addison Wesley

References 112

Longman, 1998.

[60] T. J. Ross, Fuzzy Logic with Engineering Applications, 2nd ed. Chichester, England: John Wiley

and Sons, 2004.

[61] H. Choi, G. Buckner, and N. Gibson, "Neural Robust Control of a High-Speed Flexible Rotor

Supported on Active Magnetic Bearings," in American Control Conference, Minneapolis,

Minnesota, USA, 2006, pp. 3679-3684.

[62] V. Kecman, Learning and Soft Computing. Cambridge, Massachusetts: The MIT Press, 2001.

[63] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, UK: Clarendon Press, 1995.

[64] S. J. Yoo, J. B. Park, and Y. H. Choi, "Indirect Adaptive Control of Non-linear Dynamic Systems

using Self-recurrent Wavelet Neural Networks via Adaptive Learning Rates," Information

Sciences: An International Journal, no. 177, pp. 3074-3098, 2007.

[65] M. Neser, "Neuro-Fuzzy Techniques for Intelligent Control," Masters Dissertation, North-West

University, Potchefstroom, 2006.

[66] L. R. Medsker and L. C. Jain, Recurrent Neural Networks: Design and Applications. Boca Raton,

USA: CRC Press, 2001.

[67] A. Senyard, E. Kazmierczak, and L. Sterling, "Software Engineering Methods for Neural

Networks," in Proceedings of the Tenth Asia-Pacific Software Engineering Conference, 2003,

pp. 468-477.

[68] M. Agarwal, "A Systematic Classification of Neural-Network-Based Control," in Third IEEE

Conference on Control Applications, Glasgow, UK, 1997, pp. 75-93.

[69] M. M. Polycarpou and P. A. Ioannou, "Modelling, Identification and Stable Adaptive Control of

Continuous-Time Nonlinear Dynamical Systems Using Neural Networks," in American Control

Conference, Los Angeles, 1992, pp. 36-40.

[70] R. Safaric, K. Jezernik, and M. Pec, "Implementation of neural network sliding-mode controller

for DD robot," in IEEE International Conference on Intelligent Engineering Systems, 1997, pp.

83-88.

[71] M. T. Hagan, H. B. Demuth, and O. De Jesus, "An introduction to the use of neural networks in

control systems," International Journal of Robust and Nonlinear Control, vol. 12, no. 11, pp.

959-985, Sep. 2002.

[72] U. Forssell and L. Ljung, "Closed-loop Identification Revisited," Automatica, vol. 35, no. 7, pp.

1215-1241, Apr. 1999.

[73] P. A. van Vuuren, "Robustness estimation of self-sensing active magnetic bearings via system

identification," PhD Thesis, North-West University, Potchefstroom, 2009.

[74] H. Demuth, M. Beale, and M. Hagan, Neural Network Toolbox TM 6 User's Guide. Natick, MA:

References 113

The MathWorks, Inc., 2009.

[75] C. C. Klimasauskas, "Applying Neural Networks, Part III: Training a Neural Network," PC AI,

vol. 5, no. 3, pp. 20-24, May 1991.

[76] W. Sarle. (2010, Jun.) Neural Network FAQs. [Online]. http://www.faqs.org/faqs/ai-faq/neural-

nets/

[77] R. Zemouri, R. Gouriveau, and N. Zerhouni, "Defining and applying prediction perfromance

metrics on a recurrent NARX time series model," Neurocomputing, Jun. 2010.

[78] ISO-TC108/SC2/WG7, "Active magnetic bearing - Evaluation of stability margin," Patent ISO

CD148393-3, Oct. 7, 2003.

[79] MATLAB® (2010) - The Language of Technical Computing, The MathWorks, Inc. (DVD)

[80] O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic Fuzzy Systems: Evolutionary

Tuning and Learning of Fuzzy Knowledge Bases. River Edge, New Jersey: World Scientific

Publishing, 2001.

[81] J. Y. F. Yam and T. W. S. Chow, "A weight initialization method for improving training speed in

feed forward neural network," Neurocomputing, no. 30, pp. 219-232, Mar. 2000.

[82] F. L. Lewis, S. Jagannathan, and A. Yesildirek, "Neural Network Control of Robot Arms and

Nonlinear Systems," in Neural Systems for Control. Academic Press, 1997, pp. 157-206.

[83] L. Chen and K. S. Narendra, "Non-linear Adaptive Control using Neural Networks and Multiple

Models," Automatica, no. 37, pp. 1245-1255, 2001.

[84] Y. Fu and T. Chai, "Non-linear Multi-variable Adaptive Control using Multiple Models and

Neural Networks," Automatica, no. 43, pp. 1101-1110, 2007.

[85] G. P. Liu, V. Kadirkamanathan, and S. A. Billings, "Variable Neural Networks for Adaptive

Control of Non-linear Systems," IEEE Transactions on Systems, Man and Cybernetics - Part C:

Applications and Reviews, vol. 29, no. 1, pp. 34-43, Feb. 1999.

[86] T. Hayakawa, W. M. Haddad, and N. Hovakimyan, "Neural Network Adaptive Control for a

Class of Non-linear Uncertain Dynamical Systems with Asymptotic Stability Guarantees," IEEE

Transactions on Neural Networks, vol. 19, no. 1, pp. 80-89, Jan. 2008.

