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ABSTRACT 

Time series forecasting is an important area of forecasting in wh ich past observations of 

the same variable are co llected and analyzed to develop a model describing the 

underlying re lationsh ip. The mode l is then used to extrapolate the time series into the 

future. This modeling approach is particularly useful when little knowledge is available 

on the underlying data generating process o r when there is no satisfactory explanatory 

model that relates the prediction variable to other explanatory variables. Time series can 

be modeled in a variety of ways e.g. using exponential smoothing techniques, regression 

models, autoregressive (AR) techniques, moving averages (MA) etc. Recent research 

activities in forecastin g also suggested that artific ia l neural networks can be used as an 

alternative to traditional linear forecasting models. This study will , along the lines of an 

existing study in the literature, investigate the use of a hybrid approach to time series 

forecasting using both linear and neural network models. The proposed methodology 

consists of two basic steps. In the first step, a linear model is used to ana lyze the linear 

part of the problem and in the second step a neural network model is developed to model 

the residuals from the linear model. The results from the neural network can then be used 

to predict the error terms for the linear model. This means that the combined forecast of 

the ti me series will depend on both models. Fo llowing an overview of the mode ls, 

empirical tests on real world data w ill be performed to determi ne the forecasting 

performance of such a hybrid model. Results have indicated that depend ing on the 

forecasting period, it might be worthwhi le to cons ider the use of a hybrid model. 

Keywords: Time series, forecasting, linear models, neural networks, hybrid models. 



OPSOMMING 

Die voorspelling van tydreekse is 'n belangrike aspek waar waarnemings ten opsigte van 

dieselfde veranderlike oor 'n tyd versamel en ontleed word om sodoende ' n model te kan 

ontwikkel wat die onder! iggende verwantskap kan beskryf. Die model word dan gebruik 

om die tydreeks te ekstrapoleer in die toekoms. Hierd ie benadering is vera! nuttig 

wanneer min inligting oor die data genereringsproses beskikbaar is of wanneer geen 

bevredigende model bestaan wat die verwantskap tussen 'n afhankl ike en onafhanklike 

veranderl ikes aandui nie. Die modellering van tyd reekse kan op verskillende maniere 

gedoen word , byvoorbeeld, deur die gebruik van 'n eksponensiele gladmaking proses, 

regressie modelle, bewegende gemiddeldes ens. Onlangse navorsing toon ook aan dat 

kunsmatige neurale netwerke as alternatief vir die trad isionele lineere modelle kan dien. 

Hierdie studie gaan aan die hand van 'n bestaande studie in die literatuur. ondersoek 

instel na die gebruik van ·n hibriede benadering tot tydreekse waar beide lineere en 

neurale netwerke gebruik word vir voorspell ings. Die voorgestelde metodologie bestaan 

uit twee stappe. In die eerste stap word ' n lineere model gebruik om die lineere gedeelte 

van die probleem aan te spreek terwyl in die tweede stap ' n neurale netwerk gebruik 

word om die residue van die lineere model te modelleer. Die resu ltate van die neurale 

netwerk kan dan gebruik word om die fo ute van die lineere model te voorspel. Dit 

beteken dat die gekombineerde voorspelling van die tydreeks afhankl ik van beide 

modelle is. 'n Oorsig van die modelle sal aangebied word asook empiriese toetse op regte 

data sodat die prestasie van so ' n hibriede model geeva lueer kan word. Resultate het 

aangedui dat, afhangende van die voorspellingstydperk, die gebru ik van 'n hibriede 

model oorweeg behoort te word. 

Sleutelwoorde: Tydreeks, voorspell ing, lineere modelle, neurale netwerke, hibriede 

mode lie. 
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CHAPTER ! 

INTRODUCTION AND PROBLEM STATEMENT 

1.1 Introduction 

Predictions of future events and conditions are ca lled forecasts, and the act of making 

such predictions is called forecasting (Bowerman et a/, 2005). Forecasting models form 

an integral part of any business' decision-making process and examples of where 

business forecasts are needed can be found in areas such as marketing, finance, human 

resources, production scheduling, process control etc. Forecasting models help to set 

targets and goals for future performance and may assist with determining staffing 

requirements, raw materials, capital and equipment needs. 

To perform a forecast, past data is analyzed to identify a pattern that can be used to 

describe it. This pattern can then be used to prepare a fo recast for the future - such an 

approach is based on the assumption that the identified pattern will continue in futu re. 

Quantitative forecasts can be developed for cross-sectional data (values observed at one 

point in time) or for time-ordered or time series data. A time series is defined as a 

chronological sequence of observations on a particu lar variable (Bowerman et al, 2005) 

and wi ll be the data type used in thi s study. 

The purpose of this chapter is to guide the reader into the research project by explaining 

the problem statement, objectives of the study and the methodology that will be fo llowed. 

A layout of the study, exp lain ing the purpose of each chapter, is also presented. 

1.2 Problem statement 

Time series forecasting is an important area of forecasting in which past observations of 

the same variable are coll ected and analyzed to develop a model describing the 

underlying relationship. The model is then used to extrapolate the time series into the 

future. This modeling approach is particularly useful when little knowledge is available 



on the underlying data generating process or when there is no satisfactory explanatory 

model that relates the prediction variable to other explanatory variables. 

Time series can be modeled in a variety of ways e.g. usi ng exponential smoothing 

techniques, regression models, autoregressive (AR) techniques, moving averages (MA) 

etc. One of the most important and widely used time series models is the autoregressive 

integrated moving average (ARlMA) model. The popularity of the ARJMA model is due 

to its statistical properties as well as the well-known Box-Jenkins methodology in the 

model building process - see for example Bowerman et a! (2005) and Zhang (2003). 

Zhang (2003) noted that there is however a major limitation to these types of models -

the pre-assumed linear form of the models. That means a linear correlation structure is 

assumed among the time series values and therefore, no nonlinear patterns can be 

captured by, for example, the ARIMA model. The approximation of linear models to 

complex real-world problem is therefore not always satisfactory. 

Recent research activities in forecasting suggested that artificial neural networks can be 

used as an alternative to traditional linear forecasting models. The major advantage of 

neural networks is their flexible nonlinear modeling capability and the use of such 

artificial neural networks have been extensively stud ied and used in time series 

forecasting. See for example Gareta, Romeo and Gil (2006) and Bodyanskiya and Popov 

(2006). The major advantage of neural networks is their flexible non linear modeling 

capability. The combination of different modeling techn iques has also become a popular 

way of trying to improve forecasts - specificall y the use of linear and neural network 

models seems to have received attention from researchers. Examples of work being 

carried out in this area can be found in Ho, Xie and Goh (2002), Tnce and Trafalis (2005), 

Pai and Lin (2005), Prybutok and Mitchell (2002) and Tseng, Yu and Tzeng (2002). A 

brief overview of additional examples will be given in chapter 5. 

This study will, along the lines of the Zhang study (2003), investigate the use of a hybrid 

approach to time series forecasting using both linear and neural network models. The 

proposed methodology consists of two basic steps. In the first step, a linear model is used 
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to analyze the I in ear patt of the problem and in the second step a neural network model is 

developed to model the residuals from the linear model. The results from the neural 

network can then be used to predict the error terms for the linear model. Th is means that 

the combined forecast of the time series wi ll depend on both models. Chapter 5 will 

present detail s on the combination of the two techniques but for the purpose of the 

problem statement. it is very briefly mentioned below. 

ft may be reasonable to consider a time series to be composed of a linear autocorrelation 

structure and a non I in ear component. 

That is, 

Y, =L,+N, ( 1.1) 

where L, denotes the linear component and N, denotes the nonlinear component. 

These two components have to be estimated from the data. Fi rst, a linear model is used to 

model the linear component, and then the residuals from the linear model wi ll contain 

only the nonlinear relationship. Let e, denote the residual at time t from the linear model, 

then 1\ 

e, = y, -L, 
( 1.2) 

1\ 

where L, is the forecast value for timet from the estimated relationship. 

By model ing residuals using a neural network, nonlinear relationships can be discovered. 

With n input nodes, the neural network model for the residuals wi ll be 

e, = f(e,_1;e,_2 ; •• • ;e,_J+£, ( 1.3) 

where/is a nonlinear function determined by the neural network and £, is a random error. 
1\ 

Denote the forecast from the neural network as N, and the combined forecast will then 

be 1\ 1\ 1\ 

Y, =L,+N, 
(1.4) 

Following an overview of the models, empirical tests on real world data will be 

performed to determine the forecasting performance of such a hybrid model. 

3 



1.3 Objectives of the study 

The primary objective of this research project is to investigate the use of a combined 

linear and neural network model to determine the forecasting performance of such a 

hybrid model. This wi ll be accomplished by addressing the following secondary research 

objectives. 

- Gain a clear understand ing of and present an introductory overview of time series 

analysis and different forecasting methods; 

- Gain a clear understanding of and present an introductory overview of neural 

networks; 

- Gain a clear understanding of and present a brief introduction to the well-known 

Box-Jenkins approach; 

- investigate, describe and formulate a combined linear and neural network model; 

and 

- Investigate the performance and forecasting accuracy of the combined model by 

app lying it to real world time series data. 

1.4 Methodology 

The project wi ll start with a general literature survey that wi ll be used to give an 

overview of time series analysis and the different forecasting methods and then, to 

present the necessary background to neural networks. A more focused literature survey 

will be carried out to investigate the use of combining time series forecasting techn iques 

and neural networks. Finally, empirical work wi ll be conducted to test and present the 

results of a combined model. Actual time series data will be used for the empirical tests. 

1.5 Layout of study 

The project is documented through a set of chapters and this section explains the purpose 

of each chapter and how it is structured. 

Chapter 2 will present an overview of time series forecasting techniques. Main 

techniques such as exponential smoothing, autoregressive and moving averages will be 
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discussed. Chapter 3 wi ll be devoted to an explanation of rutificial neural networks while 

chapter 4 will focus on the Box-Jenkins approach to nonseasonal time series forecasting. 

In chapter 5 the use of linear and neural networks in the forecasting of time series data, as 

well as an overview of using the two techniques as a hybrid model will be given. Chapter 

6 wil l present the results of empirical tests performed to determine the forecasting 

performance of a hybrid model. The last chapter, chapter 7, will then summarize the 

goa ls set forth for the study and how they were achieved. Opportunities fo r further 

studies, identified during the research project, will also be pointed out. 

The abovementioned chapters are supplemented by a set of appendices which contains 

details of work related to the study. 

1.6 Conclusion 

Chapter I served as an introduction and gu ided the reader into the research project by 

explaining the problem statement, objectives of the study and the methodology that will 

be followed. A layout of the study, explaining the purpose of each chapter, was also 

presented. In the next chapter an overview, from the literature, of time series forecasting 

techniques will be presented. 

5 



CHAPTER2 

TIME SERIES FORECASTING MODELS 

2.1 Introduction 

The two main areas of study that will be involved in this research project are time series 

and neural networks. To provide sufficient background and to have a good understanding 

of these two areas, thi s chapter presents an introductory overview of the first area, time 

seri es forecasting techn iques. Following a brief introduction, the components of a time 

seri es are presented, as well as two methods to perform trend analys is. Next, an 

introductory discussion on seasonal anal ysis is given. Measures of forecast accuracy and 

the exponential smoothing procedure, known as the exponentially weighted moving 

average, forms the content of the second half of the chapter. Aspects such as tracking 

signals, as well as other methods, e.g. the Holt- Winters method, will also briefly be 

reviewed. 

2.2 Time series forecasting models 

2.2.1 Introduction 

There are numerous ways to classify forecasting models- one classification that is often 

used is the di stinction between quanti tative and qualitative forecasting techniques (Moore 

and Weatherford , 200 I). 

Qualitative forecasting techniques attempt to incorporate judgmental or subjective factors 

into the forecasting model (Render et al, 2006). Opin ions by experts, ind ividual 

experiences and judgments and other subjective factors may be considered. Examples of 

qualitative models include the Delphi method (iterative group process), jury of executive 

opinion (opinions of a small group of high-level managers), sales force composite 

(combined estimates of people - salespersons - at differen t levels) and consumer market 

surveys (i nput from customers or potential customers regarding their future purchasing 

plans). 
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Quantitative forecasting models can be categorized as causal models and time series 

models. Causal models, also called explanatory forecasting, assume a cause and effect 

relationship between the inputs to a system, and its output. If y denotes the true value for 

some variable of interest, and y denotes a predicted or forecast value for that variable, 

then, in a causal model the following is true y = f(x~, x2, . .. , Xn) where f is a forecasting 

rule, or function, and x1, x2, .. . , Xn is a set of variables. The Xi variables are often called 

independent variables, whereas y is the dependent or response variable. The notion is 

that the independent variables are known and that they are used to forecast the dependent 

variable. A common approach to create causal forecasting models is curve fitting e.g. 

least squares fits. 

The second class of quantitative forecasting models is the time series forecasting models. 

These models produce forecasts by extrapolating the historical behavior of the values of a 

particular single variable of interest (Moore and Weatherford, 2001). A time series is 

defined by Wegner (1993) as a set of observations of a random variable arranged m 

chronological (time) order and the purpose of time series analysis is stated by him as ' to 

identify any recurring patterns which could be useful in estimating future values of the 

time series'. An important assumption in time serie~ analysis is the ~011 tinuation of past 

patterns into the future - i.e. the environment in which the time seri es occurs is 

reasonably stable. Another assumption is that there are four underlying components that 

individually and collectively determine the variable's value in a time series. The next 

section presents the four components of a time series. 

2.2.2 Components and decomposition of a time series 

A time series typically has four components (Wegner, 1993): 

- Trend (T) 

- Cyclical variations (C) 

- Seasonal vari ations (S) 

- Irregular variations (I) 

7 



Trend is the gradual upward or downward movement of data over time. It describes the 

effect that long-term factors may have on the series. The long-term factors usually tend to 

operate fa irly gradually and in one direction for a considerable period of time. A 

stati stical technique, trend analysis, can be used to iso late the underlying long-term 

movement and wi ll be introduced in the next section. 

Cycles are medium to long-term deviations from the trend and reflect periods of relative 

expansion and contraction. Cycles can be caused by certain actions of bodies such as 

governments (e.g. change in fi scal or monetary policy, sanctions etc.), trade unions, 

world organizations etc. These actions can induce levels of pessimism or optimism into 

an economy which are then reflected in time series data. Cycles can vary greatl y in both 

duration and amplitude and are therefore difficult to measure statistically - their use in 

stati stically forecasting is limited. 

Seasonal variations are fluctuations that are repeated periodically and at regular intervals. 

Events such as climatic conditions, special occurring events (e.g. shows), and religious, 

public and school holidays are examples of causes of seasonal fluctuations. Due to the 

high degree of regularity it can be readily isolated through stati stical analyses. Seasonal 

indices are used to measure the regular pattern of seasonal fluctuations and wi ll also be 

addressed in the next section. 

Irregular variations or random fluctuations in a time series are attributed to unpredictable 

occurrences and follow no discernible pattern. They are generally caused by once-off 

events such as natural di sasters (floods, droughts, fires etc.) or man-made di sasters 

(strikes, boycotts, accidents, acts of vio lence such as war, riots etc.) - because they are so 

unpredictable with no specific pattern , they are not really incorporated into stati stical 

forecasts . 

Time series analysis aims to isolate the influence of each of the four components on the 

actual seri es. Decomposition models, where the idea is to decompose the time series into 

the four factors, are used in an effort to reach this goal. Two decomposition models exist 

that can be used (Bowerman et al, 2005): 
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- A multiplicative decomposition model which has been found useful when 

modeling time series that display increasing or decreasing seasonal vari ation and 

which is defined as 

y = T X c X s X I (2 .1) 

- An additive decomposition model which can be employed when modeling time 

series that exhibit constant seasonal variation. This model is defined as 

y=T+C+S+ I (2.2) 

Comprehensive discussions and examples on the decomposition models can be found in 

Bowerman et al (2005). 

Statistica l analysis can be used to effectively iso late the trend (T) and the seasonal (S) 

components, but is of less value in quanti fy ing the cyclical movements. and of no value 

in isolating the irregular component (Wegner, 1993). Sections 2.2.3 and 2.2.4 will 

therefore examine stati stical approaches to quanti fy T and S. 

2.2.3 Trend analysis 

The trend in a time series can be ident.ified by averaging out the short term fluctuations in 

the seri es. Two methods for trend isolation can be used - they are 

- Moving average method 

- Regression analysis 

2.2.3.1 The moving average method 

A moving average removes the short term fl uctuations in a time series by taking 

successive averages of groups of observations. Each time period's value is replaced by 

the average of observations which surround it. This is known as smoothing a time series 

(Wegner, 1993). 

The simplest model in the moving average category is the simple n-period moving 

average. In th is model the average of a fixed number (say, n) of the most recent 

observations is used as an estimate of the next value of a variable y and is defined as 
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A 1 
Yt+l = - (y, + Yt-1 + · · · + Yt-n+l ) n 

(2.3) 

Moore and Weatherford (Moore and Weatherford, 200 I) highlighted the fact that the 

simple moving average has fv.to shortcomings. Firstly, when calculat ing a forecast, the 

most recent observation receives no more weight or importance than older observations. 

This is because each of the last n observations is assigned a weight of 1/n. This is in 

conflict with the general view that in many instances the more recent data should tell us 

more than the older data about the future. The second shortcoming is of an operational 

nature and concerns the storage of data. lf n observations are to be included in the 

moving average, then n-1 pieces of past data must be brought forward to be combined 

with the nth observation. All this data must be stored in some way in order to calculate 

the forecast. This is not too much of a serious problem when taking into account the 

avai labi I ity of current computing resources but it may become an issue when dealing with 

exceptionally large data sets and models. 

To cater for the first shortcoming, recent data that are more important than older data, a 

weighted n-period moving average can be implemented. This is defined as 

Yt+l = a oy, +a1Y1-1 + ... +anYt-n+l (2.4) 

where the a's (which are called weights) are nonnegative numbers that are chosen so that 

smaller weights are assigned to older data and all the weights sum to 1. There are many 

ways of selecting a set of a 's- one way to choose optimal weights is to make use of a 

linear program that minimizes the mean absolute deviation (this concept is defined in 

section 2.4) subject to the constraints L:a,=l ; ao ~ a 1 ~ ••• ~ a n ; and 0 :S a1 :S I. See 

Moore and Weatherford (Moore and Weatherford , 200 I) for a worked example. 

The major benefit of a movi ng average is the opportunity it affords a decision maker to 

focus more clearly on the long term trend movements by removing short term 

fluctuations (i.e. seasonal and irregular fluctuations) from the origi nal observations -

thereby isolating the long term trend. In symbol terms for the multiplicative model, this 

can be stated as 

Moving average = (T x C x S x I) I (S x I) 

10 



= TxC (2.5) 

There are other extensions of moving averages e.g. a double moving average (i.e. a 

moving average of a moving average) and moving average combinations (i.e. a n-period 

moving average combined with a k-period moving average with n =/= k). Discussions and 

examples of these extensions can be found in Makridakis e/ a/ (1983). 

2.2.3.2 T ime series regression 

Another method often employed for trend line isolation is the use of time series 

regression models. In these models the dependent variable, Yi, which is the actual time 

series is related to functions of time (independent variable) . The model shows the general 

direction in which the series is moving and is represented by using polynomial functions 

of time. In this section the formulation of no trend, linear trend and quadratic trend wi ll 

be shown. The concept autocorrelation and how to detect it will also be briefly 

mentioned. 

A time series, Yi, can sometimes be described by using a trend model. Such a trend model 

is defined as fo llows (Bowerman el al, 2005): 

where 

Yt = TRt + Et 

Yt = the value of the time series in period t 

TRt = the trend in time period t 

Et = the error term in time period t 

(2.6) 

Bowerman el al (2005) also presents useful trends (TR) that are often encountered. These 

trends can be summarized as 

- No trend. This is modeled as TRt = Po and implies that there is no long-run 

growth or decline in the time series over time. See figure 2.1 (a) . 

- Linear trend. This is modeled as TRt = Po+ P1t and implies that there is a straight 

line long-run growth (if the slope P1 > 0) or decline (if P1 < 0) over time. See 

figures 2.1 (b) and 2.1 (c). 
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Quadratic trend. This is modeled as TR1 = ~0 + ~ 1 t + ~2e and implies that there is 

a quadratic (or curvilinear) long-run change over time. This quadratic change can 

either be growth at an increasing or decreasing rate - see figures 2.1 (d) and 2.1 (e) 

-or decline at an increasing or decreasing rate- see figures 2.1 (f) and 2.1 (g) . 

TR, = {3, 

~t...____ 
(a) No long-run growth or decline 

TR, = fJo + f3,t + {J,t2 

__/ 
(d) Growth at an increasing rate 

TR, = fJo + IJ,t + /3212 

~ 
(f) Decline at an increasing rate 

TR, = f3o + fJ,t, where fJ, > 0 

~ 
(b) Straight-line growth 

TR, = fJo + {3,1 + {J,r' 

/ 
(e) Growth at a decreasing rate 

TR, = f3o + IJ, t + {ht2 

~ 
{g) Decline at a decreasing rate 

Figure 2.1 

TR, = {J0 + IJ,t, where fJ, < 0 

~ 
(c) Straight-line decline 

More complicated trend models can be modeled by using a p1h-order polynomial function 

where TR1 = ~o + ~~t + ~2t2 + ... + ~ptP + c1• 

Assuming a normal di stribution of the error term, c~, least squares point estimates of the 

parameters in the above trend models may be obtained using regression techniques. 

Complete worked examples can be found in Bowerman et al (2005). 

The validity of regression methods requires that the independence assumption (i.e. error 

terms occur in a random pattern over time) be satisfied . This assumption is violated when 

time-ordered error terms are auto correlated. The term autocorrelation can be defined as 
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"correlation between members of series of observations ordered in time [as in time series 

data] or space [as in cross-sectional data] (Gujarati , 2003). Bowerman et al (2005) 

explains the concept of positive and negative autocorrelation as follows. 

Error terms occurring over time have positive autocorrelation if a positive error term in 

time period t tends to produce, or be followed by, another positive error term in time 

period t+k (a later period) or if a negative error term in time period t tends to produce, or 

be followed by, another negative error term in time period t+k. In other words, positive 

autocorrelation ex ists when positive error terms tend to be fol lowed over time by positive 

error terms and negative error terms tend to be followed over time by negative error 

terms . 

Error terms occurring over time have a negative autocorrelation if a positive error term in 

time period t tends to produce, or be followed by. a negative error term in time period t+k 

and if a negative error term in time period t tends to produce, or be followed by, a 

positive error term in time period t+k. In other words, negative autocorrelation exists 

when positive error terms tend to be followed over time by negative error terms and 

negative error terms tend to be fo llowed over time by positive error terms. 

One way of verifying if errors show any kind of pattern is to plot them and use visual 

inspection. A forma l test, called the Durbin-Watson test, can however be performed to 

test for positive or negative autocorrelation. The Durbin-Watson statistic used in this test 

is sensitive to the different patterns mentioned above and is defined as follows 

(Makridakis et a/, 1983). 

II 2 
L (e,-e,_1) 

d = =•- .,_2 ---
n 
l:e2 , 

(2.7) 

r-1 

where e, are the time-ordered errors. 

The test can now be implemented as follows (Bowerman et al, 2005): 

Consider testing the null hypothesis 
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Ho : The error terms are not autocorrelated 

versus H 1 :The error terms are pos itively autocorrelated 

There exists points, denoted by dL,a and du,a , such that if a is the probability of a Type I 

error (probability of rejecting Ho when in fact it is true) then 

l. If d < dL,a , Ho is rejected 

2. If d > du,a , Ho is not rejected 

3. If dL,a ~ d ~ du,a the test is inconclusive. 

The theory behind the stati stic and the rules for rejection is complicated and beyond the 

scope of this study. Details on this can be found in Makridakis et al (1983). 

Should the alternative hypothesis be changed to test for negative autocorrelation 

i.e. H1 :The error terms are negatively autocorrelated 

the rejection rules become 

1. If ( 4-d) < dL,a , Ho is rejected 

2. If ( 4-d) > du,a , Ho is not rejected 

3. If dL,a ~ (4-d) ~ du.a the test is inconclusive. 

Finally, the test can also be used to test for positive or negative autocorrelation in which 

case the alternative hypothesis becomes 

H1 : The error tenns are positively or negatively autocorrelated 

and the rules 

l. If d < dL,a/2 or if ( 4-d) < dL,a/2 , Ho is rejected 

2. If d > du,a/2 and if ( 4-d) > du,a/2 , H0 is not rejected 

3. lf dL,a/2 ~ d ~ du,a/2 or if dL,a/2 ~ ( 4-d) ~ du,a/2 the test is inconclusive. 

The Durbin-Watson test proves to be useful in test ing for autocorrelation and is usually 

provided as standard output by most computer regression packages. It should be noted 

however, that time series data can exhibit more complicated auto correlated error 
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structures. In such cases autocorrelation can be detected by using a sample 

autocorre lation function. This function will be explained and discussed in chapter 4. 

2.2.4 Seasonal analysis 

In this section a brief introduction to seasonal analysis as a technique to isolate the 

influence of seasonal forces on a time series wil l be given. 

One way to measure seasonal influences is to make use of a ratio-to-moving-average 

method (Wegner, 1993). ln this case the seasonal influence is expressed as an index 

number and measures the percentage deviation of the actual values of the series from a 

base value which excludes the short term seasonal influences. The method is summarized 

by Wegner (1993) as follows: 

- The first step is to identi fy the trend or cyclical movement and is done by the moving 

average approach discussed earl ier. 

- Next, a seasonal ratio is calculated. This is done by dividing each actual time series 

val ue, y, by its corresponding moving average value i.e. 

Seasonal ratio = actual yl Moving average series x I 00% 

= (T X c X s X l) I (T X C) X 1 00% 

= s X I X 100% (2.8) 

The seasonal ratio is an index which expresses the percentage deviation of each actual 

y (which includes seasonal influences) from its moving average value (which 

contains trends and cycl ical influences on ly) and is a measu re of seasonal influence. 

- In the third step, the seasonal ratios are averaged across corresponding periods within 

each time frame (e.g. a year). Averaging has the effect of smooth ing out the irregular 

component inherent in the seasonal ratios. Often the median is used as the average of 

seasonal ratios- this is to prevent the influence of outliers when using an arithmetic 

mean. 

- Lastly, adjusted seasonal indices are computed. As each seasonal index has a base of 

100, the sum of the n median seasonal indices must equal 1 OOn and the adj ustment 

factor is then determined as 

Adjustment factor= lOOn I :E(median seasonal indices) 
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Each median seasonal index is then finally multiplied by the adjustment factor to 

ensure a base of I 00 for each index. The resulting adjusted seasonal indices are then 

regarded as a measure of the seasonal influences on the actual values of the time 

series for each given time period. 

By subtracting the base index of I 00 from each seasonal index, the extent of the influence 

of seasonal forces can be gauged. For example, a seasonal index of, say, 79 means that 

values of the time series are depressed by the presence of seasonal forces to the extent of 

approximately 21%. Alternatively, values of the time series would be approximately 2 I% 

higher had seasonal influences not been present. The same logic is followed to interpret a 

seasonal index above 100. 

2.2.5 Constructing a forecast 

Actual time series values are assumed to be a function of trend (T), cyclical I, seasonal 

(S) and irregular (I) components (see also section 2.2.2). This means that if these 

components are known, they can be used to re-construct values of the actual time series. 

ln the preceding sections the trend and seasonal components were discussed and it was 

shown how they can be quantified. To estimate future values of an actual time series, y, 

taking these two influences into account, the fol lowing can be done 

Use a trend line to estimate the trend value of the time series, e.g. y1 =TRt + Et for 

time period t and with TRt = Bo + B1t (say). 

- Incorporate the seasonal influence by multiplying the trend value (TR1) by the 

seasonal index for the appropriate time period. This is known as seasonalising the 

trend (Wegner, I 993). 

2.3 Measures of forecast accuracy 

The previous section concluded with comments on how to construct a forecasting model 

in an ordinary time series model. The remainder of this chapter, and all subsequent 

chapters, are focused on forecasting models and forecasting issues and it is therefore 

appropriate to introduce at this stage some thoughts on forecast evaluation and accuracy 

measures. 
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Forecasts will not be completely accurate and will almost always deviate from actual 

values. A forecast error is the difference between the forecast and actual value (Taylor, 

2002). To see how well one model works, or to compare that model with other models, 

the forecasted values are compared with the actual or observed values. One of the most 

popular and easiest to use measures is called the mean absolute deviation (MAD). The 

MAD is computed as 

I iactual - forecast ! 
MAD= --,--'-.------'-

(number forecasts) 
(2.9) 

The lower the value of the computed MAD relative to the magnitude of the data, the 

more accurate the forecast. 

Computing the MAD value enables a decision maker to compare the accuracy of several 

different forecasting techniques. It also makes the monitoring of forecasts possible which 

is necessary to ensure that a chosen forecast model keeps on performing well. A well 

known instrument to measure how well predictions fit actual data is called a tracking 

signal (Render et a!, 2006). A tracking signal is computed as 

Tracking signal = (Running sum of the forecast errors) I MAD 

= :L(actual value in time t - forecast value in timet) I MAD (2.1 0) 

Render et al (2006) stated that a good tracking signal (one with a low running sum of 

forecast errors) has about as much positive error as it has negative error - small 

deviations are acceptable, but the positive and negati ve deviations should balance so that 

the tracking signal centers closely around zero. Tracking signals are often computed with 

predetermined upper and lower control limits to determine possible problems with the 

forecasting method (Render et al, 2006). 

Other well known measures of forecasting include: 

- The mean absolute percentage error (MAPE) which is the average of the absolute 

values of the errors expressed as percentages of the actual values and is defined as 
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iactual- forecast! * I 00% 
L: actual 

MAP E = (number forecasts) 
(2. 11 ) 

- The mean squared error (MSE) which is the average of the squared errors. 

- The average error, also called bias, which is computed by averaging the cumulati ve 

error over the number of t ime periods (Taylor, 2002) . It tells a decision maker 

whether fo recasts tend to be too high or too low and by how much. 

There ex ist a large number of accuracy measures that have been used to evaluate the 

performance of forecastin g methods and this section is concluded by presenting a li st, in 

table I , of the most commonly used methods (De Gooijer & Hyndman P458). 

Table 1 - Commonly used forecast accuracy measures (De Gooijer and Hyndman, 
- -- .JJ 

MSE Mean squared error = mean(~2) 

RMSE Root mean squared error = .JMSE 

MAE Absolute error = mean(!~!) 

MdAE Median absolute error = med ian(!~!) 

MA PE Mean absolute percentage error = mean(lpd) 

MdAPE Median absolute percentage error = median(lpd) 

sMA PE Symmetric mean absolute percentage = mean(21Yt- f tl I (Yt + f t)) 
error 

sMdAPE Symmetric median absolute percentage = median(21Yt- Fd I (Yt + Ft)) 
error 

MRAE Mean relative absolute error = mean(lrtD 

MdRAE Median relati ve absolute error = median(lrd) 

GMRAE Geometric mean relati ve absolute error = gmean(lr11) 

Rei MAE Relati ve mean absolute error = MAE/MAEb 

RelRMSE Relative root mean squared error = RMSEIRMSEb 

LMR Log mean squared error ratio = log(RelMSE) 

PB Percentage better = 100 mean(J {Ird < I }) 

PB(MAE) Percentage bener (MAE) = 100 mean(I {MAE < 
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MAEb}) 

PB(MSE) Percentage better (MSE) = 1 00 mean(l {MSE < MSEb}) 

r indicates relative error; e indicates error term; b refers to measures 
obtained from the base method; I { u} = 1 if u is true and 0 otherwise. 

2.4 Exponential smoothing 

2.4.1 Introduction and Definition 

Exponential smoothing, a lso called exponentia lly weighted moving average is a method 

where recent data is weighted more heavi ly than past data (Moore and Weatherford , 

200 I ). The method is often used for forecasting a time series when there is no trend or 

seasonal pattern but the level of the time series is slowly changing over time (Bowerman 

et al, 2005). The procedure al lows the forecaster to update the estimate of the level of the 

time series so that changes in the level can be detected and incorporated into the 

forecasting system. 

Moore and Weatherford (200 1) define the basic exponential smoothing model as follows: 

For any time period t ~ 1 the forecast for period t+ 1, denoted by j/1+1 is a we ighted sum 

(with weights summing to I ) of the actual observed values in period t (i.e. y1) and the 

forecast tor penod t (wh1ch was y, ). This gives 

j/1+1 =ay,+(l-a)y, (2.1 2) 

where a is a user-specified smoothing constant such that 0 ~a~ 1. The value assigned to 

a determ ines how much weight is p laced on the most recent observation in calculating 

the forecast for the next period. 

To perform an exponential smoothing forecast it would be necessary to estimate an initial 

value for j/1 • This can be done by s imply lettingj/1 = y 1 , assuming a perfect forecast for 

time period 1 (Moore and Weathe rford, 2001) or by letting j/1 = y (Bowerman et a!, 

2005). 
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The basic exponential smoothing model is of great importance and it is worthwhile to 

present a more detailed explanation on how it works. Some of its properties as given by 

Moore and Weatherford (200 1) will provide such an explanation. 

1ft ~ 2, it is possible to substitute t-1 fort in ( 4.1 ) to obtain 

y, = ay,_1 +(1-a)y,_1 (2 .1 3) 

Substituting this relationship for y, back into the ori ginal expression ( 4.1 ) for yt+ 1 yields 

fort ~2 

y,+1 = ay, +a(I-a)yt-I +(l-a)2 Yt-1 (2.14) 

By successively performing similar substitutions, one is Jed to the following general 

expression for yt+1 

y,+1 = ay, +a(l - a)y,_, +a(l - a)2 y,_2 + .... +a(l - a)'-1 y1 +(1 - a)' y1 

For example, ift = 3 

Y4 =ay3 +a(1-a)y2 +a(I-a)2 y1 +(1-a)3y1 

since 0 < a < 1, it follows that 0 < I -a < I 

thus a > a (I -a) > a(l-a)2 

(2. 1 5) 

in other words, in the example, where t = 3, the most recent observation, y3, receives 

more weight than y 1• Th is illustrates the general property of an exponential smoothing 

model - that the coefficients of the y ' s decrease as the data become older. The sum of all 

coeffi cients is one. In the example, a +a(1-a) +a(I - a)2 + (1 - a )3 = I when simplified. 

It is now easy to observe that as t increases, the influence of y1 (which was initially 

estimated) on y,+1 decreases and in time becomes negligible. The coefficient of y, in 

(4.2) is(l-a)' . Thus, the weight assigned to y1 decreases exponentially with t. 

It should be clear now that the value of a, which is a parameter input by the dec ision 

maker, will affect the performance of the model - the larger the value for a , the more 

strongly the model will react to the last observation. The next section looks at the choice 

of values fo r a . 
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2.4.2 Choosing va lues for a 

Selecting an appropriate value for the smoothing constant, a., can have a significant 

impact on the accuracy of fo recasts. A possible approach is to simply try different values 

fo r a. and the best value, based on some accuracy measure such as the MAD or MSE, is 

then used (Makridakis et al, 1983). Another way of selecting an optimal value for a. is to 

make use of a linear program as described in section 2.3. 1. In thi s case a linear program 

that minimizes the MAD is used to choose an optimal value for a.. Bowerman et al 

(2005) noted that most computer software packages automatically choose values for a. 

but that different approaches are used and that users should carefu lly investigate how it is 

implemented. 

To further illustrate the effect of choos ing values for a. (i.e. putting more or less we ight 

on recent observations), three specific cases are considered (Moore and Weatherfo rd, 

2001). 

Response to a sudden change 

Suppose that at a certain point in time a system experiences a rapid and rad ical change. 

Consider an extreme case where 

Yt = 0 fort = 1, 2, ... , 99 

Yt = 1 for t = 100, 101 , ........ . 

In thi s case, if y1 = 0, then y100 = 0 for any value of a. as the weighted sum of a series of 

zeroes was taken. Thus at time 99 the best estimate of Y10o is zero, whereas the actual 

value will be one. The question now is how quickly will the forecasting system respond 

as time passes and the information that the system has changed becomes avai lable? It is 

clear that a higher value of a.- i.e. more weight on recent observations - will respond 

quicker. Moore and Weatherford (200 1) have shown graph ically that a higher value of a., 

in thi s case, is more desirable. Therefore, when a system is characterized by a low level 

of random behavior, but is subject to occas iona l shocks (rapid and radical change) a 

relative large a.-value would be preferred. 
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Response to a steady change 

Suppose that a system experiences a steady (growing) change in the value of y - this is 

sometimes called a linear ramp. In this situation, since all previous y's (y1 ..•• y1• 1) are 

smaller than y" and since the weights sum to one, it can be shown that, for any a. between 

0 and I , j/,+1 < y1• Also, since Yt+I is greater than y" the following is true j/1+1 < y, < Yt+I · 

Thus, the forecast will always be too small and since smaller values of a. put more weight 

on older data, the smaller the value of a., the worst the forecast becomes. Moore and 

Weatherford (200 1) warned that even with a. close to one, the forecast will not be good as 

there may be a steep growth in y-values. ln this case the model should be adjusted to 

include the trend. These types of models are dealt with in section 2.4.4. 

Response to a seasonal change 

Consider a system that experiences a regular seasonal pattern as illustrated in figure 2.2 

below. 

Demand 

0 c i> i 
I I 

'=' I I e 
I I Yr l • 

~ ~ I I 
I I I 
I I I 
: I I 

I I 
I I 
L-..-L-.1 

7 8 9 10 11 

Figure 2.2 

Suppose that values for periods 8 through II needs to be forecasted based only on data 

through period 7. 

Then y8 = ay1 +(l-a)y1 

ow to obtain y9 , since data is only avai lable through point 7, it is assumed that Ys = y8 

Then y9 = ay8 +(l-a)y8 which gives ay9 +(1-a)y8 and th is simplifies to y8 • 

Similarly, it can be shown that y11 = y10 = y9 = ;18 • This means that y8 is the best 

estimate of all future values. To see how good these predictions are, we know that 
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~ 2 y,+1 = ay, +a(l - a)y,_, +a(l - a) y,_2 + .... 

If a small val ue of a is chosen, the coefficients for the most recent terms change 

relatively slowly. Thus, yl+1 will resemble a simple moving average of a number of terms 

and the future predictions, e.g. j/11 , will all be somewhere near the average of the past 

observations- i.e. the seasonal pattern is ignored. If a large value of alpha is chosen, j/11 , 

which equals y8 , will be close in value to y7 which is not a good forecast. The model 

fares poorly regardless of the choice of a and based on this, Moore and Weatherford 

(200 1) concluded that the exponential smoothing model is intended for situations in 

which the behavior of the variable of interest is essentially stable, in the sense that 

deviations over time have nothing to do with time per se but are caused by random effects 

that do not follow a regular pattern. lf there is a definite trend or seasonal effect in the 

variable being predicted, it would be better to develop fo recasting models that 

incorporate these figures e.g. those methods discussed earlier in sections 2.2.3 and 2.2.4. 

2.4.3 Tracking signals 

Different smoothing constant values may produce improved forecasts over time or under 

specific circumstances as shown in section 2.4.2. One way of decid ing whether 

something is wrong with a forecasting system is to make use of tracking signals. 

Tracking signals were mentioned and defined in section 2.3 - measures of forecast 

accuracy. In this section, brief mention will be made of another tracking signa l that has 

had extensive use in practice and that is called the smoothed error tracking signal 

(Bowerman et a!, 2005). 

Suppose that a history of T single-period-ahead forecast errors, e1(a),e2(a), .... eT(a)ex ist 

with a the particular value of a employed to obtain the single-period-ahead forecast 

errors. The smoothed error tracking signal is defined as the ratio of the smoothed one­

period-ahead forecasting error to the smoothed mean abso lute dev iation. lf the smoothed 

error, E, of the one-period-ahead forecast error is defined as 

E(a,T) = e,(a) +aE(a,T -1) 

then the smoothed error tracking signal is defined as 
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(2.17) 

Bowerman et al (2005) stated that it should be noted that tracking signals no longer play 

such an extensive role in forecasting. This is due to modem computer power and capacity 

which means that smoothing constants can be re-estimated frequentl y durin g the 

forecasting process. 

2.4.4 Other exponential smoothing models 

The simple exponential smoothing model di scussed so far may not perform very well on 

models that have, for example, obvious up or down trends in the data with no seasonal 

pattern. For completeness sake, a few of the existing other models are briefly defined 

here. All definitions are quoted from Bowerman et al (2005). 

Holt 's trend corrected exponential smoothing model is a method that can be used to 

forecast a time series that has a linear trend and growth rate that is changing over time. It 

can be defined as fo llows. 

Suppose that the time series y~, y2, .... , Yn exhibits a linear trend for which the level and 

growth rate may be changing with no seasonal pattern. Then the estimate f. T for the level 

of the time series and the estimate br for the growth rate of the time series in time period 

Tare given by the smoothing equations 

f. T = a(Yr ) + (1- a)(f.T-1 +bT- l) 

bT = rCf.T-eT-1)+(1-y)bT-1 
(2.18) 

where a and y are smoothing constants between zero and one, and eT-I and bT-I are 

estimates a t time T -1 for the level and growth rate respectively. 

The additive Holt-Winters method is appropriate for time series with constant additive 

seasonal variation and is defined as follows. 

Suppose that the time series y~, y2, .... , Yn exhibits linear trend and has a seasonal pattern 

with constant additive seasonal variation and that the level, growth rate and seasonal 

pattern may be changing. Then the estimate e T for the level , the estimate bT for the 
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growth rate, and the estimate snT for the seasonal factor of the time series in time period T 

are given by the smoothing equations 

fT =a(yr -snT-L )+(J-a)(fT- l +bT_1) 

bT = Y ( f T - f T -l ) + (I - Y )bT-l 

snT = 8(Yr - fT ) +(1-8)snT-L 

(2.19) 

where a , y and 8 are smoothing constants between 0 and I, f T-l and bT-l are estimates in 

time period T- 1 for the level and growth rate, and snr-L is the estimate in time period T-L 

for the seasonal factor. 

Time series with an increased (multiplicative) seasonal variation as opposed to the 

constant (additive) seasonal variation can be dealt with the multipUcative Holt-Winters 

method. It is defined the same way as the additive model but with the following 

smoothing equations 

eT = a(Yr I snT-L) + (I - a)(fT-l +bT-l) 

bT = r( f T- f T-l) +(I- r )bT-l 

snT =8(yTUT )+(l-8)snT-L 

(2.20) 

One last method that will be mentioned here is called the damped trend exponential 

smoothing model. This method is appropriate fo r fo recasting a time sc:rie~ which has a 

growth rate that will not be sustained into the future and whose effects should be 

dampened. This means red ucing the growth rate in size so that the rate of increase or 

decrease for the forecasts is slowing down. The method is defined as follows. 

Suppose that the time series y~, y2, .... , Yn exhibits a linear trend for which the level and 

growth rate are changing somewhat with no seasonal pattern. Furthermore, suppose that it 

is questioned whether the growth rate at the end of the time series will continue in future. 

Then the estimate fT for the level and the estimate bT for the growth rate are given by the 

smoothing equations 

f T = ayT + (J- a)(fT-l +</JbT_1) 

bT =rCfr - eT-l)+(l-r)¢br-l 
(2.21) 

where a and y are smoothing constants between 0 and I , and ~ is a damping factor 

between 0 and 1 . 
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The damped trend can be used with either the additive or multiplicative Holt-Winters 

method when dealing with seasonal data. Details on this can be found in Bowerman eta/ 

(2005) 

2.5 Conclusion 

Jn this chapter an introductory overview of time series forecasting techniques was 

presented. Aspects covered included components of time series, trend and seasonal 

analysis and measures of forecasts accuracy. Exponential smoothing as one of the more 

popular techniques in time series forecasting, was also briefly reviewed. Another 

important and widely used time series model , the so-called autoregressive integrated 

moving average (ARIMA) model , will be discussed in chapter 4. 

The next chapter will give an overview and background on artificial neural network 

models - the other technique that forms the backbone of this research study. 
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CHAPTER3 

NEURAL NETWORK MODELS OVERVIEW 

3.1 Introduction 

In the p revious chapter an overview of time series forecasting was given. As it is the 

primary obj ective of this research study to investigate the use of neural networks in 

combination with time series forecasting, thi s chapter will serve as an introduction to 

neural networks. Genera l concepts of neural networks, and how they work, will be 

presented in order to provide sufficient background to the empirica l experiments 

described in chapters to fo llow. 

There are a large number of resources availab le that describe neural networks and in 

stead of referring to many different resources which all give the same basic informati on; 

it was decided to base the di scussion in this chapter on the text book by Fausett (1994). 

Some of the sections are quoted from this source with out always referencing it 

continuall y. 

3.2 What is a neural network? 

A neural network is an information system modeled after the human brain' s network of 

electronically interconnected basic processing elements cal led neurons (Awad, 1996). 

They are used for modeling a broad range of non-linear problems and are of interest to 

researchers and practitioners in many areas for different reasons. The study of neural 

networks is an interdisciplinary field, both in its development and its application. There 

are a huge num ber of neural network applications and some examples include fraud 

detecti on, target marketing systems, signature verification, loan approval, mortgage 

appraisals etc (Awad, 1996). 

In the following sub-sections a brief description of what is meant by a neural network is 

g1ven. 
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3.2.1 Artificial neural networks 

According to Fausett (1994) artificial neural networks have been developed as 

generalizations of mathematical models of human cognition or neural biology. It is based 

on the assumptions that 

- Information process ing occurs at many simple elements called neurons 

- Signals are passed between neurons over connection links 

Each connection link has an associated weight, which, in a typical neural net, 

multiplies the signal transmitted 

- Each neuron app lies an activation function (usually non linear) to its net input (sum of 

weighted input signals) to determine its output signal 

Neural networks are characterized by the pattern of connections between the neurons (the 

architecture), the method of determining the weights on the connections (training or 

learning) and an activation function. These concepts are illustrated in subsequent sections 

and the defining characteristics are just briefly considered here. 

A neural network consists of a large number of simple processing elements called 

neurons. Each neuron is connected to other neurons by means of directed communication 

links, each with an associated weight that represents infonnation being used to solve a 

problem. Each neuron also has an internal state called the activation o r activity level, 

which is a function of the inputs that was received. To illustrate, consider the following 

example taken from Fausett (1994). 

Consider a neuron Y that receives inputs from neurons X 1, X2 and X3 - see fi gure 3.1. The 

activations (output signals) of these neurons are x 1, x2 and x3 respectively. The weights on 

the connections from X1, X2 and X3 to neuron Yare w1, w2 and w3 respectively. The net 

input y_in, to neuron Y is the sum ofthe weighted signals from neuronsX1, X2 andX3 i.e., 

y in= W1X1 + W2X2 + W3X3 . (3. 1) 
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The activation y of neuron Y is given by some function of its net input, y = f(y _ in), e.g. , 

the logistic sigmoid function (an S-shaped curve) 

I 
f(x) = I + exp(-x)' 

(3 .2) 

or any of a number of other activation functions that w ill be mentioned again in section 

3.5. 

~ 
~ w, 

~=~ 
Figure 3.1 - A simple (artificial) neuron 

Suppose further that neuron Y is connected to neurons Z 1 and Z2, with weights v 1 and v2 

respectively as shown in fi gure 3.2. Neuron Y sends its signal y to each of these units. 

However, in general the values received by neurons Z1 and Z2 will be different, because 

each signal is scaled by the appropriate weight v 1 and v2• In a typical net, the activations 

z1 and z2 of neurons Z 1 and Z2 would depend on inputs from several or even many 

neurons and not just one as shown in this simple example. 

Although the neural network in figure 3.2 is very simple, the presence of a hidden unit, 

together with a nonlinear activation function gives it the ability to so lve many more 

prob lems that can be so lved by a neural network with only input and output units. On the 

other hand , it is more difficult to train (i.e. find optimal values for the weights) a net with 

hidden units. The arrangement of the units (architecture) and the method of training are 

discussed further in subsequent sections. 
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Figure 3.2- A simple neural network 

3.2.2 Biological neural networks 

There is a close analogy between the structure of a bio logical neuron (i.e. a brain or a 

nerve cell) and the processing element (artificial neuron) in a neural network. ln this 

section a short summarized d iscussion of some features of biological neurons that may 

help to clarify the most important characteristics of artificial neural networks are 

presented (Fausett, 1994). 

A bio logical neuron has three types of components that are of particular interest in 

understanding an artificial neuron: its dendrites, soma and axon. The many dendrites 

receive signals from other neurons. The signals are electric impul ses that are transmi tted 

across a synaptic gap by means of a chemical process. The action of the chemical 

transmitted modifies the incoming signal (by scaling the frequency of the signals that are 

recei ved) in a manner similar to the action of the weights in an artificial neural network. 

The soma, or cell body, sums the incoming signals and when suffic ient input is received, 

the cell fires, i.e. it transmits a signal over its axon to other cells. A generic bio logical 

neuron is illustrated in figure 3.3 together with axons from two other neurons (from 

which the illustrated neuron could receive signals) and dendri tes for two other neurons 

(to which the original neuron would send signals) . 
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Figure 3.3 - Biologica l neuron 

Several key features of the processing elements of artificial neural networks are 

suggested by the properties of biological neurons: 

The processing element receives many signals; 

Signals may be modified by a weight at the receiving synapse; 

- The processing element sums the weighted inputs; 

Under appropriate circumstances (sufficient input), the neuron transmits a single 

output; and 

- The output from a particular neuron may go to many other neurons (the axon 

branches). 

Other features of artificial neural networks that are suggested by biological neurons are 

Information processing is local ; 

- Memory is distributed. Long-term memory resides in the neurons' synapses or 

weights and short-term memory corresponds to the signals sent by the neurons; 

- A synapse's strength may be modified by experience; and 

Neurotransmitters for synapses may be excitatory or inhibitory. 

There is one other important characteristic that artificial neural networks share with 

biological neural systems - fault tolerance. Biological neural systems are fault tolerant in 
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two respects. First, humans are able to recognize many input signals that are somewhat 

different from any signal we have seen before. An example of this is our ability to 

recognize a person in a picture we have not seen before or to recognize a person after a 

long period of time. Second, humans are able to tolerate damage to the neural system 

itself. Humans are born with as many as I 00 billion neurons - most of these are in the 

brain and most are not replaced when they die. In spite of the continuous loss of neurons, 

humans continue to learn. Even in cases of traumatic neural loss, other neurons can 

sometimes be trained to take over the functions of the damaged cells. In a similar manner, 

artificial neural networks can be designed to be insensitive to small damage to the 

network, and the network can be retrained in cases of significant damage e.g. loss of data 

and some connections. 

In the next section the connections between neurons (the architecture) in a neural network 

is briefly explored. 

3.3 Architecture 

The architecture of a neural network determines its topology and how it operates. It is 

convenient to visualize neurons as arranged in layers where neurons in the same layer 

typically behave in the same manner. The arrangement of neurons into layers and the 

connection patterns within and between layers is called the net architecture (Fausett, 

1994). 

According to Fausett (1994) neural networks are classified as single layer or multilayer 

networks. These can be further distinguished into feed forward networks - networks in 

which the signals flow from the input units to the output units in a forward direction -

and recurrent networks in which there are closed-loop signal paths from a unit back to 

itself. These concepts are referred to again in the following paragraphs. 

Single Layer Neural Networks 

In a single layer network, there is only one layer of connection weights. Figure 3.4 is a 

representation of a single layer network where it can be seen that the input units are fully 

32 



connected to output units without any input or output units connected to each other. Th is 

is also an example of a feed fo rward neural network as there are input units receiving 

signals and output units from which the response of the neural network can be read. 

Input 
Units 

:::~ 
Wnt~ 

lm~ 

WUn~ 

w""' 

One Layer 
of Weights 

Output 
Units 

Figure 3.4- A single layer neural network 

Multilayer Neural Networks 

A multi layer neural network is a network with one or more layers of nodes - called 

hidden units - between the input units and the output units. Usuall y there is a layer of 

weights between two adjacent levels of units (input, hidden or output). These types of 

neural networks are also examples of feed forward networks and can so lve more 

complicated problems than the single layer networks. Figure 3.5 gives an illustration of 

multilayer neural network architecture. 
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Figure 3.5 - A multilayer neural network 

Competitive Layer Neural Networks 

A competiti ve layer forms part of a large number of neural networks. They can have 

signals traveling in both directions by introducing loops in the network and is known as 

recurrent networks. An example of the architecture for a competitive layer is given 111 

fi gure 3.6. 

- € 

Figure 3.6- Competitive layer 
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3.4 Training and Learning 

The learning function takes place within a neural network's abi lity to change the weights 

and allow a neuron to modify its activity in response to its input (A wad, 1996). There are 

two main types of training called supervised and unsupervised training. These two types 

of training are summarized below according to Fausett (1994). 

Supervised training 

Supervised training is accomplished by presenting a sequence of training vectors, or 

patterns, each with an associated target output vector. The weights are then adjusted 

according to a learning algorithm. Examples of problems which can be solved through 

supervised training include pattern classification i.e. to classify an input vector as either 

belonging to or not belonging to a given category, and pattern association where the 

desired output is a pattern and not just a simple yes (belong to) or no (does not belong to). 

Multilayer neural networks can also be trained to perform a non linear mapping from an 

n-dimensional space of input vectors (n-tuples) to an m-dimensional output space i.e. the 

output vectors are m-tuples. 

Unsupervised training 

Unsupervised training or self-organizing neural networks group similar input vectors 

together without the use of training data to specify what a typical member of each group 

looks like or to which group each vector belongs. A sequence of input vectors is 

provided, but no target vectors are specified. The neural network modifies the weights so 

that the most similar input vectors are assigned to the same output (or cluster) or unit. 

The neural network will then produce a representative vector for each cluster formed. The 

so called Kohonen self-organizing maps is an example of unsupervised training. 

There are also other types of training that will not be discussed here, e.g. fixed weight 

neural networks whose weights are fixed without an iterative train ing process - see 

Fausett (1994) for details. 
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Training algorithm 

No overview of neural networks is complete without at least a summarized outl ine of one 

of the most popular training methods called backpropagation. Backpropagation, also 

called the generalized delta rule, is a simple gradient descent method to minimize the 

total squared error of the output computed by the neural network (Fausett, 1994). It 

consists of two passes (A wad, 1 996) 

ln the forward pass, the input pattern is applied to the network and allows the 

resulting activity to spread through the network to the output layer. This output is 

usually wrong initially. 

- In the backward pass, the difference between the actual and the desired output 

generates an error signal that is propagated back through the network to teach it to do 

better- to produce a result closer to the desired output. 

For completeness sake the backpropagation algorithm, quoted from Fausett ( 1994), IS 

given below. 

Variables used in the algorithm are: 

X Input training vector: x = (x1 , . ... , Xi , .. , Xn) 

t Output target vector: t = (t1 , •••• , tk , . . .. , tm) 

ok Portion of error correction weight adjustment for Wjk that is due to an error 

at output unit Yk; al so, the information about the error at uni t Yk that is 

propagated back to the hidden units that feed into unit Yk. 

o· J Portion of error correction weight adjustment for Uij that is due to the 

backpropagation of error information from the output layer to the hidden 

unit Zj. 

a Learn ing rate 

x i Input unit i: For an input unit, the input signal and output signal are the 

same, namely, x;. 

Yoj Bias on hidden unit} 
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Z· 
~ Hidden unit}: The net input to Zj is denoted z_in/ 

z_ in1 =v01 + L ,x,vY 

The output signal (activation) of ZJ is denoted Zf 

z
1 

= f(z _ in) 

wok Bias on output unit k 

y k Output unit k: The net input to Y k is denoted y _ink: 

y _ ink= Wok + L l zlwl* 

The output signal (activation) of Y k is denoted yk: 

h =f(y_in*) 

The training algorithm is then given by Fausett as follows. 

Step 0 Initialize weights (set to small random values) 

Step 1 Wh ile stopping condition is fa lse, do steps 2 to 9 

Step 2 For each training pair, do steps 3 to 8 

Feedforward: 

Step 3 Each· Input tiriit "{Xi, i = I, .... ,n) receives input signal Xi and 

broadcasts thi s signal to al l units in the layer above (the hidden 

units) 

Step 4 Each hidden unit (Zj, j = I, .... ,p) sums its weighted input signals, 

z_ in1 = v01 + L ,x,vy , 

app lies its activation function to compute its output signal 

z
1 
= f(z _ in) and sends this signal to all units in the layer above 

(output units) 

Step 5 Each output unit (Yk, k = I , .... ,m) sums its weighted input 

signals, 

y _ in* = Wok+ L lzl wl* 
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and applies its activation function to compute its output s ignal 

Yk = f(y _ in*)· 

Backpropagation of error: 

Step 6 Each output unit (Y k, k = 1, .... ,m) receives a target pattern 

corresponding to the input training pattern, computes its error 

information term 

8* = (tk - Yk)/(y _ink) , 

calculates its weight correction term (used to update Wjk later), 

L1Wjk = a8kZj, calculates its bias correction term (used to update wok 

later), 

L1wok = a8k, and sends 8k to units in the layer below. 

Step 7 Each hidden unit (Zj, j = I, .... ,p) sums its delta inputs 

(from units in the layer above), 

m 

8 _in1 = L 8k W1*, 
k=l 

multiplies by the derivative of its activation function to calculate 

· its· error information term 

8
1 

=8 _ in
1
/(z _ in), 

calculates its weight correction term (used to update Uij later), 

L1U ij = a8jXi, and calculates its bias correction term (used to update 

uo· later) L1uo· = a8· ~ , ~ J 

Update weights and biases: 

Step 8 Each output unit (Yk, k = 1, .... ,m) updates its bias and 

weights U = 0, .... ,p ): 

Wjk (new) = Wjk (old) + L1wjk 

Each hidden unit (Zj, j = l , .... ,p) updates its bias and weights (i = 

0, .... ,n): 

Uij (new) = Uij (old) + .:1Uij 
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Step 9 

Test stopping condition 

Any activation function can be used in the algorithm. The next section considered some 

of the more important activation functions that are also suitable for use. 

Simple illustrations of how the training program was implemented to solve the XOR 

problem as well as to compress data can be found in Fausett ( 1994 ). 

3.5 Some common activation functions 

As indicated in section 3.2.1 , the basic operation of an artificial neuron involves summing 

its weighted input and then applying an output or activation function. There are different 

forms of activation functions (linear and non-linear) and in this section a brief 

introduction of only the logistic sigmoid function is given. The discussion is based on the 

function's description as found in Fausett (1994). For a more extensive discussion of the 

choice of activation funct ions and different forms of sigmoid functions , Fausett ( 1994) 

can be consulted. 

Sigmoid functions are especially useful in neural networks that are trained by the 

backpropagation algorithm where the relationship between the value of the function at a 

point, and the value of the derivative at that point, is used during training. The most 

common types are the logistic function and the hyperbolic tangent function. 

The logistic function with a range from 0 to 1, is often used as the activation function for 

neural networks in which the desired output values either are binary or are in the interval 

between 0 and I. This is called the binary or logistic sigmoid and is defined as 

l 
f(x) = 1 + exp(-ox) 

(3.3) 

with 
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f'(x) = of(x)[l- f(x) ]. (3 .4) 

The u is a steepness parameter and in figure 3.7 the function is illustrated for cr = 3 and 

() = 5. 

f (x ) 

0=1 

2 3 X 

Figure 3.7- Binary sigmoid. Steepness parameters of 3 and 1 

The logistic sigmoid function can be scaled to have any range of values (Fausett, 1994) 

and the most common range is from -1 to 1. This is then called a bipolar sigmoid and is 

illustrated in figure 3.8 for cr = I. The bipo lar sigmoid function is defined as 

g(x) = 2f(x) -1 

2 -1 
l +exp(-ox) 

_ 1-exp(-ox) 

I+ exp(- ox) 

and g'(x) = C5 [1 + g(x)JI- g(x)] 
2 

(3 .5) 

(3.6) 
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Figure 3.8- Bipolar sigmoid 

When the desired range of output values is between -1 and 1, the hyperbo lic tangent 

fu nction, which is c losely related to the bipolar sigmoid , can also be used. The 

correspondence between the two can be illustrated as follows (for cr = I). 

The bipolar sigmoid is given by 

I- exp( - x) 
g(x) = 1 + exp(- x) 

and the hyperbolic tangent by 

h(x) 
_ exp(x)- exp(-x) 

exp(x) + exp(-x) 

I-exp(-2x) 

I +exp(-2x) 

and h' (x) = [J +h(x)] [1 -h(x)]. 

(3 .7) 

(3 .8) 

(3.9) 
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This section is concluded by a short list of the most common activation functions used 

(Payne, 2001 ). 

• Hard limit function 

f(x) = 0, x < 0 and 

f(x) = l, x ~ 0. 

• Symmetri cal hard limit 

f(x) = - l , x < Oand 

f(x) = 1, x ~ 0. 

• Linear 

f(x) = x. 

• Saturating linear 

f(x) = 0, x < 0, 

f(x) = x , 0 ~ x ~ 1 and 

f(x)= l,x > 1. 

• Symmetric saturating linear 

f(x) = -1 , x < -1 , 

f(x) = x, - 1 ~ x ~ 1 and 

f(x) = I , x > 1. 

• Log-sigmoid 

1 
f(x) = 

1 + exp(-x) 

• Hyperbolic tangent s igmoid 

f(x) = exp(x)- exp(-x) 

exp(x) + exp( -x) 

• Positive linear 

f(x) = 0, x < 0 and 

f(x) =X, X ?= 0. 

• Competitive 

f(x) = 1, neuron with max x, and 

f(x) = 0, a ll other neu rons. 
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3.6 Conclusion 

Neural network models play a sign ificant role in this study and chapter 3 presented a 

brief overview of such models in general. The models were exp lained by concepts such 

as artificial and biological neural networks. The different architectures of neural networks 

were also presented as well as an explanation on how tra ining and learning takes place 

within a neural network. The chapter was concluded with a list of common activation 

function used in neural networks. 
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CHAPTER4 

NON SEASONAL BOX-JENKINS APPROACH TO MODELING 

ARIMA PROCESSES 

4.1 Introduction 

The objective of chapter 4 is to present a brief overview of a fo recast technique that is 

often referred to as a Box-Jenkins analysis or ARJ MA analysis. This is necessary as 

ARJMA mode ls are often used in combinati on with other models, such as neural network 

models, to construct hyb rid forecasts. The acronym ARlMA stands for Auto-Regressive 

Integrated Moving Average and will be more fo rmally defined in the fo llowing section. 

The Box-Jenkins approach to modeling ARIMA processes was described in 1970 by the 

two statisticians Box and Jenkins (Box and Jenkins, 1970). It is an iterative process 

encompassing four stages of development namely model identification, estimation, 

d iagnostic checking and fo recasting. 

- Model identifi cation uses various graphs of histori ca l data based on transformed and 

di fferenced data to try and identi fy an appropria te Box-Jenkins model. 

- Estimation means that historical data are used to find val ues of the model coefficients 

which will provide the best fit to the data. 

Diagnostic checking involves testing the assumptions of the model to check the 

adequacy ofthe model. 

- Forecasting takes place when the final model is obtained and used to forecast future 

time series values. 

To build a proper ARJ MA or Box-Jenkins model is often not a straightforward process 

and requires good j udgment and a lot of experi ence (Pankratz, 1983). Many text books 

give comprehens ive explanations and discussions on the Box-Jenkins process and fo r a 

fu ll exposition of details, text books such as Makridakis el al (1983), Pankratz (1983) and 

Bowerman el al (2005) can be consul ted. 
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The rest of the chapter discusses the four stages in the Box-Jenkins approach. 

4.2 Model identification 

Accord ing to Zhang (2003), when using an ARIMA model, the future value of a variable 

is assumed to be a linear function of several past observations and random errors and it 

has the following form 

y, = 8o +¢,y,_, +¢2Y1-2 + ... +¢pYr-p +£, -8,&,_, -82£1-2 - ... -8q£,_q (4.1) 

where y, and £, are the actual value and random error at time period t respective ly and ¢, 

(i = 1, ... , p) and 8
1 
U = 0, I , ... , q) are model parameters. p and q are integers and often 

referred to as orders of the model. Random errors, £,, are assumed to be independently 

and identically distributed with a mean of zero and a constant variance of a 2 • (Zhang, 

2003). 

The model given above entails several important special cases of the ARIMA family of 

model s. If q = 0, the model becomes an autoregressive (AR) model of order p. When p = 

0, the model reduces to a moving average (MA) model of order q. One of the central 

tasks of the ARIMA model building process then is to determine the appropriate model 

order (p, q). 

To tentatively identify a Box-Jenkins model, it is necessary to determine whether the time 

series that wi ll be forecasted is stationary. A stationary time series has the property that 

its statistical characteristics such as the mean and the autocorrelation structu re are 

constant over time (Zhang, 2003). Bowerman eta! (2005) stated that a plot of time series 

values is usefu l in helping to determine stationarity. If n values of a time series 

y1,y2 , ••• ,yn were observed, a plot of these values against time can be used to determine 

whether the time series is stationary. If the n values seem to fluctuate with constant 

variation around a constant mean , 1.1, then it is reasonable to believe that the time series is 

stationary. If the n values do not fluctuate around a constant mean or do not fluctuate 
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with constant variation, then it is reasonable to believe that the time series is non­

stationary. The time series can then be transformed into a stationary time series by taking 

the first differences of the non-stationary values. 

The first differences of the time series values y 1,y2 , ••• ,y
11

are then given as 

z, = y,- y,_1 where t = 2, ... , n. 

In some cases, where the first differences of the original time series values 

Z2 = Y2- Y1 

z 3 = Y3- Y2 

zn = Yn - Yn-1 

(4.2) 

are non-stationary, a stationary time series can be produced by taking the second 

differences of the original time series values. These second differences of the time series 

values y1,yl , ... ,y
11 

are then given as 

z, = (y, - y,_, )- (y,_, - Y1-2 ) 

= y, -2y,_1 + y,_2 where t 3, 4, ... , n. (4.3) 

The values z6 , = h+1, ... , =" obtained from the first, or the second, differences are often called 

the working series. 

Once the working series z b,z6+1, .•• ,zn, which may be the original time series values, are 

identified, the next step of model identification can take place. This step involves the 

investigation of the behavior of the sample autocorrelation function (SAC) and the 

sample partial autocorrelation function (SPAC) for the values of the stationary time series 

zb, zh+l• ···•zn. 
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The sample autocorrelation function is described as fo llows by Bowerman el al (2005). 

Consider the working series of time seri es values zb, zb+t> ... ,zn. The sample 

autocorrelati on at lag k, denoted by rk, is 

where 

n- k 
L: (z, - z)(z,+k - z) 

r* = ""'"'' ==«h'-------­
n 

:L (z,-:Z)2 

t =b 

n 

L:z, z = t - h 

(n - b+ l) 

(4.4) 

(4.5) 

T his quantity measures the linear relationship between time series observati ons separated 

by a lag of k t ime un its. The va lue of rk will a lways be between -I and + I (Bowerman et 

al, 2005) where a va lue close to I indicates that observations separated by a lag of k time 

un its have a strong tendency to move together in a linear fashion with a positive slope. 

Values close to - I indicates that observati ons separated by a lag of k time units have a 

strong tendency to move together in a linear fashion with a negative slope. 

The sample autocorrelation fu nction (SAC) is then presented as a listing or graph of the 

sample autocorrelations at lags k = I , 2, . . . . . . . 

In order to use the Box-Jenkins methodology, it is necessary to examine the behavior of 

the SAC. See for example Bowerman et al (2005) and Pankratz ( 1983) for complete 

d iscussions and illustrations on the possible variety of behaviors that a SAC can di sp lay. 

In short, the SAC for a non-seasonal time series can cut off- th is means that a spike at 

lag k exists in the SAC if rk, the sample autocorrelation at lag k, is statistically large. One 

can also say that the SAC cuts off after lag k if there are no spikes at lags greater than k in 

the SAC. Secondly, the SAC dies down if the fu nction does not cut off but rather 

decreases in a steady fashion - the SAC may die down fa irly quickly or extremely 

s lowly. Bowerman el al (2005) can be consulted for examples and detailed illustrations. 
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The behavior of the SAC can also be related to stationari ty and Bowerman et al (2005) 

stated that in general it can be shown that for non-seasonal data the fol lowing is true. 

- If the SAC of the time series values zb,zb+l>'" 'zn either cuts offfairly quickly or dies 

down fa irly quickly, then the time series values should be considered stationary. 

- If the SAC of the time series values zb,zh+1, ... , zndies down extremely slowly, then the 

time series values should be considered non-stationary, and data transformation 

(di fferencing) is necessary. 

In addition to the SAC, the sample partial autocorrelation function (SPAC) is also used to 

assist in model identification. According to Pankratz (1983) the SPAC is broad ly similar 

to the SAC - it is also a graphical representation of the stati stical re lationship between 

sets of ordered pairs (Zb, Zb+k) drawn from a s ingle time series. It is used as a guide, 

along with the estimated SAC, in choosing one or more ARJMA models that might fit the 

avai lable data points. The SPAC is defined by Bowerman et al (2005) as follows. 

The sample partial autocorrelation at Jag k is 

ru =tj ifk = I and 

k-1 

r* - L rk-l ,; rk-; 
=I 

ru = k-1 ifk = 2, 3, ..... (4.6) 
1- IrH/; 

;=I 

where 

1ic1 = rk-1.; - ' ic* rk-l,k- ; for j = I , 2, ... , k- 1. (4.7) 

As in the case of the SAC, it is necessary to examine the behavior of the SPAC in order 

to employ the Box-Jenkins methodology. Bowerman et al (2005) explains it as fo llows. 

- The SPAC for a non-seasonal time series can cut off, which means that if a sp ike at 

lag k exists, the rkk (sample partial autocorrelation at Jag k) is statistical ly large. To 

judge whether a spike at lag k exists in the SPAC, the t-statistic re lated to rkk is 

eva luated. lf the absolute value of the t-statistic is greater than 2, then a spike exists. 

The t-stati stic is g iven by 
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r kk 
lru =S 

ru 

with s, the standard error of rkk and defined as 
u 

1 
s,a = .Jn-b+I 

(4.8) 

(4.9) 

- The SPAC dies down if the function does not cut off but rather decreases in steady 

fashion . 

As stated in the beginning of thi s section, one of the central tasks in model identification 

is to determine values for p and q which are referred to as the orders of the model. The 

SAC and SPAC, as di scussed here, assist in determining these values and in the table 

below is a summary (Bowerman et al, 2005) of the general non-seasonal models and their 

orders as indicated by the SAC and SPAC. 

Model SAC SPAC 

Moving average of order q Cuts of Dies down 

z, = 8 +a1 -{},al-l -{}2a,_2 - ... -()qa,_q after lag q 

Autoregressive of order p Dies Cuts off 

z, =8 +if>Iz,_1 +¢2z,_2 + ... +¢Pz,_P +a, down after lagp 

Mixed autoregressive moving average of order (p, q) Dies Dies down 

z, =8 +¢1z,_1 +¢2z,_2 + ... +¢Pz,_P +a1 - ()1a,_1 - ()2a,_2 - ... -eqa,_q down 

Most stati stical software packages can perform SAC and SPAC analyses and for 

completeness sake th is secti on is concluded by an example of SAC and SPAC output for 

first differencing (z1 = y1 - y1• 1) generated by the SAS code below. The data used in the 

example was taken from Bowerman et a! (2005) and represents weekly sales figures of 

paper towels. The complete data set is presented in Appendix A. 

proc arima data = work.datafile; 

identify var = y(l) nlag 14; 

run; 
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SAS output of the SAC for the first differences of paper towel sa les (see appendix A 

for data set) 

The SAS System 

The ARIMA Procedure 

Name of Variable = y 

Period(s) of Differencing 
Mean of Working Series 
Standard Deviation 
Number of Observations 
Observation(s) el i minated by differencing 

Autocorrelations 

1 
0.005423 
1.099416 

119 
1 

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 a 1 2 3 4 5 6 7 8 9 1 Std Error 

0 1. 208715 1.00000 
1 0.370658 0.30665 
2 -0.078249 -.06474 
3 -0.086619 -.07166 
4 0.126391 0.10457 
5 0 . 101691 0 . 08413 
6 0.027608 0 . 02284 
7 -0.160292 -.13261 
8 -0.143891 -. 11904 
9 -0.210121 - .17384 

10 -0.142910 - . 11823 
11 -0.062396 -.05162 
12 0.025252 0.02089 
13 0.049984 0.04135 
14 0 . 023417 0.01937 

Lag Correlation 

1 -0.32950 
2 0.15054 
3 0.02394 
4 -0.13848 
5 0 . 02768 
6 -0.11600 
7 0 .15425 
8 -0.04661 
9 0.13497 

10 0.03197 
11 -0. 0aa16 
12 0.01014 
13 -0.05308 
14 -0.aa804 

!******************** 
I****** 

*I 
*I 
I** 
I** 
I 

.***1 

. **I 

. ***I 
**I 
*I 
I 
I* 
I 

"." marks two standard errors 

Inverse Autocorrelations 

0 
0 . 091670 
0 . 099919 
0.100271 
0.100700 
0.101609 
0 . 102192 
0.102235 
0.103671 
0.104813 
0.107209 
0.108299 
0 .108505 
0.108539 
0.108672 

-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

I ******* I 
I 1***. 
I I 
I .***1 
I I* 
I **I 
I I***. 
I *I 
I 1*** . 
I I* 
I I 
I I 
I *I 
I I 
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SAS output of the SPAC for the first differences of paper towel sa les (see appendix 

A for data set) 

Partial Autocorrelations 

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

1 0.30665 I I****** 
2 -0. 17525 I .... , 
3 0.00616 I I 
4 0.13335 I 1***. 
5 - 0.00953 I I 
6 0 . 01992 I I 
7 -0.13965 I . ***1 
8 - 0.04076 I *I 
9 -0.17756 I .... , 

10 -0.05270 I * I 
11 -0 .01092 I I 
12 0.03207 I I* 
13 0.07218 I I* 
14 0.00992 I I 

Autocorrelation Check for White Noise 

To Chi- Pr > 
Lag Square OF ChiSq - - ---- -- ------ - --- --Autocorrelations----- - --------------

6 14.96 6 0.0206 0.307 -0.065 -0.072 0.105 0.084 0.023 
12 25 . 27 12 0.0136 -0.133 -0.119 -0.174 -0.118 -0 .052 0.021 

Looki ng at the SAC one can see that the SAC has a spike at lag 1 (the last asterisk is 

beyond the corresponding two-standard deviation dot) Since there are no spikes in the 

SAC after lag 1, it may be concluded that the SAC cuts off after lag l. It can therefore be 

assumed that the first differences (produced by the transformation Zt = Yt - Yt-1) are 

stationary. The SPAC also has a spike at lag l. There are no other spikes and it can be 

concluded that it cuts off after lag I - however, since the partial autocorrelations at lags 2 

and 4 are fairly large, the cut off is not very abrupt and one may also conclude that the 

SPAC dies down. Based on this analysis, the moving average model of order q = I 

represented by Zt = al - elat-1 where Zt = Yt- Yt-1 is the identified model. 

4.3 Estimation 

The estimation stage implies that precise estimates of the coefficients, of the model 

chosen in the identification step, be obtained. For example, if the first-order 

autoregressive model 
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::, = 8 +¢J ::,_1 +a, (4.1 0) 

was chosen, the model wi ll be fitted to the available data series to get estimates of 8 and 

~I· 

There are fundamentally two ways of getting estimates for the parameters (Makridakis et 

al, 1983). 

Trial and error. Examine many different values and chose that value (or set of 

values) that minimizes the sum of squared residuals. 

- Iterative improvement. Choose a preliminary estimate and let statistical software 

refine the estimate iteratively. 

Estimation is usually carried out using the second option of iterative improvement 

through the use of a computer program. The main approaches used in statistical software 

programs for this iterative process are quite complex and is based on non linear least 

squares (NLS) and maximum likelihood estimations. It is beyond the scope of this 

chapter to deal in technical detail with the two approaches and th is section will therefore 

be concluded with an example, performed in SAS, to illustrate the parameter estimation 

process. Complete technica l discussions on the different methods may be fou nd in 

Makridakis et al ( 1983), Pankratz ( 1983) and Bowerman et al (2005) . 

The fo llowing example is based on the same data set used in section 4.2 (Bowerman et al, 

2005) and shows the output of the parameter estimation process for the model ident ified 

in the previous stage. The output is based on the followin g SAS code. 

Proc arima data = work. datafile; 

identify var = y(J) nlag 14; 

estimate q=(l); 

run; 
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SAS output of least squares estimation of 9, in the model z1 = a,- 9,a,_1 where z1 = y 1 

-y,_, 

Iteration 

0 
1 
2 
3 
4 

The SAS System 

The ARIMA Procedure 

Preliminary Estimation 

Initial Moving Average 
Estimates 

Estimate 

R -0.30665 

White Noise Variance Est 1.104821 

Conditional Least Squares Estimation 

SSE MA1,1 Lambda 

127.83 -0.30665 0.00001 
127 . 49 -0.36024 1E-6 
127.48 -0.35240 1E-7 
127.48 -0.35362 1E-8 
127. 48 -0.35343 1E-9 

ARIMA Estimation Optimization Summary 

R Crit 

1 
0.055095 
0.008393 
0.001299 
0.000202 

Estimation Method 
Parameters Estimated 
Termination Criteria 
Iteration Stopping Value 
Criteria Value 
Alternate Criteria 
Alternate Criteria Value 
Maximum Absolute Value of Gradient 
R-Square Change from Last Iteration 
Objective Function 
Objective Function Value 
Marquardt's Lambda Coefficient 
Numerical Derivative Perturbation Delta 
Iterations 

Conditional Least Squares 
1 

Maximum Relative Change in Estimates 
0.001 

0.000537 
Relative Change in Objective Function 

6.8E-8 
0.027435 
0 . 000202 

Sum of Squared Residuals 
127.4788 

1E -9 
0.001 

4 

Parameter 

MA1,1 

Conditional Least Squares Estimation 

Estimate 

-0.35343 

Standard 
Error 

0.08650 

Variance Estimate 
Std Error Estimate 
AIC 
SBC 
Number of Residuals 

t Value 

-4.09 

1.080329 
1.039389 
347.8977 
350.6769 

119 

Approx 
Pr > It I 

< .eee1 

* AIC and SBC do not include log determinant. 
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The first part of the output shows the iterative search while the final point estimates is 
A 

given in the last part of the output. It shows that SAS obtained a final point estimate of 81 

= -0.35343 after four iterations. The t-value given in the SAS output can be used to test 

the hypothesis H0: 9 = 0 which will give an indication of whether the parameter 9 should 

be included in the model or not (Bowerman el a!, 2005). 

4.4 Diagnostic checking 

Once a tentative model has been identified and parameters have been estimated for the 

model, it is necessary to perform a diagnostic checking to verify that the model IS 

adequate. According to Makridakis el a! (1 983) there are two basic ways of doing this. 

- Study the residuals- to see if any pattern remains unaccounted for. 

- Study the sampling stati stics of the optimum solution - to see if the model could be 

simplified. 

A statistically adequate model is one whose random shocks (residuals) are statistically 

independent, mean ing not autocorrelated (Pankratz, 1983). If the residuals are correlated 

it means that the estimated model should be reconsidered and possibly reformulated. To 

check the adequacy of a Box-Jenkins model therefore implies that the residuals be 

analyzed. 

One way of performing an adequacy check, using the residuals, is to examine a statistic 

that determines whether the first k sample autocorrelations of the residuals. considered 

together, indicate adequacy (Bowerman et al, 2005). Two such statistics have been 

suggested and is summarized below. 

The Box-Pierce statistic given by 

Q = n·± rl (a) , (4. 11 ) 
l =l 

and the Ljung-Box statistic given by 

Q* =n'(n' +2)±(n -1)-1r/ (a) (4. I 2) 
f=l 
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where n' = n-d with n the number of observations in the ori ginal time series and d the 

degree of non-seasonal differencing used to transform the original time series values into 

stationary time series values. r/ (a) is the square of rt (a) , the sample autocorrelation of 

the residuals at lag k. 

Both statistics can be used to test the adequacy of a model but Bowerman et af (2005) 

suggested that Q• is the better of the two. The Q• statistic should be small. The larger Q• 

is, the larger are the autocorre lations of the res iduals and the more related the residuals 

are. A large value of Q• wi ll therefore indicates that the model is inadequate. The 

adequacy of the model under consideration can now be rejected by setting the probability 

of a type I error equa l to a. if and only if either of the following equivalent conditions is 

true. 

I . Q• is greater than X<~ >(K -nc) , the point on the scale of the X2 di stribution having k-

nc degrees of freedom such that there is an area of a. under the cu rve of thi s 

distribution above thi s point. Nc is the number of parameters that must be estimated. 

2. The p-val ue is less than a., where the p-value is the area under the curve of the 

x2 d istribution having k-nc degrees of freedom. 

Most stati stical software packages can perform the diagnostic checking process and wi ll 

also provide the required Q• and p-values. An example, illustrating how SAS is used to 

perform diagnostic checking and showing how the Lj ung-Box stati stic (Q*) and its 

associated p-values can be found for the model identified during the first stage, is given 

below. 

The example is based on the same data set used in the previous sections (Bowerman et al, 

2005). The output is based on the following SAS code. 

Proc arima data = work. datafile; 

identify var = y(l) nlag 14; 

estimate q=(J) noconstant print all plot; 

run; 
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SAS output for diagnostic checking for the model Zt =a, - 8 1a,_1 where Zt = y 1 - y 1_1 

To Chi- Pr > 
Lag Square OF ChiSq 

6 4.1a 5 a.5345 
12 1a.4a 11 a.4944 
18 17.57 17 a.4165 
24 18.67 23 a.7199 

The SAS System 

The ARIMA Procedure 

Autocorrelation Check of Residuals 

-- -- - -- - - -- ------- --Autocorrelations------------- - ---- - -

a.aa6 
-a.143 
a.a2a 
a . aa4 

-a.a37 
-a .a31 
a.a3s 

-a.a28 

-a.1a2 
-a.146 
-a.a74 
- a.a61 

a.129 
-a.a58 
-a.ae3 
a.aae 

Autocorrelation Plot of Residuals 

a.a28 
-a .a41 
a.a68 

-a.a54 

a.a61 
a.a25 
a.196 
a.a12 

Lag Covariance Correlation - 1 9 8 7 6 5 4 3 2 1 a 1 2 3 4 5 6 7 8 9 1 Std Error 

a 1.a8a329 1.aaaaa 
1 a . aa59655 a.aa552 
2 -a.a39778 -.a3682 
3 -a.1a9978 -.1a18a 
4 a.138997 a.12866 
5 a.a3aaa6 a.a2778 
6 a.a66126 a . a6121 
7 -a.154399 -.14292 
8 -a.a33148 - .a3a68 
9 -a.l57783 -.146a5 

1a -a.a63136 - .a5844 
11 -a.a44a91 - .a4a81 
12 a.a27341 a.a2531 
13 a.a21645 a.a2aa4 
11! a . 01112e3 a.a3814 

Lag Cor relation 

1 a.aa552 
2 -a.a3685 
3 -a.1a153 
4 a.1296a 
5 a . a1868 
6 a.a6a77 
7 -a.na57 
8 -a.a3638 
9 -a . 15573 

1a -a.1a387 
11 -a. a3157 
12 a.aa388 
13 a.a6414 
14 a . a5522 

I******************** 

I 
*I 

**I 
1***. 
I* 
I* 

. *** I 
*I 

.***1 
*I 
*I 

I* 
I 
I* 

"."marks two standard errors 

Partial Autocorrelations 

-1 9 8 7 6 5 4 3 2 1 a 1 2 3 4 5 6 7 s 9 1 

I I 
I *I 
I ** 
I *** 
I 
I • 
I •• 
I • 
I ••• 
I ** 
I * 
I 
I * 
I * 

a 
a.a9167a 
a.a91673 
a.a91797 
a.a92741 
a.a94229 
a.a94297 
a.a94631 
a . a96428 
a . a9651a 
a.a98349 
a.a98641 
a.a98783 
a.a98837 
a.a98871 

It can be seen from the example that SAS calculates the Ljung-Box statistic Q* and its 

associated p-value for K equal to 6, 12, 18 and 24. According to the standard x2 -table 
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that gives values of x ; (df) (See for example Bowerman eta!, 2005), if a., the probability 

of a type 1 error, is equal to 0.05 then the rej ecti on point would be 

Xc~>(K -nc) = X[005>(6- 1) = 11.0705 (4.13) 

Since Q• = 4.10 < 11.0705 = xl~ 051 (5) , the adequacy ofthe model cannot be rejected. 

The p-value is the area under the curve of the x2 distribution having K-nc = 5 degrees of 

freedom to the right of Q• = 4.1 0. The p-value on the SAS output is 0.5345 and since 

0.5345 > 0.05, the adequacy of the model cannot be rejected. 

4.5 Forecasting 

The last stage and final objective of any Box-Jenkins model is to forecast future values of 

a time series. 

In order to compute point forecasts (single numerical values) for the model 

y, = Yr-1 +a, - ea,_t 

the estimated model 

y, = Yr-1 +o, -ea,_l 
is used. 

(4.14) 

(4. 15) 

In this case the point prediction o, of a, is zero. The point prediction o,_1 of a,_1 is the (t­

l)st residual (y,_1 - y,_1) if it is possible to calculate Yr-t and is zero if y,_1 cannot be 

calculated. To find the point forecasts, insert the estimates of parameters (e.g. 8) 

obtained during the previous stages, the appropriate values for past observations and 

assign the expected value of zero to a, . 
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It can also be shown (Bowerman et al, 2005) that a I 00(1-a.)% pred iction interval , 

calculated at time origin n for the time series value in time period n+r is 

LYn+r (n) ±t~~;n,) SEn+r (n)] 

SEn+r (n) is call ed the standard error of the forecast error and depends on the standard 

error 

S= ~SSE 
n-n 

p 
(4.16) 

Almost all statistical software packages wil l provide the time series forecasting values 

and below is an example of the forecasting values produced by SAS for the model 

identified in stage one. The example is based on the same data set used in the previous 

sections (Bowerman eta/, 2005). The output is based on the fo llowing SAS code . 

Proc arima data = work.datafile; 

identify var = y(J) nlag 14; 

forecast lead = 1 0; 

run; 

SAS output of the point forecasts and 95% prediction intervals given by the model 

z, =a, - 9 1a,_1 where z, = y,- Yt-1 

Obs Forecast 

121 15.8889 
122 15.8889 
123 15 . 8889 
124 15 . 8889 
125 15.8889 
126 15.8889 
127 15.8889 
128 15.8889 
129 15.8889 
130 15.8889 

The SAS System 
The ARIMA Procedure 

Forecasts for variable y 

Std Error 95% Confidence Limits 

1.0394 13.8518 17.9261 
1.7491 12.4608 19.3170 
2.2446 11.4896 20.2882 
2.6490 10.6970 21.0808 
2.9993 10.0103 21 . 7675 
3 . 3128 9.3959 22.3820 
3.5991 8.8347 22 . 9431 
3.8643 8.3151 23 .4628 
4.1124 7.8288 23.9490 
4.3463 7.3703 24.4076 
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The output presents the SAS results of the point forecasts, the values of SEn+r (n), and the 

95% prediction intervals when forecasti ng at time origin 120 the values for time periods 

121 through 130. 

4.6 Conclusion 

Chapter 4 presented a brief overview of the Box-Jenkins modeling approach and covered 

the four different stages viz. 

- Model identification; 

- Estimation of model parameters; 

- Diagnostic checking; and 

- Forecasting 

The chapter further introduces elementary concepts pertaining to the four stages and 

provides references where detailed examples and mathematical details can be found . 

This chapter is finally concluded by a summary ofthe characteristics of a good Box­

Jenkins model as g iven by Pankratz ( 1983) and evidenced by the discussions in the 

chapter. 

A good model is 

- Parsimonious (uses smallest number of coefficients needed to explain the available 

data). 

- Stationary 

Has estimated coefficients of high quality 

Has uncorrelated residuals 

- Fits the available data (the past) well enough to satisfy the analyst 

- Forecasts the future satisfactoril y 
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The next chapter, chapter 5, wil l be devoted to a summarized review of recent literature 

resources describing the use of time series modeling, the use of neural networks in time 

series data and a combination ofthe two approaches. 
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CHAPTERS 

METHODOLOGY AND RESEARCH DESIGN 

5.1 Introduction 

Following the introduction and background review of fundamental principles (chapters 2 to 4) of 

techniques used in this study, chapter 5 wil l concentrate on two further aspects. First, the 

relevance of techniques used in the empirical study will be motivated from appropriate literature 

resources. A brief overview of simi lar work carried out using linear models, neural networks and 

a combination of the techniques wil l be given. Second, the research design and methodology 

used in this study will be presented. The hybrid methodology used will be exp lained as well as 

the practical workings of the empirical experiments. The next chapter will then focus on the data 

sets used and the results of the empirical experiments. 

5.2 Related work in the literature 

Time series forecasting is an important area of forecasting that attracts many researchers and 

practitioners. An appropriate way to start this introductory literature review would be to refer to 

the informative and well researched work of De Gooijer and Hyndman (2006). They have 

published a review that covers the past 25 years of research into time series forecasting. The two 

researchers give a brief overview of the main developments of recent years as well as proposals 

for future research. A variety of forecasting techn iques, and research work associated with them, 

is given and include techniques such as exponential smoothing, ARIMA models, non-linear 

models such as neural networks, ARCH/GARCH models etc. An excellent list of references 

(more than 300 authors) is also provided. 

The next couple of paragraphs will be used to give examples of specific applications of time 

series forecasting as found in the literature and that is relevant to this study. 

Ghiassi, Saidane and Zimbra (2005) experimented with a dynamic neural network model where 

changes were made to the architecture of the neural network in an effort to improve forecasting 

results of different time series data. Based on their experiments they claimed that the neural 
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network approach is more accurate and performs significantly better than traditional models such 

as ARIMA models. 

The work of Ediger and Akar (2007) is an example of the use of a linear model (ARIMA) that 

was employed to forecast the future energy demand of Turkey. The ARIMA technique was 

appli ed to time series data of each item that contributes to primary energy e.g. coal, wood, 

animal and plant remains, oil, natural gas, hydropower etc. They concluded that the application 

of the ARIMA forecasting technique delivers more reliable results than other approaches that 

they have previously tried when forecasting energy demand. 

In line with the results from the energy demand study, Dooley and Lenihan (2005) also fo und 

that the use of the ARI MA forecasting technique prov ides marginally better resul ts when 

forecasting metal pri ces. They have compared the ARJMA technique with a lagged forward price 

model. 

ln a study to compare the accuracy of up to six di fferent methods for short-term electricity 

demand, Taylor, Menezes and McSharry (2006) have found that the best results were achieved 

with the exponential smoothing method. Based on their experiments, they conclude that simple 

and robust methods outperform more complex alternatives and that they requ ire little domain 

knowledge to be implemented. 

Cho (2003) presented a study in forecasting applied to touri sm management. In an effort to 

predict the travel demand (i.e. number of arri vals) from different countries to Hong Kong, three 

forecasting techniques were investigated. The performance of two linear models, exponential 

smoothing and ARIMA, was compared with an artificial neural network. The study concludes 

that in those cases where the ti me seri es data have no obvious pattern, the neural network seems 

to be the best alternative for forecasting visitor arriva ls. 

In a more recent study, Co and Boosarawongse (2007) also compared t he forecasting abi lity of 

exponential smoothing, ARIMA and neural network models. They applied these models in an 
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effort to forecast rice exports from Thailand. Using different measures of forecast errors (e.g. 

MSE and MAPE), they concluded that the neural network models performed relatively well as 

they were able to track the dynamic non-linear trend and seasonality in the time series. 

There are also a number of studies where only neural networks and ARJMA models were 

compared. Examples of such studies include the prediction of the Hepatitis A virus performed by 

Ture and Kurt (2006). They argued that a multi-layered perceptron neural network outperformed 

an ARJMA model. Interesting results were presented by Mishra and Desai (2006) who also 

compared neural networks and ARIMA models. Their study was conducted in India and they 

used these models to perform a forecast of droughts. The results obtained showed that the 

performance of one of the neural network models, as well as the A RIMA model, decreases over 

a longer lead time because of the accumulation of errors between the observed and predicted 

values at each time step. Both the ARJMA and neural network models provided good results as 

long as the lead time to forecast is not too big. 

In this research project the idea is to combine neural network and linear models to provide for 

both linear and non-linear elements that may be contained in the data. This section will therefore 

be concluded with a few examples from the literature where this approach was followed. 

A simple combination of forecasts using the equal weights method (arithmetic mean of 

individual forecasts) was used by Zou et al (2007). They compared thi s combined approach with 

ARIMA and neural network models to forecast wheat prices in the Chinese market. Results 

reported by them are somewhat conflicting - according to them, the neural network outperforms 

the ARIMA model while the combined forecasting approach proofs to be an effective way of 

improving the forecasting performance of error measures. 

lnce and Trafalis (2006) proposed a two stage forecasting model where they used an ARJMA 

model to select input variables and then, in the second stage, apply neural network and support 

vector regression models to make forecasts . This approach was used by them to forecast the 

exchange rate for different currencies e.g. the euro/dollar exchange rate. Their experiments have 
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indicated that the forecasting performance is hi ghly dependent on the selection of inputs to be 

used in the final forecasting model. 

Valenzuela et a l (2008) described a hybrid model that is the same as Zhang' s model (Zhang, 

2003) but w ith the interesting difference of using a fuzzy expert system, driven by an 

evolutionary algorithm, to determine the structure of the ARIMA model. The residuals of th is 

mode l are then passed on to a neural network to model the non-linear component of the time 

series. Although the testing of this hybrid approach was more focused on identifying the correct 

ARlMA model using the expert system, the authors concluded that the synergy of the hybrid 

model produced excellent results. The same research project, presenting a different level of detail 

information, is also described in Rojas et a l (2008). 

Following the same approach as Zhang (2003), Chelan i and Devotta (2006) also proposed a 

hybrid model to forecast air quali ty as determ ined by the nitrogen dioxide concentration 

observed in Delhi , India. An ARIMA model was used to model the linear component of the data 

and a non-linear dynamic model (based on so-called phase spaces and attractors) was then 

developed to model the residuals from the ARlMA model. They found that the hybrid model 

outperformed the individual linear and non-linear models. 

To conclude this section , it should be noted that there are, however, other researchers and 

research studies that have shown that a hybrid model (such as the one proposed by Zhang in 

2003) does not a lways deliver better forecasting results. For example, Taskaya-Temizel and 

Casey (2005) have shown through a number of experiments that the hybrid model may 

underperform in certain cases. Thi s is in line with the research resu lts found in the empirical 

work of thi s study which are detai led in chapter 6. 

5.3 Research design and methodology 

In thi s section the hybrid methodology of combining a linear model with the results of a neural 

network wi ll be discussed. Following thi s di scussion, an overview of the approach and 

methodology used to perform the empirical experiments will be presented. 
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5.3.1 Hybrid methodology 

As stated in chapter I, the primary objective of this research study was to investigate the use of a 

combined linear and neural network model to determine forecasting performance. This wil l be 

done based on the work of Zhang (2003). 

Zhang (2003) motivated the use of such a hybrid approach as follows. 

• It is often difficult to determine whether a time series under study was generated from a 

linear or non-linear underlying process. This makes it difficult to choose the correct 

forecasting technique for the specific situation. 

• Real world time series are rarely pure linear or non-linear and they often contain both linear 

and non-linear patterns. 

• lt is agreed in forecasti ng literature that no sing le method is best in every situation. Real 

world problems are complex in nature and a single model may not be able to capture 

different patterns. 

The basic idea of model combination in forecasting can therefore been seen as using each 

model' s unique features to capture different patterns in the data. A brief overview of the 

combination of linear models and neural networks, based on the work of Zhang (2003) will now 

be presented. 

It is clear from the literature sources quoted in section 5.2, that both linear models and neural 

network models have achieved successes in their own linear and non-linear domains. It is, 

however, not a lways clear if each model on its own would be suitable in all circumstances. Using 

a linear model in complex non-linear problems may not be adequate. A lso, the use of a neural 

network to model linear problems may produce mixed resu lts. As the characteristics of data in 

real world problems are often unknown, it may be a good idea to consider a hybrid methodology 

where linear and non-linear models are combined to try and capture different aspects of the 

underlying patterns. Zhang (2003) explained this hybrid methodology as follows. 
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Consider a time series composed of a linear structure and a non-linear component. That is 

y, =L,+N, (5. 1) 

where L, denotes the linear component and N, the non-linear component. 

If we assume that these two components have to be estimated from the data, a linear model can 

be used to model the linear component and the residuals from the linear model wi ll then contain 

the non-linear relationship. Let e, denote the residual at time t from the linear model , then 

e, =y,-L, (5 .2) 

where L, is the forecast value for time t from the estimated relationship. 

Zhang (2003) argued that a linear model is not sufficient if there are still non-linear correlation 

structures left in the residuals. Accord ing to him, residual analysis is not able to detect any non­

linear patterns in data and that there is no general diagnostic statistic for non-linear 

autocorrelation relationships. This implies that a model may still not be adequate, even if it has 

passed diagnostic checking, as non-linear relationships have not been appropriately modeled. If 

there is any significant non-linear pattern in the residuals it is an indication of the limitation of a 

linear model. If the residuals are now modeled using a neural network, non-linear relationships 

may be discovered. With n input nodes, the neural network model for the residuals will be 

e, = f(e,_l;e,_2 ; ...... ;e,_n )+£, (5.3) 

wheref is a non-linear function determined by the neural network and £,is a random number. If 

the forecast from the neural network is denoted by N,, then the combined forecast will be 

;, =i, +N, (5.4) 

To summarize, Zhang's proposed hybrid methodology consists of two main steps. First, a linear 

model is used to analyze the linear part of the problem and second, a neural network model is 

developed to model the residuals from the linear model. This hybrid approach exploits the 

unique features and strengths of a linear model as well as neural network models and could be 

advantageous to model linear and non-linear patterns separately and then combine the forecasts 

to improve overall modeling and forecasting performance. 
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The next section, section 5.3.2, wi ll give an overview of the detailed steps and approach that was 

fo llowed in this study using Zhang's technique of combining forecast models. 

5.3.2 Empirical experiment approach 

In order to exam ine the performance of the proposed hybrid model , the individual linear and 

non-linear models were also applied to the data sets under consideration. To determine these two 

models the following approach was followed. 

Determine an appropriate neural network model 

The construction of a neural network architecture presents two distinct challenges to the model 

builder. In the first instance, an appropriate number of hidden nodes should be chosen and 

secondl y, the number of lagged observations which is also referred to as the dimension of the 

input vector must be specified. The number of hidden nodes may impact the degree of over 

fitting of the model (a good fit to the sample data but poor generalization capability) while the 

input dimension plays a major role in determining the autocorrelation structure of the time series. 

There are no systematic rules or theory to guide the selection of these two parameters (Zhang, 

2003) and it was decided to perform a series of experiments to help select values for these 

parameters. The experiments to do this were conducted as follows. 

A SAS program was developed to perform a "grid-search" where all possible combinations of 

input dimensions, ranging from I to 20 were tested (see Appendix B for the source code of the 

program). At the same time, the number of hidden nodes was varied from 1 to 20. Twenty 

experiments (fitting of a neural network) were performed in each case. Doing it thi s way, a total 

of 8000 (20 experiments * 20 nodes * 20 input dimensions) neural network models were fitted in 

each case and the parameters for the one with the smallest average mean squared error was then 

selected for the model to be used. The following table explains the sequence of tests performed 

each time a neural network architecture had to be determined. 
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Number of lagged Number of hidden nodes to Number of experiments to 
observations as inpu t be included in a rchitecture determine best pa ra meters 
dimension 
I lagged observation I hidden node Experiment 1 

Experiment 2 

Experiment 3 

Experiment 20 

2 hidden nodes Experiment 1 

Experiment 20 

20 hidden nodes 

2 lagged observations 

20 lagged observations 
-- --- --- -- ------ -- - - - - --- -- ----- -- - - -- - -

For each one of the experiments. The SAS program randomly selected 90% of the data to be 

used for training of the neural network wh ile the remaining I 0% formed part of the validation 

process. 

Determine an appropriate linear model 

There are a variety of ways to fit a linear model to a time series data set. One popular way of 

doing it is to follow the well known Box-Jenkins approach of bui lding an ARIMA model - this 

approach was discussed and illustrated in chapter 4. In this study however, it was decided to 

make use of the automatic linear model selection feature offered by the SAS sofhvare package. 

This means that all tests carried out on a data set during a manual process (e.g. in the Box-
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Jenkins approach) to select the best model is now performed automatical ly by the SAS software. 

Jt is a powerfu l feature which uses a wide variety of linear models to select the best one - several 

different kinds of exponential smoothing, ARJMA and log linear models are used in the selection 

process. The function also offers the usual features associated with time series forecasting such 

as goodness-of-fit measures, predictions, evaluations of errors, graphing facili ties etc. 

The two abovementioned methods to choose appropriate neural network and linear models form 

the basis of the background work to be perfo rmed in the actual methodology which can be 

summarized as fo llows. 

For each data set under review 

I. Determine the most appropriate neural network model architecture that can be applied to 

the time series and perform a forecast us ing the identified model. 

2. Determine the most appropriate linear model that can be appl ied to the time series and 

perfonn a forecast using the identifi ed model. 

(Steps I and 2 are necessary to compare the performance of the individual linear and non­

linear models with the proposed hybrid model) 

3. Determine the most appropriate neural network model architecture that can be applied to 

the errors of the linear forecasts obtained in step 2 and perform a neural network forecast 

of the errors. 

4. Construct a hybrid model by combining the linear forecasts (obtained in step 2) with the 

neural network forecast of errors (obtained in step 3). Perform the hybrid forecast. 

5. Compare the means square error (MSE) and the mean absolute deviation (MAD) of the 

three forecasts (neural network, linear and hybrid model). 

6. Interpretation of results. 

This technique was repeatedly appl ied for three different forecasting periods for each data set 

under consideration. The forecasting periods and resul ts are detailed in chapter 6. 

Schematically the 6 steps of the empi rical experiment approach can be represented as depicted in 

figure 5. 1 at the end of this chapter. 
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5.4 Conclusion 

Chapter 5 consists of two main sections. The relevance of the techniques used in this stud y was 

fi rstly motivated fro m li terature resources and, secondl y, the research design and approach 

fo llowed to conduct the empirical work was explained. In the next chapter the data sets used and 

results obtai ned during the practical experi ments will be d iscussed. 
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Figure 5.1- Empirical experiment approach 
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CHAPTER6 

EMPIRICAL RESULTS AND DISCUSSION 

6.1 Introduction 

The primary objective of this study was to investigate the use of a combined linear and neural 

network model to determine the forecasting performance of such a hybrid model. The purpose of 

this chapter is to report the empirical results from five different real data sets that were used to 

evaluate forecasts obtained by a linear, a neural network and a combination of the two 

techniques. A brief description of the data sets will be given followed by the modeling and 

forecast results. The chapter will then be concluded with a discussion of the results obtained. 

6.2 Data sets 

To demonstrate the results of the empirical experiments, five real world data sets were used. 

They were taken from different areas and have different statistical characteristics. The data is 

well known and it is assumed and accepted that these types of data have been widely studied in 

statistical and forecasting literature. However, no known generally accepted forecasting model 

for these data exist and using them for further evaluation is appropriate. 

The five data sets chosen are 

- the gold price; 

- demand for electricity; 

- the rand/dollar exchange rate; 

- the oi I price; and 

- return on the money market. 
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The gold price time series data set 

The gold price data that was considered contains the daily (working days) price in US dollars 

from 3 January 2006 to 28 December 2007 giving a total of 499 observations. The importance of 

studying the gold price is obvious- in South Africa, gold is one of the largest contributors to the 

country's gross domestic product and the industry also provides a significant number of 

employing opportunities. Figure 6.1 shows a plot of the data set. 
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Figure 6.1- Daily gold price (3 January 2006 -28 December 2007) 
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Demand f or electricity time series data set 

The second data set evaluated was the demand for electricity in South Africa. The delivery of 

electricity is currently a sensitive issue in South Africa as the national electricity supplier 

apparently does not have sufficient capacity to provide in the national demand. Electricity forms 

the backbone of economic activity and a shortage wi ll seriously impact the well being of the 

country. The time series used contains the demand (measured in mega watts) for electricity in 

South Africa recorded every 5 minutes during a 24 hour day (288 observations per 24 hour day). 

A total of 884 observations were used which represents the demand at a 5 minute interval from 

24h00 on 1 Ju ly 2007 to Olh35 on 4 July 2007. A plot ofthe data is shown in figure 6.2. 

Electricity Demand 1n Mega Watt 
Five minute intervals from 24h00 on 1 July 2007 to 01 h35 on 4 July 2007 
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Figure 6.2- Demand for electricity recorded every 5 minutes (1 July 2007-4 July 2007) 
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Rand/dollar exchange rate time series data set 

Predicting the exchange rate is an important yet difficult task in international finance. Zhang 

(2003) reported that various linear and non-linear models have been developed but few of them 

proved to be more successful than a simple random walk model. In South Africa, the rand/dollar 

exchange rate is of great importance as South Africa is a developing country where import and 

export activities may have a huge impact on the country·s balance of payments. The time series 

selected for this study contains the daily closing exchange rate from 6 February 2003 to 29 

January 2008 giving a total of 1244 observations. Figure 6.3 shows a plot of the data. 

Rand/Dollar Exchange Rate 
6 February 2003- 29 January 2008 
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Figure 6.3 - Rand/dollar exchange rate (6 February 2003 - 29 January 2008) 
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Oil price time series data set 

As with the demand for electricity, the demand for energy in the fonn of crude oil is vital to the 

economic well being of South Africa. Oil prices rise above 140 US dollars per barrel during 

2008 and had a tremendous rippling effect on the economy that impacted each citizen in the fonn 

of higher petrol prices. higher food prices etc. The oil prices considered contains the daily 

closing price, in US dollars, per barrel of Brent crude oil from 6 February 2003 to 5 February 

2008 giving a total of 1249 observations. Figure 6.4 shows a plot of the oil price data set. 
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F igure 6.4 - Daily oil price (3 February 2003 - 5 February 2003) 
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Return on the money market time series data set 

The last data set is the 3-monthly return recorded daily in the South African money market. The 

data set contains 498 observations from 3 January 2006 to 31 December 2007. lnterest rates, 

which are traditionally difficult to predict, play an important role in the economy and evaluating 

them seems to be appropriate. Figure 6.5 shows a plot ofthe interest rates used in the study. 
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F igure 6.5- Return on the money market (3 January 2006 - 31 December 2007) 

The next section will present the results of the fitted models and their forecasting performance. 

6.3 Modeling and forecasting results 

As explained in chapter 5, the linear as well as the neural network models were implemented in 

SAS. When constructing a neural network forecasting model , researchers usually consider a one­

step-ahead forecasting approach which is then used to forecast any other period e.g. to forecast 

35 periods ahead. These 35 points however, refer to the test set which forms part of the original 

data set (Zhang, 2003). This means that the ori ginal data set was split into a training set and a test 
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set and the results obtained from the test set is then presented as a forecast. In this study, three 

different period forecasts were constructed. These were real forecasts ahead and did not form 

part of the original data set that was used for training and testing purposes. The three forecasting 

horizons chosen were a one-step-ahead forecasting, a five-step-ahead forecasting and a twenty­

step-ahead forecasting. This choice was based on a one day ahead forecasting, a one week ahead 

(five working days) forecasting and a one month ahead (twenty working days) forecast. The 

mean square error (MSE) and the mean absolute deviation (MAD) were used as forecasting 

accuracy measures. 

The results of the five different data sets will now be presented. To ensure that a comprehensive 

explanation is provided and at the same time adhere to the practical limitations of the written 

study report, most of the applicable graphs, for the first data set (gold price) will be given while 

for the remaining four data sets only the final results will be graphically presented. 

6.3.1 Gold price time ser ies data set 

The first step in the proposed methodology was to find the "best" linear model for forecasting the 

time series data. Using the SAS system, the following model was selected. A linear (Holt) 

exponential smoothing model with root mean square error= 8.29919; MSE = 68.8765; MAPE = 

0.92817; and mean absolute error = 6.01319. Additional parameters for this model is given 

below 

Parameter 

LEVEL Smoothing Weight 

TREND Smoothing Weight 

Residual Variance (sigma squared) 

Smoothed Level 

Smoothed Trend 

Statistic 

umber of Non-missing Observations 

umber of Observations 

Value 

-
0.999 

0.001 

69.15366516 

833 .7457655 

0.537711937 

Value 

499 

499 

Std error T-value P-value 

0.03 I 842561 31.37310471 0 

0.004794163 0.208586999 0.834856117 
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Number of Missing Actuals 

Number of Missing Predicted Values 

umber of Model Parameters 

Total Sum of Squares (Uncorrected) 

Total Sum of Squares (Corrected) 

Sum of Square Error 

Mean Square Error 

Root Mean Square Error 

Mean Absolute Percent Error 

Mean Absolute Error 

R-Square 

Adjusted R-Square 

Amemiya's Adjusted R-Square 

Random Walk R-Square 

Akaike Information Criterion 

Schwarz Bayesian Information Criterion 

Amemiya's Prediction Criterion 

Maximum Error 

Minimum Error 

Maximum Percent Error 

Minimum Percent Error 

Mean Error 

Mean Percent Error 

0 

0 

2 

212916010.2 

2284179.816 

34369.37158 

68.87649616 

8.299186476 

0.9281 71971 

6.013191411 

0.984953299 

0.984923024 

0.984832198 

0.000860419 

2 115.925 18 

2124.350392 

69.43083416 

24.2 1354604 

-42.59079093 

3.87775 1146 

-6.537343197 

0.140974643 

0.01003 1416 

The graph in figure 6.6 shows a plot of the original data and the values predicted by the linear 

(Holt) exponential smoothing model. Due to the size of the data set and the "closeness·' of the 

actual and predicted values, an extraction of the data set is shown in figure 6.7 to present a 
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clearer view (easier to see) of the results. The extraction contains 108 data points and covers the 

period 3 August 2006 to 9 January 2007. 
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Figure 6.6 -- Gold price: Linear model 
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Figure 6.7-- Gold price: Linear model extraction 
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A grid search (explained in chapter 5) was then performed to obtain the best neural network 

model to produce forecasts of the original data set. The best neural network model found was 

one consisting of a 4-period Jagged observation and one hidden node. The average squared error 

for this model was given as 66.1271. In figure 6.8 a plot of the original data and the values 

predicted by the neural network model is shown. Figure 6.9 shows the extraction for a clearer 

view. 

900 

850 

800 

750 

~ 

.~ 
~ 

"" 
700 

0 
(!) 

650 

600 

550 

SOD 

Neural Network Model 
Actual and Predicted Daily Gold Price 
(3 January 2006- 28 December 2007) 

31 61 91 121 151 181 211 241 ::!71 301 331 361 391 421 451 481 

Day 

Figure 6-8 - Gold price: Neural network model 
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Figure 6.9- Gold price: Neural network model extraction 
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6.3.1.1 One-step-ahead forecasting (gold price) 

The forecasting errors from the linear forecasting model were then used to construct a neural 

network with the objective of forecasting the errors. A one-step-ahead approach was used and 

following another grid search, the best neural network model to forecast the errors was found to 

be one with a I -period lagged observation and one hidden node. The average squared error in 

this case was 65.0822. Figure 6.10 shows a graph of the average error during training and 

validation of the neural network while table 6.1 presents the relevant neural network model 

statistics that were generated. 
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Figure 6.10 - Validation and training 

Table 6.1 -Neural network statistics 

Fit Statistic Training (Train) Validation (Valid) 

Average Error 66.901327612 71 .533752238 

Average Squared Error 66.9013276 12 71.533752238 

Sum of Squared Errors 23214.760681 10801.596588 

Root Average Squared Error 8.1793231757 8.4577628388 

Root Final Prediction Error 8.4 I 85350752 
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Root Mean Squared Error 8.299790974 8.4577628388 

Error Function 23214.760681 10801.596588 

Mean Squared Error 68.886530212 71.533752238 

Maximum Absolute Error 42.818014624 27.826233243 

Final Prediction Error 70.871 732812 

Divisor for ASE 347 151 

Model Degrees of Freedom 10 

Total Degrees of Freedom 347 

Sum of Frequencies 347 151 

Sum Case Weights times 347 151 

Frequencies 

Akaike's Information Criterion 1478.5 169276 

Schwarz's Bayesian Criterion 1517.0101754 

In the final step, the hybrid model was constructed. The forecasted errors produced by the neural 

network model were added to the linear forecasts produced by the linear Holt exponential 

smoothing model. This constitutes the combined forecasting consisting of a linear and a non­

linear component. Figure 6.1 I presents a graph of the original data and the hybrid forecast 

values. Figure 6.12 shows the extraction. 
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Figu re 6.11- Gold price: Hybrid model 
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The MSE and MAD were then calculated for each forecast to be able to comment on the 

forecasting accuracy. The resu lts were as follows. 

MSE l MAD 

Linear (Holt exponential smoothing) forecast 67.86232 I 5.92614 

Neural network forecast 67.77836 5.964544 

I 

Hybrid forecast 62.53307544 
I 

5.9222 
I 

The results show that the overall forecasting error can be significantly reduced by combining two 

models together to make provision for a linear and non-linear component in the data. Jn terms of 

the MSE, the percentage improvements of the hybrid model over the linear and neuraJ network 

models for a one-step-ahead forecast are 8.5% and 8.3% respectively. A general discussion on all 

results will be given in section 6.4. 

6.3.1 .2 Five-step-ahead forecasting {gold price) 

The linear model discussed earlier, is off course still applicable and all that is needed is to 

specify that a five-step-ahead forecast is required. The same is true for the general neural 

network that was constructed initially. However, to create a hybrid model that is based on a five­

step-ahead forecasting, it was necessary to perform a new grid search in order to determine the 

best neural network model to predict five-step-ahead linear errors. The best model obtained was 

one using a 4-period lagged observation with one hidden node. The average squared error for this 

model was 78.0929. The hybrid model for the five-step-ahead forecasting was then once again 

constructed by adding the linear forecast and the forecasted errors together. Figure 6.13 shows a 

plot of the different forecasts for 5 periods ahead. 
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Figure 6.13- Gold price: 5-step-abead forecast 

The MSE and MAD for the different forecasts were as follows. 

MSE I MAD 

Linear (Holt exponential smoothing) forecast 89.37518 1 8.366259 
i 

Neural network forecast 295.1084 I 15.2 1522 

Hybrid forecast I 02.1858521 I 8.8994743 

For the five-period-ahead forecast, the linear Holt exponential smoothing model performed best 

with the hybrid forecast relatively close to the linear forecast. The neural network model 

performed badly in this case. Th is makes sense because whenever there is a huge difference in 

values from one data point to the next one, the linear forecast is expected to perform better. This 

is due to the fact that each linear forecast is infl uenced by the previous observed value. If the 

forecast horizon is not big enough, the neural network wi ll not be able to make adjustments to 
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the new forecasts quickJ y enough. Thjs can clearly be seen from the graph presented in figure 

6. 13. The data below. and plotted in figure 6.13, also shows this clearly. 

Actual Linear Prediction Hybrid Prediction NN PredictioD 

801.75 811.2947141 811.7697444 805.4896487 

794.5 802.2749432 802.0955222 806.25 70478 

783.5 795.0154063 795.794921 6 807.4074452 

784.25 784 .0076429 783.8587155 808.884641 6 

797.5 784.7461272 783.3040909 809.5373213 

6.3.1.3 Twenty-step-ahead forecasting {gold price) 

A grid search was carried out again to determine the best neural network architecture to forecast 

errors for the twenty-step-ahead forecasting. The best neural network model found was one using 

a 6-period Jagged observation with one hidden node. The average squared error in thi s case was 

87.3985. Figure 6.14 shows a graph ofthe different forecasts for 20 periods ahead. 
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Figure 6.14 - Gold price: 20-step-abead forecast 
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The MSE and MAD were calculated as follows. 

MSE I MAD 

Linear (Holt exponential smoothing) forecast 101.4591 I 8.653258 

Neural network forecast 201.8027 I 10.97838 

Hybrid forecast I 95.02055394 ~ 8.443926 

ln this case, the hybrid forecast once again outperfonned the linear forecast (6.8% improvement 

in the MSE) with the neural network perfonning bad again. The same argument for the five-step­

ahead neural network forecast can be used to try and explain the poor perfonnance of the neural 

network model. Below is the data plotted in figure 6. 14. 

Actual Linear Prediction Hy brid Prediction NN Prediction 

801.75 811.2947141 8 I 0. 7302324 784.4241649 

794.5 802.2749432 802.131793 784.494 I 773 

783.5 795.0154063 795.654873 785.673 I I 12 

784.25 784.0076429 783.657 1611 786.248012 

797.5 784.7461272 784.1003376 787.3720737 

793 797.9963568 798.4655281 788. I 38566 I 

801.5 793.509 11 57 793.533676 791.1534747 

792.5 802.004 I I I 3 802.420 I 978 790.3913254 

809.5 793.QJ2 111 7 794.0459772 791.9488143 

808.75 81 0.00259 I I 810.4265239 791.94877 11 

814 809.2690803 809. 1865494 793.1386 129 

800.7 8 I 4.5 I 78229 8 I 3.2455098 792.9663975 

789.5 80 I .2225677 800.9166471 795.3034878 

790.75 790.00876 16 790.2086644 795.2589536 

804.25 791.2470383 79 1.8238964 797.6338308 
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I 
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799.75 

795.25 

81 0.5 

829 

833.75 

804.7477665 

800.2607745 

795.7557817 

811.0007562 

829.5154824 

803.2082274 

799.1892615 

796.8824 I 98 

8 I 2.0712484 

827.8003435 

798.1972506 

799.236993 

799.2067427 

800.0480885 

798.7906171 

Based on the results of the experiment with the gold price data it seems as if it would make good 

sense to make use of a combination of techniques in order to cater for both a linear and a non­

linear component. 

The following sections present the resu Its of the other four experiments. The approach used with 

each of the data sets was the same as what was described in this section for the gold price and 

results wi ll therefore presented without repeating detail ed descriptions again. 1t should also be 

noted that a discussion on all the results will follow in section 6.4. 

6.3.2 Demand for electricity time series data set 

The best linear model, suggested by SAS, to forecast the electricity demand was a simple 

exponential smoothing model with root mean square error = 0.004462; MSE = 0.0000199; 

MAPE = 0.43087; and mean absolute error = 0.003262. Other parameters for the model were as 

follows. 

Model Parameter 

LEVEL Smoothing Weight 

Residual Variance (sigma squared) 

Smoothed Level 

Statistic of Fit 

umber ofNonmissing Observations 

umber of Observations 

umber of Missing Actuals 

Estimate 

0.999 

0.0000199 

0.6562 

Value 

884 

884 

0 

Std error T-value 

0.0238 42.0253 
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Number of Missing Predicted Values 0 

Number of Model Parameters 

Total Sum of Squares (Uncorrected) 

Total Sum of Squares (Corrected) 

Sum of Square Error 

Mean Square Error 

Root Mean Square Error 

Mean Absolute Percent Error 

Mean Absolute Error 

R-Square 

Adjusted R-Square 

Amemiya's Adjusted R-Square 

Random Walk R-Square 

Akaike Information Criterion 

Schwarz Bayesian Information Criterion 

Amemiya's Prediction Criterion 

Maximum Error 

Minimum Error 

Maximum Percent Error 

Minimum Percent Error 

Mean Error 

Mean Percent Error 

503.559253 

6.23485 

0.017598 

1.9907E-05 

0.004462 

0.430865 

0.003262 

0.997177 

0.997177 

0.997171 

0.000265 

-9566.7829 

-9561.99844 

1.9953E-05 

0.016891 

-0.01 83 

2.019356 

-2.143885 

-0.00004393 

-0.00819 

Figure 6.15 presents an extraction of the linear forecasts for a 100 data points (from the original 

884 data points) which covers the period I July 2006 to 2 July 2006. 
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Linear Model 
EXTRACTION of actual and predicted electricity demand 

1 July 2006- 2 July 2006 (5 minute intervals) 
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Figure 6.15- Electricity demand: Linear model extraction 

101 

---Electricity 

--- Predicted 

Following a grid search, the best neural network model to perform forecasts of the original data 

set, was fou nd to be one using a I 0-peri od lagged observation with one hidden node. The 

average squared error was 0.000012. Figure 6.16 shows an extraction of the neural network 

forecasts. 
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Neural Network Model 
EXTRACTION of actual and predicted electricity demand 

1 July 2006- 2 July 2006 (5 minute intervals) 
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Figure 6.16- Electricity demand: Neural network model extraction 

6.3.2.1 One-step-ahead forecasting (electricitv demand) 

--8ectrocity 

--Predicted 

A grid search indicated that the best neural network model to forecast errors, using the one-step­

ahead approach, was one with an 1 1-period lagged observation and 18 hidden nodes. The 

average squared error was determined as 0.000012. A hybrid model was then constructed using 

the linear forecasts together with the neural network forecasts of the errors. Figure 6.17 shows 

the extraction of the hybrid forecasts. 
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Hybrid Model 
EXTRACTION of actual and predicted electricity demand 
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Figure 6.17- Electricity demand: Hybrid model extraction 

The MSE and MAD were calculated as 

MSE I MAD 

Linear (exponential smoothing) forecast 0.000020171 2 0.00328 

i 
Neural network forecast O.OOOOU855 I 0.002657 

: 

Hybrid forecast 0.0000143209 I 0.002766 

The neural network forecast performed best with the hybrid model second best. The differences 

in the MSE and MAD for the different models were very close and it is difficult in this case to 

make definite conclusions regarding the hybrid model. Perhaps the most significant conclusion is 

that the hybrid model did not perform significantly worse than the other two models. 
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6.3.2.2 Five-step-ahead forecasting (electricitv demand) 

The best neural network model to forecast errors using the five-step-ahead forecasting was a 

model with an 1 1 -period Jagged observation and 20 hidden nodes. The average squared error for 

this architecture was 0.000014. A hybrid model was then constructed by combining the linear 

forecasts and the neural network forecasts of errors. Figure 6.18 shows a plot of the different 

forecasts for 5 periods ahead. 

Electricity Demand • Five-step-ahead forecast 
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Figure 6.18- Electricity demand: 5-step-ahead forecast 

The MSE and MAD were as follows. 

MSE I MAD 

Linear (exponential smoothing) forecast 0.000017118 I 0.00346 

Neural network forecast 0.00001 17565 I 0.002982 

Hybrid forecast 0.00000771548 I 0.002376 

Even though the MSE and MAD values are very close, it is significant to note that the hybrid 

model performed best. 
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6.3.2.3 Twentv-step-abead forecasting (electricitv demand) 

The best neural network model to forecast errors for a twenty-step-ahead forecasting was one 

using a 5-period Jagged observation with 6 hidden nodes. The average squared error for this 

model was 0.000019. Figure 6.19 shows the different forecasts for twenty periods ahead. 
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Figure 6.19- Electricity demand: 20-step-abead forecast 

The MSE and MAD were as follows. 

MSE I 
Linear (exponential smoothing) forecast 0.0000092745 I 
Neural network forecast 0.000154442 I 
Hybrid forecast 0.00000652141 I 
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As with the five-step-ahead forecast. the differences are very small with the hybrid model that 

performed best. 

The experiment with the electricity data has shown that it might be worthwhile to consider 

constructing a hybrid model. The hybrid model performed best in the last two cases and second 

best in the first case and although it did not outperform the other models by far. it appears as if it 

is still a better model. 

6.3.3 Rand/Dollar exchange rate time series data set 

Using the SAS system, the best linear model to forecast the rand/dollar exchange rate was again 

found to be a simple exponential smoothing model with root mean square error= 0.07679; MSE 

= 0.005897; MAPE = 0.80757; and mean absolute error= 0.05532. The other parameters for the 

model were as fo llows. 

Model Parameter 

LEVEL Smoothing Weight 

Residual Variance (sigma squared) 

Smoothed Level 

S tatistic of Fit 

umber ofNonmissing Observations 

umber of Observations 

umber of Missing Actuals 

.lumber of Missing Predicted Values 

umber of Model Parameters 

Total Sum of Squares (Uncorrected) 

Total Sum of Squares (Corrected) 

Sum of Square Error 

Mean Square Error 

Root Mean Square Error 

Estimate Std error T-value 

0.98372 0.02 49.1695 

0.0059 

7.47108 

Value 

1249 

1249 

0 

0 

58255 

391.711752 

7.36493 

0.005897 

0.07679 
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Mean Absolute Percent Error 

Mean Absolute Error 

R-Square 

Adjusted R-Square 

Amemiya's Adjusted R-Square 

Random Walk R-Square 

Akaike Information Criterion 

Schwarz Bayesian lnforrnation Criterion 

Amemiya's Prediction Criterion 

Maximum Error 

Minimum Error 

Maximum Percent Error 

Minimum Percent Error 

Mean Error 

Mean Percent Error 

0.807566 

0.055321 

0.981198 

0.981 198 

0.981168 

0.000949 

-6409.577789 

-6404.44769 

0.005906 

0.431485 

-0.312644 

6.395407 

-4.736962 

-0.00075 

-0.015783 

Figure 6.20 presents an extraction of the linear forecasts for a 100 data points (from the ori ginal 

1244 data points) which covers the period 12 February 2004 to 9 July 2004. 
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Linear Model 
EXTRACTION of actual and predicted Rand/Dollar exchange rate 

12 February to 9 July 2004 
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Figure 6.20- Exchange rate: Linear model extraction 

101 

---Rate 

--- Predocbon 

Using the grid search again, the best neural network model to perform forecasts of the original 

data set was found to be one using a !-period lagged observation with eight hidden nodes. The 

average squared error was 0.005744. Figure 6.21 shows the extraction of the neural network 

forecasts. 
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Neural Network 
EXTRACTION of actual and predicted Ra nd/Dollar exchange rate 

12 February 2004- 9 July 2004 
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Figure 6.21 -Exchange rate: Neural network model extraction 

6.3.3.1 One-step-ahead forecasting {exchange rate) 

101 

--Ret• 

--PredoctJon 

The best neural network architecture, to forecast the errors, was one using a 9-period lagged 

observation and 1 hidden node. The average squared error was 0.005875. The linear forecasts 

and the errors forecasted by the neural network were then used to construct the hybrid forecast of 

which the extraction is plotted in figure 6.22. 

100 



Hybrid Model 
EXTRACTION of actual and predrcted Rand/Dollar exchange rate 
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Figure 6.22 - Exchange rate: Hybrid model extraction 

The MSE and MAD were 

MSE I 
Linear (exponential smoothing) forecast 0.00581 7 j 
Neural network forecast 0.00587 1 I 
Hybrid forecast I 0.005875 J - - ·---

101 

MAD 

0.0551 898 

0.055275 

0.055165 
---

For the one-step-ahead forecasting, the linear model performed best in terms of the MSE while 

the hybrid model performed best when using the MAD as an accuracy measure. As with the 

electrici ty data set, the differences were very small and the only significant conclusion is that the 

hybrid model did not perform worse. 
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6.3.3.2 Five-step=abead forecasting {exchange rate) 

The best neural network model to forecast errors using the five-step-ahead forecasting was a 

model with a 2-period lagged observation and 3 hidden nodes. The average squared error in this 

case was 0.006594. A hybrid model was then once again constructed by combining the linear 

forecasts and the neural network forecasts of errors. Figure 6.23 shows a graph of the different 

forecasts for 5 periods ahead. 
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Figure 6.23- Exchange rate: 5-step-abead forecast 

The MSE and MAD for the fi ve-step-ahead forecasts were as follows. 

MSE MAD 

I 
Linear (exponential smoothi ng) forecast 0.00170 1 I 0.03544 

Neural network forecast 0.001124 0.02393 

Hybrid forecast 0.001662 I 0.035149 
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in this case the neural network model performed best with the hybrid model second best. 

6.3.3.3 Twenty-step-ahead forecasting (exchange rate) 

Following a grid search, the best neural network model to forecast errors for a twenty-step-ahead 

forecasting was found to be one using a 15-period lagged observation with 3 hidden nodes. The 

average squared error was 0.007022. Figure 6.24 shows the different forecasts for twenty periods 

ahead. 
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Rand Dollar Exchange Rate- Twenty-step-ahead forecast 
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Figure 6.24- Exchange rate: 20-step-ahead forecast 

The MSE and MAD were as follows. 

MSE 

Linear (exponential smoothing) forecast 0.00718 

Neural network forecast 0.040013 

Hybrid forecast 0.007102 
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ln line with the gold and electricity data sets. the hybrid model once again performed best for a 

twenty-step-ahead forecast despite the very small difference in MSE for the linear and hybrid 

models. 

The experiment with the rand/dollar data set did not reveal any superiority of any of the three 

models. Maybe the most significant finding again is that the hybrid model never performed worst 

of the three models. This might be an indication (or confirmation) that hybrid models of this 

nature should not be completely disregarded. 

6.3.4 Oil price time series data set 

The best linear model to forecast the daily oil price was suggested by the SAS system as a 

damped trend exponential smoothing model with root mean square error = 1.14859; MSE = 

1.31927; MAPE = 1.54706; and mean absolute error= 0.79142. The other parameters for the 

model were as follows. 
---

M odel Parameter Estimate Std error T-value Prob>IT I 

---
LEVEL Smoothing Weight 0.71836 0.4201 1.7101 0.08749209 

TREND Smoothing Weight 0.999 5.631 0.1774 0.85921384 

DAMPING Smoothing Weight 0.21882 0.53 0.4129 0.67974762 

Residual Variance (sigma squared) 1.32245 

Smoothed Level 90.19155 

Smoothed Trend -2.33489 

---
Statistic of Fit Value 

umber ofNonmissing Observations 1249 

umber of Observations 1249 

umber of Missing Actuals 0 

umber of Missing Predicted Values 0 

Number of Model Parameters 3 
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Total Sum of Squares (Uncorrected) 

Total Sum of Squares (Corrected) 

Sum of Square Error 

Mean Square Error 

Root Mean Square Error 

Mean Absol ute Percent Error 

Mean Absolute Error 

R-Square 

Adjusted R-Square 

Amemiya's Adjusted R-Square 

Random Walk R-Square 

A.kaike information Criterion 

Schwarz Bayesian Information Criterion 

Amemiya's Prediction Criterion 

Maxjmum Error 

Minimum Error 

Maximum Percent Error 

Minjmum Percent Error 

Mean Error 

Mean Percent Error 

3966511 

422677 

1647.766813 

1.319269 

1.148594 

1.547057 

0.791417 

0.996102 

0.996095 

0.996083 

0.016794 

352.070039 

367.460335 

1.325622 

9.89 

-5.262413 

10.853975 

-12.56334 

0.050535 

0.065131 

An extraction of the linear forecast, showing 100 data points (from the original 1249 data points) 

is given in figure 6.25. The 1 00 data points cover the period 3 November 2004 to 30 May 2005. 
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Linear Model 
EXTRACTION of actual and predicted oil price 

3 November 2004 to 30 May 2005 

65.00 ...------------------------------------

5000 +----------------------------------------------------~ 

5500 +-------------------------------------------------------------------~~ 

.~ 5000 ~------------------------------------------------------------~nt~L---------~ 
~ 
0 

45 .oo I \ \ , 1'\' J ! \Y.X\ ,r:r"" 

~~ ~ 

35 00 +----------------------------------------------------------------------

3000 ~-nr------n------~--~--~--~--~--~-------------~r------,----~~ 
11 ::!1 31 41 51 51 71 81 91 101 

Time 

Figure 6.25- Oil price: Linear model extraction 

A grid search was then performed to obtain the best neural network model to forecast the original 

data set. The best model found was one using an 8-period lagged observation with one hidden 

node. The average squared error was given as 1 .265244. Figure 6.26 shows the extraction of the 

neural network forecasts. 

106 



Neural Network 
EXTRACTION of actual and predicted oil price 

3 November 2004- 30 May 2005 
65.00 --- --

6000 +-------------------------------------------------------------------------~ 

55.QQ I \ f \ 

.~ 50.00 --Oiipne• E­
o 

45.00 t"~~---=-:;::;::-=--------:--r~7r'-~f:>---\,flrr::::::_----r£:._ _ ___ _ _ 

40.00 • l 

35.00 +-----------------------------------------~ 

3000 ~--~----~------~--~~----------~~~~--~~~~-T--~------~-------, 
11 21 31 41 51 

Time 

61 7 1 81 91 

Figure 6.26- Oil price: Neural network model extraction 

6.3.4.1 One-step-ahead forecasting (oil price) 

101 

--Pr•dJC:ted 

A 1-period lagged observation with 3 hidden nodes was the best neural net\.vork architecture to 

forecast the errors. The average squared error for this neural newark model was 1 .253564. The 

forecasted errors and the linear forecast were then used to construct the hybrid forecast. An 

extraction is plotted in figure 6.27. 
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Hybrid Model 
EXTRACTION of actual and predicted oil price 

3 November 2004 - 30 May 2005 
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Figure 6.27- Oil price: Hybrid model extraction 

The MSE and MAD were 

MSE I 
Linear (damped exponential smoothing) 1.30581 

forecast 

Neural nerwork forecast 1.317 I75346 I 
Hybrid forecast 1304536 II 

91 101 

MAD 

0.79 I4 I 6 I 73 

0.805 147948 

0.790 

The hybrid forecast performed best but, consistent with some of the previous data sets, the 

differences between the MSE and MAD for the three forecasts were very small. The fact that the 

hybrid forecast is still the best, even though just marginally, may be an indication that a 

combination of forecasts should be considered. 
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6.3.4.2 Five-step-ahead forecasting (oil price) 

For the five-step-ahead forecasting. the best neural network model to forecast the errors were one 

using a 2-period lagged observation and 1 hidden node. The average squared error for this model 

was 1.413214. A hybrid model was then once again constructed by combining the linear 

forecasts and the neural network forecasts of errors. Figure 6.28 shows a graph of the different 

forecasts for 5 periods ahead. 

Oil Prices - Five-step-ahead forecast 
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Figure 6.28 - Oil price: 5-step-abead forecast 

The MSE and MAD were as follows. 

MSE 
I 

M.AJ> I 

Linear (damped exponential smoothing) 1.8977258 1.17014 

forecast 

Neura l network forecast 1.950057 1.20475 

I Hybrid forecast 2.035076466 I 1.2 137672 
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The linear forecast perfonned best. Of all the experiments carried out in the entire study. this was 

the only case where the hybrid forecast perfonned worst of the three forecasts. 

6.3.4.3 Tweotv-step-abead forecasting (oil price) 

A grid search indicated that the best neural network model to forecast errors for a twenty-step­

ahead forecasting was one using a 1-period Jagged observation with 6 hidden nodes. The average 

squared error was 1.518942. Figure 6.29 shows a plot of the different forecasts for twenty 

periods ahead. 
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Figure 6.29 - Oil price: 20-step-ahead forecast 

The MSE and MAD were as follows. 

MSE 

I 

Li near (damped exponential smoothing) 2.656339924 

I forecast 

Neural network forecast 17.93737 I 
I 

Hybrid forecast 2.630927338 l - - ---

110 

MAD 

1.15695 

3.652232 

1.145520056 

I 

I 



The hybrid forecast was once again the best for a twenty-step-ahead forecast. The linear forecast 

was also good but the neural network perfonned poor in this case. 

The experiment with the oil price data set snow~ that a hybrid forecast perfonned marginally 

better than the linear forecast when predicting I and 20 periods ahead. For the 5-period-ahead 

forecast the hybrid model perfonned worst. The results for the oil price data show that it may be 

worthwhile to combine forecasts but that it should also be treated with care as improved 

forecasts are not always achieved. 

6.3.5 Money market returns time series data set 

The SAS system suggested a log linear (Holt) exponential smoothing model as the best linear 

model to forecast the money market return. The statistics for this model were given as root mean 

square error= 4.99029; MSE = 24.90304; MAPE = 0.20451; and mean absolute error = 1.77123. 

The other parameters for the model were as follows. 

Model Parameter Estimate Std error T-value Prob>]T] 

LEVEL Smoothing Weight 

TREND Smoothing Weight 

0.999 0.03 18 31.4322 0 

0.001 0.0037 0.2698 0.78746322 

Residual Variance (sigma squared) 0.0000346 

Smoothed Level 7.01751 

Smoothed Trend 0.0009912 

Statistic of Fit Value 

umber ofNonmissing Observations 498 

umber of Observations 498 

umber of Missing Actuals 0 

umber of Missing Predicted Values 0 

umber of Model Parameters 2 

Total Sum of Squares (Uncorrected) 375610607 
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Total Sum of Squares (Corrected) 

Sum of Square Error 

Mean Square Error 

Root Mean Square Error 

Mean Absolute Percent Error 

Mean Absolute Error 

R-Square 

Adjusted R-Square 

Amemiya's Adjusted R-Square 

Random Walk R-Square 

Akaike information Criterion 

Schwarz Bayesian information Criterion 

Amemiya's Prediction Criterion 

Maximum Error 

Minimum Error 

Maximum Percent Error 

Minimum Percent Error 

Mean Error 

Mean Percent Error 

7776406 

12402 

24.903042 

4.990295 

0.204507 

1.771225 

0.998405 

0 .998402 

0.998392 

0.002189 

1605.064999 

1613.486199 

25.103873 

53. 120558 

-28.79078 

5.652303 

-3.7488 

0.025646 

-0.001 326 

An extraction of the linear forecast, showing I 01 data points (from the original 498 data points) 

is given in figure 6.30. The 10 I data points cover the period 29 December 2006 to 29 May 2007. 
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Linear model 
EXTRACTION of actual and predicted money market returns 

29 December 2006-29 May 2007 
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Figure 6.30 - Money market return: Linear model extraction 
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A grid search was once again performed to obtain the best neural network model to forecast the 

original data set. The best model found was one using a ]-period lagged observation with 6 

hidden nodes. The average squared error was given as 20.78686. ln figure 6.31 the extraction of 

the neural network forecasts is presented. 
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Neural Network 
EXTRACTION of actua l and predicted money market returns 

29 December 2006 - 29 May 2007 

21 31 41 51 61 /1 81 

Trme 

I 

! 

91 101 

Figure 6.31- Money market return: Neural network model extraction 

6.3.5.1 One-step-ahead forecastine (monev market) 

--Money 

--Prediebon 

The best neural network model to forecast the errors was one using a 9-period lagged 

observation with one hidden node. The average squared error was given as 22.12456. The linear 

forecasts and the errors forecasted by the neural network were then used to construct the hybrid 

model. The extraction is plotted in figure 6.32. 
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Figure 6.32- Money market return: Hybrid model extraction 

The MSE and MAD were as follows 

MSE MAD 

Linear (log linear Holt exponential smoothing) 24.63179 1.701708 

forecast 

Neural network forecast 24.84483 1.716228 

Hybrid forecast 24.58424 I 1.713458 

The linear model performed best in terms of the MAD while the hybrid model performed best 

when using the MSE as an accuracy measure. The differences were once again very small and 

the only significant conclusion from thi s experiment is that the hybrid model did not perform 

worse than the other two forecasts. 
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6.3.5.2 Five-step-ahead forecastine (monev market) 

The best neural network model to forecast the errors, using a five-step-ahead approach, was a 

model with an 8-period Jagged observation and 1 hidden node. The average squared error for this 

model was 42.91494. A hybrid model was then once again constructed by adding the linear 

forecasts and the neural network forecasts of errors together. Figure 6.33 shows a graph of the 

different forecasts for 5 periods ahead. 
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Figure 6.33- Money market return: 5-step-ahead forecast 

The MSE and MAD were as follows. 

MSE 

Li near (log linear Holt exponential smoothjng) 78.2 

forecast 

Neural network forecast 295.6437 

Hybrid forecast 80.45477 
- - ----- - -----
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The results are consistent with the results for the gold price time series forecast using a five-step­

ahead approach. There were large differences in the values of the five data points to be 

forecasted causing the neural network to perform extremely poor. The linear model performed 

best because each forecast is influenced by the previous observation. 

6.3.5.3 Twentv-step-abead forecasting (monev market) 

Following the usual grid search process, the best neural network model to forecast errors for a 

twenty-step-ahead forecasting was one using a 9-period lagged observation with 4 hidden nodes 

with an average squared error of56.79348. Figure 6.34 prewsents a plot ofthe different forecasts 

for twenty periods ahead. 
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The MSE and MAD were as follows. 

MSE I MAD 

Linear (log linear Holt exponential smoothing) 31.5 3.4 

forecast 

Neural network forecast 1488.937 I 36.28583 

Hybrid forecast 30.72577 I 3.370916 

The same argument as for the five-period-ahead forecasting is applicable to explain the poor 

performance of the neural network model. ln this case, however, the hybrid model performed 

best due to the longer forecast window available to forecast the errors more accurately . 

As with the other experiments, this specific data set showed once again that it might be 

worthwhile to consider a combination of forecasts. This seems to be especially true when 

working with a longer forecasting period. 

6.4 Summary discussion of results 

Performing the empirical experiments with the five real world data sets involved a lengthy and 

intensive process of identifying suitable models to forecast future values. For example, to 

perform a single grid search process (described in chapter 5) to obtain the most suitable neural 

network architecture. took on average 1 0.5 hours to complete on a personal desktop computer. A 

total of more or Jess 310 hours were spent to perform all the required grid searches on a PC. 

Following all these experimental work, interesting results that were presented above in section 

6.3, were obtained. These results were already discussed in section 6.3 and the purpose of this 

section is to summarize the results in one presentation. 

• For the one-step-ahead forecasting approach , the hybrid model performed best in at least one 

of the accuracy measures. In one instance, significant improvements of up to 8.5% were 

noticed (gold price data). The exception was the demand for electricity data where the neural 

network model performed best with the hybrid model second best. 
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• In the case of a five-step-ahead forecasting it was noticed that (with the exception of the 

electricity data) the hybrid model did not perform particuJarly good and never gave the best 

forecasL lt was also interesting to note that the linear model in most cases outperformed the 

other two models. It was further also observed that whenever there are big changes in the 

values, the linear models performed best because each forecasted vaJue is influenced by the 

previous observed value. The time horizon (5 periods) is not long enough for a neural 

network or hybrid model to adjust forecasted values quickJy enough which then resulted in 

higher forecast errors - see for example the results of the money market data presented in 

section 6.3. 

• For the twenty-step-ahead forecasting, the hybrid model consistently outperformed the linear 

and neural network forecasts for all data sets. 

The conclusions based on the results can be summarized as follows. 

- Jt would be incorrect to claim that a combination (hybrid) of forecasts will aJways 

consistently outperform a single model. Results here have shown, especially in the five-step­

ahead forecasts, that the linear model outperformed the hybrid model. This finding is in line 

with other studies that also obtained mixed results (Taskaya-Temizel and Casey, 2005). 

- ln only one of the cases (the five-step-ahead forecasting of the oil price), the hybrid model 

performed the worst. In all other cases the hybrid forecasts were either the best or the second 

best forecast. This leads to the conclusion that it is definitely worthwhile to investigate and 

apply the type of combination described in this study. 

- Depending on the lead time to forecast and the observed data it might be worthwhile to use a 

linear model when the lead time is short and when there are significant differences in the 

observed data points. 

- On the other hand, if the lead time becomes longer it becomes more important to consider the 

use of a hybrid model to improve forecasts. 

ln general, the empirical experiments in this study have shown that the use of the type of hybrid 

model described should definitely be considered. Results should however be treated with care 

but at the same time it is also clear that significant improvements are possible. 
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6.5 Conclusion 

Chapter 6 presented the empirical results and a discussion of the results. First, the five real world 

data sets used in the study were presented and then the modeling and forecast results were given. 

Graphs, accuracy measures and discussions were presented for each one of the data sets. The 

chapter was concluded with some general remarks based on the findings. The general conclusion 

was that the type of hybrid model, as described in this study, does present advantages and will 

improve forecasts under certain circumstances. 

The next chapter presents the conclusion for the study and will summarize the goals set forth for 

the study and how they were achieved. 
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CHAPTER 7 

SUMMARY AND CONCLUSION 

7.1 Introduction 

Chapter 7 presents the final comments and concluding remarks for the study. The objectives of 

the study and how they were achieved will be summarized. New problems and opportunities for 

further study that presented itself during the research project will also be outlined. 

7.2 Objectives of the study 

Chapter 1 stated that the primary objective of thi s study was to investigate the use of a combined 

linear and neural network model in order to determine the forecasting performance of such a 

hybrid model. To accomplish this, a list of five secondary research objectives were defined that 

needed to be achieved. These five objectives were 

• To gain a clear understanding of and to present an introductory overview of time series 

ana lysis and forecast ing models; 

• To gain a clear understanding of and to present an introductory overview of neural 

network models; 

• To gain a clear understanding of and to present a brief introduction to the well known 

Box-Jenkins approach; 

• To investigate, describe and formulate a combined linear and neural network model; and 

• To investigate the performance and forecasting accuracy of the combined model. 

A summary of how these objectives were achieved will now be given. 

To gain a clear understanding of and present an introductmy overview of time series analysis 

and forecasting models. 

Time series forecastin g is an important area of forecasting and can be modeled in a variety of 

ways. The models used in this study were empirically tested on time series data and it is 

therefore imperative to have a clear understand ing of time series analysis and forecast ing models. 
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The objective was achieved by describing time series forecasting models in terms of components 

and decomposition of a time series, trend analysi s e.g. the moving average method and time 

series regression, seasonal analysis and how to construct a forecast (Chapter 2, secti ons 2.2.1 -

2.2.5). Measures of forecast accuracy were presented (Chapter 2, section 2.3) as well as an 

extensive di scussion of exponential smoothing (Chapter 2, section 2.4). 

To gain a clear understanding of and to present an introductory overview of neural network 

models. 

The primary objective is to investigate the use of neural network models in combination with 

time series forecasting. Neu ral networks therefore play a major role in the study and it is 

essential that the general concepts and how they work are well understood . 

This objective was reached by giving a fairly comprehensive di scussion on "what" a neural 

network is (Chapter 3, section 3.2). The architecture, which refers to the arrangement of layers 

and the connection patterns, were also explained (Chapter 3, section 3.3) whi le the train ing and 

learning concepts were made clear through definitions and the presentation of a training 

algorithm (Chapter 3, section 3.4). Finally the most common activation functions used in neural 

networks were highlighted (Chapter 3, section 3.5). 

To gain a clear understanding of and to present a brief introduction to the Box-Jenkins 

approach. 

The Box-Jenkins analysis, or ARIMA analysis, is one of the well known approaches for 

fo recasting time seri es. ARIMA models are often used in combination with other models, such as 

neural network models, to construct hybrid forecasts. As this study also concentrates on 

combining linear and neural network models, it is necessary to gain appropriate background 

knowledge on the Box-Jenkins approach. 

The objective was achieved by discussing the four stages in the Box-Jenkins approach namely 

model identification, estimation, d iagnostic checking and forecasting (Chapter 4, sections 4.2 -

4.5). Appropriate examples of SAS output during the different stages were also presented. 
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To investigate, describe and formulate a combined linear and neural network model. 

It is important to have a clear understanding of the methodology that will be followed in the 

study as well as to ensure that the practical work is relevant. 

The objective was achieved by firstl y motivating the relevance of the suggested technique from 

appropriate literature resources (Chapter 5, section 5.2) and secondly, by giving a comprehensive 

overview of the research design and methodology used. This overview included a discussion on 

the hybrid methodology as well as the approach followed with the empirical experiments 

(Chapter 5, sections 5.3. 1 - 5.3.2). 

To investigate the pe1jormance and forecasting accuracy of the combined model. 

Models that forecast future values of a time series need to be evaluated to ensure that forecasting 

performance is acceptable. In this study a hybrid model was constructed and to be able to make 

meaningful recommendations and conclusions, the model 's performance needed to be evaluated. 

This objective was achieved by using five real world data sets and for each data set applies a 

linear forecast, a neural network forecast and a combined forecast to the data set. These forecasts 

were done for a one, five and twenty period ahead and each time the MSE and MAD were used 

as a forecast accuracy measure. Comprehensive results including graphs, forecasts, accuracy 

measures etc. were presented. Finally it was possible to make interesting and significant findings 

and recommendations based on these results. All information concerning this final objective was 

presented in chapter 6. 

7.3 Problems experienced 

Consistent with the comment made by De Gooijer and Hyndman (2006) that there is a Jack of 

empirical research on robust forecasting algorithms for multivariate models, it was found in this 

study that there is not sufficient empirical evidence to which the study's results can be compared 

with. To compare one's results with other results (using similar type of data sets) is one way of 

validating work that was performed. It is hoped that the results of the particular data sets used in 
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this study can be used by other researchers to compare and validate results from di fferent 

experiments. 

Another difficulty (to a Jesser extent) experi enced was the lack or unavailability of existing 

software that can be used when constructing hybrid models. Fo r example, programs and/or 

procedures to perfonn grid searches (to determine the "best" neural network model) and to do 

the actual combination of forecasts were not availab le and had to be developed in order to 

perform the study in a meaningful way. 

7.4 Possibilities for further studies 

In thi s study, raw data was used exactly as it was recorded. lt might be worthwhile to conduct the 

same type of experimental work using time series data sets that were explored in more depth for 

inefficiencies - e.g. smoothing the data or maybe removing any seasonal influences before the 

models are constructed and combined. 

The differentiation and use of different neural network models should be investigated. For 

example, is a recursive multi-step approach (based on a single step ahead forecast - one output 

node - where previous predictions are used as inputs for subsequent forecasts) better than a 

direct multi-step approach (based on several output nodes where each output node represent a 

time step to be forecasted)? ln addition to this, it may also be possible to improve the neural 

network models by experimenting with different training, validation and test sizes. More 

intensive grid searches (e.g. increasing the number of experiments) may also have an impact on 

the neural network model' s ability to predict future val ues. 

Finally, an investigation into and development of easy to use software that can assist researchers 

with bu ilding hybrid forecast models, would assist many researchers and may lead to an increase 

in research projects in th is interesting and important area of model building and forecast ing. 
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7.5 Conclusion 

Chapter 7 is the final chapter of this study. The chapter presented a summary of the initial 

objectives and how they were achieved. In conclusion, problems and possible future research 

opportunities were outl ined. 
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APPENDIX A 

Data set used for explanatory purposes in chapter 4. 

Weekly sales figures of paper towels (Bowerman et al, 2005) 

t y, t y, t Yt 

I 15 31 10.7752 61 -1.3 173 

2 14.4064 32 10.1129 62 -0.6021 
.., 
.) 14.9383 33 9.933 63 0.14 

4 I 6.0374 34 11.7435 64 1.403 

5 15.632 35 12.259 65 1.928 

6 14.3975 36 12.5009 66 3.5626 

7 13.8959 37 11.5378 67 1.9615 

8 14.0765 38 9.6649 68 4.8463 

9 16.375 39 10.1043 69 6.5454 

10 16.5342 40 10.3452 70 8.0141 

I I 16.3839 4 1 9.2835 71 7.9746 

12 17.1006 42 7.72 19 72 8.4959 

13 17.7876 43 6.83 73 8.4539 

14 17.7354 44 8.2046 74 8.7114 

15 17.001 45 8.5289 75 7.378 

16 17.7485 46 8.8733 76 8.1905 

17 18.1888 47 8.7948 77 9.972 

18 18.5997 48 8.1577 78 9.693 

19 17.5859 49 7.9128 79 9.4506 

20 15.7389 50 8.7978 80 1 1.2088 

21 13.6971 51 9.0775 81 11.4986 

22 15.0059 52 9.3234 82 13.2778 

23 16.2574 53 10.4739 83 13.591 

24 14.3506 54 I 0.6943 84 13.4297 

25 11.95 15 55 9.8367 85 13.3125 

26 12.0328 56 8.1803 86 12.7445 

27 11.2142 57 7.2509 87 11.7979 

28 11.7023 58 5.0814 88 11.7319 

29 12.5905 59 1.83 13 89 11.6523 

30 12.1991 60 -0.9127 90 11.3718 
--

A l 

t y, 

9 1 I 0.5502 

92 11.4741 

93 11.5568 

94 11.7986 

95 11.8867 

96 11.2951 

97 12.7847 

98 13.9435 

99 13.6859 

100 14.1136 

101 13.8949 

102 14.2853 

103 16.3867 

104 17.0884 

105 15.8861 

106 14.8227 

107 15.9479 

108 15.0982 

109 13.877 

110 14.2746 

Ill 15.1682 

112 15.3818 

113 14. 1863 

114 13.9996 

115 15.2463 

116 17.0179 

117 17.2929 

118 16.6366 

] 19 15.341 

120 15.6453 



APPENDIXB 

Source code of SAS program to perform a grid search in order to determine the best neural 

network model- see chapter 5 section 3.2. 

options nosource nonotes nodate; 
*options mlogic mprint symbolgen; 
options mstored sasmstore=gann; 
options pagesize=32767 mvarsize=max; 
ods li sting close; 

%macro settime; 

%let tt ime = %sysfunc(datetime0); 

%mend settime; 

%macro gettime; 

% let tdelay = %sysevalf(%sysfunc(datetime()) - &ttime); 

%mend gettime; 

%macro showtime; 

%local a b c d e; 

%let a = &tdelay; 
%let b = %sysevalf(&a I 86400, integer); 
%let a = %sysevalf(&a- 86400 * &b); 
%let c = %sysevalf(&a I 3600, integer); 
%let a = %sysevalf(&a - 3600 * &c); 
%let d = %sysevalf(&a I 60, integer); 
%let e = %sysevalf(%sysfunc(round(&a - 60 * &d, 0.01 ))); 

%put ; 
%put elapsed time = &b:&c:&d:&e; 
%put ; 

%mend showtime; 

%macro beep; 

data _null_; 
call sound( 400,80); 

run; 
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%mend beep; 

% macro partition2(source,p I ,p2,setl ,set2); 

% let seed = 0; 

%obsnvars( &source,nvars,nobs ); 

%let cutoff) = %sysevalf(&nobs * &pI I I 00, ceil); 
% let cutoft2 = %eva I( &nobs - &cutoffl ); 

data &set] &set2; 
drop _cOO: ; 
set &source; 
if(ran uni(&seed) * 1000 < %sysevalf (&pl * 10, cei l) 

and _cOOOOOI < &cutoffl ) then do; 
_cOOOOOl + I ; 
output &set 1 ; 

end ; 
e lse 
if _c000002 < &cutoff2 then do; 

_ c000002 + l ; 
output &set2; 

end ; 
e lse do; 

_ cOOOOO 1 + I ; 
output &set 1; 

end; 
run ; 

% mend partition2; 

% macro partition3(source,p I ,p2,p3 ,set I ,set2,set3); 

%let total] = %sysevalf(&p2 + &p3); 
%partition2(&source, &p 1, &totall , &set I, gann.temp9999); 
% let total2 = %sysevalf(&p2 I (&p2 + &p3) * I 00, integer); 
% le t total3 = %syseva lf( l 00- &total2); 
% partition2(gann.temp9999, &total2, &total3 , &set2, &set3); 

proc datasets noli st li brary=gann; 
delete temp9999; 

run ; 

% mend partition3; 
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%macro importdata; 

proc import out = gann.&sasdataset 
datafi le = &excelfile 
dbms = excel replace; 
sheet = &excelsheet: 
getnames = yes; 
mixed = no; 
scantext = yes; 
usedate = yes; 
scantime = yes; 

run; 

%mend importdata; 

%macro obsnvars( ds,nvarsp,nobsp ); 

%global dset nvars nobs; 
%let dset = &ds; 
%let dsid = %sysfunc(open(&dset)); 
%if &dsid %then 

%do; 
%let nobs =%sysfunc(attrn(&dsid,NOBS)); 
%let nvars=%sysfunc(attrn(&dsid.NVARS)); 
%let rc = %sysfunc(close(&dsid)); 

%end; 
%else 

%put Open for data set &dset fa iled- %sysfunc(sysmsg()); 

%mend obsnvars; 

%macro convertdata(windowsize); 

%local ij k m n; 

%obsnvars(gann.&sasdataset,nvars,nobs); 

proc datasets library=gann noli st; 
delete JnputData temp; 

run ; 

%do i = I %to %eval(&nobs - &windowsize); 

proc sql noprint; 
select &targetvar into :k separated by 1 1 from 
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gann.&sasdataset (firstobs=&i obs=%eval(&i+&windowsize)); 
quit; 

%let n =; 

%do j = l %to &windowsize; 

%let m = %scan(&k, &j, 1 1
) ; 

% let n = &n format input&j best 12. %str(;); 
% let n = &n input&j = &m %str(;); 

%end; 

%let m = %scan(&k, %eval(&windowsize + 1), I 
1
); 

% let n = &n format target best 12. %str(;); 
% let n = &n target = &m %str(;); 
% let n = &n &timevar = %eval(&i + &windowsize) %str(;); 

data gann.temp; 
&n 

run; 

proc append base=gann.InputData data=gann.temp; 
run ; 

%end; 

%mend convertdata; 

%macro fitmlp; 

% local i; 

% let vars =; 

%do i = I %to &windowperiod; 
% let vars = &vars input&i; 

%end; 

proc dmdb batch data=gann.&trainset out=gann.dus dmdbcat=gann.cus; 
var &vars target ; 

run ; 

proc neural data=gann.&trainset dmdbcat=gann.cus random= 12345; 
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input &vars I level=int id= in; 
target target I level=int id=out act=linear error=normal bias; 
archi mlp hidden =&hidden; 
train outfit=gann.trainfit maxiter=2000; 
score data=gann.&validateset nodmdb out=gann.&scoreset outfit=gann.validatefit 

role=val idation; 
run; 

%mend fitmlp; 

%macro gridsearch; 

%local ij k; 

%settime; 

% importdata; 

data gann.randdollarforecast; 
set gann.randdo llar (firstobs=1230 obs= 1249); 

run; 

data gann.randdollarbase; 
set gann.randdollar (firstobs= I obs= 1229); 

run ; 

% let sasdataset = randdollarbase; 

proc datasets nolist library=gann; 
delete results; 

run; 

%do windowperiod = 19 %to 19; I* Stel vensterperiode *I 

%convertdata( & windowperiod); 

%do hidden= 3 %to 3; I* Stel hidden node *I 

&exper ]; 

proc datasets nolist library=gann; 
delete experiment; 

run; 

%do exper = I %to 20; I* Stel aantal eksperimente *I 

%put [ Windowperiod = &windowperiod I Hidden = &hidden I Experiment= 
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%partition2(gann.inputdata, 90, I 0, gann.&trainset, gann.&validateset); 

o/ofitmlp; 

data gann.temp; 
set gann.validatefit (firstobs=2 obs=2 drop= _iter __ name.J; 

run; 

proc append base=gann.experiment data=gann.temp; 
run; 

%end; 

ods output Variables=gann.variables; 

proc contents data=gann.experiment; 
run; 

o/oobsnvars(gann.variables, nvars, nobs); 

%do i = I %to &nobs; 

data _null_; 
set gann. variables; 
if num = &i then do; 

call symput(j', variable); 
end; 

run; 

proc sq l noprint; 
select mean(&j) into :k from 

gann.experiment; 
quit; 

data gann.experiment; 
set gann.experiment; 
if _n_ = I then &j = &k; 

run; 

%end; 

data gann.experiment; 
set gann.experiment (firstobs= I obs= I); 

run; 
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data gann.temp; 
set gann.experiment; 
Hidden= &hidden; 
Window= &windowperiod; 

run; 

proc append base=gann.results data=gann.temp; 
run; 

%end; 

%end; 

%gettime; 

%showtime; 

%mend gridsearch; 

%macro graph; 

% local i; 

ods listing; 

I* 

%let windowperiod = 8; 

% let hidden= 25; 

%importdata; 

data gann.randdollar; 
set gann.randdollar (firstobs=2 obs=499); 

run; 

%convertdata( &windowperiod); 

%partition2(gann.inputdata, 95, 5, gann.&trainset, gann.&validateset); 

%let targetvar = error; 

%fitmlp; 

data gann.final; 
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merge gann.randdollar gann.&scoreset; 
by time; 

run; 

data gann.fina12; 
set gann .final; 
if target ne . then output; 

run; 

%let windowperiod = 4; 

%let hidden= 3; 

%let targetvar = prys; 

%convertdata( &windowperiod); 

%let windowperiod = 8; 

%let temp =; 

%do i = I %to &windowperiod; 
% let temp = &temp input&i; 

%end; 

data gann.train idx; 
set gann.&trainset; 
drop &temp target; 
abc = _ n_; 

run; 

data gann .trainnew; 
merge gann.trainidx gann.inputdata; 
by &timevar; 

run; 

data gann .trainsetnew; 
set gann.trainnew: 
if abc ne . then output; 
drop abc; 

run; 

data gann. val idatesetnew; 
set gann.trainnew; 
if abc eq . then output; 
drop abc; 
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run; 

*I 

data gann.validatesetnew; 
set gann.validatesetnew (firstobs=5 obs=l02); 

run; 

%let trainset = trainsetnew; 
%let validateset = validatesetnew; 
%let hidden = 3; 
% let windowperiod = 4; 
% let scoreset = score2; 

%fitmlp; 

data gann.scorelb; 
merge gann.score gann.randdollar; 
by time; 

run ; 

data gann.scorel b; 
set gann.score 1 b; 
iftarget ne. then output; 

run; 

data gann.score l b; 
set gann.score 1 b; 
keep time forecast error p_target; 

run; 

data gann.score2b; 
merge gann.score2 gann.randdollar; 
by time; 

run; 

data gann.score2b; 
set gann.score2b; 
if target ne. then output; 

run; 

data gann.score2b; 
set gann.score2b; 
keep time r_target p_target target; 

run; 
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goptions 
reset=all 
device=gif 
gsfmode=replace 
goutmode=append 
ftext=swissb; 

symbol I c=black v=none i=spline; 
symbol2 c=red v=none i=spline; 

proc gplot data=gann.final2; 
plot 

run; 

target * &timevar = 1 
p_target * &timevar = 2 
I overlay frame; 

ods li sting close; 

%mend graph; 

%macro main; 

libname gann 'c:\SasRandDollar'; 

%global excelfile excelsheet targetvar timevar sasdataset; 
%global hidden exper windowperiod; 
%global ttime tdelay; 
%global trainset validateset scoreset; 

% let excelfile = "c:\SasRandDollar\RandDollar.xls" ; 
% let excelsheet ="data$" ; 
% let targetvar = rand price; 
%let timevar = time; 
% let sasdataset = randdollar; 
I* o/oimportdata; *I 
% let trainset = trainset; 
%let validateset = validateset; 
%let scoreset =score; 

o/ogridsearch; 

I* 

data gann.resultsError; 
set gann.results; 
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run; 

%let targetvar = prys; 

%gridsearch; 

data gann.resultsPrys; 
set gann.results; 

run ; 

*I 

% mend main ; 

%ma in; 
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