




















on the  lerlying data gent ing occ or wi  th :is no satisfactory explanatory

model that relates the prediction variable to other explanatory variables.

Time series can be modeled in a variety of ways e.g. using exponential smoothing
techniques. regression models, autoregressive (AR} techniques, moving averages (MA)
etc. One of the most important and widely used time series models is the autoregressive
integrated moving average (ARIMA) model. The popularity of the ARIMA model is due
to its statistical properties as well as the well-known Box—Jenkins methodology in the
model building process — see for example Bowerman ef af/ (2005) and Zhang (2003).
Zhang (2003) noted that there is however a major limitation to these types of models —
the pre-assumed linear form of the models. That means a linear correlation structure is
assumed among the time series values and therefore, no nonlinear patterns can be
captured by. for example, the ARIMA model. The approximation of linear models to

complex real-world problem is therefore not always satisfactory.

Recent research activities in forecasting suggested that artificial neural networks can be
used as an alternative to traditional linear forecasting models. The major advantage of
neural networks is their flexible nonlinear modeling capability and the use of such
artificial neural networks have been extensively studied and used in time series
forecasting. See for example Gareta, Romeo and Gil (2006) and Bodyanskiya and Popov
(2006). The major advantage of neural networks is their flexible nonlinear modeling
capability. The combination of different modeling techniques has also become a popular
way of trying to improve forecasts — specifically the use of linear and neural network
models seems to have received attention from researchers. Examples of work being
carried out in this area can be found in Ho, Xie and Goh (2002). Ince and Trafalis (2005).
Pai and Lin (2005). Prybutok and Mitchell (2002) and Tseng, Yu and Tzeng (2002). A

brief overview of  Iditional examples will be given in chapter 5.

This study will. along the lines of the Zhang study (2003), investigate the use of a hybrid
approach to time series forecasting using both linear and neural network models. The

proposed methodology consists of two basic steps. In the first step, a linear model is used









scussed. Chi = 1 illbe »w to  exy tificial n [ works while
chapter 4 will focus on the Box-Jenkins approach to nonseasonal time series forecasting.
In chapter 5 the use of linear and neural networks in the forecasting of time sertes data, as
well as an overview of using the two techniques as a hybrid model will be given. Chapter
6 will present the results of empirical tests performed to determine the forecasting
performance of a hybrid model. The last chapter, chapter 7, will then summarize the
goals set forth for the study and how they were achieved. Opportunities for further

studies. identified during the research project, will also be pointed out.

The abovementioned chapters are supplemented by a set of appendices which contains

details of work related to the study.

1.6 Conclusion

Chapter 1 served as an introduction and guided the reader into the research project by
explaining the problem statement, objectives of the studv and the methodology that will
be followed. A layout of the study. explaining the purpose of each chapter. was also
presented. In the next chapter an overview. from the literature, of time series forecasting

techniques will be presented.












— A multiplicative decomposi_ n modc which has been found useful when
modeling time series that display increasing or decreasing seasonal variation and
which is defined as

y=Tx CxSxI (2.1)

— An additive decomposition model which can be emploved when modeling time

series that exhibit constant seasonal variation. This model is defined as

y=T + C+S + | (2.2)

Comprehensive discussions and examples on the decomposition models can be found in

Bowerman et al (2005).

Statistical analysis can be used to effectively isolate the trend (T) and the seasonal (S)
components, but is of less value in quantifying the cyclical movements, and of no value
in isolating the irregular component (Wegner, 1993). Sections 2.2.3 and 2.2.4 will

therefore examine statistical approaches to quantify T and S.

2.2.3 Trend analysis
The trend in a time series can be identified by averaging out the short term fluctuations in
the series. Two methods for trend isolation can be used - they are

— Moving average method

— Regression analysis

2.2.3.1 The moving average method

A moving average removes the short term fluctuations in a time series by taking
successive averages of groups of observations. Each time period’s value is replaced by
the average of observations which surround it. This is known as smoothing a time series

{Wegner. 1993).

The simplest model in the moving average category is the simple n-period moving
average. In this model the average of a fixed number (say, n) of the most recent

observations is used as an estimate of the next value of a variable y and is defined as
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There are other extensions of moving averages e.g. a double moving average (i.e. a
moving average of a moving average) and moving average combinations (i.e. a n-period
moving average combined with a k-period moving average with n # k). Discussions and

examples of these extensions can be found in Makridakis e a/ (1983).

2.2.3.2 Time series regression

Another method often employed for trend line isolation is the use of time series
regression models. In these models the dependent variable, y;, which is the actual time
series is related to functions of time (independent variable). The model shows the general
direction in which the series is moving and is represented by using polynomial functions
of time. In this section the formulation of no trend, linear trend and quadratic trend will
be shown. The concept autocorrelation and how to detect it will also be briefly

mentioned.

A time series, y.. can sometimes be described by using a trend model. Such a trend model
is defined as follows (Bowerman ef al. 2005):
vi=TR: + & (2.6)
where
v, = the value of the time series in period t
TR, = the trend in time period t
g = the error term in time period t
Bowerman er a/ (2003) also presents useful trends (TR) that are often encountered. These
trends can be summarized as
— No trend. This is modeled as TR, = 5 and implies that there is no long-run
growth or decline in the time series over time. See figure 2.1(a).
~ Linear trend. This is modeled as TR, = By + Bit and implies that there is a straight
line long-run growth (if the slope B, > 0) or decline (if B; < 0) over time. See

figures 2.1(b) and 2.1{c).



— Quadratic  nd. This is modeled as TR, =y + B;t +  and implic that there is
a quadratic (or curvilinear) long-run change over time. This quadratic change can
either be growrh at an increasing or decreasing rate — see figures 2.1(d) and 2.1{e)

— or decline at an increasing or decreasing rate — see figures 2.1(f) and 2.1(g).

R = B TB, = B+ B, where 8, > 0 TR = Bo + B, where B, < 0
|
B / \
¢ t

{a) Nolong-run growth or decline {b) Straighi-line growth {c} Straight-line decine
TR, = B + Bt + Bt TR = 8 + But + Bt

t !
{if) Growth at ar increasing rate {e) Growth at a decreasing rate
TR, = 8y~ Bt + faf? TR, = B + Bt + B2

! !
(fs Decline at an incraasing rate {gi Dadcline at a decreasing rate

Figure 2.1

More complicated trend models can be modeled by using a p™-order polynomial function
where TR, = By + Bit + Bat™ + ... + Bot? + &,

Assuming a normal distribution of the error term, g, least squares point estimates of the
parameters in the above trend models may be obtained using regression techniques.

Complete worked examples can be found in Bowerman er af (2003).

The validity of regression methods requires that the independence assumption {i.e. error
terms occur in a random pattern over time) be satisfied. This assumption is violated when

time-ordered error terms are auto correlated. The term autocorrelation can be defined as






Hy : The ¢ « yare  autg +d
versus H; : The error terms are positively autocorrelated
There exists points. denoted by d;  and dy . such that if a is the probability of a Type |
error (probability of rejecting Hy when in fact it is true) then

I.1fd <dp ¢ . Hgis rejected

2.1fd > dyq - Ho is not rejected

3. 1f di_y £d < dy 4 the test is inconclusive.

The theory behind the statistic and the rules for rejection is complicated and beyond the

scope of this study. Details on this can be found in Makridakis ef a/ (1983).

Should the alternative hypothesis be changed to test for negative autocorrelation
i.e. Hy : The error terms are negatively autocorrelated
the rejection rules become

1. If (4-d) <d o . Hg is rejected

2.1 (4-d) > dy o - Ho is not rejected

Ifde g £(4-d) <dy the test is inconclusive.

Ll

Finally, the test can also be used to test for positive or negative autocorrelation in which
case the alternative hypothesis becomes
H, : The error terms are positively or negatively autocorrelated
and the rules
1. 1fd < dj_gn orif (4-d) < dp o» . Hy is rejected
2.1fd > di g and if (4-d) > dygs - He is not rejected

3.16dgn <d <dygn orifd; g» <(4-d) <dygn the test is inconclusive.

The Durbin-Watson test proves to be useful in testing for autocorrelation and is usually
provided as standard output by most computer regression packages. It should be noted

however, that time series data can exhibit more complicated auto correlated error









Forecasts will not be completely accurate and will almost always deviate from actual
values. A forecast error is the difference between the forecast and actual value (Taylor.
2002). To see how well one model works, or to compare that model with other models.
the forecasted values are compared with the actual or observed values. One of the most
popular and easiest to use measures is called the mean absolute deviation (MAD). The

MAD is computed as

~ Z’acruu! — forecust|

MAD (2.9)

(nrumber Jorecasts)

The lower the value of the computed MAD relative to the magnitude of the data. the

more accurate the forecast.

Computing the MAD value enables a decision maker to compare the accuracy of several
different forecasting techniques. It also makes the monitoring of forecasts possible which
is necessary to ensure that a chosen forecast model keeps on performing well. A well
known instrument to measure how well predictions fit actual data is called a tracking

signal (Render er al, 2006). A tracking signal is computed as

Tracking signal = (Running sum of the forecast errors) / MAD

= Y(actual value in time t — forecast value in time t) / MAD (2.10)

Render er al (2006) stated that a good tracking signal (one with a low running sum of
forecast errors) has about as much positive error as it has negative error — small
deviations are acceptable, but the positive and negative deviations should balance so that
the tracking signal centers closely around zero. Tracking signals are often computed with
predetermined upper and lower control limits to determine possible problems with the

forecasting method (Render ef a/. 2006).
Other well known measures of forecasting include:

The mean absolute percentage error (MAPE) which is the average of the absolute

values of the errors expressed as percentages of the actual values and is defined as
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MAPE =

}acruui — forecast ‘

*100%

actual
(number Jorecasts)

(2.1

— The mean squared error (MSE) which is the average of the squared errors.

— The average error, also called bias, which is computed by averaging the cumulative

error over the number of time periods (Taylor, 2002). It tells a decision maker

whether forecasts tend to be too high or too low and by how much.

There exist a large number of accuracy measures that have been used to evaluate the

performance of forecasting methods and this section is concluded by presenting a list, in

table 1. of the most commonly used methods (De Gooijer & Hyndman P458).

Table 1 — Commonly used forecast accuracy measures (De Gooijer and Hyndman,

2006)

MSE Mean squared error = mean(ef)

RMSE Root mean squared error = JMSE

MAE Absolute error = mean(|e|}

MdAE Median absolute error = median(|e,|)

MAPE Mean absolute percentage error = mean(|p,[)

MJAPE Median absolute percentage error = median(|p|)

SMAPE Symmetric mean absolute percentage =mean{2|Y,— F|/ (Y. + F))
error

sMdAPE Symmetric median absolute percentage | = median(2|Y, - Fy|/ (Y: + F))
error

MRAE Mean relative absolute error = mean(|r,|)

MdRAEL Median relative absolute error = median(|r|)

GMRAE Geometric mean relative absolute error | = gmean(|ry|)

RelMAE Relative mean absolute error = MAE/MAE,

RelRMSE Relative root mean squared error = RMSE/RMSE,

LMR Log mean squared error ratio = log(RelMSE)

PB Percentage better =100 mean{l{|r| < 1})

PB{MAE) Percentage better (MAE) = 100 meani1 {IMAE <

18




MALR})

PB(MSE) Percentage better (MSE) = 100 mean(1{MSE < MSE,})

r indicates relative error; e indicates error term: & refers to measures
obtained from the base method: 1{u} = 1 if u is true and 0 otherwise.

2.4 Exponential smoothing

2.4.1 Introduction and Definition

Exponential smoothing, also called exponentially weighted moving average is a method
where recent data is weighted more heavily than past data (Moore and Weatherford.
2001). The method is often used for forecasting a time series when there is no trend or
seasonal pattern but the level of the time series is slowly changing over time (Bowerman
et ul. 2005). The procedure allows the forecaster to update the estimate of the level of the
time series so that changes in the level can be detected and incorporated into the

forecasting system.

Moore and Weatherford (2001) define the basic exponential smoothing model as follows:
For any time period t > | the forecast for period t+1, denoted by 1,,,is a weighted sum
(with weights summing to 1) of the actual observed values in period t (i.e. y,) and the
forecast tor pertod t (which was y, ). This gives

Fa=ay,+{1-a)y, (2.12)
where a is a user-specified smoothing constant such that 0 < a < I. The value assigned o
o determines how much weight is placed on the most recent observation in calculating

the forecast for the next period.

To perform an exponential smoothing forecast it would be necessary to estimate an initial

value for vy, . This can be done by simply letting y, = . assuming a perfect forecast for
time period 1 (Moore and Weatherford. 2001) or by letting 3, =3 (Bowerman et al.

2005).
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2.4.2 Choosing values for a

Selecting an appropriate value for the smoothing constant, a. can have a significant
impact on the accuracy of forecasts. A possible approach is to simply try different values
for a and the best value, based on some accuracy measure such as the MAD or MSE, is
then used (Makridakis er o/, 1983). Another way of selecting an optimal value for a is to
make use of a linear program as described in section 2.3.1. In this case a linear program
that minimizes the MAD is used to choose an optimal value for . Bowerman es ol
(2005) noted that most computer software packages automatically choose values for o
but that different approaches are used and that users should carefully investigate how it is

implemented.

To further illustrate the effect of choosing values for o (i.e. putting more or less weight
on recent observations), three specific cases are considered (Moore and Weatherford.

2001).

Response (o a sudden change

Suppose that at a certain point in time a system experiences a rapid and radical change.
Consider an extreme case where

y,=0fort=1,2,..,99

vi=1fort=100,101........ :

In this case. if ¥ 0, then y,,,= 0 for any value of a as the weighted sum of a series of
zeroes was taken. Thus at time 99 the best estimate of yjo; is zero, whereas the actual
value will be one. The question now is how quickly will the forecasting system respond
as time passes and the information that the system has changed becomes available? It is
clear that a higher value of o — i.e. more weight on recent observations — will respond
guicker. Moore and Weatherford (2001} have shown graphically that a higher value of a.
in this case, is more desirable. Therefore, when a system is characterized by a low level
of random behavior, but is subject to occasional shocks (rapid and radical change) a

relative large a-value would be preferred.
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The damped trend can be used with either the additive or multiplicative Holt-Winters
method when dealing with seasonal data. Details on this can be found in Bowerman et o/

(2005)

2.5 Conclusion

In this chapter an introductory overview of time series forecasting techniques was
presented. Aspects covered included components of time series, trend and seasonal
analysis and measures of forecasts accuracy. Exponential smoothing as one of the more
popular techniques in time series forecasting. was also briefly reviewed. Another
important and widely used time series model, the so-called autoregressive integrated

moving average (ARIMA) model. will be discussed in chapter 4.

The next chapter will give an overview and background on artificial neural network

models — the other technique that forms the backbone of this research study.






3.2.1 Artificial neural networks

According to Fausett (1994) artificial neural networks have been developed as

generalizations of mathematical models of human cognition or neural biology. It is based

on the assumptions that

- Information processing occurs at many simple elements called neurons

— Signals are passed between neurons over connection links

— Each connection link has an associated weight. which, in a typical neural net,
multiplies the signal transmitted

— Each neuron applies an activation function (usually non linear) to its net input {sum of

weighted input signals) to determine its output signal

Neural networks are characterized by the pattern of connections between the neurons (the
architecture), the method of determining the weights on the connections (training or
learning) and an activation function, These concepts are illustrated in subsequent sections

and the defining characteristics are just briefly considered here.

A neural network consists of a large number of simple processing elements called
neurons. Each neuron is connected to other neurons by means of directed communication
links, each with an associated weight that represents information being used to solve a
problem. Each neuron also has an internal state called the activation or activity level,
which is a function of the inputs that was received. To illustrate, consider the following

example taken from Fausett (1994).

Consider a neuron Y that receives inputs from neurons X;. X and X - see figure 3.1, The
activations (output signals) of these neurons are x, x> and x; respectively. The weights on
the connections from X;. X> and X to neuron Y are w;. w»> and w; respectively. The net

input y'_in. to neuron Y is the sum of the weighted signals from neurons X}, A- and X5 ie.,

Y im=wix) o waxs + o waxs . (3.1
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Figure 3.2 — A simple neural network

3.2.2 Biological neural networks

There is a close analogy between the structure of a biological neuron (i.e. a brain or a
nerve cell) and the processing element (artificial neuron) in a neural network. In this
section a short summarized discussion of some features of biological neurons that may
help to clarify the most important characteristics of artificial neural networks are

presented (Fausett. 1994).

A biological neuron has three types of components that are of particular interest in
understanding an artificial neuron: its dendrites, soma and axon. ..e many dendrites
receive signals from other neurons. The signals are electric impuises that are transmitted
across a synaptic gap by means of a chemical process. The action of the chemical
transmitted modifies the incoming signal (by scaling the frequency of the signals that are

received) in a manner similar to the action of the weights in an artificial neural network.

The soma. or cell body, sums the incoming signals and when sufficient input is received,
the cell fires. i.e. it transmits a signal over its axon to other cells. A generic biological
neuron is illustrated in figure 3.3 together with axons from two other neurons (from
which the illustrated neuron could receive signals) and dendrites for two other neurons

(to which the original neuron would send signals).









connected to output units without any tnput or output units connected to each other. This
is also an example of a feed forward neural network as there are input units receiving

signals and output units from which the response of the neural network can be read.

Input One Laver QOutput
Uhnits of Weights Units

Figure 3.4 — A single layer neural network

Multilayer Neural Networks

A multilayer neural network is a network with one or more layers of nodes — called
hidden units — between the input units and the output units. Usually there 1s a layer of
weights between two adjacent levels of units (input, hidden or output). These types of
neural networks are also examples of feed forward networks and can solve more
complicated problems than the single laver networks. Figure 3.5 gives an illustration of

multilayer neural network architecture.






-4 Tr: 1ing ndlLea g

The learning function takes place within a neural network’s ability to change the weights
and allow a neuron to modify its activity in response to its input {Awad, 1996). There are
two main types of training called supervised and unsupervised training. These two types

of training are summarized below according to Fausett (1994).

Supervised training

Supervised training is accomplished by presenting a sequence of training vectors, or
patterns, each with an associated target output vector. The weights are then adjusted
according to a learning algorithm. Examples of problems which can be solved through
supervised training include pattern classification i.e. to classify an input vector as either
belonging to or not belonging to a given category. and pattern association where the
desired output is a pattern and not just a simple ves (belong to) or no (does not belong to).
Multilayer neural networks can also be trained to perform a non linear mapping from an
n-dimensional space of input vectors {n-tuples) to an m-dimensional output space i.e. the

output vectors are m-tuples.

Unsupervised training

Unsupervised training or self-organizing neural networks group similar input vectors
together without the use of training data to specify what a typical member of each group
looks like or to which group each vector belongs. A sequence of input vectors is
provided, but no target vectors are specified. The neural network modifies the weights so
that the most similar input vectors are assigned to the same output (or cluster) or unit.
The neural network will then produce a representative vector for each cluster formed. The

so called Kohonen self-organizing maps is an example of unsupervised training.
There are also other types of training that will not be discussed here, e.g. fixed weight

neural networks whose weights are fixed without an iterative training process — see

Fausett (1994) for details.
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Test stopping condition

Any activation function can be used in the algorithm. The next section considered some

of the more important activation functions that are also suitable for use.

Simple illustrations of how the training program was implemented to solve the XOR

problem as well as to compress data can be found in Fausett (1994).

3.5 Some common activation functions

As indicated in section 3.2.1, the basic operation of an artificial neuron involves summing
its weighted input and then applying an output or activation function. There are different
forms of activation functions (linear and non-linear) and in this section a brief
introduction of only the logistic sipmoid function is given. The discussion is based on the
function’s description as found in Fausett {1994). For a more extensive discussion of the
choice of activation functions and different forms of sigmoid functions, Fausett (1994)

can be consulted.

Sigmoid functions are especially useful in neural networks that are trained by the
backpropagation algorithm where the relationship between the value of the function at a
point, and the value of the derivative at that point. is used during training. The most

common types are the logistic function and the hyperbolic tangent function.

The logistic function with a range from 0 to 1. is often used as the activation function for
neural networks in which the desired output values either are binary or are in the interval

between 0 and 1. This is called the binary or logistic sigmoid and is defined as

PO P— — (3.3)

1+ exp(—ox)

with



S =of (D[ - (0], (3.4)
The o is a steepness parameter and in figure 3.7 the function is illustrated for ¢ = 3 and

c=235.

piey]
_______________________________ l'—____—-;_‘“;-“wﬁ‘uiﬁi‘ bw- -
"""" G = 3 ,”
’
—_— g=1 ’
[
s
e
WE=E mmimem == ' ! ]
] 2 3 x

Figure 3.7 - Binary sigmoid. Steepness parameters of 3 and 1

The logistic sigmoid function can be scaled to have any range of values (Fausett, 1994)

and the most common range is from -1 to [. This is then called a bipolar sigmoid and is

illustrated in figure 3.8 for ¢ = 1. The bipolar sigmoid function is defined as

a(x) =2f(x)-1

_ 2
- [+ exp(—ox) -
_ [—exp(-ox) (3.5)
1 + exp(—ox) .
and g'(x) = Z[1 + g(0)]1 - g(x)] (3.6)

2
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A __ 4
NON SEASONAL BOX-JENKINS APPROACH TO MODELING

ARIMA PROCESSES

4.1 Introduction

The objective of chapter 4 is to present a brief overview of a forecast technique that is
often referred to as a Box-Jenkins analysis or ARIMA analysis. This is necessary as
ARIMA models are often used in combination with other models, such as neural network
models, to construct hybrid forecasts. The acronym ARIMA stands for Auto-Regressive

Integrated Moving Average and will be more formally defined in the following section.

The Box-Jenkins approach to modeling ARIMA processes was described in 1970 by the

two statisticians Box and Jenkins (Box and Jenkins, 1970). It is an iterative process

encompassing four stages of development namely model identification. estimation.

diagnostic checking and forecasting.

— Model identification uses various graphs of historical data based on transformed and
differenced data to try and identify an appropriate Box-Jenkins model.

— Estimation means that historical data are used to find values of the model coefficients
which will provide the best fit to the data,

— Diagnostic checking involves testing the assumptions of the model to check the
adequacy of the model.

— Forecasting takes place when the final model is obtained and used to forecast future

time series values.

To build a proper ARIMA or Box-Jenkins model is often not a straightforward process
and requires good judgment and a lot of experience (Pankratz, 1983). Many text books
give comprehensive explanations and discussions on the Box-Jenkins process and for a
full exposition of details. text books such as Makridakis er af (1983), Pankratz (1983) and

Bowerman ef al (2005) can be consulted.
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:i :5+¢I:r*l+a[ (410)
was chosen, the model will be fitted to the available data series to get estimates of & and

or.

There are fundamentally two ways of getting estimates for the parameters {Makridakis er

al, 1983).

— Trial and error. Examine many different values and chose that value (or set of
values) that minimizes the sum of squared residuals.

— lterative improvement. Choose a preliminary estimate and let statistical software

refine the estimate iteratively.

Estimation is uvsually carried out using the second option of iterative improvement
through the use of a computer program. The main approaches used in statistical software
programs for this iterative process are quite complex and is based on non linear least
squares {NLS) and maximum likelihood estimations, It is beyvond the scope of this
chapter to deal in technical detail with the two approaches and this section will therefore
be concluded with an example. performed in SAS. to illustrate the parameter estimation
process. Complete technical discussions on the different methods mav be found in

Makridakis er a/ (1983). Pankratz (1983) and Bowerman et «f (2005).

The following example is based on the same data set used in section 4.2 (Bowerman ef al.
2005) and shows the output of the parameter estimation process for the model identified

in the previous stage. The output is based on the following SAS code.

Proc arima data = work.datafile;
identify var = y(1) nlag 14.
estimate g=(1):

Fun,









where n =n—d with n the number of observations in the original time series and d the
degree of non-seasonal differencing used to transform the original time series values into

stationary time series values. r7(a)is the square of r,(a). the sample autocorrelation of

the residuals at lag 4.

Both statistics can be used to test the adequacy of a model but Bowerman et af (2005)
suggested that Q" is the better of the two. The Q" statistic should be small. The larger Q
is, the larger are the autocorrelations of the residuals and the more related the residuals
are. A large value of Q" will therefore indicates that the mode! is inadequate. The
adequacy of the model under consideration can now be rejected by setting the probability
of a type 1 error equal to « if and only if either of the following equivalent conditions is
true.

I. Q is greater than %5 (K —ne) . the point on the scale of the y” distribution having k-

ne degrees of freedom such that there is an area of « under the curve of this

distribution above this point. Nc is the number of parameters that must be estimated.

2

The p-value is less than . where the p-value is the area under the curve of the

y - distribution having k-nc degrees of freedom.

Most statistical software packages can perform the diagnostic checking process and will
also provide the required Q" and p-values. An example. illustrating how SAS is used to
perform diagnostic checking and showing how the Ljung-Box statistic (Q") and its
associated p-values can be found for the model identified during the first stage, is given
below.

The example is based on the same data set used in the previous sections (Bowerman ef al.

2005). The output is based on the following SAS code.

Proc arima data = work.datafile:
identify var = (1) nlag 14:
estimate g=(1j noconstant printall plot:

run,
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SAS output for diagnostic checking for the model z, = a, - 8;a,; where z, =y, — v,

The SAS System
The ARIMA Procedure

Autocorrelation Check of Residuals

Te Chi- Pr o>
Lag Square DFf Chisg  ------------ e Autocorrelations-----=-c-mouaomannno
6 4.10 5 @.5345 2.9e6 ~@.837 -8.1082 e.12% 2.928 a.061
12 18.40 11 9.4944 -@,143 -98.831 -9.146 -9.858 -9.941 0.925
18 17.57 17 9.4165 9.920 9.038 -@.074 -9.003 2.068 ©.196
24 18.67 23 ©.7199 2.0084 -9.928 -9.961 ©.000 -@.054 8.012
Autocorrelation Plot of Residuals
Lag Covariance Correlation ~198765432101234567891 5td Error
) 1.988329 1.80000 [ ltt*ttti**tt*ti*t‘**t‘ )
1 @.0859655 ©.88552 i | ] 8.891670
2 -@.839778 -.@3682 | ¥ { ©.091673
3 -8.109978 -.12188 | % | ] @.991797
4  9.138%97 ©.12866 | s ] 9.992741
5 @.0930006 0.82778 | R | 2.094229
6 ©.966126 @.e6121 i . i* | ©.894297
7 -9.1543%9 -.14292 | et { 0.094631
8 -0.833143 -.03068 | *| | 2.096428
9 -p.157783 -.14605% | k| | @, 896510
16 -9.863136 -.85844 | *| | 9.098349
11 -9.644091 -.84081 ] * i 0.998641
12 £.827341 2.22531 | | * ) @.098783
i3 9.8215845 ©.02004 | | | 9.898837
14 8.ealre: 9.83814 | [* | 9.898871
“."” marks two standard errors
Partial Autcocorrelations
Lag Correlation ~1987654321901234567891
1 9.P@552 | ] |
2 -9.83685 | .o* |
3 -9.10153 | .| |
4 9.12968 | jres, {
5 ©.091868 | | . |
6 8.06077 | . |* . |
7 -9.12057 | .| |
g8 -9.93638 | * |
9 -8.15573 | *rx) J
18 -2.1e387 | **|
11 -9.93157 ) *| {
12 0.00388 | | |
13 ©.06414 | [ |
14 ©.85522 | [* . |

It can be seen from the example that SAS calculates the Ljung-Box statistic Q” and its

associated p-value for K equal to 6. 12. 18 and 24. According to the standard y*-table



that gives values of y;(df'}(See for example Bowerman ef al. 2005). if a. the probability

of a tvpe | error, s equal to 0.05 then the rejection point would be

T (K—=nc)= x5 5,(6-1)=11.0705 (4.13)
Since Q" =4.10 < 11.0705 = Xo0s;(5), the adequacy of the model cannot be rejected.

The p-value is the area under the curve of the y* distribution having K-sc = 5 degrees of

freedom to the right of Q" = 4.10. The p-value on the SAS output is 0.5345 and since
(.5345 > 0.05. the adequacy of the model cannot be rejected.

4.5 Forecasting
The last stage and final objective of any Box-Jenkins model is to forecast future values of

a time series.

In order to compute point forecasts (single numerical values) for the model

v, =¥, +a -0a,_, (4.14)

the estimated model
¥, =V, +a, —9&,,, (4.15)

Is used.

In this case the point prediction g, of a, is zero. The point prediction a, , of a,_, is the (r-

~

1)st residual (v, , -, ,)if it is possible to calculate 3, , and is zero if ¥,_, cannot be

calculated. To find the point forecasts, insert the estimates of parameters (e.g. 9)
obtained during the previous stages, the appropriate values for past observations and

assign the expected value of zero to 4, .
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The output presents the SAS results of the point forecasts. the values of SE,_ (), and the

05% prediction intervals when forecasting at time onigin 120 the values for time periods

121 through 130.

4.6 Conclusion
Chapter 4 prescnted a brief overview of the Box-Jenkins modeling approach and covered
the four different stages viz.

— Model identiftcation:

~ Estimation of model parameters:

— Diagnostic checking: and

— Forecasting

The chapter further introduces elementary concepts pertaining to the four stages and

provides references where detailed examples and mathematical details can be found.

This chapter is finally concluded by a summary of the characteristics of a good Box-

Jenkins model as given by Pankratz (1983) and evidenced by the discussions in the

chapter.

A good model is

— Parsimonious (uses smallest number of coefficients needed to explain the available
data).

— Stationary

~ Has estimated coefficients of high quality

— Has uncorrelated residuals

— Fits the avatlable data (the past) well enough to satisfy the analyst

—~ Forecasts the future satisfactorily



The next chapter, chapter  will be devoted to a sun w . litcrature
resources describing the use of time series modeling. the use of neural networks in time

series data and a combination of the two approaches.
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CHAPTER 5
METHODOLOGY AND RESEARCH DESIGN

5.1 Introduction

Following the introduction and background review of fundamental principles (chapters 2 to 4) of
techniques used in this study. chapter 5 will concentrate on two further aspects. First, the
relevance of techniques used in the empirical study will be motivated from appropriate literature
resources. A brief overview of similar work carried out using linear models. neural networks and
a combination of the techniques will be given. Second, the research design and methodology
used in this study will be presented. The hybrid methodology used will be explained as well as
the practical workings of the empirical experiments. The next chapter will then focus on the data

sets used and the results of the empirical experiments.

5.2 Related work in the literature

Time series forecasting is an important area of forecasting that attracts many researchers and
practitioners. An appropriate way to start this introductory literature review would be io refer to
the informative and well researched work of De Gooijer and Hyndman (2006). They have
published a review that covers the past 25 years of research into time series forecasting. The two
researchers give a brief overview of the main developments of recent years as well as proposals
for future research. A variety of forecasting techniques. and research work associated with them,
is given and include techniques such as exponential smoothing, ARIMA models. non-linear
models such as neural networks, ARCH/GARCH models etc. An excellent list of references

(more than 300 authors) is also provided.

The next couple of paragraphs will be used to give examples of specific applications of time

series forecasting as found in the literature and that is relevant to this study.

Ghiassi, Saidane and Zimbra (2003) experimented with a dynamic neural network model where
changes were made to the architecture of the neural network in an effort to improve forecasting

results of different time series data. Based on their experiments they claimed that the neural
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network approach is more accurate and performs significantly better than traditional models such

as ARIMA models.

The work of Ediger and Akar (2007) is an example of the use of a linear model (ARIMA) that
was employed to forecast the future energy demand of Turkey. The ARIMA technique was
applied to time series data of each item that contributes to primary energy e.g. coal, wood,
animal and plant remains. oil, natural gas, hydropower etc. They concluded that the application
of the ARIMA forecasting technique delivers more reliable results than other approaches that

they have previously tried when forecasting energy demand.

In line with the results from the energy demand study. Dooleyv and Lenihan (2005} also found
that the use of the ARIMA forecasting technique provides marginally better results when
forecasting metal prices. They have compared the ARIMA technique with a lagged forward price

model.

In a study to compare the accuracy of up to six different methods for short-term electricity
demand, Taylor, Menezes and McSharry (2006) have found that the best results were achieved
with the exponential smoothing method. Based on their experiments, they conclude that simple
and robust methods outperform more complex alternatives and that they require little domain

knowledge to be implemented.

Cho (2003) presented a study in forecasting applied to tourism management. In an effort to
predict the travel demand (i.e. number of arrivals) from different countries to Hong Kong, three
forecasting techniques were investigated. The performance of two linear models. exponential
smoothing and ARIMA. was compared with an artificial neural network. The study concludes
that in those cases where the time series data have no obvious pattern. the neural network seems

to be the best alternative for forecasting visitor arrivals.

In a more recent study, Co and Boosarawongse (2007) also compared the forecasting ability of

exponential smoothing. ARIMA and neural network models. They applied these models in an
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effort to forecast rice exports from Thailand. Using different measures of forecast errors (e.g.
MSE and MAPE). they concluded that the neural network models performed relatively well as

they were able to track the dynamic non-linear trend and seasonality in the time series.

There are also a number of studies where only neural networks and ARIMA models were
compared. Examples of such studies include the prediction of the Hepatitis A virus performed by
Ture and Kurt (2006). They argued that a multi-layered perceptron neural network outperformed
an ARIMA model. Interesting results were presented by Mishra and Desai (2006) who also
compared neural networks and ARIMA models. Their study was conducted in India and they
used these models to perform a forecast of droughts. The results obtained showed that the
performance of one of the neural network models, as well as the ARIMA model, decreases over
a longer lead time because of the accumulation of errors between the observed and predicted
values at each time step. Both the ARIMA and neural network models provided good results as

long as the lead time to forecast is not too big.

In this research project the idea is to combine neural network and linear models to provide for
both linear and non-linear elements that may be contained in the data. This section will therefore

be concluded with a few examples from the literature where this approach was followed.

A simple combination of forecasts using the equal wetghts method (arithmetic mean of
individual forecasts) was used by Zou et al (2007). They compared this combined approach with
ARIMA and neural network models to forecast wheat prices in the Chinese market. Results
reported by them are somewhat conflicting — according to them, the neural network outperforms
the ARIMA model while the combined forecasting approach proofs to be an effective way of

improving the forecasting performance of error measures.

Ince and Trafalis (2006) proposed a two stage forecasting model where they used an ARIMA
model to select input variables and then, in the second stage. apply neural network and support
vector regression models to make forecasts. This approach was used by them to forecast the

exchange rate for different currencies e.g. the euro/dollar exchange rate. Their experiments have



indicated that the forecasting performance is highly dependent on the selection of inputs to be

used in the final forecasting model.

Valenzuela et al (2008) described a hybrid model that is the same as Zhang's model (Zhang.
2003) but with the interesting difference of using a fuzzy expert system, driven by an
evolutionary algorithm, to determine the structure of the ARIMA model. The residuals of this
model are then passed on to a neural network to model the non-linear component of the time
series. Although the testing of this hybrid approach was more focused on identifying the correct
ARIMA model using the expert system, the authors concluded that the synergy of the hybrid
model produced excellent results. The same research project, presenting a different level of detail

information. is also described in Rojas et al (2008).

Following the same approach as Zhang (2003}, Chelani and Devotta (2006) also proposed a
hybrid model to forecast air quality as determined by the nitrogen dioxide concentration
observed in Dethi, India. An ARIMA model was used to model the linear component of the data
and a non-linear dynamic model (based on so-called phase spaces and attractors) was then
developed to model the residuals from the ARIMA model. They found that the hybrid model

outperformed the individual linear and non-linear modeis.

To conclude this section. it should be noted that there are. however, other researchers and
research studies that have shown that a hybrid model (such as the one proposed by Zhang in
2003) does not always deliver better forecasting results. For example. Taskaya-Temizel and
Casey (2005) have shown through a number of experiments that the hybrid model may
underperform in certain cases. This is in line with the research results found in the empirical

work of this study which are detailed in chapter 6.

5.3 Research design and methodology
In this section the hybrid methodology of combining a linear model with the results of a neural
network will be discussed. Following this discussion, an overview of the approach and

methodology used to perform the empirical experiments will be presented.
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5.3.1 Hybrid methodology
As stated in chapter 1. the primary objective of this research study was to investigate the use of a
combined linear and neural network model to determine forecasting performance. This will be

done based on the work of Zhang (2003).

Zhang (2003) motivated the use of such a hybrid approach as follows.

e [t is often difficult to determine whether a time series under study was generated from a
linear or non-linear underlying process. This makes it difficult to choose the correct
forecasting technique for the specific situation.

* Real world time series are rarely pure linear or non-linear and they often contain both linear
and non-linear patterns.

e It is agreed in forecasting literature that no single method is best in every situation. Real
world problems are complex in nature and a single mode! may not be able to capture

different patterns.

The basic idea of model combination in forecasting can therefore been seen as using each
model’s unique features to capture different patterns in the data. A brief overview of the
combination of linear models and neural networks, based on the work of Zhang (2003) will now

be presented.

It is clear from the literature sources quoted in section 5.2, that both linear modeis and neural
network models have achieved successes in their own linear and non-linear domains. It is.
however, not always clear if each model on its own would be suitable in all circumstances. Using
a linear model in complex non-linear problems may not be adequate. Also, the use of a neural
network to model linear problems may produce mixed results. As the characteristics of data in
real world problems are often unknown, it may be a good idea to consider a hybrid methodology
where linear and non-linear models are combined to try and capture different aspects of the

underlving patterns. Zhang (2003) explained this hybrid methodology as follows.
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Consider a time series composed of a linear structure and a non-linear component. That is

y, =L +N, (5.1)

where L, denotes the linear component and N, the non-linear component.

If we assume that these two components have to be estimated from the data. a linear model can
be used to model the linear component and the residuals from the linear model will then contain

the non-linear relationship. Let ¢, denote the residual at time 7 from the linear model, then

e, =y —L (5.2)

i

where i, is the forecast value for time 1 from the estimated relationship.

Zhang (2003) argued that a linear model is not sufficient if there are still non-linear correlation
structures left in the residuals. According to him, residual analysis is not able to detect any non-
linear patterns in data and that there is no general diagnostic statistic for non-linear
autocorrelation relationships. This implies that a model may still not be adequate, even if it has
passed diagnostic checking, as non-linear relationships have not been appropriately modeled. If
there is any significant non-linear pattern in the residuals it is an indication of the limitation of a
linear model. If the residuals are now modeled using a neural network. non-linear relationships
may be discovered. With » input nodes. the neural network model for the residuals will be

e, = fle_e ... e, ) +E, (5.3

where fis a non-linear function determined by the neural network and ¢, is a random number. If

the forecast from the neural network is denoted by N, then the combined forecast will be

Bo=L+N, (5.4)
To summarize. Zhang's proposed hybrid methodology consists of two main steps. First, a linear
model is used to analvze the linear part of the problem and second. a neural network model is
developed to model the residuals from the linear model. This hybrid approach exploits the
unigue features and strengths of a linear model as well as neural network models and could be
advantageous to model linear and non-linear patterns separately and then combine the forecasts

to improve overall modeling and forecasting performance.
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The next section. section 5.3.2, will give an overview of the detailed steps and approach that was

followed in this study using Zhang's technique of combining forecast models.

5.3.2 Empirical experiment approach
In order to examine the performance of the proposed hybrid model. the individual linear and
non-finear models were also applied to the data sets under consideration. To determine these two

models the following approach was followed.

Determine an appropriate neural network model

The construction of a neural network architecture presents two distinct challenges to the model
builder. In the first instance. an appropriate number of hidden nodes should be chosen and
secondly, the number of lagged observations which is also referred to as the dimension of the
input vector must be specified. The number of hidden nodes may impact the degree of over
fitting of the model (a good fit to the sample data but poor generalization capability) while the
input dimension plays a major role in determining the autocorrelation structure of the time series.
There are no systematic rules or theory to guide the selection of these two parameters (Zhang.
2003) and it was decided to perform a series of experiments to help select values for these

parameters. The experiments to do this were conducted as follows.

A SAS program was developed to perform a “grid-search™ where all possible combinations of
input dimensions, ranging from 1 to 20 were tested (see Appendix B for the source code of the
program). At the same time. the number of hidden nodes was varied from 1 to 20. Twenty
experiments (fitting of a neural network) were performed in each case. Doing it this way, a total
of 8000 (20 experiments * 20 nodes * 20 input dimensions) neural network models were fitted in
each case and the parameters for the one with the smallest average mean squared error was then
selected for the model to be used. The following table explains the sequence of tests performed

each time a neural network architecture had to be determined.
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Number of lagged Number of hidden nodestv | I aber of experiments to

observations as input be included in architecture | determine best parameters
dimension
] lagged observation 1 hidden node Experiment 1

Expertment 2

Experiment 3

Experiment 20

2 hidden nodes Experiment |

Experiment 20

20 hidden nodes

2 lagged observations

20 lagged observations L

For each one of the experiments. The SAS program randomly selected 90% of the data to be
used for training of the neural network while the remaining 10% formed part of the validation

process.

Determine an appropriate linear model

There are a variety of ways to fit a linear model to a time series data set. One popular way of
doing it is to follow the well known Box-lenkins approach of building an ARIMA model - this
approach was discussed and illustrated in chapter 4. In this study however, it was decided to
make use of the automatic linear model selection feature offered by the SAS software package.

This means that all tests carried out on a data set during a manual process (e.g. in the Box-
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Jenkins approach) to select the best model is now performed automatically by the SAS software.
It is a powerful feature which uses a wide variety of linear models to select the best one — several
different kinds of exponential smoothing. ARIMA and log linear models are used in the selection
process. The function also offers the usual features associated with time series forecasting such

as goodness-of-fit measures, predictions. evaluations of errors. graphing facilities etc.

The two abovementioned methods to choose appropriate neural network and linear models form
the basis of the background work to be performed in the actual methodology which can be
summarized as follows.
For each data set under review
1. Determine the most appropriate neuwral network model architecture that can be applied to
the time series and perform a forecast using the identified model.
2. Determine the most appropriate /inear model that can be applied to the time series and
perform a forecast using the identified model.
(Steps 1 and 2 are necessary to compare the performance of the individual linear and non-
linear models with the proposed hybrid model)

Determine the most appropriate neural network model architecture that can be applied o

(8]

the errors of the linear forecasts obtained in step 2 and perform a neural network forecast
of the errors.

4. Construct a hybrid model by combining the linear forecasts (obtained in step 2) with the
neural network forecast of errors (obtained in step 3). Perform the hybrid forecast.

5. Compare the means square error (MSE) and the mean absolute deviation (MAD) of the
three forecasts (neural network, linear and hybrid model).

6. Interpretation of results.

This technique was repeatedly applied for three different forecasting periods for each data set

under consideration. The forecasting periods and results are detailed in chapter 6.

Schematically the 6 steps of the empirical experiment approach can be represented as depicted in

figure 5.1 at the end of this chapter.
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5.4 Conclusion

Chapter 5 consists of two main sections. The relevance of the techniques used in this study was
firstly motivated from literature resources and, secondly, the research design and approach
followed to conduct the empirical work was explained. In the next chapter the data sets used and

results obtained during the practical experiments will be discussed.
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CHAPTER 6
EMPIRICAL RESULTS AND DISCUSSION

6.1 Introduction

The primary objective of this study was to investigate the use of a combined linear and neural
network model to determine the forecasting performance of such a hvbrid model. The purpose of
this chapter is 10 report the empirical results from five different real data sets that were used to
evaluate forecasts obtained bv a linear. a neural network and a combination of the two
techniques. A brief description of the data sets will be given foliowed by the modeling and

forecast results. The chapter will then be concluded with a discussion of the results obtained.

6.2 Data sets

To demonstrate the results of the empirical experiments, five real world data sets were used.
They were taken from different areas and have different statistical characteristics. The data is
well known and it is assumed and accepted that these tvpes of data have been widely studied in
statistical and forecasting literature. However. no known generally accepted forecasting mode!

for these data exist and using them for further evaluation is appropriate.

The five data sets chosen are
— the gold price;
— demand for electricity:
- the rand/dollar exchange rate:
— the o1l price; and

— return on the money market.



































































































Total Sum of Squares (Uincorrected} 3966511

Total Sum of Squares (Corrected) 422677
Sumn of Square Error 1647.766813
Mean Square Error 1.319269
Root Mean Square Error 1.148594
Mean Absolute Percent Error 1.547057
Mean Absolute Error 0.791417
R-Square 0.996102
Adjusted R-Square 0.996093
Amemiya's Adjusted R-Square 0.996083
Random Walk R-Square 0.016794
Akatke Information Criterion 352.070039
Schwarz Bayesian Information Criterion 367.460335
Amemiya's Prediction Criterion 1.323622
Maximum Error 9.89
Minimum Error -3.262413
Maximum Percent Error 10.853975
Minimum Percent Error -12.56334
Mean Error 0.050535
Mean Percent Error 0.065131

An extraction of the linear forecast. showing 100 data points (from the original 1249 data points)

is given in figure 6.25. The 100 data points cover the period 3 November 2004 to 30 May 2005.
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In the case of a five-step-ahead forecasting it was noticed that {with the exception of the
electricity data) the hybrid model did not perform particularly good and never gave the best
forecast. It was also interesting to note that the linear model in most cases outperformed the
other two models. It was further also observed that whenever there are big changes in the
values. the linear models performed best because each forecasted value is influenced by the
previous observed value. The time horizon (5 periods) is not long enough for a neural
network or hybrid model to adjust forecasted values quickly enough which then resulted in
higher forecast errors — see for ex ple the results of the money market data presented in
section 6.3.

For the twenty-step-ahead forecasting. the hybrid model consistently outperformed the linear

and neural network forecasts for all data sets.

The conclusions based on the results can be summarized as follows.

It would be incorrect to claim that a combination (hybrid} of forecasts will always
consistentlv outperform a single model. Results here have shown. especially in the five-step-
ahead forecasts. that the linear model outperformed the hybrid model. This finding is in line
with other studies that also obtained mixed results (Taskaya-Temizel and Casey. 2005).

In only one of the cases (the five-step-ahead forecasting of the oil price). the hybrid model
performed the worst. In all other cases the hybrid forecasts were either the best or the second
best forecast. This leads to the conclusion that it is definitely worthwhile to investigate and
apply the type of combination described in this study.

Depending on the lead time to forecast and the observed data it might be worthwhile to use a
linear model when the lead time is short and when there are significant differences in the
observed data points.

On the other hand. if the lead time becomes longer it becomes more important to consider the

use of a hybrid model to improve forecasts.

In general. the empirical experiments in this study have shown that the use of the type of hybrid

mode] described should definitely be considered. Results should however be treated with care

but at the same time it is also clear that s* ificant improvements are possible.
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CHAPTER 7
SUMMARY AND CONCLUSION

7.1 Introduction
Chapter 7 presents the final comments and concluding remarks for the study. The objectives of
the study and how they were achieved will be summarized. New problems and opportunities for

further study that presented itself during the research project will also be outlined.

7.2 Objectives of the study
Chapter 1 stated that the primary objective of this study was to investigate the use of a combined
linear and neural network model in order to determine the forecasting performance of such a
hybrid model. To accomplish this, a list of five secondary research objectives were defined that
needed to be achieved. These five objectives were
e To gain a clear understanding of and to present an introductory overview of time series
analysis and forecasting models;
e To gain a clear understanding of and to present an introductory overview of neural
network models;
e To gain a clear understanding of and to present a brief introduction to the well known
Box-Jenkins approach:
» To investigate, describe and formulate a combined linear and neural network model; and

s To investigate the performance and forecasting accuracy of the combined model.
A summary of how these objectives were achieved will now be given.

To gain a clear understanding of and present an introductory overview of time series analysis
and forecasting models.

Time series forecasting is an important area of forecasting and can be modeled in a variety of
ways. The models used in this study were empirically tested on time series data and it is

therefore imperative to have a clear understanding of time series analysis and forecasting models.






To investigate, describe and formulate a combined linear and newral network model,
It is important to have a clear understanding of the methodology that will be followed in the

study as well as to ensure that the practical work is relevant.

The objective was achieved by firstly motivating the relevance of the suggested technique from
appropriate literature resources (Chapter 5, section 5.2) and secondly, by giving a comprehensive
overview of the research design and methodology used. This overview included a discussion on
the hybrid methodology as well as the approach followed with the empirical experiments

(Chapter 3, sections 5.3.1 - 5.3.2).

To investigate the performance and forecasting accuracy of the combined model.
Models that forecast future values of a time series need to be evaluated to ensure that forecasting
performance is acceptable. In this study a hybrid model was constructed and to be able to make

meaningful recommendations and conclusions, the model’s performance needed to be evaluated.

This objective was achieved by using five real world data sets and for each data set applies a
linear forecast. a neural network forecast and a combined forecast to the data set. These forecasts
were done for a one. five and twenty period ahead and each time the MSE and MAD were used
as a forecast accuracy measure. Comprehensive results including graphs. forecasts. accuracy
measures etc, were presented. Finally it was possible to make interesting and significant findings
and recommendations based on these results. All information concerning this final objective was

presented in chapter 6.

7.3 Problems experienced

Consistent with the comment made by De Gooijer and Hyndman (2006) that there is a lack of
empirical rescarch on robust forecasting algorithms for multivariate models, it was found in this
study that there is not sufficient empirical evidence to which the study’s results can be compared
with. To compare one's results with other results (using similar type of data sets) is one way of

validating work that was performed. It is hop ' t ' :results of the particular data sets used in






















































