Preparation, stability and \textit{in vitro} evaluation of liposomes containing amodiaquine

Jacques C. Scholtz
(B.Pharm)

Dissertation submitted in fulfilment of the requirements for the degree
MAGISTER SCIENTIAE (PHARMACEUTICS)
at the
POTCHEFSTROOM CAMPUS OF THE NORTH-WEST UNIVERSITY

Supervisor: Dr. Lissinda Du Plessis
Co-supervisor: Prof. A.F. Kotzé

November 2010
Potchefstroom
“Do not pray for easy lives. Pray to be stronger men! Do not pray for tasks equal to your powers. Pray for powers equal to your tasks. Then the doing of your work shall be no miracle, but you shall be a miracle”
- Philip Brooks

“The most exciting phrase to hear in science, the one that heralds new discoveries, is not ‘Eureka!’ but ‘That’s funny...’”
- Isaac Asimov
Acknowledgements

I would like to start off by thanking and praising our Heavenly Father for the opportunities, the abilities and the blessings that I have received thus far in my life.

I would like to thank my parents, Jacques and Sarita Scholtz for giving me life and raising me to be the person I am today. I would also like to thank my sister, Nadia Scholtz. Thank you all for paving the way towards my academic success. Nothing could replace your love, support and care.

I would like to thank Dr. Lissinda du Plessis, my supervisor for her help, guidance and patience with me and my strange ways. Your help and guidance was paramount to the successful completion of my study.

Prof. Awie Kotzé my co-supervisor for always having an open door policy, and making the time to listen and help.

The Innovation fund for their monetary support.

Stephnie Nieuwoudt, thank you for walking this road with me and always being there to help and to encourage me. The blood sweat and tears shed in this time will bear fruit for us both.

Prof. Wilna Liebenberg for the use of her laboratories and equipment. I appreciate it very much.

Prof. Lesley Greyvenstein for the language editing.

I would like to thank all my friends Christo, Jeanine, Ruan, Nicoline, Theunis, Chucky, HeLska, Cerenus, Michael, Geodelle, Jandré, Michelle and Lizl for your unfailing support and friendship during the course of my study. You guys and girls mean the world to me.

To my family (especially the Bothma’s), your support in the tough times really helped me through.

To all my colleagues at the Department of Pharmaceutics, thank you for the fun times, chatting and joking in the office. Wish you all the best and success for your future.

Special thanks go out to Chrizaan Slabbert, Richard Lemmer and Herman van der Watt. The help and guidance you each gave me in each separate field where you specialise was just amazing. Thank you for your time and help that you offered so willingly. Thank you all very much. People like you make this world a fantastic place and I can’t wait to take on the world with you all by my side.
Introduction and aim of study

Chapter 1 ~ Malaria

1.1. Introduction
1.2. Malaria around the world
1.3. Malaria in South Africa
1.4. Biology of Plasmodium
  1.4.1. Asexual stage
  1.4.2. Sexual stage
1.5. Clinical appearance of malaria
1.6. Drug resistance
1.7. Malaria treatment: South African regimes
  1.7.1. Treatment of uncomplicated P. falciparum malaria
  1.7.2. Treatment of severe P. falciparum malaria
  1.7.3. Treatment of non-P. falciparum infections
1.8. Antimalarial drugs
  1.8.1. Classification of antimalarial compounds
1.9. Quinoline antimalarials
  1.9.1. Mechanism of action
    1.9.1.1. DNA Intercalation
    1.9.1.2. Inhibition of haemoglobin degradation
    1.9.1.3. Haem polymerisation theory
    1.9.1.4. Integrated model
### Chapter 2 ~ Liposomes

2.1. Introduction

2.2. Components of liposome structure

2.2.1. Phospholipids

2.2.1.1. Phosphatidylcholine

2.2.2. Cholesterol

2.3. Classification of liposomes

2.3.1. Characterization of liposomes according to size and shape

2.3.2. Classification of liposomes according to composition

2.3.3. Classification of liposomes according to production method

2.4. Advantages of Liposomal drug delivery

2.4.1. Improvement of pharmacodynamics

2.4.2. Liposomes can be made target selective

2.4.3. Enhanced activity of drugs against intracellular pathogens

2.4.4. Enhanced activity of drugs against extracellular pathogens

2.5. Disadvantages of liposomes

2.5.1. Sterilization
Chapter 3 ~ Physicochemical properties and cellular toxicity evaluation

3.1. Introduction
3.2. Stability studies
   3.2.1. Accelerated stability studies
   3.2.2. Size determination
   3.2.3. Size determination – Fluorescence Activates Cell Sorter (FACS)
   3.2.4. Entrapment efficacy
3.3. In vitro evaluation of liposome toxicity
   3.3.1. Reactive oxidative species and lipid peroxidation
      3.3.1.1. Damage caused by oxidative stress
      3.3.1.2. DNA damage
      3.3.1.3. Protein damage
      3.3.1.4. Lipid damage (Lipid peroxidation)
   3.3.2. Defence against oxidative stress
      3.3.2.1. Antioxidant enzymes
      3.3.2.2. Low molecular weight antioxidants (LMWA)
   3.3.3. Oxidative stress in *P. falciparum*
3.4. Conclusion

Chapter 4 ~ Experimental methods, results and discussions
4.1. Introduction 58
4.2. Experimental design 58
4.3. Preparation, characterization and stability of liposomes containing amodiaquine 60
   4.3.1. Solubility study of amodiaquine (method development) 60
      4.3.1.1. Apparatus and materials 60
      4.3.1.2. Method 60
      4.3.1.3. Results and discussion 62
   4.3.2. Manufacturing of liposomes and amodiaquine entrapped liposomes 63
      4.3.2.1. Materials 64
      4.3.2.2. Method 64
   4.3.3. Morphological evaluation of liposomes and amodiaquine entrapped liposomes 64
      4.3.3.1. Materials and methods 65
      4.3.3.2. Results and discussion 65
   4.3.4. Accelerated stability testing 66
   4.3.5. Size determination 66
      4.3.5.1. Materials 66
      4.3.5.2. Method 67
      4.3.5.3. Statistical analysis 69
      4.3.5.4. Results and discussion 69
   4.3.6. Determination of pH 75
      4.3.6.1. Apparatus and method 75
      4.3.6.2. Statistical analysis 75
      4.3.6.3. Results and discussion 76
   4.3.7. Entrapment efficacy and leakage 80
      4.3.7.1. Apparatus and method 80
      4.3.7.2. Statistical analysis 81
      4.3.7.3. Results and discussion 82
4.4. In vitro cultivation of P. falciparum 84
   4.4.1. Materials 85
   4.4.2. Cultivation 85
4.5. Microscope evaluation and determination of parasitemia 86
4.5.1. Materials 86
4.5.2. Methods 86

4.6. In Vitro studies (Flow cytometric determination of reactive oxygen species and lipid peroxidation) 87

4.6.1. Analysis of reactive oxygen species (ROS) 87
4.6.1.1. Materials 88
4.6.1.2. Method 88
4.6.1.3. Statistical analysis 90
4.6.1.4. Results and discussion 90

4.6.2. Analysis of Lipid peroxidation 94
4.6.2.1. Materials 94
4.6.2.2. Method 94
4.6.2.3. Statistical analysis 96
4.6.2.4. Results and discussion 96

4.7. Conclusion 99

Summary and future prospects 100

References 103

Annexure A: Ethical Application 114
Annexure B: Certificate of analysis: Amodiaquine 115
Annexure C: Size data 116
Annexure D: pH data 132
Annexure E: Entrapment efficacy data 134
Annexure F: ROS data 137
Annexure G: Lipid peroxidation data 145
## List of Figures

**Figure 1.1:** Map showing malaria risk areas in South Africa  
6

**Figure 1.2:** A schematic representation of the lifecycle of *P. Falciparum*  
8

**Figure 1.3:** The development of chloroquine from quinine  
22

**Figure 2.1:** Illustration of the basic elements of a lipid, with the arrangement into the lipid bilayer structure  
31

**Figure 2.2:** Illustration of the basic form the lipid bilayer forms in an aqueous solution. The position of the drugs formulated into liposomes is also displayed  
32

**Figure 2.3:** The main classes of phospholipids that contain choline  
33

**Figure 2.4:** The chemical structure of cholesterol  
34

**Figure 2.5:** A simplified illustration production methods of Liposomes  
36

**Figure 2.6:** A simplified illustration of the active loading of Liposomes  
42

**Figure 3.1:** The formation of Reactive oxygen species  
52

**Figure 3.2:** Lipid peroxidation as a cyclic process  
53

**Figure 3.3:** A schematic of the two main methods used by *P. falciparum* to detoxify haem  
56

**Figure 4.1:** Part one in the experimental design. The preparation, characterization and stability as laid out in the steps followed in this study.  
59

**Figure 4.2:** Part two in the experimental design. *In vitro* evaluations, as laid out in the steps followed in this study.  
59

**Figure 4.3:** An illustration of the absorbance curves created by AQ in different pH values  
61

**Figure 4.4:** The calibration curves of amodiaquine in different pH values  
62

**Figure 4.5:** Micrograph pictures of liposomes in suspension, as seen under CLSM  
65
Figure 4.6: A representative sample of the size determination study scatter plot from the FACSCalibur™ before being processed with FlowJo™. The figure portrays both the forward and side scatter as analysed from the size determination sample.

Figure 4.7: The forward scatter plot of a representative liposome size analysis turned into a histogram. The size distribution and span is calculated by adding the different sized gates here (not illustrated as the gates are unclear on such a small scale).

Figure 4.8: Illustrates the median size (in μm) and the size distribution (span in μm) of liposomes manufactured with a buffer of pH 6 at 5°C over a period of 84 days. Results are shown as mean ± SEM (n=3).

Figure 4.9: Illustrates the median size (in μm) and the size distribution (span in μm) of liposomes manufactured with a buffer of pH 6 at 25°C over a period of 84 days. Results are shown as mean ± SEM (n=3).

Figure 4.10: Illustrates the median size (in μm) and the size distribution (span in μm) of liposomes manufactured with a buffer of pH 6 at 40°C over a period of 84 days. Results are shown as mean ± SEM (n=3).

Figure 4.11: Illustrates the median size (in μm) and the size distribution (span in μm) of liposomes manufactured with entrapped amodiaquine with buffer of pH 6 at 5°C over a period of 84 days. Results are shown as mean ± SEM (n=3).

Figure 4.12: Illustrates the median size (in μm) and the size distribution (span in μm) of liposomes manufactured with entrapped amodiaquine with buffer of pH 6 at 25°C over a period of 84 days. Results are shown as mean ± SEM (n=3).

Figure 4.13: Illustrates the median size (in μm) and the size distribution (span in μm) of liposomes manufactured with entrapped amodiaquine with buffer of pH 6 at 40°C over a period of 84 days. Results are shown as mean ± SEM (n=3).

Figure 4.14: The pH for liposomes manufactured with just a pH 6 buffer in three different temperatures over a period of 84 days. Results are shown as mean ± SEM (n=3).
**Figure 4.15:** The pH for AQ entrapped liposomes in three different temperatures over a period of 84 days. Results are shown as mean ± SEM (n=3).

**Figure 4.16:** The calibration curve used to determine the concentration of AQ in a pH of 6. (n=3) $r^2 = 0.9832$. \( y = 0.0357x - 0.005 \).

**Figure 4.17:** The entrapment efficacy of amodiaquine in the liposome formulation in 5°C. Results are shown as mean ± SEM (n=3).

**Figure 4.18:** The entrapment efficacy of amodiaquine in the liposome formulation in 25°C. Results are shown as mean ± SEM (n=3).

**Figure 4.19:** The entrapment efficacy of amodiaquine in the liposome formulation in 40°C. Results are shown as mean ± SEM (n=3).

**Figure 4.20:** A representative sample of a scatter plot as gotten from the FACSCalibur™ before being processed with FlowJo™. The figure portrays both the forward and side scatter when a ROS analysis was done on erythrocytes.

**Figure 4.21:** The fluorescence histogram of a representative erythrocyte sample, illustrating fluorescent species (Stained) and non-fluorescent species (Unstained) after processing with FlowJo™.

**Figure 4.22:** The amount of intracellular ROS detected in erythrocytes (RBC) and *P. falciparum* infected erythrocytes (iRBC). The numbers on the x-axis denote the concentration of liposomes added to the RBS solution before incubation. Results are shown as mean ± SEM (n=2) and a factor of the unstained cells.

**Figure 4.23:** The amount of intracellular ROS detected in erythrocytes (RBC) and *P. falciparum* infected erythrocytes (iRBC). The numbers on the x-axis denote the concentration of liposomes with entrapped amodiaquine then diluted with liposomes with no entrapped drug, which are added to the RBS solution before incubation. Results are shown as mean ± SEM (n=2) and a factor of the unstained cells.

**Figure 4.24:** A representative sample of a scatter from the FACSCalibur™ before being processed with FlowJo™. The figure portrays both the forward and side scatter when a lipid peroxidation analysis was done.
Figure 4.25: The fluorescence (FL 1) histogram of a representative erythrocyte sample, fluorescent species (2) and non-fluorescent species (1) after processing with FlowJo™.

Figure 4.26: The amount of lipid peroxidation detected in erythrocytes (RBC) and *P. falciparum* infected erythrocytes (iRBC). The numbers on the x-axis denote the concentration of liposomes added to the RBS solution before incubation. Results are shown as mean ± SEM (n=2), a factor of the unstained cells and are also inverted (1/x).

Figure 4.27: The amount of lipid peroxidation detected in different solutions of erythrocytes (RBC) and *Plasmodium falciparum* infected erythrocytes (iRBC). The numbers on the x-axis denote the concentration of liposomes with entrapped amodiaquine then diluted with liposomes with no entrapped drug, which were added to the RBS solution before incubation. Results are shown as mean ± SEM (n=2), a factor of the unstained cells and are also inverted (1/x).
List of Tables

**Table 1.1:** Introduction dates of specific antimalarial drugs and time taken for the appearance of resistance  

Page 12

**Table 1.2:** Treatment regime for uncomplicated *P. falciparum* malaria  

Page 14

**Table 1.3:** Treatment regime for severe *P. falciparum* malaria  

Page 16

**Table 1.4:** The physical properties of chloroquine  

Page 21

**Table 1.5:** The physical properties of amodiaquine  

Page 24

**Table 4.1:** The results from the solubility study of amodiaquine in a wide pH range  

Page 63

**Table 4.2:** The pH of the liposomes with buffer (pH 6). Results represented as mean ± SEM (n=3)  

Page 77

**Table 4.3:** The pH in the liposomes with AQ entrapped. Results represented as mean ± SEM (n=3)  

Page 79

**Table 4.4:** Amounts of the reagents used to make the cultivation medium  

Page 85
List of Abbreviations

AQ: Amodiaquine

CDC: Centre for Disease Control

CL: Conventional liposomes

DCFH-DA: 2’,7’-dichlorofluorescein diacetate

DOH: Department of Health (South Africa)

EDL: Essential Drug List

FACS: Fluorescence Activated Cell Sorter

FP: Ferrisprotoporphyrin IX

Fluorescein-DHPE: N-(fluorescein-5-thiocarboxyl)-1,2-diheade-canoyl-sn-glycero-3-phosphoethanolamine

FSC: Forward scatter

Hb: Haemoglobin

iRBC: *Plasmodium* infected Red blood cells

LCL: Long Circulating Liposomes

LMWA: Low molecular weight antioxidants

LUV: Large Unilamellar Vesicles

MLV: Multilamellar Vesicles

NIAID: National Institute of Allergy and Infectious diseases

NOS: Reactive nitrogen species

OLV: Oligolamellar Vesicles

PBS: Phosphate buffer solution

PC: Phosphatidyl choline
**RBC:** Red blood cells or erythrocytes

**ROS:** Reactive oxidative species

**RPMI:** Roswell Park Memorial Institute (refers to the buffer)

**SSC:** Side scatter

**SUV:** Small Unilamellar Vesicles

**T\textsubscript{C}:** Phase transition temperature

**UV:** Ultra violet

**WHO:** World Health Organization
Title: Preparation, stability and in vitro evaluation of liposomes containing amodiaquine.

Keywords: Malaria, liposomes, amodiaquine, Plasmodium falciparum, stability, toxicity, entrapment efficacy, size determination, reactive oxygen species, lipid peroxidation.

Malaria is a curable disease that claims nearly one million lives each year. Problems with the treatment of malaria arise as resistance spreads and new treatment options are becoming less effective. The need for new treatments are of the utmost importance. Liposomes combined with antimalarials are a new avenue for research as liposomes can increase the efficacy of drugs against pathogens, as well as decreasing toxicity. Amodiaquine is a drug with known toxicity issues, but has proven to be effective and is, therefore, a prime candidate to be incorporated into the liposomal drug delivery system.

The aim of this study was to prepare, characterize and evaluate the toxicity of the liposomes with incorporated amodiaquine. The solubility of amodiaquine was determined and liposomes formulated with, and without, amodiaquine entrapped. Accelerated stability studies (at 5 °C, 25 °C with relative humidity of 60% and 40 °C with a relative humidity of 40%) were conducted during which the size, pH, morphology and the entrapment efficacy was determined. The toxicity was determined in vitro by analysing the levels of reactive oxidative species and lipid peroxidation caused by the formulations to erythrocytes infected with P. falciparum as well as uninfected erythrocytes with flow cytometry.

The solubility study of amodiaquine in different pH buffers showed that amodiaquine was more soluble at lower pH values. Solubility in solution with pH 4.5 was 36.3359 ± 0.7904mg/ml when compared to the solubility at pH 6.8, which was 15.6052 ± 1.1126 mg/ml. A buffer with a pH of 6 was used to ensure adequate solubility and acceptable compatibility with cells. Liposomes with incorporated amodiaquine were formulated with entrapment efficacies starting at 29.038 ± 2.599% and increasing to 51.914 ± 1.683%. The accelerated stability studies showed the median sizes and span values remained constant for both liposome and amodiaquine incorporated liposomes at 5 °C. The higher temperatures, i.e. 25 °C and 40 °C, displayed increases in the median size, and decreases in the span for both formulations. The conclusion can, therefore, be made that both liposome and amodiaquine incorporated liposomes are stable at lower temperatures. The entrapment efficacy increased from initial values to nearly 100% during the course of the stability study. This was attributed to amodiaquine precipitating from the solution. The pH values of the liposomes and amodiaquine incorporated liposomes remained
constant for each formulation; though the amodiaquine incorporated liposomes had a lower starting pH, the formulations are both thought to be stable in terms of the pH.

Toxicity studies revealed low levels of reactive oxygen species as well as low levels of lipid peroxidation for both liposome and amodiaquine incorporated liposomes, on both erythrocyte and *Plasmodium* infected erythrocytes. From the toxicity studies it can be concluded that liposomes and amodiaquine incorporated liposomes are not toxic to erythrocytes and infected erythrocytes.

It was concluded that liposomes incorporating amodiaquine could possibly be used as a treatment option for malaria.
**Titel:** Die vervaardiging, stabiliteit en *in vitro* evaluering van amodiakien bevattende liposome

**Sleutelwoorde:** Malaria, liposome, amodiakien, *P. falciparum*, stabiliteit, toksisiteit, inkorporerings effektiwiteit, groottebepaling, reaktiewe suurstof spesies, lipied peroksidasie.

Malaria is 'n geneesbare toestand wat meer as 'n miljoen lewens elke jaar eis. Probleme met die behandeling van malaria duik op as gevolg van verspreiende weerstandbiedendheid van die parasiete teen huidige behandelings. Daarom is dit uitsgebreid belangrik om nuwe behandelings te ontwikkel. Die kombinasie van liposome met antimalaria middels is 'n nuwe veld wat ondersoek kan word, omdat liposome die effektiwiteit teen verskeie patogene kan verbeter, sowel as om toksisiteit te verlaag. Probleme wat met amodiakien toksisiteit ondervind word, is welbekend, maar die middel beskik oor hoë effektiwiteit. Daarom is amodiakien 'n geskikte middel om in 'n aflieveringssisteem ingesluit te word.

Die doel van die studie was om liposome en liposome met geïnkorporeerde amodiakien te vervaardig, te karakteriseer en die toksisiteit daarvan te evaluer. Die oplosbaarheid van amodiakien is bepaal en liposome berei, met en sonder die geneesmiddel daarin geïnkorporeer. Versnelde stabiliteitsstudies (in 5 °C, 25 °C met 'n relatiewe humiditeit van 60% en 40 °C met 'n relatiewe humiditeit van 40%) was gedoen, waartydens die grootte, pH, morfologie en inkorporerings effektiwiteit bepaal is. Daarna is die toksisiteit *in vitro* bepaal deur die vlakke van reaktiewe suurstof spesies en vlakke van lipied peroksidasie, wat veroorsaak is deur verschillende formulerings op *Plasmodium* geïnfecteerde rooibloedselle en on-geïnfecteerde rooibloedselle, deur middel van vloeisitometrie.

Die oplosbaarheid van amodiakien in verkillende pH buffers is bepaal. Die oplosbaarheid studies het getoon dat amodiakien meer oplosbaar is by laer pH waardes. Oplosbaarheid by pH 4.5 was 36.3359 ± 0.7904mg/ml, in vergelyking met 15.6052 ± 1.1126mg/ml by pH 6.8. 'n Buffer met 'n pH van 6 is dus gebruik, om te vereker dat die amodiakien voldoende sal oplos, sowel as om verenigbaarheid met die selkulture te verseker. Liposome met amodiakien geïnkorporeer, kon dus vervaardig word, met aanvanklike geneesmiddel inkorporering wat begin by 29.038 ± 2.599% en styg tot 51.914 ± 1.683%. Versnelde stabiliteitsstudies het getoon dat grootte, sowel as die deeltjie verspreiding relatief konstant gebleef het vir beide die liposome en amodiakien geïnkorporeerde liposome by 5 °C. Die hoër temperature, dit wil sê 25 °C en 40 °C, het 'n verhoging in die grootte en 'n afname in deeltjie verspreiding getoon. Hieruit kan afgelei word dat beide formulerings stabiel is by laer temperature. Die inkorporeringseffektiwiteit van die geneesmiddel het gestyg van die aanvanklike waardes tot byna 100% by al die...
temperature gedurende die stabiliteitsondersoek. Dit kan toegeskryf word aan die presipitasie van amodiakien uit die oplossing. Die pH waardes van beide formulerings het konstant gebly, alhoewel die amodiakien liposome oor ’n laer aanvanklike pH geskik het. Beide formulerings is stabiel geag in terme van pH.

Toksisiteit studies het lae vlakke reaktiewe suurstof spesies, sowel as lae vlakke lipied peroksidase vir beide liposoom en amodiakien geïnkorporeerde liposoomformulerings op rooibloedselle en Plasmodium geïnfekteerde rooibloedselle getoon. Vanuit die toksisiteitbepaling kan afgelei word dat liposome en liposome met amodiakien geïnkorporeer, nie toksies vir rooibloedselle is nie.

Uit die resultate kan die afleiding gemaak word dat liposome waarin amodiakien geïnkorporeer is, ’n moontlike behandelingsoopsie vir malaria kan wees.
Introduction and aim of study

Worldwide, more than 1 million people die as a result of malaria. This serious disease affects the lives of more than 1.62 billion people that live in areas where malaria is endemic (WHO, 2009; CDC, 2010; Daily, 2006). Unfortunately, malaria is most wide-spread and out of control in developing countries that do not have sufficient infrastructure to handle a health crisis on such a large scale (WHO, 2009). This problem is further aggravated by the fact that malaria resistance is becoming an ever increasing and wide spread problem. This leads to inadequate treatment and treatment failures (Wongsrichanalai et al., 2002). Even newly introduced treatments are not safe from the threat of treatment failure, as even the newly introduced artemisinin treatment alternatives have shown the first stage of treatment failures due to resistance (Dondorp et al., 2009). Therefore, it is important to develop new treatment options and review treatment regimes.

For many years chloroquine has been the staple of malaria treatment, but chloroquine has come under fire as resistance started spreading and is now almost a global occurrence (Foley & Tilley, 1997). An alternative to chloroquine is amodiaquine, as cross-resistance to both amodiaquine and chloroquine is rare, and amodiaquine has increased efficacy even when chloroquine resistant malaria was tested (Foley & Tilley, 1997; Hawley et al., 1996; Winstanley et al., 1990). Amodiaquine may be an answer to many problems, but amodiaquine has an unfortunate stigma attached to it as certain severe side-effects, encountered in the 1980’s, removed amodiaquine from wide-spread and prophylactic use. In 1996 the WHO reintroduced amodiaquine to the essential drug list, as extensive research showed that amodiaquine related serious side-effects are rare (Olliaro & Taylor, 2003). Unfortunately not much research has been done on amodiaquine as the use thereof has been limited (Winstanley et al., 1990).

Problems in malaria treatment, such as resistant parasites and toxicity can in a large part be decreased and controlled if a drug delivery system is employed. A lipid based drug delivery system known as liposomes has proven itself to be useful in both these respects, as liposomes have in past studies, improved pharmacokinetics and bio-distribution, decreased toxicity and increased efficacy against a wide range of pathogens (Sharma & Sharma, 1997; Drulis-Kawa et al., 2006). Unfortunately, as with most things in life, liposomes as a drug delivery system is not without its faults, and this needs to be closely examined as many different aspects, especially the physicochemical aspects of formulations need to be tested and examined before starting in vivo tests (New, 1990). It has been shown that drugs, including arthemether, chloroquine, primaquine and a whole host of others have been successfully incorporated into liposomes. The
formulations showed an increase in bioavailability, possibly overcoming resistance and often a decrease in toxicity (Qui et al., 2008; Sharma & Sharma, 1997; Bayomi et al., 1998).

The aims of this study were the preparation, characterisation and in vitro evaluation of liposomes containing amodiaquine. Therefore, in this study, a combination of amodiaquine and liposomes was prepared and tested to determine if a combination was possible and viable to formulate. Preliminary studies were done to determine if a possible combination is safe for use.

Therefore, the specific objectives of this study were:

1. Manufacturing liposomes according to the thin film hydration method.
2. Characterisation of liposomes according to morphology, size, pH and entrapment efficacy.
3. Manufacturing liposomes and incorporating amodiaquine.
4. Characterising amodiaquine entrapped liposomes according to size and entrapment efficacy.
5. Determining the stability of said formulations under high stress situations, such as accelerated stability testing.
6. To evaluate the possible toxicity of liposomes and liposomes incorporated with amodiaquine.

Chapters 1 to 3 consist of a literature study covering malaria, liposomes as a drug delivery system and the determination of the physicochemical properties of the formulations as well as the toxicity determinations. Chapter 4 consists of the experimental design, methods followed, the results and the discussions of said experiments. This study is unique as this author was unaware of any studies using a combination of liposomes and amodiaquine. This study will help determine if amodiaquine combined with liposomes is possible, viable and safe. If this is deemed to be the case, further studies may optimise this system, test its efficacy against different Plasmodium strains and may even move it to wide spread production and use.