217

Appendix A

Appendix A.1: Photos of the completed system

218

A communication sub-system for the ADES

219

Appendix B: Data CD

Appendix B.1: System requirements specification

Systems requirements specification for the Active Magnetic Bearing and Drive Electronic System.

Appendix B.2: Communication drivers data sheets

ISensorboard driver chip datasheet, main controller driver chip data sheet and power amplifier

driver chip data sheet.

Appendix B.3: CRC article

CRC tables

Appendix B.4: VHDL code

VHDL code

Appendix B.5: MATLAB® code

MATLAB® code

Appendix B.6: Example of Modelsim® test benches

Modelsim® simulation code

Appendix B.7: Hardware guides

Hardware guides

220

A communication sub-system for the ADES

221

Appendix C

Appendix C.1: State machine of the UART receiver

TN

ClkCnt <=T_BITS -1

Falledge = ‘1’

ClkCnt<=T_BITS - 1

clkCnt <=T_FIRST - 1

Figure C-1-1: UART receiver state machine

222

Idle

During the idle state the UART receiver waits for the fallEdge signal to go high. This signal
continuously monitors the serialln line for a falling edge. Once a falling edge is detected as

shown in Figure C-1-2 it is assumed that a start bit has been detected.

Falling edge = Start bit

v serialLINE———

ov

Figure C-1-2: Start bit detection

Noise immunity is an immense problem, due to the power amplifiers, therefore the
probability exists that false falling edges can be detected. Thus an extra state is included to
assist avoiding this critical problem. The added state is invoke just after the idle state and is
called the checkStart state. What this added state does is instead of checking only for a
falling edge and assuming that it is a start bit the extra state count to the mid point of the
start bit and checks whether the serialln signal is still low. Ensuring that a noise spike has
not triggered the receiver, but a start bit has. After this has occurred fallEdge is set high and

state transition will occur to start receiving the first data bit.

WaitFirst

During the WaitFirst state an internal counter, counts until it reaches the mid point of the first
data bit available on the serialln input signal, as shown in Figure C-1-3. The counter will only
count from 0 to 7 to reach the mid point of the first data bit. The incoming data bit is than
shifted into a register and the bit counter is incremented by one, indicating that the first data
bit has been received. In this state the parity calculation starts. This is done by performing an

XOR calculation between the parity signal which is set to 0 and the first incoming data bit.

Falling edge
= Start bit

waitFirst counter = 7
Mid point of the first data bit

sv seriallN LINE ‘
A

ov >

Figure C-1-3: WaitFirst counter

WaitBits

In the WaitBits state an internal counter counts until it reaches the mid point of the next
incoming data bit, however this time it will count from 0 to 15 to reach the mid point of the
next data bit as shown in Figure C-1-4.The data bit is shifted out and the parity signal is
adjusted by performing another XOR operation between the new incoming data bit and the
parity signal. The bit counter is incremented and the process is repeated until all the data bits

are received. Now state transition can occur.

223

Falling edge waitBits counter = 15
= Start bit Mid point of next data bit

waitFirst counter = 7
Mid point of the first data bit

5v serialLINE

ov

Figure C-1-4: WaitBits counter

WaitParity | Once again the internal counter counts until it reaches the mid point of the last data bit which
is the parity. If the data bit and the parity signal does not match the Err signal is flagged —
which indicates an internal UART error. The dataRxRdy signal is set to ‘1" indicating that
data is available in the dataRxed register to be used by other communication components.
The state transition can now occur to the default state —Idle. The graphical representation of
the procedure is shown in Figure C-1-5.

State: .
e
Falling edge
= Start bit
l State:
Checkstart
‘ State:
waitFirst counter = 7 WaitBits State: State:
To check the start bit txParity Stopbit
—seriall ! ' 3 Seriallny
o T W e o W o MeoooME oW et o o e o 1 o
Figure C-1-5: State addition

Others An others state is incorporated in every component written for the internal communication.

state

The reason being that in the unlikely event that the system goes into a possible undefined

state the system always refers to the default idle state. This is considered to be crucial in

safety critical software systems.

224

Appendix C.2: State machine of the UART transmitter

dataRdy = ‘1’
‘ clkCnt <= T_BIT - 1

clkCnt = T_WAITDONE

CIkCnt <-‘
CIkCnt + 1

IkCnt <= T_BIT-1

bitCnt <= 15

clkCnt<=T BIT -1

Figure C-2-1: FSM for UART transmitter

225

Idle

During the idle state the UART transmitter unit waits for the dataRdy line to go high. This
transition indicates that data is ready to be transmitted commencing to the transmission of the
start bit which is a ‘0’. The start bit is written out on the serialOut line. After this had occurred

the system transitions to the next state.

Startbit

During this state the UART transmitter waits for 16 enabling tick before commencing to
transmit the first data bit on the serialOut line. The parity calculation also starts in the state,

by means of a XOR calculation. After this occurred the system transitions to the next state.

Data

During the data state the UART transmitter once again waits for 16 enabling ticks before
transmitting the next data bit. After the first data bit is transmitted the bit counter is
incremented and written out on the serialOut. This process is repeated until the bit counter
reaches 15. Throughout the transmission of each of the data bits an XOR calculation occurs
with systematically determines the parity of the data transmitted. In the event where the bit
counter reaches 15 the parity is also transmitted. Immediately following state transmission

occurs.

txParity

In the txParity state the UART transmitter once again waits for 16 enabling ticks where after
the stop bit which is a ‘1’ is written out on the serialOut line. State transition once again

occurs.

Stopbit

In the stopbit state the UART transmitter waits for 16 enabling ticks before transitioning to the

waitDone state.

waitDone

During the waitDone state an internal counter is set to count to 100 clock cycles. This is done to
ensure that the communication controller does not start to receive immediately after
transmitting. Keeping in mind this can lead to faulty communication over a half duplex

transmission line.

226

Appendix C.3: Power amplifier communication controller

Figure C-3-1 illustrate the state machine used to design the communication controller situated on

the power amplifiers which interfaces with the main controller. In

Table 3-1 the various states are described.

Enable = ‘0’ Txwr <=0
Rx_rd = ‘0 Rx_rd <="1
1'—I')|(E’1V¢:rc_= 8 timec <= timeout + 1
dataC =1
) getDATA PA1reValnow <= rx_data
Empty =0 dataC=2
Datac <= datac + 1

Enable = ‘1’ dataCRC <= rxdata

dataGetCRC <= PA1refVal

dataC !=3

Tx_data <= PA1curVal

Tx_data <= PA2curVal dataC = 3
Tx_data <= Err

\TX_data <= crcValue

SendData Tx_wr="1"
é Waitcounter <=
o 3 waitcounter + 1
n £
> =
Q. n
5 8
“ £ Call CRC function
[
Waitcounter <= 4
PromptUARTtx
Waitcounter = 4
call CRC function
CheckData
CheckData
dataCRC /=
crcValue
Err<= 1
dataOut <=
PA1refVal
dataCRC=
CrcValues
dataOut <=
PA1refVal
ReadCurVals Err<=0
writeRefVal

Figure C-3-1: State machine implemented on the power amplifier

Table 3-1: State description

State

State description

Idle

During the idle state the communication controller waits to be enabled by die
sync signal. Once the communication controller has been enabled, state transition

occurs.

Waitdrx

During the waitdrx state, a timeout is incremented. Once data becomes available
in the FIFO by setting the empty signal to ‘0" state transition occurs to the GetData
state. In the case where no data becomes available in the FIFO, the timeout will be

reached and state transition will occur to the PromptUARTx state.

GetData

In the getdata state, the data available in the FIFO is read out. Once all the data is

read out state transition occurs to GenCRC.

PromptUart

During this state and error will be flagged, indicating that no data has been

received. State transition will occur back to wait4rx.

GenCRC

In the GenCRC state the CRC function is called and the CRC is calculated. State

transition occurs to the CheckError state.

CheckError

In the event of a CRC mismatch an error will be flagged. State transition will occur
to WriteRefVal.

WriteRefVal

If no CRC error was flagged the received current reference value will be written
into the DPR. If a CRC error was flagged an error will be written into the DPR
notifying the power amplifier controller that a communication error has occurred.

State transition will occur to ReadCurVals.

ReadCurVals

During the ReadCurVals the true current values will be read out of the memory

space where after state transition will occur to CheckData.

CheckData

A CRC will be calculated in this state by calling the CRC function where after

state transition will occur to SendData.

SendData

During this state the two true current values will be transmitted and the CRC

value. State transition will occur to the default state idle

228

Appendix C.4: Main controller communication controller

Figure C-4-1 illustrate the state machine used to design the communication controller situated on

the main controller which interface with a power amplifier. In this section each of the states will be

discussed.

Enable =1
newdataPCC <=0
datac <=0 -) o
timec<=0 | Enable = ‘0’ New_data <=1 DPRChlpEnbee <="
timectx <= 0 Add_dprA <=3

PA1refVal <= dataOutDpr;

Read_dprA

Call CRC function

Enable = ‘1’

dataC =0 New_data /= 1
dataRdy =1
Err/=0
datalndpr = Err
Address =5
Err=0 Wait_counter = (-
New_DataPPC = 1 Tx_wr <=1
Tx_data <= SendData
PA1refVal
Tx_data <=
crcValue;

WriteDPR

empty >'0"and dataC = 1 then Err <=1
empty > '0"' and dataC = 2 then Err <= 2 timectx < timeout-1
empty >'0'and dataC = 3 then Err <=3
empty > ‘0’ and dataC = 4 then Err <=4

dataCRC /=

crcValueCheck tx_wr<="0"

dataCRC =
crcValueCheck

Timec = timeout
Errcode <= err

CheckCRC
Error

timectx = timeout-2

Timec < timeout and
Empty =1’

GetData
Empty =0’

dataC <= dataC+1

Figure C-4-1: State machine implemented on main controller

Table 4-1: State description

Idle

During the idle state the communication controller waits to be enabled by die
sync signal. Once the communication controller has been enabled, the new
data input is checked. This input will be high if new data is available in the
DPR. If the new data input is not high an error will be flagged and state
transition will occur to writeError. If the new data signal is high, state

transition will occur to Read_dprA.

Read_dprA

In this state the current reference value is read out the DPR where after state

transitions occur to GenCRC.

GenCRC

In the GenCRC state the CRC function is called and the CRC is calculated.

State transition occurs to the SendData state.

SendData

During this state the current reference value and the CRC value is written into

the FIFO where after state transition occurs to the wait4tx state.

Waitdtx

In the wait4tx state a timeout is incremented until the estimated time it will
take for transmission to be complete is reached where after state transmission

will occur to the Waitdrx state.

Waitdrx

During the waitdrx state, a timeout is incremented. Once data becomes
available in the FIFO by setting the empty signal to ‘0’ state transition occurs to
the GetData state. In the case where no data becomes available in the FIFO, the
timeout will be reached and state transition will occur to the PromptUART#x

state.

GetData

In the getdata state, the data available in the FIFO is read out. Once all the data

is read out state transition occurs to CheckCRC.

PromptUart

In this state errors will be flagged according to the data not received. Where

after state transition to the WriteError state will occur.

CheckCRC

During the CheckCRC state the CRC function is called after the CRC is

calculated state transition occurs to CheckCRCerror.

CheckCRCerror

In the event of a CRC mismatch an error will be flagged. State transition will
occur to WriteError. In the event that no error was flagged the system will

transition to WriteData.

WriteDPR

During this state the true current values will be written into the DPR where

after state transition will occur to WriteError.

WriteError

The errors flagged will be written into the DPR where after state transition will

229

occur to the default state idle.

230

