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Chapter

ADES internal digital communication system design

Chapter 4 will start off by procuring the correct hardware for the ADES system as well as the
communication system. Here after the main focus will shift toward the development of the ADES digital
communication system that will be implemented between the internal functional units (from now on referred
to as the ADES digiComm protocol). This chapter will be divided into the different OSI layers that will be

implemented.

4.1 Introduction

The ADES digital internal communication protocol (digiComm) will be tailored to meet the
particular needs of an AMB system. The objective of the communication system will be to
exchange data between the selected digital controller and the various specified functional units.
The main goal will be to design a protocol to utilize a selected link between the main controller
system, the power amplifiers, the ISensorboard, the motor drive unit and the power conditioning
unit. This developed protocol needs to improve the reliability and robustness of the system, ,
reduce the cost, improve noise immunity and incorporate methods to ensure expandability and
flexibility.

In this chapter the hardware selection according to the specified architecture will be discussed
first. Then the focus will shift towards the development of a protocol for the internal

communication signals.
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4.2 Hardware

The hardware selected to meet the specifications of the architecture specified in Section 3.3 will be
discussed in this section. All the hardware modules will be commercial off the shelf (COTS) items.

This will reduce risk, cost and development time.

4.2.1 Master node (PMC module)

Communication control will be implemented on FPGAs. The FPGA on the main controller will be
the master in the internal communication system and the FPGAs on the other functional units will

be the slaves. The selected master node (PMC module) is illustrated in Figure 4-1.
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Figure 4-1: General overview of the master node.
The master node consists of:

1. Two Virtex 5 FPGAs. One FPGA (1.1) will be used for communication with the internal
functional units through the front I/O and for the control algorithm of the ADES. The
other Virtex 5 FPGA (1.2) is used only to establish communication between the main
controller and the SBC by means of a PCI-X bus.

2. A local bus interface is used to connect the second smaller Virtex 5 FPGA that handles
the PCI-X interface (2).
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3. Various memory modules. All the programs will be situated on the Flash memory
(3.1). During startup the block memory (BRAM) downloads the boot loop program
from the flash memory into the BRAM (3.2). The boot loop program then configures
the FPGA.

4. A front input/ output (I/O) connector (4) which will communicate with the various
internal functional units. A digital I/O mezzanine board was selected to slot into the
front I/O connector. This module is illustrated in Figure 4-2.

5. A rear I/O interface (5) that can be used to communicate by means of LVDS with I/O
units.

6. A PowerPC interface (6). The PowerPC interface will be utilized to obtain data from
the PCI bus and perform critical control functions including PID control.

4.2.2 AXM-DO03 digital mezzanine module

The AXM-DO03 I/O module consists of 16 bi-directional CMQOS transceiver and 22 bi-directional
differential signals. The FPGA is buffered by using RS 485 transceivers on the differential channels.

These drivers are able to achieve a data transfer rate of up to 20 Mbps.

Figure 4-2: AXM-D03 mezzanine module.

4.2.3 SCSI cable

The AXM-D03 module is accessed via a 68 SCSI front panel connector. A 2 meter, round, 68

conductor, shielded cable with a male SCSI-3 connector on both ends and 34 twisted pairs will be



used to connect the AXM-D03 module to the termination panel.

Figure 4-3. This cable is not terminated.
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The mentioned cable is shown in
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Figure 4-3: SCSI cable with connector

424 Termination panel

The SCSI cable with the male SCSI-3 connectors will connect to a termination panel as shown

Figure 4-4 consisting of a DIN-rail mountable panel which provides 68 screw terminals for

universal field I/O termination. The 68 screw terminals will be used to interface with the slave

modules and to terminate the transmission lines on both ends.
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Figure 4-4: Termination panel
4.2.5 SBC (cPCI module)
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The selected SBC shall meet the following requirements for the communication system:

1. Adhere to the cPCI industrial standard.

Consist of at least two PMC slots one for the controller and another for the Profibus

card.

3. Consist of two Ethernet ports one for the remote access port and another for the

maintenance port.



103

The module that satisfied these constraints was the PP410/03x SBC supplied by Concurrent

Technologies Inc. Figure 4-5 illustrates the selected module.

Figure 4-5: Single Board Computer (SBC)

4.2.6 Profibus option
The selected Profibus card shall meet the following requirements:

1. Support the Profibus-DP standard.
2. Consist of a PMC interface.
3. Reach a baud rate of 12 Mbps.

The PMC253 module supplied from Kontron Inc adhered to these specifications. Figure 4-6

illustrates the selected module.

Figure 4-6: Profibus card
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4.3 Protocol functioning

The communication system as illustrated in Figure 4-7 shows a point-to-point structure for each of
the internal communication interfaces as identified in chapter 3. The ISensorboard (FU 1.2), power
amplifiers (FU 1.3), motor drive unit (FU 1.4) will interface with the main controller via a selected
transmission medium. This transmission medium will route back to a selected I/O module (FU
1.1.5) which will be situated on a PMC FPGA card (FU 1.1.3). Communication will be a half-duplex

setup between all the internal functional units, except for the units CMOS digital lines.
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Figure 4-7: The communication structure of the system.

The internal communication structure will be classified as a master-slave structure, where the
Virtex 5 FPGA is the master and the power amplifiers, sensor driver unit, the motor drive unit and

SBC are the various slaves. The master will be responsible for:

e The master clock which will enable the various functional units.
¢ Obtaining the correct data from the various functional units.
e Distributing data to the correct functional units.

A master clock will trigger each of the units in the data flow path. The master clock will be
provided on one of the digital channels available on the AXM-D03 module. One communication

cycle of the ADES should be completed within a 20 kHz cycle which corresponds to 50 ps. In the
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passive state each of the functional units will wait to be enabled by the master clock (sync) signal.

The internal control cycle communication data flow path will be discussed in the next section.

4.4 Internal communication data flow path
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Figure 4-8: Communication data path

The internal communication data flow of the ADES will start on the ISensorboard. The
ISensorboard will transmit two X, Y and Z position values to the main controller. These values will
be used by the main controller to generate five current reference values that will be transmitted to
five power amplifier boards. Each of the power amplifier boards consist of two power amplifiers.
After each of the power amplifier boards received the reference current value, two true current
values (one from each power amplifier) will be transmitted back to the main controller. All the

internal communication of the ADES will be handled by the communication controllers.

4.5 Communication timing

In higher level communication systems, the timing requirements are in general not that strict,
however when developing lower level communication timing systems, staying within timing
requirements becomes crucial. The last very important aspect of the internal communication

protocol that needs to be discussed is the communication timing diagram of the system.
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Figure 4-9: System timing

The timelines that influence the control of the ADES starts off at exactly the same time. The
ISensorboard communication (iSensor coms) timeline begins by transmitting the position values,
pos(k). The control timeline starts off at the same time, but because, pos(k), is not available at this
stage the previous position value , pos(k-1) , is used to calculate the current reference value. When
examining the power amplifier communication (PA coms) timeline, it is noted that the main

controller, due to the delay of the position values and the reference value, transmits, iref(k-2) ,
which is delayed by two control cycles.

Another timeline that also starts at exactly the same time as the other timelines is the power
amplifier control (PA control) timeline. Due to the previous delays, the power amplifier control

timeline must use, iref(k-3) , implying that the total control cycle is delayed by three 20 kHz cycles.

This is the maximum tolerable delay thus it is crucial that each of the communication cycles must

not exceed the 20 kHz requirement.

4.6 Protocol layers

The ADES digiComm protocol will not consist of all the ISO/OSI layers as discussed in Chapter 2.
The layers that will be implemented in the ADES digiComm protocol is the physical layer and the

data link layer.
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4.6.1 Physical layer

“This layer is concerned with the physical layer of the communications link — mechanical and
electrical — and provides the means to transmit bits across a continuous communications path.
The protocol for this layer sets details such as cable size, loss and frequency characteristics,

connector types, pin arrangements, voltage levels and transmission coding.” [22]

4.6.2 Electrical specifications

As previously mentioned and motivated in Chapter 3 the ADES digiComm protocol will employ
the RS 485 standard in the physical layer. The RS 485 is a complete electrical specification which

specifies driver-output and receiver input characteristics [49].

4.6.3 Mode

The RS 485 standard will only implement point-to-point connections instead of multi-point bus
architecture. The reason for this is to exclude the possibility of a single point of failure in the
system as well as increased data transfer speed. The RS 485 standard is used to communicate bi-

directional as a half-duplex bus.

4.6.4 Cable selection

The RS 485 standard only specifies that a “Balanced Interconnection Media” and that “paired
cables with metallic conductors should be employed” [50], omitting to specify a specific cabling
solution. Various cabling solutions exist which adhere to these specifications. Examples of these
cables are twisted pair, flat cable and ribbon cable. The question however remains which cabling

solution must be employed in the ADES digiComm system.

One of the key requirements of the ADES is robustness, thus the need exists to employ a cabling
solution that increases noise immunity immensely. Since flat and ribbon cables are very
susceptible to differential noise that can corrupt the data, they will not be used as interconnection

media in the ADES digiComm communication system.

Several companies manufacture cables especially to be used for the RS 485 standard. One of these
companies is, Belden Inc. The cables that they designed and recommend for RS 485 standard are
twisted pair cables. One of the advantages of twisted pair cables is that the twists keep the
impedance constant over the length and in a case where noise is coupled into the medium, it is
expected to be equal on both of the conductors — aiding in reducing noise susceptibility [50]. This

results in obtaining a more robust and noise immune communication system.
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In an effort to decrease the degree of noise susceptibility, various application guides were studied
thoroughly. The universal suggestion was to use shielding to minimize the differential noise from

coupling into the twisted media [51].

Thus aside from being able to transfer data at the required rate, the selected cable must also have

the following attributes:

1. The cable must be shielded to reduce noise from coupling into the system.
2. The cable’s shield must be connected to the digital ground. The grounding policy will
be discussed in Section 4.6.5 to motivate this statement.

The cable that satisfies all the attributes is the BLDN9841 as shown in Figure 4-10.The BLDN9841
cable has the following specification: “one twisted pair 24 AWG with an aluminium-polyester
shield and an overall tinned copper braid shield” [50]. In this particular cable the shield is directly
connected to the ground [50].

Figure 4-10: Interconnection media - BLDN9841

4.6.5 Grounding

Grounding is also a vital part in any RS 485 network. As already mentioned in Chapter 2, RS 485 is
designed to operate with a ground potential difference of +/- 7 V. Although this potential
difference can easily be maintained during normal operation, during fault conditions for example
lightning strike, it can result in damage or even failure of one or more devices connected on the RS
485 network. An excellent way to keep the ground potential within the limits is by running a third
wire — which usually is the shield around a twisted pair. This creates a dedicated return path for
the RS 485 network, reducing the noise coupled into the system due to current leaking from large
equipment and ESD. Furthermore, as discussed in Section 4.6.4 the shielding will also aid in

reducing noise coupled into the transmission line from outside sources.

The grounding policy for the communication system is shown in Figure 4-11. Each functional unit
has its own isolated power supply. This allows each functional unit to be referenced to a single

earth- star connection. The shielded twisted pair cables will also only be grounded at the main
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controller side, to avoid ground loops. When the shield is connected at both functional unit ends

there will be an additional path connecting the two grounds which will cause ground loops.
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Figure 4-11: Grounding policy [52]

4.6.6 Drivers

4.6.6.1 Main controller

The RS 485 drivers that will be used on the main controller can reach a maximum data transfer rate
of up to 20 Mbps. These drivers will be used to translate between RS 485 differential signalling to
an LVTTL compatible voltage level. This particular part is supplied by Acromag Inc.

4.6.6.2 Power amplifiers, ISensorboard

The drivers used on the power amplifiers and the ISensorboard are also half-duplex transceivers

designed for RS 485. This driver chip is supplied by Texas Instruments (part number -
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SN65HVD3082E) and able to reach data transfer rates of up to 20 Mbps. For more information
about the driver refer to Appendix B.2.

4.6.6.3 Motor drive

During the first stage of the ADES development, a motor drive was selected that adheres to the
communication specifications as listed in Chapter 3. The specifications included a RS 485
communication interface capable of data transfer rates up to 1 kbps. A motor drive that met these
specifications was obtained from Siemens Inc. However this drive communicates by means of an
established USS (UniverSal serial interface) protocol. During the second stage of the ADES project
the motor drive will be developed as well, and the ADES digiComm protocol will be used to

interface with the motor drive.

4.6.7 Termination options

It is important to know that termination becomes crucial when operating at high data transfer rates
and over long cables. The ADES digiComm system operates at relatively high data transfer rates
for RS 485 systems. Various termination options exist that can be used when implementing RS 485.
The first option is no termination, which at this stage has already been ruled out, due to the high
data transfer rates. The next option is to connect a single resistor across the conductor pair at each
end. The resistor value needs to match the characteristic impedance of the cable. When cables are
terminated in this way no reflection will occur and signal reliability is excellent [49]. The
termination resistor was selected as 120 (), because the nominal characteristic impedance of the
cable is 120 Q [53].

4.6.8 Biasing

Another technique that needs to be discussed for RS 485 networks is fail-safe biasing. When
applications implement asynchronous communication, fail-safe biasing becomes crucial. For
example UARTSs constantly check for a start bit which could either be a low or a high state. When
data is not being communicated over the lines, the lines will most likely remain in a high or low
state unless it is forced into an idle state by an active driver. In RS 485 systems this effect can
become troublesome, because once there is no active drivers on the bus, the bus can become
undetermined. This can result in possible false indications of start bits because when the RS 485
network is in tristate (idle) all the drivers are in receiver mode. When implementing fail safe
biasing a known state is provided when there are no active drivers on the line preventing this
effect.
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Failsafe biasing is implemented by connecting a pull-up resistor to line B and a pull-down resistor

to line A as shown in Figure 4-12.

Bias resistor l =

<

Enable

5V
Bias resistor

Figure 4-12: Failsafe biasing schematic [12]

The value of the biasing resistors is determined by the following procedure; consider each node on
the bus to have an impedance of 12 kQ. If there are two nodes on the bus (point-to-point) then the

equivalent impedance is 6 k(), keeping in mind that the nodes are in parallel.

The termination resistor is selected as 120 Q. Two of these resistors are in parallel thus the total
resistance is 60 (. When the nodes and the termination resistors are placed in parallel the total
resistance equals 59,4 () on the bus. Thus it can be derived that the termination resistors are

dominant in the calculations and from here on the total bus resistance will be listed as 60 Q.
The receiver sensitivity is 200 mV therefore the current required for the bus is;

200x1073

=3. A
60 3.33 m

The biasing is done from a 5V supply and the current required is 3.33 mA. Thus the total

resistance required to deliver this current is;

333x103 ~ 0020

If the termination resistor subtracted from the total resistance, 1442 Q) is obtained. The biasing
resistor is thus selected as 721 (). The final biasing and termination circuit is illustrated in Figure
4-13.
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Figure 4-13: Fail-safe biasing circuit [12]

4.6.9 Isolation options

The drivers on the main controller and the other functional units are not isolated. Isolation will not
be necessary for this application, keeping in mind that each of the functional units as well as the
main controller are situated in the same controller box and not great distances apart or on different
plants. The main controller and interfacing functional units are thus referenced to a single earth

star connection as explained in Section 4.6.5.

4.6.10 Connector types and pin connections

The different connector types used in the communication sub-system of the ADES for each

function units are given in Table 4-1.

Table 4-1: Connector types

Functional unit Connector
Power amplifiers Db-9
Motor drive Db-9
ISensorboard Db-15
Main Controller SCSI-3

4.6.11 Encoding

Another aspect that needs to be defined in the physical layer is, whether encoding is going to be
implemented and if so, which method to employ. Well-known encoding methods include

Manchester encoding, 4B5B encoding and 8B10B encoding [54] .
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Not every communication system implements encoding methods. Some of these communication
systems are, ARCNET, Profibus, Serial Real-Time Communication (SERCOS) and Controller Area
Network (CAN)[54]. These protocols address unique industrial requirements that pass data at
lower data transfer rates (< 20 Mbps) over shorter connection distances (< 100 m). This is similar to
the ADES digiComm protocol specifications .Therefore the ADES digiComm protocol will transmit
and received un-encoded serial data that remain in their logic 1 or logic 0 states for the determined
time intervals. This method is referred to as Non-Return-to-Zero (NRZ) representation of binary
data [54].

4.7 Data link layer

“This layer ensures reliable communication over the physical layer. The protocol determines the
structure of data i.e. the frame or packet size, and deals with aspects such as flow control, error

detection and error recovery.” [22]

First of all it is important to remember that the data link layer provides the network layer with
connection between two nodes. The main details that need to be specified in the data link layer are

[55];

1. Framing —-To recognise the different parts of the information [55].

2. Medium access — For communication control when more than one node is connected
on one bus [55].

3. Error control — For example implementing parity or cyclic redundancy check (CRC) to
determine if erroneous data was transmitted or received. However this layer does not
determine what to do when data is corrupt it is usually left for the upper layer to deal
with corrupt data [55].

4.7.1 Framing

The ADES digiComm protocol is a universal serial protocol. This communication protocol defines
a technique to access the different functional units in the ADES via a serial bus. The ADES
digiComm protocol works by means of a master-slave principle. Each slave is connected to the
master via a point-to-point communication link. The slaves are addressed by the master and can
only transmit data when enabled by the master. Furthermore, no data transfer can commence

between slaves.

Two different frames exist in the data link layer. These frames are discussed in the next sections.
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4.7.1.1 Data Frame

The data frame will be used to carry data from the transmitters to the receivers. The data frame
consist of 4 bit fields, a start of frame bit, data field bits, error field bit and end of frame bit field.
Figure 4-14 illustrates the data frame. The start bit will be one bit, the data bits will be 16 bits, the
parity will be one bit and the stop bit will be one bit. Even parity will be implemented to provide

the first line of defence against possible data corruption.
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Figure 4-14: Data frame

The data frame and the error frame looks almost similar to the well known specified universal
asynchronous receiver transmitter (UART) frame, with only one difference, the UART data field is

8 bits, however the data field of the ADES digiComm protocol will be 16 bits.

4.7.1.2 Error Frame

The error frame as shown in Figure 4-15 will be used to transmit a Cyclic Redundancy Check
(CRC) to aid in more advanced error detection on the bus. The error frame is similar to the data
frame; the only difference is that it carries the calculated CRC in the data field generated from all

the previous data frames. How the particular CRC is calculated will be discussed in Section 4.9.5.
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Figure 4-15: Error frame

4.7.1.3 Frame combination

The frames will work as follows; the data values will be transmitted in data frames. The

transmitted data values will be used to calculate the CRC and then the CRC will be transmitted in
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the error frame as shown in Figure 4-16. The amount of data frames depend on the functional unit.

The last frame is the error frame that consists of the CRC,

Frames
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Figure 4-16: Frame description

4.7.2 Medium access control

A half-duplex, point-to-point connection is considered as shared media, because two nodes use the
same transmission line. For applications that implement half-duplex, point to point connections;
the media access control defined is very simple. The frames are placed on the media by one node
and removed by the other node. Addressing will not be used considering that each of the nodes

only has one destination and by adding addressing only unnecessary overhead will be added.

Data collision is prevented by controlling the direction pin of each of the drivers. When one node
is transmitting the direction pin of the driver is set to high and the receiving node’s direction pin is

set low. This prohibits transmitting and receiving during the same time interval.

4.7.3 Error detection

Two error detection methods will be used in the ADES digiComm protocol. In the next section
these error detection methods will be discussed thoroughly. The implementations however will be

discussed in Section 4.9.5.

4.7.3.1 Method 1

Even parity will be implemented as the first line of defence against possible data corruption. Even

parity is calculated by counting the number of ones in the message. If the number of ones is even
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then a 0 is appended to the message. If the number of ones is not even a 1 is appended to the
message. This method is able of detecting only one error. Mathematically a parity bit is merely the

modulo 2 sum of the various bits and can be represented by (4-1) [55]:

p=mg+-+m, 4.1)

where p represents the parity bit, m represent the data bits and n represent the number of data bits.

4.7.3.2 Method 2

In the ADES digiComm protocol Cyclic Redundancy Checks (CRCs) will also be used. By using
this error detection method it will be possible to determine whether the data transmitted or
received were corrupted. The question however remains why CRCs will also be implemented in
the ADES digiComm protocol? A possibility always exist that a frame can be transmitted, but the
calculated error detection function can still yield the correct frame check sequence (FCS). For
example when the function used to detect errors only adds or subtracts frames to obtain the FCS.
However when implementing CRCs the probability of this happening is reduced immensely and
almost eliminated [56]. The basic idea of CRC will be discussed further in Section 4.9.5.1.

4.7.4 Error correction

Forward error correction (FEC) requires that more redundancy is added to the transmitted frames.
The added symbols are used by the receiver to recover the correct data. Implementing FEC is
complex and requires additional overhead which will lower the data transfer speed. At this stage

error correction will not be implemented in the ADES digiComm protocol.

4.8 Protocol Implementation

The units that will be of utmost importance for the internal communications on the master node

are shown in Figure 4-17.



FPGA

Boot memory

Front I/10
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The different functional blocks that will be implemented on the FPGA of the master node are;

Dual port ram (DPR)
UART controller

UART transmit
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Figure 4-18 illustrates how these functional blocks connect on the master node when interfacing

with a single power amplifier. It is important to know that the UART receive, UART transmit,

FIFO receive, FIFO transmit and the CRC controller will remain the same for all functional units.

However the Communication controller and UART controller will differ depending on the

interface.
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Figure 4-18: Functional architecture of master node
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4.9 Basic functional blocks

Communication control will be done on FPGAs. This will result in faster performance [57].
Furthermore the digital communication system will be designed by means of state machines and
described by using VHDL. In this section the detailed design of the basic functional blocks will

commence.

4.9.1 Design of UART receiver entity

The UART receiver will make use of oversampling and a predetermined pattern as tabulated in
Table 4-2. These two techniques are required, because no clocking information is available with the
transmitter signal. Oversampling will be used to determine the midpoint of each received data bit.
This is needed, because the receiver does not know the exact time when the start bit will be
received. Thus the ideal will be to sample the incoming data bit not on the first falling or rising
edge of a bit, but at the midpoint of each bit [58].

Table 4-2: Transmission parameters

Transmission parameters specification | Specification
Number of start bits 1

Number of data bits 16, LSB first
Number of parity bits 1

Stop bits 1

Start bit default ‘0" (low)

Stop bit default ‘1" (high)
Parity type even
Over-sampling ratio 16

The oversampling technique in conjunction with the predetermined pattern works as follows and

is illustrated in Figure 4-19.

Select the oversampling rate, S.

Determine the number of data bits to be received, N.

Determine the number of stop bits to be received, M.

Wait for the receiver to detect a falling edge, which indicates the start bit.

SR

Create an internal counter to count to the 5/2, now the midpoint of the start bit has
been reached.
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6. Clear the counter to 0 and resume.

Increment the counter with each clock cycle until the counter reaches 15.

8. When the counter reaches S, the midpoint of the incoming data bit has been
determined.

9. Shift the value into a register.

10. Clear the counter to 0 and resume.

11. Repeat steps 8, 9 and 10 until all the data bits were received.

12. Repeat steps 8, 9 and 10 for the parity bit.

13. Repeat step 8, 9 and 10 for the stop bits.

Data bit at S

Start bit detection Repeat for data bits, parity bit and stop bit
S/2

v

—serialln - ' ' Serialln—
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Figure 4-19: Graphical representation of the oversampling technique

The oversampling rate will be selected at 16 times the baud rate, the oversampling rate was
selected high to ensure proper detection of start and stop bits as well aid in utilizing the midpoint
of the each bit period to guarantee proper framing of the data. This method is not advisable for
systems that require very high data transfer rates, the reason being that very high internal clocks
must be generated on the processors. However the ADES employ FPGAs capable of generating
system clocks of 133 MHz and the bit rate required is significantly lower [58]. To view the state

machines refer to Appendix C.1.

4.9.2 Design of UART transmit entity

Now the focus shifts toward the design of the UART transmit component. The UART
transmitter will make use of the same predetermined pattern as specified in Table 4-2. This
component can be seen as a shift register, which shifts out data bit by bit at a selected bit
rate. The UART transmitter module will use the same baud rate as the UART receiver
module implying that an internal counter will be necessary to ensure that the UART
transmit module only shifts out one bit every 16 enable ticks. This must be done to
compensate for the oversampling on the UART receiver end. To view the state machine

refer to Appendix C.2.

4.9.3 First In First Out (FIFO)

Now that the UART transmit and- receive components have been designed and discussed, the

focus shifts toward developing a component with the following abilities:
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1. The ability to signal the UART transmitter and - receiver when new data is available
[58].

2. The ability to avoid re-transmission of the same data numerous times [58].

3. The ability to provide a buffered space between the UART controller and the UART
transmitter and — receiver [58].

4. The ability to ensure that data is always available to be accessed by the UART and the
UART controller.

For this particular use, a FIFO (first-in-first-out) buffer — which is an elastic storage unit — will be

implemented [58]. The conceptual diagram of a FIFO buffer is shown in Figure 4-20.

Data
bit

Data
bit

Data

Data
i bit

bit

Data written into FIF Ol

Figure 4-20: The FIFO concept

This component works by means of two control signals, a read and write signal. If the write signal
is asserted, the UART will write into the FIFO. When the read signal is asserted the first input of

the FIFO is “removed”, and now the next item becomes available.

49.4 Dual Port Ram (DPR)

Another very important component that must be discussed is the DPR. This component will be
used as the memory interface between the communication controllers and the other system

controllers. An illustration of this component is shown in Figure 4-21.

Port A Port B
———Clk A—| le—Clk B——
— DIN_A—»| le—DIN_B———
«—DOUT_A—| t——DOUT_B—

o

e

P
———Add_A—>{ le——Add_ B——
——WE_A—>| l——WE_B
——CE_A—»| l«—CE_B

Figure 4-21: DPR component entity

The main functionality of this component is that it has the ability to write data into the RAM and
read data from the RAM via two ports. Data can be written into the DPR by setting chip enable
(CE_B) and write enable (WE_B) high, selecting the memory space (Add_B) where the data must
be written into and writing the data into DIN_B. Data can be read out of the DPR by setting chip
enable (CE_B) high and selecting the memory space (Add_B) where that data must be read from.



121

The data will then be written out on DOUT_B. This works precisely the same for port A. Both the
ports can be accessed at the same time; however the same memory space cannot be accessed at the

same time.

4.9.5 CRC function
4.9.5.1 The basic idea

The main aim of this error detection technique is to determine if a message that was transmitted
was corrupted due to a noisy channel. This is done by constructing a Frame Check Sequence (FCS)
and transmitted the frame check sequence after the data has been transmitted. After the messages
and the FCS value have been received the receiver uses the data values received to also calculate
the frame check sequence. If these two frames do not correlate the assumption is made that the

message was corrupted.
The basic idea behind CRC algorithms are as follows:

The message as a whole is treated as a binary number.

2. This binary number is then divided by another fixed binary number and the remainder
after division is referred to as the frame check sequence or checksum.

3. This checksum or frame check sequence is then transmitted. In the case where the sender
and the receiver FCS do not match a negative acknowledgment signal can be sent by the

receiver, indicating faulty transmission and prompting re-transmission.

4.9.5.2  Polynomial and CRC arithmetic

Before commencing to the implementation of the CRC algorithm in VHDL two key concepts has to
be discussed. The first concept is a term used numerous times when referring to CRC algorithms,
that term is polynomial. A given CRC algorithm will always work together with a particular
polynomial. What is a polynomial? The message to be communicated is referred to as the
“divided”, the generator polynomial is referred to as the “divisor” and finally the CRC is referred
to as the “remainder”. In CRC algorithms these three values are not considered to be positive
integers, but polynomials with binary coefficients. For example, a decimal value 19 is 13 in hex and

10011 in binary and corresponds to the polynomial:

x*+axl+1 4.2)

The second concept that must be noted is that CRC arithmetic is equivalent to XOR operations at

various shifting offsets. Finally the CRC arithmetic operation can be summarized as follows:
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Choose a generator polynomial G of width W.
Append W zeros to the original message M.
Divide M by G by using CRC arithmetic.
Send the CRC value in the error frame

L

4.9.5.2.1 Selecting a polynomial

The next question that arises is what CRC polynomial to select for the ADES digiComm protocol?
The ADES digiComm protocol is developed for an embedded system network. For embedded
networks the property of interest is the hamming distance (HD) and the burst error detection. The
Hamming distance can be defined as: “The minimum number of bit inversions that must be injected into
a message to create an error that is undetectable by that message’s CRC-based FCS.” [59] For example
when a CRC has a HD=7 then when a combination of 1, 2,3,4,5 or 6 inversions do exist in a
message; these errors will be detected. However when a combination of 7 or more bit inversions
have occurred a possibility exists that the errors will be undetected by the CRC. Another property
of interest is the burst error detection potential. A burst can be defined as a block starting with an
error and finishing with an error, whose transitional bits can contain errors or no errors [56]. In this
section CRC codes will only be considered if the burst error detection potential is equal to the CRC

polynomial length.

The customary technique followed to select a CRC polynomial is to use already commonly used
CRCs. However some commonly used CRC provide less significant error detection capabilities
than others. Furthermore it is important to know that when selecting a good CRC polynomial, it
does not only involve the size of the CRC but also the size of the data transmitted in the specified
data frame (excluding the CRC). For example, when selecting the CCITT-16 bit polynomial which
is; x1® +x12+x%+ 1it is generally assumed that this polynomial will provide better error
detection capabilities than a smaller polynomial. This however is not the case. The CCITT-16 bit
CRC can detect any possibility of three bit errors or fewer at a message length of 48 bits. However
with a HD=4, 84 of all possible 4-bit errors go undetected. In comparison the CAN CRC
polynomial is one bit smaller and can detect 5 randomly distributed errors for message lengths up
to 112 bits [59][60].

Therefore a CRC polynomial will be selected that can achieve the maximum HD for the specified
data frame length. After careful consideration and studying of the tables in Appendix B.3 it was
decided to use the CAN 15 bit CRC polynomial for the following reasons. Firstly the CRC
performance is nearly optimal for transmissions of 64 bit frames. Secondly the polynomial
provides a HD= 6 for data lengths up to 112 bits (the most data that will be transmitted at a time
will be 80 bits), and lastly it is a familiar and standard CRC polynomial [59] .
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4.9.5.2.2 Implementing CRC algorithm in VHDL

VHDL is a hardware descriptive language meaning that a hardware circuit needs to be developed
to generate the correct CRC checksum. This will require reducing the polynomial division process
to its fundamentals. For the purpose of discussing the detailed design, the selected CAN 15 CRC

will be used. The polynomial is given in (4.3):

G=xP®+x"+x0+x8+x" +x*+x3+1 (4.3)
This corresponds to binary 1100010110011001.
This polynomial division will employ a shift register which will be specified according to the

selected generator polynomial G. Figure 4-22 is a graphical representation of the hardware

implementation of generating a CRC.

CRC register (W)
Pop!
4—‘1,+1‘0‘1‘1‘1‘1‘0‘1‘1‘1‘1‘0‘1‘1‘1‘<—Augmenteddatamessage—
XOR
| oo oo o e oo o o]
Generator
Polynomial

Figure 4-22: Graphical representation of the CRC hardware implementation
The hardware division process can be described and coded as follows:

1. Instantiate a CRC register of length W (W equals the degree of G).
Initializing the CRC register to all zeros.

3. Feed the augmented message (message with the appended zeros) through the division
register.

4. When a ‘1" pops out of the register, XOR the CRC register with G. When studying
Figure 4-22 it is seen that the highest order bit of the generator polynomial is excluded.
The reason being that the highest order bit of the generator polynomial is always a ‘1’
and when the ‘1" which has popped out and the ‘1" of the highest order bit of G is
XORed this will always result is a ‘0" as can be seen from the XOR truth table shown in
Table 4-3.

Table 4-3: XOR truth table

P |Q [PXOROQ

0 0 0
0 1 1
1 0 1




124

These steps can be implemented in hardware by using a Linear Feedback Shift Register (LFSR). A
linear feedback shift register consists of D-flip-flops and XOR gates. In Figure 4-23 a linear
feedback shift register for the CRC-15 is shown.

Bit0 Bit 1 Bit 2

B4 ~ Bit5 Bit6 Bit8 B9 Bit10 Bit11 Bit12 Bit13

Bit 14

Figure 4-23: CRC 15 polynomial division circuit

As shown in Figure 4-23 the shift registers equal the degree of the generator polynomial, G. The
XOR gates create a feedback for the LSFR acting as a tap controller for the generator polynomial.
After the entire message, M has been shifted out the final bits in the shift registers are the
remainder [61][62].

For the ADES digiComm protocol all the data values transmitted in the data frames will be
concatenated to form the message M. The message M will be supplied to the CRC controller to be
calculated. Once the CRC controller is finished the CRC will be transmitted in the error frame. On
the receiver side, the message M will be calculated by concatenating all the data frames. Once all
the data frames have been received, M is supplied to the CRC controller, where after the calculated

CRC is compared with the CRC received in the error frame.

The VHDL code will be written by using D-flip-flops shift registers and XOR gates. The
assumption can therefore be made that the VHDL code written to calculate the CRC will be
synthesized on the FPGA as the circuit shown in Figure 4-23.

4.10 Slave nodes

The slave nodes that require communication controllers for the first version of the ADES are;

1. Power amplifiers
2. ISensorboard
3. Main controller

The functional blocks that are crucial for the ADES digiComm system to function are shown in
Figure 4-24. In the previous section the focus was primarily on the basic functional blocks, now the
focus will shift toward the design of the communication controllers and the UART controllers

keeping in mind that these controllers differ for each functional unit.
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Figure 4-24: Functional architecture of the slave nodes.

4.11 Communication control

Communication control will be implemented on FPGAs. This will result in faster performance [57].
The design of the communication control modules will be done by means of state machines and

coded by using VHDL.

The procedure that will be followed to discuss the communication controllers will be as follows:

1. First the interconnection between the master and the slave module will be discussed by
providing a functional architecture.

2. Secondly a brief overview of the functionality of each of the blocks present in the
functional architecture will be discussed.

3. Thirdly the state machines implemented on each of the communication controllers will

be described.

4.12 ISensorboard and main controller interconnection

The first interface that will be discussed is between the ISensorboard and the main controller. As
already specified, the ISensorboard is the slave and the Main controller is the master and these two
units are connected by two RS 485 shielded twisted pair cables. The various functional blocks used
to implement communication control between these units are illustrated in Figure 4-25. In this

section the functionality of each of these blocks will be discussed.
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Figure 4-25: ISensorboard and Main controller communication functional architecture

4.12.1 DPR

DPR units are instantiated on both the ISensorboard and the Main controller. The DPR on the
ISensorboard is used as the memory space where the X, Y and Z position values are written into.
These values can then be accessed by the communication controller. Three different dual port rams
are also instantiated on the main controller. These DPRs are used to store the X, Y and Z position
values in separate DPRs. Different error codes are also stored in the DPR to be analysed by the

main controller.

4.12.2 UART- top level modules

The UART - top level modules is the next higher assembly unit which consists of four lower
assembly units, a RX - and TX FIFO unit and a RX- and TX UART unit. The UART units are
responsible for data framing, implementing the first error detection and transmitting or receiving
data over the specified link. The FIFO units are used as elastic storage units between two

subsystems.

4.12.3 UART controller module (ISensorboard)

A UART controller is instantiated on the FPGA of the ISensorboard. The main function of the
UART controller is to obtain the data from the ISensorboard memory space, calculate the CRC and
transmit the data to the main controller. By default all the UART controller is triggered (enabled)
by the same master clock every 20 kHz, however when the master clock is lost due to noise the
UART controller will receive prompt from the main controller which will trigger the transmission

of the X, Y and Z position values.

The UART controller must flag the error conditions listed in Table 4-4.
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Table 4-4: Error conditions

Error number Condition
Error 1 CRC error — previous data received was
corrupted

4.12.4 UART controller module (Main controller)

A UART controller is instantiated on the Virtex 5 FPGA located on the main controller. This UART
controller receives the position values from the ISensorboard and checks for possible data
corruption. If the ISensorboard stops transmitting position values the UART controller situated on
the main controller prompts the UART controller on the ISensorboard to start transmitting. This

will ensure that when the synch signal is lost, that the ISensorboard still functions.
The UART controller must flag the error conditions listed in Table 4-5.

Table 4-5: Error conditions

Error number Condition

Error 1 Receiver timeout due to loss of sync
signal

Error 2 CRC error — previous data received was
corrupted

4.12.5 Communication controller modules

The communication controller modules are the next higher assembly units that consist of two
lower assembly units; the UART top-level and the UART controller. The designed communication
controllers will be instantiated twice, keeping in mind that there are two communication channels
between the ISensorboard and Main controller. In the next section the communication controllers

will be described in detail using state machines.

4.13 ISensorboard communication controller

4.13.1 TX state machine

As previously mentioned, the communication controllers will be designed by using state
machines. Only the ISensorboard communication controller and the interfacing communication

controller on the main controller will be discussed, for the rest of the state machines refer to
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Appendix C.3 and Appendix C.4. The first state machine that will be discussed, is the TX state
machine implemented in the communication controller situated on the ISensorboard. Figure 4-26
shows the state machine and Table 4-6 describes the states. The state machine should be

interpreted according to the following convention:

The name of each state is written in the circle.

The double circle indicates the start of the state machine

The important processes executed in each state are written next to the circle.
Events that triggered state transitions are written near the arrows.

L e

Tx_wr <=0’
Timec <=0

" Enable = ‘1’ or
Tx_wr<="1 Trigger_enable = ‘1’
Tx_data <= crcValue

SendDataCRC

Read_dprX

dPRCHIPEnable = ‘1’
Add_dpr1 <=1
dataX <= dataOut

SendDataErr Tx_wr <=1’

Tx_data <= dataErr

Read_dprY

dPRCHIPEnable = ‘1’
Add_dpr1 <=3
Tx_wr<=*1 dataZ <= dataOut
Tx_data <= dataz

SendDataZ
Read_dprZ

Waitcounter <=
waitcounter +1

Tx_wr <=1
Tx_data <= data¥

SendDataY

Waitcounter == 6; dataCheck4crc <= dataX &
dataY & dataZ & Err

SendDataX
Tx_wr<=*1
Tx_data <= dataX Call CRC function

Figure 4-26: Transmitter state machine on the ISensorboard



Table 4-6: State description of TX process

State

State description

Idle

During the idle state, no data will be transmitted. Data transfer will
only start when the communication controller is enabled by the master
clock or prompted by the main controller. After the communication
controller has been enabled the new data input will be checked. The
new data input checks whether new data is available in the DPR. If no
new data is available an error will be flagged and state transition

occurs. If new data is available an error will not be flagged.

Read_dprX,
Read_dprY,
Read_dprZ

During the Read_dprX, Read_dprY and Read_dprZ states data will be
read from the DPR. During each of the respective states the data will be
read from a different specified address. Once the position value is
obtained the Read_dprX state changes to the Read_dprY state. Once the
last value was read out of the DPR the Read_dprZ state transitions to
the waitclk state. Memory spaces are allocated to all the controllers
which forms a part of the ADES control system. All the communication
controller data will be written in between address space 0x0000 to
address space 0x0002.

0x0000

Communication
Controller space

0x0002

FIR filter controller
space

0x0004

PID current
reference space

0x0005

Error states

Waitclk

During the waitclk state the X, Y, Z and Err values are concatenated.
This is done to obtain the data necessary for the CRC function.
Concatenating the values takes more than one clock cycle; therefore a
counter is used to avoid timing errors. After the counter has timeout

out state transition occurs.
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GenCRC

During the GenCRC state the CRC value is calculated by calling a
function. The functions name is next_crc and the value returned is the
crcValue. The CRC function will be discussed later on. After the

crcValue is returned, state transition occurs.

SendDataX,
SendDatay,

SendDataZ,
SendDataFErr,
SendDataCRC,

During these states the data is written into the TX FIFO by strobing the
write control signal high for the duration of all the states. The UART
transmitter is informed that new data is available in the FIFO to be

transmitted. Once all these states have executed the SendDataCRC state

transitions back to the default state.

4.13.2 RX state machine
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Two different state machines execute continuously on the ISensorboard communication

controllers. In the previous section the TX state machine has been discussed. In this section the

focus will shift toward the RX state machine as illustrated in Figure 4-27, where after the states will

be explained in Table 4-7.

Trigger_Enable <= ‘1’

Trigger_Enable <= ‘0’
Timec <=0

receivePrompt

Rx_rd <=1’
dataPrompt <= rx_data

Rx_rd <=0’

Rx_rd <=0’
Call CRC function

checkData

imec <= timeout -1
Timec <= timec + 1

Rx_rd <=1’
dataCheck4CRCrx <=
dataPrompt
dataCRC <= rx_data

receiveCRC

Figure 4-27: Receiver state machine on ISensorboard.
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Table 4-7: State description of RX process

State State description

Idle During the idle state, the system is waiting for a prompt signal from
the main controller indicating that the sync signal or master clock has
been lost. Once the empty signal goes low, a prompt has been
received and the ReceivePrompt state is entered. If the empty signal
stays high no prompt has been received and the RX state machine

will remain in the idle state.

ReceivePrompt In this state data available in the FIFO buffer is read into the
communication controller. After the data has been read a state

transition occurs.

Waitlclk The waitlclk state is invoked to prevent an off by one timing error.

Waitdrx During the Waitdrx state, the system waits for another value to
become available in the FIFO. If a value becomes available the FIFO
empty signal will become “0". If the empty signal becomes ‘0" a state

transition occurs.

ReceiveCRC In this state the CRC value is read out of the FIFO and a state

transition occurs once again.

checkData In this state the received CRC is checked by calling the CRC function
and calculating the CRC with the data received in the ReceivePrompt
state. If the CRC value calculated and the CRC value received does
not correspond an error will be flagged. After the value has been

calculated and compared state transition occurs.

enableCommsCont | During the enableCommsCont state the ISensorboard sets the
Trigger_enable signal to ‘1’. This will trigger the TX procedure to
start transmitting the X, Y and Z values, ensuring that the
ISensorboard will still communicate with the main controller

although the sync signal is lost. State transition occurs to idle.
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4.14 Main controller communication controller

4.14.1 Main controller state machine

The communication controller situated on the main controller that interfaces with the
ISensorboard consists of only one state machine that transmits and receives sequentially. The state

machine is illustrated in Figure 4-28 and the state descriptions follow in Table 4-8.

Timec =0’
dataC = ‘0’
Rx_rd =0’
Tx_wr="0"
DataCRC = ‘0’
SendPrompt =0

timec <= timec + 1 Err =0’ —
dataC <= dataC + 1 R rd =H

Enable = ‘1’
getDATA

dataX <= rx_data
dataC =2
dataY <=rx_data

dataC 3
dataZ <= rx_data
dataC <=4
dataCRC <= rx_data

dataC =4

Timec == Timeout

Call CRC function

PromptUARTtx

checkDATA

Tx wr=*1
PromptTX <=
tx_data

RCvalue =
dataCRC
Err="1
dataOut = 1
dataOut2 = 1
dataOut3 = 1
dataC =0’

sendData

CRCvalue =
dataCRC
Err="0’
dataOut = dataX
dataOut2 = dataY
dataOut3 = dataZ
dataC = ‘0’

dataOut1 <= Err
dataOut2 <= Err
dataOut3 <= Err

write2DPR

Figure 4-28: Communication controller state machine on the Main controller
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Table 4-8: State description of the communication controller situated on the main controller

State State description

Idle During the idle state the communication controller waits to be enabled by
die sync signal. Once the communication controller has been enabled,

state transition occurs to waitdrx.

Waitdrx During the wait4rx state, a timeout is incremented. Once data becomes
available in the FIFO by setting the empty signal to ‘0" state transition
occurs to the GetData state. In the case where no data becomes available
in the FIFO, the timeout will be reached and state transition will occur to
the PromptUARTtx state.

GetData In the getdata state, the data available in the FIFO is read out. Once all the

data is read out state transition occurs to checkData.

PromptUARTtx | This state will prompt the ISensorboard to transmit data back to the main
controller, in the event that the sync signal malfunctioned. Once the error

has been flagged state transition occurs to sendData.

SendData The prompt command is now send to the ISensorboard. State transition

occurs to the waitdrx state.

CheckData In this state the received CRC value from the ISensorboard is verified.

State transition occurs to write2dpr.

Write2DPR If the CRC values corresponded, the new X, Y and Z positions are written
into the respective DPRs. If the CRC values did not match, 1 is written in
the DPRs indicating that the previous sensor values must be used. State

transition occurs to WriteError

WriteError In the WriteError state, all the errors flagged are written into the DPRs
specified. After these commands have executed state transition occurs to
the default state idle.

4.15 Power amplifier and Main controller interconnection

Figure 4-29 shows the various functional blocks and how they are connected. In this section the
functionality of each of these blocks will be discussed briefly. It is important to note that each of

these components will be instantiated five times, because there are five power amplifier boards.
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Figure 4-29: Connection between the power amplifiers and the main controller

4.15.1 DPRs

The DPR situated on the main controller will be used as the memory space between the PowerPC
and the communication controller. The current reference values are read out of the DPR and the
true current values are written into the DPR. The DPR situated on the power amplifier will be used

as the memory space between the power amplifier controller and the communication controller.

4.15.2 UART top-levels

Refer to Section 4.12.2.

4.15.3 UART controller (main controller)

A UART controller is instantiated on the FPGA of the main controller. The main function of the
UART controller is to retrieve data (reference current values) from the allocated memory space
when new data becomes available. When new data becomes available the CRC is calculated. The
reference value, power amplifier status (on or off) and the CRC value are transmitted to the power
amplifiers, where after the UART controller waits to receive two true current values and error
condition and a CRC. After the data is received, the UART controller tests for possible data
corruptions by calling the CRC function. The calculated CRC value and the received CRC value are

compared; in the event of a CRC mismatch an error is flagged.

The UART controller must flag the following errors conditions as listed in Table 4-9.
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Table 4-9: Error conditions

Error number Condition

Error 1 No new data available
Error 2 Receiver timeout occurred
Error 3 CRC error

Error 4 Incomplete data received

4.15.4 UART controller (power amplifiers)

The UART controller implemented on the power amplifier will receive data from the main
controller and check for possible data corruption, by calling the CRC function. In the event of a
CRC mismatch a ‘1" will be written into the DPR, indicating that the previous current reference
value must be used. If no data corruption had occurred the received current reference value will be

written into the DPR to be accessed by the power amplifier controller.

After the values have been received the true current values will be read out of the DPR and the

true current values together with a CRC will be transmitted back to the main controller.

The UART controller must flag the following error conditions as listed in Table 4-10.

Table 4-10: Error conditions

Error number Condition
Error 1 CRC error
Error 2 Receiver timeout occurred

4.15.5 Communication controller modules

Refer to Section 4.12.5. For more information about communication controller design refer to for

this interface refer to Appendix C.3 and Appendix C.4

4.16 Conclusion

This chapter focussed on two important components of the communication sub-system for the
ADES. Initially it focussed on the hardware selected according to the specified architecture and
finally it focussed on the detailed design of an internal protocol for AMB systems. In the next

chapter the focus will shift toward verifying and validating this protocol.
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