
Comparing generalized additive neural networks with multilayer

perceptrons

J.C. Goosen

Comparing generalized additive neural networks

with multilayer perceptrons

Johannes Christiaan Goosen

B.Sc. (North-West University, Potchefstroom Campus)

B.Sc.Hons. (North-West University, Potchefstroom Campus)

Dissertation submitted to the School of Computer, Statistical and Mathematical Sciences at the Potchefstroom

Campus of the North-West University in partial fulfilment ofthe requirements for the degree Magister

Scientiae in Computer Science.

Supervisor: Dr. J.V. du Toit

Potchefstroom

May, 2011

Acknowledgements

The completion of the requirements for a Master of Science inComputer Science degree has been a challenge

and a privilege for me. During the course of this study, I haveexperienced good times and some of the worst

times of my life. I would like to thank my family and friends who shared the good times with me and supported

me through the difficult ones. A special thanks to my mother, sister and brother-in-law, who always encouraged

me to do my best. To my father, thank you for believing in me andteaching me to believe in myself: You were

and always will be in my thoughts.

I would like to thank my supervisor, Dr. Tiny du Toit, who helped and guided me through this study, always

with a smile.

I am grateful for the opportunity that I had to complete this degree as a full-time student; this would not have

been possible without the Centre of Excellence bursary fromTelkom. I also want to extend my appreciation to

SAS Institute Inc. for providing SASR© software with which the results in this dissertation were computed.

Finally, all honour and gratitude, to my Heavenly Father whogave me strength when I was weak, lifted me

when I was down and blessed me with the opportunity and guidance to finish my Master of Science degree.

Abstract

In this dissertation, generalized additive neural networks (GANNs) and multilayer perceptrons (MLPs) are stud-

ied and compared as prediction techniques. MLPs are the mostwidely used type of artificial neural network

(ANN), but are considered black boxes with regard to interpretability. There is currently no simple a priori

method to determine the number of hidden neurons in each of the hidden layers of ANNs. Guidelines exist that

are either heuristic or based on simulations that are derived from limited experiments. A modified version of

the neural network construction with cross-validation samples (N2C2S) algorithm is therefore implemented and

utilized to construct good MLP models. This algorithm enables the comparison with GANN models. GANNs

are a relatively new type of ANN, based on the generalized additive model. The architecture of a GANN is less

complex compared to MLPs and results can be interpreted witha graphical method, called thepartial residual

plot. A GANN consists of an input layer where each of the input nodes has its own MLP with one hidden layer.

Originally, GANNs were constructed by interpreting partial residual plots. This method is time consuming and

subjective, which may lead to the creation of suboptimal models. Consequently, an automated construction

algorithm for GANNs was created and implemented in the SASR© statistical language. This system was called

AutoGANNand is used to create good GANN models.

A number of experiments are conducted on five publicly available data sets to gain insight into the similari-

ties and differences between GANN and MLP models. The data sets include regression and classification tasks.

In-sample model selection with the SBC model selection criterion and out-of-sample model selection with the

average validation error as model selection criterion are performed. The models created are compared in terms

of predictive accuracy, model complexity, comprehensibility, ease of construction and utility.

The results show that the choice of model is highly dependenton the problem, as no single model always

outperforms the other in terms of predictive accuracy. GANNs may be suggested for problems where inter-

pretability of the results is important. The time taken to construct good MLP models by the modified N2C2S

algorithm may be shorter than the time to build good GANN models by the automated construction algorithm.

Keywords: ANN, artificial neural network, AutoGANN, GANN, generalized additive neural network, in-

sample model selection, MLP, multilayer perceptron, N2C2Salgorithm, out-of-sample model selection, pre-

diction, predictive modelling, SBC, Schwarz information criterion.

Uittreksel

In hierdie verhandeling word veralgemeende additiewe neurale netwerke (VANN’e) en multilaag-perseptrone

(MLP’e) as voorspellingstegnieke bestudeer en vergelyk. MLP’e is die mees algemeen gebruikte tipe kuns-

matige neurale netwerk (KNN), maar word as ondeursigtig beskou met betrekking tot interpreteerbaarheid.

Tans is daar geen eenvoudige voor-data-insamelingsmetodeom die aantal versteekte neurone in elk van die ver-

steekte lae van KNN’e te bepaal nie. Riglyne bestaan wat óf heuristies van aard is, óf op simulasie-afleidings

van beperkte eksperimente gebaseer is. ’n Aangepaste weergawe van die neurale netwerk konstruksie met

kruis-validasie steekproewe (N2K2S)-algoritme is dus ge¨ımplementeer en gebruik om goeie MLP-modelle te

bou. Hierdie algoritme maak die vergelyking met VANN-modelle moontlik. VANN’e is ’n relatief nuwe tipe

KNN wat op die veralgemeende additiewe model gebaseer is. Die argitektuur van ’n VANN is minder kompleks

in vergelyking met MLP’e en resultate kan geı̈nterpreteer word met ’n grafiese metode, genaamd dieparsïele

residu-grafiek. ’n VANN bestaan uit ’n invoerlaag waar elk van die invoernodes sy eie MLP met een versteekte

laag het. Oorspronklik was VANN’e gebou deur die interpretasie van parsiële residu-grafieke. Hierdie metode

is tydrowend en subjektief, wat kan lei tot die skepping van suboptimale modelle. Gevolglik is ’n outomatiese

konstruksie-algoritme vir VANN’e geskep en geı̈mplementeer in die SASR© statistiese taal. Hierdie stelsel is

AutoGANNgenoem en word gebruik om goeie VANN-modelle te skep.

’n Aantal eksperimente is op vyf vrylik beskikbare datastelle uitgevoer om insig te verkry oor die ooreenkom-

ste en verskille tussen VANN- en MLP-modelle. Die datastelle sluit regressie- en klassifikasietake in. In-

steekproefmodel-seleksie met die SBC-model-seleksiekriterium en buite-steekproefmodel-seleksie met die ge-

middelde valideringsfout as model-seleksiekriterium word uitgevoer. Die modelle wat geskep is, word verge-

lyk in terme van voorspellende akkuraatheid, modelkompleksiteit, verstaanbaarheid, gemak van konstruksie en

nut.

Die resultate toon dat die keuse van die model baie afhanklikvan die probleem is aangesien daar geen

enkele model is wat altyd beter as die ander is in terme van voorspellingsakkuraatheid nie. VANN’e kan

voorgestel word vir probleme waar verstaanbaarheid van dieresultate belangrik is. Die tyd wat dit neem om

goeie MLP-modelle te bou deur die veranderde N2K2S-algoritme kan korter wees as die tyd wat dit neem om

goeie VANN-modelle te bou met die outomatiese konstruksie-algoritme.

Sleutelwoorde: AutoGANN, buite-steekproefmodel-seleksie, in-steekproefmodel-seleksie, KNN, kunsmatige

neurale netwerk, MLP, multilaag perseptron, N2K2S-algoritme, SBC, Schwarz-inligtingskriterium, VANN,

veralgemeende additiewe neurale netwerk, voorspelling, voorspellingsmodellering.

Contents

1 Introduction 1

1.1 Problem statement 3

1.2 Method of work 4

1.3 Outline of dissertation 4

2 Artificial neural networks 6

2.1 History 7

2.2 Biological inspiration 8

2.3 Neuron model architecture 10

2.3.1 Single-input neuron 10

2.3.2 Multiple-input neuron 13

2.3.3 The perceptron 13

2.3.4 A layer of neurons 17

2.4 Multilayer perceptrons 18

2.5 Artificial neural network learning 21

2.5.1 The perceptron learning rule 22

2.5.2 The backpropagation algorithm 27

2.6 Multilayer perceptron construction 31

2.6.1 The N2C2S algorithm 33

2.6.2 The modified N2C2S algorithm 35

2.6.3 Implementation of the modified N2C2S algorithm 35

2.6.4 Example .. . 38

2.7 Conclusion 39

3 Generalized additive neural networks 40

3.1 Smoothers 41

3.1.1 Scatterplot smoothing 43

3.1.2 The running-mean smoother 44

3.1.3 Smoothers for multiple predictors 45

i

3.1.4 The bias-variance trade-off 45

3.2 Additive models 47

3.2.1 Multiple regression and linear models 47

3.2.2 Additive models defined 48

3.2.3 Fitting additive models 49

3.2.4 Generalized additive models defined 50

3.3 Generalized additive neural network architecture 51

3.4 The interactive construction methodology 52

3.4.1 Example .. . 54

3.5 The automated construction methodology 58

3.5.1 Definition of terms 58

3.5.2 Model selection 60

3.5.3 The automated construction algorithm 64

3.5.4 Implementation of the automated construction algorithm 69

3.5.5 Example .. . 77

3.6 Conclusion 79

4 Experimental Results 81

4.1 Experimental design 82

4.1.1 GANN experiments 83

4.1.2 MLP experiments 83

4.1.3 Experiment identification 84

4.2 The Adult data set 84

4.2.1 GANN results 85

4.2.2 MLP results 88

4.2.3 Comparison of MLP and GANN results 90

4.3 The Boston Housing data set 90

4.3.1 GANN results 91

4.3.2 MLP results 94

4.3.3 Comparison of MLP and GANN results 95

4.4 The Ozone data set 96

4.4.1 GANN results 97

4.4.2 MLP results 99

4.4.3 Comparison of MLP and GANN results 101

4.5 The SO4 data set . 102

4.5.1 GANN results 102

4.5.2 MLP results 104

4.5.3 Comparison of MLP and GANN results 106

ii

4.6 The Spambase data set 106

4.6.1 GANN results 107

4.6.2 MLP results 110

4.6.3 Comparison of MLP and GANN results 112

4.7 Conclusion 113

5 Comparative discussion on MLPs and GANNs 114

5.1 Predictive accuracy 114

5.2 Model complexity 117

5.3 Comprehensibility 119

5.4 Ease of construction 119

5.5 Utility 119

5.6 Conclusion 120

6 Conclusion 121

6.1 Summary of findings 121

6.2 Summary of contributions 122

6.3 Suggestions for future work 123

6.4 Conclusion 123

A MLP construction program code 124

B MLP brute force method results 147

Bibliography 159

iii

“As a general rule the most successful man in life is the man who has the best

information.”

Benjamin Disraeli

1
Introduction

Currently, the amount of raw data in the world can be overwhelming for us humans (Witten and Frank, 2005).

We cannot make sense or process all of this data to obtain useful information without assistance. This is where

the incredible computing power of the modern day computer can be helpful. Computers may not be as complex

as the human brain, but when it comes to raw computing power, they can do mathematics much faster than hu-

mans. This is one reason why statistical models are implemented in computer programs. Even with the present

computing power, the usual statistical techniques that areused to gather information from data may not be effi-

cient enough to recognize complex patterns and relationships from large amounts of data. Fortunately, there is

a way in which modern day computing power can be used to learn,and consequently obtain useful information

and discover useful relationships in the data. Artificial neural networks (ANNs) are statistical models that can

learn and generalize from data. One of the ANN’s best known features is that it is able to recognize complex

patterns in the data. This is useful in fields where prediction is the objective. ANNs are already successfully

used in many real-world applications where vast amounts of data are used to obtain useful information.

ANNs are popular, since they have been proven to be successful in many prediction and decision-support

applications (Berry and Linoff, 1997). They form a class that consists of general-purpose tools that are very

powerful and can be applied to clustering, prediction and classification with relatively ease. A broad range of

industries have applied ANNs, which span from number recognition on checks, engine failure rate prediction,

financial series prediction, medical diagnosis and identifying groups of valuable customers to identifying credit

card fraud, to name a few.

People are good at generalizing from experience, but computers generally excel at performing explicit in-

1

structions over and again. ANNs are appealing, since they overcome this gap by simulating the human brain’s

neural connections on a digital computer. They mimic the ability of humans to learn from experience with their

ability to learn from data and to generalize when used in well-defined domains. It is this ability that makes

ANNs useful for prediction and exciting for research with the future promise of new and better results.

However, there is a drawback. ANNs are considered black boxes with mysterious internal workings. This is

as a result of the internal weights that are distributed throughout the network as the result of training an ANN.

These weights are not easily understandable, but more and more advanced techniques for examining ANNs

help in providing some explanation. ANNs do, however, have business value, which is in many instances more

important than understandability.

The history of ANNs in the chronological order of computer science is interesting. In the 1940s, before

digital computers really existed, the original work on how neurons function was done. Warren McCulloch, a

neurophysiologist, and Walter Pits, a logician, needed a simple model to explain the workings of biological

neurons in 1943. They tried to understand the brain’s anatomy, but this model turned out to provide a new way

of solving certain problems that do not fall in the realm of neurobiology.

Models that are based on the work of McCulloch and Pits, called perceptrons, were implemented by com-

puter scientists when digital computers first became available in the 1950s. These early networks solved, for

example, the problem of how to balance a broom standing upright on a moving cart. This was done by con-

trolling the motion of the cart. The cart learnt to move to theleft if the broom started to fall to the left in

order to keep it upright. There were some limited successes in the laboratory using perceptrons, but for general

problem-solving, the results were disappointing.

The fact that the most powerful computers of that era were less powerful than today’s inexpensive desktop

computers is one reason for the limited usefulness of the early ANNs. Seymour Papert and Marvin Minsky

were researchers at the Massachusetts Institute of Technology and showed in 1969 that these simple ANNs had

theoretical deficiencies that also contributed to their limited usefulness. Research on ANN implementations on

computers slowed down drastically during the 1970s as a result of these deficiencies. Then, in 1982, the the-

oretical pitfalls of ANNs were overcome by a new way of training, calledbackpropagation, that was invented

by John Hopfield. This development helped to foster renewed interest in ANN research, which shifted from the

labs into the commercial world throughout the 1980s. Since then, ANNs have been applied to virtually every

industry to solve both operational and prediction problems.

Statisticians were extending the capabilities of statistical models by taking advantage of computers at the

same time that ANNs were developed as a model for biological activity. Logistic regression is a technique

that proved especially useful for understanding complex functions of many variables. Logistic regression, like

linear regression, attempts to fit a curve to observed data. Afunction called thelogistic or sigmoidfunction is,

however, used instead of a line. ANNs can be used to representlogistic regression and even the more familiar

linear regression. Statistical concepts like distribution, likelihoods and probability among others can, in fact,

be used to explain the entire theory of ANNs.

As a result of the convergence of several factors, ANNs became more popular in the 1980s. Firstly, the

2

availability of computer power improved, particularly where data was available, like in the business commu-

nity. Secondly, the realisation that ANNs are closely related to known statistical methods made analysts more

comfortable with these models. Thirdly, since operationalsystems in most companies had already been auto-

mated, there were relevant data. Fourthly, building usefulapplications to help people became more important

than building artificial people. The utility of ANNs has beenproven and as a result they are, and will continue

to be, popular for prediction and to encourage further research that will result in even more powerful ANNs in

the future.

In this dissertation, two different types of ANNs, calledmultilayer perceptronsandgeneralized additive

neural networks, are compared. The problem statement of this study is presented in Section 1.1, followed by

the method of work in Section 1.2 and finally, an outline of this dissertation is given in Section 1.3.

1.1 Problem statement

Generalized additive neural networks (GANNs) (Potts, 1999) are a relatively new architecture, based on the

generalized additive model (Hastie and Tibshirani, 1986; Wood, 2006). The structure of a GANN is less com-

plex if compared to the most common type of neural network, the multilayer perceptron (MLP) (Ripley, 1996).

A GANN consists of an input layer where each of the input nodeshas its own MLP with one hidden layer.

The latter is connected to the output layer. Currently, there is no simple method to determine the number of

hidden neurons in each of the hidden layers. Guidelines exist that are either heuristic or based on simulations

that are derived from limited experiments (Zhang, Patuwo and Hu, 1998). Originally, GANNs were constructed

by interpreting partial residual plots (Larsen and McCleary, 1972; Ezekiel, 1924; Berk and Booth, 1995). This

method is time consuming and subjective, which may lead to the creation of suboptimal models. Consequently,

Du Toit (2006) created an automated construction algorithmfor GANNs and implemented it in the SASR©

statistical language. The system was namedAutoGANN.

The automated construction algorithm organizes the GANN models into a search tree and performs a best-

first search to identify the best model. To speed up the process, a heuristically chosen GANN model is utilized

as the starting point. During each iteration of the algorithm, the best GANN model that is based on an objective

model selection criterion is identified for expansion. Thismodel is then grown and pruned. While searching

for the best model, no human intervention is needed. This process continues until the search space is exhausted

or a predetermined time has passed.

The MLP is the most popular and widely used type of neural network (Zhang et al., 1998). MLPs are used in

a variety of applications, especially in prediction, because of their inherit capability of subjective input-output

mapping. The inputs of an MLP that is used for explanatory forecasting problems are usually independent vari-

ables and thus the MLP is functionally equivalent to a nonlinear regression model. For time series forecasting

problems, the inputs are typically the past observations and the output is the future value of the data series, thus

the MLP is equivalent to a nonlinear autoregressive model.

An MLP consists of two or more layers (Figure 2.13) (Hagan, Demuth and Beale, 1996). The first or the

3

lowest layer is known as the first hidden layer and this is where external information is received. The last or

the highest layer is the output layer where the problem solution is obtained. Between the first hidden layer and

the output layer, there may be more hidden layers. Each layercontains a number of neurons. The neurons in

adjacent layers are fully connected from a lower layer to a higher layer. With the default constructing method

for MLPs, the number of hidden layers and neurons in the hidden layers are manually altered after each session

in an attempt to find a better architecture (Zhang et al., 1998).

In this study, GANNs and their construction by the AutoGANN system will be compared to MLPs and the

neural network construction with cross-validation samples (N2C2S) construction method (Setiono, 2001) on

five publicly available data sets. A modified version of the N2C2S algorithm will be utilized to enable a com-

parison with the AutoGANN system. A similar comparison was done by Campher (2008), in which GANNs

were compared to decision trees and alternating conditional expectations. When comparing the two types of

neural networks, consideration will be given to the following:

• The predictive accuracy of the neural networks

• The model complexity of the two types of neural networks

• The comprehensibility of the resulting network, i.e. is thenetwork considered to be a black box?

• The ease in constructing the best neural network model

• The utility of the two types of neural networks and the construction methods that are used to build the

best model

1.2 Method of work

In order to obtain a better understanding of these two types of neural networks, a literature study on MLPs and

GANNs is performed. The literature study is comprehensive and does not only contain information about the

neural network models itself, but also about the methods that are used to construct the architectures. The next

step is to develop a program to search for good MLP models on the different data sets. The data sets that are

utilized, are the Adult data set (Frank and Asuncion, 2010),Boston Housing data set (Frank and Asuncion,

2010), Ozone data set (Breiman and Friedman, 1985), SO4 data set (Xiang, 2001) and the Spambase data set

(Frank and Asuncion, 2010). Experiments are then conductedto obtain results that can be compared. A number

of different experiments will be performed to get a broad perspective on the results. These experiments will

include in-sample model selection and out-of-sample modelselection. The results are then finally compared

with regard to different aspects in order to reach meaningful conclusions.

1.3 Outline of dissertation

In Chapter 2, a short history of artificial neural networks (ANNs) is presented. ANNs are based on biological

neural networks and this biological inspiration is examined. The architecture of the artificial neuron model is

4

then discussed. A single-input neuron and a multiple-inputneuron are considered. One of the first ANNs, called

theperceptron, is discussed, followed by a layer of neurons. The multilayer perceptron (MLP) architecture is

considered next. Learning of ANNs is then discussed. Firstly, the perceptron learning rule that is used to train a

perceptron network is regarded, followed by the backpropagation algorithm that can be used to train MLPs. The

construction of MLPs is discussed next. The N2C2S algorithmis examined, followed by a modified version

of the algorithm. This altered version of the N2C2S algorithm was created to enable the comparison with the

automated construction algorithm for generalized additive neural networks. Finally, the implementation of the

modified N2C2S algorithm which is used in this study to creategood MLP models, is explained.

The generalized additive neural network (GANN) which is theneural network implementation of a general-

ized additive model (GAM), is discussed in Chapter 3. Smoothing, which forms the basis of estimating additive

models with the backfitting algorithm, is discussed. Scatterplot smoothing and the running-mean smoother are

regarded, as well as smoothers for multiple predictors. Next, the bias-variance trade-off is explained to deter-

mine the value of the smoothing parameter. As an introduction to additive models, linear models and multiple

regression models are discussed. Additive models are consequently defined, followed by the estimation of

these models. Then GAMs are considered, which lead to the GANN architecture. In addition, the interactive-

and automated construction algorithms for GANNs are presented. Improvements to the automated construction

algorithm are explained and finally the implementation of this algorithm is discussed.

In Chapter 4, the experimental results of the comparison between the GANN and MLP models are pre-

sented. The experimental design, which include multiple experiments involving these two types of models, is

explained. Then the experiments that were conducted on five publicly available data sets are presented. First,

the experiments conducted on the Adult data set are considered, followed by those on the Boston Housing data

set, the Ozone data set, the SO4 data set and finally the Spambase data set. For each data set, the experiments are

discussed as follows: First, the data set is introduced, followed by the GANN experiments that were performed

by the AutoGANN system and a discussion of the experimental results that were obtained. Then the MLP

experiments that were performed by the modified N2C2S algorithm and the brute force method are considered,

followed by a discussion of these results. The brute force method is applied to gain more insight into the results

that were obtained by the modified N2C2S algorithm. Finally,a comparison between the GANN and MLP

experimental results is presented.

The experimental results that were obtained, are discussedon a higher level in Chapter 5 in terms of the

predictive accuracies, complexity, comprehensibility, and ease of construction of the models, as well as the

utility of both the models and the construction methods.

In Chapter 6, a summary of the findings in this study is presented, followed by a summary of the contribu-

tions of the study. Finally, some suggestions for future work are made.

5

“The beginning of knowledge is the discovery of something wedo not

understand.”

Frank Herbert

2
Artificial neural networks

The human brain consists of a neural network that has about 1011 neurons which are highly interconnected

(Hagan et al., 1996). This network helps a person to read, breathe, move and think. A biological neuron is a

rich assembly of tissue and chemistry which is as complex as amicroprocessor. Persons are born with some of

their neural network structure and other parts are established by experience.

Scientists have only begun to understand biological neuralnetworks. All the biological neural functions,

including memory, are stored in the connections between neurons and in the neurons itself. The process where

new connections are made between neurons and where old connections are modified, is known as the process

of learning. Even with the current basic understanding of biological neural networks, it is possible to create an

artificial neural network (ANN) that can be trained to serve auseful purpose.

The artificial neurons that are used, are extremely simple abstractions of biological neurons. These artificial

neurons can be implemented as part of a program or silicon circuits. Although ANNs can be trained to perform

useful functions, they do not have a fraction of the power of the human brain.

Currently, ANNs are considered to be powerful tools that areused by researchers and practitioners in the

field of prediction. Research have also shown that ANNs have powerful pattern classification and pattern recog-

nition capabilities (Zhang et al., 1998).

ANNs are data-driven, self-adaptive models that learn fromexamples and are able to capture subtle func-

tional relationships among the data, even if the underlyingrelationships are unknown or difficult to describe.

ANNs are consequently well suited for problems that have enough data or observations and where the solutions

require knowledge that is difficult to specify. One of the most popular and widely used ANNs is the multilayer

6

perceptron (MLP).

In Section 2.1, a short history of ANNs will be presented, followed by the biological inspiration for ANNs

in Section 2.2. The artificial neuron model architecture will then be discussed in Section 2.3, followed by the

multilayer perceptron in Section 2.4. In Section 2.5, artificial neural network learning will be considered. Con-

struction of a multilayer perceptron will be discussed in Section 2.6. Finally, some conclusions are presented

in Section 2.7.

2.1 History

In order for a technology to advance, at least two componentsare needed: concept and implementation (Hagan

et al., 1996). The history of the heart is a good example of howa different concept changed the technology.

The heart was initially thought to be a source of heat or the centre of the soul, but in the 17th century, medical

practitioners gained the concept that the heart’s functionis to pump blood in order for the blood to circulate

in the body. Experiments were then designed to test the pumping action of the heart. These experiments in-

spired the modern day view of the circulatory system of the body. However, concepts are not sufficient for a

technology to develop if it is not able to be implemented. A good example of this statement is the computer-

aided tomography (CAT) scans. The mathematics that were necessary to reconstruct the images of a CAT scan

were known for many years before sufficient high-speed computers and effective algorithms made it possible

to implement the CAT scan system. ANNs have also progressed through new concepts and implementation de-

velopments. However, the advancements made in ANNs seem to have occurred in bursts rather than following

a steady development.

The interdisciplinary work in physics, psychology and neurophysiology, done by scientists such as Herman

von Helmholtz, Ernst Mach and Ivan Pavlov from the late 17th century to the early 20th century, form some of

the background work for the field of ANNs. The work consisted mostly of general theories on learning, vision

and conditioning. Mathematical models of artificial neurons were not included in this work.

The modern view of ANNs commenced when Warren McCulloch and Walter Pitts proposed a model of

artificial neurons (McCulloch and Pitts, 1943). This model was based on the human brain, where each neuron

is connected to other neurons to form a network. They proposed that the artificial neuron could either be in an

“on” or “off” state and that the activation switch would occur in response to stimulation by a certain number of

neighbouring neurons. An activation switch is a mechanism that controls when the neuron is in an “on” or “off”

state. ANNs could also have the ability to learn. ANN learning is achieved by applying a set of rules, known

collectively as a learning rule, to update the connections between neurons. In 1949, Donald Hebb proposed a

simple learning rule, now known as theHebbian learning rule(Hebb, 1949). He suggested that neurons that

are in the same state have a stronger relationship to each other, while neurons in an opposite state will have a

weaker relationship to each other. This learning rule adjusts the connections to a better representation of the

relationship between neurons.

The first neural network computer, called theSNARC(Stochastic Neural Analog Reinforcement Calculator),

7

was built in 1950 by Marvin Minsky and Dean Edmonds (Russell and Norvig, 2010). They used an automatic

pilot mechanism from a B-24 bomber and 3000 vacuum tubes to simulate a 40 neuron network. Frank Rosen-

blatt proposed an artificial neuron that would classify its inputs into one of two categories (Rosenblatt, 1958).

This artificial neuron was called aperceptron. Rosenblatt used these neurons to build the first neural network

that was used in a practical application. He showed that thisnetwork could be used for pattern recognition.

Frank Rosenblatt also introduced the perceptron learning rule that is used for training the perceptron neurons

(Rosenblatt, 1962). The perceptron and the perceptron learning rule will be discussed in Section 2.3.3 and

Section 2.5.1 respectively.

In 1969, Marvin Minsky and Seymour Papert published a book entitled Perceptrons, in which they stated

that the problem-solving capabilities of single-layer neural networks were limited to linearly separable prob-

lems (Minsky and Papert, 1969). This book, and the lack of powerful digital computers at the time, caused

many people to stop research in the field of artificial neural networks (Hagan et al., 1996).

Between the 1960s and the 1980s there were very little progress in the field of ANNs and general interest

in neural networks declined heavily (Hagan et al., 1996). Fortunately, in the 1980s, new advances were made

in the field of ANNs, more powerful computers could be built and, as a result, more researchers gained interest

in this field. One of the new developments that was responsible for ANNs getting the attention of researchers

was the invention of the backpropagation algorithm (Rumelhart and McClelland, 1986). With the backpropaga-

tion algorithm, a network consisting of multiple layers of perceptrons, called anmultilayer perceptron(MLP),

could be trained. This learning rule was the answer to the problems of perceptron networks that were raised

by Minsky and Papert (1969) first. MLPs and the backpropagation algorithm will be discussed in more detail

in Section 2.4 and Section 2.5.2 respectively. Another development that attracted attention to ANNs was the

Hopfield network that could be used as an associative memory (Hopfield, 1982).

The field of ANNs has developed substantially since McCulloch and Pitts first introduced the idea and today

ANNs are used in a variety of disciplines which include, among others, aerospace, automotive, banking, de-

fence, electronics, entertainment, financial, insurance,manufacturing, medical, oil and gas (Hagan et al., 1996).

When McCulloch and Pitts (1943) introduced the ANN, it was based on the human brain. In the next section

the biological inspiration for ANNs will be discussed.

2.2 Biological inspiration

The human brain consists of a highly interconnected neural network. This neural network has about 10 billion

neurons and 60 trillion connections (Negnevitsky, 2005). Abiological neuron has a switching speed (the speed

at which the output changes in response to the inputs) of 10−3 seconds, whereas an electrical circuit has a

switching speed of 10−9 seconds (Hagan et al., 1996). The electrical circuit is clearly much faster than the

biological neuron, but this does not mean that a computer is faster than the human brain. The high connectivity

of the human brain’s neurons and the fact that the human braincan use multiple neurons at the same time, is the

8

reason why it can do many tasks much faster when compared to a computer (Hagan et al., 1996; Negnevitsky,

2005).

A schematic representation of a biological neuron that is connected to another one, is shown in Figure 2.1.

Figure 2.1: Biological neuron

A biological neuron consists of the following principle components: the dendrites, the axon, the cell body

(soma) and the synapses (Hagan et al., 1996). The soma receives signals from other neurons via the dendrites.

When the soma’s threshold is reached, it sends a signal to other neurons through the axon. The connection

between neurons, where the axon meets the dendrites, is called asynapse. The synapse releases a chemical

content, which changes the potential difference of the soma(Negnevitsky, 2005). The function of the neural

network is established by the arrangement of its neurons andthe strengths of the individual connections between

neurons (Hagan et al., 1996). The connection strengths and the arrangement of neurons are determined by a

complex chemical process. Some of the neural structure is determined at birth, while other parts are developed

through learning. The brain’s ability to learn comes from a property of a neural network, calledplasticity

(Negnevitsky, 2005). Plasticity indicates that the neurons are able to make new connections to other neurons

and that the connection strengths between neurons may change.

Even though an ANN is not nearly as complex as the brain, thereare at least two similarities between

them. Firstly, both networks consist of simple building blocks that are highly interconnected and secondly, the

function of the network is determined by the connections between neurons (Coppin, 2004).

The biological neuron inspired the creation of artificial neurons which can be combined to form an artificial

neural network. In the next section, the neuron model architecture of an artificial neuron is considered.

9

2.3 Neuron model architecture

In this section, a mathematical model for an artificial neuron will be introduced. First, an artificial neuron that

has only one input will be examined. A more complex artificialneuron that has multiple inputs will then be

considered. After that, a simple ANN, called aperceptron, will be discussed and finally, a layer of neurons will

be considered.

2.3.1 Single-input neuron

In a single-input neuron, a scalar inputp is multiplied by a scalar weightw (Hagan et al., 1996). This product,

wp, is then added to a biasb to form n (n is defined in (2.5)), which is the net input to the activation functionf.

The activation (transfer) functionf produces the final outputa. A single-input neuron model is shown in Figure

2.2.

Figure 2.2: Single-input neuron

The outputa of the single-input neuron is calculated as follows:

a = f (wp+b). (2.1)

If, for example,w = 5, p = 3 andb = −2.5, then

a = f (5(3)−2.5) = f (12.5). (2.2)

The final output is determined by the activation functionf. The activation function is chosen by the designer and

a learning rule will adjust the parametersw andb in order for the input/output relationship to meet a specific

goal that is set by the learning rule.

This simple artificial neuron can be compared to a biologicalneuron with regards to the following: The

input p is the stimuli from an external source, the weightw can be considered as the strength of the synapse,

the summation together with the activation function represent the soma and the outputa represents the signal

on the axon.

There are different activation functions for different purposes. Next, some of these activation functions will

be discussed.

10

Activation functions

A specific activation function is used to meet some specification of the problem that must be solved by the

neuron (Hagan et al., 1996). There are many different activation functions available. In Table 2.1, some of

these activation functions are shown (Hagan et al., 1996).

Name Input/output relation Figure

Hard-limit
a = 0 n < 0

a = 1 n≥ 0

Symmetrical hard limit
a = −1 n < 0

a = +1 n≥ 0

Linear a = n

Saturating linear

a = 0 n < 0

a = n 0≤ n≤ 1

a = 1 n > 1

Symmetric saturating linear

a = −1 n < −1

a = n −1≤ n≤ 1

a = 1 n > 1

Log-sigmoid a = 1
1+e−n

Hyperbolic tangent sigmoid a = en−e−n

en+e−n

Positive linear
a = 0 n < 0

a = n 0≤ n

Table 2.1: Activation functions

When a neuron is required to classify an input into two distinct classes, a hard-limit activation function can

be used. The hard-limit activation function gives an outputof 0 if the function input is less than 0, and an output

of 1 if the function input is equal to or greater than 0. This activation function is shown in Figure 2.3.

11

Figure 2.3: Hard-limit activation function

Some problems may need an activation function where the output is the same as the input:

a = n. (2.3)

For these problems, a linear activation function is used. This activation function is shown in Figure 2.4.

Figure 2.4: Linear activation function

The log-sigmoid activation function produces an output that is mapped between 0 and 1. This output is

calculated according to the expression

a =
1

1+e−n . (2.4)

The log-sigmoid activation function is shown in Figure 2.5.

Figure 2.5: Log-sigmoid activation function

12

The single-input neuron model and some of the activation functions have been considered, but in most real-

world problems, there are more than one variable that are used as inputs. In the next section, the multiple-input

neuron model will be discussed.

2.3.2 Multiple-input neuron

Generally, a neuron will have more than one input (Hagan et al., 1996). A model of a multiple-input neuron is

shown in Figure 2.6.

Figure 2.6: Multiple-input neuron

Each of the inputsp1, p2, ..., pR is multiplied by the corresponding weight,w1,1,w1,2, ...,w1,R, of the weight

matrix W. The notation of the weights can be explained as follows: theweightw1,2 represents the connection

from the second input to the first neuron. The net inputn for the activation function is obtained by adding the

bias to the weighted inputs. The net input can be written as

n = w1,1p1 +w1,2p2 + ...+w1,RpR+b. (2.5)

In matrix form, the latter expression is written as

n = Wp +b, (2.6)

wherep is a vector and, in the case of a single neuron, the matrixW will have only one row. The output of the

multiple-input neuron can thus be written as

a = f (Wp +b). (2.7)

One of the first ANNs was called aperceptron. This artificial neuron is able to classify multiple inputs into

one of two classes. In the next section, the perceptron architecture will be considered.

2.3.3 The perceptron

The perceptron was introduced by Rosenblatt (1958) and is based on the neuron that was proposed by McCul-

loch and Pitts (1943). The perceptron architecture is a single-layer neural network with a hard-limit activation

function (Hagan et al., 1996). Note that Hagan et al. (1996) does not consider the inputs as a layer. A single-

neuron perceptron can classify the input vectors into one oftwo classes. To illustrate this capability, a two-input

single-neuron perceptron will be considered. Figure 2.7 shows a single-neuron perceptron with two inputs.

13

Figure 2.7: Single-neuron perceptron with two inputs

If w1,1 andw1,2 is, for example, -1 and 1 respectively, then the output will be defined as

a = hardlim(
[

−1 1
]

p+b). (2.8)

In this example, the weight matrixW is a single row vector and if the product of the weight vector and the input

vectorp is equal to or greater than−b, then the outputa will be 1. The output will be 0 if the product of the

input vector and weight vector is less than−b. The input space is now divided into two parts. Figure 2.8 shows

the decision boundary whereb = −1. The dotted line in the figure represents all the points where the net input

-1 1

1

n<0n>0

W

p
2

p
1

Figure 2.8: Decision boundary

n is equal to 0:

n =
[

−1 1
]

p−1= 0. (2.9)

The network output will be 1 for all the input vectors that areon the left side of the boundary line and 0 for

all other input vectors. The decision boundary is determined by

Wp +b = 0. (2.10)

For a single-layer perceptron, the boundary must be linear and thus the single-layer perceptron’s pattern

recognition capabilities are limited to linearly separable problems. As a result, the decision boundary line must

separate the input space into two areas where each area represents an output class. A decision boundary of a

problem that is linearly separable is shown in Figure 2.9. Inthis figure, all the black dots fall into one class and

the white dot falls in the other class. The dotted line separates the two classes; each point on the right side of

the dotted line will represent one class and each point on theleft side will represent the other class.

14

b

bbc
0

1

x2

x1
1

b

Figure 2.9: Linearly separable problem

Figure 2.10 represents a problem that is nonlinear. The black dots represent one class and the white dots

the other class. As seen from this figure, it is impossible to separate these two classes by using a straight line.

b

bbc
0

1

x2

x1
1

bc

Figure 2.10: Nonlinearly separable problem

In the next example, a single-neuron perceptron will be usedto classify a car into one of two classes: a

family sedan (represented by 1) or a sports sedan (represented by 0). Three attributes will describe each car and

as a result, the input vector will be three-dimensional. Theperceptron will thus be defined as

a = hardlim(
[

w1,1 w1,2 w1,3

]











p1

p2

p3











+b). (2.11)

The first inputp1 will represent the drive method of the car, -1 for four-wheeldrive (4x4) or 1 for two-wheel

drive (4x2). The second inputp2 will indicate the car’s engine power, -1 for cars with 120 kilowatt of power or

more and 1 for cars with less than 120 kilowatt of power. The final input p3 will represent the number of doors

of the car, 1 for two doors and -1 for four doors.

The two car models that will be tested is a Volkswagen Jetta 1.6 (family sedan) and the BMW 325i (sports

sedan). The Jetta is 4x2 driven, has 75 kilowatt of power and four doors. The Jetta’s input vector is thus

p1 =











1

1

−1











. (2.12)

15

The BMW is also 4x2, has 160 kilowatt of power and four doors. The BMW’s input vector is thus

p2 =











1

−1

−1











. (2.13)

The linear boundary that separates these two vectors symmetrically is thep1, p3 plane as shown in Figure 2.11.

The decision boundary, which is thep1, p3 plane, can be described by the expression

p2 = 0, (2.14)

or

[

0 1 0
]











p1

p2

p3











+0 = 0, (2.15)

since the weight vector must be orthogonal to the decision boundary in the direction of the prototype that is

classified as 1.

P1

p

P3

p
1 2

(Sport sedan) (Family sedan)

P2

Figure 2.11: Input car vectors

The weight matrixW is thus
[

0 1 0
]

and the biasb is 0. The latter is 0 because the decision boundary

passes through the origin. If the Jetta’s specifications aregiven as the input, then the output will be

a = hardlim











[

0 1 0
]











1

1

−1











+0











= 1 (family sedan). (2.16)

If the BMW’s specifications are given as the input then, the output will be

a = hardlim











[

0 1 0
]











1

−1

−1











+0











= 0 (sports sedan). (2.17)

Next, a new car will be classified by the perceptron, namely the Audi TT 3.2 quattro. This car is a sports

car, but not a sedan. The Audi is a four-wheel drive car (4x4),has 184 kilowatt of power and two doors. The

16

Audi’s input vector is the following:

p3 =











−1

−1

1











. (2.18)

The Audi’s input vector is presented to the perceptron and the following output is obtained:

a = hardlim











[

0 1 0
]











−1

−1

1











+0











= 0 (sports sedan). (2.19)

The perceptron classified the Audi as a sports sedan, becauseit has a closer resemblance to a sports sedan than

a family sedan. If the car was closer to a family sedan (for example: four doors, 4x2 driven and less than 100

kilowatt of power), the perceptron would be able to determine it as well.

When many inputs are used, it is difficult to determine the weight matrix and the bias vector, as it is not

possible to visualize the decision boundaries. This difficulty is overcome by a learning rule that train perceptron

networks to solve classification problems. The perceptron learning rule will be discussed in Section 2.5.1.

In cases where a more complex ANN is needed, a layer of neuronscan be used. This concept will be

discussed in the next section.

2.3.4 A layer of neurons

In a single-layer neural network that consists of a number ofneurons, each input is connected to each neuron.

A single-layer neural network which hasSneurons andR inputs is shown in Figure 2.12.

Figure 2.12: Single-layer neural network

The layer consists of the weight matrixW, the bias vectorb, summation functions, activation functions and

the vectora as the output. Each input in the vectorp is connected through the weight matrixW to each neuron.

It is not unusual for the number of neuronsS to differ from the number of inputsR. Each neuroni consists of

a summation function, a biasbi , an activation functionf and an outputai , wherei is the neuron number. It is

17

possible for neurons to have different activation functions. This is accomplished by creating a composite layer

of neurons, consisting of two or more single-layer networksin parallel where the neurons in individual layers

will have the same activation functions. Thus, all the networks will have the same inputs and each network will

give a part of the output.

The weight matrix in a layer of neurons is shown below:

W =

















w1,1 w1,2 . . . w1,R

w2,1 w2,2 . . . w2,R

...
...

...

wS,1 wS,2 . . . wS,R

















. (2.20)

The notation that is used by the weight matrix can be explained as follows:w4,3 for example, represents the

weight connection from the third source to the fourth neuron.

When a single-layer neural network is not powerful enough toperform the task at hand, a multilayer neural

network can be used. In the next section multilayer perceptrons will be discussed.

2.4 Multilayer perceptrons

Multilayer perceptrons (MLPs) are neural networks that have two or more layers that consist of one or more

neurons in each layer (Rumelhart and McClelland, 1986). Thefirst hidden layer receives the inputs from

outside stimulation (Negnevitsky, 2005). The last layer isknown as the output layer and is responsible for

the final output of the neural network. Between the input and output layer, there can also be one or more

hidden layers. The hidden layers’ neurons detect patterns from the data. The weights of the neurons represent

characteristics of the patterns hidden in the data. The output layer then uses these characteristics to determine

the output pattern. Each input is connected to each neuron inthe first hidden layer. Each neuron in the first

hidden layer is then connected to each neuron in the next hidden layer. Finally, each neuron in the last hidden

layer is connected to each output neuron. An MLP is classifiedas a feedforward network, which indicates that

the input values are distributed from the input layer, layerby layer, to the output layer.

In the architecture of an MLP, each layer has a weight matrixW, a bias vectorb, a net input vectorn and

an output vectora (Hagan et al., 1996). The number of each layer is appended as asuperscript to each of these

variables to distinguish between the different variables in the different layers. As a result, the weight matrix for

the first layer and second layer will be written asW1 andW2 respectively. Note that Hagan et al. (1996) do

not regard the inputs as a separate layer. A three-layer network (Hagan et al., 1996) is shown in Figure 2.13 to

illustrate this multilayer notation. The final outputa3 of this example can be defined as

a3 = f3(W3f2(W2f1(W1p+b1)+b2)+b3). (2.21)

As shown in Figure 2.13, there areR inputs and Sk neurons in layerk. The different layers in the network

can have a different number of neurons in each layer and even different activation functions. In this figure, the

18

Figure 2.13: Three-layer neural network

first hidden layer is represented by the first layer, the second layer represents a second hidden layer and the

third layer is the output layer. For the first hidden layerp is given as input and the layer output isa1, which in

turn is given as input for the second hidden layer. The secondhidden layer’s output isa2 and is given as input

for the output layer, which gives the final outputa3 .

These MLPs are more powerful than single-layer perceptrons, as most functions can be approximated

arbitrarily well with a two-layer network that uses a sigmoid activation function in the first hidden layer and a

linear activation function in the output layer (Hagan et al., 1996).

When constructing an MLP with supervised learning, the goalis to develop a good model that is trained on

a data set where the target is known. This model must then perform well on data that has not been seen before.

When training an MLP on a training data set, the more complex the MLP, the more accurate the neural network

will be on that data set, but this may lead to overfitting (Murtagh, 1991). The latter occurs when the network is

too complex and learns the data from the training data set andperforms well on that data, but performs badly on

new, unseen data. Another problem with adding extra hidden layers to make the neural network more complex

is the additional computing power needed for training that increases exponentially (Negnevitsky, 2005).

The number of neurons in the output (last) layer is determined by the problem specifications. For example,

in some cases, if the data set used for training the network consists of one target attribute, then the output layer

will have one neuron. For the number of neurons in the hidden layers there are no constant formula for all

problems. The number of layers in a network may also differ, but more than two layers (a hidden layer and

an output layer) are rarely used. Neurons may or may not contain biases. In many cases, a network will be

more powerful when the neurons have biases, as an input of value 0 will result in a neuron output of 0 if there

is no bias added. A construction algorithm is thus needed to guide the development of a neural network that

will perform satisfactory for a specific problem. In Section2.6, algorithms for the construction of MLPs will

be discussed.

19

In order to show that an MLP can solve problems that a single-layer network cannot, the exclusive-or (XOR)

problem will be considered. This problem was used by Minsky and Papert (1969) to show that a single-layer

network is limited to a problem where the categories are linearly separable. The input data set contains the

following data points:






d1 =





0

0



 , t1 = 0







,







d2 =





0

1



 , t2 = 1







,







d3 =





1

0



 , t3 = 1







and







d4 =





1

1



 , t4 = 0







(2.22)

whereti denotes the target values. As shown in Figure 2.14, the XOR problem is not linearly separable and thus

a single-layer network would be unable to solve it. There are, however, many different MLPs that can solve the

XOR problem, but for this example, a two-layer MLP will be used. This MLP can be seen in Figure 2.15.

b

bbc
0

1

p

p
1

bc

1

2

d

dd

d

2 4

1 3

Figure 2.14: XOR problem space

Figure 2.15: Two-layer XOR neural network

The first hidden layer consist of two neurons. Each of the two neurons create a decision boundary, as shown

in Figures 2.16 and 2.17. The output layer have one neuron. This neuron combines the two decision boundaries,

which then distinguish correctly between the target variable values. For this example, the hard-limit activation

function is utilized. The classification is shown in Figure 2.18, where the inputs between the two boundaries

will result in an output of 1.

The connections (weights) of ANNs are modified by means of rules that are known as learning rules. In the

20

b

bbc
0

1

p

p
1

bc

1

2

d

dd

d

2 4

1 3

Figure 2.16: Layer 1 - neuron 1

b

bbc
0

1

p

p
1

bc

1

2

d

dd

d

2 4

1 3

Figure 2.17: Layer 1 - neuron 2

b

bbc
0

1

p

p
1

bc

1

2

d

dd

d

2 4

1 3

Figure 2.18: Final network output

next section, two learning rules are discussed: one that is used to train a perceptron and the other one to train a

multilayer perceptron.

2.5 Artificial neural network learning

A learning rule is an algorithm that modifies the weights and biases of a neural network in order to train it to

perform a task (Hagan et al., 1996). A learning rule is thus sometimes called atraining algorithm. There are

three main categories of learning rules:

• Unsupervised learning: With unsupervised learning, thereis no target output available. The weights and

21

biases of the neural network are thus modified only in response to the inputs.

• Supervised learning: Supervised learning uses a training data set that contains inputs with the correct

target output. The inputs are applied to the neural network and the output of the network is compared to

the target output. The learning rule then makes changes to the weights and biases in order for the network

output to be more accurate compared to the target output. In this study, supervised learning is performed.

• Reinforcement learning: Reinforcement learning works in the same way as supervised learning, except

that a target output is not provided. Instead, the algorithmis given a grade that measures the neural

network’s performance over some succession of inputs.

2.5.1 The perceptron learning rule

The perceptron learning rule falls in the supervised learning category. In order to explain the perceptron learning

rule, it would be helpful to be able to reference individual elements of the network output. First, the weight

matrix can be denoted as follows:

W =

















w1,1 w1,2 .. w1,R

w2,1 w2,2 .. w2,R

: : :

wS,1 wS,2 .. wS,R

















. (2.23)

A vector that contains the elements of theith row ofW can be defined as

iw =

















wi,1

wi,2

:

wi,R

















. (2.24)

The weight matrix can now be partitioned as follows:

W =

















1wT

2wT

:

SwT

















, (2.25)

whereiwT denotes the transpose ofiw. With the partitioned weight matrix, theith element of the output vector

can be written as

ai = hardlim(ni) = hardlim(iwTp+bi). (2.26)

Consider a single neuron with two inputs, as shown in Figure 2.19, where the weights and bias will be

chosen manually by means of a decision boundary.

The outputa of this two-input single-neuron perceptron is determined by

a = hardlim(n) = hardlim(Wp +b) = hardlim(1wTp+b) = hardlim(w1,1p1 +w1,2p2 +b). (2.27)

22

Figure 2.19: Single-neuron perceptron with two inputs

The decision boundary can be written as

n = 1wTp+b= w1,1p1 +w1,2p2 +b = 0. (2.28)

Let w1,1 = 1, w1,2 = 1 andb = −1, then the decision boundary will be

n = 1wTp+b= w1,1p1 +w1,2p2 +b = p1 + p2−1 = 0. (2.29)

The decision boundary defines a line in the input space where the output will be 0 on the one side and 1 on the

other side of the line. In order to draw the line, the points where the line intercepts thep1 andp2 axes must be

found. Thep1 intercept can be found by settingp2 to 0:

p1 = −
b

w1,1
= −

−1
1

= 1. (2.30)

The p2 intercept can be found by settingp1 to 0:

p2 = −
b

w1,2
= −

−1
1

= 1. (2.31)

The decision boundary line can now be drawn, as shown in Figure 2.20. According to this figure, the output of

the network will be 1 for all inputs that correspond to a pointin the shaded area and 0 otherwise.

Figure 2.20: Decision boundary

To apply the perceptron learning rule, a data set is requiredthat contains input/output pairs:

{p1, t1},{p2, t2}, ...,{pQ, tQ}, (2.32)

23

wherepq is an input andtq is the corresponding target output withq = 1,2, . . . ,Q. An example data set will be

used for illustrating the perceptron learning rule (Hagan et al., 1996):






p1 =





1

2



 , t1 = 1







,







p2 =





−1

2



 , t2 = 0







,







p3 =





0

−1



 , t3 = 0







(2.33)

To simplify the illustration of the learning rule, a single-neuron perceptron without a bias (where biasb = 0)

will be used, as shown in Figure 2.21.

Figure 2.21: Single-neuron perceptron without a bias

The output of this perceptron is thus defined as

a = hardlim(Wp). (2.34)

From the example data set, it is known that there are two variables in the input vector and one target output.

As a result, the learning rule only needs to adjust the weightmatrix, which in this case consists of two elements.

The first step that must be performed is to initialize these two weights with random values:

1wT = [1.0 −0.8]. (2.35)

The first input vectorp1 is now applied to the network:

a = hardlim(1wTp1) = hardlim





[

1.0 −0.8
]





1

2







 = hardlim(−0.6) = 0. (2.36)

The target output is 1, but the network gave an output of 0. As shown in Figure 2.22, the initial weight values

causedp1 to be incorrectly classified by the decision boundary. In this figure, the black dot representsp1 with

an output of 1. The other two hollow dots representp2 andp3 with an output of 0 each. As seen in the figure,

the decision boundary does not separate the inputs correctly. Also note that the decision boundary must pass

through the origin of the graph, as there is no bias. The weight vector is orthogonal to the decision boundary

and, due to this, the decision boundary will shift if the weight vector changes.

The weight vector needs to be adjusted to improve the probability of classifying p1 correctly. To do this,

p1 is added to1w. This results in1w pointing more in the direction ofp1. If this is repeated withp1, then1w

would asymptotically approach the direction ofp1. This rule can be described as follows:

If t = 1 and a = 0, then 1wnew= 1wold +p. (2.37)

24

Figure 2.22: Incorrect decision boundary

Applying this rule to the example would result in the following:

1wnew= 1wold +p1 =





1.0

−0.8



+





1

2



 =





2.0

1.2



 . (2.38)

The resulting decision boundary, after adjusting the weight values, is shown in Figure 2.23. This figure shows

how the weight vector changed and, consequently, how the decision boundary shifted.

Figure 2.23: First adjusted decision boundary

Input vectorp2 is now applied to the network:

a = hardlim(1wTp2) = hardlim





[

2.0 1.2
]





−1

2







 = hardlim(0.4) = 1. (2.39)

The outputa is misclassified by the network, as the target associated with p2 is 0 and outputa is 1. The weight

vector now needs to be moved away from the input. This can be done with the following rule:

If t = 0 and a = 1, then 1wnew= 1wold −p. (2.40)

Applying this rule to the example would result in the following:

1wnew= 1wold −p2 =





2.0

1.2



−





−1

2



 =





3.0

−0.8



 . (2.41)

The resulting decision boundary, created by adjusting the weight values, is shown in Figure 2.24. In this figure,

the decision boundary shifted again as the weight vector changed.

The final input vector in the example data set,p3, is now applied to the network:

a = hardlim(1wTp3) = hardlim





[

3.0 −0.8
]





0

−1







 = hardlim(0.8) = 1. (2.42)

25

Figure 2.24: Second adjusted decision boundary

The input vector was misclassified again and, consequently,the weights need to be updated. The previous rule

also applies to this situation and will be used:

1wnew= 1wold −p3 =





3.0

−0.8



−





0

−1



 =





3.0

0.2



 . (2.43)

The resulting decision boundary, created by adjusting the weight values, is shown in Figure 2.25. As this figure

shows, the network has learnt to classify all three input vectors correctly. The third and final rule is:

If t = a, then 1wnew= 1wold. (2.44)

Figure 2.25: Third adjusted decision boundary

The three rules can be combined to form a single unified learning rule. First, a new variable, the perceptron

errore, is defined:

e= t −a. (2.45)

The three rules can be rewritten with the new variableeas:

If e= 1, then 1wnew= 1wold +p. (2.46)

If e= −1, then 1wnew= 1wold −p. (2.47)

If e= 0, then 1wnew= 1wold. (2.48)

The unified rule can now be formulated as:

1wnew= 1wold +ep = 1wold +(t −a)p. (2.49)

26

When a bias is added to the perceptron, it can be updated by using the same rule. A bias can be seen as a weight

for which the input is always 1 andp can thus be replaced by 1, resulting in the following rule:

bnew= bold +e. (2.50)

These two rules for updating the weights and the bias can alsobe modified to be used in multiple neuron

perceptrons. To modify theith row of the weight matrix, the following rule will be used:

iwnew= iwold +eip. (2.51)

To modify theith element of the bias vector, the following rule will be used:

bnew
i = bold

i +ei. (2.52)

These two rules, one for updating the weights and the other for updating the biases, are known collectively as

the perceptron learning rule.

A more complex set of rules, called the backpropagation algorithm, can be used to train MLPs. In the next

section, this learning algorithm will be discussed.

2.5.2 The backpropagation algorithm

In the discussion of the backpropagation algorithm (Hagan et al., 1996), an abbreviated notation will be used.

An MLP with three layers is shown graphically with the abbreviated notation in Figure 2.26, where

a3 = f3(W3f2(W2f1(W1p+b1)+b2)+b3). (2.53)

Figure 2.26: Multilayer perceptron in abbreviated notation

As discussed earlier, the output of one layer is used as the input for the next layer. This can be shown by

the following:

am+1 = fm+1(Wm+1am+bm+1) for m= 0,1, ...,M −1, (2.54)

where the number of layers are represented byM. The first hidden layer receives its input from the external

source:

a0 = p. (2.55)

27

The output of the last layer (output layer) is the final outputof the MLP:

a = aM . (2.56)

As with the perceptron learning rule, the backpropagation algorithm uses a data set that contains input data as

well as target output data:

{p1, t1},{p2, t2}, ...,{pQ, tQ}, (2.57)

wherepq is an input andtq is the corresponding target output withq = 1,2, . . . ,Q.

The backpropagation algorithm uses the mean squared error (MSE) to estimate the network parameters.

The network computes an output for each input that is supplied to the network. This output is compared to the

target and the network parameters are adjusted to minimize the MSE:

F(x) = E[e2] = E[(t −a)2], (2.58)

wherex represents the vector containing the weights and biases of the network. This can be generalized to the

following if the network have multiple outputs:

F(x) = E[eTe] = E[(t −a)T(t −a)]. (2.59)

The MSE is approximated by

F̂(x) = (t(k)−a(k))T(t(k)−a(k)) = eT(k)e(k), (2.60)

where the squared error at iterationk has replaced the expectation of the squared error. To approximate the

MSE, the following steepest descent algorithm is used:

wm
i, j(k+1) = wm

i, j(k)−α
∂F̂

∂wm
i, j

, (2.61)

bm
i (k+1) = bm

i (k)−α
∂F̂
∂bm

i
, (2.62)

whereα represents the learning rate.

The partial derivatives are calculated by using the chain rule of calculus. This is done because the error is

an indirect function of the weights in the hidden layers. To review the chain rule of calculus, suppose an explicit

function f exists for the variablen. If the derivative off with respect to a third variablew must be determined,

then:
d f(n(w))

dw
=

d f(n)

dn
×

dn(w)

dw
. (2.63)

Consider the following example of the chain rule: If

f (n) = en and n = 2w, so that f (n(w)) = e2w, (2.64)

then
d f(n(w))

dw
=

d f(n)

dn
×

dn(w)

dw
= (en)(2). (2.65)

28

This concept is used to find the derivatives in (2.61) and (2.62):

∂F̂
∂wm

i, j
=

∂F̂
∂nm

i
×

∂nm
i

∂wm
i, j

and (2.66)

∂F̂
∂bm

i
=

∂F̂
∂nm

i
×

∂nm
i

∂bm
i

. (2.67)

As the net input to layerm is an explicit function of the weights and bias in that layer,the following equation

can be used to compute the second terms in (2.66) and (2.67):

nm
i =

Sm−1

∑
j=1

wm
i, ja

m−1
j +bm

i . (2.68)

Hence
∂nm

i

∂wm
i, j

= am−1
j ,

∂nm
i

∂bm
i

= 1. (2.69)

The sensitivity ofF̂ to change in theith element of the net input of layerm can be defined as follows:

sm
i ≡

∂F̂
∂nm

i
. (2.70)

As a result, (2.66) and (2.67) can be simplified to

∂F̂
∂wm

i, j
= sm

i am−1
j and (2.71)

∂F̂
∂bm

i
= sm

i . (2.72)

The approximate steepest descent algorithm can now be expressed as

wm
i, j(k+1) = wm

i, j(k)−αsm
i am−1

j and (2.73)

bm
i (k+1) = bm

i (k)−αsm
i . (2.74)

This approximate steepest descent algorithm can be writtenin matrix form as

Wm(k+1) = Wm(k)−αsm(am−1)T and (2.75)

bm(k+1) = bm(k)−αsm, (2.76)

where

sm ≡
∂F̂
∂nm

=

















∂F̂
∂nm

1

∂F̂
∂nm

2
...

∂F̂
∂nm

sm

















. (2.77)

The backpropagation algorithm gets it name from the way in which the sensitivity is calculated. The sensitivity

at layerm is calculated from the sensitivity at layerm+1. The recurrence relationship for the sensitivities can

be derived by using the following Jacobian matrix:

∂nm+1

∂nm ≡



















∂nm+1
1

∂nm
1

∂nm+1
1

∂nm
2

. . .
∂nm+1

1
∂nm

Sm

∂nm+1
2

∂nm
1

∂nm+1
2

∂nm
2

. . .
∂nm+1

2
∂nm

Sm

...
...

...
∂nm+1

Sm+1

∂nm
1

∂nm+1
Sm+1

∂nm
2

. . .
∂nm+1

Sm+1

∂nm
Sm



















. (2.78)

29

Next, an expression for this matrix is sought. Consider thei,j element of the matrix:

∂nm+1
i

∂nm
j

=
∂
(

∑Sm

l=1 wm+1
i,l am

l +bm+1
i

)

∂nm
j

= wm+1
i, j

∂am
j

∂nm
j

(2.79)

= wm+1
i, j

∂ f m(nm
j)

∂nm
j

= wm+1
i, j ḟ m(nm

j) (2.80)

where

ḟ m(nm
j) =

∂ f m(nm
j)

∂nm
j

. (2.81)

Hence, the Jacobian matrix can be written as:

∂nm+1

∂nm = Wm+1Ḟm(nm), (2.82)

where

Ḟm(nm) =

















ḟ m(nm
1) 0 . . . 0

0 ḟ m(nm
2) . . . 0

...
...

...

0 0 . . . ḟ m(nm
Sm)

















. (2.83)

The recurrence relation for the sensitivity can be written by using the chain rule in matrix form:

sm =
∂F̂
∂nm =

(

∂nm+1

∂nm

)T ∂F̂
∂nm+1 = Ḟm(nm)(Wm+1)T ∂F̂

∂nm+1 (2.84)

= Ḟm(nm)(Wm+1)Tsm+1. (2.85)

This shows that the sensitivities are propagated backward,from the last layer to the first layer, through the

network:

sM → sM−1 → . . . → s2 → s1. (2.86)

The last step is to formulate the starting pointsM for the recurrence relation of (2.84), which is obtained at the

final layer:

sM
i =

∂F̂

∂nM
i

=
∂(t −a)T(t −a)

∂nM
i

=
∂∑SM

j=1(t j −a j)
2

∂nM
i

= −2(ti −ai)
∂ai

∂nM
i

. (2.87)

Since
∂ai

∂nM
i

=
∂aM

i

∂nM
i

=
∂ f M(nM

i)

∂nM
i

= ḟ M(nM
i), (2.88)

sM
i can be written as:

sM
i = −2(ti −ai) ḟ M(nM

i). (2.89)

This can be written in matrix form:

sM = −2ḞM(nM)(t −a). (2.90)

The three steps of the backpropagation algorithm can be summarized as shown in Algorithm 2.1. The

backpropagation algorithm seeks to minimize the MSE. If theMSE is sufficiently small, the network is consid-

ered to have converged. An extended example of the backpropagation algorithm can be found in Hagan et al.

(1996).

30

1. The input is propagated forward through the network:

a0 = p,

am+1 = fm+1(Wm+1am+bm+1) for m= 0,1, ...,M −1,

a = aM .

2. The sensitivity is propagated backward through the network:

sM = −2ḞM(nM)(t −a),

sm = Ḟm(nm)(Wm+1)Tsm+1, for m= M−1, ...,2,1.

3. The approximate steepest descent rule is used to update the weights and biases:

Wm(k+1) = Wm(k)−αsm(am−1)T ,

bm(k+1) = bm(k)−αsm.

Algorithm 2.1: Backpropagation algorithm

The MLP architecture and the backpropagation algorithm that are used to train an MLP have been discussed.

Since the architecture of MLPs may differ for different problems, MLP construction will be regarded in the next

section.

2.6 Multilayer perceptron construction

One of the most important tasks in ANN design is to determine the appropriate number of hidden layers and

the number of neurons in the hidden layers (hidden neurons) (Basheer and Hajmeer, 2000). If too few hidden

layers and neurons are used, then underfitting will occur. Asa result, the network will not be able to distinguish

between complex patterns. On the other hand, if the network has too many hidden layers and neurons then

the result would be overfitting, as discussed in Section 2.4.As research have shown that an MLP with one

hidden layer can approximate any continuous function with any desired accuracy (Zhang et al., 1998), only

construction methodologies that are used to create MLPs with one hidden layer will be considered.

Normally, the data analyst wants to find the number of hidden neurons that work for a given problem. This

task is much easier than determining the theoretically optimum architecture, but it may still be very difficult to

decide before training what number of hidden neurons are appropriate for a given problem (Reed and Marks

II, 1999). Some heuristics are available as guidelines to determine the number of hidden neurons. They include

x= 2n−1 (Lippmann, 1987),x= 2n (Wong, 1991),x= n (Tang and Fishwick, 1993) andx= n/2 (Kang, 1991),

wherex is the number of hidden neurons andn is the number of inputs. Unfortunately, there are no dependable

31

general rules for choosing the number of hidden neurons in advance. A common ad hoc approach is to deter-

mine the number of hidden neurons by trial and error, that is,to experiment with different configurations until

one is found that performs well. This approach may be time consuming if many network configurations have

to be tested before an adequate one is obtained.

Constructive methods seek to adjust the size of the network to the problem by starting with a small number

of hidden neurons and adding neurons as needed until an adequate solution is found. The greatest advantage of

this approach is that there is no need to make an estimate of the correct hidden layer size in advance. Reed and

Marks II (1999) also discuss good reasons from a theoreticalpoint of view to consider these algorithms.

Pruning methods, by contrast, train a larger than necessarynetwork and then remove unneeded hidden

neurons. These methods are complemented by constructive methods. Both constructive methods and pruning

methods adjust the hidden layer size to the problem at hand. Even though pruning methods can be effective,

they require an estimate of what number of hidden units are “larger than necessary”. Constructive methods can

determine the hidden layer size without this estimate.

Sometimes, constructive methods add more neurons than necessary. For this reason, it is often useful to

follow a construction phase with a pruning phase. Some algorithms let the processes compete simultaneously,

one trying to add neurons, while the other attempts to removethem. At some point, the structure stabilizes

when the processes balance.

An important issue that must be addressed with constructivemethods, is when to stop adding new hidden

neurons. By adding more hidden neurons, the training data set error can be made as small as desired. Unfortu-

nately, each additional neuron will result in less and less benefit, according to the law of diminishing returns.

It is a question of whether the incremental error reduction is worth the cost of the additional storage require-

ments, processing time and hardware costs. For the class of continuous problems, an infinite number of hidden

neurons might be needed to achieve a zero error. In general, the data analyst must declare some nonzero error

to be acceptably small and stop adding hidden neurons when itis achieved.

In addition to the question of efficiency, overfitting and generalization also cause a problem. Reed and

Marks II (1999) discuss a number of factors which have an effect on generalization. When training on sampled

data, the error on the training set is only an estimate of the true error, as the sampled data contain noise and

other imperfections. These two error functions have a tendency to be similar, but slightly different. As a result,

a change that reduces one will not always reduce the other. Normally, the error functions have large-scale

similarities with small-scale differences. Both errors tend to decrease together, while learning progresses in

the initial stages, as the network fits the large scale features of the training set. At some point of training the

network starts to fit small-scale features where the two functions differ and additional training starts to have a

negative effect on the true error. When this happens, improvements in the training error no longer correspond

to improvements in the generalization error and, consequently, the network begins to overfit the data. It is often

desirable to stop training before the training-set error reaches zero in order to obtain good generalization. To

avoid the problem, some implementations pass it to the pruning algorithm. The constructive stage is allowed

to continue well past the point of overfitting and is then followed by a pruning stage to satisfy generalization

32

criteria.

Constructive algorithms also have a secondary advantage. It may decrease overall training times, since

useful learning occurs when the network is still small. Although a small network may not satisfy the error cri-

teria, it may learn the dominant characteristics of the target function and consequently simplify learning in later

stages. In contrast, with nonconstructive methods, an inadequate network would be abandoned and anything

that was learnt would have to be relearnt by the next network that was tested. The learning is retained with

constructive methods and finer details are picked up as more hidden neurons are added.

The advantages of constructive algorithms over pruning algorithms justify the use of such a technique

in this study. Some examples of constructive methods are Dynamic Node Creation (Ash, 1989), Cascade-

Correlation (Fahlman and Lebiere, 1990), the Upstart algorithm (Frean, 1990), the Tiling algorithm (Mézard

and Nadal, 1989), Marchand’s algorithm (Marchand, Golea and Ruján, 1990), Meiosis Networks (Hanson,

1990), Principal Components Node Splitting (Wynne-Jones,1992), construction from a Voronoi Diagram (Bose

and Garga, 1993) and the N2C2S algorithm (Setiono, 2001). The latter constructive algorithm was chosen for

this study, as it builds a feedforward neural network with a single hidden layer. To determine when to stop

adding new hidden neurons, the algorithm utilizes a subset of the available training samples for cross-validation.

The algorithm was originally designed to perform classification and was modified to enable a comparison with

the automated construction algorithm of generalized additive neural networks (GANNs) that are discussed in

the next chapter. In the next section, the algorithm is discussed.

2.6.1 The N2C2S algorithm

Assume there areP data samples(xp,yp), p = 1,2, ...,P, where inputxp ∈ R
N, targetyp ∈ [0,1]M ,N is the

dimensionality of the input data andM is the number of classes. The algorithm also requires that the data set

must be split randomly into two disjointed subsets, called the training data set(T) and thecross-validation

data set(C). The training data set is used to find the optimal weights of the connections and the validation

data set is used to determine the architecture of the final MLP. The objective of the algorithm is to con-

struct and train an MLP that performs good on unseen data. LetT be a data set containing training sam-

ples(xp,yp), p = 1,2, ...,P1, C a data set that contains cross-validation samples(xp,yp), p = 1,2, ...,P2, with

P = P1 + P2, H be the starting number of neurons in the hidden layer, andh the number of hidden neurons

that are added to each new network. The N2C2S algorithm is presented in Algorithm 2.2. This algorithm

begins by training an MLP withH neurons in the hidden layer and then training another MLP with H+h neu-

rons. The weights of the second MLP are set to the optimal weights that are found in the first MLP. These

two MLPs are then compared to determine if the second networkperforms better than the first one. The

accuracy results on the training data set and the cross-validation data set are added together for each MLP

and then compared to each other. If the second network performed better than the first one, another net-

work is built with h more neurons added to the hidden layer. After that, the second and third MLP will be

compared. This process of adding more neurons to the new network will continue until the newer network

does not perform better than the previous one. If this happens, the same network will be trained again, but

33

1. Construct an MLP, calledN1, with N inputs,M outputs, andH neurons in the hidden layer.

2. Initialize the connection weights ofN1 randomly and train the network, using data setT. Score the

network on the data setC and let the accuracy on data setT andC beAT1 andAC1 respectively.

3. Create a new MLP and call itN2, with N inputs,M outputs andH + h neurons in the hidden layer.

4. Set the weights of the connections to and from the firstH neurons in the hidden layer of network

N2 to the optimal weights of networkN1. The rest of the connection weights must be set randomly.

Train N2 on the training data setT and test it on the cross-validation data setC. Let the accuracy

on data setT andC beAT2 andAC2 respectively.

5. (A) If (AT2 +AC2) > (AT1 +AC1), then

• SetH := H +h.

• Let N1 := N2,AT1 := AT2,AC1 := AC2.

• If H < MaxH; go to step 3.

(B) Else:

• Create a new MLP, calledN3, with H +h neurons in the hidden layer. Assign random values

to all the weights. Then trainN3 on the training data setT and test it on the cross-validation

data setC. Let the accuracy on data setT andC beAT3 andAC3 respectively.

• If (AT3 +AC3) > (AT1 +AC1), then

– SetH := H +h.

– Let N1 := N3,AT1 := AT3,AC1 := AC3.

– If H < MaxH; go to step 3.

6. NetworkN1 is used as the final constructed MLP.

Algorithm 2.2: N2C2S algorithm

this time with randomly assigned weights. If this network also does not perform better, then the algorithm will

stop, otherwise the process of adding a neuron and comparingit to the previous network will continue.

The N2C2S algorithm was modified to make the comparison with the automated construction algorithm

of GANNs possible. The reasons for the alteration, modifications and resulting algorithm that are used in the

study are presented next.

34

2.6.2 The modified N2C2S algorithm

The automated construction algorithm for GANNs (discussedin Section 3.5.3) can perform in- and out-of-

sample model selection and variable selection (Du Toit, 2006). In-sample model selection is performed by

choosing the best model, based on an in-sample model selection criterion. Out-of-sample model selection is

obtained by splitting the input data set into a training set and a validation set. Out-of-sample performance is

then measured on the validation set. While searching for thebest GANN model, variable selection is done

simultaneously. Only one output node is allowed for binary classification (e.g. probabilities) or regression.

As a result of these possible tasks which can be performed andthe restrictions on the GANN architecture, the

N2C2S algorithm was modified as follows:

The target is restricted to one node(M = 1) and yp ∈ [0,1] when binary classification is performed or

yp ∈ R for regression tasks. When in-sample model selection is done, the model is trained and evaluated on

the training set. In-sample model selection criterion values are utilized for the accuracy measurementsAT1,

AT2, AT3, with AC1 = 0, AC2 = 0 andAC3 = 0. For cross-validation,AT1 = 0, AT2 = 0, AT3 = 0 and the out-of-

sample performance is used for the accuracy measurementsAC1, AC2 andAC3. Since hidden neurons are added

and removed one at a time with the automated GANN construction algorithm,h = 1. To ensure that search

commences from the most simple architecture,H = 1. Variable selection was not implemented, in order to

keep the modified algorithm simple and as close as possible tothe original N2C2S algorithm. Algorithm 2.3

was obtained after applying these changes to the original N2C2S algorithm.

In the next section, the implementation of the modified N2C2Salgorithm will be discussed.

2.6.3 Implementation of the modified N2C2S algorithm

The modified N2C2S algorithm was implemented in the SASR© Macro Language and used to search for a good

MLP model with one hidden layer. This implementation has twoparts. The first part uses the modified N2C2S

algorithm to search for a good MLP model and the other part is abrute force method that is used to train a

succession of MLP models, defined by the user, to find a good MLPmodel. The program is hardcoded to work

with the five data sets that are used in this study. These data sets and the experiments that are conducted will

be discussed in Chapter 4. In order to run a specific experiment, the user must configure some settings in the

program. By changing these settings, the user can specify the data set and experiment that must be conducted

on the data. The following settings are available to the user:

• DataSelection: Select the data set. The options are:

– Adult for the Adult data set.

– Housefor the Boston Housing data set.

– Ozonefor the Ozone data set.

– SO4for the SO4 data set.

– Spamfor the Spambase data set.

35

1. Construct an MLP, calledN1, with N inputs, 1 output, andH = 1 neuron in the hidden layer.

2. Initialize the connection weights ofN1 randomly and train the network by using data setT.

When performing in-sample model selection, evaluate the network on the data setT with the

model selection criterion, let the accuracy on data setT be AT1 and setAC1 = 0. For cross-

validation, score the network on the data setC, let the accuracy on data setC be AC1 and set

AT1 = 0.

3. Create a new MLP and call itN2, with N inputs, 1 output andH + 1 neurons in the hidden layer.

4. Set the weights of the connections to and from the firstH neurons in the hidden layer of network

N2 to the optimal weights of networkN1. The rest of the connection weights must be set

randomly. TrainN2 on the training data setT. When performing in-sample model selection,

evaluate the network on the data setT with the model selection criterion, let the accuracy on

data setT beAT2 and setAC2 = 0. For cross-validation, score the network on the data setC, let

the accuracy on data setC beAC2 and setAT2 = 0.

5. (A) If (AT2 +AC2) > (AT1 +AC1), then

• SetH := H +1.

• Let N1 := N2,AT1 := AT2,AC1 := AC2.

• If H < MaxH; go to step 3.

(B) Else:

• Create a new MLP, calledN3 with H + 1 neurons in the hidden layer. Assign random

values to all the weights. Thereafter, trainN3 on the training data setT. When performing

in-sample model selection, evaluate the network on the datasetT with the model selection

criterion, let the accuracy on data setT beAT3 and setAC3 = 0. For cross-validation, score

the network on the data setC, let the accuracy on data setC beAC3 and setAT3 = 0.

• If (AT3 +AC3) > (AT1 +AC1), then

– SetH := H +1.

– Let N1 := N3,AT1 := AT3,AC1 := AC3.

– If H < MaxH; go to step 3.

6. NetworkN1 is used as the final constructed MLP.

Algorithm 2.3: Modified N2C2S algorithm

• Dir : Specify the directory of the data set.

36

• k: Specify how the model is trained and validated on the data set. The following values are available:

– k = 0: The complete data set is used for training and validation.

– k = 1: The data set is split into training and validation subsetswith user-defined sizes, specified by

theSplitTrainandSplitValvalues.

– k > 1: K-fold cross-validation is performed wherek is the number of folds.

• SplitTrain: The size of the training data set as a percentage of the full data set (whenk = 1).

• SplitVal: The size of the validation data set as a percentage of the full data set (whenk = 1).

• Prelim: The number of preliminary runs that are performed when determining the initial weights of an

MLP model.

• NetOptions: Choose between a deviance (dev)- or negative log-likelihood (like)-based objective function.

• Criterion: Select the model selection criterion (whenHidNodes= 0). The following options are available:

– AIC: Akaike information criterion.

– VAVERR: Average validation error.

– SBC: Schwarz Bayesian criterion.

• HidNodes: Select the number of hidden neurons from where the brute force enumeration will commence.

WhenHidNodesis set to 0, the modified N2C2S algorithm will be executed to determine the number of

hidden neurons.

• hMax: Specify the maximum number of hidden neurons that are allowed in the model.

The brute force part of the MLP model selection program creates different MLP model architectures by

enumerating through a number of neurons in the hidden layer.This is done when the parameterHidNodesis

set to a value greater than 0. An MLP will be created with the number of neurons in the hidden layer that

are set to the value of the parameterHidNodes. The MLP will then be trained and tested by using either the

whole data set, the data set split into two subsets orK-fold cross-validation is performed. The latter technique

is discussed in Section 3.5.2. A new MLP will then be created with an extra neuron in the hidden layer and

with randomly assigned weights. This will continue until the number of neurons in the hidden layer reach the

value of the parameterhMax. The results of the brute force method are utilized as a baseline for the modified

N2C2S algorithm’s results in Chapter 4. Both the modified N2C2S algorithm and the brute force enumeration

will produce a results file which contains fit statistics.

The program code of the MLP model selection program that contains the modified N2C2S algorithm and

the brute force method that was used to search for a good MLP model is shown in Appendix A. In the next

section, an example which utilizes the Concrete data set (Frank and Asuncion, 2010) is given to illustrate the

modified N2C2S algorithm.

37

2.6.4 Example

The instances of this data set represent information about the mixture of cement and the compressive strength of

that specific mixture. The data set consists of 1 030 instances and has 9 attributes. This is a regression problem

and the objective is to predict the compressive strength of acement mixture (Concretecompressivestrength)

by using the remaining 8 attributes as inputs. These attributes are described in Table 2.2.

Attribute Description Attribute scale

Cement Cement in a m3 mixture, measured in kg Interval

Blast furnaceslag Blast furnace slag in a m3 mixture, measured in kg Interval

Fly ash Fly ash in a m3 mixture, measured in kg Interval

Water Water in a m3 mixture, measured in kg Interval

Superplasticizer Superplasticizer in a m3 mixture, measured in kg Interval

Coarseaggregate Coarse aggregate in a m3 mixture, measured in kg Interval

Fine aggregate Fine aggregate in a m3 mixture, measured in kg Interval

Age Age of the mixture in days (1-365) Interval

The compressive strength of the concrete mixture,

Concretecompressivestrength measured in megapascal (MPa) Interval

Table 2.2: Concrete data set attributes

Methodology

The use of the modified N2C2S algorithm was selected to searchfor a good MLP model (HidNodes= 0).

In-sample model selection was utilized (k = 0) and the SBC value was chosen as model selection criterion

(Criterion = SBC). The network architecture was restricted to a maximum of 15hidden neurons (hMax= 15).

Finally, Prelim was set to 10 andNetOptionsto dev.

In step 1, an MLP was created with 8 inputs and 1 hidden neuron.In step 2, the weights of this network

were initialized randomly and the network was trained and scored by using the whole data set.

In step 3, a new MLP was created with 2 hidden neurons. In step 4, the weights of the connection to and

from the first hidden neuron were set to the optimal weights ofthe previous model. The rest of the connections

were set to random values and the network was trained and scored.

The result of the test in step 5(A) was positive, since the newMLP with 2 hidden neurons performed better

than the previous one. This resulted in the algorithm returning to step 3 and creating a new MLP with 3 hidden

neurons and continuing the process of creating and scoring more complex models which inherit the previous

optimal weight values and then comparing them to the previous best model. However, when a model with 6

hidden neurons was created, it did not perform better than the previous model and thus a new MLP, still with 6

hidden neurons, was created, but with random weight values (step 5(B)). This model was then compared to the

previous best model in terms of the SBC value and the indication was that the previous best model was better

38

than the new model. It resulted in the termination of the program.

Results

The best model that was found was reported to be the MLP with 5 hidden neurons. The SBC value of this model

was -3 472.04 and the MSE value 25.10081. The complexity of the model was reported to be 51 (number of

parameters). It took 16s55ms to complete the experiment to find a good MLP model for the Concrete data set.

In the next section, a conclusion to this chapter is presented.

2.7 Conclusion

In this chapter, the history of ANNs was considered and it wasshowed that the biological neuron inspired the

development of the artificial neuron. This biological inspiration of the modern day ANN was also discussed.

Next, the neuron model architecture was considered, which included single-input neurons, multiple-input neu-

rons, the perceptron and a layer of neurons. This was followed by the MLP model. Neural network learning

was then considered, which included the perceptron learning rule and the backpropagation algorithm. Finally,

the construction of MLPs was considered. The original N2C2Salgorithm for constructing MLPs with one hid-

den layer by using cross-validation was first considered, followed by a modified version of this algorithm and

the implementation of it.

With this chapter, a better understanding of ANNs and MLPs was obtained and a method for constructing

MLPs was selected and modified to be used in the experiments (Chapter 4) in order to compare MLPs and

GANNs.

The GANN is a relatively new type of neural network that is based on the generalized additive model. This

type of neural network uses an MLP with one hidden layer for each input, which enable the modeller to adjust

the complexity of each input’s MLP individually. GANNs attempt to overcome some of the difficulties that are

associated with MLPs. One of these difficulties is the problem of selecting an appropriate network architecture

for a specific data set. Potts (1999) suggested an interactive construction algorithm which uses partial residual

plots and human judgement to select a good GANN architecture. Du Toit (2006) improved on this interac-

tive construction algorithm by introducing an automated construction algorithm which uses a model selection

criterion to select a good GANN model objectively. In the next chapter, GANNs will be considered together

with the interactive construction algorithm and the automated construction algorithm that is implemented in a

system calledAutoGANN.

39

“Integrity without knowledge is weak and useless, and knowledge without

integrity is dangerous and dreadful.”

Samuel Johnson

3
Generalized additive neural networks

The main reason for neural networks’ popularity is their flexible nonlinear modelling and powerful pattern

recognition capabilities (Du Toit, 2006). Neural networksare data driven without any restrictive assumptions

that constrain the functional relationship between the target variable and the input variables. Neural networks

with this unique characteristic are highly desirable in many situations where ample data are generally available,

but where the underlying data-generating mechanism is often unknown or untestable. There are, however, some

practical difficulties with the utilizing of neural networks for prediction problems. Three of these difficulties

are inscrutability, model selection and troublesome training (Potts, 1999).

Multilayer perceptrons (MLPs) are commonly regarded to be black boxes with respect to interpretation.

The relationship of certain inputs to the target can depend on the values of other inputs in complicated ways.

Certain pattern recognition applications, like handwriting recognition, where pure prediction is the goal, does

not require an explanation of how the neural network derivedthe answer. On the other hand, in some problems,

like hypothesis testing, understanding how the neural network derived the output is more important than the

output itself. Certain domains often have both goals, namely understanding the outcome of the neural network

and obtaining the output of the neural network. An example ofsuch a domain is database marketing. The

ultimate purpose of predictive modelling is the scoring of new cases, but some understanding, even informal,

of the factors affecting the prediction can be helpful in finding out how to market to segments of people that

are likely to respond. Decisions about costly data acquisitions can also be guided by an understanding of the

effects of the inputs. The black box characteristic of the model can have legal consequences in credit scoring.

Creditors are required, by the US Equal Credit Opportunity Act, to provide an argument with specific reasons

40

to support an adverse action. The argument that the applicant failed to achieve the qualifying score on the

creditor’s scoring system is regarded by the regulation to be insufficient.

The second practical difficulty is the fact that when a neuralnetwork is configured for a problem, there

are a huge number of configurations to choose from. The numberof layers, number of neurons in each layer,

activation functions, type of connections et cetera need tobe chosen in order for the neural network to perform

adequately. Currently, trail and error is the most reliablemethod for the construction of a neural network.

The third practical difficulty is the computational effort that is required when training a neural network, as

a large number of parameters (weights and biases) must be optimized. Local minima are troublesome, since

different starting values can lead to different (faulty) solutions. Multiple runs from different starting values are

frequently the best solution.

These difficulties are reduced with the use of generalized additive neural networks (GANNs), since their

architecture is constrained. Graphical methods can be usedto interpret the effect of each input on the fitted

model. The network complexity can be visually determined with partial residual plots, while generalized linear

models can be used to initialize GANNs with the addition of skip layers (direct connections). Unfortunately,

determining the network complexity visually with partial residual plots is subjective to human judgement and

can be time consuming for a large number of variables (Du Toit, 2006). Consequently, Du Toit (2006) devel-

oped an automated construction algorithm for GANNs and called the implementationAutoGANN. This system

can overcome these drawbacks by relying on a model selectioncriterion or cross-validation to search for good

GANN models. While searching for the best GANN model, no human interaction is needed.

Since a GANN is the neural network implementation of a generalized additive model (GAM), a discussion

on GANNs would be incomplete if GAMs and the backfitting algorithm for the estimation of GAM models

were not considered. Smoothing, which summarizes the trendof a response measurement as a function of

one or more predictor measurements, is considered in Section 3.1. To illustrate smoothing, the running-mean

smoother is used and the bias-variance trade-off for determining the value of the smoothing parameter is ex-

plained. Additive models are discussed in Section 3.2. The backfitting algorithm that is used for estimating

additive models is explained and the GAM, which is an extension of additive models, is considered. The

backfitting algorithm utilizes the scatterplot smoother, which is a special type of smoother. In Section 3.3 the

GANN architecture is discussed and the interactive construction methodology is considered in Section 3.4.

The automated construction methodology is explained in Section 3.5 by defining certain terms and considering

in-sample and out-of-sample model selection criteria. Theautomated construction algorithm and the imple-

mentation of this algorithm is also discussed. Finally, a conclusion is presented in Section 3.6. Note that, since

there is so little literature on GANNs, the content of this chapter is mainly obtained from Du Toit (2006).

3.1 Smoothers

The linear model is simple in structure, it’s least-squarestheory is elegant and it is interpretable by the user.

Since computing power has grown significantly, the linear model can be augmented with new models that

41

assume less and therefore, potentially, discover more. Oneof these new models, called theadditive model

(Hastie and Tibshirani, 1990), is described in Section 3.2.The additive model is a generalization of the linear

model. An input’s linear function is replaced with an unspecified smooth function. The additive model consists

of a sum of smooth functions. These functions are estimated by using scatterplot smoothers in an iterative

manner. The estimated additive model consists of a functionfor each input. This can help data analysts to

discover the appropriate shape of each of the input effects.

The additive model retains some of the interpretability of the linear model by assuming additivity of effects.

To estimate the univariate function would have been computationally unthinkable four decades ago, but with

the fast computers that are available today, it can be achieved.

A smoother summarizes the trend of a response measurementY as a function of one or more predictor

measurementsX1, . . . ,Xp. The namesmoothercomes from the fact that the estimate of the trend that is produced

is less variable thanY itself. A smoother does not assume a rigid form for the dependence ofY on X1, . . . ,Xp

and, consequently, a smoother is often referred to as a tool for nonparametric regression. An example of a

simple smoother is the running-mean (moving average) smoother. A regression line with a rigid parametric

form is not strictly thought of as a smoother. Asmoothis the name given to the estimate that is produced by a

smoother. The most common case is that of a single predictor and is calledscatterplot smoothing.

To illustrate scatterplot smoothing, the Diabetes data set(Sockett, Daneman, Clarson and Ehrich, 1987) is

utilized. The Diabetes data set originated from a study of the factors that affect patterns of insulin-dependent

mellitus in children. This study investigated the dependence of the level of serum C-peptide on several other

factors to understand the patterns of residual insulin secretion. In this illustration, only a subset of two factors

that were studied in Sockett et al. (1987) are used. Information about the attributes of this data set is given in

Table 3.1. The predictor attributes areAgeandBasedeficitand the response attribute isLog(C-peptide).

Attribute Description Attribute scale

Age The age of the child Interval

Basedeficit A measure of acidity Interval

Log(C-peptide) The logarithm of C-peptide concentration found at the diagnosis Interval

Table 3.1: Diabetes data set attributes

There are two main functions of smoothers, of which description is the first one. The visual appearance of

the scatterplot ofY versusX is enhanced with a scatterplot smoother. This helps the dataanalyst to pick out the

trend in the plot. Figure 3.1 shows a plot of log(C-peptide) versus age. It seems that log(C-peptide) has a strong

dependence on age and a scatterplot smoother can provide assistance in describing the relationship between

log(C-peptide) and age. The second function of a smoother is to estimate thedependence of the mean ofY on

the predictors, and consequently serves as a building blockfor the estimation of additive models.

Local averaging is used by most smoothers. Local averaging averages theY-values of observations which

have predictor values that are close to a target value. The averaging is done within neighbourhoods around

42

Figure 3.1: Scatterplot oflog(C-peptide) versusAge

the target value. There are two decisions to be made when using scatterplot smoothing. The first decision is

concerned with how the response values in each neighbourhood should be averaged. The decision is thus which

type of smoother to use, because smoothers differ mainly in their method of averaging. The second decision is

concerned with how large the neighbourhoods should be made.This decision is typically expressed in terms of

an adjustable smoothing parameter. A small neighbourhood will produce an estimate with high variance, but

potentially low bias and a large neighbourhood will producean estimate with a low variance but, potentially

high bias. As a result, the smoothing parameter controls thetrade-off between bias and variance. The amount

of smoothing is calibrated according to the number of equivalent degrees of freedom.

A formal definition of scatterplot smoothing is given in the next section.

3.1.1 Scatterplot smoothing

Assume thaty = (y1, . . . ,yn)
T exists atx = (x1, . . . ,xn)

T wherex is design points,y is response measurements,

and(y1, . . . ,yn)
T and(x1, . . . ,xn)

T are the transpose of the vectors(y1, . . . ,yn) and (x1, . . . ,xn). Also assume

that measurements of variablesY andX are represented by each ofy andx.

Not many duplicates are expected at any given value ofX, asY andX are noncategorical. It is assumed, for

simplicity, that the data are sorted byX and that there are no duplicateX values, which means thatx1 < .. . < xn.

Weighted smoothers can be applied in case of duplicates.

A scatterplot smoother can be defined as a function ofx and y that has the same domain as the values

in x : s= S(y|x). The functionS(y|x) that is measured atx0, which is the set of instructions that determines

s(x0), is generally defined for allx0 ∈ [−∞,∞]. Sometimes,s(x0) is defined solely atx1, . . . ,xn, which are the

sample values ofX. In this case, the estimates at otherX-values are obtained by using some kind of interpolation.

A number of scatterplot smoothers, which include kernel smoothers, locally weighted running-line smoothers,

running-line smoothers, cubic smoothing splines, bin smoothers, running-mean smoothers and regression splines,

are discussed by Hastie and Tibshirani (1990). The trade-off between bias and variance governs the decisions

about the complexity of models. To illustrate this trade-off, the running-mean smoother is discussed next in

43

more detail.

3.1.2 The running-mean smoother

Assume the target valuex0 is the same as one of thex js, sayxi . If there are duplicates atxi , the average of

theY-values atxi can be utilized to estimates(xi). If there are no duplicates, theY-values that correspond to

X-values close toxi are averaged. Selectingxi itself, as well ask points to the left ofxi andk points to the right

of xi that are nearest inX-value toxi is a simple way to choose points close toxi . This way of selecting points is

called asymmetric nearest neighbourhoodandNS(xi) refers to the indices of these points. The running-mean

is thus defined by

s(xi) = avej∈NS(xi)(y j). (3.1)

When it is not possible to pickk points, as many points as possible are taken from the left andright of xi . A

formal definition of a symmetric nearest neighbourhood is the following:

NS(xi) = {max(i −k,1), . . . , i −1, i, i +1, . . . ,min(i +k,n)}. (3.2)

It is not apparent how to define the symmetric nearest neighbours for the target pointsx0 other than thexi .

Linear interpolation between the fit of two values ofX in the sample adjacent tox0 is one solution to do this.

Another solution is to ignore symmetry and pick ther closest points tox0, regardless of which side they are

on. This is called anearest neighbourhood. Arbitrary values ofx0 are treated in an uncomplicated and clean

manner.

The running-mean smoother is also called amoving average smoother. This smoother is popular for

equally-spaced time series data. Given its simplicity, it is valuable for theoretical calculations, but it does

not work satisfactorily in practice. It tends to be wiggly and contains flattened-out trends near the endpoints. A

running-mean smooth withk = 11, or about 25% of the 43 observations, is shown in Figure 3.2.

Figure 3.2: Running-mean smoother with 25% span

44

3.1.3 Smoothers for multiple predictors

Thus far, a scatterplot smoother which is used for a single predictor has been discussed. With more than one

predictor present, sayX1, . . . ,Xp, the problem is one of fitting ap-dimensional surface toY. Multiple regression

of Y onX1, . . . ,Xp allows for a simple, but very limited, estimate of the surface. In theory, the running mean can

easily be generalized to this setting. A definition of a nearest neighbourhood of a point inp-space is required for

this smoother. A distance measure is used to determine the nearest neighbourhood. The most apparent choice

for the distance measure is the Euclidean distance. Whenp > 1, the concept of symmetric nearest neighbours

is no longer significant. After a neighbourhood is defined, the generalization of the running mean utilizes the

average of the response values in the neighbourhood and calculates the surface at the target point.

It is argued that for more than two or three predictors, multi-predictor smoothers are not very useful any-

more (Hastie and Tibshirani, 1990). These type of smoothersalso have many defects, such as difficulty of

computation and interpretation.

3.1.4 The bias-variance trade-off

In the previous sections, no assumption was made of the formal relationship between the response variableY

and the predictor variableX. To set the basis for additive models, this assumption is nowmade. It is assumed

that

Y = f (X)+ ǫ (3.3)

where the expected value ofǫ,E(ǫ), is 0 and the variance ofǫ,var(ǫ), is σ2. It is also assumed that the

errorsǫ are independent. The objective of a scatterplot smoother isto estimate the functionf. From (3.3),

E(Y|X = x) = f (x). Note that f̂ is now used to denote the fitted functions, rather than thes that was used in

the previous sections. Since the running mean is built by averagingY-values corresponding tox-values close

to a target valuex0, this smoother can be seen as estimates ofE(Y|X = x). The averaging requires values of

f (x) near f (x0). This impliesE{ f̂ (x0)} ≈ f (x0), sinceE(ǫ) = 0. For a cubic smoothing spline under certain

regularity conditions, it can be shown thatf̂ (x) → f (x), asn→ ∞ and the smoothing parameterλ→ 0, where

n represents the number of design points andλ represents the window width. As a result, the smoothing-spline

estimate will converge to the true regression functionE(Y|X = x) as more and more data are obtained.

A key trade-off exists between the bias and the variance of the estimate in scatterplot smoothing. The

smoothing parameter controls this trade-off. The trade-off can easily be seen in the case of the running mean.

The fitted running-mean smooth can be defined as

f̂k(xi) = ∑
j∈NS

k (xi)

y j

2k+1
(3.4)

with expectation

E{ f̂k(xi)} = ∑
j∈NS

k (xi)

f (x j)

2k+1
(3.5)

and variance

var{ f̂k(xi)} =
σ2

2k+1
. (3.6)

45

It is assumed, for ease of notation, thatxi is close to the middle of the data, so thatNS
k (xi) contains the full

2k+ 1 points. From (3.4) and (3.5), it can be seen that the variance decreases ask is increased but since the

expectation∑ j∈NS
k (xi)

f (x j)/(2k+ 1) involves more terms with function values,f (·), which differs from f (xi),

the bias tends to increase. In a similar manner, the varianceincreases ask is decreased, but this inclines to

decrease the bias. This phenomenon is also encountered whenadding or deleting terms from a linear regression

model and is known as thebias-variance trade-off.

The running-mean smooths that are using 20%, 50% and 80% of the 43 observations of the diabetes data

set is shown in Figures 3.3, 3.4 and 3.5. These figures show that smoother, but flatter, curves are produced with

a larger percentage of observations.

Figure 3.3: Running-mean smoother with 20% span

Figure 3.4: Running-mean smoother with 50% span

46

Figure 3.5: Running-mean smoother with 80% span

The additive model for multiple regression data is discussed in the next section, as well as the backfitting

algorithm for its estimates. This backfitting algorithm uses scatterplot smoothers to determine the functional

form of the additive model.

3.2 Additive models

The usual linear regression model is generalized to form theadditive model. An outline of the limitations of

the linear model is presented next and reasons why one would require to generalize it is important. An arbitrary

regression surface would be a natural generalization. There are, regrettably, problems with the estimation and

interpretation of fully general regression surfaces. These problems restrict attention to additive models.

3.2.1 Multiple regression and linear models

Suppose there arenobservations on a response variableY, with a multiple regression problem that is represented

by y = (y1, . . . ,yn)
T and measured atn design vectorsxi = (xi1, . . . ,xip). The pointsxi may be measurements

of random variablesXj for j = 1, . . . , p, or may be picked in advance, or both. These two situations are not

distinguished.

There are several reasons to model the dependence ofY on X1, . . . ,Xp:

• Description: The dependence of the response on the predictors is described by using a model, so that

more can be discovered about the process that producesY.

• Inference: The proportional contributions in explainingY are assessed for each of the predictors.

• Prediction:Y needs to be predicted for some set of valuesX1, . . . ,Xp by the data analyst.

The multiple linear regression model is the standard tool that is used by the applied statistician for these inten-

tions. This model is defined as

Y = α+ α1X1 + . . .+ αpXp + ǫ, (3.7)

47

whereE(ǫ) = 0 andvar(ǫ) = σ2. The model makes a strong assumption about the dependence ofE(Y) on

X1, . . . ,Xp, namely that there is a linear dependence in each of the predictors. If this assumption holds more or

less, then the linear regression model is very useful, since

• it provides a simple description of the data;

• a single coefficient sums up the contribution of each predictor; and

• new observations can be predicted with a simple method.

There are many ways in which the linear regression model can be generalized. One class of candidates is the

surface smoothers and can be viewed as nonparametric estimates of the regression model

Y = f (X1, . . . ,Xp)+ ǫ. (3.8)

Choosing the shape of the neighbourhood that defines local inp dimensions is troublesome with surface

smoothers. An even more serious problem that is common to allsurface smoothers is that neighbourhoods

with a set number of points become less local as the dimensions increase. This problem has been called the

curse of dimensionalityby Bellman (1961).

Partially as an answer to the dimensionality problem, a number of multivariate nonparametric regression

techniques have been devised. Projection pursuit regression and recursive-partitioning regression (Friedman

and Stuetzle, 1981) are examples of these multivariate nonparametric regression techniques. These models

have good predictive power when enough data are available. All of them are consistent to the true regression

surface if they are under suitable conditions. Unfortunately, all of these methods suffer from being hard to

interpret. A specific problem is how the effect of particularvariables should be analyzed when a complicated

surface has been fitted.

A crucial feature of the linear model that has made it so popular for statistical inference is stressed by the

interpretation problem: The linear model is additive in thepredictor effects. The predictor effects can be ana-

lyzed separately in the absence of interactions after the linear model has been fitted. This crucial characteristic

of being additive in the predictor effects is retained by theadditive models.

3.2.2 Additive models defined

The additive model can be written as

Y = α+ f1(X1)+ . . .+ fp(Xp)+ ǫ, (3.9)

where the errorsǫ are independent of theXjs, E(ǫ) = 0 andvar(ǫ) = σ2. Each predictor has an unspecified

univariate function, namelyf j . It is implied from the definition of additive models thatE{ f j(Xj)} = 0. There

would be free constants in each of the functions if this were not the case.

A crucial interpretive characteristic of the linear model is kept by the additive model: The values of the other

predictors do not influence the variation of the fitted response surface that holds all but one predictor fixed. This

results from the fact that each variable is represented individually in (3.9). Thep univariate functions can thus

48

be plotted individually to analyze the roles of the predictors in modelling the response once the additive model is

fitted to data. The additive model is nearly always an approximation to the true regression surface, but hopefully

a useful one. This is unfortunately the price that has to be paid for simplicity. It is usually not assumed that a

linear regression model is correct when it has been fitted. Instead, it is believed that the model will be a good

first order approximation to the true surface, and that the important predictors and their roles can be exposed

using the approximation. Additive models are more general approximations than linear regression models.

An additive model’s estimated functions correspond to the coefficients in a linear regression. Additive

models are prone to all the possible problems that are found in interpreting linear regression models and these

problems can be expected to be more serious. Care must be taken not to have insignificant variables affect

important functions when interpreting these functions.

The backfitting algorithm for estimating additive models isconsidered next.

3.2.3 Fitting additive models

There are many ways to approach the formulation and estimation of additive models. A number of methods,

including regression splines, more general versions of multiple regression, multiple regression and smoothing

splines, are discussed by Hastie and Tibshirani (1990). An arbitrary smoother is used by the most general

method to estimate the functions. A data analyst can fit an additive model by using any regression-type fitting

mechanism with the general backfitting algorithm. The pricefor this added generality is the fact that the

algorithm is an iterative fitting procedure.

Conditional expectations allow for a simple intuitive motivation for the backfitting algorithm. Assuming

that the additive model in (3.9) is correct, then for anyk,

E(Y−α−∑
j,k

f j(Xj)|Xk) = fk(Xk), (3.10)

whereα is the constant term. An iterative algorithm for calculating all the f js is immediately proposed by

the conditional expectations in (3.10). This iterative algorithm is presented next in terms of data and arbitrary

scatterplot smoothersSj .

1. Initialize: α = ave(yi), f j = f 0
j , j = 1, . . . , p

2. Cycle: j = 1, . . . , p,1, . . . , p, . . .

f j = Sj(y−α−∑k, j fk|x j)

3. Continue 2. until there are no changes in the individual functions.

The(y−α−∑k, j fk|x j) expression denotes the partial residual in the backfitting algorithm. All of the effects of

the other variables are removed fromy before this partial residual is smoothed againstx j , when the univariate

function f is being readjusted. Only if all the functions are correct (and therefore the iteration), this is appro-

priate.

To start the algorithm, initial functions(f 0
j) must be provided. A reasonable starting point might be the

49

linear regression ofy on the predictors, if no previous knowledge of the functionsexists. The backfitting al-

gorithm is frequently used within some bigger iteration, where the functions from the previous big iteration

loop supply starting values. The convergence of the backfitting algorithm for a number of different types of

smoothers is discussed by Hastie and Tibshirani (1990). No proof of convergence exists for certain types of

smoothers, like locally-weighted running-line smoothers, but their experience has been reassuring and counter

examples are difficult to find.

So far, the discussion deals with the linear regression model that is extended by a type of model, calledthe

additive model, where the average of the response is modelled as an additivesum of the predictors. An additive

extension of the family of generalized linear models is described in the next section. The predictor effects are

assumed to be linear in the predictors with generalized linear models, but the distribution of the responses and

the link between the predictors and this distribution can beuniversal.

3.2.4 Generalized additive models defined

Generalized linear models is extended by generalized additive models in the same way as the linear regression

model is extended by the additive model.

The generalized linear model (McCullagh and Nelder, 1989) is given by

g−1
0 (E(Y)) = α0 + α1X1+ . . .+ αpXp+ ǫ, (3.11)

whereE(ǫ) = 0 andvar(ǫ) = σ2. In (3.11), a link functiong−1
0 , which is the inverse of the (neural network)

activation functiong0, is utilized to constrain the range of response values. The logit link function is appropriate

when the expected response is bounded between 0 and 1, such asprobability. The logit link function is defined

as

g−1
0 (E(Y)) = ln

(

E(Y)

1−E(Y)

)

. (3.12)

The hyperbolic tangent link function can be utilized when anexpected response is bounded between -1 and 1.

The latter is defined as

g−1
0 (E(Y)) = 1−

2
1+ ln(2E(Y))

. (3.13)

A generalized additive model (GAM) (Hastie and Tibshirani,1987; Wood, 2006) is given by

g−1
0 (E(Y)) = α+ f1(X1)+ . . .+ fp(Xp)+ ǫ, (3.14)

whereE(ǫ) = 0 andvar(ǫ) = σ2.

The most widely used type of artificial neural network for supervised prediction is the multilayer perceptron

(MLP), which was discussed in Chapter 2. MLPs are, theoretically, universal approximators that are able to

model any continuous function (Ripley, 1996) and, as a result, MLPs can be utilized as the univariate functions

of GAMs. Generalized additive neural networks (GANNs) are the neural network implementation of GAMs.

With GANNs, backfitting is unnecessary, since any method suitable for the fitting of MLPs can be used to

simultaneously estimate the parameters of GANN models. Theusual optimization and model complexity issues

thus also apply to GANN models.

Next, the GANN architecture is discussed.

50

3.3 Generalized additive neural network architecture

An MLP that has one hidden layer withh neurons is defined as

g−1
0 (E(y|x)) = w0 +w1 tanh(w01+

p

∑
j=1

w j1x j)+ . . .+wh tanh(w0h +
p

∑
j=1

w jhx j), (3.15)

where tanh is the hyperbolic tangent activation function, as suggested by Potts (2000). In (3.15), the link-

transformed expected value of the target is expressed as a linear combination of nonlinear functions of linear

combinations of the inputs. This model consists ofh(p+ 1) + 1 unknown parameters (weights and biases).

Some suitable measure of fit to the training data, for examplethe negative log likelihood, is numerically opti-

mized to estimate the parameters.

In the basic structure of a GANN, each input has a separate MLPwith one hidden layer ofh neurons, and

can be defined as

f j(x j) = w1 j tanh(w01j +w11jx j)+ . . .+wh j tanh(w0h j +w1h jx j). (3.16)

The individual bias terms are absorbed by the overall biasα. There are 3h parameters for each individual uni-

variate function, whereh could differ for each input.

Figure 3.6 shows an example GANN with two inputs. The first input has an MLP with three neurons in the

hidden layer and the second input has an MLP with two neurons in the hidden layer. Neurons in the consolida-

tion layer correspond to the univariate functions. The weights are fixed at 1.0 between the consolidation layer

and the output layer. The first univariate function of this example is given by

f1(x1) = w11tanh(w011+w111x1)+w21tanh(w021+w121x1)+w31tanh(w031+w131x1) (3.17)

and the second univariate function is defined as

f2(x2) = w12tanh(w012+w112x2)+w22tanh(w022+w122x2). (3.18)

Input layer

Hidden layer

Output layer

Consolidation layer

y

x

x

1

2

Figure 3.6: Basic GANN architecture

The generalized linear model can be regarded as a special case when enhancing this basic architecture to

include an additional parameter for a direct connection (skip layer), so that

f j(x j) = w0 jx j +w1 j tanh(w01j +w11jx j)+ . . .+wh j tanh(w0h j +w1h jx j). (3.19)

51

An example of this enhanced GANN architecture with three inputs is shown in Figure 3.7. The first input has

an MLP with one neuron in the hidden layer and a skip layer. Thesecond input has an MLP with two neurons

in the hidden layer and the third input has an MLP with three neurons in the hidden layer. The first univariate

function in this example is given by

f1(x1) = w01x1 +w11tanh(w011+w111x1), (3.20)

the second univariate function is

f2(x2) = w12tanh(w012+w112x2)+w22tanh(w022+w122x2), (3.21)

and the third and final univariate function is

f3(x3) = w13tanh(w013+w113x3)+w23tanh(w023+w123x3)+w33tanh(w033+w133x3). (3.22)

Input layer Hidden layer

Skip layer

Output layer

Consolidation layer

x2

x3

x1

y

Figure 3.7: Enhanced GANN architecture

An iterative algorithm for constructing GANNs is presentedin the next section. This methodology guides

the modeller in visually deciding on the appropriate complexity of the individual univariate functions.

3.4 The interactive construction methodology

To analyze nonlinear relationships between the target and input variables in multiple regression models, a

diversity of diagnostic plots have been used for more than half a century. There are, in general, two comple-

mentary approaches to analyze the assumption of linearity:formal tests and informal graphical methods (Cai

and Tsai, 1999). Larsen and McCleary (1972) named an informal graphical method that was introduced by

Ezekiel (1924) as thepartial residual plot. This method is still often used.

Plots of the fitted univariate functions,f̂ j(x j), overlaid on the partial residuals versus the corresponding jth

input, are used for visual diagnostics to assist the model selection process for GANNs. The partial residuals is

defined as:

pr j = g−1
0 (y)−α−∑

l, j

f̂l (xl) = (g−1
0 (y)−g−1

0 (ŷ))+ f̂ j(x j). (3.23)

52

A first-order approximation is usually utilized wheng−1
0 is nonlinear:

pr j =
∂g−1

0 (ŷ)

∂y
(y− ŷ)+ f̂ j(x j). (3.24)

The effect of the individual inputs that are adjusted for theeffect of the other inputs can be analyzed with partial

residuals. Thejth partial residual is the difference between the actual values and that portion of the fitted model

that does not involvex j .

The interactive construction algorithm starts with a GANN architecture that consists of an MLP with one

hidden neuron and a skip layer for each input, instead of the linear model. The linear fit is solely used for

initialization. Berk and Booth (1995) discussed the effectiveness of partial residual plots for visualizing the

underlying curve. They showed that the partial residuals that are based on a linear fit are less reliable than

those that are based on a GAM fit and that it is also common practise with GAM estimation to start with four

parameters.

To simplify optimization and model selection, the following set of instructions for constructing a GANN

interactively (Potts, 1999) utilizes their constrained form. This algorithm consists of six steps, as shown in

Algorithm 3.1.

1. A GANN must be constructed with a skip layer and one hidden neuron for each input. This

initial GANN is defined as follows:

f j(x ji) = w0 jx ji +w1 j tanh(w01j +w11x ji).

This gives a degree of freedom (number of parameters) of 4 foreach input. Binary inputs must

only have a skip layer and no hidden neurons.

2. Next a generalized linear model must be fitted to give initial estimates ofα andw0 j .

3. The remaining 3 parameters must be initialized in each hidden layer as random values from a

normal distribution with mean zero and variance equal to 0.1.

4. The full GANN model must now be fitted.

5. Each of the fitted univariate functions that are overlaid on their partial residuals must then be

analyzed.

6. Remove neurons (prune) from the hidden layers with evidently linear effects and add neurons

(grow) to hidden layers where the nonlinear trend seems to beunderfitted. If this step is re-

peated, the final estimates from previous fits can be utilizedas initial values.

Algorithm 3.1: Interactive construction algorithm

The Kyphosis data set (Bell, Walker, O’Connor, Orrel and Tibshirani, 1989) is used in the next section to

53

illustrate the interactive construction methodology.

3.4.1 Example

Kyphosis is a spinal deformity that can occur after certain spinal surgeries have been performed on children.

The Kyphosis data set has 83 instances with 4 attributes. Each instance represents a child that underwent spinal

surgery. The 4 attributes are described in Table 3.2.

Attribute Description Attribute scale

Age The age of the child in months Interval

Number The number of vertebrae that are involved in the child’s spinal surgery Interval

The starting vertebra number of the range of the vertebrae involved in

Start the operation Interval

Kyphosis Indicates whether the child has Kyphosis (1) or not (0) Binary

Table 3.2: Kyphosis data set attributes

The goal of this prediction task is to use theAge, NumberandStartattributes as inputs to predict whether a

child has Kyphosis or not. This task is consequently one of classification. In order to find a good GANN model

for this problem, the following methodology is used.

Methodology

With the first step of the interactive construction methodology, a GANN is created with a skip layer and one

hidden neuron for each input. In the second step, a generalized linear model is fitted to give the initial estimates

of the constant termα and thew0 j . Step 3 initializes the remaining three parameters in each hidden layer with

random values from a normal distribution with variance equal to 0.1 and mean zero. In step 4, the full GANN

model is fitted. In step 5, the fitted univariate functions that are overlaid on their partial residuals are analyzed.

Three partial residual plots are created, one for each inputvariable, and must be inspected visually to determine

the appropriate bias-variance trade-off. The partial residual plots of step 4 of the first iteration of the interactive

construction algorithm are shown in Figures 3.8, 3.9 and 3.10.

The functions are presented as fitted splines that are overlaid on the partial residuals to help guide the

modeller in determining the appropriate complexity of the univariate functions. If the univariate function is

constant for the full range of input values and consequentlydoes not contributes towards describing variation

in the response, the spline will form a horizontal or near horizontal line. The input can be removed from the

model in this case. A linear relationship between the input and the response is presented by a spline that forms

a line with a substantial positive or negative slope. The input can be set to only a skip layer in these instances

(e.g. Figure 3.10). A spline that forms a curve indicates a nonlinear relationship and can be modelled by one or

more neurons in the hidden layer of the input (e.g. Figure 3.8). If, however, too many neurons are added, the

univariate function will have a high variance and low bias (e.g. Figure 3.9).

54

Figure 3.8: Partial residual plot ofAge

Figure 3.9: Partial residual plot ofNumber

Figure 3.10: Partial residual plot ofStart

55

In step 6, some architectural changes are made after inspection of the partial residual plots. Sometimes,

several iterations of steps 4, 5, and 6 are required to make the changes that result in the best GANN model. A

total of 4 iterations were needed to find the best GANN model for this data set. In this model, theAgevariable

had a skip layer and two hidden neurons, while theNumberandStartvariables had only skip layers. The partial

residual plots of this final GANN model are shown in Figures 3.11, 3.12 and 3.13.

Figure 3.11: Partial residual plot ofAge

Figure 3.12: Partial residual plot ofNumber

56

Figure 3.13: Partial residual plot ofStart

Results

The GANN models that are created with each iteration of the interactive construction algorithm can be com-

pared by means of the Schwarz Bayesian criterion (SBC) and mean squared error (MSE). The SBC and MSE

value of each of the iterations are shown in Table 3.3.

Iteration SBC MSE

1 107.338 0.118

2 92.519 0.114

3 95.805 0.144

4 98.709 0.123

Table 3.3: Kyphosis results

According to this table, the best GANN model (in terms of the SBC value) is the one that was created at

iteration 2, with an SBC value of 92.59 (smaller is better). The best model that was found by examining the

partial residual plots, is that of iteration 4, which has an SBC value 98.71. The motivation behind the use of the

SBC model selection criterion is described in detail in Section 3.5.2.

Conclusions

Human judgement is needed to interpret the partial residualplots when GANNs are constructed interactively.

This can become a time consuming and daunting task when thereare a large number of variables. Human

judgement is also subjective, which might result in the development of models that are suboptimal. In the

next section, an objective approach is discussed that incorporates a formal measure of fit into the process. As

a result, an automated method can be used that is based on the search for models by using model selection

57

criteria. With this new approach, partial residual plots are not used primarily for model building, but as a tool

to give insight into the models that were constructed. The modeller also have more time to interpret the results,

since no human interaction is needed while building the GANNmodels.

3.5 The automated construction methodology

Even though neural networks are successfully applied to a number of prediction tasks, there are still several

unresolved issues in neural network model building (Du Toit, 2006). One of the biggest issues is how to choose

an appropriate network architecture for a specific prediction problem. In traditional linear prediction problems,

model selection is a nontrivial issue, but in nonlinear models such as neural networks, it is an especially tricky

issue.

To help overcome some of the issues that are faced when constructing GANNs, an automated approach to

the construction of GANNs is considered in this section. Themethod is objective and relies solely on a model

selection criterion for model selection. As a result, no human interaction is needed while searching for the best

model. In order to describe the automated construction algorithm, some terms need to be defined.

3.5.1 Definition of terms

These definitions are illustrated with the example GANN of Figure 3.14.

Definition 3.1 (Neural network)A neural network is an arrangement of many simple processingelements.

These elements work in parallel and the function is determined by connection strengths, network structure, and

the processing performed at computing elements or nodes (also called neurons)(DARPA, 1988).

Definition 3.2 (GANN sub-architecture)A specific input’s neural network structure.

Definition 3.3 (GANN sub-architecture identifier)The symbol that is used to denote a specific input’s sub-

architecture.

In Table 3.4 (De Waal and Du Toit, 2011), ten standard sub-architecture identifiers are listed. These identifiers

proved to be adequate when automating the construction of GANNs.

Definition 3.4 (GANN architecture identifier)The list of GANN sub-architecture identifiers[identifier1,

identifier2, . . . , identifierk] which refers to a specific GANN model’s architecture that hask inputs, x1,x2, . . . ,xk,

where the sub-architecture of input xi , with i = 1,2, . . . ,k is referred to by identifieri .

An example of a GANN architecture identifier that representsa GANN with five inputs is: [5,1,3,0,2]. This list

represents a GANN architecture where the first input has an MLP with a skip layer and 2 hidden neurons. The

58

second input has only a skip layer. The third input has an MLP with 1 hidden neuron and a skip layer. The

fourth input is removed and the final input has an MLP with 1 hidden neuron and no skip layer. This example

GANN architecture is shown in Figure 3.14.

Definition 3.5 (GANN architecture)A complete GANN model that is formed from a combination of GANN

sub-architectures.

Definition 3.6 (GANN sub-architecture identifier function)The GANN sub-architecture identifier for a partic-

ular GANN model and input xi is returned with the function sub(xi).

From Figure 3.14, the GANN sub-architecture identifier function produces the following results:sub(x1) =

5,sub(x2) = 1,sub(x3) = 3,sub(x4) = 0 andsub(x5) = 2.

Definition 3.7 (GANN sub-architecture space)The set that contains all the possible GANN sub-architectures.

As shown in Table 3.4, the GANN sub-architecture space is{0,1,2,3,4,5,6,7,8,9}. The GANN sub-architectures

are restricted to these neural network structures. The reason for this restriction is to prevent the development of

a model that is too complex and which will consequently overfit the data. This restriction also helps to decrease

the number of possible models in the search space.

Input layer

Output layer

Hidden layer

Skip layer

x

y

1

x2

x3

x5

x4

Figure 3.14: Example GANN model with five inputs

59

GANN sub-architecture symbol GANN sub-architecture description

0 Input is not used in the model

1 MLP with only a direct connection

2 MLP with only 1 hidden neuron

3 MLP with a direct connection and 1 hidden neuron

4 MLP with only 2 hidden neurons

5 MLP with a direct connection and 2 hidden neurons

6 MLP with only 3 hidden neurons

7 MLP with a direct connection and 3 hidden neurons

8 MLP with only 4 hidden neurons

9 MLP with a direct connection and 4 hidden neurons

Table 3.4: GANN sub-architecture symbols

The automated construction algorithm uses the GANN sub-architectures that are defined in Table 3.4 to

automate the interactive construction algorithm of Potts (1999). In order for the automated construction algo-

rithm to select the best model, a model selection criterion is used. In the next section, model selection criteria

is considered.

3.5.2 Model selection

The modelling of nonlinear relationships has experienced growing interest lately (Du Toit, 2006). A variety of

test procedures that detect nonlinearities have also been developed. However, the uncovering of nonlinearities

is not enough when prediction is the aim of the analysis. An adequate nonlinear model is necessary to describe

these nonlinearities. Unfortunately for many applications, neither the correct functional form of the model nor

the relevant input variables are suggested by the appropriate theory in the process of model building.

In this section, model selection strategies are discussed.These strategies are based on statistical concepts

and for models like GANNs, a statistical point of view is particularly important because of the lack of knowl-

edge regarding an adequate functional form of the underlying model. A systematic comparison of statistical

selection strategies for neural network models is providedby Anders and Korn (1999). They also consider the

concepts of information criteria, hypothesis testing and cross-validation methods. The conclusion that statisti-

cal analysis should become an integral part of neural network modelling was reached when they discussed the

application of these three methods to neural networks.

A good model is one that will fit the data set well and if more variables are added to the model, the apparent

fit becomes better. Model selection aims, among other things, to balance the increase in fit against the increase

in model complexity. A better defining quality of a good modelis possibly the performance of the model on

unseen data from the same process. A model should fit any data set which arises from a process just as well

as it fits any other data set that originates from the same process. Overfitting may occur when the model is too

60

complicated. When this happens, the model may fit the currentdata set well, but may fit subsequent data sets

poorly. Underfitting may occur, on the other hand, when a model is too simple and does not fit any of the data

sets well.

The data analyst must select some appropriate model from a set of models that were generated by collecting

data after a probabilistic model had been proposed for the experiment. There may, however, be more than one

definition of “appropriate”. The use of model selection criteria is one way to select the most appropriate model.

However, certain model selection criteria performs best for specific model types and, as a result, there is no

single model selection criterion that will always be betterthan another.

There are two broad types of model selection approaches (Du Toit, 2006). The first is out-of-sample model

selection by means of cross-validation. The second is in-sample model selection that relies solely on a certain

model selection criterion for model selection. In this section, out-of-sample model selection is considered,

followed by a historical overview of the most prominent in-sample model selection criteria. A discussion of

the two opposing views on in-sample model selection is then considered and finally the SBC, one of the most

widely used in-sample model selection criteria, is considered. The latter criterion is utilized in this study.

Out-of-sample model selection

For out-of-sample model selection, a certain model selection criterion is utilized, together with cross-validation,

to determine the proficiency of the model. The latter technique, also known as the holdout method, uses part

of the data for training the model, part of the data for testing the model and, if required, part of the data for

validation (Witten and Frank, 2005). Common practice is to use a third of the data for out-of-sample testing and

the remaining data for training. This can, however, lead to atraining or testing data set that is not representative

of the full data set. Although there are in general no way to tell if a sample is representative of the full data set,

there is a check that can be performed that may help to tell if the sample might not be representative at all. This

is done by checking whether each class in the full data set is represented in the sample data sets in about the

right proportions. Stratification is a process that dividesthe full data set into two or more subsets by selecting

random instances and ensuring that each class is represented about equally in each subset. For better results,

stratification can be used withK-fold cross-validation. With the latter technique, the data set is split intoK

approximately equal partitions. If, for example, 3-fold cross-validation is used, then the data set will be split

into three partitions. Each partition is in turn used for testing, while the remaining two partitions are used for

training. Two thirds of the data set is thus used for training, while the remaining third is used for testing. The

procedure is repeated three times, so that each partition has been used exactly once for testing. According to

Witten and Frank (2005), given a single fixed sample of data, stratified 10-fold cross-validation is the standard

way to predict the error rate of a learning technique like neural networks. For this reason, 10-fold cross-

validation was utilized to determine the accuracy of the models under consideration. To check the accuracy

of the model using cross-validation, the average validation error (VAVERR) is used. This error measurement

is chosen to enable a comparison between GANNs and MLPs. The automated construction algorithm for

GANNs, described in Section 3.5.3, uses the VAVERR value forout-of-sample model selection. Consequently,

61

the VAVERR criterion is also utilized for out-of-sample model selection with MLPs. To determine the accuracy

of a model withK-fold cross-validation, the VAVERR value is averaged over theK-folds.

In general, this method of out-of-sample model selection and testing is quite effective when it comes to

stopping the tendency of neural networks to overfit the data (Du Toit, 2006). It has, however, some limitations.

First, it requires a fairly large data sample size and second, splitting the data set may result in subsets that do not

represent the full data set accordingly. Finally, the variability of the estimates may also increase by splitting the

data set (Faraway, 1992). In-sample model selection criteria are also used in this study. A historical overview

of this error measurement is considered next.

Historical overview of in-sample model selection criteria

Univariate and multiple regression models were the focus point in the past of much of the research on model

selection criteria (Hurvich and Tsai, 1989). The adjusted R-squaredR2
ad j was the first model selection criterion

that was widely used. It still appears in many regression literature today. When a variable is added to the model,

theR2 always increases. Without regards to the relative contribution to model fit, theR2 will always recommend

additional complexity, as this will increase its value. To attempt to correct for this always-increasing property,

the R2
ad j was introduced. The most notable model selection criteria research that was done in the late 1960s

and early 1970s was Akaike’s FPE (Akaike, 1969) and Mallow’sCp (Mallows, 1973). The Akaike information

criterion (Akaike, 1974) appeared in the 1970s and was basedon the Kullback-Leibler discrepancy (Kullback

and Leibler, 1951). In the late 1970s, much research on information theory appeared with the proposal of the

Bayesian information criterion (BIC) (Akaike, 1978), the Hannan and Quinn (HQ) (Hannan and Quinn, 1979),

GM (Geweke and Meese, 1981), the Schwarz information criterion (SIC) (Schwarz, 1978), and FPEα (Bhansali

and Downham, 1977). An improved small-sample unbiased estimator of the Kullback-Leibler discrepancy,

called AICc, was created by Hurvich and Tsai (1989) in the late 1980s by adapting the results of Sugiura

(1978). The AICc proved itself to be one of the best model selection criteria.

Two model selection paradigms

The notion of asymptotic efficiency as a paradigm for selecting the most appropriate model appeared in the lit-

erature of 1980. On the other hand, associations with the notion of consistency included the SIC, HQ, and GM

model selection criteria. The philosophies of efficient andconsistent model selection criteria are considered

next.

Efficient criteria

In regression and time series, the assumption that the true model has infinite dimensions, or that the true model

is not in the set of candidate models, is usually made. Given aset of finite dimensional candidate models, the

objective is to choose one model that best approximates the true model. The appropriate choice is assumed to

be the model nearest to the true model. A well-defined distance or information measure is needed to assess the

model that is “closest”. A model selection criterion that issaid to be asymptotically efficient, is one that picks

62

the model with minimum mean squared error distribution in large samples (Shibata, 1980). The AIC, AICc, Cp,

and FPE are all examples of asymptotically efficient models.Models that are based on efficiency are preferred

by researchers when they believe that all the important variables cannot be measured or that the system under

consideration is infinitely complicated. The improvement of efficient (“correct”) criteria for small-samples has

been the focus of much research. AICc may be the best known correct version (Sugiura, 1978; Hurvich and

Tsai, 1989).

The most significant property of a candidate model is sometimes its predictive ability. An example of an

early model selection criterion that modelled mean squaredprediction error is PRESS (Allen, 1974). Another

model selection criterion that selects models that make good predictions is Akaike’s FPE. FPE and PRESS are

both efficient. It is also worth noting that asymptotic efficiency and prediction are related (Shibata, 1980).

Consistent criteria

It is assumed by many researchers that the set of candidate models includes the true model and thus is of fi-

nite dimension. To identify the true model correctly from the list of candidates is thus the objective of model

selection. A model selection criterion is said to be consistent if it identifies the correct model asymptotically

with a probability of one. The HQ, GM, and SIC are examples of consistent criteria. The researcher believes,

in this case, that the list of all significant variables can beidentified, since adequate knowledge exists about the

physical system under consideration and that all variablescan be measured. These are strong believes to many

statisticians. They may, however, hold in fields where thereare large bodies of theories to justify such believes,

like the field of physics. With these theories, it is assumed that the true model belongs to the set of candidate

models.

Asymptotic arguments are used to derive many of the consistent model selection criteria. The fact that the

consistent criteria do not estimate some distance functionor discrepancy is part of the reason why more work

has been dedicated to find improvements to efficient criteriarather than to consistent criteria.

The choice between efficiency or consistency is highly subjective and there is little agreement on which

philosophy is better. The choice depends on the assessment of the complexity and measureability of the mod-

elling problem of the individual researcher.

The most widely used in-sample model selection criteria arecriteria that penalize large models that tend to

overfit, such as the information-based criteria AIC and SIC.It was decided to use the SIC as in-sample model

selection criterion for this study. In the next section, this criterion is discussed.

Schwarz information criterion

The Schwarz information criterion (SIC or SBC) was developed from a Bayesian perspective, where each

model has equal prior probability and, given the model, the parameters have very vague priors. It was assumed

that simple prediction, rather than scientific understanding of the process or system under consideration, was

the goal of the SBC-selected model.

In the literature, a number of different forms of the SBC havebeen suggested. The generic SBC definition

63

(Burnham and Anderson, 2002) is

SBC= −2log(L (θ̂|y))+K log(n), (3.25)

where, given the datay andK the number of estimable parameters in the approximating model, log(L (θ̂|y))

represents the natural logarithm of the likelihood function of the parameter vector.

For the special case of the Gaussian error model, the SBC is defined as

SBC= nlog(σ̂2)+K log(n) (3.26)

with

σ̂2 =
∑ ǫ̂2i

n
(the MLE of σ2), (3.27)

where the estimated residuals for a specific candidate modelis represented byǫi andK represents the total

number of estimated regression parameters, including the intercept andσ2.

Schwarz (1978) and Rissanen (1978) both developed (3.25) independently. It was showed by Rissanen

(1978) that a consistent estimate of the order of an AR model is produced by the SBC. If the true data-generating

model belongs to the finite-parameter family under consideration, then the SBC is a consistent model selector.

Models that tend to underfit is selected by the SBC for exponential families, if the previous assumption does

not hold (Haughton, 1989).

The SBC is sometimes abbreviated accidentally as BIC. However, the penalty term of the Bayesian infor-

mation criterion (BIC) differs from that of the SBC. The BIC is defined as

BIC = −2log(L (θ̂|y))+K +K log(n). (3.28)

The creation of a search space of possible GANN models, together with an effective search procedure to find

the best model by using some model selection criterion, formthe basis for the automation of the interactive

construction algorithm. In the next section, the automatedconstruction algorithm is considered.

3.5.3 The automated construction algorithm

A criterion has to be defined to rank the models from “good” to “bad” for the automated construction algo-

rithm to be effective. The automation of the interactive construction algorithm is made possible with a model

selection criterion that is used to evaluate the predictiveaccuracy of the models. When a validation data set is

present, models are tested on the validation set, which allows the algorithm to perform cross-validation. Feature

selection (Guyon and Elisseeff, 2003; Blum and Langey, 1997) is also performed automatically by the algo-

rithm. The automated construction algorithm consists of 7 steps. These steps are shown in Algorithm 3.2.

A best-first search strategy (Rich and Knight, 1991) is utilized by the automated construction algorithm

(De Waal and Du Toit, 2011). The state space search problem can be formulated as follows:

• States: Any GANN model that is represented by a valid string of digits that represents the GANN sub-

architectures.

• Initial state: The sub-architecture string that represents a linear GANN model.

64

1. A GANN model with a direct connection for each input is created. The univariate functions are

initialized to

f j(x ji) = w0 jx ji . (3.29)

Each input has one parameter now.

2. Initial estimates of the constant termα and w0 j are obtained by using a generalized linear

model.

3. The full GANN model is fitted. The model is evaluated by using the model selection criterion.

To indicate that the model is available for expansion, theexpandedflag is set to false. Finally,

the model is denoted as the root of the tree.

4. Where theexpandedflag is false, a search for the best GANN modelm is performed by using

the model selection criterion. If such a model is found, theexpandedflag is set to true to

indicate that the model is expanded. If a model cannot be found with theexpandedflag set

to false, the tree is searched for the best model. This model is then reported and the program

terminated.

5. For each inputxi of m (the model identified in step 4): If 1≤ sub(xi) ≤ 9, then a GANN model

n is created with the sub-architecture ofxi set to sub(xi)-1 and the remaining sub-architectures

of m are left unchanged. A check is performed to determine whether n has previously been

created in the tree and, if not, thenn is evaluated with the model selection criterion and added

as a child node tom. Finally, theexpandedflag of n is set to false.

6. For each inputxi of the modelm: If 0 ≤ sub(xi) ≤ 8, then a GANN modeln is created with

the sub-architecture ofxi set to sub(xi)+1 and the remaining sub-architectures ofm are left

unchanged. A check is performed to determine whethern has previously been created in the

tree and, if not, thenn is evaluated with the model selection criterion and added asa child node

to m. Finally, theexpandedflag ofn is set to false.

7. Go back to step 4.

Algorithm 3.2: Automated construction algorithm

• Successor function: Any valid sub-architecture string with one digit changed.

• Goal test: When the given time runs out, or after the whole search space has been exhausted, the best

GANN model that was found is used.

• Path cost: Since only the best GANN model that was found is of importance, the path to that model has

no use and, consequently, there is no path cost.

65

The most promising model of those that were created so far is selected (step 4) at each step of the best-first

search process. To achieve this, the model selection criterion value of each generated model is considered.

Steps 5 and 6 are then applied to expand the chosen model in order to generate its successors. All the newly

created models are added to the set of models that were created so far. The most promising model is chosen

again for expansion and the process continues. The paths followed by the best-first search is influenced by the

order in which the sub-architectures are defined in Table 3.4. Usually, the size of the search space is reduced

when a problem is solved by choosing a subset of the sub-architectures in Table 3.4.

To implement the best-first search algorithm, two lists of nodes are needed:

• Open: models that have been created, but not expanded, with the model selection criterion value that

were calculated. Theexpandedflag are set tofalsefor these nodes.

• Closed: models that have been expanded. Theexpandedflag are set totrue for these nodes.

With best-first search, the merit of each model that is created is estimated with a heuristic function. It is for this

purpose that the model selection criterion is used and it allows the algorithm to search more promising paths

first.

The automated algorithm’s actual operation is simple, as itproceeds in steps. At each step it picks the most

promising of the models that have been created so far withoutbeing expanded. The successors of a chosen

model are created and a check is done to determine if any of themodels have been created previously. A

heuristic function is then applied to the successors and thesuccessors are added to the list of open models. By

performing this check, it is guaranteed that each model onlyappears once in the tree, even though many models

may point to one model as a predecessor. To guarantee that there are a finite number of models that must be

searched, and for efficiency reasons, a finite number of sub-architectures are picked before trying to solve any

real problem.

Since best-first search always moves forward from the model that seems closest to the goal model value,

the paths that were found by the best-first search are likely to be shorter than those found with other methods

(Winston, 1992). In the case of the automated construction algorithm, the goal node is the one with the lowest

model selection criterion value. This is a complete search strategy, since, given the finite number of sub-

architectures, all possible models will have been constructed when the algorithm terminates.

To further enhance the automated construction algorithm, De Waal and Du Toit (2011) added a multi-step

expansion feature. This feature is considered next.

Multi-step expansion

So far, the automated construction algorithm only allows for one change to the GANN architecture in each child

node. With this restriction, each change in the architecture requires one iteration of the algorithm. To arrive at

the best GANN architecture, the number of successor functions that need to be applied become unrealistically

large for a large number of variables. The multi-step expansion relaxes this restriction.

It could be sensible to allow multiple changes when two or more child nodes have better model selection

66

criterion values than that of the parent node. The followingcan be done to accomplish this:

Identify all the child nodes that have better model selection criteria values than their parent node. This

corresponds to nodes 2, 4 and 5 in the SO4 data set example of Figure 3.15. Note that the three values ofeach

node indicate the order of creation, GANN architecture and model selection criterion value respectively. All

the changes that were identified in the children are then usedto create a new child node (node 6) from the

common parent node. Nodes 2 and 4 denote the removal and addition of a neuron to the sub-architecture of

the first input. The change in the best child node (node 4) is used when two or more child nodes (nodes 2

and 4) have better model selection criterion values than theparent for the same change in the sub-architecture.

Node 5 represents the only change to the sub-architecture ofthe second input that has a better criterion value.

Consequently, this sub-architecture is utilized as the sub-architecture of the second input of the newly created

node (node 6). There is a good chance that all the changes thatare applied collectively will be worthwhile,

since all the changes that were identified, are worthwhile independently of each other. Multiple changes are

thus permitted during an iteration of the algorithm.

Figure 3.15: SO4 multi-step expansion

The multi-step also occurs in the interactive constructionalgorithm. Multiple changes to the GANN archi-

tecture can be made during each iteration of the interactiveconstruction algorithm that is based on the inspection

of partial residual plots. The multi-step expansion thus models one iteration of the interactive construction al-

gorithm.

The multi-step expansion decreases the number of iterations that are needed for the automated construc-

tion algorithm to converge. This heuristic was then furtherenhanced by De Waal and Du Toit (2011), and is

considered next.

Improved multi-step expansion

There are no restrictions placed in step 6 of the interactiveconstruction algorithm on the number of hidden neu-

rons that may be added to or removed from a hidden layer. For efficiency reasons, the automated construction

algorithm restricts the successor function to slightly more complex or slightly less complex sub-architectures.

The following can be done to remove this restriction:

Apply another successor function to the generated child node if that child node’s model selection criterion

value is better than that of the parent node and then examine the newly created node’s model selection criterion.

Repeat the process of creating additional child nodes if themodel selection criteria values improve, until the

model selection criterion value of the last node becomes worse. The best node that is created with this recursive

67

process is considered to be the result of the applied successor function. This improved multi-step expansion

permits the move in the sub-architectures to non-adjacent rows of Table 3.4. An example of such a step from

the SO4 data set is shown in Figure 3.16, where the grey coloured noderepresents the best node.

Figure 3.16: SO4 improved multi-step expansion

This strategy has a major drawback, even though it is sound and may decrease the number of iterations

that are needed in the automated construction algorithm. The drawback is that enumeration partly replaces

intelligent search and is, consequently, counter productive. Based on the inspection of partial residual plots, it

is also very improbable that even an experienced modeller will be able to make such big changes, since it is

hard to judge the complexity versus degrees of freedom trade-off. The strategy can be approximated as follows:

Only an increase in the complexity or number of hidden neurons in the GANN architecture are considered,

as the starting point of the search in the automated strategyis a linear model. Rather than re-evaluating each

new child node, which requires the training of a neural network, the first child node’s (node 2 in Figure 3.16)

model selection criterion value can simply be adjusted to accommodate the extra degrees of freedom (K) that

is relevant to each additional child node (nodes 3 and 4 in Figure 3.16), while keeping the maximum likelihood

estimates constant. This produces an approximation to the model selection criterion values of the child node

and can be calculated immediately without any optimization. Note that this approximation can be applied to

the SBC model selection criterion, but will not work with cross-validation. During each evaluation of each

new child node, the model selection criterion will become worse and at some point will be worse than that

of the parent node. This results in an approximation to the maximum possible moves in the GANN model’s

sub-architecture.

The improved multi-step expansion further decreases the number of iterations that are needed to reach the

best GANN model. De Waal and Du Toit (2011) devised a final heuristic which performs an intelligent guess

of the best GANN architecture. The search for the best GANN model then commences from this intelligent

start architecture. This heuristic can also decrease the number of iterations that are performed by the automated

construction algorithm.

68

Intelligent start

With the basic automated construction algorithm (Algorithm 3.2), search is initiated from a GANN model

where each input has a sub-architecture identifier of 1. The intelligent start replaces the initial starting model

with a more promising one. An analysis of the results from a stepwise regression is used to determine the

intelligent start architecture.

Stepwise regression is used for variable selection. The goal is to remove the input variables that do not have

a significant effect on the output variables and to keep the variables that have a significant effect on the output

(Jiao and Li, 2010). With stepwise regression, all the variables are included in the initial model. Stepping

is then performed on this model by adding or removing variables according to the stepping criterion. Due to

the complexity of the relationships between variables and outputs, the importance of a specific variable may

change when other variables are added to the model. After each new variable is added, a test is thus performed

to determine if some variables can be removed without havinga significant increase in the residual sum of

squares. The stepwise regression will stop when the model has been optimized or when a specified number of

steps have been reached.

A GANN is reformulated as a regression problem after it has been constructed with a skip layer and one

neuron in the hidden layer for each input, and has been trained with the default optimization algorithm. Each

skip layer and hidden layer are used as separate variables inthe reformulated regression problem. Stepwise

regression is then performed and the results are interpreted as a GANN model. This GANN model is then

used as the new starting point (root node) for the search algorithm. The intelligent start function is presented

in Algorithm 3.3. The automated construction algorithm with the implemented intelligent start and multi-step

expansion techniques are shown in Algorithm 3.4. Note that Algorithms 3.3 and 3.4 are presented in the style

of Luger (2005), who utilizes lists to manage the search tree.

The automated construction algorithm is the solution to thedifficulty of constructing GANNs interactively

and with the improvements that are made to the algorithm, thetime taken to arrive at the best GANN model

is drastically decreased. In the next section, the implementation of the automated construction algorithm is

considered.

3.5.4 Implementation of the automated construction algorithm

The SASR© programming language is an assemblage of reporting, data management and analysis tools which

are all integrated (SAS Institute Inc., 2005). The user can read and combine data files in many ways with the

data management features. Simple frequency distributions, through to complex multivariate techniques, can be

performed with the analysis capabilities of SASR©. Finally, the user can present data management and analysis

results in a large number of formats with the reporting features.

The SASR© system is powerful, since it is integrated. The analysis andreporting components are able to use

data that are handled by the data management facilities without the need to modify it. As a result, data formats

and structures are of minimal concern to the user. The systemcan also be used throughout different computing

environments. A SASR© program that has been developed on an IBM-compatible personal computer can be

69

begin

a GANN is constructed with one hidden neuron and a skip layer for each inputVj , call it

Guesswith f j(x ji) = w0 jx ji +w1 j tanh(w01j +w ji) ;

fit the GANN model ;

for each input variable Vj in the GANN modeldo

Vj skip :=w0 jx ji ;

Vj hidden :=w1 j tanh(w01j +w ji) ;

end

using the new variablesVj skip andVj hidden, fit a stepwise regression model ;

for each input variable Vj in the GANNdo

case the selected regression model only included Vj skipdo

remove the one neuron for variableVj from Guess, consequentlyf j(x ji) = w0 jx ji ;

end

case the selected regression model only included Vj hiddendo

remove the skip layer for variableVj from Guess, thusf j(x ji) = w1 j tanh(w01j +w ji) ;

end

case the selected regression model does not include Vj skip nor Vj hiddendo

remove variableVj from Guess ;

end

end

return Guess ;

end

Algorithm 3.3: Intelligent start

used, with almost no alteration, on a mini-computer or mainframe. As a result of all these features, Du Toit

(2006) chose the SASR© Macro Language to implement the automated construction algorithm. This imple-

mentation was namedAutoGANNand was incorporated into the SASR© Enterprise MinerTM solution. By

supporting all necessary tasks within one, integrated solution, Enterprise MinerTM streamlines the full predic-

tion process from data access to model deployment, all whileproviding the flexibility for efficient workgroup

collaborations.

The SASR© Macro Language has a procedure, PROC GAM, that uses the backfitting algorithm to fit GAMs.

An array of powerful tools are provided by this procedure, which are based on nonparametric regression and

smoothing techniques. However, this procedure is not implemented as a modelling node in Enterprise MinerTM .

AutoGANN fills this gap from a neural network perspective, since it is implemented as a modelling node in

Enterprise MinerTM . The implementation of the automated construction algorithm in SASR© provides a more

user-friendly tool to the data analyst than PROC GAM.

70

begin

start := IntelligentStart ;

open := [start] ;

closed := [] ;

while, open, [] and specified time not reacheddo

remove the first state from open (leftmost state) and call it X;

begin

crossover := [] ;

threshold := heuristic value of X ;

minimum := heuristic value of X ;

for , each child of Xdo

if , not open nor closed, contains the childdo

a heuristic value is assigned to the child ;

the child is added to open ;

if , the child’s heuristic value< thresholddo

the child is added to crossover ;

minimum := the child’s heuristic value ;

end

end

end

if there are at least two states in crossoverdo

a super child is constructed from crossover and called S ;

if S< open and S< closeddo

a heuristic value is assigned to S ;

if the heuristic value of S< minimumdo

S is added to open ;

end

end

end

end

X is added to closed ;

sort states in open by heuristic value (best leftmost) ;

end

return best state from open and closed by using the heuristic value ;

end

Algorithm 3.4: Updated automated construction algorithm

71

The Macro Language of Base SASR© allows for the design of meta-programs that create and execute other

programs. With this powerful capability, AutoGANN can create GANN source code in real time and then

analyze the predictive power of the models after the code hasbeen executed. With AutoGANN, GANN models

can be evaluated in a fraction of the time it would take an analyst to do it by hand.

AutoGANN description

The SASR© Macro Facility was used for implementing the AutoGANN system. The SASR© Macro Facility is

a tool within the Base SASR© software that allows the use of macros (Carpenter, 2004). The macro facility gen-

erates source code and incorporates a macro processor to translate macro code into statements. This statements

can be used by SASR© and the Macro Language. Communication with the macro processor is provided by the

Macro Language. With the latter, the user can sent information between DATA and PROC steps. The user can

create SASR© code dynamically after the program has been submitted for execution. The Macro Language also

enables the user to create flexible and generalizable code. ADATA step enables the programmer to perform a

number of tasks which include:

• reading of raw data or other SASR© data sets;

• creating a SASR© data set;

• writing of reports; and

• writing to external files.

A PROC step invokes a SASR© procedure and is part of a SASR© program. There are four basic steps in Au-

toGANN, as indicated by Figure 3.17. These steps are considered next.

Initialize AutoGANN system

Enough main memory is reserved for the execution of the program with this first step. A consistency check is

performed on the six parameters of AutoGANN:Criterion, Start Architecture, Search Space, Partial Residual

Plots, TimeandNumber of Models.

The model selection criterion that is used by AutoGANN to evaluate different GANN models is set with the

Criterion parameter. The SBC criterion for a least squares analysis,SBCdev, is the default value. When the

likelihood of the model must be used to calculate the SBC criterion,SBClike must be selected by the user. The

Akaike Information Criterion (Anders and Korn, 1999) can also be selected as the AutoGANN model selection

criterion, withAIC devfor least squares analysis andAIC like for likelihood analysis. The average error on the

validation data set,Valid ave err, is also included. TheStart Architectureparameter sets the GANN architec-

ture for the root node of the search tree. The default value isIntelligent, which specifies the intelligent start as

discussed in Section 3.5.3. Another option isLinear, which indicates a linear model to start with. TheSearch

Spaceparameter has a default value of 012345 and defines the sub-architecture space. ThePartial Residual

Plots parameter turns the creation of partial residual plots on oroff. The default value for this parameter is

72

Figure 3.17: AutoGANN flowchart

Yes. To force the algorithm to stop after a certain length of time, theTimeparameter can be set. The default

value isInitialize, which causes the algorithm to stop after the root node has been created and evaluated. Other

values range from 5 seconds to 2 days. The final parameter is the Number of Models. This parameter sets the

number of models that are used for model averaging. The default value is 1. To find a more stable GANN

model, the model averaging technique can be used to average the chosen number of best models found. This

number can range from 1 to 10. Model averaging (Du Toit, 2006)is beyond the scope of this study and was

not considered. System malfunctions may occur when there are inconsistencies in these parameters. This will

cause the program to terminate and generate an error message.

The source code for a skeletal GANN model is generated after the input data set is analyzed. This skeletal

GANN code can be configured to represent any GANN model in the search space. The automated construction

algorithm modifies the skeletal GANN code to create different GANN models in the search tree.

Execute automated construction algorithm

The second step of the AutoGANN system is to execute the automated construction algorithm. A list data

73

structure that is stored inside the computer’s main memory is used to maintain the tree of GANN models. The

list is ordered so that the best GANN model, according to the model selection criterion, is always found at the

start of the list. The results that are found by the AutoGANN system are exported to external files when the

algorithm terminates, so that other programs can use it. Thefit statistics are calculated and presented for the

best GANN model. If a score data set exists, score code is generated and applied to it automatically. The only

factor that limits the size of the problems that the AutoGANNsystem can solve, is the amount of available

memory. Table 3.5 shows the activation and error functions that are implemented in AutoGANN.

Activation function Link function Target scale Error function

Identity Identity Interval on[−∞,+∞] Normal

Hyperbolic tangent Inverse hyperbolic tangent Interval on[−1,+1] Normal

Exponential Log Nonnegative Poisson

Multiple logit Logit Binary Multiple Bernoulli

Table 3.5: AutoGANN activation functions

Perform model averaging

If the user requires a more stable GANN model than the one thatis found with the automated construction

algorithm, model averaging can be performed. This is done instep three.

Create partial residual plots

The last step of the AutoGANN system is to create partial residual plots. Partial residual plots of the combined

GANN model are produced when model averaging is used, otherwise partial residual plots of the best GANN

model that was found, are created. The method that was used byPotts (2000) to create these plots is extended

by adding ticks to provide insight into the distribution of function values. Figure 3.21 shows an example of this

improved partial residual plot.

Now that the inner workings of the AutoGANN system has been discussed, the AutoGANN user interface,

which attempts to simplify the necessary user input and produce the desired results for each experiment, will

be considered.

AutoGANN user interface

In order to keep the system as simple as possible, the user canonly adjust the most important parameters. The

adjustable settings for model selection are shown in Figure3.18. A typical experiment, where the SO4 data set

is connected to the AutoGANN modelling node in Enterprise MinerTM , is shown in Figure 3.19. The result

screen which is displayed after the successful completion of an experiment is shown in Figure 3.20. The result

screen consists of seven sub-screens, each giving different information:

• Score rankings overlay: Not applicable to this study.

74

• Solution path: This section shows information about nodes that are on the path from the root node to the

node that represents the best GANN model that was found.

• Model space statistics: This section gives information about the search space, like the total number of

models that were generated and the number of duplicates thatwere found.

• Output: This is the output text file that is generated by SASR© .

• Populated search space: Displays information about all thenodes that were generated, sorted from the

best model that was found to the worst in terms of the model selection criterion.

• Inputs: The order, name and description of each input and sub-architecture identifier for each input as

they were determined by the best model that was found.

• Fit statistics: The fit statistics part shows information, like the complexity and accuracy of the best model

that was found.

Partial residual plots (Figure 3.21) can be inspected by choosing theView option. Finally, the system also

generates a text file that can be used with theGraphviztree draw program to create an image of the search tree

(e.g. Figure 3.22).

In the next section, an example is given to illustrate the automated construction algorithm which utilizes

Haberman’s Survival data set (Frank and Asuncion, 2010).

Figure 3.18: AutoGANN settings screen

Figure 3.19: AutoGANN that is connected to the SO4 data set

75

Figure 3.20: AutoGANN result screen

Figure 3.21: AutoGANN partial residual plot screen

76

3.5.5 Example

The instances of this data set represent cases from a study that was conducted between 1958 and 1970 at the

University of Chicago’s Billings Hospital. The study focussed on the survival of patients who had undergone

surgery for breast cancer. The data set consists of 306 instances and has 4 attributes. These attributes are

described in Table 3.6. This is a binary classification problem and the objective is to predict whether a patient

will survive for 5 years or longer, or will die within 5 years.

Attribute Description Attribute scale

Age The age of the patient when the operation took place Interval

Year The year when the operation took place (year-1900) Interval

Axillary The number of positive axillary nodes that were discovered Interval

Survival status of the patient. The status is 0 if the patient

survived for 5 years or longer and 1 if the patient died

Status within 5 years Binary

Table 3.6: Haberman’s Survival data set attributes

Methodology

The GANN sub-architecture space is limited to{0,1,2,3,4,5} for this example, the SBC is used as model selec-

tion criterion and search time is restricted to 5 seconds. The GANN architecture is represented by [x1,x2,x3],

wherex1, x2 andx3 representsAge, YearandAxillary respectively.

In steps 1 to 3 of the automated construction algorithm, a GANN model is generated by using the intelligent

start technique. This model is evaluated with the SBC criterion which produces a value of -516.093. The model

has a GANN architecture of [0,0,2]. It is then set as the root of the search tree and represented by node number

1 in Figure 3.22. Theexpandedflag for this node is set tofalse.

The root of the search tree ([0,0,2] model) is identified as the best unexpanded model that was created up

to this point in step 4 and this node is denoted as nodem. To indicate that this node is (being) expanded, the

expandedflag ofm is set totrue.

Each input of modelm is pruned by one sub-architecture level in step 5. Since the first two variables cannot

be pruned any more from the architecture that was obtained from the intelligent start technique ([0,0,2]), the

first child node,n, is created with an [0,0,1] architecture. To determine whether noden has already been placed

in the tree, a check is performed. Since this check is negative (noden does not already exist in the tree), the

model is evaluated by the SBC criterion. The SBC value for this model is -515.308. The node’sexpandedflag

is set tofalseand the model is added as node 2 to the tree (Figure 3.22).

Each input of modelm ([0,0,2]) is grown by one sub-architecture level in step 6. This results in the creation

of three new child nodes ([1,0,2], [0,1,2] and [0,0,3]). These nodes are added to the tree and numbered nodes

3, 4 and 5 respectively. Each of these nodes’expandedflag is set tofalse.

77

In step 7, the algorithm returns to step 4 to identify the bestunexpanded node. This node is set to nodem.

In this example, this is node 3 ([1,0,2]), with an SBC value of-516.456. Step 5 (prune) and step 6 (grow) are

repeated for each input of nodem. Step 5 creates only one new child node [1,0,1], since [0,0,2] already exists

in the tree. Step 6 creates three new child nodes, namely [2,0,2], [1,1,2] and [1,0,3].

The automated construction algorithm continues until the search space has been exhausted or the time limit

has been reached. For this example, there are 215 models in the search space (6 possible sub-architectures and

3 inputs, 63−1 = 215)1. The AutoGANN system created 30 models and was stopped by thetime limit of 5

seconds.

Results

The best model that was found, was reported as the third modelthat was created ([1,0,2]) with an SBC value

of -516.456. The accuracy, as measured by the MSE value of this model, is 0.180485. The full search tree that

was created in the time limit of 5 seconds is shown in Figure 3.22. The partial residual plots for variablesx1

(Age) andx3 (Axillary) are shown in Figures 3.23 and 3.24 respectively.

1

002

-516.1

2

001

-515.3

3

102

-516.5

4

012

-510.4

5

003

-510.4

10

011

-509.6

6

101

-512.8

7

202

-511.3

8

112

-511

9

103

-510.7

20

022

-501.1

21

013

-504.7

22

004

-501.1

11

100

-490.7

12

201

-508.3

13

111

-507.3

14

302

-508.1

15

212

-505.8

16

203

-505.8

17

122

-502.1

18

113

-505.3

19

104

-501.2

23

010

-489.4

24

021

-500.3

25

200

-485.6

26

301

-506

27

211

-502.7

31

110

-485

32

121

-498.1

28

402

-495

29

312

-502.6

30

303

-502.5

Figure 3.22: AutoGANN search tree for Haberman’s Survival data set

Conclusions

This algorithm is efficient and fast. In the time limit of 5 seconds, the algorithm created and evaluated 30

models. This would be an impossible task to achieve by hand in5 seconds by even the best modeller. The

results are also not subjective to human judgement and are objectively obtained by evaluating the SBC values.

In the next section, a conclusion to this chapter is presented.

1Note that the [0,0,0] architecture is not allowed.

78

Figure 3.23: Partial residual plot ofAge

Figure 3.24: Partial residual plot ofAxillary

3.6 Conclusion

Presently, statistical and prediction packages are providing more nonlinear modelling procedures, such as neu-

ral networks (Du Toit, 2006). However, linear and near-linear models, such as GANNs, are in general easier to

understand and interpret than nonlinear models and should not be discarded as ineffective and useless when it

comes to solving complex multi-dimensional problems. Nonlinear models have their own set of difficulties that

may not be straightforward to solve, such as the curse of dimensionality, overparametrization and difficulty to

train.

The black box perception of neural networks with respect to interpretation is relieved by the use of the

GANN architecture, since graphical methods can be used to interpret the effect of each input variable on the

fitted model.

Human judgement is, however, needed to interpret the partial residual plots when GANNs are constructed

interactively. This can become a time consuming and daunting task for a large number of variables. Since

79

human judgement is subjective, the interactive construction algorithm may also result in the creation of subop-

timal models.

The difficulties of the interactive construction algorithmis solved with the automated construction algo-

rithm by incorporating a model selection criterion to guidethe search for the best GANN model. Consequently,

no human interaction is needed during the execution of the algorithm. The data analyst must merely set the

parameters of the algorithm before the search for a good GANNmodel is started and then interpret the results

after the search has been completed. The automated construction algorithm is also able to perform in-sample

model selection and cross-validation. Given adequate timeto evaluate candidate models, the best-first search

technique, implemented by the automated construction algorithm, is complete and optimal.

The automated construction algorithm is implemented in theSASR© Macro Language and calledAuto-

GANN. The AutoGANN system has a simple, user-friendly and intuitive user interface with default parameter

settings that are ready to construct and interpret a relatively good model. The output of the AutoGANN system

can also help in guiding the data analyst to gain insight intothe models that were developed.

In the next chapter the AutoGANN system is used to search for good GANN models on five different data

sets. The models that are found, are compared to MLP models. Good MLP models for the five data sets are

found by using a modified version of the N2C2S algorithm. These MLP models are also compared to baseline

MLP models that are created by using a brute force method.

80

“Computer Science is no more about computers than astronomyis about

telescopes.”

Professor Edsger Dijkstra

4
Experimental Results

In order to compare multilayer perceptrons (MLPs) and generalized additive neural networks (GANNs), a

literature study had to be performed first to understand these two types of neural networks better. This has been

accomplished in Chapters 2 and 3. The next step is to perform experiments on different data sets by using MLP

and GANN models. These experiments must be well defined and must cover a broad range of tests to provide

insight into the manner in which these models compare.

Five different data sets were chosen for this study as a basisfor the comparison of the two types of neural

networks. These data sets include the Adult (Frank and Asuncion, 2010), Boston Housing (Frank and Asuncion,

2010), Ozone (Breiman and Friedman, 1985), SO4 (Xiang, 2001) and the Spambase (Frank and Asuncion,

2010) data sets and are all publicly available. The prediction task that was conducted on each of these data sets

can be divided into one of two categories:

1. Classification: In classification prediction tasks, the target is a set of classes (Berry and Linoff, 1997).

Characteristics of these tasks are a well-defined definitionof the classes and preclassified examples that

make up the training data set. The accuracy of classificationtasks in this study is measured by the

percentage of instances that are classified correctly.

2. Regression: With regression prediction tasks, the target is a continuous value (Berry and Linoff, 1997).

The prediction task is to estimate the continuous value as closely as possible. The accuracy of regression

tasks in the study is measured in terms of the mean squared error (MSE) value.

In this chapter, a description of the different experimentsthat were performed, is given in Section 4.1. The

Adult data set is considered in Section 4.2 and the results ofthe experiments that were performed on this data

81

set are also presented and discussed. In Section 4.3, the Boston Housing data set and its experimental results

are considered. The Ozone data set and its experimental results are discussed in Section 4.4 and in Section 4.5

the SO4 data set and the experiments that were conducted on it are considered. The final data set, Spambase,

and experiments that were conducted on it, are discussed in Section 4.6. Finally, a conclusion to this chapter is

presented in Section 4.7.

4.1 Experimental design

All the experiments were conducted on a personal computer with an IntelR© CoreTM 2 Quad processor, oper-

ating at 2.66 GHz (per core) with 4 GB of RAM (only 3.5 GB usablewith a 32 bit operating system), running

Microsoft Windows XP 32 bit. The custom-built MLP construction program was implemented in Base SASR©

9.1 and the AutoGANN system in SASR© Enterprise MinerTM 5.3.

Each data set was used in MLP and GANN experiments. For the GANN experiments, the AutoGANN

system, as discussed in Section 3.5.4, was used to search forthe best model for the specific data set. The

custom-built program for MLP construction, as discussed inSection 2.6.2 (the program code is given in Ap-

pendix A), was used to find the best MLP architecture for each data set.

Key features that are considered in order to compare MLPs andGANNs are the following:

• Model complexity: The complexity of a model (degrees of freedom) is measured in terms of the number

of parameters.

• Predictive accuracy: For this study, two measurements are used to report the predictive accuracy of a

model:

1. Percentage of events that are classified correctly. This measurement is used for classification tasks

and is defined as

Percentage of events classified correctly=
X
N

, (4.1)

whereX is the number of events that are classified correctly andN is the number of instances. To

report the percentage of events that are predicted correctly for K-fold cross-validation, the former

is averaged over theK-folds.

2. Mean squared error (MSE). The MSE is utilized to report predictive accuracy for regression tasks,

and is defined by Zhang et al. (1998) as

MSE=
∑N

i=1(yi − ŷi)
2

N
, (4.2)

whereN is the number of instances,yi is the target value and ˆyi is the predicted target value. The

MSE forK-fold cross-validation is determined by averaging the MSE values over theK-folds.

• Time: The time that is taken to find a good model.

In the next section, the experiments that were performed with GANNs by using the AutoGANN system are

discussed.

82

4.1.1 GANN experiments

Two GANN experiments were conducted on each data set by usingthe AutoGANN system. For the first

experiment, the AutoGANN system was set to run for 12 hours, performing in-sample model selection (the

whole data set was used for training and validation). Since no guideline was provided by Du Toit (2006)

on how long to search for a good model, a relatively prolongedtime was chosen. With this experiment, the

AutoGANN system used the SBC model selection criterion to search for a good GANN model. For the second

experiment, the AutoGANN system was also set to run for 12 hours, but out-of-sample model selection was

performed (70% of the data set was used for training and 30% for validation). The average validation error

(VAVERR) was utilized as model selection criterion for thisexperiment to search for a good GANN model.

Both of these experiments used the intelligent start methodto determine the starting architecture. The search

space for all the GANN experiments was set to{0,1,2,3,4,5}. To reduce the size of the search space, Du Toit

(2006) suggested that a subset of the available sub-architectures should be employed.

In the next section, the MLP experiments are described.

4.1.2 MLP experiments

The MLP construction program that had been developed for this study (Appendix A) was used to conduct the

MLP experiments. Six experiments that involved MLPs were conducted on each data set. Three experiments

used the modified N2C2S algorithm. The first performed in-sample model selection (the whole data set was

used for training and validation), the second performed out-of-sample model selection with hold-out cross-

validation (70% of the data set was used for training and 30% of the data set for validation) and the third also

performed out-of-sample model selection, but withK-fold cross-validation (K = 10). The experiment that used

in-sample model selection used the SBC value as model selection criterion and the other two experiments used

the average validation error (VAVERR) value as model selection criterion for out-of-sample model selection.

The next three MLP experiments were then performed by using the brute force method of the custom-

built MLP construction program for iterating through a number of MLP architectures. The latter technique

evaluates a range of MLP architectures to gain insight into the number of hidden neurons that were chosen by

the modified N2C2S algorithm. In other words, the brute forcemethod provides a baseline for the modified

N2C2S algorithm. For these experiments, a minimum number of1 hidden node was chosen, along with a

maximum number of hidden nodes. All the MLP architectures, ranging from 1 to the maximum number of

hidden nodes, were then evaluated. The first brute force method experiment used the whole data set for training

and validation, the second brute force method experiment used 70% of the data set for training and 30% of

the data set for validation, and the third brute force methodexperiment performedK-fold cross-validation with

K = 10. For the Adult and Spambase data sets, the maximum number of hidden neurons were set to 30 and

for the remaining three data sets they were set to 15. This wasdone since the Adult and Spambase data sets

are the largest data sets (in terms of dimensions) that were used in this study and may require a more complex

MLP than the smaller data sets. Since these three experiments used a brute force approach, no model selection

criterion was necessary.

83

In the next section, the naming of the experiments is discussed.

4.1.3 Experiment identification

In total, there were eight experiments conducted on each data set. To identify these experiments, a unique

identification string (ID) is given to each experiment, as shown in Table 4.1. Note thatK-fold cross-validation

is not implemented by the AutoGANN system and was therefore omitted by experiments conducted with the

system. This model selection technique was performed by theMLP construction program to gain more in-

sight into the results that were obtained by the system. Since the hold-out (cross-validation) model selection

technique is based on a single sample from the data, more stable results can be obtained by performingK-fold

cross-validation.

Model

Experiment description selection ID

AutoGANN system, using 100% of the data set for training and validation In-sample AG100

AutoGANN system, using 70% of the data set for training and 30% of the

data set for validation Out-of-sample AG70

Modified N2C2S algorithm, using 100% of the data set for training and

validation In-sample NCS100

Modified N2C2S algorithm, using 70% of the data set for training and 30%

of the data set for validation Out-of-sample NCS70

Modified N2C2S algorithm, performing 10-fold cross-validation Out-of-sample NCS10

Brute force approach, using 100% of the data set for trainingand validation n/a BRUTE100

Brute force approach, using 70% of the data set for training and 30% of the

data set for validation n/a BRUTE70

Brute force approach, performing 10-fold cross-validation n/a BRUTE10

Table 4.1: Experiment identification strings

Next, the Adult data set and the experiments that were conducted on it will be considered.

4.2 The Adult data set

The Adult data set (Frank and Asuncion, 2010) contains data that was extracted from the 1994 U.S. census

database. The prediction task for this data set is to determine whether a person makes more than fifty thousand

U.S. dollars a year. The data set has 48 842 instances and 16 attributes, and contains instances with missing

values. These instances were removed, which left the data set with 45 222 instances. The attributes are in-

formation about the persons that are represented by the instances. Information about the attributes is given in

Table 4.2.

84

Attribute Description Attribute scale

Age The age of the person in years Interval

Workclass The sector in which the person works Nominal

Fnlwgt Final weight Interval

Education The education level of the person Nominal

Education-num The education level of the person Interval

Marital-status The marital status of the person Nominal

Occupation The occupation of the person Nominal

Relationship The relationship status of the person Nominal

Race The race of the person Nominal

Sex The sex of the person Binary

Capital-gain The amount of capital the person has gained Interval

Capital-loss The amount of capital the person has lost Interval

Hours-per-week How many hours the person works per week Interval

Native-country The country where the person originally comes from Nominal

Indicates whether the person has an income less or

Income equal to $50 000, or more than $50 000 Binary

Indicates the income status, where 0 is for less or

Status equal to $50 000 and 1 for more than $50 000 Binary

Table 4.2: Adult data set attributes

The Education-numattribute is an interval attribute that is derived from the nominal Educationattribute

and as a result, theEducationattribute is omitted from the experiments. TheIncomeattribute is also omitted,

since theStatusattribute is a binary attribute that is derived fromIncome. The AutoGANN system is designed

to handle only numerical binary target attributes with values of 0 and 1. This necessitated the replacement of

the class target attributeIncomewith the numerical binary targetStatus. There are thus 14 attributes used in the

experiments, 13 as inputs and 1 as the target.

The results from the experiments, using GANNs, are considered next.

4.2.1 GANN results

AG100 and AG70 experiments

In the AG100 and AG70 experiments, the AutoGANN system evaluated 554 and 815 models respectively. The

number of models that were generated in the AG70 experiment are greater than the number of models that were

created in the AG100 experiment. It takes less time to train the individual models on 70% of the data set and

to evaluate the model on the remaining 30% of the data set. As aresult, more models can be generated in the

allowed time in the AG70 experiment. The best models that were found in the AG100 and AG70 experiments,

85

according to the SBC and VAVERR values respectively, are shown in Table 4.3. The accuracies of these models,

in terms of the percentage of events that were correctly classified, are shown in Table 4.4.

Model selection Model selection

Experiment criterion criterion value Parameters Time

AG100 SBC -104 254.49 36 12h

AG70 VAVERR 0.307387 45 12h

Table 4.3: Best AG100 and AG70 GANN models on the Adult data set

Data set False False True True Accuracy

Experiment Data role size positive negative positive negative (%)

Training and

AG100 validation 45 222 2 209 4 219 6 989 31 805 85.79

AG70 Validation 13 568 1 255 677 2 108 9 528 85.76

Table 4.4: Best AG100 and AG70 GANN models’ accuracies on theAdult data set

Table 4.5 shows the GANN sub-architecture of each input of the best GANN model that was found in the

AG100 experiment. From this table, it can be seen that 11 out of the 13 input attributes were used in the best

model. TheRaceandNative-countryattributes were removed from the model. TheWorkclass, Education-num,

Marital-status, Occupation, RelationshipandSexattributes all had a linear relationship with the target. The

Age, Fnlwgt, Capital-gain, Capital-lossandHours-per-weekattributes all had a nonlinear relationship with the

target.

The GANN sub-architectures of each input of the best model that were found in the AG70 experiment are

shown in Table 4.6. It can be seen from this table that 12 out ofthe 13 input attributes were used in this model.

Only theNative-countryattribute was removed from the model. TheWorkclass, Education-num, Marital-status,

Occupation, Relationship, RaceandSexattributes all had a linear relationship with the target. TheAge, Fnlwgt,

Capital-gain, Capital-lossandHours-per-weekattributes all had a nonlinear relationship with the target.

The root nodes of the search trees for the AG100 and AG70 experiments were created by using the intel-

ligent start method. The root node of the AG100 experiment was ranked 384th out of the 554 models and had

an SBC value of -103 440.65. The GANN architecture of this model was [2,1,0,1,0,1,1,0,0,5,1,2,0]. The root

node of the AG70 experiment was ranked 590th out of the 815 models and had a VAVERR value of 0.313473.

The GANN architecture of this model was [2,1,0,1,0,1,1,0,0,5,1,2,0]1.

1Note that although the training data sets for the AG100 and AG70 experiments were different, the intelligent start algorithm created

the same GANN architecture for the root nodes of the two search trees.

86

GANN

Input sub-architecture

Age 4

Workclass 1

Fnlwgt 2

Education-num 1

Marital-status 1

Occupation 1

Relationship 1

Race 0

Sex 1

Capital-gain 2

Capital-loss 3

Hours-per-week 2

Native-country 0

Table 4.5: Best AG100 GANN model on the Adult data set

Input GANN

sub-architecture

Age 5

Workclass 1

Fnlwgt 2

Education-num 1

Marital-status 1

Occupation 1

Relationship 1

Race 1

Sex 1

Capital-gain 4

Capital-loss 2

Hours-per-week 5

Native-country 0

Table 4.6: Best AG70 GANN model on the Adult data set

In the next section, the results from the GANN experiment that was conducted on the Adult data set are

discussed.

87

Discussion of GANN results

The accuracies of the two models (the best model from the AG100 experiment and the best model from the

AG70 experiment), in terms of events that were correctly predicted, are very similar. The model from the

AG100 experiment is, however, less complex than that of the AG70 experiment.

In the next section, the experimental results from the MLP experiments on the Adult data set are considered.

4.2.2 MLP results

NCS100, NCS70 and NCS10 experiments

The best MLP models that were found with the modified N2C2S algorithm by using model selection criteria

in the NCS100, NCS70 and NCS10 experiments are shown in Table4.7. The accuracies (percentage events

that were correctly classified) of these models are shown in Table 4.8. As seen from this table, the accuracies

only differs with less than one percent in these three experiments, but the models from the NCS70 and NCS10

experiments are much more complex, as seen in Table 4.7.

Model selection Model selection Hidden

Experiment criterion criterion value neurons Parameters Time

NCS100 SBC -586 444.08 2 31 11m 6s 97ms

NCS70 VAVERR 0.309054 5 76 15m 4s 42ms

NCS10 VAVERR 0.309417 6 91 3h 47m 59s

Table 4.7: Best NCS100, NCS70 and NCS10 MLP models on the Adult data set

Data set False False True True Accuracy

Experiment Data role size positive negative positive negative (%)

Training and

NCS100 validation 45 222 2 505 4 172 7 036 31 509 85.24

NCS70 Validation 13 566 714 1 231 2 152 9 469 85.66

NCS10 Validation 4 522 238 415 706 3 163 85.56

Table 4.8: Best NCS100, NCS70 and NCS10 MLP models’ accuracies on the Adult data set

In the next section, the BRUTE100, BRUTE70 and BRUTE10 experimental results are considered.

BRUTE100, BRUTE70 and BRUTE10 experiments

For these experiments, the brute force method was performedfrom an MLP with 1 hidden neuron through to

an MLP with 30 hidden neurons. The time that was taken to complete the brute force experiments is shown

in Table 4.9. The best MLP models that were found by manually inspecting the results, according to the SBC

(BRUTE100) and VAVERR (BRUTE70 and BRUTE10) values, are shown in Table 4.10.

88

Experiment Time

BRUTE100 4h 10m 56s 45ms

BRUTE70 3h 0m 58s 81ms

BRUTE10 1d 12h 50m 18s 10ms

Table 4.9: BRUTE100, BRUTE70 and BRUTE10 completion time onthe Adult data set

Model selection Model selection Hidden

Experiment criterion criterion value neurons Parameters

BRUTE100 SBC -586 516.43 2 31

BRUTE70 VAVERR 0.304095 26 391

BRUTE10 VAVERR 0.308925 22 331

Table 4.10: Best BRUTE100, BRUTE70 and BRUTE10 MLP models onthe Adult data set

The accuracies of these MLP models are shown in Table 4.11. Asseen in this table, the accuracies only

differ less than one percent in the three experiments.

Data set False False True True Accuracy

Experiment Data role size positive negative positive negative (%)

Training and

BRUTE100 validation 45 222 2 364 4 090 7 118 31 650 85.73

BRUTE70 Validation 13 566 687 1 265 2 101 9 513 85.61

BRUTE10 Validation 4 522 237 409 711 3 165 85.70

Table 4.11: Best BRUTE100, BRUTE70 and BRUTE10 MLP models’ accuracies on the Adult data set

The full results of the BRUTE100, BRUTE70 and BRUTE10 experiments are shown in Appendix B. In the

next section, the results that were obtained from the performed experiments on the Adult data set, using MLPs,

are discussed.

Discussion of MLP results

The modified N2C2S algorithm performed well on this data set and produced MLPs with good accuracies.

When the best models that were found in the NCS100, NCS70 and NCS10 experiments are compared to the

models from the brute force search method, it can be seen thatthe modified N2C2S algorithm successfully

found a good model without overfitting the data.

In the next section, the results from the MLP and GANN experiments that were conducted on the Adult

data set are compared.

89

4.2.3 Comparison of MLP and GANN results

A comparison between the AG100 and the NCS100 experiments isshown in Table 4.12. The table shows that

the accuracies of these two models are very similar. The MLP model is, however, less complex than the GANN

model and the time that was taken to finish the search for a goodMLP model is far less than the time that was

taken to search for a good GANN model.

AG100 NCS100

Parameters 36 31

Accuracy (%) 85.79 85.24

Time 12h 11m 6s 97ms

Table 4.12: AG100 and NCS100 experimental results comparison on the Adult data set

A comparison between the AG70 and the NCS70 experiments is shown in Table 4.13. The table shows

that the accuracies of these two models are, again, very similar, but the MLP model is more complex than the

GANN model. The time that was taken to finish the search for a good MLP model is, again, far less than the

time that was taken to search for a good GANN model. Since the AutoGANN system does not supportK-fold

cross-validation, the NCS10 experiment cannot be compareddirectly to a GANN experiment. The NCS10

experiment did, however, produce an MLP model with an accuracy which is very similar to that of the NCS70

experiment, but the time that was taken to find this model, as well as the model complexity, increased.

AG70 NCS70

Parameters 45 76

Accuracy (%) 85.79 85.66

Time 12h 15m 4s 42ms

Table 4.13: AG70 and NCS70 experimental results comparisonon the Adult data set

In the next section, the Boston Housing data set as well as theresults that were obtained from the experi-

ments that had been conducted on it, are considered.

4.3 The Boston Housing data set

The Boston Housing data set (Frank and Asuncion, 2010) is used to predict average house prices in the suburbs

of Boston. This data set was originally utilized by Harrisonand Rubinfeld (1978) to generate quantitative

estimates of the willingness of people to pay for better air quality. The data set consists of 506 instances and

has 14 attributes. Each instance represent a certain suburbarea of Boston. The attributes represent information

about the suburb. The goal is to predict the median value (Medv) of owner-occupied houses in these suburbs

in U.S.$1000s. SinceMedvis an interval attribute, this can be classified as a regression problem. Information

about the attributes is presented in Table 4.14.

90

Attribute Description Attribute scale

Crim Crime rate per capita Interval

The proportion of land that is zoned for residential lots which are

Zn larger than 25 000 square feet Interval

Indus The ratio of acres that consists of non-retail businesses Interval

The Charles River dummy variable. If the piece of land borders on

Chas the river, then this value is 1, otherwise it is 0 Binary

Nox The nitric oxides concentration that is measured in parts per 10 million Interval

Rm The average number of rooms per home Interval

The ratio of homes that were built prior to 1940 and are occupied by

Age the owner Interval

Dis The weighted distances from five employment centres in Boston Interval

Rad An index of accessibility to highways Interval

Tax The full value property tax rate per U.S.$10 000 Interval

Ptratio The ratio between pupils and teachers Interval

A value that was computed with the following formula:

B 1000(Bk−0.63)2, whereBk represents the ratio of blacks in the town Interval

Lstat The percentage lower status of the population Interval

The median value of homes that are occupied by their owners in

Medv U.S.$1000s Interval

Table 4.14: Boston Housing data set attributes

In the next section, the experiments, using GANNs on this data set, are considered.

4.3.1 GANN results

AG100 and AG70 experiments

The AutoGANN system was set to run for 12 hours in both the AG100 and the AG70 experiments. In this

allowed time, the AutoGANN system created 8 602 different GANN models for the AG100 experiment and

8 878 GANN models for the AG70 experiment2. As in the GANN experiments with the Adult data set, more

models were evaluated in the AG70 experiment than in the AG100 experiment. The best models that were

found according to the model selection criteria in the AG100and AG70 experiments are shown in Table 4.15.

The accuracies of these models, in terms of the MSE values, are shown in Table 4.16.

2For an unknown reason, the AutoGANN system created less models in the AG70 experiment than would be expected when

compared to the number of models that were created in the AG100 experiment.

91

Model selection Model selection

Experiment criterion criterion value Parameters Time

AG100 SBC 1 260.11 38 12h

AG70 VAVERR 0.434168 53 12h

Table 4.15: Best AG100 and AG70 GANN models on the Boston Housing data set

Data set Accuracy

Experiment Data role size (MSE)

Training and

AG100 validation 506 9.659861

AG70 Validation 354 11.423594

Table 4.16: Best AG100 and AG70 GANN models’ accuracies on the Boston Housing data set

The GANN architecture of the best model that was found in the AG100 experiment is shown in Table 4.17.

From this table, it is clear that 10 out of the 13 input attributes were used in the best model. TheZn, Ageand

Radattributes were removed from the model. TheIndus, Chas, Ptratio, B andLstatattributes all had a linear

relationship with the target. TheCrim, Nox, Rm, Dis andTaxattributes all had a nonlinear relationship with the

target.

GANN

Input sub-architecture

Crim 5

Zn 0

Indus 1

Chas 1

Nox 2

Rm 2

Age 0

Dis 4

Rad 0

Tax 2

Ptratio 1

B 1

Lstat 1

Table 4.17: Best AG100 GANN model on the Boston Housing data set

92

The best model that was found with the AG70 experiment only used 9 out of the 13 input attributes (Table

4.18). TheZn, Indus, ChasandAgeattributes were removed from the model. TheRadandTaxattributes had a

linear relationship with the target. TheCrim, Nox, Rm, Dis, Ptratio, B andLstatattributes all had a nonlinear

relationship with the target.

GANN

Input sub-architecture

Crim 2

Zn 0

Indus 0

Chas 0

Nox 3

Rm 5

Age 0

Dis 5

Rad 1

Tax 1

Ptratio 5

B 5

Lstat 4

Table 4.18: Best AG70 GANN model on the Boston Housing data set

The intelligent start method of the AutoGANN system was utilized to create the root nodes of the search

trees for the AG100 and AG70 experiments. The starting GANN model of the AG100 experiment was ranked

6 788th out of the 8 602 models and had a SBC value of 1 371.96. The GANN architecture of this model

was [3,0,0,1,1,5,2,5,1,2,1,3,3]. The starting GANN modelof the AG70 experiment had an architecture of

[1,0,0,1,1,5,2,5,1,1,1,0,1], was ranked 8 102th out of the8 878 models and had a VAVERR value of 0.621064.

In the next section, the GANN experimental results from the Boston Housing data set are discussed.

Discussion of GANN results

In both of the GANN experiments, the AutoGANN system searched through a large number of GANN models.

The number of models that were generated for the Boston Housing data set are far greater than the number of

models that were constructed for the Adult data set. This canbe attributed to the fact that the Boston Housing

data set has much less instances, which causes the training time per model to be reduced. The best GANN

model that was found with the AG100 experiment is more accurate in terms of the MSE value than that of the

AG70 experiment. This model is also less complex than the onethat was found in the AG70 experiment.

The experiments that were conducted by using MLPs are considered next.

93

4.3.2 MLP results

NCS100, NCS70 and NCS10 experiments

The best MLP models that were found on the Boston Housing dataset, using the modified N2C2S algorithm,

are shown in Table 4.19. The accuracies of these models are presented in Table 4.20. As seen in this table, the

accuracies (MSE) differ substantially in these three experiments.

Model selection Model selection Hidden

Experiment criterion criterion value neurons Parameters Time

NCS100 SBC -1 982.71 3 46 6s 42ms

NCS70 VAVERR 0.614418 4 61 8s 89ms

NCS10 VAVERR 0.489649 3 46 55s 61ms

Table 4.19: Best NCS100, NCS70 and NCS10 MLP models on the Boston Housing data set

Data set Accuracy

Experiment Data role size (MSE)

Training and

NCS100 validation 506 5.709240

NCS70 Validation 354 16.291630

NCS10 Validation 455 11.843650

Table 4.20: Best NCS100, NCS70 and NCS10 MLP models’ accuracies on the Boston Housing data set

In the next section, the BRUTE100, BRUTE70 and BRUTE10 experimental results are considered.

BRUTE100, BRUTE70 and BRUTE10 experiments

For these experiments, the brute force method was performedfrom an MLP with 1 hidden neuron through to

an MLP with 15 hidden neurons. The time that was taken to complete these experiments are shown in Table

4.21.

Experiment Time

BRUTE100 51s 42ms

BRUTE70 36s 20ms

BRUTE10 6m 59s 84ms

Table 4.21: BRUTE100, BRUTE70 and BRUTE10 completion time on the Boston Housing data set

94

The best MLP models that were found in the BRUTE100, BRUTE70 and BRUTE10 experiments, according

to the SBC (BRUTE100) and VAVERR (BRUTE70 and BRUTE10) values, are shown in Table 4.22.

Model selection Model selection Hidden

Experiment criterion criterion value neurons Parameters

BRUTE100 SBC -1 977.08 3 46

BRUTE70 VAVERR 0.594371 7 106

BRUTE10 VAVERR 0.486868 5 76

Table 4.22: Best BRUTE100, BRUTE70 and BRUTE10 MLP models onthe Boston Housing data set

The accuracies (MSE) of these MLP models are shown in Table 4.23. As seen in this table and Table

4.22, the model from the BRUTE70 experiment has a higher complexity and is less accurate than that of the

BRUTE10 experiment.

Data set Accuracy

Experiment Data role size (MSE)

Training and

BRUTE100 validation 506 5.773066

BRUTE70 Validation 354 15.918820

BRUTE10 Validation 455 11.050678

Table 4.23: Best BRUTE100, BRUTE70 and BRUTE10 MLP models’ accuracies on the Boston Housing data

set

The full results of the BRUTE100, BRUTE70 and BRUTE10 experiments are shown in Appendix B. The

MLP experimental results on the Boston Housing data set are discussed in the next section.

Discussion of MLP results

The MSEs of the best MLP models that were found with NCS100, NCS70 and NCS10 experiments differ

substantially. The MSE of the NCS70 experiment is about 3 times higher than that of the NCS100 experiment.

The modified N2C2S algorithm performed well overall when compared to the baseline BRUTE100, BRUTE70

and BRUTE10 experiments.

In the next section, the results from the GANN and MLP experiments are compared.

4.3.3 Comparison of MLP and GANN results

In Table 4.24, a comparison between the AG100 and the NCS100 experiments is shown. This table shows that

the MLP model is more complex, but was found in a much shorter time than the GANN model. The MLP

model also performs considerably better than the GANN modelin terms of predictive accuracy.

95

A comparison between the AG70 and the NCS70 experiments is shown in Table 4.25. This table shows

that the accuracy of the GANN model is better and that the model is less complex than the best MLP model.

However, it is worth noting that the more stable model that was found with the NCS10 experiment is nearly as

accurate (MSE = 11.843650) as the model that was found in the AG70 experiment and is also less complex (46

parameters).

AG100 NCS100

Parameters 38 46

Accuracy (MSE) 9.659861 5.709240

Time 12h 6s 42ms

Table 4.24: AG100 and NCS100 experimental results comparison on the Boston Housing data set

AG70 NCS70

Parameters 58 61

Accuracy (MSE) 11.423594 16.291630

Time 12h 8s 89ms

Table 4.25: AG70 and NCS70 experimental results comparisonon the Boston Housing data set

In the next section, the Ozone data set as well as the results that were obtained from the experiments that

had been conducted on it, are considered.

4.4 The Ozone data set

The Ozone data set contains meteorological data about the amount of ground level ozone in the Los Angeles

metropolis over the course of a year (Breiman and Friedman, 1985). They used this data set to estimate the

optimal transformations for multiple regression and correlation. The data set consists of 330 observations and

10 attributes. The attributes represent various information about surface conditions and the objective is to

predict the ground level ozone as a pollutant. The target attribute (Ozone) is an interval variable and, as a result,

the prediction problem is classified as a regression problem. Information about the attributes are presented in

Table 4.26.

96

Attribute Description Attribute scale

Vh The altitude at which the pressure is 500 millibars Interval

Wind The wind speed in miles per hour Interval

Humid The percentage humidity Interval

Temp The temperature in degrees Fahrenheit Interval

Ibh The inversion base height in feet Interval

Dpg The pressure gradient Interval

Ibt The inversion base temperature in degrees FahrenheitInterval

Vis The visibility in miles Interval

Doy The day of year Interval

Ozone Ground level ozone as a pollutant Interval

Table 4.26: Ozone data set attributes

In the next section, the experiments, using GANNs on this data set, are considered.

4.4.1 GANN results

AG100 and AG70 experiments

With the AG100 experiment on the Ozone data set, the AutoGANNsystem evaluated 7 857 different GANN

models, but with the AG70 experiment, only 4 636 GANN models were created by the AutoGANN system3.

The best models that were found (according to the model selection criteria) in the AG100 and AG70 experi-

ments are shown in Table 4.27 and the accuracies of these models in terms of the MSE value are shown in Table

4.28.

Model selection Model selection

Experiment criterion criterion value Parameters Time

AG100 SBC 898.08 23 12h

AG70 VAVERR 0.810853 52 12h

Table 4.27: Best AG100 and AG70 GANN models on the Ozone data set

3For an unknown reason, the AutoGANN system generated less models in the AG70 experiment than in the AG100 experiment.

This is in contrast to the results of the experiments that were conducted on the other data sets and may be as a result of unknown

factors that could have influenced the computer’s performance at the time of the experiment. The experiment was repeatedand the

same phenomenon was observed.

97

Data set Accuracy

Experiment Data role size (MSE)

Training and

AG100 validation 330 11.276206

AG70 Validation 231 11.381018

Table 4.28: Best AG100 and AG70 GANN models’ accuracies on the Ozone data set

In Table 4.29, the GANN sub-architecture of each input of thebest GANN model that was found in the AG100

experiment is shown. From this table it can be seen that 6 out of the 9 attributes were used in the best model.

The Wind, Tempand Ibh attributes were removed from the model. TheVh and Vis attributes had a linear

relationship with the target. TheHumid, Dpg, Ibt andDoy attributes all had a nonlinear relationship with the

target.

GANN

Input sub-architecture

Vh 1

Wind 0

Humid 2

Temp 0

Ibh 0

Dpg 3

Ibt 2

Vis 1

Doy 3

Table 4.29: Best AG100 GANN model on the Ozone data set

The GANN architecture of the best model that was found in the AG70 experiment is shown in Table 4.30.

From this table, it is clear that 8 out of the 9 attributes wereused in the best model. Only theIbt attribute was

removed from the model and there were no attributes that had alinear relationship with the target. TheVh,

Wind, Humid, Temp, Ibh, Dpg, VisandDoyattributes all had a nonlinear relationship with the target.

The root nodes of the search trees for both the AG100 and the AG70 experiments were created by using the

intelligent start method. The AG100 experiment’s startingGANN model was ranked 3 954th out of the 7 857

models and had an SBC value of 940.70. The GANN architecture of this model was [0,0,1,1,0,3,2,1,1]. The

root node of the AG70 experiment was ranked 4 627th out of the 4636 models and had a VAVERR value of

1.644113. The GANN architecture of this model was [0,0,0,1,2,0,0,0,0].

98

GANN

Input sub-architecture

Vh 2

Wind 3

Humid 5

Temp 4

Ibh 5

Dpg 4

Ibt 0

Vis 3

Doy 4

Table 4.30: Best AG70 GANN model on the Ozone data set

In the next section the results from the GANN experiment conducted on the Ozone data set are discussed.

Discussion of GANN results

The AutoGANN system chose a good starting GANN model with theintelligent start method in the AG100

experiment, as the starting GANN model was ranked better than 3 903 other models. The starting GANN model

of the AG70 experiment did, however, not perform as well and only proved to be better than 9 other models.

The results show that the best model that was found in the AG70experiment is, in terms of the MSE value,

slightly less accurate than, but more than twice as complex as, the best model that was found in the AG100

experiment.

In the next section, the results from the MLP experiments areconsidered.

4.4.2 MLP results

NCS100, NCS70 and NCS10 experiments

The best MLP models, according to the model selection criteria, are shown in Table 4.31. These models were

found by the modified N2C2S algorithm. The accuracies of these models in terms of the MSE values are shown

in Table 4.32. As seen in the table, the accuracies differ substantially in these three experiments.

99

Model selection Model selection Hidden

Experiment criterion criterion value neurons Parameters Time

NCS100 SBC -1 073.19 3 34 3s 17ms

NCS70 VAVERR 1.383407 2 23 1s 69ms

NCS10 VAVERR 1.063660 3 34 27s 89ms

Table 4.31: Best NCS100, NCS70 and NCS10 MLP models on the Ozone data set

Data set Accuracy

Experiment Data role size (MSE)

Training and

NCS100 validation 330 10.391040

NCS70 Validation 231 17.657960

NCS10 Validation 297 14.357012

Table 4.32: Best NCS100, NCS70 and NCS10 MLP models’ accuracies on the Ozone data set

In the next section, the BRUTE100, BRUTE70 and BRUTE10 experimental results are considered.

BRUTE100, BRUTE70 and BRUTE10 experiments

For the Ozone data set, the brute force method was set to reacha maximum of 15 hidden neurons, starting at 1.

The time that was taken to complete each of the brute force experiments on this data set is shown in Table 4.33.

Experiment Time

BRUTE100 30s 94ms

BRUTE70 25s 03ms

BRUTE10 4m 31s 48ms

Table 4.33: BRUTE100, BRUTE70 and BRUTE10 completion time on the Ozone data set

The results were manually analyzed and compared in terms of the SBC (BRUTE100) and VAVERR (BRUTE70

and BRUTE10) values to determine the best model according tothe model selection criteria. The best MLP

models that were found are shown in Table 4.34 and the accuracies (MSE) of these MLP models are shown in

Table 4.35.

The full results of the BRUTE100, BRUTE70 and BRUTE10 experiments are shown in Appendix B. These

tables can be used as a baseline for the results of the NCS100,NCS70 and NCS10 experiments respectively.

100

Model selection Model selection Hidden

Experiment criterion criterion value neurons Parameters

BRUTE100 SBC -946.11 3 34

BRUTE70 VAVERR 1.082693 2 23

BRUTE10 VAVERR 1.139797 3 34

Table 4.34: Best BRUTE100, BRUTE70 and BRUTE10 MLP models onthe Ozone data set

Data set Accuracy

Experiment Data role size (MSE)

Training and

BRUTE100 validation 330 10.325550

BRUTE70 Validation 231 14.557900

BRUTE10 Validation 297 15.106363

Table 4.35: Best BRUTE100, BRUTE70 and BRUTE10 MLP models’ accuracies on the Ozone data set

The MLP experimental results on the Ozone data set are discussed in the next section.

Discussion of MLP results

The MLP models that were found by the modified N2C2S algorithmhave the same architectures and thus the

same model complexity as the best models that were determined by the brute force method. These models

also did not overfit the data, since the number of parameters are not too high. This indicates that the modified

N2C2S algorithm performed as expected.

The results from the MLP and GANN experiments are consideredin the next section.

4.4.3 Comparison of MLP and GANN results

A comparison between the AG100 and the NCS100 experiments isshown in Table 4.36. This table indicates

that the MLP model is more complex, but was found in a much shorter time than the GANN model. The MLP

model also performs better than the GANN model in terms of theMSE value.

AG100 NCS100

Parameters 23 34

Accuracy (MSE) 11.276206 10.391040

Time 12h 3s 17ms

Table 4.36: AG100 and NCS100 experimental results comparison on the Ozone data set

101

A comparison between the AG70 and the NCS70 experiments is shown in Table 4.37. This table shows that

the accuracy of the GANN model is better than that of the MLP model, but that the MLP model was found in

far less time and is less complex. The MLP model from the NCS10experiment is more complex than that of

the NCS70 experiment, but performs better.

AG70 NCS70

Parameters 52 23

Accuracy (MSE) 11.381018 17.657960

Time 12h 1s 69ms

Table 4.37: AG70 and NCS70 experimental results comparisonon the Ozone data set

In the next section, the SO4 data set as well as the results that were obtained from the experiments that were

conducted on it, are considered.

4.5 The SO4 data set

The SO4 data set (Xiang, 2001) is relatively small, with only 179 instances that contain data of deposits of

sulphate (SO4) over 48 neighbouring states and 179 sites in the US in 1990. The prediction objective is to

use the coordinates (latitude and longitude variables) to predict the amount of sulphate at that site. The target

variable (SO4) is an interval variable and this prediction problem can thus be classified as a regression problem.

There are 3 attributes as described in Table 4.38.

Attribute Description Attribute scale

Latitude Latitude coordinate of the SO4 site Interval

Longitude Longitude coordinate of the SO4 site Interval

Amount of sulphate at the site,

SO4 measured in grams per square meter Interval

Table 4.38: SO4 data set attributes

In the next section, the experiments, using GANNs on this data set, are considered.

4.5.1 GANN results

AG100 and AG70 experiments

The AutoGANN system was set to run for 12 hours for the AG100 and AG70 experiments on the SO4 data set.

With only two inputs, the problem has a small search space. Asa result, the AutoGANN system generated all

possible GANN models (35) in both the AG100 and the AG70 experiments. The best models that were found

102

Model selection Model selection

Experiment criterion criterion value Parameters Time

AG100 SBC -259.78 11 31s 73ms

AG70 VAVERR 0.267996 15 32s 50ms

Table 4.39: Best AG100 and AG70 GANN models on the SO4 data set

in these experiments are shown in Table 4.39 and the accuracies in terms of the MSE value are shown in Table

4.40.

Data set Accuracy

Experiment Data role size (MSE)

Training and

AG100 validation 179 0.180485

AG70 Validation 125 0.267996

Table 4.40: Best AG100 and AG70 GANN models’ accuracies on the SO4 data set

The GANN sub-architecture for each input of the best model that were found in the AG100 experiment is

shown in Table 4.41. From this table, it can be seen that both of the input variables were used in the best model

and that both had a nonlinear relationship with the target.

GANN

Input sub-architecture

Latitude 3

Longitude 3

Table 4.41: Best AG100 GANN model on the SO4 data set

Table 4.42 shows the GANN sub-architecture for each input ofthe best GANN model that was found in the

AG70 experiment. From this table, it can be seen that both of the input variables were used in the best model

and that both had a nonlinear relationship with the target.

GANN

Input sub-architecture

Latitude 4

Longitude 4

Table 4.42: Best AG70 GANN model on the SO4 data set

103

Both of the root nodes of the search trees for the AG100 and AG70 experiments were created by using the

intelligent start method. The root node of the AG100 experiment was ranked 18th out of the 35 models and

had an SBC value of -165.18. The GANN architecture of this model was [1,2]. The root node of the AG70

experiment was ranked 11th out of the 35 models and had a VAVERR of 0.241324. The GANN architecture of

this model was [1,3].

In the next section, the results from the GANN experiment that was conducted on the SO4 data set are

discussed.

Discussion of GANN results

The results show that the intelligent start method of the AutoGANN system created a good starting GANN

model in both of the GANN experiments. The time that was takento find the best models was also short, since

the search space contained only 35 models. The best GANN model that was found in the AG100 experiment is

more accurate than the one that was found in the AG70 experiment in terms of the MSE value. This model is

also less complex than the best model found in the AG70 experiment.

In the next section, the results from the MLP experiments areconsidered.

4.5.2 MLP results

NCS100, NCS70 and NCS10 experiments

The best MLP models that were found with the modified N2C2S algorithm are shown in Table 4.43. The

accuracies of these models are shown in Table 4.44. As seen inthis table, the accuracies differ significantly in

these three experiments.

Model selection Model selection Hidden

Experiment criterion criterion value neurons Parameters Time

NCS100 SBC -1 284.77 4 17 2s 03ms

NCS70 VAVERR 0.110612 1 5 1s 00ms

NCS10 VAVERR 0.064134 5 21 23s 94ms

Table 4.43: Best NCS100, NCS70 and NCS10 MLP models on the SO4 data set

In the next section, the BRUTE100, BRUTE70 and BRUTE10 experimental results are considered.

BRUTE100, BRUTE70 and BRUTE10 experiments

For these experiments, the brute force method was performedfrom an MLP with 1 hidden neuron to an MLP

with 15 hidden neurons. The time that was taken to complete the brute force experiments is shown in Table

4.45. The best MLP models that were found according to the SBC(BRUTE100) and VAVERR (BRUTE70 and

BRUTE10) values are shown in Table 4.46 and the accuracies ofthese MLP models are shown in Table 4.47.

104

Data set Accuracy

Experiment Data role size (MSE)

Training and

NCS100 validation 179 0.083514

NCS70 Validation 125 0.129118

NCS10 Validation 161 0.107660

Table 4.44: Best NCS100, NCS70 and NCS10 MLP models’ accuracies on the SO4 data set

Experiment Time

BRUTE100 8s 69ms

BRUTE70 7s 53ms

BRUTE10 1m 18s 80ms

Table 4.45: BRUTE100, BRUTE70 and BRUTE10 completion time on the SO4 data set

Model selection Model selection Hidden

Experiment criterion criterion value neurons Parameters

BRUTE100 SBC -1 287.82 3 13

BRUTE70 VAVERR 0.054677 4 17

BRUTE10 VAVERR 0.062345 5 21

Table 4.46: Best BRUTE100, BRUTE70 and BRUTE10 MLP models onthe SO4 data set

Data set Accuracy

Experiment Data role size (MSE)

Training and

BRUTE100 validation 179 0.092193

BRUTE70 Validation 125 0.092898

BRUTE10 Validation 161 0.107044

Table 4.47: Best BRUTE100, BRUTE70 and BRUTE10 MLP models’ accuracies on the SO4 data set

The full results of the BRUTE100, BRUTE70 and BRUTE10 experiments are shown in Appendix B. These

tables can be used as a baseline for the results of the NCS100,NCS70 and NCS10 experiments respectively.

The MLP experimental results on the SO4 data set are discussed in the next section.

Discussion of MLP results

The MLP models that were created in the NCS100, NCS70 and NCS10 experiments performed well when

compared to those created in the BRUTE100, BRUTE70 and BRUTE10 experiments. This indicate that the

modified N2C2S algorithm succeeded in creating good MLP models on this data set.

105

In the next section, the results from the GANN and MLP experiments are compared.

4.5.3 Comparison of MLP and GANN results

A comparison between the AG100 and the NCS100 experiments isshown in Table 4.48. The table shows that

the MLP model is more complex, but was found in a far shorter time than the GANN model. The MLP model

also performed better than the GANN model.

AG100 NCS100

Parameters 11 17

Accuracy (MSE) 0.180485 0.083514

Time 31s 73ms 2s 03ms

Table 4.48: AG100 and NCS100 experimental results comparison on the SO4 data set

A comparison between the AG70 and the NCS70 experiments is shown in Table 4.49. The table shows

that the accuracy of the MLP model is better, the model is lesscomplex and it was found in less time than the

GANN model.

AG70 NCS70

Parameters 15 5

Accuracy (MSE) 0.267996 0.129118

Time 32s50ms 1s

Table 4.49: AG70 and NCS70 experimental results comparisonon the SO4 data set

In the next section, the Spambase data set as well as the results that were obtained from the experiments

that had been conducted on it, are considered.

4.6 The Spambase data set

The Spambase data set (Frank and Asuncion, 2010) contains words and characters that were extracted from

either e-mails that were known to be spam or normal e-mails. Each instance in the Spambase data set represents

an e-mail and each instance is classified as spam or normal by theSpamattribute. Since the target (Spam) is

a binary variable, this can be regarded as a classification problem. The data set consists of 4601 instances and

have 58 attributes. The attributes are presented in Table 4.50.

106

Attribute Description Attribute scale

48 attributes that represent the frequency (percentage)

Word freq WORD with which a specificWORDoccurs in the e-mail Interval

6 attributes that represent the frequency (percentage)

Char freq CHAR with which a specificCHARoccurs in the e-mail Interval

The average length of an uninterrupted sequence of

Capital run length average capital letters Interval

The length of the longest uninterrupted sequence of

Capital run length longest capital letters Interval

Capital run length total The total number of capital letters Interval

Spam Classifies the instance as spam (1) or normal e-mail (0) Binary

Table 4.50: Spambase data set attributes

The results from the GANN experiments on this data set are considered next.

4.6.1 GANN results

AG100 and AG70 experiments

The AutoGANN system evaluated 1 203 and 1 728 different GANN architectures in the AG100 and AG70

experiments respectively. The results of the best models that were found in the AG100 and AG70 experiments

according to the model selection criteria are shown in Table4.51 and the accuracies of these models in terms

of events that were correctly classified are shown in Table 4.52.

Model selection Model selection

Experiment criterion criterion value Parameters Time

AG100 SBC -14 500.12 142 12h

AG70 VAVERR 0.166957 137 12h

Table 4.51: Best AG100 and AG70 GANN models on the Spambase data set

Data set False False True True Accuracy

Experiment Data role size positive negative positive negative (%)

Training and

AG100 validation 4 601 101 109 1 704 2 687 95.44

AG70 Validation 1 382 46 36 509 791 94.07

Table 4.52: Best AG100 and AG70 GANN models’ accuracies on the Spambase data set

107

The GANN architecture of the best model that was created in the AG100 experiment is shown in Table

4.53. From this table, it can be seen that 47 out of the 57 attributes were used in this model. From these, 10

input attributes were removed from the model, 30 input attributes had a linear relationship with the target and

17 input attributes had a nonlinear relationship with the target.

GANN GANN GANN

Input sub-architecture Input sub-architecture Input sub-architecture

Make 1 Credit 1 Pm 1

Address 0 Your 3 Direct 1

All 1 Font 1 Cs 1

Word 3d 1 Word 000 1 Meeting 3

Our 3 Money 3 Original 0

Over 1 Hp 3 Project 1

Remove 3 Hpl 0 Re 1

Internet 2 George 1 Edu 3

Order 1 Word 650 1 Table 0

Mail 0 Lab 1 Conference 1

Receive 1 Labs 0 Char 1 1

Will 2 Telnet 0 Char 2 1

People 1 Word 857 1 Char 3 0

Report 2 Data 1 Char 4 2

Addresses 1 Word 415 1 Char 5 3

Free 3 Word 85 1 Char 6 1

Business 1 Technology 3 Lengthaverage 3

Email 0 Word 1999 3 Lengthlongest 0

You 1 Parts 1 Lengthtotal 3

Table 4.53: Best AG100 GANN model on the Spambase data set

The architecture of the best GANN model from the AG70 experiment is shown in Table 4.54. From this

table, it can be seen that 40 out of the 57 attributes were usedin this model. From these, 17 input attributes were

removed from the model, 18 input attributes had a linear relationship with the target and 22 input attributes had

a nonlinear relationship with the target.

The root nodes of the search trees for the AG100 and the AG70 experiments were created by using the

intelligent start method. The root node of the AG100 experiment was ranked 1 184th out of the 1 203 models

and had an SBC value of -13 480.67. The GANN architecture of this model was

[0,0,0,0,2,0,1,1,0,0,0,1,0,0,0,2,0,0,0,0,2,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,2,0,0,0,0,0,3,2,0,2,0,2].

108

GANN GANN GANN

Input sub-architecture Input sub-architecture Input sub-architecture

Make 3 Credit 1 Pm 1

Address 1 Your 1 Direct 0

All 1 Font 2 Cs 0

Word 3d 1 Word 000 3 Meeting 2

Our 2 Money 2 Original 1

Over 3 Hp 2 Project 0

Remove 1 Hpl 1 Re 3

Internet 1 George 1 Edu 5

Order 0 Word 650 0 Table 0

Mail 1 Lab 1 Conference 2

Receive 0 Labs 0 Char 1 1

Will 3 Telnet 1 Char 2 2

People 3 Word 857 0 Char 3 0

Report 1 Data 2 Char 4 2

Addresses 0 Word 415 0 Char 5 2

Free 3 Word 85 0 Char 6 1

Business 0 Technology 2 Lengthaverage 0

Email 0 Word 1999 3 Lengthlongest 2

You 1 Parts 0 Lengthtotal 2

Table 4.54: Best AG70 GANN model on the Spambase data set

The root node of the AG70 experiment was ranked 1 694th out of the 1 728 models and had a VAVERR

value of 0.263859. The GANN architecture of this model was

[2,0,0,0,2,2,1,1,0,0,0,2,2,0,0,3,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,0,2,0,0,2,2,0,0,0,0,2,0,0,3,5,0,2,1,2,0,3,2,0,0,2,2].

In the next section, the results from the GANN experiment that were conducted on the Spambase data set

are discussed.

Discussion of GANN results

The AG70 experiment’s best model, with 137 parameters, is less complex than the AG100 experiment’s model

with 142 parameters and the accuracies of these two models differ with less than two percent, with 95.44% for

the AG100 experiment’s model and 94.07% for the AG70 experiment’s model. However, it can be assumed

that it is more important not to classify a normal e-mail as spam and, as a result, the classification accuracy

of non-events (normal e-mails) must be taken into account. The predictive accuracy of non-events is shown in

109

(4.3) and (4.4).

Predictive accuracy of non-events (AG100)=
2 687

2 687+109
= 96.10%. (4.3)

Predictive accuracy of non-events (AG70)=
791

791+36
= 95.64%. (4.4)

In the next section, the MLP experimental results are considered.

4.6.2 MLP results

NCS100, NCS70 and NCS10 experiments

The best MLP models that were found with the modified N2C2S algorithm in the NCS100, NCS70 and NCS10

experiments are shown in Table 4.55.

Model selection Model selection Hidden

Experiment criterion criterion value neurons Parameters Time

NCS100 SBC -59 708.79 8 473 5m 53s 61ms

NCS70 VAVERR 0.202062 2 119 49s 70ms

NCS10 VAVERR 0.197001 2 119 9m 34s 94ms

Table 4.55: Best NCS100, NCS70 and NCS10 MLP models on the Spambase data set

The accuracies of these models are shown in Table 4.56. As seen in this table, the accuracy of the best

model that was found in the NCS100 experiment is very high, which may be the result of overfitting.

Data set False False True True Accuracy

Experiment Data role size positive negative positive negative (%)

Training and

NCS100 validation 4 601 11 16 1 797 2 777 99.41

NCS70 Validation 1 380 34 60 467 819 93.19

NCS10 Validation 460 13 17 164 266 93.49

Table 4.56: Best NCS100, NCS70 and NCS10 MLP models’ accuracies on the Spambase data set

In the next section, the BRUTE100, BRUTE70 and BRUTE10 experimental results are considered.

BRUTE100, BRUTE70 and BRUTE10 experiments

For these experiments, the brute force method was performedfrom an MLP with 1 hidden neuron to an MLP

with 30 hidden neurons. The time that was taken to complete the brute force experiments is shown in Table

4.57.

110

Experiment Time

BRUTE100 2h 0m 8s 41ms

BRUTE70 1h 16m 13s 59ms

BRUTE10 21h 13m 51s 75ms

Table 4.57: BRUTE100, BRUTE70 and BRUTE10 completion time on the Spambase data set

The best MLP models that was found according to the SBC (BRUTE100) and VAVERR (BRUTE70 and

BRUTE10) values are shown in Table 4.58. The accuracies of these MLP models are shown in Table 4.59.

Model selection Model selection Hidden

Experiment criterion criterion values neurons Parameters

BRUTE100 SBC -59 347.61 8 273

BRUTE70 VAVERR 0.190246 2 119

BRUTE10 VAVERR 0.198754 1 60

Table 4.58: Best BRUTE100, BRUTE70 and BRUTE10 MLP models onthe Spambase data set

Data set False False True True Accuracy

Experiment Data role size positive negative positive negative (%)

Training and

BRUTE100 validation 4 601 10 16 1 797 2 778 99.43

BRUTE70 Validation 1 380 24 63 524 769 93.70

BRUTE10 Validation 460 16 14 168 262 93.44

Table 4.59: Best BRUTE100, BRUTE70 andBRUTE10 MLP models accuracies on the Spambase data set

The full results of the BRUTE100, BRUTE70 and BRUTE10 experiments are shown in Appendix B. In the

next section, the MLP experimental results are discussed.

Discussion of MLP results

When the best models that were found in the NCS100, NCS70 and NCS10 experiments are compared to the

base line brute force method experiments, it can be seen thatthe modified N2C2S algorithm performed well by

finding good MLP models. The high accuracy and high complexity of the model that was found in the NCS100

experiment may, however, indicate that this model has overfitted.

The accuracy of predicting a normal e-mail correctly is moreimportant, as was discussed earlier. This

normal e-mail classification accuracy for experiments NCS100, NCS70 and NCS10 are shown in (4.5), (4.6)

and (4.7) respectively.

111

Predictive accuracy of non-events (NCS100)=
2 777

2 777+16
= 99.44%. (4.5)

Predictive accuracy of non-events (NCS70)=
819

819+60
= 93.17%. (4.6)

Predictive accuracy of non-events (NCS10)=
266

266+17
= 93.99%. (4.7)

In the next section, the results that were obtained from the MLP and GANN experiments that had been con-

ducted on the Spambase data set are considered.

4.6.3 Comparison of MLP and GANN results

The comparison between the AG100 and the NCS100 experimentsis shown in Table 4.60. The table shows

that the MLP model is much more complex, but was found in a muchshorter time than the GANN model. The

MLP model also performs much better than the GANN model.

AG100 NCS100

Parameters 142 473

Accuracy (%) 95.44 99.41

Time 12h 5m 53s 61ms

Table 4.60: AG100 and NCS100 experimental results comparison on the Spambase data set

The comparison between the AG70 and the NCS70 experiments isshown in Table 4.61. The table shows

that the accuracy of the GANN model is better than that of the MLP model, but is more complex and took much

longer to find. The accuracy of predicting normal e-mail correctly is shown in Table 4.62. As can be seen in

this table, the NCS100 experiment’s model almost has a perfect score, but this, as mentioned earlier, may be a

result of overfitting. The AG70 experiment’s model performed better than the best models of the NCS70 and

NCS10 experiments.

AG70 NCS70

Parameters 137 119

Accuracy (%) 94.07 93.19

Time 12h 49s 70ms

Table 4.61: AG70 and NCS70 experimental results comparisonon the Spambase data set

112

Experiment Accuracy (%)

AG100 96.10

NCS100 99.44

AG70 95.64

NCS70 93.17

NCS10 93.99

Table 4.62: Normal e-mail prediction accuracies comparison on the Spambase data set

In the next section, conclusions to this chapter is presented.

4.7 Conclusion

In this chapter, eight different experiments were defined and named. All eight experiments were conducted on

each of the five data sets (Adult data set, Boston Housing dataset, Ozone data set, SO4 data set and Spambase

data set). From the eight experiments, two were experimentsthat were conducted with GANN models (one

experiment used in-sample model selection and the other oneutilized out-of-sample model selection) and the

remaining six experiments were conducted by using MLP models (one experiment utilized in-sample model

selection, two experiments used out-of-sample model selection and the remaining three experiments were con-

ducted by using a brute force method with no model selection technique). The AutoGANN system and the

MLP construction program were utilized to construct the GANN and MLP models respectively.

A higher level comparison between MLPs and GANNs with regardto accuracy, complexity, comprehensi-

bility, ease of construction, and utility is given in the next chapter.

113

“Statistics: The only science that enables different experts using the same

figures to draw different conclusions.”

Evan Esar

5
Comparative discussion on MLPs and GANNs

A literature study on multilayer perceptrons (MLPs) and generalized additive neural networks (GANNs) has

been conducted in Chapters 2 and 3 respectively and results have been obtained from the experiments that were

performed on five publicly available data sets with each of these neural networks, as discussed in Chapter 4. It

is now possible to compare MLPs with GANNs in terms of predictive accuracy (Section 5.1), model complexity

(Section 5.2), comprehensibility (Section 5.3), ease of construction (Section 5.4), and utility (Section 5.5). A

conclusion to this chapter is presented in Section 5.6.

5.1 Predictive accuracy

To compare the predictive accuracies of the MLPs and GANNs, the experiments that were conducted on each

data set can be divided into two groups: First, the experiments that were performed where in-sample model

selection was utilized (the full data set was used for training and validation) with the AG100 and NCS100

experiments. Second, those experiments that were performed with out-of-sample model selection (hold-out

and 10-fold cross-validation) with the AG70, NCS70 and NCS10 experiments. For the experiments that were

performed with in-sample model selection, the SBC value wasused as the model selection criterion, while the

average validation error (VAVERR) value was used as model selection criterion for the experiments that were

performed with out-of-sample model selection. To gain further insight into the best model that was selected for

the classification problems, the events classification information (percentage correct event prediction) was also

considered. The best models that were found for regression tasks are presented in terms of the mean squared

error (MSE).

114

In Table 5.1 the accuracy results that were obtained by the best MLP models that had been constructed, are

summarized. The accuracy results that were obtained by the best GANN models that had been constructed, are

summarized in Table 5.2. Table 5.3 shows the best models thatwere built in terms of accuracy when in-sample

model selection and out-of-sample model selection were performed on the five data sets. This table is obtained

by comparing Tables 5.1 and 5.2.

In-sample model Out-of-sample model Out-of-sample model selection

MLPs selection selection (cross-validation) (10-fold cross-validation)

Adult (%) 85.24 85.66 85.56

Boston Housing (MSE) 5.709240 16.291630 11.843650

Ozone (MSE) 10.391040 17.657960 14.357012

SO4 (MSE) 0.083514 0.129118 0.107660

Spambase (%) 99.41 93.19 93.49

Table 5.1: Accuracy of the best MLP models that were obtained

In-sample model Out-of-sample model Out-of-sample model selection

GANNs selection selection (cross-validation) (10-fold cross-validation)

Adult (%) 85.79 85.76 n/a

Boston Housing (MSE) 9.659861 11.423594 n/a

Ozone (MSE) 11.276206 11.381018 n/a

SO4 (MSE) 0.180485 0.267996 n/a

Spambase (%) 95.44 94.07 n/a

Table 5.2: Accuracy of the best GANN models that were obtained

GANNs vs In-sample model Out-of-sample model

MLPs selection selection (cross-validation)

Adult GANN GANN

Boston Housing MLP GANN

Ozone MLP GANN

SO4 MLP MLP

Spambase MLP GANN

Table 5.3: Best models that were obtained in terms of accuracy

For the two classification tasks (Adult data set and Spambasedata set), the accuracies are reported in terms

of percentage events that were predicted correctly. The accuracies of the three regression tasks (Boston Housing

115

data set, Ozone data set and SO4 data set) are presented in terms of the MSE. With in-sample model selection,

both types of neural networks performed well on the Adult data set, Ozone data set and the Spambase data set.

When in-sample model selection was performed (Table 5.3), the MLPs outperformed the GANNs in terms of

predictive accuracy in four of the five data sets (Boston Housing data set, Ozone data set, SO4 data set and

Spambase data set). Note that the accuracy of the MLP model onthe Spambase data set that was created by

using in-sample model selection is very high (99.41%). Thismay be as a result of overfitting.

When out-of-sample model selection (hold-out cross-validation) was performed, the GANNs performed

better than the MLPs in four of the five data sets (Adult data set, Boston Housing data set, Ozone data set

and Spambase data set), as can be seen in Table 5.3. The last column of Table 5.1 shows the results that were

obtained by 10-fold cross-validation that was performed onthe MLPs. These results are more stable when

compared to the hold-out cross-validation method, as the latter is based on a single sample that was taken from

the data. Unfortunately, 10-fold cross-validation was notimplemented in the AutoGANN system, making a

comparison infeasible. Four of the five MLP results (Boston Housing data set, Ozone data set, SO4 data set and

Spambase data set) showed that the models that had been created with in-sample model selection were more

accurate than those that had been created by using out-of-sample model selection (hold-out cross-validation and

10-fold cross-validation). The same observation was made with the GANN experiments, where the in-sample

model selection models performed better than the out-of-sample model selection models in all five data sets.

This may also be as a result of overfitting.

It is clear from Table 5.3 that no single type of neural network always outperforms the other in terms of

predictive accuracy. This would suggest that the type of neural network model that is used, is highly dependent

on the problem.

In their simplest form, additive models (GANNs) are unable to model interactions (De Waal and Du Toit,

2011). A possible remedy is to add explicit interaction terms or variables to the set of independent variables.

These interaction variables are then treated as normal variables and the model is estimated in the usual manner.

Also, since the interactions have been made explicit, the contribution of the interaction terms can be analyzed

by using partial residual plots. This would give added insight into the model, which is not possible with an

MLP model, as the interactions in the MLP are intertwined with the contributions of the inputs. Interactions

could have an influence on the accuracy and should be further investigated.

Sometimes, the modified N2C2S algorithm may overfit the data,which suggests that further research into

this matter should be conducted. Since the SBC model selection criterion was utilized for in-sample model

selection, experiments with other types of criteria shouldalso be performed to determine if this choice of

criterion caused the model to overfit.

When choosing between GANN and MLP models, the following guidelines can now be given, following

the accuracy results of the models:

• MLP models may perform better than GANN models in terms of accuracy when in-sample model se-

lection with the SBC criterion is used and may thus be suggested for problems where in-sample model

selection is used.

116

• GANN models may perform better than MLP models in terms of accuracy when out-of-sample model

selection with the average validation error is used and may thus be suggested for problems where out-of-

sample model selection is used.

In the next section, the complexity of these models will be considered.

5.2 Model complexity

Model complexity, as discussed in Section 3.5.2, has a direct affect upon the generalization capability of a

model. The former is controlled by both the modified N2C2S algorithm for MLPs and the automated construc-

tion algorithm for GANNs by means of an in-sample model selection criterion when in-sample model selection

is performed and cross-validation when out-of-sample model selection is done. To determine the appropriate

level of complexity, the principle of parsimony is followedby both algorithms.

Model complexity is measured by the number of parameters of the model (degrees of freedom). Tables 5.4

and 5.5 show the number of parameters of the best MLP and GANN models that were constructed respectively.

Zhang et al. (1998) describes a rule-of-thumb, stating thatat least 10 records are needed to estimate each pa-

rameter in a model accurately. For the in-sample model selection experiments (where the full data sets were

used for training and validation), this heuristic gives a maximum of 4522 parameters for the Adult problem (the

data set has 45 222 records), 51 parameters for the Boston Housing problem (the data set has 506 records), 33

parameters for the Ozone problem (the data set has 330 records), 18 parameters for the SO4 problem (the data

set has 179 records) and 460 parameters for the Spambase problem (the data set has 4 601 records). For the

experiments where the hold-out method was used (70% of the data set for training and 30% for validation), the

rule-of-thumb gives a maximum of 3 166 parameters for the Adult data set (the training data set has 31 656

records), 35 parameters for the Boston Housing data set (thetraining data set has 354 records), 23 parameters

for the Ozone data set (the training data set has 231 records), 13 parameters for the SO4 data set (the training

data set has 125 records) and 322 parameters for the Spambaseproblem (the data set has 3 221 records). Fi-

nally, for the experiments where 10-fold cross-validationwere used (for each fold, 90% of the data set is used

for training and 10% for validation), the heuristic gives a maximum of 4 070 parameters for the Adult data set

(for each fold the training data set has 40 700 records), 46 parameters for the Boston Housing problem (the

data set has 455 records), 30 parameters for the Ozone problem (the data set has 297 records), 16 parameters

for the SO4 problem (the data set has 161 records) and 414 parameters forthe Spambase problem (the data set

has 4 141 records). In Tables 5.4 and 5.5 all models are withinthese bounds, except those that are marked with

*, which may indicate models that are too complex.

When the total number of parameters of the in-sample model selection experiments are considered (Tables

5.4 and 5.5), it clearly shows that GANNs are less complex with 250 parameters, compared to the 601 pa-

rameters of the MLPs. However, the MLP from the NCS100 experiment on the Spambase data set has a very

large number of parameters (473). This may indicate overfitting, since as discussed earlier, the accuracy of this

model is very high (99.41%). The total number of parameters in the out-of-sample model selection experiments

117

show that MLPs are slightly less complex than GANNs in these experiments.

In-sample model Out-of-sample model Out-of-sample model selection

MLPs selection selection (cross-validation) (10-fold cross-validation)

Adult 31 76 91

Boston Housing 46 61* 46

Ozone 34* 23 34*

SO4 17 5 21*

Spambase 473* 119 119

Total 601 284 311

Table 5.4: Number of parameters of best MLP models that were obtained

In-sample model Out-of-sample model Out-of-sample model selection

GANNs selection selection (cross-validation) (10-fold cross-validation)

Adult 36 45 n/a

Boston Housing 38 53* n/a

Ozone 23 52* n/a

SO4 11 15* n/a

Spambase 142 137 n/a

Total 250 302 n/a

Table 5.5: Number of parameters of best GANN models that wereobtained

In general, the GANN models that were selected by the automated construction algorithm may be more

parsimonious, as it allows finer control over the number of parameters in the model than is possible with an

MLP (De Waal and Du Toit, 2011). With an MLP, all the inputs areconnected to all the neurons in the hidden

layer. For example, if the given problem has 7 inputs, the hidden layer has 10 neurons and the output layer has

1 neuron, the number of parameters increase or decrease in multiples of 9 when a neuron is added or removed

from the hidden layer (7 inputs connected to the neuron, a bias and a connection to the output layer). The best

MLP model may be a model with a different number of parametersfrom those that are described above.

From the discussion on the complexity of the models, the following guidelines can now be given when

choosing between GANN and MLP models:

• When in-sample model selection with the SBC criterion is performed, GANN models may tend to be less

complex than MLP models.

• When out-of-sample model selection with the average validation error criterion is performed, MLP mod-

els may tend to be slightly less complex.

In the next section, the comprehensibility of the constructed models is discussed.

118

5.3 Comprehensibility

In many real-world problems, the need to interpret the results by understanding the relationships between input

attributes and the target is just as important as the predictive accuracy of the model. MLP models are considered

to be black boxes, as results that are obtained by these models are difficult to interpret. On the other hand,

GANN models were developed, in part, to overcome this problem that MLPs have. Results from GANNs can

be interpreted with partial residual plots which show the relationship between inputs and the target. It can thus

be suggested that GANN models should be used with problems where the understanding of the relationships

between input attributes and the target is important.

In the next section, the ease with which the models can be constructed is considered.

5.4 Ease of construction

Another important feature that must be considered when comparing GANNs and MLPs is the relative ease with

which the models are built. In this study, the AutoGANN system was used to construct the GANN models

and an implementation of the modified N2C2S algorithm was used to build MLP models. Both programs were

implemented in the SASR© Macro Language. Before search commences, only a few parameters must be set.

Both the systems then search automatically for the best model, without the need for input from the user while

the search is taking place.

Constructing GANNs with the AutoGANN system is much easier,since it has a user-friendly graphical

interface. The MLP construction program does not have a graphical user interface and it is required of the user

to change the settings directly in the code of the program.

With the AutoGANN system, the time that is allowed to search for a good GANN model must be set

beforehand. Unfortunately, there is no guideline on how long it will take the system to find such a good GANN

model and as a result, a relatively long time is usually chosen (12 hours in this study). In contrast, as the

results that were obtained in Chapter 4 indicate, the time that is taken to search for a good MLP model with the

modified N2C2S algorithm is sometimes far less than the time that is needed to find a good GANN model.

In the next section, the usefulness of these two types of neural networks and the programs that are used to

create them are discussed.

5.5 Utility

Both of these types of neural networks are applicable to predictive problems and are relatively easy to use.

In both the cases of MLPs and GANNs, the problem lies in selecting the best neural network architecture

for the problem at hand. The AutoGANN system that was used to search for the best GANN model is very

advanced and incorporates many heuristic features that decreases the time it takes to find the best GANN model.

The automated construction algorithm, implemented in the AutoGANN system, consists of a complete search

strategy. Consequently, if not stopped by a time limit, the automated construction algorithm will search through

119

all possible models in the search space.

The MLP model selection program that was developed for this study may find good MLP models faster

than the AutoGANN system can find good GANN models, as shown inChapter 4.

Both of these construction programs were developed in the SAS R© Macro Language. The AutoGANN

system is implemented as a model node in the SASR© Enterprise MinerTM package. Since both the AutoGANN

system and the MLP construction program are developed in SASR© , they both require a SASR© software

licence. This can be problematic, since SASR© software is relatively expensive.

In the next section, a conclusion to this chapter is presented.

5.6 Conclusion

In this chapter the results that were obtained with MLPs and GANNs on the five chosen data sets (Chapter 4)

and the programs that were used to create the MLP and GANN models were compared with regard to predictive

accuracy, model complexity, comprehensibility, ease of construction, and utility.

In the next and final chapter, the conclusion of this study is presented.

120

“Insanity: doing the same thing over and over again and expecting different

results.”

Albert Einstein

6
Conclusion

The purpose of this study was to investigate and compare GANNand MLP models as prediction techniques.

Since theory provides little guidance on the selection of the appropriate architecture a priori and the architec-

tures of artificial neural networks may differ for each different data set, a search had to be performed to find a

good model for a specific data set. As a result, an automated construction algorithm for GANNs, implemented

by the AutoGANN system, was used to search for good GANN models while a modified version of the N2C2S

algorithm, implemented by a custom-built program, was usedto search for good MLP models. These two

systems were also investigated and compared.

In this chapter, a summary of findings is presented in Section6.1. Section 6.2 focuses on a summary of

the contributions of this study and suggestions for future work are presented in Section 6.3. The chapter is

concluded in Section 6.4.

6.1 Summary of findings

The following discoveries were made in this study:

• Predictive accuracy: When in-sample model selection is performed with the SBC model selection cri-

terion, the MLP models seem to be more accurate than GANN models. When out-of-sample model

selection is done with the average validation error model selection criterion, GANN models, on the other

hand, seem to be more accurate than MLP models. Overall, no single type of neural network always

outperforms the other in terms of predictive accuracy. Thismay suggest that the type of neural network

121

model that was used is highly dependent on the problem.

• Complexity: Overall, MLP and GANN models seem to be very similar in complexity, with the exception

of the in-sample model selection experiment on the Spambasedata set. In this experiment, the modified

N2C2S algorithm selected a much more complex MLP model. Although very similar in complexity,

there were, however, slight differences which may suggest that GANN models are less complex than

MLP models when in-sample model selection is used and when out-of-sample model selection is used,

MLP models seem to be the lesser complex model.

• Comprehensibility: The MLP models are considered to be black boxes in terms of understandability

and interpretability, but the GANN models overcome this problem with the use of partial residual plots,

which show the relationships between input attributes and the target graphically. As a result, the use of

GANN models may be suggested when understanding of the relationships between input attributes and

the target is important.

• Ease of construction: Both programs that were used to searchfor a good GANN and MLP model re-

spectively make it easy to construct the model, but the AutoGANN system is far more advanced and

offers a graphical user interface, whereas the MLP construction program does not. This makes it easy

for the AutoGANN user to change the settings and select the appropriate experiment, whereas the MLP

construction program user would have to do this in the code itself.

The AutoGANN system, however, has one difficulty. There is noguideline to help in the selection of the

time that is needed to find a good GANN model. The system will thus continue to search for a better

GANN model until a specified time has passed or the search space has been exhausted. The modified

N2C2S algorithm that was implemented in the MLP construction program, on the other hand, will stop

as soon as a good MLP model (according to the model selection criterion) has been found.

• Utility: Both the MLP and GANN models are applicable to prediction problems and are relatively easy

to use. Moreover, the AutoGANN system and the MLP construction program that were used in this study

were very useful in finding a good model, since both programs search automatically for a good model by

using a model selection criterion. Search commences after initial parameters have been set by the user.

These programs may, however, be expensive to obtain, since both require the SASR© software which is

relatively expensive.

6.2 Summary of contributions

The following contributions were made by this study:

• The study provides a literature study on MLP and GANN models.

• A program was developed in the SASR© Macro Language to search for a good MLP model on the Adult,

Boston Housing, Ozone, SO4 and Spambase data sets. This program incorporated a modifiedversion of

122

the N2C2S algorithm and a brute force method.

• Experimental results were obtained from various experiments that were conducted by using MLP and

GANN models on the five data sets with the AutoGANN system and the custom-built MLP construction

program.

• The results were analyzed and conclusions were drawn, whichresulted in useful information about the

performance of MLP and GANN models as well as information about the construction of MLP and

GANN models. This information that was gained, resulted in some guidelines that can be used when

choosing between an MLP and a GANN model.

6.3 Suggestions for future work

For future work, to gain more insight, more experiments are suggested on different data sets by using MLP and

GANN models. In order to understand the differences and similarities between these two models better, the

data sets that are chosen should also include regression tasks as well as classification tasks. The size of these

data sets in terms of records and dimensionality should alsovary from very small to very large data sets.

Additional research should be performed on the improvementof the modified N2C2S search algorithm to

ensure that a good MLP model is found each time, without overfitting the data. The original N2C2S algorithm

has measures that are incorporated to curb the overfitting effect.

Since the GANN architecture allows for the removal of unimportant input attributes from the model, re-

search should be performed on the incorporation of a method for removing unimportant input attributes from

the MLP models in order to reduce the complexity of MLP models.

Additive models (GANNs) in their simplest form are unable tomodel interactions (De Waal and Du Toit,

2011). Further research should be conducted on the use of explicit interaction terms or variables to give added

insight into the model.

6.4 Conclusion

The objectives of this study were to investigate MLP and GANNmodels and to compare these two models by

performing a number of experiments with them. The experimental results were then used to draw meaningful

conclusions regarding these two models. These objectives have been reached by conducting a literature study

on MLPs (Chapter 2) and GANNs (Chapter 3), performing experiments (Chapter 4) by using the AutoGANN

system and a custom-built MLP program (Appendix A), and reaching significant conclusions that resulted in

some guidelines for choosing the appropriate model (MLP or GANN) for a specific experiment (Chapter 5).

123

“Computers are famous for being able to do complicated things starting from

simple programs.”

Seth Lloyd

A
MLP construction program code

Note that the following program code has been edited for printing purposes. Lines that begin with * are for

comment purposes only.

options nosource nonotes nodate;

options pagesize=32767 mvarsize=max;

ods listing close;

*List of global variables used in the program

%global ac1 ac2 activation algorithm;

%global catalog count count2 criterion;

%global data set DataSelection Dir dset;

%global err errorfunc extype;

%global flag flag2;

%global hidnodes hMax;

%global i inputs inputclass inputvar;

%global k;

%global Library;

%global netoption nobs nomvar nvars;

%global params prelim;

%global r2 records;

%global scorerecords SplitTrain SplitVal;

124

%global target targetype time ttime tdelay;

%global u_aic u_ase u_correct u_correctperc u_sbc u_sse;

*Main program macro

%macro main;

/*.............................USER SETTINGS........*/

/*...*/

*data set Selection: Adult,House,Ozone,SO4,Spam;

%let DataSelection = SO4;

*Specify the directory of the data set;

%let Dir = ’C:MLP Research’;

*Number of K-Fold cross-validation to be used;

*(1 = user defined split, 0 = complete data set for training an d scoring)

%let k = 10;

*Split size of training data set;

%let SplitTrain = 70;

*Split size of testing data set;

%let SplitVal = 30;

*Number of preliminary runs for random weight selection

%let prelim = 10;

*The netoptions to be used (like/dev);

%let netoption = dev;

*Criterion for selecting best model: AIC/SBC/VAVERR (when hidnodes = 0);

%let criterion = SBC;

*0 = use the search algorithm, >0 use the selected amount of hi dden nodes

%let hidnodes = 1;

*Max number of nodes in the hidden layer;

%let hMax = 15;

/*...*/

/*...*/

*Run the settime macro;

%settime;

*Set experiment type for results file name;

%let extype = &k._&hidnodes._&hMax;

*Information about the Adult data set;

%if &DataSelection = Adult %then %do;

125

libname Adult &Dir;

%let Library = Adult;

%let catalog = &Library..catalog;

%let data set = &Library..adult;

%let inputclass = workclass marital_status occupation

relationship race gender native_country;

%let inputvar = age fnlwgt educational_num

capital_gain capital_loss hours_per_week;

%let target = status;

%let activation = Mlogistic;

%let errorfunc = mbe;

%let targetype = nom;

%let nomvar = 1;

*Creates the Adult data catalog;

proc dmdb batch data=&data set dmdbcat=&catalog;

class &inputclass &target(DESC);

var &inputvar;

run;

%end;

*Information about the House data set;

%else %if &DataSelection = House %then %do;

libname House &Dir;

%let Library = House;

%let catalog = &Library..catalog;

%let data set = &Library..Housing;

%let inputclass = CHAS;

%let inputvar = CRIM ZN INDUS NOX RM AGE DIS RAD TAX PTRAT B LSTAT;

%let target = MEDV;

%let activation = exp;

%let errorfunc = poisson;

%let targetype = int;

%let nomvar = 1;

*Creates the House data catalog;

proc dmdb batch data=&data set dmdbcat=&catalog;

class &inputclass;

var &inputvar ⌖

run;

%end;

*Information about the Ozone data set;

%else %if &DataSelection = Ozone %then %do;

126

libname Ozone &Dir;

%let Library = Ozone;

%let catalog = &Library..catalog;

%let data set = &Library..Ozone;

%let inputs = VH Wind Humid Temp Ibh dpg Ibt Vis Doy;

%let target = Ozone;

%let activation = exp;

%let errorfunc = poisson;

%let targetype = int;

%let nomvar = 0;

*Creates the Ozone data catalog;

proc dmdb batch data=&data set dmdbcat=&catalog;

var &inputs ⌖

run;

%end;

*Information about the SO4 data set;

%else %if &DataSelection = SO4 %then %do;

libname So4 &Dir;

%let Library = So4;

%let catalog = &Library..catalog;

%let data set = &Library..So4;

%let inputs = latitude longitude;

%let target = so4;

%let activation = exp;

%let errorfunc = poisson;

%let targetype = int;

%let nomvar = 0;

*Creates the SO4 data catalog;

proc dmdb batch data=&data set dmdbcat=&catalog;

var &inputs ⌖

run;

%end;

*Information about the Spam data set;

%else %if &DataSelection = Spam %then %do;

libname Spam &Dir;

%let Library = Spam;

%let catalog = &Library..catalog;

%let data set = &Library..spambase;

%let inputs = make address all word_3d our over

remove internet order mail;

127

%let inputs = &inputs receive will people

report addresses free business email;

%let inputs = &inputs you credit your font

word_000 money hp hpl george word_650;

%let inputs = &inputs lab labs telnet word_857

data word_415 word_85 technology;

%let inputs = &inputs word_1999 parts pm direct

cs meeting original project re edu;

%let inputs = &inputs table conference char_1

char_2 char_3 char_4 char_5 char_6;

%let inputs = &inputs length_average

length_longest length_total;

%let target = SPAM;

%let activation = Mlogistic;

%let errorfunc = mbe;

%let targetype = nom;

%let nomvar = 0;

*Creates the Spam data catalog;

proc dmdb batch data=&data set dmdbcat=&catalog;

var &inputs;

class &target(DESC);

run;

%end;

*Displays the options selected by the user;

%put *** *****************;

%put ;

%put &DataSelection data set selected;

%if &hidnodes = 0 %then %do;

%put Using search algorithm with &criterion as the search cr iterion;

%put Max number of nodes = &hMax;

%end;

%else %do;

%put Training neural network with &hidnodes to &hMax nodes;

%end;

%if &k = 0 %then %do;

%put 100% of data set to be used for training;

%end;

%else %if &k = 1 %then %do;

%put &SplitTrain / &SplitVal split for training/testing;

%end;

128

%else %if &k > 1 %then %do;

%put &k Fold cross-validation are selected;

%end;

%put &prelim Preliminary runs are selected;

%put Netoptions set to &netoption;

%put ;

%put *** *****************;

%if &hidnodes = 0 %then %do;

*Variables used in the algorithm;

%let flag = 0;

%let flag2 = 0;

%let count = 1;

*Run the CreateTables macro;

%CreateTables;

%put Step 1;

*Begin the algorithm by creating a neural network;

*with random starting weights (repeated K times);

%do i = 0 %to &k-1;

*Run the RandomNeural macro;

%RandomNeural;

%put Step 2;

%put %sysevalf(&i + 1)/&k.Fold;

*Run the TotalTable macro;

%TotalTable;

*Run the average macro;

%average;

*Run the TotalAverageTable macro;

%TotalAverageTable;

%end;

*Repeat the loop until the algorithm has finished;

%do %until (&flag);

%if ˜(&flag2) %then %do;

*Add an extra node to the hidden layer;

%let count = %eval(&count + 1);

%put Step 3;

129

%end;

*Repeat K times;

%do i = 0 %to &k-1;

%if (&flag2) %then %do;

%put Step 5b (&count nodes);

*Run the RandomNeural macro;

%RandomNeural;

%end;

%else %do;

%put Step 4 (&count nodes);

*Run the InestNeural macro;

%InestNeural;

%end;

%put %sysevalf(&i + 1)/&k.Fold;

*Run the TotalTable macro;

%TotalTable;

%end;

*Run the average macro;

%average;

%if (&flag) %then %do;

%if &criterion = SBC %then %do;

*Get the SBC value (ac1 stays the same);

proc sql;

SELECT User_SBC INTO :ac2 FROM

&Library..TempValidateResults2

WHERE NODES = &count;

QUIT;

%end;

%else %if &criterion = AIC %then %do;

*Get the AIC value (ac1 stays the same);

proc sql;

SELECT User_AIC INTO :ac2 FROM

&Library..TempValidateResults2

WHERE NODES = &count;

QUIT;

%end;

%else %if &criterion = VAVERR %then %do;

*Get the VAVERR value (ac1 stays the same);

proc sql;

130

SELECT Validate_VAVERR INTO :ac2 FROM

&Library..TempValidateResults2

WHERE NODES = &count;

QUIT;

%end;

%end;

%else %do;

%let num = %eval(&count-1);

%if &criterion = SBC %then %do;

*Get the SBC value for ac1 and ac2;

proc sql;

SELECT User_SBC INTO :ac1 FROM

&Library..TempValidateResults3

WHERE NODES = #

SELECT User_SBC INTO :ac2 FROM

&Library..TempValidateResults2

WHERE NODES = &count;

QUIT;

%end;

%else %if &criterion = AIC %then %do;

*Get the AIC value for ac1 and ac2;

proc sql;

SELECT User_AIC INTO :ac1 FROM

&Library..TempValidateResults3

WHERE NODES = #

SELECT User_AIC INTO :ac2 FROM

&Library..TempValidateResults2

WHERE NODES = &count;

QUIT;

%end;

%else %if &criterion = VAVERR %then %do;

*Get the VAVERR value for ac1 and ac2;

proc sql;

SELECT Validate_VAVERR INTO :ac1 FROM

&Library..TempValidateResults3

WHERE NODES = #

SELECT Validate_VAVERR INTO :ac2 FROM

&Library..TempValidateResults2

WHERE NODES = &count;

QUIT;

%end;

%end;

131

%put &ac2 < &ac1 ;

*Evaluate the VAVERR from the current and the previous MLP cr eated;

%if %sysevalf(%sysevalf(&ac2) > %sysevalf(&ac1)) %then % do;

%put False;

%if (&flag2) %then %do;

*Stop the algorithm if new MLP with random weights;

*is worse than the previous MLP;

%let flag = 1;

%put Step 6 (Terminate Program);

%end;

*Run MLP with random weights;

%else %do;

%put Step 5b (New MLP with &count nodes and

random weights);

%let flag2 = 1;

%end;

%end;

%else %do;

%put True;

*Run MLP with an extra hidden node;

%put Step 5a (New Neural Network with &count + 1 nodes

and initial weights set to previous values);

*Run the TotalAverageTable macro;

%TotalAverageTable;

%let flag2 = 0;

%let ac1 = &ac2;

%end;

%if %sysevalf(&count > &hMax) %then %do;

*Stop the algorithm if hidden nodes > max nodes;

%let flag = 1;

%end;

%end;

%end;

%else %do;

*Run the CreateTables macro;

%CreateTables;

%let count2 = 0;

%do hidnodes = &hidnodes %to &hMax;

132

%let count2 = %sysevalf(&count2 + 1);

%let count = 0;

%put Training Neural Network With &hidnodes Hidden Nodes;

%do i = 0 %to &k-1;

%let count = %sysevalf(&count + 1);

*Run the ManualRandomNeural macro;

%ManualRandomNeural;

%put %sysevalf(&i + 1)/&k.Fold;

*Run the "TotalTable" macro;

%TotalTable;

%end;

%let count = &hidnodes;

*Run the average macro;

%average;

%if &count2 = 1 %then %do;

*Combines the Average Train- and Validation Fit statistics ;

data &Library..&Library.Results&extype;

merge &Library..TempTrainResults2

&Library..TempValidateResults2;

run;

%end;

%else %do;

*Combines the Average Train- and Validation Fit statistics ;

data &Library..Results2;

merge &Library..TempTrainResults2

&Library..TempValidateResults2;

run;

*Combines the new results with the other results;

data &Library..&Library.Results&extype;

set &Library..&Library.Results&extype &Library..Resul ts2;

run;

%end;

%end;

%end;

*Run the gettime macro;

%gettime;

*Run the showtime macro;

%showtime;

*Delete certain data sets used;

proc data sets nolist library=&Library;

133

delete train0-train99 test0-test99;

delete usertemp;

delete logs;

delete temptrainresults1;

delete temptrainresults2;

delete temptrainresults3;

delete tempvalidateresults1;

delete tempvalidateresults2;

delete tempvalidateresults3;

delete trainfit;

delete validatefit;

delete temp;

delete start;

delete _namedat;

delete score;

delete catalog/memtype=catalog;

delete Results2;

run;

*Makes a beep sound when the program has finished;

data _null_;

call sound(400,80);

run;

%mend main;

*Creates the testing and training data sets;

%macro CreateTables;

*Delete previously created data sets;

proc data sets nolist library=&Library;

delete train0-train99 test0-test99;

run;

*Create a Training-Testing data set split;

%if &k = 1 %then %do;

%partition2(&data set,&SplitTrain,&SplitVal,

&Library..train0,&Library..test0);

%end;

%else %if &k = 0 %then %do;

data &Library..train0;

set &data set;

134

run;

data &Library..test0;

set &data set;

run;

%let k = 1;

%end;

*Choose records for K data sets;

%else %do;

data &Library..temp;

set &data set;

cv = int(ranuni(0)/(1/&k));

run;

%do i = 0 %to &k-1;

*Create K training data sets;

data &Library..train&i;

set &Library..temp;

if cv ne &i then output;

run;

*Create K testing data sets;

data &Library..test&i;

set &Library..temp;

if cv eq &i then output;

run;

%end;

%end;

%mend CreateTables;

*Creates tables that contain the average statistics of the;

*K-fold cross-validations done in all the iterations;

%macro TotalAverageTable;

%if &count = 1 %then %do;

data &Library..TempValidateResults3;

set &Library..TempValidateResults2;

run;

data &Library..TempTrainResults3;

set &Library..TempTrainResults2;

run;

135

%end;

%else %do;

data &Library..TempValidateResults3;

set &Library..TempValidateResults3 &Library..TempVali dateResults2;

run;

data &Library..TempTrainResults3;

set &Library..TempTrainResults3 &Library..TempTrainRe sults2;

run;

%end;

*Combines the Average Train- and Validation Fit statistics ;

data &Library..&Library.Results&extype;

merge &Library..TempTrainResults3 &Library..TempValid ateResults3;

run;

%mend TotalAverageTable;

*Creates tables that contain the average statistics K-fold statistics;

*done in a single iteration of the algorithms;

%macro average;

proc sql;

create table

&Library..TempValidateResults2 as

SELECT &count as NODES,

AVG(_VASE_) as Validate_ASE,

AVG(_VAVERR_) as Validate_VAVERR,

AVG(_VDIV_) as Validate_DIV,

AVG(_VERR_) as Validate_ERR,

AVG(_VMAX_) as Validate_MAX,

AVG(_VMSE_) as Validate_MSE,

AVG(_VNOBS_) as Validate_NOBS,

AVG(_VRASE_) as Validate_RASE,

AVG(_VRMSE_) as Validate_RMSE,

AVG(_VSSE_) as Validate_SSE,

AVG(_VSUMW_) as Validate_SUMW,

AVG(_VMISC_) as Validate_MISC,

AVG(_VWRONG_) as Validate_WRONG,

AVG(r2) as User_R2,

AVG(User_ASE) as User_ASE,

136

AVG(User_SSE) as User_SSE,

AVG(User_AIC) as User_AIC,

AVG(User_SBC) as User_SBC,

AVG(User_CorrectPerc) as User_CorrectPerc

FROM &Library..TempValidateResults1;

create table

&Library..TempTrainResults2 as

SELECT &count as NODES,

AVG(_DFT_) as Train_DFT,

AVG(_DFE_) as Train_DFE,

AVG(_DFM_) as Train_DFM,

AVG(_NW_) as Train_NW,

AVG(_AIC_) as Train_AIC,

AVG(_SBC_) as Train_SBC,

AVG(_ASE_) as Train_ASE,

AVG(_MAX_) as Train_MAX,

AVG(_DIV_) as Train_DIV,

AVG(_NOBS_) as Train_NOBS,

AVG(_RASE_) as Train_RASE,

AVG(_SSE_) as Train_SSE,

AVG(_SUMW_) as Train_SUMW,

AVG(_FPE_) as Train_FPE,

AVG(_MSE_) as Train_MSE,

AVG(_RFPE_) as Train_RFPE,

AVG(_RMSE_) as Train_RMSE,

AVG(_VAVERR_) as Train_VAVERR,

AVG(_ERR_) as Train_ERR

FROM &Library..TempTrainResults1;

QUIT;

%mend average;

*Creates tables that contains the statistics of the K-fold c ross-validation;

%macro TotalTable;

*Run the calculater2 macro;

%calculater2;

*Run the UserCalculate macro;

%UserCalculate;

137

data &Library..validatefit;

set &Library..validatefit;

R2 = &r2;

User_ASE = &u_ase;

User_SSE = &u_sse;

User_AIC = &u_aic;

User_SBC = &u_sbc;

User_CorrectPerc = &u_correctperc;

run;

%if &i = 0 %then %do;

data &Library..TempValidateResults1;

set &Library..validatefit(firstobs=2);

run;

data &Library..TempTrainResults1;

set &Library..trainfit(firstobs=2);

run;

%end;

%else %do;

data &Library..TempValidateResults1;

set &Library..TempValidateResults1 &Library..validate fit(firstobs=2);

run;

data &Library..TempTrainResults1;

set &Library..TempTrainResults1 &Library..trainfit(fi rstobs=2);

run;

%end;

%mend TotalTable;

*Creates and run an MLP with random initial weights and;

*user specified number of hidden nodes;

%macro ManualRandomNeural;

proc neural data=&Library..train&i dmdbcat=&catalog ran dom=0;

%if(&nomvar) %then %do;

*Nominal input variables;

input &inputclass/ level=nom id=in1;

*Integer input variables;

input &inputvar/ level=int id=in2;

138

*Target variable, activation function, error function;

target &target/ level=&targetype id=out

act=&activation error=&errorfunc bias;

netoptions object=&netoption;

*Units in hidden layer;

hidden %eval(&hidnodes) / bias id=hid1;

*Connect nominal input variables with hidden layer;

connect in1 hid1;

*Connect Integer input variables with hidden layer;

connect in2 hid1;

*Connect hidden layer with output;

connect hid1 out;

*Number of preliminary runs;

prelim %eval(&prelim);

train outfit=&Library..trainfit outest=start maxiter=1 0000;

score data=&Library..test&i

nodmdb out=&Library..Score

outfit=&Library..validatefit

role=validation;

%end;

%else %do;

*Integer input variables;

input &inputs/ level=int id=in;

*Target variable, activation function, error function;

target &target/ level=&targetype id=out

act=&activation error=&errorfunc bias;

netoptions object=&netoption;

*Units in hidden layer;

hidden %eval(&hidnodes) / bias id=hid1;

*Connect Integer input variables with hidden layer;

connect in hid1;

*Connect hidden layer with output;

connect hid1 out;

*Number of preliminary runs;

prelim %eval(&prelim);

train outfit=&Library..trainfit outest=start maxiter=1 0000;

score data=&Library..test&i

nodmdb out=&Library..Score

outfit=&Library..validatefit

role=validation;

139

%end;

run;

%mend ManualRandomNeural;

*Creates and run an MLP with random initial weights;

%macro RandomNeural;

proc neural data=&Library..train&i dmdbcat=&catalog ran dom=0;

%if(&nomvar) %then %do;

*Nominal input variables;

input &inputclass/ level=nom id=in1;

*Integer input variables;

input &inputvar/ level=int id=in2;

*Target variable, activation function, error function;

target &target/ level=&targetype id=out

act=&activation error=&errorfunc bias;

netoptions object=&netoption;

*Units in hidden layer;

hidden %eval(&count) / bias id=hid1;

*Connect nominal input variables with hidden layer;

connect in1 hid1;

*Connect Integer input variables with hidden layer;

connect in2 hid1;

*Connect hidden layer with output;

connect hid1 out;

*Number of preliminary runs;

prelim %eval(&prelim);

train outfit=&Library..trainfit outest=start maxiter=1 0000;

score data=&Library..test&i

nodmdb out=&Library..Score

outfit=&Library..validatefit

role=validation;

%end;

%else %do;

*Integer input variables;

input &inputs/ level=int id=in;

*Target variable, activation function, error function;

target &target/ level=&targetype id=out

140

act=&activation error=&errorfunc bias;

netoptions object=&netoption;

*Units in hidden layer;

hidden %eval(&count) / bias id=hid1;

*Connect Integer input variables with hidden layer;

connect in hid1;

*Connect hidden layer with output;

connect hid1 out;

*Number of preliminary runs;

prelim %eval(&prelim);

train outfit=&Library..trainfit outest=start maxiter=1 0000;

score data=&Library..test&i

nodmdb out=&Library..Score

outfit=&Library..validatefit

role=validation;

%end;

run;

%mend RandomNeural;

*Creates and run an MLP with initial weights set to previous b est;

%macro InestNeural;

proc neural data=&Library..train&i dmdbcat=&catalog ran dom=0;

%if(&nomvar) %then %do;

*Nominal input variables;

input &inputclass/ level=nom id=in1;

*Integer input variables;

input &inputvar/ level=int id=in2;

*Target variable, activation function, error function;

target &target/ level=&targetype id=out

act=&activation error=&errorfunc bias;

netoptions object=&netoption;

*Units in hidden layer;

hidden %eval(&count) / bias id=hid1;

*Connect nominal input variables with hidden layer;

connect in1 hid1;

*Connect Integer input variables with hidden layer;

connect in2 hid1;

141

*Connect hidden layer with output;

connect hid1 out;

*Set the initial weights to previously saved weights;

initial inest=start;

*Number of preliminary runs;

prelim %eval(&prelim);

train outfit=&Library..trainfit outest=start maxiter=1 0000;

score data=&Library..test&i

nodmdb out=&Library..Score

outfit=&Library..validatefit

role=validation;

%end;

%else %do;

*Integer input variables;

input &inputs/ level=int id=in;

*Target variable, activation function, error function;

target &target/ level=&targetype id=out

act=&activation error=&errorfunc bias;

netoptions object=&netoption;

*Units in hidden layer;

hidden %eval(&count) / bias id=hid1;

*Connect Integer input variables with hidden layer;

connect in hid1;

*Connect hidden layer with output;

connect hid1 out;

*Set the initial weights to previously saved weights;

initial inest=start;

*Number of preliminary runs;

prelim %eval(&prelim);

train outfit=&Library..trainfit outest=start maxiter=1 0000;

score data=&Library..test&i

nodmdb out=&Library..Score

outfit=&Library..validatefit

role=validation;

%end;

run;

%mend InestNeural;

*Gets the current system time;

142

%macro settime;

%let ttime = %sysfunc(datetime());

%mend settime;

*Calculates the time passed;

%macro gettime;

%local a b c d e;

%let tdelay = %sysevalf(%sysfunc(datetime()) - &ttime);

%let a = &tdelay;

%let b = %sysevalf(&a / 86400, integer);

%let a = %sysevalf(&a - 86400 * &b);

%let c = %sysevalf(&a / 3600, integer);

%let a = %sysevalf(&a - 3600 * &c);

%let d = %sysevalf(&a / 60, integer);

%let e = %sysevalf(%sysfunc(round(&a - 60 * &d, 0.01)));

%let time = &b:&c:&d:&e;

%mend gettime;

*Shows the time in the log;

%macro showtime;

%put ;

%put elapsed time = &time;

%put ;

%mend showtime;

*Calculates the Correlation Coefficient (R2);

%macro calculater2;

%local t;

%let t = ⌖

proc sql noprint;

select mean(&t.) into :mean

from &Library..score;

run;

143

data _null_;

set &Library..score;

retain sum1 0;

retain sum2 0;

sum1 + (&t. - p_&t.)**2;

sum2 + (&t. - &mean)**2;

call symput (’sum1’, sum1);

call symput (’sum2’, sum2);

run;

%let r2 = %sysevalf(1 - (&sum1 / &sum2));

%mend calculater2;

*Gets the number of observations and;

*variables from a specified data set;

%macro obsnvars(ds,nvarsp,nobsp);

%let dset=&ds;

%let dsid = %sysfunc(open(&dset));

%if &dsid %then %do;

%let nobs =%sysfunc(attrn(&dsid,NOBS));

%let nvars=%sysfunc(attrn(&dsid,NVARS));

%let rc = %sysfunc(close(&dsid));

%end;

%else

%put Open for data set &dset failed - %sysfunc(sysmsg());

%mend obsnvars;

*Partition a specified data set into two;

*data sets with specified percentage of;

*the original data set;

%macro partition2(source,p1,p2,set1,set2);

%let seed = 0;

%obsnvars(&source,nvars,nobs);

%let cutoff1 = %sysevalf(&nobs * &p1 / 100, ceil);

%let cutoff2 = %eval(&nobs - &cutoff1);

144

data &set1 &set2;

drop _c00: ;

set &source;

if (ranuni(&seed) * 1000 < %sysevalf (&p1 * 10, ceil)

and _c000001 < &cutoff1) then do;

_c000001 + 1;

output &set1;

end;

else

if _c000002 < &cutoff2 then do;

_c000002 + 1;

output &set2;

end;

else do;

_c000001 + 1;

output &set1;

end;

run;

%mend partition2;

*Calculations to verify statistics;

%macro UserCalculate;

%let p=P_;

data &Library..UserTemp;

set &Library..score;

%if &targetype = nom %then %do;

Round_err = Round(&p.&target.1,1);

User_Err = &target - &p.&target.1;

%end;

%else %do;

Round_err = Round(&p.&target,1);

User_Err = &target - &p.⌖

%end;

User_SqrErr = (User_Err**2);

if &target = Round_err then do

Correct = 1;

end;

else do

145

Correct = 0;

end;

run;

proc sql;

SELECT AVG(User_SqrErr) INTO :u_ase FROM &Library..UserT emp;

SELECT SUM(User_SqrErr) INTO :u_sse FROM &Library..UserT emp;

SELECT SUM(Correct) INTO :u_correct FROM &Library..UserT emp;

SELECT _DFM_ INTO :params FROM &Library..trainfit;

SELECT _DFT_ INTO :records FROM &Library..trainfit;

QUIT;

%let err = &u_ase;

data logs;

LogX = LOG(&err/&records);

LogN = LOG(&records);

run;

%local LogX;

%local LogN;

proc sql;

SELECT LogX INTO :LogX FROM logs;

SELECT LogN INTO :LogN FROM logs;

QUIT;

%if %sysevalf(&netoption = like) %then %do;

%let u_aic = %sysevalf((2 * &err) + (2 * ¶ms));

%let u_sbc = %sysevalf((2 * &err) + (¶ms * &LogN));

%end;

%else %if %sysevalf(&netoption = dev) %then %do;

%let u_aic = %sysevalf((&records * &LogX) + (2 * ¶ms));

%let u_sbc = %sysevalf((&records * &LogX) + (¶ms * &LogN));

%end;

%let dsid=%sysfunc(open(&Library..score));

%let num=%sysfunc(attrn(&dsid,nlobs));

%let rc=%sysfunc(close(&dsid));

%let scorerecords = #

%let u_correctperc = %sysevalf(%eval(&u_correct) /

%eval(&scorerecords) * 100);

%mend UserCalculate;

*Run the main macro;

%main;

146

“A man should look for what is, and not for what he thinks should be.”

Albert Einstein

B
MLP brute force method results

In this appendix, the results from the brute force MLP experiments (BRUTE100, BRUTE70 and BRUTE10)

are shown in table format. These results can be used as a baseline for the results of the MLP experiments

that utilized the modified N2C2S algorithm (NCS100, NCS70 and NCS10). The result tables are arranged

according to the data set and the experiment that was conducted. First, the results from the experiments that

were conducted with the Adult data set by using the brute force method are shown (BRUTE100, BRUTE70

and then BRUTE10), then the results from the brute force experiments with the Boston Housing data set are

presented (BRUTE100, BRUTE70 and then BRUTE10). This is followed by the experimental results from the

Ozone data set in which the brute force method was used (BRUTE100, BRUTE70 and then BRUTE10), then the

results from the brute force experiments that were conducted with the SO4 data set are presented (BRUTE100,

BRUTE70 and then BRUTE10). Finally, the brute force experimental results with the Spambase data set are

shown (BRUTE100, BRUTE70 and then BRUTE10).

147

Number of hidden neurons Number of parameters SBC Accuracy (%)

1 16 -586 248.46 84.89

2 31 -586 516.43 85.25

3 46 -586 192.00 85.32

4 61 -586 075.60 85.69

5 76 -585 556.71 85.76

6 91 -584 861.46 85.93

7 106 -584 261.18 85.92

8 121 -583 100.14 85.86

9 136 -581 003.01 85.41

10 151 -580 131.39 85.48

11 166 -581 321.90 86.15

12 181 -578 849.42 85.68

13 196 -577 756.22 85.61

14 211 -578 467.37 86.14

15 226 -577 867.09 86.18

16 241 -576 583.95 86.20

17 256 -575 861.57 86.16

18 271 -574 813.58 86.05

19 286 -574 312.79 86.27

20 301 -573 364.29 86.22

21 316 -572 262.04 86.06

22 331 -571 471.83 86.18

23 346 -569 740.99 85.86

24 361 -569 493.44 86.13

25 376 -568 924.81 86.26

26 391 -568 148.16 86.20

27 406 -567 710.68 86.43

28 421 -566 762.18 86.34

29 436 -565 506.18 86.24

30 451 -565 321.94 86.43

Table B.1: BRUTE100 results on the Adult data set

148

Number of hidden neurons Number of parameters VAVERR Accuracy (%)

1 16 0.331499 84.54

2 31 0.319356 84.97

3 46 0.311373 85.33

4 61 0.307451 85.52

5 76 0.309672 85.64

6 91 0.310592 85.58

7 106 0.308023 85.53

8 121 0.307989 85.49

9 136 0.309302 85.55

10 151 0.307018 85.54

11 166 0.30785 85.52

12 181 0.307723 85.60

13 196 0.306812 85.56

14 211 0.306202 85.76

15 226 0.306466 85.63

16 241 0.304596 85.69

17 256 0.308354 85.38

18 271 0.307312 85.43

19 286 0.308569 85.44

20 301 0.304105 85.68

21 316 0.307371 85.69

22 331 0.306259 85.43

23 346 0.308959 85.49

24 361 0.308886 85.52

25 376 0.310335 85.57

26 391 0.304095 85.61

27 406 0.308271 85.52

28 421 0.308054 85.51

29 436 0.309942 85.48

30 451 0.306603 85.58

Table B.2: BRUTE70 results on the Adult data set

149

Number of hidden neurons Number of parameters VAVERR Accuracy (%)

1 16 0.327534 84.84

2 31 0.319237 85.11

3 46 0.313656 85.40

4 61 0.311689 85.46

5 76 0.311471 85.48

6 91 0.309602 85.66

7 106 0.312170 85.37

8 121 0.309848 85.57

9 136 0.310119 85.63

10 151 0.311394 85.49

11 166 0.310701 85.57

12 181 0.310618 85.50

13 196 0.310921 85.42

14 211 0.309766 85.57

15 226 0.309320 85.60

16 241 0.311408 85.57

17 256 0.309925 85.62

18 271 0.309190 85.58

19 286 0.309300 85.62

20 301 0.309015 85.62

21 316 0.310431 85.62

22 331 0.308925 85.70

23 346 0.310947 85.51

24 361 0.309784 85.56

25 376 0.310518 85.47

26 391 0.309945 85.53

27 406 0.309314 85.72

28 421 0.309845 85.67

29 436 0.310976 85.60

30 451 0.310944 85.53

Table B.3: BRUTE10 results on the Adult data set

150

Number of hidden neurons Number of parameters SBC MSE

1 16 -1 662.31 15.555990

2 31 -1 858.93 8.769547

3 46 -1 977.08 5.773066

4 61 -1 956.36 5.000743

5 76 -1 899.36 4.653638

6 91 -1 929.77 3.643612

7 106 -1 878.56 3.352132

8 121 -1 861.06 2.885232

9 136 -1 789.30 2.764449

10 151 -1 704.41 2.718357

11 166 -1 761.07 2.020741

12 181 -1 669.45 2.013672

13 196 -1 711.17 1.541766

14 211 -1 606.65 1.576033

15 226 -1 606.15 1.311662

Table B.4: BRUTE100 results on the Boston Housing data set

Number of hidden neurons Number of parameters VAVERR MSE

1 16 0.781956 18.919640

2 31 1.835688 200.914400

3 46 0.902232 47.047140

4 61 1.021484 39.108760

5 76 0.601183 14.093970

6 91 5.972047 1 303.487000

7 106 0.594371 15.918820

8 121 0.670548 15.938900

9 136 0.922856 28.352260

10 151 0.840043 20.351250

11 166 1.144861 33.489850

12 181 1.231336 35.282320

13 196 0.965153 23.985820

14 211 1.496066 46.057140

15 226 1.608093 60.631880

Table B.5: BRUTE70 results on the Boston Housing data set

151

Number of hidden neurons Number of parameters VAVERR MSE

1 16 0.707133 16.969953

2 31 0.764980 34.694599

3 46 0.496325 10.938516

4 61 0.514646 13.530875

5 76 0.486868 11.050678

6 91 0.569609 14.504891

7 106 0.539869 13.055272

8 121 0.695531 18.737204

9 136 0.553737 13.139862

10 151 0.683851 16.473891

11 166 0.740993 19.381405

12 181 0.987968 24.276840

13 196 1.095268 29.491034

14 211 0.990657 29.880732

15 226 0.939331 25.304731

Table B.6: BRUTE10 results on the Boston Housing data set

Number of hidden neurons Number of parameters SBC MSE

1 12 -938.19 15.567830

2 23 -934.81 12.963540

3 34 -946.11 10.325550

4 45 -917.89 9.270305

5 56 -897.58 8.125972

6 67 -847.14 7.803900

7 78 -829.10 6.793455

8 89 -808.92 5.952597

9 100 -847.42 4.366050

10 111 -833.72 3.751110

11 122 -656.85 5.284338

12 133 -705.59 3.757401

13 144 -642.35 3.751188

14 155 -676.87 2.784722

15 166 -660.91 2.409009

Table B.7: BRUTE100 results on the Ozone data set

152

Number of hidden neurons Number of parameters VAVERR MSE

1 12 1.244689 16.734990

2 23 1.082693 14.557900

3 34 1.130124 15.256380

4 45 1.183423 16.722250

5 56 1.710985 25.560680

6 67 1.460380 22.779450

7 78 2.551725 42.313030

8 89 2.239165 37.606780

9 100 2.394974 41.911400

10 111 2.801250 48.464590

11 122 3.372007 67.772670

12 133 5.261488 115.724500

13 144 4.711515 99.501110

14 155 5.123945 120.854700

15 166 3.990240 69.250170

Table B.8: BRUTE70 results on the Ozone data set

Number of hidden neurons Number of parameters VAVERR MSE

1 12 1.346970 16.879764

2 23 1.273780 16.614138

3 34 1.139797 15.106363

4 45 1.229552 16.172386

5 56 1.333431 17.873299

6 67 1.405833 18.781528

7 78 1.824317 23.881712

8 89 1.730560 31.552813

9 100 2.440511 41.056634

10 111 1.968626 29.122909

11 122 2.542599 40.499850

12 133 2.577597 43.656292

13 144 2.815467 43.622020

14 155 3.988830 139.881048

15 166 3.195163 50.825107

Table B.9: BRUTE10 results on the Ozone data set

153

Number of hidden neurons Number of parameters SBC MSE

1 5 -1 105.41 0.322067

2 9 -1 192.88 0.175952

3 13 -1 287.82 0.092193

4 17 -1 284.33 0.083718

5 21 -1 271.91 0.079911

6 25 -1 263.69 0.074511

7 29 -1 244.87 0.073712

8 33 -1 247.63 0.064640

9 37 -1 201.55 0.074465

10 41 -1 175.45 0.076724

11 45 -1 199.89 0.059605

12 49 -1 185.35 0.057575

13 53 -1 173.11 0.054901

14 57 -1 153.22 0.054637

15 61 -1 141.79 0.051866

Table B.10: BRUTE100 results on the SO4 data set

Number of hidden neurons Number of parameters VAVERR MSE

1 5 0.147243 0.256515

2 9 0.121748 0.209630

3 13 0.080277 0.104616

4 17 0.054677 0.092898

5 21 0.055323 0.099312

6 25 0.061801 0.102103

7 29 0.081793 0.146781

8 33 0.086488 0.135128

9 37 0.081401 0.144120

10 41 0.120920 0.229561

11 45 0.076118 0.146338

12 49 0.130656 0.176114

13 53 0.077771 0.147034

14 57 0.076056 0.125791

15 61 0.073424 0.125603

Table B.11: BRUTE70 results on the SO4 data set

154

Number of hidden neurons Number of parameters VAVERR MSE

1 5 0.189700 0.335896

2 9 0.126817 0.197753

3 13 0.079668 0.109535

4 17 0.063151 0.101856

5 21 0.062345 0.107044

6 25 0.076598 0.126063

7 29 0.074230 0.131305

8 33 0.075888 0.127790

9 37 0.082921 0.130947

10 41 0.079019 0.135428

11 45 0.073381 0.123816

12 49 0.079877 0.130903

13 53 0.091622 0.129548

14 57 0.089610 0.141690

15 61 0.084496 0.130659

Table B.12: BRUTE10 results on the SO4 data set

155

Number of hidden neurons Number of parameters SBC Accuracy (%)

1 60 -52 556.83 94.31

2 119 -52 684.04 94.87

3 178 -53 547.87 96.26

4 237 -55 064.12 97.44

5 296 -55 043.63 97.91

6 355 -54 700.62 98.00

7 414 -57 478.46 99.11

8 473 -59 347.61 99.43

9 532 -55 409.83 98.80

10 591 -56 964.27 99.20

11 650 -56 178.18 99.17

12 709 -57 526.04 99.43

13 768 -56 632.28 99.30

14 827 -55 963.06 99.39

15 886 -57 676.69 99.65

16 945 -56 407.95 99.50

17 1 004 -56 539.76 99.61

18 1 063 -56 500.42 99.65

19 1 122 -55 794.38 99.59

20 1 181 -55 357.97 99.65

21 1 240 -55 344.85 99.63

22 1 299 -54 213.22 99.59

23 1 358 -54 294.42 99.67

24 1 417 -50 841.59 99.37

25 1 476 -53 272.06 99.67

26 1 535 -52 662.19 99.67

27 1 594 -52 377.14 99.65

28 1 653 -52 148.23 99.67

29 1 712 -51 401.25 99.67

30 1 771 -51 940.25 99.70

Table B.13: BRUTE100 results on the Spambase data set

156

Number of hidden neurons Number of parameters VAVERR Accuracy (%)

1 60 0.190574 93.77

2 119 0.190246 93.70

3 178 0.219910 93.70

4 237 0.239873 93.12

5 296 0.731697 92.25

6 355 0.471034 92.10

7 414 0.608570 91.38

8 473 0.893028 92.46

9 532 0.579423 91.67

10 591 0.526023 92.32

11 650 0.440628 93.55

12 709 0.399910 92.39

13 768 0.367853 93.19

14 827 0.354482 93.91

15 886 0.391671 92.90

16 945 0.354328 93.77

17 1 004 0.439693 92.46

18 1 063 0.375745 93.26

19 1 122 0.397949 93.77

20 1 181 0.399680 92.83

21 1 240 0.428946 94.20

22 1 299 0.351746 94.49

23 1 358 0.395222 93.91

24 1 417 0.374867 93.26

25 1 476 0.355396 94.13

26 1 535 0.326509 94.06

27 1 594 0.280652 94.28

28 1 653 0.384702 93.04

29 1 712 0.344357 94.35

30 1 771 0.415189 93.19

Table B.14: BRUTE70 results on the Spambase data set

157

Number of hidden neurons Number of parameters VAVERR Accuracy (%)

1 60 0.198754 93.44

2 119 0.205768 93.39

3 178 0.238180 93.36

4 237 0.251255 93.41

5 296 0.392936 92.74

6 355 0.629614 92.44

7 414 0.862891 91.86

8 473 1.034209 91.71

9 532 0.432075 92.82

10 591 0.454756 93.06

11 650 0.469864 92.70

12 709 0.471734 93.06

13 768 0.465625 92.97

14 827 0.489211 92.73

15 886 0.482830 93.00

16 945 0.472985 93.22

17 1 004 0.507718 93.11

18 1 063 0.468729 93.07

19 1 122 0.431768 93.56

20 1 181 0.421669 93.23

21 1 240 0.451414 93.24

22 1 299 0.425484 93.75

23 1 358 0.452078 93.45

24 1 417 0.423939 93.44

25 1 476 0.430619 93.40

26 1 535 0.428210 93.45

27 1 594 0.419633 93.30

28 1 653 0.463558 93.61

29 1 712 0.440156 93.26

30 1 771 0.406101 93.28

Table B.15: BRUTE10 results on the Spambase data set

158

Bibliography

Akaike, H. (1969), ‘Fitting autoregressive models for prediction’, Annals of the Institute of Statistical Mathe-

matics21, 243–247.

Akaike, H. (1974), ‘A new look at the statistical model identification’, IEEE Transactions on Automatic Control

AC-19, 716–723.

Akaike, H. (1978), ‘A bayesian analysis of the minimum aic procedure’,Annals of the Institute of Statistical

Mathematics30, Part A, 9–14.

Allen, D. M. (1974), ‘The relationship between variable selection and data augmentation and a method for

prediction’,Technometrics16, 125–127.

Anders, U. and Korn, O. (1999), ‘Model selection in neural networks’, Neural Networks12, 309–323.

Ash, T. (1989), Dynamic node creation in back-propagation networks, Technical Report 8901, Institute for

Cognitive Science, UCSD, La Jolla.

Basheer, I. A. and Hajmeer, M. (2000), ‘Artificial neural networks: fundamentals, computing, design, and

application’,Journal of Microbiological Methods43, 3–31.

Bell, D., Walker, J., O’Connor, G., Orrel, J. and Tibshirani, R. J. (1989), ‘Spinal deformation following multi-

level thoracic and lumbar laminectomy in children’, Submitted for publication.

Bellman, R. E. (1961),Adaptive Control Processes: A Guided Tour, Princeton University Press, Princeton, NJ.

Berk, K. N. and Booth, D. E. (1995), ‘Seeing a curve in multiple regression’,Technometrics37, 385–398.

Berry, M. J. A. and Linoff, G. (1997),Data Mining Techniques for Marketing, Sales, and Customer Support,

John Wiley & Sons, Inc., New York.

Bhansali, R. J. and Downham, D. Y. (1977), ‘Some properties of the order of an autoregressive model selected

by a generalization of akaike’s epf criterion’,Biometrika64, 547–551.

Blum, A. L. and Langey, P. (1997), ‘Selection of relevant features and examples in machine learning’,Artificial

Intelligence97, 245–271.

159

Bose, N. K. and Garga, A. K. (1993), ‘Neural network design using voronoi diagrams’,IEEE Transactions on

Neural Networks4, 778–787.

Breiman, L. and Friedman, J. H. (1985), ‘Estimating optimaltransformations for multiple regression and cor-

relation’,Journal of the American Statistical Association80, 580–619.

Burnham, K. P. and Anderson, D. R. (2002),Model Selection and Multi-model Inference: A Practical

Information-Theoretic Approach, 2nd edn, Springer, New York.

Cai, Z. and Tsai, C. (1999), ‘Diagnostics for nonlinearity in generalized linear models’,Computational Statis-

tics and Data Analysis29, 445–469.

Campher, E. S. (2008), Comparing generalised additive neural networks with decision trees and alternating

conditional expectations, Master’s thesis, North-West University, Potchefstroom Campus, South Africa.

Carpenter, A. (2004),Carpenter’s Complete Guide to the SASR© Macro Language, 2nd edn, SAS Institute Inc.,

Cary, NC.

Coppin, B. (2004),Artificial Intelligence Illuminated, Jones and Bartlett, Sudbury, MA.

DARPA (1988),Defence Advanced Research Projects Agency: Neural NetworkStudy, AFCEA International

Press, Fairfax, VA.

De Waal, D. A. and Du Toit, J. V. (2011), ‘Automation of generalized additive neural networks for predictive

data mining’, Submitted for publication.

Du Toit, J. V. (2006), Automated Construction of Generalized Additive Neural Networks for Predictive Data

Mining, PhD thesis, North-West University, PotchefstroomCampus, South Africa.

Ezekiel, M. (1924), ‘A method for handling curvilinear correlation for any number of variables’,Journal of the

American Statistical Association19, 431–453.

Fahlman, S. E. and Lebiere, C. (1990), The cascade-correlation architecture,in D. Touretzky, ed., ‘Advances in

Neural Information Processing Systems (Denver, 1989) (2)’, Morgan Kaufmann, San Mateo, pp. 524–532.

Faraway, J. J. (1992), ‘On the cost of data analysis’,Journal of Computational and Graphical Statistics1, 213–

229.

Frank, A. and Asuncion, A. (2010), ‘UCI machine learning repository’, http://archive.ics.uci.edu/ml, Date of

access: 10 April 2011.

Frean, M. (1990), ‘The upstart algorithm: a method for constructing and training feedforward neural networks’,

Neural Computation2, 198–209.

Friedman, J. H. and Stuetzle, W. (1981), ‘Projection pursuit regression’,Journal of the American Statistical

Association76, 817–823.

160

Geweke, J. and Meese, R. (1981), ‘Estimating regression models of finite but unknown order’,International

Economic Review22, 55–70.

Guyon, I. and Elisseeff, A. (2003), ‘An introduction to variable and feature selection’,Journal of Machine

Learning Research3, 1157–1182.

Hagan, M. T., Demuth, H. B. and Beale, M. (1996),Neural Network Design, PWS Publishing Company,

Boston, MA.

Hannan, E. J. and Quinn, B. G. (1979), ‘The determination of the order of an autoregression’,Journal of the

Royal Statistical Society41, 190–195.

Hanson, S. J. (1990), Meiosis networks,in D. Touretzky, ed., ‘Advances in Neural Information Processing

Systems (Denver, 1989) (2)’, Morgan Kaufmann, San Mateo, pp. 533–541.

Harrison, D. and Rubinfeld, D. L. (1978), ‘Hedonic housing prices and the demand for clean air’,Journal of

Environmental Economics and Management5, 81–102.

Hastie, T. J. and Tibshirani, R. J. (1986), ‘Generalized additive models’,Statistical Science1, 297–318.

Hastie, T. J. and Tibshirani, R. J. (1987), ‘Generalized additive models: some applications’,Journal of the

American Statistical Association82, 371–386.

Hastie, T. J. and Tibshirani, R. J. (1990),Generalized Additive Models, Vol. 43 of Monographs on Statistics

and Applied Probability, Chapman and Hall, London.

Haughton, D. (1989), ‘Size of the error in the choice of a model to fit data from an exponential family’,Sankhȳa,

Series A51, 45–58.

Hebb, D. O. (1949),The Organization of Behaviour, Wiley, New York.

Hopfield, J. J. (1982), ‘Neural networks and physical systems with emergent collective computational abilities’,

Proceedings of the National Academy of Sciences79, 2554–2558.

Hurvich, C. M. and Tsai, C. (1989), ‘Regression and time series model selection in small samples’,Biometrika

76, 297–307.

Jiao, L. and Li, H. (2010), ‘Qspr studies on the aqueous solubility of pcdd/fs by using artificial neural network

combined with stepwise regression’,Chemometrics and Intelligent Laboratory Systems103, 90–95.

Kang, S. (1991), An Investigation of the Use of Feedforward Neural Networks for Forecasting, PhD thesis,

Kent State University.

Kullback, S. and Leibler, R. A. (1951), ‘On information and sufficiency’, The Annals of Mathematical Statistics

22, 79–86.

161

Larsen, W. A. and McCleary, S. J. (1972), ‘The use of partial residual plots in regression analysis’,Technomet-

rics 14, 781–790.

Lippmann, R. P. (1987), ‘An introduction to computing with neural nets’,IEEE ASSP Magazinepp. 4–22.

Luger, G. F. (2005),Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 5th edn,

Addison-Wesley, London.

Mallows, C. L. (1973), ‘Some comments on cp’,Technometrics15, 661–675.

Marchand, M., Golea, M. and Ruján, P. (1990), ‘A convergence theorem for sequantial learning in two-layer

perceptrons’,Europhysics Letters11, 487–492.

McCullagh, P. and Nelder, J. A. (1989),Generalized Linear Models, Vol. 37 of Monographs on Statistics and

Applied Probability, 2nd edn, Chapman and Hall, London.

McCulloch, W. S. and Pitts, W. H. (1943), ‘A logical calculusof the ideas immanent in nervous activity’,

Bulletin of Mathematical Biophysics5, 115–133.

Mézard, M. and Nadal, J. P. (1989), ‘Learning in feedforward layered networks: the tiling algorithm’,Journal

of PhysicsA, 2191–2203.

Minsky, M. and Papert, S. (1969),Perceptrons, MIT Press, Cambridge, MA.

Murtagh, F. (1991), ‘Multilayer perceptrons for classification and regression’,Neurocomputing2, 183–197.

Negnevitsky, M. (2005),Artificial Intelligence - A Guide to Intelligent Systems, 2nd edn, Pearson Education

Inc., Essex, England.

Potts, W. J. E. (1999), Generalized additive neural networks, in ‘Proceedings of the Fifth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining’, pp. 194–200.

Potts, W. J. E. (2000),Neural Network Modeling Course Notes, SAS Institute Inc., Cary, NC.

Reed, R. D. and Marks II, R. J. (1999),Neural Smithing: Supervised Learning in Feedforward Artificial Neural

Networks, MIT Press, Cambridge, MA.

Rich, E. and Knight, K. (1991),Artificial Intelligence, 2nd edn, McGraw-Hill, Inc., New York.

Ripley, B. D. (1996),Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge,

United Kingdom.

Rissanen, J. (1978), ‘Modelling by shortest data description’, Automatica14, 465–471.

Rosenblatt, F. (1958), ‘The perceptron: a probabilistic model for information storage and organization in the

brain’, Psychological Review65, 386–408.

Rosenblatt, F. (1962),Principles of Neurodynamics, Spartan Books, New York.

162

Rumelhart, D. E. and McClelland, J. L. (1986),Parallel Distributed Processing: Explorations in the Mi-

crostructure of Cognition, Vol. 1, MIT Press, Cambridge, MA.

Russell, S. and Norvig, P. (2010),Artificial Intelligence - A Modern Approach, 3rd edn, Pearson Education Inc.,

Upper Saddle River, New Jersey.

SAS Institute Inc. (2005), ‘Fact sheet’, http://www.sas.com/technologies/analytics/datamining/miner/factsheet.pdf,

Date of access: 06 January 2011.

Schwarz, G. (1978), ‘Estimating the dimension of a model’,The Annals of Statistics6, 461–464.

Setiono, R. (2001), ‘Feedforward neural network construction using cross-validation’,Neural Computation

13, 2865–2877.

Shibata, R. (1980), ‘Asymptotically efficient selection ofthe order of the model for estimating parameters of a

linear process’,The Annals of Statistics8, 147–164.

Sockett, E. B., Daneman, D., Clarson, C. and Ehrich, R. M. (1987), ‘Factors affecting and patterns of resid-

ual insulin secretion during the first year of type 1 (insulindependent) diabetes mellitus in children’,

Diabetologia30, 453–459.

Sugiura, N. (1978), ‘Further analysis of the data by akaike’s information criterion and the finite corrections’,

Communications in Statistics - Theory and Methods7, 13–26.

Tang, Z. and Fishwick, P. A. (1993), ‘Feedfoward neural netsas models for time series forecasting’,ORSA

Journal on Computing5, 374–385.

Winston, P. H. (1992),Artificial Intelligence, 3rd edn, Addison-Wesley, Massachusetts.

Witten, I. H. and Frank, E. (2005),Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn,

Morgan Kaufmann Publishers, San Francisco.

Wong, F. S. (1991), ‘Time series forecasting using backpropagation neural networks’,Neurocomputing2, 147–

159.

Wood, S. N. (2006),Generalized Additive Models: An Introduction with R, Texts in Statistical Science, Chap-

man & Hall/CRC, London.

Wynne-Jones, M. (1992), Node splitting: A constructive algorithm for feed-forward neural networks,in

J. Moody, S. Hanson and R. Lippmann, eds, ‘Advances in NeuralInformation Processing Systems (4)’,

Morgan Kaufmann, San Mateo, pp. 1072–1079.

Xiang, D. (2001), Fitting generalized additive models withthe gam procedure,in ‘SUGI26 Conference Pro-

ceedings’, SAS Institute Inc., Cary, NC.

Zhang, G., Patuwo, B. E. and Hu, M. Y. (1998), ‘Forecasting with artificial neural networks: the state of the

art’, International Journal of Forecasting14, 35–62.

163

	Introduction
	Problem statement
	Method of work
	Outline of dissertation

	Artificial neural networks
	History
	Biological inspiration
	Neuron model architecture
	Single-input neuron
	Multiple-input neuron
	The perceptron
	A layer of neurons

	Multilayer perceptrons
	Artificial neural network learning
	The perceptron learning rule
	The backpropagation algorithm

	Multilayer perceptron construction
	The N2C2S algorithm
	The modified N2C2S algorithm
	Implementation of the modified N2C2S algorithm
	Example

	Conclusion

	Generalized additive neural networks
	Smoothers
	Scatterplot smoothing
	The running-mean smoother
	Smoothers for multiple predictors
	The bias-variance trade-off

	Additive models
	Multiple regression and linear models
	Additive models defined
	Fitting additive models
	Generalized additive models defined

	Generalized additive neural network architecture
	The interactive construction methodology
	Example

	The automated construction methodology
	Definition of terms
	Model selection
	The automated construction algorithm
	Implementation of the automated construction algorithm
	Example

	Conclusion

	Experimental Results
	Experimental design
	GANN experiments
	MLP experiments
	Experiment identification

	The Adult data set
	GANN results
	MLP results
	Comparison of MLP and GANN results

	The Boston Housing data set
	GANN results
	MLP results
	Comparison of MLP and GANN results

	The Ozone data set
	GANN results
	MLP results
	Comparison of MLP and GANN results

	The SO4 data set
	GANN results
	MLP results
	Comparison of MLP and GANN results

	The Spambase data set
	GANN results
	MLP results
	Comparison of MLP and GANN results

	Conclusion

	Comparative discussion on MLPs and GANNs
	Predictive accuracy
	Model complexity
	Comprehensibility
	Ease of construction
	Utility
	Conclusion

	Conclusion
	Summary of findings
	Summary of contributions
	Suggestions for future work
	Conclusion

	MLP construction program code
	MLP brute force method results
	Bibliography

