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Abstract

In this dissertation, generalized additive neural nete@d@&ANNSs) and multilayer perceptrons (MLPs) are stud-
ied and compared as prediction techniques. MLPs are the widsly used type of artificial neural network
(ANN), but are considered black boxes with regard to inetigdility. There is currently no simple a priori
method to determine the number of hidden neurons in eactedfittden layers of ANNs. Guidelines exist that
are either heuristic or based on simulations that are difiven limited experiments. A modified version of
the neural network construction with cross-validation gka®s (N2C2S) algorithm is therefore implemented and
utilized to construct good MLP models. This algorithm eralthe comparison with GANN models. GANNs
are a relatively new type of ANN, based on the generalizedigddanodel. The architecture of a GANN is less
complex compared to MLPs and results can be interpretedangtiaphical method, called tipartial residual
plot. A GANN consists of an input layer where each of the input sduls its own MLP with one hidden layer.
Originally, GANNs were constructed by interpreting pdrnésidual plots. This method is time consuming and
subjective, which may lead to the creation of suboptimal eed Consequently, an automated construction
algorithm for GANNSs was created and implemented in the @A Statistical language. This system was called
AutoGANNand is used to create good GANN models.

A number of experiments are conducted on five publicly alklalata sets to gain insight into the similari-
ties and differences between GANN and MLP models. The dédarssude regression and classification tasks.
In-sample model selection with the SBC model selectioreigdh and out-of-sample model selection with the
average validation error as model selection criterion areopmed. The models created are compared in terms
of predictive accuracy, model complexity, comprehenigibiease of construction and utility.

The results show that the choice of model is highly dependerihe problem, as no single model always
outperforms the other in terms of predictive accuracy. GANNMay be suggested for problems where inter-
pretability of the results is important. The time taken tastouct good MLP models by the modified N2C2S

algorithm may be shorter than the time to build good GANN ni®bg the automated construction algorithm.

Keywords: ANN, artificial neural network, AutoGANN, GANN,egeralized additive neural network, in-
sample model selection, MLP, multilayer perceptron, N2@gfrithm, out-of-sample model selection, pre-

diction, predictive modelling, SBC, Schwarz informatiaiterion.



Uittreksel

In hierdie verhandeling word veralgemeende additiewealeuretwerke (VANN’e) en multilaag-perseptrone
(MLP’e) as voorspellingstegnieke bestudeer en vergelyk.PM is die mees algemeen gebruikte tipe kuns-
matige neurale netwerk (KNN), maar word as ondeursigtickdnesnet betrekking tot interpreteerbaarheid.
Tans is daar geen eenvoudige voor-data-insamelingsmetodle aantal versteekte neurone in elk van die ver-
steekte lae van KNN'e te bepaal nie. Riglyne bestaan waebfisties van aard is, 6f op simulasie-afleidings
van beperkte eksperimente gebaseer is. 'n Aangepaste awaengan die neurale netwerk konstruksie met
kruis-validasie steekproewe (N2K2S)-algoritme is dusrmggé&menteer en gebruik om goeie MLP-modelle te
bou. Hierdie algoritme maak die vergelyking met VANN-mddehoontlik. VANN’e is 'n relatief nuwe tipe
KNN wat op die veralgemeende additiewe model gebaseer ésafgitektuur van 'n VANN is minder kompleks
in vergelyking met MLP’e en resultate kan geinterpreteerdamet 'n grafiese metode, genaamd pliesiéle
residu-grafiek 'n VANN bestaan uit 'n invoerlaag waar elk van die invoerasdy eie MLP met een versteekte
laag het. Oorspronklik was VANN’e gebou deur die interpsetasan parsiéle residu-grafieke. Hierdie metode
is tydrowend en subjektief, wat kan lei tot die skepping vainaptimale modelle. Gevolglik is 'n outomatiese
konstruksie-algoritme vir VANN’e geskep en geimplement® die SASR) statistiese taal. Hierdie stelsel is
AutoGANNgenoem en word gebruik om goeie VANN-modelle te skep.

'n Aantal eksperimente is op vyf vrylik beskikbare datdstaltgevoer om insig te verkry oor die ooreenkom-
ste en verskille tussen VANN- en MLP-modelle. Die datastsluit regressie- en klassifikasietake in. In-
steekproefmodel-seleksie met die SBC-model-seleksieknm en buite-steekproefmodel-seleksie met die ge-
middelde valideringsfout as model-seleksiekriterium dvoitgevoer. Die modelle wat geskep is, word verge-
lyk in terme van voorspellende akkuraatheid, modelkongitek, verstaanbaarheid, gemak van konstruksie en
nut.

Die resultate toon dat die keuse van die model baie afhanklikdie probleem is aangesien daar geen
enkele model is wat altyd beter as die ander is in terme vamspetiingsakkuraatheid nie. VANN’e kan
voorgestel word vir probleme waar verstaanbaarheid vamedigitate belangrik is. Die tyd wat dit neem om
goeie MLP-modelle te bou deur die veranderde N2K2S-algerikan korter wees as die tyd wat dit neem om

goeie VANN-modelle te bou met die outomatiese konstruksi@ritme.

Sleutelwoorde: AutoGANN, buite-steekproefmodel-sekekm-steekproefmodel-seleksie, KNN, kunsmatige
neurale netwerk, MLP, multilaag perseptron, N2K2S-algoei SBC, Schwarz-inligtingskriterium, VANN,

veralgemeende additiewe neurale netwerk, voorspelliogrspellingsmodellering.
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“As a general rule the most successful man in life is the maa hds the best

information.”

Benjamin Disraeli

Introduction

Currently, the amount of raw data in the world can be overmirgj for us humans (Witten and Frank, 2005).
We cannot make sense or process all of this data to obtainlusffrmation without assistance. This is where
the incredible computing power of the modern day computeheahelpful. Computers may not be as complex
as the human brain, but when it comes to raw computing pohey,¢an do mathematics much faster than hu-
mans. This is one reason why statistical models are impladeén computer programs. Even with the present
computing power, the usual statistical techniques thatisee to gather information from data may not be effi-
cient enough to recognize complex patterns and relatipadhom large amounts of data. Fortunately, there is
a way in which modern day computing power can be used to leathconsequently obtain useful information
and discover useful relationships in the data. Artificialnaé networks (ANNS) are statistical models that can
learn and generalize from data. One of the ANN'’s best knowatufes is that it is able to recognize complex
patterns in the data. This is useful in fields where predicisothe objective. ANNSs are already successfully
used in many real-world applications where vast amountstaf dre used to obtain useful information.

ANNSs are popular, since they have been proven to be suctésshany prediction and decision-support
applications (Berry and Linoff, 1997). They form a classt tbansists of general-purpose tools that are very
powerful and can be applied to clustering, prediction amdsification with relatively ease. A broad range of
industries have applied ANNs, which span from number retimgnon checks, engine failure rate prediction,
financial series prediction, medical diagnosis and idginiif groups of valuable customers to identifying credit
card fraud, to name a few.

People are good at generalizing from experience, but campgenerally excel at performing explicit in-



structions over and again. ANNs are appealing, since theycome this gap by simulating the human brain’s
neural connections on a digital computer. They mimic thétglnif humans to learn from experience with their
ability to learn from data and to generalize when used in-defined domains. It is this ability that makes
ANNSs useful for prediction and exciting for research witke flature promise of new and better results.

However, there is a drawback. ANNSs are considered blackdaith mysterious internal workings. This is
as a result of the internal weights that are distributedubhout the network as the result of training an ANN.
These weights are not easily understandable, but more anel avanced techniques for examining ANNs
help in providing some explanation. ANNs do, however, hav&ress value, which is in many instances more
important than understandability.

The history of ANNs in the chronological order of computelesce is interesting. In the 1940s, before
digital computers really existed, the original work on hogurons function was done. Warren McCulloch, a
neurophysiologist, and Walter Pits, a logician, neededrgple model to explain the workings of biological
neurons in 1943. They tried to understand the brain’s angtbut this model turned out to provide a new way
of solving certain problems that do not fall in the realm ofirabiology.

Models that are based on the work of McCulloch and Pits, dgderceptronswere implemented by com-
puter scientists when digital computers first became adlaila the 1950s. These early networks solved, for
example, the problem of how to balance a broom standing hipag a moving cart. This was done by con-
trolling the motion of the cart. The cart learnt to move to teft if the broom started to fall to the left in
order to keep it upright. There were some limited successtiilaboratory using perceptrons, but for general
problem-solving, the results were disappointing.

The fact that the most powerful computers of that era werepesverful than today’s inexpensive desktop
computers is one reason for the limited usefulness of thg AANs. Seymour Papert and Marvin Minsky
were researchers at the Massachusetts Institute of Texyahd showed in 1969 that these simple ANNs had
theoretical deficiencies that also contributed to theiitiich usefulness. Research on ANN implementations on
computers slowed down drastically during the 1970s as dtrekthese deficiencies. Then, in 1982, the the-
oretical pitfalls of ANNs were overcome by a new way of trami calledbackpropagationthat was invented
by John Hopfield. This development helped to foster renewtedldst in ANN research, which shifted from the
labs into the commercial world throughout the 1980s. Sihe®tANNs have been applied to virtually every
industry to solve both operational and prediction problems

Statisticians were extending the capabilities of statidtimodels by taking advantage of computers at the
same time that ANNs were developed as a model for biologictiVity. Logistic regression is a technique
that proved especially useful for understanding complextions of many variables. Logistic regression, like
linear regression, attempts to fit a curve to observed dafanétion called thdogistic or sigmoidfunction is,
however, used instead of a line. ANNs can be used to représgstic regression and even the more familiar
linear regression. Statistical concepts like distributitkelihoods and probability among others can, in fact,
be used to explain the entire theory of ANNSs.

As a result of the convergence of several factors, ANNs becamore popular in the 1980s. Firstly, the



availability of computer power improved, particularly whedata was available, like in the business commu-
nity. Secondly, the realisation that ANNs are closely edaib known statistical methods made analysts more
comfortable with these models. Thirdly, since operati®yatems in most companies had already been auto-
mated, there were relevant data. Fourthly, building usgplications to help people became more important
than building artificial people. The utility of ANNs has begioven and as a result they are, and will continue
to be, popular for prediction and to encourage further mebethat will result in even more powerful ANNs in
the future.

In this dissertation, two different types of ANNSs, callpulltilayer perceptronsandgeneralized additive
neural networksare compared. The problem statement of this study is piexbém Section 1.1, followed by

the method of work in Section 1.2 and finally, an outline o$ttlissertation is given in Section 1.3.

1.1 Problem statement

Generalized additive neural networks (GANNS) (Potts, 19898 a relatively new architecture, based on the
generalized additive model (Hastie and Tibshirani, 1986p8ly 2006). The structure of a GANN is less com-
plex if compared to the most common type of neural network ntlultilayer perceptron (MLP) (Ripley, 1996).
A GANN consists of an input layer where each of the input ndees its own MLP with one hidden layer.
The latter is connected to the output layer. Currently,@ahiemo simple method to determine the number of
hidden neurons in each of the hidden layers. Guidelineg #hds are either heuristic or based on simulations
that are derived from limited experiments (Zhang, Patuwbtdn, 1998). Originally, GANNs were constructed
by interpreting partial residual plots (Larsen and McCle&p72; Ezekiel, 1924; Berk and Booth, 1995). This
method is time consuming and subjective, which may leadd@tlation of suboptimal models. Consequently,
Du Toit (2006) created an automated construction algoritbmGANNs and implemented it in the SAS
statistical language. The system was naatbGANN

The automated construction algorithm organizes the GANNetfwinto a search tree and performs a best-
first search to identify the best model. To speed up the pspedseuristically chosen GANN model is utilized
as the starting point. During each iteration of the algonitthe best GANN model that is based on an objective
model selection criterion is identified for expansion. Timedel is then grown and pruned. While searching
for the best model, no human intervention is needed. Thisga®continues until the search space is exhausted
or a predetermined time has passed.

The MLP is the most popular and widely used type of neural agt{Zhang et al., 1998). MLPs are used in
a variety of applications, especially in prediction, besmof their inherit capability of subjective input-output
mapping. The inputs of an MLP that is used for explanatorgdasting problems are usually independent vari-
ables and thus the MLP is functionally equivalent to a nadinregression model. For time series forecasting
problems, the inputs are typically the past observatiodstla® output is the future value of the data series, thus
the MLP is equivalent to a nonlinear autoregressive model.

An MLP consists of two or more layers (Figure 2.13) (HaganmDth and Beale, 1996). The first or the



lowest layer is known as the first hidden layer and this is wlexternal information is received. The last or
the highest layer is the output layer where the problem wwius obtained. Between the first hidden layer and
the output layer, there may be more hidden layers. Each taym@ains a number of neurons. The neurons in
adjacent layers are fully connected from a lower layer toghdui layer. With the default constructing method
for MLPs, the number of hidden layers and neurons in the mdialgers are manually altered after each session
in an attempt to find a better architecture (Zhang et al., 1998

In this study, GANNSs and their construction by the AutoGANptEem will be compared to MLPs and the
neural network construction with cross-validation sarefld2C2S) construction method (Setiono, 2001) on
five publicly available data sets. A modified version of thed23 algorithm will be utilized to enable a com-
parison with the AutoGANN system. A similar comparison was& by Campher (2008), in which GANNs
were compared to decision trees and alternating conditexygectations. When comparing the two types of

neural networks, consideration will be given to the follogi

e The predictive accuracy of the neural networks

The model complexity of the two types of neural networks

The comprehensibility of the resulting network, i.e. is tiework considered to be a black box?

The ease in constructing the best neural network model

The utility of the two types of neural networks and the camdion methods that are used to build the

best model

1.2 Method of work

In order to obtain a better understanding of these two typesural networks, a literature study on MLPs and
GANNSs is performed. The literature study is comprehensivi @oes not only contain information about the
neural network models itself, but also about the methodsat®sused to construct the architectures. The next
step is to develop a program to search for good MLP models edlifferent data sets. The data sets that are
utilized, are the Adult data set (Frank and Asuncion, 20B@ston Housing data set (Frank and Asuncion,
2010), Ozone data set (Breiman and Friedman, 1985),d&fa set (Xiang, 2001) and the Spambase data set
(Frank and Asuncion, 2010). Experiments are then conduoteltain results that can be compared. A number
of different experiments will be performed to get a broadspective on the results. These experiments will
include in-sample model selection and out-of-sample medigction. The results are then finally compared

with regard to different aspects in order to reach meanirggfoclusions.

1.3 Outline of dissertation

In Chapter 2, a short history of artificial neural networkdN(ds) is presented. ANNs are based on biological

neural networks and this biological inspiration is exardin&he architecture of the artificial neuron model is
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then discussed. A single-input neuron and a multiple-imgutron are considered. One of the first ANNSs, called
the perceptron is discussed, followed by a layer of neurons. The multilagrceptron (MLP) architecture is
considered next. Learning of ANNs is then discussed. Fjriteé perceptron learning rule that is used to train a
perceptron network is regarded, followed by the backprapag algorithm that can be used to train MLPs. The
construction of MLPs is discussed next. The N2C2S algorithexamined, followed by a modified version
of the algorithm. This altered version of the N2C2S alganitivas created to enable the comparison with the
automated construction algorithm for generalized adelitigural networks. Finally, the implementation of the
modified N2C2S algorithm which is used in this study to cremted MLP models, is explained.

The generalized additive neural network (GANN) which isrnkeeral network implementation of a general-
ized additive model (GAM), is discussed in Chapter 3. Smiogthwhich forms the basis of estimating additive
models with the backfitting algorithm, is discussed. Scplitd smoothing and the running-mean smoother are
regarded, as well as smoothers for multiple predictors.tNkg bias-variance trade-off is explained to deter-
mine the value of the smoothing parameter. As an intrododtoadditive models, linear models and multiple
regression models are discussed. Additive models are goestdy defined, followed by the estimation of
these models. Then GAMs are considered, which lead to the XBAfdhitecture. In addition, the interactive-
and automated construction algorithms for GANNSs are pteserdmprovements to the automated construction
algorithm are explained and finally the implementation & #igorithm is discussed.

In Chapter 4, the experimental results of the comparisowdmt the GANN and MLP models are pre-
sented. The experimental design, which include multipleeeixnents involving these two types of models, is
explained. Then the experiments that were conducted on tilbkicfy available data sets are presented. First,
the experiments conducted on the Adult data set are coesidimlowed by those on the Boston Housing data
set, the Ozone data set, the Sfata set and finally the Spambase data set. For each dates®tperiments are
discussed as follows: First, the data set is introducethvield by the GANN experiments that were performed
by the AutoGANN system and a discussion of the experimemsllts that were obtained. Then the MLP
experiments that were performed by the modified N2C2S dlguarand the brute force method are considered,
followed by a discussion of these results. The brute forcthatkis applied to gain more insight into the results
that were obtained by the modified N2C2S algorithm. Finallgomparison between the GANN and MLP
experimental results is presented.

The experimental results that were obtained, are discumsedhigher level in Chapter 5 in terms of the
predictive accuracies, complexity, comprehensibilityd @ase of construction of the models, as well as the
utility of both the models and the construction methods.

In Chapter 6, a summary of the findings in this study is preskribllowed by a summary of the contribu-

tions of the study. Finally, some suggestions for futurelknae made.



“The beginning of knowledge is the discovery of somethingdeeiot

understand.”

Frank Herbert

Artificial neural networks

The human brain consists of a neural network that has abddtrnsirons which are highly interconnected
(Hagan et al., 1996). This network helps a person to readthee move and think. A biological neuron is a
rich assembly of tissue and chemistry which is as complexmaE@processor. Persons are born with some of
their neural network structure and other parts are estadaliby experience.

Scientists have only begun to understand biological nengalorks. All the biological neural functions,
including memory, are stored in the connections betweeronsland in the neurons itself. The process where
new connections are made between neurons and where oldctiomseare modified, is known as the process
of learning. Even with the current basic understanding ofdgjical neural networks, it is possible to create an
artificial neural network (ANN) that can be trained to serugsaful purpose.

The artificial neurons that are used, are extremely simm&adtions of biological neurons. These artificial
neurons can be implemented as part of a program or siliconitsr Although ANNSs can be trained to perform
useful functions, they do not have a fraction of the powehefliuman brain.

Currently, ANNSs are considered to be powerful tools thatwmed by researchers and practitioners in the
field of prediction. Research have also shown that ANNs haweedul pattern classification and pattern recog-
nition capabilities (Zhang et al., 1998).

ANNSs are data-driven, self-adaptive models that learn fesaimples and are able to capture subtle func-
tional relationships among the data, even if the underlyaigtionships are unknown or difficult to describe.
ANNSs are consequently well suited for problems that haveighalata or observations and where the solutions

require knowledge that is difficult to specify. One of the tqspular and widely used ANNSs is the multilayer



perceptron (MLP).

In Section 2.1, a short history of ANNs will be presentedid@kd by the biological inspiration for ANNs
in Section 2.2. The artificial neuron model architecturd thién be discussed in Section 2.3, followed by the
multilayer perceptron in Section 2.4. In Section 2.5, aitifineural network learning will be considered. Con-
struction of a multilayer perceptron will be discussed irctiéam 2.6. Finally, some conclusions are presented

in Section 2.7.

2.1 History

In order for a technology to advance, at least two comporemetsieeded: concept and implementation (Hagan
et al., 1996). The history of the heart is a good example of halifferent concept changed the technology.
The heart was initially thought to be a source of heat or tintreeof the soul, but in the 17th century, medical
practitioners gained the concept that the heart’s funddiw pump blood in order for the blood to circulate
in the body. Experiments were then designed to test the jmgrgition of the heart. These experiments in-
spired the modern day view of the circulatory system of theybdiowever, concepts are not sufficient for a
technology to develop if it is not able to be implemented. Adj@xample of this statement is the computer-
aided tomography (CAT) scans. The mathematics that wemssaty to reconstruct the images of a CAT scan
were known for many years before sufficient high-speed ceoenpand effective algorithms made it possible
to implement the CAT scan system. ANNSs have also progre$seddgh new concepts and implementation de-
velopments. However, the advancements made in ANNs seeavéodtcurred in bursts rather than following
a steady development.

The interdisciplinary work in physics, psychology and roglnysiology, done by scientists such as Herman
von Helmholtz, Ernst Mach and Ivan Pavlov from the late 1#&htary to the early 20th century, form some of
the background work for the field of ANNs. The work consisteasity of general theories on learning, vision
and conditioning. Mathematical models of artificial newwavere not included in this work.

The modern view of ANNs commenced when Warren McCulloch amdtét Pitts proposed a model of
artificial neurons (McCulloch and Pitts, 1943). This modalsvbased on the human brain, where each neuron
is connected to other neurons to form a network. They praptsa the artificial neuron could either be in an
“on” or “off” state and that the activation switch would oedn response to stimulation by a certain number of
neighbouring neurons. An activation switch is a mechantsh¢ontrols when the neuron is in an “on” or “off”
state. ANNs could also have the ability to learn. ANN leagnis achieved by applying a set of rules, known
collectively as a learning rule, to update the connecticts/ben neurons. In 1949, Donald Hebb proposed a
simple learning rule, now known as titebbian learning rulgHebb, 1949). He suggested that neurons that
are in the same state have a stronger relationship to eaeh wathile neurons in an opposite state will have a
weaker relationship to each other. This learning rule asljtiee connections to a better representation of the
relationship between neurons.

The first neural network computer, called ®8ARJStochastic Neural Analog Reinforcement Calculator),



was built in 1950 by Marvin Minsky and Dean Edmonds (Russedl Korvig, 2010). They used an automatic
pilot mechanism from a B-24 bomber and 3000 vacuum tubesrtolate a 40 neuron network. Frank Rosen-
blatt proposed an artificial neuron that would classify fifguits into one of two categories (Rosenblatt, 1958).
This artificial neuron was called@erceptron Rosenblatt used these neurons to build the first neuralomketw
that was used in a practical application. He showed thatribigork could be used for pattern recognition.
Frank Rosenblatt also introduced the perceptron learnitggthat is used for training the perceptron neurons
(Rosenblatt, 1962). The perceptron and the perceptronitearule will be discussed in Section 2.3.3 and
Section 2.5.1 respectively.

In 1969, Marvin Minsky and Seymour Papert published a bodklet Perceptronsin which they stated
that the problem-solving capabilities of single-layer raunetworks were limited to linearly separable prob-
lems (Minsky and Papert, 1969). This book, and the lack ofgréwl digital computers at the time, caused
many people to stop research in the field of artificial neuesviorks (Hagan et al., 1996).

Between the 1960s and the 1980s there were very little psednethe field of ANNs and general interest
in neural networks declined heavily (Hagan et al., 1996)tufately, in the 1980s, new advances were made
in the field of ANNs, more powerful computers could be builtlaas a result, more researchers gained interest
in this field. One of the new developments that was respanéilsl ANNs getting the attention of researchers
was the invention of the backpropagation algorithm (Rumuland McClelland, 1986). With the backpropaga-
tion algorithm, a network consisting of multiple layers @frpeptrons, called amultilayer perceptron(MLP),
could be trained. This learning rule was the answer to thblpnas of perceptron networks that were raised
by Minsky and Papert (1969) first. MLPs and the backpropagadigorithm will be discussed in more detail
in Section 2.4 and Section 2.5.2 respectively. Another ldgveent that attracted attention to ANNs was the
Hopfield network that could be used as an associative merktopfield, 1982).

The field of ANNs has developed substantially since McCtilland Pitts first introduced the idea and today
ANNSs are used in a variety of disciplines which include, agathers, aerospace, automotive, banking, de-
fence, electronics, entertainment, financial, insuramaufacturing, medical, oil and gas (Hagan et al., 1996).
When McCulloch and Pitts (1943) introduced the ANN, it wasdzhon the human brain. In the next section

the biological inspiration for ANNs will be discussed.

2.2 Biological inspiration

The human brain consists of a highly interconnected newtabark. This neural network has about 10 billion
neurons and 60 trillion connections (Negnevitsky, 2005hidlogical neuron has a switching speed (the speed
at which the output changes in response to the inputs) of $8conds, whereas an electrical circuit has a
switching speed of 1@ seconds (Hagan et al., 1996). The electrical circuit isrilemuch faster than the
biological neuron, but this does not mean that a computesigf than the human brain. The high connectivity

of the human brain’s neurons and the fact that the human baaiise multiple neurons at the same time, is the



reason why it can do many tasks much faster when comparedamputer (Hagan et al., 1996; Negnevitsky,
2005).

A schematic representation of a biological neuron that is1eoted to another one, is shown in Figureé 2.1.

Dendrites

Axon

O

Cell Body

Synapse

o

Figure 2.1: Biological neuron

A biological neuron consists of the following principle cponents: the dendrites, the axon, the cell body
(soma) and the synapses (Hagan et al., 1996). The somaags@wals from other neurons via the dendrites.
When the soma’s threshold is reached, it sends a signal & aturons through the axon. The connection
between neurons, where the axon meets the dendrites, ésl Galynapse The synapse releases a chemical
content, which changes the potential difference of the s@wegnevitsky, 2005). The function of the neural
network is established by the arrangement of its neuronghestrengths of the individual connections between
neurons (Hagan et al., 1996). The connection strengthshendrtangement of neurons are determined by a
complex chemical process. Some of the neural structurgésrdaned at birth, while other parts are developed
through learning. The brain’s ability to learn comes fromrapgrty of a neural network, callgplasticity
(Negnevitsky, 2005). Plasticity indicates that the nearare able to make new connections to other neurons
and that the connection strengths between neurons mayehang

Even though an ANN is not nearly as complex as the brain, thereat least two similarities between
them. Firstly, both networks consist of simple buildingdis that are highly interconnected and secondly, the
function of the network is determined by the connectionsvbeh neurons (Coppin, 2004).

The biological neuron inspired the creation of artificialirens which can be combined to form an artificial

neural network. In the next section, the neuron model archite of an artificial neuron is considered.



2.3 Neuron model architecture

In this section, a mathematical model for an artificial neuwngll be introduced. First, an artificial neuron that
has only one input will be examined. A more complex artificialiron that has multiple inputs will then be
considered. After that, a simple ANN, callegharceptron will be discussed and finally, a layer of neurons will

be considered.

2.3.1 Single-input neuron

In a single-input neuron, a scalar inguis multiplied by a scalar weighw (Hagan et al., 1996). This product,
wp, is then added to a bidsto formn (n is defined in (2.5)), which is the net input to the activatiandtionf.
The activation (transfer) functiognproduces the final outpat A single-input neuron model is shown in Figure
2.2.

Inputs General neuron

N N\

re w Z n ’ f a ’
lb

/U J

Figure 2.2: Single-input neuron

The outputa of the single-input neuron is calculated as follows:
a= f(wp+b). (2.1)
If, for examplew =5, p=3 andb = —2.5, then
a= f(5(3)—25) = f(125). (2.2)

The final output is determined by the activation functiomhe activation function is chosen by the designer and
a learning rule will adjust the parametavsandb in order for the input/output relationship to meet a specific
goal that is set by the learning rule.

This simple artificial neuron can be compared to a biologimeiron with regards to the following: The
input p is the stimuli from an external source, the weightan be considered as the strength of the synapse,
the summation together with the activation function repnéshe soma and the outpairepresents the signal
on the axon.

There are different activation functions for different poses. Next, some of these activation functions will

be discussed.
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Activation functions

A specific activation function is used to meet some specifinabf the problem that must be solved by the
neuron (Hagan et al., 1996). There are many different amivdunctions available. In Table 2.1, some of

these activation functions are shown (Hagan et al., 1996).

‘ Name ‘ Input/output relation ‘ Figure ‘

a=0 n<O0
a=1 n>0

Hard-limit

a=-1 n<O

Symmetrical hard limit
a=+1 n>0

Linear a=n

a=20 n<o0
Saturating linear a=n 0<n<1

a=1 n>1

a=-1 n< -1

NN NN TN PN

Symmetric saturating linear a=n -1<n<1
a=1 n>1
Log-sigmoid a=en
Hyperbolic tangent sigmoid a=g-2
T a=0 n<O0
Positive linear <
a=n 0<n

Table 2.1: Activation functions

When a neuron is required to classify an input into two didtalasses, a hard-limit activation function can
be used. The hard-limit activation function gives an outdd if the function input is less than 0, and an output

of 1 if the function input is equal to or greater than 0. Thitwation function is shown in Figuife 2.3.

11



Figure 2.3: Hard-limit activation function

Some problems may need an activation function where thaibigphe same as the input:

a=n. (2.3)

For these problems, a linear activation function is useds @tivation function is shown in Figure 2.4.

a

Figure 2.4: Linear activation function

The log-sigmoid activation function produces an output teanapped between 0 and 1. This output is

calculated according to the expression
1

a=-——. 2.4
1+en (2:4)

The log-sigmoid activation function is shown in Figlrel2.5.

+1
""""""" /—
_/ » j7)
0
B R § & & .._.i ........

Figure 2.5: Log-sigmoid activation function
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The single-input neuron model and some of the activationtfans have been considered, but in most real-
world problems, there are more than one variable that ai as@puts. In the next section, the multiple-input

neuron model will be discussed.

2.3.2 Multiple-input neuron

Generally, a neuron will have more than one input (Hagan.e1896). A model of a multiple-input neuron is

shown in Figuré_2J6.

Inputs Multiple-input neuron

C N7 A

pl Wi

P2 ’ i u
e DY < Wl e
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Figure 2.6: Multiple-input neuron

Each of the inputpy, po, ..., pr is multiplied by the corresponding weight; 1,w; o, ...,ws r, of the weight
matrix W. The notation of the weights can be explained as followswhightw, > represents the connection
from the second input to the first neuron. The net inptdr the activation function is obtained by adding the

bias to the weighted inputs. The net input can be written as
N=Wy1p1+Wi2P2+ ... +WiRrPR+D. (2.5)
In matrix form, the latter expression is written as
n=Wp+b, (2.6)

wherep is a vector and, in the case of a single neuron, the mtrixill have only one row. The output of the

multiple-input neuron can thus be written as
a=f(Wp+b). (2.7

One of the first ANNs was callederceptron This artificial neuron is able to classify multiple inputsd

one of two classes. In the next section, the perceptrontanthie will be considered.

2.3.3 The perceptron

The perceptron was introduced by Rosenblatt (1958) andsiscban the neuron that was proposed by McCul-
loch and Pitts (1943). The perceptron architecture is desilager neural network with a hard-limit activation

function (Hagan et al., 1996). Note that Hagan et al. (19@@)schot consider the inputs as a layer. A single-
neuron perceptron can classify the input vectors into oteotlasses. To illustrate this capability, a two-input

single-neuron perceptron will be considered. Figuré 2oisha single-neuron perceptron with two inputs.

13



Inputs Multiple-input neuron
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Figure 2.7: Single-neuron perceptron with two inputs

If wy 1 andwy  is, for example, -1 and 1 respectively, then the output véltiefined as
a:hmmmq.4_1]p+m. (2.8)

In this example, the weight matri¥ is a single row vector and if the product of the weight vectat the input
vectorp is equal to or greater thanb, then the outpué& will be 1. The output will be 0 if the product of the
input vector and weight vector is less thab. The input space is now divided into two parts. Fiduré 2.&sho

the decision boundary whebe= —1. The dotted line in the figure represents all the points w/kiee net input

b, )
A //
w /
L1
7/
7/
7/
n>0 \/ n<0
7/
7/
7/
7/
/'I : )pl
/ '1 1

Figure 2.8: Decision boundary

nis equal to O:
n:[_4 1]p—1:0. (2.9)

The network output will be 1 for all the input vectors that arethe left side of the boundary line and 0 for

all other input vectors. The decision boundary is deterdhing
Wp +b=0. (2.10)

For a single-layer perceptron, the boundary must be linedrtlus the single-layer perceptron’s pattern
recognition capabilities are limited to linearly sepaeaptoblems. As a result, the decision boundary line must
separate the input space into two areas where each areaaefsran output class. A decision boundary of a
problem that is linearly separable is shown in Fiduré 2.9hisfigure, all the black dots fall into one class and
the white dot falls in the other class. The dotted line sdparthe two classes; each point on the right side of

the dotted line will represent one class and each point otethside will represent the other class.
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Figure 2.9: Linearly separable problem

Figure[2.10 represents a problem that is nonlinear. Theéllats represent one class and the white dots

the other class. As seen from this figure, it is impossiblesfiagate these two classes by using a straight line.

X2

1‘ (@)

—<I,—o—x1
0 1
Figure 2.10: Nonlinearly separable problem

In the next example, a single-neuron perceptron will be usedassify a car into one of two classes: a
family sedan (represented by 1) or a sports sedan (repeesbn0). Three attributes will describe each car and

as a result, the input vector will be three-dimensional. péeceptron will thus be defined as

p1

P3

The first inputpy will represent the drive method of the car, -1 for four-whegle (4x4) or 1 for two-wheel
drive (4x2). The second inpyb will indicate the car’s engine power, -1 for cars with 120lwhtt of power or
more and 1 for cars with less than 120 kilowatt of power. Thalfimput ps will represent the number of doors
of the car, 1 for two doors and -1 for four doors.

The two car models that will be tested is a Volkswagen Je@dfamily sedan) and the BMW 325i (sports

sedan). The Jetta is 4x2 driven, has 75 kilowatt of power anddoors. The Jetta’s input vector is thus

1
pi=1] 1 |. (2.12)
-1
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The BMW is also 4x2, has 160 kilowatt of power and four doorse BMW's input vector is thus

1
p2=1| -1 |. (2.13)

The linear boundary that separates these two vectors symatigtis the p;, ps plane as shown in Figufe 2]11.

The decision boundary, which is thpg, ps plane, can be described by the expression

P2 =0, (2.14)
or
P1
[0 1 0]|p |+0=0 (2.15)
P3

since the weight vector must be orthogonal to the decisiamtdary in the direction of the prototype that is
classified as 1.

P3

P2

P P

1 2
(Sport sedan) b1 (Family sedan)

Figure 2.11: Input car vectors

The weight matriXV is thus[ 010 ] and the bia® is 0. The latter is 0 because the decision boundary

passes through the origin. If the Jetta’s specificationgjiaen as the input, then the output will be

1
a— hardlim [ 0 1 o] 1 |+0| =1 (family sedan) (2.16)
-1
If the BMW's specifications are given as the input then, thgpouwill be
1
a= hardlim [ 0 1 o] —1|+0| =0 (sportssedan) (2.17)
-1
Next, a new car will be classified by the perceptron, nametyAihdi TT 3.2 quattro This car is a sports

car, but not a sedan. The Audi is a four-wheel drive car (4kd3, 184 kilowatt of power and two doors. The
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Audi’s input vector is the following:
p3=| -1 |. (2.18)

The Audi’s input vector is presented to the perceptron aeddhowing output is obtained:

-1
a= hardlim [o 1 o] —1 | +0]| =0 (sportssedan) (2.19)
1

The perceptron classified the Audi as a sports sedan, beitdnasea closer resemblance to a sports sedan than
a family sedan. If the car was closer to a family sedan (forrgda: four doors, 4x2 driven and less than 100
kilowatt of power), the perceptron would be able to detemniiras well.

When many inputs are used, it is difficult to determine theghematrix and the bias vector, as it is not
possible to visualize the decision boundaries. This ditfjdg overcome by a learning rule that train perceptron
networks to solve classification problems. The percepteaming rule will be discussed in Section 2.5.1.

In cases where a more complex ANN is needed, a layer of newam$e used. This concept will be

discussed in the next section.

2.3.4 Alayer of neurons

In a single-layer neural network that consists of a numberenfrons, each input is connected to each neuron.

A single-layer neural network which h&neurons an@ inputs is shown in Figure 2.12.

Inputs Layer of S neurons

Figure 2.12: Single-layer neural network

The layer consists of the weight mathi, the bias vectob, summation functions, activation functions and
the vectora as the output. Each input in the vecfois connected through the weight matito each neuron.
It is not unusual for the number of neuro8so differ from the number of inputR. Each neurom consists of

a summation function, a bids, an activation functiori and an outpug;, wherei is the neuron number. It is
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possible for neurons to have different activation funatiohhis is accomplished by creating a composite layer
of neurons, consisting of two or more single-layer netwarkgarallel where the neurons in individual layers
will have the same activation functions. Thus, all the neksavill have the same inputs and each network will
give a part of the output.

The weight matrix in a layer of neurons is shown below:

Wy1 W12 ... WiR
Wz1 Wp2 ... WoR
W = ' . (2.20)
L Ws1 Ws2 ... WsR ]

The notation that is used by the weight matrix can be expthasefollows:w, 3 for example, represents the
weight connection from the third source to the fourth neuron
When a single-layer neural network is not powerful enougbetdorm the task at hand, a multilayer neural

network can be used. In the next section multilayer peroaptwill be discussed.

2.4 Multilayer perceptrons

Multilayer perceptrons (MLPs) are neural networks thatehtavo or more layers that consist of one or more
neurons in each layer (Rumelhart and McClelland, 1986). fiise hidden layer receives the inputs from
outside stimulation (Negnevitsky, 2005). The last layeknswn as the output layer and is responsible for
the final output of the neural network. Between the input antbut layer, there can also be one or more
hidden layers. The hidden layers’ neurons detect patteons the data. The weights of the neurons represent
characteristics of the patterns hidden in the data. Theubldger then uses these characteristics to determine
the output pattern. Each input is connected to each neurtmeifirst hidden layer. Each neuron in the first
hidden layer is then connected to each neuron in the nexehitiyer. Finally, each neuron in the last hidden
layer is connected to each output neuron. An MLP is classifted feedforward network, which indicates that
the input values are distributed from the input layer, ldyetayer, to the output layer.

In the architecture of an MLP, each layer has a weight m&tfja bias vectob, a net input vecton and
an output vectoa (Hagan et al., 1996). The number of each layer is appendedgseascript to each of these
variables to distinguish between the different variabhethe different layers. As a result, the weight matrix for
the first layer and second layer will be written\A8' and W2 respectively. Note that Hagan et al. (1996) do
not regard the inputs as a separate layer. A three-layemneiiMagan et al., 1996) is shown in Figlire 2.13 to

illustrate this multilayer notation. The final outpast of this example can be defined as

a® = FBW3(W2L(Wlp +bl) +b?) +b3). (2.21)

As shown in Figur€ 2.13, there aReinputs and $neurons in layek. The different layers in the network

can have a different number of neurons in each layer and efferedt activation functions. In this figure, the
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Figure 2.13: Three-layer neural network

first hidden layer is represented by the first layer, the stdayer represents a second hidden layer and the
third layer is the output layer. For the first hidden lapés given as input and the layer outpuia’s which in

turn is given as input for the second hidden layer. The sebanen layer’s output is? and is given as input
for the output layer, which gives the final outit.

These MLPs are more powerful than single-layer perceptraasmost functions can be approximated
arbitrarily well with a two-layer network that uses a sighaictivation function in the first hidden layer and a
linear activation function in the output layer (Hagan et #096).

When constructing an MLP with supervised learning, the ¢gotd develop a good model that is trained on
a data set where the target is known. This model must theonpesfell on data that has not been seen before.
When training an MLP on a training data set, the more compieXMLP, the more accurate the neural network
will be on that data set, but this may lead to overfitting (Mah, 1991). The latter occurs when the network is
too complex and learns the data from the training data seperidrms well on that data, but performs badly on
new, unseen data. Another problem with adding extra hidagers to make the neural network more complex
is the additional computing power needed for training thatéases exponentially (Negnevitsky, 2005).

The number of neurons in the output (last) layer is deterchimethe problem specifications. For example,
in some cases, if the data set used for training the networkists of one target attribute, then the output layer
will have one neuron. For the number of neurons in the hiddgers there are no constant formula for all
problems. The number of layers in a network may also diffat,rbore than two layers (a hidden layer and
an output layer) are rarely used. Neurons may or may not itobtases. In many cases, a network will be
more powerful when the neurons have biases, as an inputwd @alill result in a neuron output of 0 if there
is no bias added. A construction algorithm is thus needediibegthe development of a neural network that
will perform satisfactory for a specific problem. In Secti@i6, algorithms for the construction of MLPs will

be discussed.
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In order to show that an MLP can solve problems that a sirglerlnetwork cannot, the exclusive-or (XOR)
problem will be considered. This problem was used by Mingky Bapert (1969) to show that a single-layer

network is limited to a problem where the categories arealiyeseparable. The input data set contains the

following data points:

e lel oo [t [ oe [}

wheret; denotes the target values. As shown in Figurel2.14, the X@Bgm is not linearly separable and thus
a single-layer network would be unable to solve it. There laogvever, many different MLPs that can solve the

XOR problem, but for this example, a two-layer MLP will be ds&his MLP can be seen in Figure 2.15.
P

1
1‘ d2 d4o

Figure 2.14: XOR problem space
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Figure 2.15: Two-layer XOR neural network

The first hidden layer consist of two neurons. Each of the teirons create a decision boundary, as shown
in Figureg 2.6 and 2.17. The output layer have one neuras.rn&ron combines the two decision boundaries,
which then distinguish correctly between the target véeiaalues. For this example, the hard-limit activation
function is utilized. The classification is shown in Figlrd® where the inputs between the two boundaries

will result in an output of 1.
The connections (weights) of ANNs are modified by means efsrthat are known as learning rules. In the
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Figure 2.18: Final network output

next section, two learning rules are discussed: one thaed to train a perceptron and the other one to train a

multilayer perceptron.

2.5 Artificial neural network learning

A learning rule is an algorithm that modifies the weights ai@$és of a neural network in order to train it to
perform a task (Hagan et al., 1996). A learning rule is thusetomes called &aining algorithm There are

three main categories of learning rules:
e Unsupervised learning: With unsupervised learning, tieen® target output available. The weights and
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biases of the neural network are thus modified only in resptmghe inputs.

e Supervised learning: Supervised learning uses a trairgtg skt that contains inputs with the correct
target output. The inputs are applied to the neural netwndktiae output of the network is compared to
the target output. The learning rule then makes changes toefghts and biases in order for the network

output to be more accurate compared to the target outputidistudy, supervised learning is performed.

e Reinforcement learning: Reinforcement learning workshim $ame way as supervised learning, except
that a target output is not provided. Instead, the algorithrgiven a grade that measures the neural

network’s performance over some succession of inputs.

2.5.1 The perceptron learning rule

The perceptron learning rule falls in the supervised |egyoategory. In order to explain the perceptron learning
rule, it would be helpful to be able to reference individukdneents of the network output. First, the weight

matrix can be denoted as follows:

W11 Wi2 .. WiR
W21 W22 .. W2R
W = ’ ’ . (2.23)
i Ws1 Ws2 .. WsR i

A vector that contains the elements of tlerow of W can be defined as

Wi 1

Wi 2
W= . (2.24)

Wi R

The weight matrix can now be partitioned as follows:

1WT

W = : (2.25)

where;w' denotes the transpose;af. With the partitioned weight matrix, thiéh element of the output vector
can be written as
a; = hardlim(n;) = hardlimGw"p + by). (2.26)

Consider a single neuron with two inputs, as shown in Figui€,2vhere the weights and bias will be
chosen manually by means of a decision boundary.

The outputa of this two-input single-neuron perceptron is determingd b

a = hardlim(n) = hardlim(Wp + b) = hardlim(;w" p + b) = hardlim(wy 1 p; + W 2p2 + b). (2.27)
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Figure 2.19: Single-neuron perceptron with two inputs
The decision boundary can be written as
n=1W'p-+b=wy1p;+wip2+b=0. (2.28)
Letwy1=1,w;5 =1 andb = —1, then the decision boundary will be
N= W p+b=wyip;+Wiop2+b=pi+p2—1=0. (2.29)

The decision boundary defines a line in the input space whereutput will be 0 on the one side and 1 on the
other side of the line. In order to draw the line, the pointerehthe line intercepts the and p, axes must be

found. Thep; intercept can be found by setting to O:

P1 Wit =1 (2.30)
The py intercept can be found by setting to O:
b -1
= ———= — — = 1. 2.31
Po = 1 (2.31)

The decision boundary line can now be drawn, as shown in &igi20. According to this figure, the output of

the network will be 1 for all inputs that correspond to a pdinthe shaded area and 0 otherwise.

D>

\
CRGOR N

> D1
a=0 i\

Figure 2.20: Decision boundary

To apply the perceptron learning rule, a data set is requiradcontains input/output pairs:

{platl}a{pZ,tZ}’"'>{antQ}’ (232)
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wherepg is an input andy is the corresponding target output wigh=1,2,...,Q. An example data set will be

used for illustrating the perceptron learning rule (Hagal.e 1996):

LAl o))

To simplify the illustration of the learning rule, a singbeuron perceptron without a bias (where Hias 0)

will be used, as shown in Figure 2]21.

Inputs No-bias neuron
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Figure 2.21: Single-neuron perceptron without a bias
The output of this perceptron is thus defined as
a= hardlim(Wp). (2.34)

From the example data set, it is known that there are twohlasan the input vector and one target output.
As a result, the learning rule only needs to adjust the weigtttix, which in this case consists of two elements.

The first step that must be performed is to initialize theseweights with random values:
w'=[10 -08] (2.35)

The first input vectop; is how applied to the network:

a= hardlim(;w'p1) = hardlim ([ 1.0 -08 ] {
2

! ] ) = hardlim(—0.6) = 0. (2.36)

The target output is 1, but the network gave an output of 0.hesve in Figurd 2.22, the initial weight values
caused to be incorrectly classified by the decision boundary. Is flyure, the black dot represemts with
an output of 1. The other two hollow dots represpntindps with an output of 0 each. As seen in the figure,
the decision boundary does not separate the inputs cgrrédddo note that the decision boundary must pass
through the origin of the graph, as there is no bias. The vieigttor is orthogonal to the decision boundary
and, due to this, the decision boundary will shift if the weigector changes.

The weight vector needs to be adjusted to improve the prityabi classifying p1 correctly. To do this,
p1 is added tgw. This results imw pointing more in the direction g;. If this is repeated witlp,, then,w

would asymptotically approach the directionmf This rule can be described as follows:

If t=1 and a=0, then w"™= w%+p. (2.37)
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Figure 2.22: Incorrect decision boundary

{ 2.0 }
_ . (2.38)
1.2

The resulting decision boundary, after adjusting the weiglues, is shown in Figufe_ 2.23. This figure shows

Applying this rule to the example would result in the followgt

1.0 1
1Wnew: 1WoId +p1= +
—-0.8 2

how the weight vector changed and, consequently, how thisidedoundary shifted.

A
OZ [ ’1

Y

Figure 2.23: First adjusted decision boundary

Input vectorp, is now applied to the network:

a = hardlim(;w"p,) = hardlim ([ 20 12 ] { - D — hardlim(0.4) = 1. (2.39)
2

The outputa is misclassified by the network, as the target associatddpwyiis O and outputiis 1. The weight
vector now needs to be moved away from the input. This can be ddth the following rule:

If t=0 and a=1, then w""=,w°9_p. (2.40)

Applying this rule to the example would result in the followi

2.0 -1 3.0
1WneW:1W0Id_p2: |: ] _ |: ] — |: ] . (2.41)
12 2 -0.8

The resulting decision boundary, created by adjusting thight values, is shown in Figulce 2124. In this figure,
the decision boundary shifted again as the weight vectangddh

The final input vector in the example data set, is now applied to the network:
o . 0 .
a= hardlim(;w’ p3) = hardlim { 30 —-08 ] = hardlim(0.8) = 1. (2.42)
-1
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Figure 2.24: Second adjusted decision boundary

The input vector was misclassified again and, consequéehéyweights need to be updated. The previous rule

also applies to this situation and will be used:

3.0 0 3.0
JWneW — ol D3 = _ — . (2.43)
—-0.8 -1 0.2

The resulting decision boundary, created by adjusting thight values, is shown in Figulre 2125. As this figure

shows, the network has learnt to classify all three inputarsacorrectly. The third and final rule is:

If t=a, then wW""W= w9, (2.44)
0* o'
1w
4——r-—‘——_—|———_'i <~

Figure 2.25: Third adjusted decision boundary

The three rules can be combined to form a single unified legmile. First, a new variable, the perceptron
errore, is defined:

e=t—a (2.45)

The three rules can be rewritten with the new variades:

If e=1, then w"™%= ,w%4p. (2.46)
If e=—-1 then w"W= ,w°9_p. (2.47)
If e=0, then w™W= w9 (2.48)
The unified rule can now be formulated as:
W™= w9 ep = w9 4 (t—a)p. (2.49)
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When a bias is added to the perceptron, it can be updated iy t same rule. A bias can be seen as a weight

for which the input is always 1 arglcan thus be replaced by 1, resulting in the following rule:
bhew — pold 4 (2.50)

These two rules for updating the weights and the bias cankmsmodified to be used in multiple neuron

perceptrons. To modify thigh row of the weight matrix, the following rule will be used:
W = WOl +gp. (2.51)
To modify theith element of the bias vector, the following rule will be used
b= b + @. (2.52)

These two rules, one for updating the weights and the otrarddating the biases, are known collectively as
the perceptron learning rule.
A more complex set of rules, called the backpropagationrdhgo, can be used to train MLPs. In the next

section, this learning algorithm will be discussed.

2.5.2 The backpropagation algorithm

In the discussion of the backpropagation algorithm (Hadaa. £1996), an abbreviated notation will be used.

An MLP with three layers is shown graphically with the abbagéed notation in Figure 2.26, where

a® = FBW3(W2L(Wlp +bl) +b?) +b3). (2.53)

Input First layer Second layer Third layer
N7 N/ N k!

Ly AYY i’ W i’ A\ % i’

1 2 3
o S1xR\ n' fl o .SQXS1\ n’ f2 o LSGXSQ\ l f3 o
S1x 1 S2x 1 58x 1
1P blj l—bbz-)' 1P b3j
R S'x1 S 52x1 2 S8x 1 <3

\/ \ P J \ J

Figure 2.26: Multilayer perceptron in abbreviated notatio

As discussed earlier, the output of one layer is used as ha for the next layer. This can be shown by
the following:

am™l =i wmtlgn L h™d)  for m=0,1,..,M —1, (2.54)

where the number of layers are representedvlbyr he first hidden layer receives its input from the external
source:

a’=p. (2.55)
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The output of the last layer (output layer) is the final outpiuthe MLP:
a=a. (2.56)

As with the perceptron learning rule, the backpropagatigordhm uses a data set that contains input data as

well as target output data:
{p17t1}7{p27t2}7"'7{pQ7tQ}7 (257)

wherepg is an input andg is the corresponding target output wigk=1,2,..., Q.
The backpropagation algorithm uses the mean squared ®®E) to estimate the network parameters.
The network computes an output for each input that is sughpliehe network. This output is compared to the

target and the network parameters are adjusted to minitn&®ISE:
F(x) = E[e] = E[(t—a)?], (2.58)

wherex represents the vector containing the weights and biasd® afdtwork. This can be generalized to the

following if the network have multiple outputs:

F(x)=E[e'e =E[(t—a)T (t—a)]. (2.59)
The MSE is approximated by
F(x) = (t(k) —a(k))" (t(k) —a(k)) = €' (Ke(k), (2.60)

where the squared error at iteratikrhas replaced the expectation of the squared error. To aippaite the

MSE, the following steepest descent algorithm is used:

oF
V":T]j(k+1):W=T]j(k)—0‘a—Wm, (2.61)
B(k-+ 1) = (K~ oo (2.62)
i

wherea represents the learning rate.
The partial derivatives are calculated by using the chdmaticalculus. This is done because the error is
an indirect function of the weights in the hidden layers. @dew the chain rule of calculus, suppose an explicit

functionf exists for the variabl@e. If the derivative off with respect to a third variabl must be determined,

then:
d f(g\fvw)) _ d;(n”) x dg(\X/V)‘ (2.63)
Consider the following example of the chain rule: If
f(n=€" and n=2w, sothat f(n(w)) =¢e*, (2.64)
then
dfg‘\fvw)) _ d;(:) x dgﬁ”f — (&)(2). (2.65)
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This concept is used to find the derivatives[in (2.61) and2.6
OF _oF onn
ow ~onMm ow

OF OF onM

e 2.67

o™~ on 9 (2.67)
As the net input to layem is an explicit function of the weights and bias in that laybe following equation

can be used to compute the second termis in2.66) and (2.67):

and (2.66)

g‘n—l
n" = Zw{f‘jaj ~1 M (2.68)
J:
Hence
on" ., on"

—  —=a. y = = 1. (269)
owm 1 gp!

The sensitivity of to change in théth element of the net input of layen can be defined as follows:

oF
|
As a result,[(2.66) and (2.67) can be simplified to
oF
— =g"a™ land (2.71)
o'} J
oF
|

The approximate steepest descent algorithm can now besseatas
W'} (k+ 1) = w{Tj(k) —ag"a"* and (2.73)
b"(k+1) =b"(k) —as". (2.74)

This approximate steepest descent algorithm can be wiittaratrix form as

W™M(k+1) = W™ (k) —as™(@ )" and (2.75)
bM(k+1) = b™(k) — as™, (2.76)
where
- T
onf'
A oF
_OF _| o
"= o | | (2.77)
OF
L ongn

The backpropagation algorithm gets it name from the way iithvthe sensitivity is calculated. The sensitivity
at layermis calculated from the sensitivity at layer+ 1. The recurrence relationship for the sensitivities can

be derived by using the following Jacobian matrix:

anMt  gntt anMt
ony ony' Tt ongn

anm+1 anm+1 anm+1

m+1 2 2 . 2
on _ ony ong' gy (2.78)
onm : : : ' '

a”QKil a”gn++11 0”%11

on onJ' onghn




Next, an expression for this matrix is sought. Consider jrelement of the matrix:

s +1.m m4-1
ot (5o ) R (2.79)
on’" on’" Jon
ofM(nM) .
— Wir?j—&-l anrjnj _ VVirT1j+1 fm(nrjn) (2.80)
where
. afM(nM)
fm(n) = anjmj : (2.81)
Hence, the Jacobian matrix can be written as:
onm+1 .
S = WMHLEM(M) (2.82)
where ) )
fM(n") 0 0
. o f"ny) ... 0
FM(n™) = . _ . : (2.83)
o0 0 ... f"(nd) |
The recurrence relation for the sensitivity can be writtgrubing the chain rule in matrix form:
OF  /on™INT oF nr OF
= FM(nM) (WM™ Tgml, (2.85)

This shows that the sensitivities are propagated backweoth the last layer to the first layer, through the

network:
MM, 2 (2.86)
The last step is to formulate the starting patitfor the recurrence relation df(2184), which is obtainechat t
final layer:
2 sV 2
oF odt—aT(t—a) 0yj(tj—a)) 03,
) onM onM onM (t a')ani'v' (2.87)
Since
oa aaM afM(M) .y
— = = fY(n 2.88
sM can be written as:
=20t —a) fM(n"). (2.89)
This can be written in matrix form:
M= —2FM(nM)(t — a). (2.90)

The three steps of the backpropagation algorithm can be swired as shown in Algorithm 2.1. The
backpropagation algorithm seeks to minimize the MSE. IIME&E is sufficiently small, the network is consid-
ered to have converged. An extended example of the backgaitipa algorithm can be found in Hagan et al.

(1996).
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1. The input is propagated forward through the network:
a®=p,

a™t = wmtigm p™) for m=0,1,..,M —1,

a=aV.

2. The sensitivity is propagated backward through the nétwo
M= —2FM(nM)(t — a),
"= FM(n™W™HTS™ form=M—1,....2,1.
3. The approximate steepest descent rule is used to updateetbhts and biases:
W™M(k+1) = W™(k) —as™(@™ )T,

b™(k+ 1) = b™(k) — as™.

Algorithm 2.1: Backpropagation algorithm

The MLP architecture and the backpropagation algorithrhateused to train an MLP have been discussed.
Since the architecture of MLPs may differ for different pleshs, MLP construction will be regarded in the next

section.

2.6 Multilayer perceptron construction

One of the most important tasks in ANN design is to determimeadppropriate number of hidden layers and
the number of neurons in the hidden layers (hidden neur@egheer and Hajmeer, 2000). If too few hidden
layers and neurons are used, then underfitting will occua result, the network will not be able to distinguish

between complex patterns. On the other hand, if the netwaskibo many hidden layers and neurons then
the result would be overfitting, as discussed in Section Agresearch have shown that an MLP with one
hidden layer can approximate any continuous function with @esired accuracy (Zhang et al., 1998), only
construction methodologies that are used to create MLAsamié hidden layer will be considered.

Normally, the data analyst wants to find the number of hiddmurens that work for a given problem. This
task is much easier than determining the theoreticallymoth architecture, but it may still be very difficult to
decide before training what number of hidden neurons areopppte for a given problem (Reed and Marks
II, 1999). Some heuristics are available as guidelines terdgne the number of hidden neurons. They include
x=2n—1 (Lippmann, 1987)x = 2n (Wong, 1991)x = n(Tang and Fishwick, 1993) and=n/2 (Kang, 1991),

wherex is the number of hidden neurons amis the number of inputs. Unfortunately, there are no depalada
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general rules for choosing the number of hidden neuronsvarast. A common ad hoc approach is to deter-
mine the number of hidden neurons by trial and error, thabisxperiment with different configurations until
one is found that performs well. This approach may be timesgoring if many network configurations have
to be tested before an adequate one is obtained.

Constructive methods seek to adjust the size of the netvediiet problem by starting with a small number
of hidden neurons and adding neurons as needed until anatéezplution is found. The greatest advantage of
this approach is that there is no need to make an estimate cobtinect hidden layer size in advance. Reed and
Marks Il (1999) also discuss good reasons from a theorgtimiat of view to consider these algorithms.

Pruning methods, by contrast, train a larger than necegsatwyork and then remove unneeded hidden
neurons. These methods are complemented by constructiedse Both constructive methods and pruning
methods adjust the hidden layer size to the problem at hawen Bhough pruning methods can be effective,
they require an estimate of what number of hidden units argér than necessary”. Constructive methods can
determine the hidden layer size without this estimate.

Sometimes, constructive methods add more neurons thassaage For this reason, it is often useful to
follow a construction phase with a pruning phase. Some ilgos let the processes compete simultaneously,
one trying to add neurons, while the other attempts to rentiogm. At some point, the structure stabilizes
when the processes balance.

An important issue that must be addressed with construni@nods, is when to stop adding new hidden
neurons. By adding more hidden neurons, the training daterse can be made as small as desired. Unfortu-
nately, each additional neuron will result in less and lessefiit, according to the law of diminishing returns.
It is a question of whether the incremental error reductiowaerth the cost of the additional storage require-
ments, processing time and hardware costs. For the classtificous problems, an infinite number of hidden
neurons might be needed to achieve a zero error. In geneeadlata analyst must declare some nonzero error
to be acceptably small and stop adding hidden neurons wieadhieved.

In addition to the question of efficiency, overfitting and gealization also cause a problem. Reed and
Marks Il (1999) discuss a number of factors which have arcetia generalization. When training on sampled
data, the error on the training set is only an estimate ofrile ¢rror, as the sampled data contain noise and
other imperfections. These two error functions have a teayto be similar, but slightly different. As a result,

a change that reduces one will not always reduce the othermdlly, the error functions have large-scale
similarities with small-scale differences. Both erroraddo decrease together, while learning progresses in
the initial stages, as the network fits the large scale feataf the training set. At some point of training the
network starts to fit small-scale features where the twotfans differ and additional training starts to have a
negative effect on the true error. When this happens, inggn@nts in the training error no longer correspond
to improvements in the generalization error and, consetydime network begins to overfit the data. It is often
desirable to stop training before the training-set erraches zero in order to obtain good generalization. To
avoid the problem, some implementations pass it to the pguaigorithm. The constructive stage is allowed

to continue well past the point of overfitting and is thendaled by a pruning stage to satisfy generalization
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criteria.

Constructive algorithms also have a secondary advantagmay decrease overall training times, since
useful learning occurs when the network is still small. Aligh a small network may not satisfy the error cri-
teria, it may learn the dominant characteristics of thegifignction and consequently simplify learning in later
stages. In contrast, with nonconstructive methods, areimaate network would be abandoned and anything
that was learnt would have to be relearnt by the next netwak was tested. The learning is retained with
constructive methods and finer details are picked up as nmddei neurons are added.

The advantages of constructive algorithms over pruningralgns justify the use of such a technique
in this study. Some examples of constructive methods areadjc1Node Creation (Ash, 1989), Cascade-
Correlation (Fahlman and Lebiere, 1990), the Upstart &lyor (Frean, 1990), the Tiling algorithm (Mézard
and Nadal, 1989), Marchand’s algorithm (Marchand, Goled Rnjan, 1990), Meiosis Networks (Hanson,
1990), Principal Components Node Splitting (Wynne-Joth882), construction from a Voronoi Diagram (Bose
and Garga, 1993) and the N2C2S algorithm (Setiono, 2001g.1atter constructive algorithm was chosen for
this study, as it builds a feedforward neural network withrele hidden layer. To determine when to stop
adding new hidden neurons, the algorithm utilizes a subigbe@vailable training samples for cross-validation.
The algorithm was originally designed to perform classifmaand was modified to enable a comparison with
the automated construction algorithm of generalized additeural networks (GANNS) that are discussed in

the next chapter. In the next section, the algorithm is dised.

2.6.1 The N2C2S algorithm

Assume there ar® data sample$x,,Yp), p = 1,2,...,P, where inputx, € RN, targety, € [0,1]M,N is the
dimensionality of the input data arM is the number of classes. The algorithm also requires tieadidita set
must be split randomly into two disjointed subsets, calleglttaining data set(T) and thecross-validation
data set(C). The training data set is used to find the optimal weightshefdonnections and the validation
data set is used to determine the architecture of the final.Mb@ objective of the algorithm is to con-
struct and train an MLP that performs good on unseen data. Tl a data set containing training sam-
ples(Xp,Yp), P=1,2,...,P1, C a data set that contains cross-validation samptgsy,),p = 1,2,...,P>, with

P =P, + P, H be the starting number of neurons in the hidden layer, latite number of hidden neurons
that are added to each new network. The N2C2S algorithm septed in Algorithm 2.2. This algorithm
begins by training an MLP withl neurons in the hidden layer and then training another ML With neu-
rons. The weights of the second MLP are set to the optimal M®ithat are found in the first MLP. These
two MLPs are then compared to determine if the second netwerforms better than the first one. The
accuracy results on the training data set and the crossatiain data set are added together for each MLP
and then compared to each other. If the second network pegfbbetter than the first one, another net-
work is built with h more neurons added to the hidden layer. After that, the skaad third MLP will be
compared. This process of adding more neurons to the neworletmill continue until the newer network

does not perform better than the previous one. If this happie same network will be trained again, but
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1. Construct an MLP, called1, with N inputs,M outputs, andd neurons in the hidden layer.

2. Initialize the connection weights df randomly and train the network, using dataBebcore the

network on the data s€t and let the accuracy on data JeandC be A1, andAc: respectively.
3. Create a new MLP and calll{,, with N inputs,M outputs andd + h neurons in the hidden laye]

4. Set the weights of the connections to and from the firsieurons in the hidden layer of netwo
N to the optimal weights of netwonl;. The rest of the connection weights must be set randofly.
Train N, on the training data sét and test it on the cross-validation data €et et the accurac

on data seT andC be A1, andAc, respectively.

5. (A) If (AT2+AC2) > (AT1+AC1), then

e SetH :=H +h.
o LetNy =Nz, Ar1:=Ar2,Ac1 == Acz.

e If H < MaxH; go to step 3.
(B) Else:

e Create a new MLP, calleds, with H + h neurons in the hidden layer. Assign random val@les
to all the weights. Then traiN3 on the training data sdt and test it on the cross-validati

data seC. Let the accuracy on data seandC be Atz andAcs respectively.
o If (Ar3+Ac3) > (Ar1+Ac), then
— SetH:=H+h.
— LetN; :=Ns3,Ar1 := A73,Ac1 .= Acs.

— If H < MaxH; go to step 3.

6. NetworkN;j is used as the final constructed MLP.

Algorithm 2.2: N2C2S algorithm

this time with randomly assigned weights. If this networkaatloes not perform better, then the algorithm will
stop, otherwise the process of adding a neuron and compiatmthe previous network will continue.

The N2C2S algorithm was modified to make the comparison viighautomated construction algorithm
of GANNSs possible. The reasons for the alteration, modificatand resulting algorithm that are used in the

study are presented next.
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2.6.2 The modified N2C2S algorithm

The automated construction algorithm for GANNSs (discusise8ection 3.5.3) can perform in- and out-of-
sample model selection and variable selection (Du Toit6200n-sample model selection is performed by
choosing the best model, based on an in-sample model selaxiterion. Out-of-sample model selection is
obtained by splitting the input data set into a training set a validation set. Out-of-sample performance is
then measured on the validation set. While searching fob#dst GANN model, variable selection is done
simultaneously. Only one output node is allowed for bindgassification (e.g. probabilities) or regression.
As a result of these possible tasks which can be performedhenestrictions on the GANN architecture, the
N2C2S algorithm was modified as follows:

The target is restricted to one nod = 1) andy, < [0,1] when binary classification is performed or
Yp € R for regression tasks. When in-sample model selection ig dibve model is trained and evaluated on
the training set. In-sample model selection criterion galare utilized for the accuracy measuremexts
A, Arz, with Ac1 = 0, Ac2 = 0 andAc3 = 0. For cross-validatiordAt; = 0, Ar2 = 0, Ar3 = 0 and the out-of-
sample performance is used for the accuracy measuredent8c, andAcs. Since hidden neurons are added
and removed one at a time with the automated GANN construgtigorithm,h = 1. To ensure that search
commences from the most simple architectie= 1. Variable selection was not implemented, in order to
keep the modified algorithm simple and as close as possiliteetoriginal N2C2S algorithm. Algorithm 2.3
was obtained after applying these changes to the origin@2$2algorithm.

In the next section, the implementation of the modified N2@R®rithm will be discussed.

2.6.3 Implementation of the modified N2C2S algorithm

The modified N2C2S algorithm was implemented in the @A$lacro Language and used to search for a good
MLP model with one hidden layer. This implementation has pads. The first part uses the modified N2C2S
algorithm to search for a good MLP model and the other partbsuge force method that is used to train a
succession of MLP models, defined by the user, to find a good iaéel. The program is hardcoded to work
with the five data sets that are used in this study. These ditaand the experiments that are conducted will
be discussed in Chapter 4. In order to run a specific expetjrtt@user must configure some settings in the
program. By changing these settings, the user can speéifgiata set and experiment that must be conducted

on the data. The following settings are available to the:user
e DataSelectionSelect the data set. The options are:

— Adultfor the Adult data set.

— Housefor the Boston Housing data set.
— Ozonefor the Ozone data set.

— SOd4for the SQ data set.

— Spamfor the Spambase data set.
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1. Construct an MLP, called1, with N inputs, 1 output, anti = 1 neuron in the hidden layer.

2. Initialize the connection weights &f; randomly and train the network by using data $e
When performing in-sample model selection, evaluate thear& on the data sef with the
model selection criterion, let the accuracy on datalsbe At; and setAc; = 0. For cross-
validation, score the network on the data €etet the accuracy on data sgtbe Ac; and set

AT]_ =0.
3. Create a new MLP and call\, with N inputs, 1 output an#l + 1 neurons in the hidden lay

4. Setthe weights of the connections to and from theHinseurons in the hidden layer of netwo
N, to the optimal weights of networkl;. The rest of the connection weights must be et
randomly. TrainN, on the training data sét. When performing in-sample model selectidp,
evaluate the network on the data 3etvith the model selection criterion, let the accuracy pn
data sefl beAr, and setAc> = 0. For cross-validation, score the network on the dat& skt

the accuracy on data s€tbe Ac, and setAr, = 0.

5. (A) If (AT2+AC2) > (AT1+AC1), then

e SetH .=H + 1.
e LetN; =Nz, Ar1 = At2,Ac1 := Ace.

e If H < MaxH; go to step 3.
(B) Else:

e Create a new MLP, calletlz with H + 1 neurons in the hidden layer. Assign rand
values to all the weights. Thereafter, trégon the training data s@t When performing
in-sample model selection, evaluate the network on thesddifawith the model selectio
criterion, let the accuracy on data 3dbe Ar3 and sefAc3 = 0. For cross-validation, sco
the network on the data s€t let the accuracy on data fetbe Ac3 and setArz = 0.

o If (Ars+Ac3) > (Ar1+Aci), then

— SetH :=H + 1.
— LetN; :=Ng3,Ar1 := At3,Ac1 .= Acs.

— If H < MaxH; go to step 3.

6. NetworkN;j is used as the final constructed MLP.

Algorithm 2.3: Modified N2C2S algorithm

e Dir: Specify the directory of the data set.
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e k: Specify how the model is trained and validated on the datal$e following values are available:

— k=0: The complete data set is used for training and validation.

— k=1: The data set is split into training and validation subgeétls user-defined sizes, specified by

the SplitTrainandSplitValvalues.

— k> 1: K-fold cross-validation is performed whekeés the number of folds.

SplitTrain The size of the training data set as a percentage of thedtdl skt (whetk = 1).

Splitvat The size of the validation data set as a percentage of thedta set (whek = 1).

Prelim: The number of preliminary runs that are performed whenrdeteng the initial weights of an

MLP model.

NetOptions Choose between a deviand®y)- or negative log-likelihoodlike)-based objective function.

Criterion: Select the model selection criterion (whdiiNodes= 0). The following options are available:

— AIC: Akaike information criterion.
— VAVERR Average validation error.

— SBC Schwarz Bayesian criterion.

HidNodes Select the number of hidden neurons from where the brute fenumeration will commence.
WhenHidNodesis set to 0, the modified N2C2S algorithm will be executed tieiaeine the number of

hidden neurons.

e hMax Specify the maximum number of hidden neurons that are afibiw the model.

The brute force part of the MLP model selection program edifferent MLP model architectures by
enumerating through a number of neurons in the hidden Iay@s is done when the parametdrdNodesis
set to a value greater than 0. An MLP will be created with thenlber of neurons in the hidden layer that
are set to the value of the parametidNodes The MLP will then be trained and tested by using either the
whole data set, the data set split into two subsets-fwld cross-validation is performed. The latter technique
is discussed in Section 3.5.2. A new MLP will then be creat@t an extra neuron in the hidden layer and
with randomly assigned weights. This will continue untiéthumber of neurons in the hidden layer reach the
value of the parametdMax The results of the brute force method are utilized as a in&stdr the modified
N2C2S algorithm’s results in Chapter 4. Both the modified R8@lgorithm and the brute force enumeration
will produce a results file which contains fit statistics.

The program code of the MLP model selection program thataiosithe modified N2C2S algorithm and
the brute force method that was used to search for a good MLdehi® shown in Appendix A. In the next
section, an example which utilizes the Concrete data sahiand Asuncion, 2010) is given to illustrate the

modified N2C2S algorithm.
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2.6.4 Example

The instances of this data set represent information aheutixture of cement and the compressive strength of
that specific mixture. The data set consists of 1 030 instaaod has 9 attributes. This is a regression problem
and the objective is to predict the compressive strengthagfnaent mixture Concretecompressivestrength)

by using the remaining 8 attributes as inputs. These atésbare described in Takle P.2.

Attribute Description Attribute scale
Cement Cement in a imixture, measured in kg Interval
Blastfurnaceslag Blast furnace slag in a frmixture, measured in kg Interval
Fly_ash Fly ash in a M mixture, measured in kg Interval
Water Water in a ni mixture, measured in kg Interval
Superplasticizer Superplasticizer in a fimixture, measured in kg Interval
Coarseaggregate Coarse aggregate in a®mixture, measured in kg Interval
Fine_aggregate Fine aggregate in a fmixture, measured in kg Interval
Age Age of the mixture in days (1-365) Interval
The compressive strength of the concrete mixture,
Concretecompressivestrength| measured in megapascal (MPa) Interval

Table 2.2: Concrete data set attributes

Methodology

The use of the modified N2C2S algorithm was selected to sdarch good MLP model lidNodes= 0).
In-sample model selection was utilizekl € 0) and the SBC value was chosen as model selection criterion
(Criterion = SBQ. The network architecture was restricted to a maximum dfiillen neuronshMax= 15).
Finally, Prelimwas set to 10 antletOptiongo dev.

In step 1, an MLP was created with 8 inputs and 1 hidden neudrostep 2, the weights of this network
were initialized randomly and the network was trained amatest by using the whole data set.

In step 3, a new MLP was created with 2 hidden neurons. In stépedweights of the connection to and
from the first hidden neuron were set to the optimal weighthefprevious model. The rest of the connections
were set to random values and the network was trained anddscor

The result of the test in step 5(A) was positive, since the MW with 2 hidden neurons performed better
than the previous one. This resulted in the algorithm ré@tgrio step 3 and creating a new MLP with 3 hidden
neurons and continuing the process of creating and scorarg somplex models which inherit the previous
optimal weight values and then comparing them to the previmst model. However, when a model with 6
hidden neurons was created, it did not perform better thaptévious model and thus a new MLP, still with 6
hidden neurons, was created, but with random weight vaktep 6(B)). This model was then compared to the

previous best model in terms of the SBC value and the indicatias that the previous best model was better
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than the new model. It resulted in the termination of the oy

Results

The best model that was found was reported to be the MLP wittideh neurons. The SBC value of this model
was -3 472.04 and the MSE value 25.10081. The complexityefibdel was reported to be 51 (number of
parameters). It took 16s55ms to complete the experimendcafigood MLP model for the Concrete data set.

In the next section, a conclusion to this chapter is pregente

2.7 Conclusion

In this chapter, the history of ANNs was considered and it sfasved that the biological neuron inspired the
development of the artificial neuron. This biological irrgion of the modern day ANN was also discussed.
Next, the neuron model architecture was considered, whidhded single-input neurons, multiple-input neu-
rons, the perceptron and a layer of neurons. This was fotldwethe MLP model. Neural network learning
was then considered, which included the perceptron legmile and the backpropagation algorithm. Finally,
the construction of MLPs was considered. The original N2@@®rithm for constructing MLPs with one hid-
den layer by using cross-validation was first considereithvied by a modified version of this algorithm and
the implementation of it.

With this chapter, a better understanding of ANNs and MLPs alatained and a method for constructing
MLPs was selected and modified to be used in the experimemiap(€ 4) in order to compare MLPs and
GANNSs.

The GANN is a relatively new type of neural network that isdzhen the generalized additive model. This
type of neural network uses an MLP with one hidden layer fahéaput, which enable the modeller to adjust
the complexity of each input’s MLP individually. GANNSs atigt to overcome some of the difficulties that are
associated with MLPs. One of these difficulties is the pnobtd selecting an appropriate network architecture
for a specific data set. Potts (1999) suggested an integamivstruction algorithm which uses partial residual
plots and human judgement to select a good GANN architectDre Toit (2006) improved on this interac-
tive construction algorithm by introducing an automatedstruction algorithm which uses a model selection
criterion to select a good GANN model objectively. In the helxapter, GANNs will be considered together
with the interactive construction algorithm and the auttedaconstruction algorithm that is implemented in a

system calleddutoGANN
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“Integrity without knowledge is weak and useless, and kiealgk without

integrity is dangerous and dreadful.”

Samuel Johnson

Generalized additive neural networks

The main reason for neural networks’ popularity is their ifdéx nonlinear modelling and powerful pattern
recognition capabilities (Du Toit, 2006). Neural netwoeke data driven without any restrictive assumptions
that constrain the functional relationship between thgdiavariable and the input variables. Neural networks
with this unique characteristic are highly desirable in ynsituations where ample data are generally available,
but where the underlying data-generating mechanism ia oft&nown or untestable. There are, however, some
practical difficulties with the utilizing of neural netwaKor prediction problems. Three of these difficulties
are inscrutability, model selection and troublesome ingitiPotts, 1999).

Multilayer perceptrons (MLPs) are commonly regarded to lekbboxes with respect to interpretation.
The relationship of certain inputs to the target can depenthe values of other inputs in complicated ways.
Certain pattern recognition applications, like handwgtrecognition, where pure prediction is the goal, does
not require an explanation of how the neural network derthecanswer. On the other hand, in some problems,
like hypothesis testing, understanding how the neural owerived the output is more important than the
output itself. Certain domains often have both goals, ngmetierstanding the outcome of the neural network
and obtaining the output of the neural network. An examplsuih a domain is database marketing. The
ultimate purpose of predictive modelling is the scoring efvrcases, but some understanding, even informal,
of the factors affecting the prediction can be helpful in iirgdout how to market to segments of people that
are likely to respond. Decisions about costly data acdositcan also be guided by an understanding of the
effects of the inputs. The black box characteristic of thelei@an have legal consequences in credit scoring.

Creditors are required, by the US Equal Credit Opportunity, £0 provide an argument with specific reasons
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to support an adverse action. The argument that the appliaéed to achieve the qualifying score on the
creditor’s scoring system is regarded by the regulatioretmbufficient.

The second practical difficulty is the fact that when a neastivork is configured for a problem, there
are a huge number of configurations to choose from. The nuofldayers, number of neurons in each layer,
activation functions, type of connections et cetera nedmttohosen in order for the neural network to perform
adequately. Currently, trail and error is the most reliab&thod for the construction of a neural network.

The third practical difficulty is the computational effohit is required when training a neural network, as
a large number of parameters (weights and biases) must beizpgd. Local minima are troublesome, since
different starting values can lead to different (faultylusions. Multiple runs from different starting values are
frequently the best solution.

These difficulties are reduced with the use of generalizetitiael neural networks (GANNS), since their
architecture is constrained. Graphical methods can be tosiderpret the effect of each input on the fitted
model. The network complexity can be visually determinethyartial residual plots, while generalized linear
models can be used to initialize GANNs with the addition dpdkyers (direct connections). Unfortunately,
determining the network complexity visually with partigisidual plots is subjective to human judgement and
can be time consuming for a large number of variables (Du 26i06). Consequently, Du Toit (2006) devel-
oped an automated construction algorithm for GANNs ancddthe implementatioAutoGANN This system
can overcome these drawbacks by relying on a model seleatit@nion or cross-validation to search for good
GANN models. While searching for the best GANN model, no hariméeraction is needed.

Since a GANN is the neural network implementation of a gdire@ additive model (GAM), a discussion
on GANNs would be incomplete if GAMs and the backfitting algon for the estimation of GAM models
were not considered. Smoothing, which summarizes the toéradresponse measurement as a function of
one or more predictor measurements, is considered in &egtlo To illustrate smoothing, the running-mean
smoother is used and the bias-variance trade-off for datérgithe value of the smoothing parameter is ex-
plained. Additive models are discussed in Section 3.2. Tdukfitting algorithm that is used for estimating
additive models is explained and the GAM, which is an extamsif additive models, is considered. The
backfitting algorithm utilizes the scatterplot smoothehiah is a special type of smoother. In Section 3.3 the
GANN architecture is discussed and the interactive coastnu methodology is considered in Section 3.4.
The automated construction methodology is explained iti@e8.5 by defining certain terms and considering
in-sample and out-of-sample model selection criteria. al®@mated construction algorithm and the imple-
mentation of this algorithm is also discussed. Finally, aobasion is presented in Section 3.6. Note that, since

there is so little literature on GANNS, the content of thister is mainly obtained from Du Toit (2006).

3.1 Smoothers

The linear model is simple in structure, it's least-squdhepry is elegant and it is interpretable by the user.

Since computing power has grown significantly, the lineadela@an be augmented with new models that
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assume less and therefore, potentially, discover more. dDtigese new models, called tlaelditive model
(Hastie and Tibshirani, 1990), is described in Section 3% additive model is a generalization of the linear
model. Aninput’s linear function is replaced with an ungfied smooth function. The additive model consists
of a sum of smooth functions. These functions are estimayedsing scatterplot smoothers in an iterative
manner. The estimated additive model consists of a fundtorach input. This can help data analysts to
discover the appropriate shape of each of the input effects.

The additive model retains some of the interpretabilityheflinear model by assuming additivity of effects.
To estimate the univariate function would have been contipui@ly unthinkable four decades ago, but with
the fast computers that are available today, it can be agthiev

A smoother summarizes the trend of a response measurefmasnta function of one or more predictor
measurements,, ..., Xp. The namesmootheicomes from the fact that the estimate of the trend that isymred
is less variable thalY itself. A smoother does not assume a rigid form for the depeoel ofY on Xy,..., X
and, consequently, a smoother is often referred to as a eoaidnparametric regression. An example of a
simple smoother is the running-mean (moving average) dmeaotA regression line with a rigid parametric
form is not strictly thought of as a smoother.stoothis the name given to the estimate that is produced by a
smoother. The most common case is that of a single predintbisacalledscatterplot smoothing

To illustrate scatterplot smoothing, the Diabetes datdSetkett, Daneman, Clarson and Ehrich, 1987) is
utilized. The Diabetes data set originated from a study effdittors that affect patterns of insulin-dependent
mellitus in children. This study investigated the depemgeof the level of serum C-peptide on several other
factors to understand the patterns of residual insulinesieer. In this illustration, only a subset of two factors
that were studied in Sockett et al. (1987) are used. Infaomatbout the attributes of this data set is given in

Table[3.1. The predictor attributes akgeandBasedeficitand the response attributelisg(C-peptide)

Attribute Description Attribute scale
Age The age of the child Interval
Basedeficit A measure of acidity Interval
Log(C-peptide)| The logarithm of C-peptide concentration found at the diesim Interval

Table 3.1: Diabetes data set attributes

There are two main functions of smoothers, of which desoripis the first one. The visual appearance of
the scatterplot of versusX is enhanced with a scatterplot smoother. This helps theasfetiyst to pick out the
trend in the plot. Figure_3l 1 shows a plot of I@ypeptid@ versus age. It seems that I@ypeptide has a strong
dependence on age and a scatterplot smoother can providi&ass in describing the relationship between
log(C-peptid@ and age. The second function of a smoother is to estimatéefpendence of the mean6fon
the predictors, and consequently serves as a building iitwdke estimation of additive models.

Local averaging is used by most smoothers. Local averagiagpges thér-values of observations which

have predictor values that are close to a target value. Taegiwg is done within neighbourhoods around
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Figure 3.1: Scatterplot dbg(C-peptidé versusAge

the target value. There are two decisions to be made wheg ssatterplot smoothing. The first decision is
concerned with how the response values in each neighbadigtoauld be averaged. The decision is thus which
type of smoother to use, because smoothers differ mainlyein inethod of averaging. The second decision is
concerned with how large the neighbourhoods should be nTddg decision is typically expressed in terms of
an adjustable smoothing parameter. A small neighbourhabgmeduce an estimate with high variance, but
potentially low bias and a large neighbourhood will prodaceestimate with a low variance but, potentially
high bias. As a result, the smoothing parameter controléréttke-off between bias and variance. The amount
of smoothing is calibrated according to the number of edeiadegrees of freedom.

A formal definition of scatterplot smoothing is given in thexhsection.

3.1.1 Scatterplot smoothing

Assume thay = (y1,...,yn)" exists ax = (xg,...,X,)" wherex is design pointsy is response measurements,
and(yy,...,yn)" and(xy,...,%,)" are the transpose of the vectdss,...,yn) and (Xg,...,%,). Also assume
that measurements of variablsandX are represented by eachyodndx.

Not many duplicates are expected at any given valié¢ akY andX are noncategorical. It is assumed, for
simplicity, that the data are sorted Kyand that there are no duplicatevalues, which means that < ... < X,.
Weighted smoothers can be applied in case of duplicates.

A scatterplot smoother can be defined as a functior ahdy that has the same domain as the values
in x : s= S(y|x). The function§(y|x) that is measured ab, which is the set of instructions that determines
S(Xo), is generally defined for ally € [—,»]. Sometimess(xg) is defined solely axy,...,X,, which are the
sample values of. In this case, the estimates at otKevalues are obtained by using some kind of interpolation.

A number of scatterplot smoothers, which include kernelaimers, locally weighted running-line smoothers,
running-line smoothers, cubic smoothing splines, bin simarg, running-mean smoothers and regression splines,
are discussed by Hastie and Tibshirani (1990). The trafleetfveen bias and variance governs the decisions

about the complexity of models. To illustrate this tradg-tife running-mean smoother is discussed next in
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more detail.

3.1.2 The running-mean smoother

Assume the target valug is the same as one of thgs, sayx;. If there are duplicates &, the average of
the Y-values atx; can be utilized to estimat&Xx;). If there are no duplicates, thévalues that correspond to
X-values close tg; are averaged. Selectingitself, as well ak points to the left of; andk points to the right

of x; that are nearest i4-value tox; is a simple way to choose points closetoThis way of selecting points is
called asymmetric nearest neighbourhoaddNS(x;) refers to the indices of these points. The running-mean

is thus defined by
s(x) = avqus(m(yj). (3.1)

When it is not possible to pick points, as many points as possible are taken from the lefrightiof ;. A

formal definition of a symmetric nearest neighbourhood ésftilowing:
NS(x) = {maxi—k,1),...,i—1,i,i+1,...,min(i+kn)}. (3.2)

It is not apparent how to define the symmetric nearest neigisbfor the target pointgy other than thex.
Linear interpolation between the fit of two values>fn the sample adjacent @ is one solution to do this.
Another solution is to ignore symmetry and pick thelosest points tog, regardless of which side they are
on. This is called aearest neighbourhoodArbitrary values ofxp are treated in an uncomplicated and clean
manner.

The running-mean smoother is also callednaving average smootherThis smoother is popular for
equally-spaced time series data. Given its simplicitys ivaluable for theoretical calculations, but it does
not work satisfactorily in practice. It tends to be wigglydarontains flattened-out trends near the endpoints. A

running-mean smooth witk= 11, or about 25% of the 43 observations, is shown in Figurde 3.2
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Figure 3.2: Running-mean smoother with 25% span
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3.1.3 Smoothers for multiple predictors

Thus far, a scatterplot smoother which is used for a singdeiptor has been discussed. With more than one
predictor present, sa¥, ..., X, the problem is one of fitting p-dimensional surface té. Multiple regression
of YonXy,...,Xp allows for a simple, but very limited, estimate of the suefain theory, the running mean can
easily be generalized to this setting. A definition of a nstameighbourhood of a point pspace is required for
this smoother. A distance measure is used to determine #resiseighbourhood. The most apparent choice
for the distance measure is the Euclidean distance. Vher, the concept of symmetric nearest neighbours
is no longer significant. After a neighbourhood is defined, generalization of the running mean utilizes the
average of the response values in the neighbourhood andatak the surface at the target point.

It is argued that for more than two or three predictors, ruiéidictor smoothers are not very useful any-
more (Hastie and Tibshirani, 1990). These type of smootaks have many defects, such as difficulty of

computation and interpretation.

3.1.4 The bias-variance trade-off

In the previous sections, no assumption was made of the foataionship between the response variable
and the predictor variabl¥. To set the basis for additive models, this assumption is magte. It is assumed
that

Y="f(X)+e (3.3)

where the expected value ofE(e), is 0 and the variance af,var(e), is o2. It is also assumed that the
errorse are independent. The objective of a scatterplot smoothr éstimate the functiohi From (3.3),
E(Y|X = x) = f(x). Note thatf is now used to denote the fitted functions, rather tharstifiat was used in
the previous sections. Since the running mean is built byag#eg Y-values corresponding tovalues close
to a target valuex, this smoother can be seen as estimateS(¥fX = x). The averaging requires values of
f(x) nearf(xo). This impliesE{f(xo)} ~ f(x), sinceE(e) = 0. For a cubic smoothing spline under certain
regularity conditions, it can be shown thix) — f(x), asn — o and the smoothing parameter— 0, where
nrepresents the number of design points Andpresents the window width. As a result, the smoothingepl
estimate will converge to the true regression functiiY|X = x) as more and more data are obtained.

A key trade-off exists between the bias and the variance efetfiiimate in scatterplot smoothing. The
smoothing parameter controls this trade-off. The tradeah easily be seen in the case of the running mean.

The fitted running-mean smooth can be defined as

. Yj
k(%) = (3.4)
jel\%(xa) 2k+1
with expectation
A f(x;
E{f(x)} = 2k(+l)1 (3.5)
JENZ(%)
and variance
f o* 3.6
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It is assumed, for ease of notation, tixais close to the middle of the data, so thg(x) contains the full
2k + 1 points. From (3.4) and (3.5), it can be seen that the vagiagiecreases dsis increased but since the
expectationzjeNE,()q) f(x;)/(2k+1) involves more terms with function valuel;), which differs fromf (x;),
the bias tends to increase. In a similar manner, the variamreases ak is decreased, but this inclines to
decrease the bias. This phenomenon is also encounteredcadtieny or deleting terms from a linear regression
model and is known as thH@as-variance trade-off

The running-mean smooths that are using 20%, 50% and 80% @f3lobservations of the diabetes data
set is shown in Figurds 3.3, 8.4 dnd|3.5. These figures shawrti@other, but flatter, curves are produced with

a larger percentage of observations.
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Figure 3.3: Running-mean smoother with 20% span
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Figure 3.4: Running-mean smoother with 50% span
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Figure 3.5: Running-mean smoother with 80% span

The additive model for multiple regression data is discdssdahe next section, as well as the backfitting
algorithm for its estimates. This backfitting algorithm siseatterplot smoothers to determine the functional

form of the additive model.

3.2 Additive models

The usual linear regression model is generalized to fornatititive model. An outline of the limitations of
the linear model is presented next and reasons why one weagilgre to generalize it is important. An arbitrary
regression surface would be a natural generalization. eTaie, regrettably, problems with the estimation and

interpretation of fully general regression surfaces. €h@®blems restrict attention to additive models.

3.2.1 Multiple regression and linear models

Suppose there areobservations on a response variafjlevith a multiple regression problem that is represented
byy = (y1,...,¥a)" and measured at design vectors’ = (Xi1,---,X%p). The pointsx' may be measurements
of random variable for j = 1,...,p, or may be picked in advance, or both. These two situatioasat
distinguished.

There are several reasons to model the dependenc¢emiy, ..., Xp:

e Description: The dependence of the response on the preslistalescribed by using a model, so that

more can be discovered about the process that prodtices
e Inference: The proportional contributions in explainiigre assessed for each of the predictors.

¢ Prediction:Y needs to be predicted for some set of valdgs. ., X, by the data analyst.

The multiple linear regression model is the standard tcatl ihused by the applied statistician for these inten-
tions. This model is defined as

Y =0a+0a1Xy+...+0pXp+€, (3.7)
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whereE(e) = 0 andvar(e) = 0°>. The model makes a strong assumption about the dependefiy pbn
X1,...,Xp, Nnamely that there is a linear dependence in each of thegoesli If this assumption holds more or

less, then the linear regression model is very useful, since
e it provides a simple description of the data;
e a single coefficient sums up the contribution of each prediend
e new observations can be predicted with a simple method.

There are many ways in which the linear regression model eageberalized. One class of candidates is the

surface smoothers and can be viewed as nonparametric ttinfadhe regression model
Y = f(Xq,...,Xp) +e. (3.8)

Choosing the shape of the neighbourhood that defines locpldimensions is troublesome with surface
smoothers. An even more serious problem that is common teudhice smoothers is that neighbourhoods
with a set number of points become less local as the dimensmmnease. This problem has been called the
curse of dimensionalitipy Bellman (1961).

Partially as an answer to the dimensionality problem, a rermalb multivariate honparametric regression
techniques have been devised. Projection pursuit regressid recursive-partitioning regression (Friedman
and Stuetzle, 1981) are examples of these multivariate aranpetric regression techniques. These models
have good predictive power when enough data are availalileof faem are consistent to the true regression
surface if they are under suitable conditions. Unfortulyat@l of these methods suffer from being hard to
interpret. A specific problem is how the effect of particwariables should be analyzed when a complicated
surface has been fitted.

A crucial feature of the linear model that has made it so papidr statistical inference is stressed by the
interpretation problem: The linear model is additive in gnedictor effects. The predictor effects can be ana-
lyzed separately in the absence of interactions after ti@atimodel has been fitted. This crucial characteristic

of being additive in the predictor effects is retained byahlditive models.

3.2.2 Additive models defined

The additive model can be written as
Y=o+ f1(Xy) +... 4+ fp(Xp) +e, (3.9

where the errors are independent of th¥;s, E(e) = 0 andvar(e) = o2. Each predictor has an unspecified
univariate function, namely;. It is implied from the definition of additive models th&a{ f;(X;)} = 0. There
would be free constants in each of the functions if this wertetime case.

A crucial interpretive characteristic of the linear modseképt by the additive model: The values of the other
predictors do not influence the variation of the fitted reseosurface that holds all but one predictor fixed. This

results from the fact that each variable is representedithdilly in (3.9). Thep univariate functions can thus
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be plotted individually to analyze the roles of the predistio modelling the response once the additive model is
fitted to data. The additive model is nearly always an appnaxbn to the true regression surface, but hopefully
a useful one. This is unfortunately the price that has to Il foa simplicity. It is usually not assumed that a
linear regression model is correct when it has been fitteste&d, it is believed that the model will be a good
first order approximation to the true surface, and that theomant predictors and their roles can be exposed
using the approximation. Additive models are more gengrpt@imations than linear regression models.

An additive model's estimated functions correspond to theffecients in a linear regression. Additive
models are prone to all the possible problems that are fauitérpreting linear regression models and these
problems can be expected to be more serious. Care must beriakéo have insignificant variables affect
important functions when interpreting these functions.

The backfitting algorithm for estimating additive modelsdmsidered next.

3.2.3 Fitting additive models

There are many ways to approach the formulation and estimafi additive models. A number of methods,
including regression splines, more general versions ofiplelregression, multiple regression and smoothing
splines, are discussed by Hastie and Tibshirani (1990). rAitrary smoother is used by the most general
method to estimate the functions. A data analyst can fit aitiegldnodel by using any regression-type fitting
mechanism with the general backfitting algorithm. The pfethis added generality is the fact that the
algorithm is an iterative fitting procedure.

Conditional expectations allow for a simple intuitive nvation for the backfitting algorithm. Assuming

that the additive model in_(3.9) is correct, then for dny
HY—G—EUKNN&%=mMO, (3.10)
IE4

wherea is the constant term. An iterative algorithm for calculgtiall the f;s is immediately proposed by
the conditional expectations in_(3]10). This iterativecaithm is presented next in terms of data and arbitrary

scatterplot smootheS;.
1. Initialize: o = ave(yi), fj = f2,j = 1,...,p

2. Cycle:j=1,....p,1,...,p,...
fj = Sj(y — o — Yz filX))

3. Continue 2. until there are no changes in the individuatfions.

The(y — o — Y« fk|Xj) expression denotes the partial residual in the backfittigorihm. All of the effects of
the other variables are removed frgnbefore this partial residual is smoothed agaijstvhen the univariate
functionf is being readjusted. Only if all the functions are correcid(¢herefore the iteration), this is appro-
priate.

To start the algorithm, initial function(sfjo) must be provided. A reasonable starting point might be the
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linear regression of on the predictors, if no previous knowledge of the functierists. The backfitting al-
gorithm is frequently used within some bigger iteration,endthe functions from the previous big iteration
loop supply starting values. The convergence of the baickfitilgorithm for a number of different types of
smoothers is discussed by Hastie and Tibshirani (1990). ndof mf convergence exists for certain types of
smoothers, like locally-weighted running-line smoothéxs their experience has been reassuring and counter
examples are difficult to find.

So far, the discussion deals with the linear regression hibdeis extended by a type of model, calldx
additive modelwhere the average of the response is modelled as an adilitivef the predictors. An additive
extension of the family of generalized linear models is dbsd in the next section. The predictor effects are
assumed to be linear in the predictors with generalizedtingodels, but the distribution of the responses and

the link between the predictors and this distribution canitigersal.

3.2.4 Generalized additive models defined

Generalized linear models is extended by generalizediaglditodels in the same way as the linear regression
model is extended by the additive model.

The generalized linear model (McCullagh and Nelder, 198@jven by
9 H(E(Y)) = do+aiXy+... +0pXp+e, (3.11)

whereE (e) = 0 andvar(e) = ¢2. In (3.11), a link functiongal, which is the inverse of the (neural network)
activation functiorgp, is utilized to constrain the range of response values. dagjielink function is appropriate
when the expected response is bounded between 0 and 1, soredbability. The logit link function is defined
as

9 HE(Y)) =1n (%) . (3.12)
The hyperbolic tangent link function can be utilized whereapected response is bounded between -1 and 1.

The latter is defined as

2
1 1
A generalized additive model (GAM) (Hastie and Tibshirdri87; Wood, 2006) is given by
B H(E(Y)) = o+ f1(X) +...+ fp(Xp) +e, (3.14)

whereE () = 0 andvar(e) = o°.

The most widely used type of artificial neural network forempsed prediction is the multilayer perceptron
(MLP), which was discussed in Chapter 2. MLPs are, theakjicuniversal approximators that are able to
model any continuous function (Ripley, 1996) and, as a teBlllPs can be utilized as the univariate functions
of GAMs. Generalized additive neural networks (GANNS) dre meural network implementation of GAMs.
With GANNS, backfitting is unnecessary, since any methothblé for the fitting of MLPs can be used to
simultaneously estimate the parameters of GANN models.ughal optimization and model complexity issues
thus also apply to GANN models.

Next, the GANN architecture is discussed.
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3.3 Generalized additive neural network architecture

An MLP that has one hidden layer withneurons is defined as
p p
9o H(E(y[x)) = Wo -+ wy tanh(woz + > Wjaxj) + ... +Whtanh(Won + 5 Winx;), (3.15)
=1 =1

where tanh is the hyperbolic tangent activation functiansaggested by Potts (2000). [n(3.15), the link-
transformed expected value of the target is expressed asar [combination of nonlinear functions of linear
combinations of the inputs. This model consistshp + 1) + 1 unknown parameters (weights and biases).
Some suitable measure of fit to the training data, for exarti@eegative log likelihood, is numerically opti-
mized to estimate the parameters.

In the basic structure of a GANN, each input has a separate WittPone hidden layer ofi neurons, and
can be defined as

fj (Xj) =Wy tanr(wmj +W11ij) + .o Whj tanI’(WOhj —|—W1thj). (3.16)

The individual bias terms are absorbed by the overall biaEhere are B parameters for each individual uni-
variate function, wheré could differ for each input.

Figure[3.6 shows an example GANN with two inputs. The firstitrfpas an MLP with three neurons in the
hidden layer and the second input has an MLP with two neurtisei hidden layer. Neurons in the consolida-
tion layer correspond to the univariate functions. The Wis@re fixed at 1.0 between the consolidation layer

and the output layer. The first univariate function of thiamyle is given by
f1(x1) = wigtanh(Wo11 + Wi11X1) + Wo1 tanh(Woz1 + Wi21X1 ) 4+ Wag tanh(Wosg + Wi31X1) (3.17)
and the second univariate function is defined as

f2(X2) = Wiatanh(Wo12+ Wi12X2) + Woptanh(Wozz + Wi2o%2). (3.18)

/__Hidden layer

Input layer Consolidation layer

l

Output layer

Xx—{1

Figure 3.6: Basic GANN architecture

The generalized linear model can be regarded as a spec@aides enhancing this basic architecture to

include an additional parameter for a direct connectioip(&lyer), so that
fj (Xj) = WojXj + Wiy tanf(wmj +W11ij) +... +Whjtank(w0hj +W1thj)- (3.19)
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An example of this enhanced GANN architecture with threaiigps shown in Figure_3.7. The first input has
an MLP with one neuron in the hidden layer and a skip layer. Sdwnd input has an MLP with two neurons
in the hidden layer and the third input has an MLP with thregraes in the hidden layer. The first univariate

function in this example is given by
f1(X1) = Wo1Xg +Wartanh(Wo11 + Wi11X1), (3.20)
the second univariate function is
f2(X2) = WiztanhWo12 + Wi12X2) + Waztanh(Wozz + Wi22%2), (3.21)

and the third and final univariate function is

f3(X3) = Wyztanh(Wo13+ Wi13X3) + Waztanh(Wozz + Wi23x3) + Waztanh(Woss + Wi33Xs). (3.22)

Input layer ,{/Hidden layer

Skip layer
Consolidation layer

Output layer

X—I1

X —{1]

Figure 3.7: Enhanced GANN architecture

An iterative algorithm for constructing GANNS is presentadhe next section. This methodology guides

the modeller in visually deciding on the appropriate comipyeof the individual univariate functions.

3.4 The interactive construction methodology

To analyze nonlinear relationships between the target apdt ivariables in multiple regression models, a
diversity of diagnostic plots have been used for more thdiheéheentury. There are, in general, two comple-
mentary approaches to analyze the assumption of lineddtynal tests and informal graphical methods (Cai
and Tsai, 1999). Larsen and McCleary (1972) named an infognaghical method that was introduced by
Ezekiel (1924) as thpartial residual plot This method is still often used.

Plots of the fitted univariate functionﬁ,-,(xj), overlaid on the partial residuals versus the correspagndn
input, are used for visual diagnostics to assist the modettsen process for GANNs. The partial residuals is

defined as:

pri =gy(y) —o — Z fi(x) = (9o (y) =9 () + fi(x))- (3.23)

#]
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A first-order approximation is usually utilized whggl is nonlinear:

a9, (Y nor
%) y—9)+ fix) (3.24)

prj =

The effect of the individual inputs that are adjusted fordffect of the other inputs can be analyzed with partial
residuals. Thgth partial residual is the difference between the actualesahnd that portion of the fitted model
that does not involve;.

The interactive construction algorithm starts with a GANfdhgtecture that consists of an MLP with one
hidden neuron and a skip layer for each input, instead ofitteat model. The linear fit is solely used for
initialization. Berk and Booth (1995) discussed the effestess of partial residual plots for visualizing the
underlying curve. They showed that the partial residuadé #ne based on a linear fit are less reliable than
those that are based on a GAM fit and that it is also commonipeasfth GAM estimation to start with four
parameters.

To simplify optimization and model selection, the followiset of instructions for constructing a GANN
interactively (Potts, 1999) utilizes their constrainednio This algorithm consists of six steps, as shown in

Algorithm 3.1.

1. A GANN must be constructed with a skip layer and one hiddeuron for each input. Thi

initial GANN is defined as follows:
fj(in) = WpjXji +Wyj tanf(wmj +W11in).

This gives a degree of freedom (number of parameters) of ddoh input. Binary inputs mu

only have a skip layer and no hidden neurons.
2. Next a generalized linear model must be fitted to giveahéstimates oft andwp;.

3. The remaining 3 parameters must be initialized in eactidnidayer as random values fromga

normal distribution with mean zero and variance equal to 0.1
4. The full GANN model must now be fitted.

5. Each of the fitted univariate functions that are overlaidtwir partial residuals must then

analyzed.

6. Remove neurons (prune) from the hidden layers with etligldinear effects and add neuro
(grow) to hidden layers where the nonlinear trend seems tanblerfitted. If this step is re

peated, the final estimates from previous fits can be utiléeithitial values.

Algorithm 3.1: Interactive construction algorithm

The Kyphosis data set (Bell, Walker, O’Connor, Orrel andshibani, 1989) is used in the next section to
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illustrate the interactive construction methodology.

3.4.1 Example

Kyphosis is a spinal deformity that can occur after certgima surgeries have been performed on children.
The Kyphosis data set has 83 instances with 4 attributes iBatance represents a child that underwent spinal

surgery. The 4 attributes are described in Table 3.2.

Attribute | Description Attribute scale
Age The age of the child in months Interval
Number | The number of vertebrae that are involved in the child’s apsurgery Interval

The starting vertebra number of the range of the vertebradvied in

Start the operation Interval

Kyphosis| Indicates whether the child has Kyphosis (1) or not (0) Binary

Table 3.2: Kyphosis data set attributes

The goal of this prediction task is to use thge, NumbeandStartattributes as inputs to predict whether a
child has Kyphosis or not. This task is consequently oneaxfsification. In order to find a good GANN model

for this problem, the following methodology is used.

Methodology

With the first step of the interactive construction methodgl a GANN is created with a skip layer and one
hidden neuron for each input. In the second step, a geneddlizear model is fitted to give the initial estimates
of the constant termx and thewp;. Step 3 initializes the remaining three parameters in ealteh layer with
random values from a normal distribution with variance ¢qoi®.1 and mean zero. In step 4, the full GANN
model is fitted. In step 5, the fitted univariate functiond i@ overlaid on their partial residuals are analyzed.
Three partial residual plots are created, one for each wgoidble, and must be inspected visually to determine
the appropriate bias-variance trade-off. The partiabesiplots of step 4 of the first iteration of the interactive
construction algorithm are shown in Figufes| 8.8] 3.9[an@.3.1

The functions are presented as fitted splines that are @ventathe partial residuals to help guide the
modeller in determining the appropriate complexity of thnévariate functions. If the univariate function is
constant for the full range of input values and consequettlys not contributes towards describing variation
in the response, the spline will form a horizontal or neatizomtal line. The input can be removed from the
model in this case. A linear relationship between the inpdtthe response is presented by a spline that forms
a line with a substantial positive or negative slope. Theiirgan be set to only a skip layer in these instances
(e.g. Figuré_3.70). A spline that forms a curve indicatesrdinear relationship and can be modelled by one or
more neurons in the hidden layer of the input (e.g. Figurt 3fBhowever, too many neurons are added, the

univariate function will have a high variance and low biag)(é&igurd_3.P).
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Figure 3.10: Partial residual plot &ftart
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In step 6, some architectural changes are made after inmpeftthe partial residual plots. Sometimes,
several iterations of steps 4, 5, and 6 are required to maketthnges that result in the best GANN model. A
total of 4 iterations were needed to find the best GANN modelHis data set. In this model, tigevariable
had a skip layer and two hidden neurons, whilethenberandStartvariables had only skip layers. The partial

residual plots of this final GANN model are shown in Figure&ld3.12 and 3.13.
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Figure 3.11: Partial residual plot éfge
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Figure 3.12: Partial residual plot dfumber
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Figure 3.13: Partial residual plot &tart

Results

The GANN models that are created with each iteration of theréctive construction algorithm can be com-
pared by means of the Schwarz Bayesian criterion (SBC) amhreguared error (MSE). The SBC and MSE

value of each of the iterations are shown in Tablé 3.3.

Iteration SBC | MSE
1 107.338| 0.118
2 92.519| 0.114
3 95.805| 0.144
4 98.709| 0.123

Table 3.3: Kyphosis results

According to this table, the best GANN model (in terms of tiBCSvalue) is the one that was created at
iteration 2, with an SBC value of 92.59 (smaller is betterhe best model that was found by examining the
partial residual plots, is that of iteration 4, which has &CSsalue 98.71. The motivation behind the use of the

SBC model selection criterion is described in detail in B®&cB.5.2.

Conclusions

Human judgement is needed to interpret the partial resiologd when GANNS are constructed interactively.
This can become a time consuming and daunting task when #nera large number of variables. Human
judgement is also subjective, which might result in the tgwment of models that are suboptimal. In the
next section, an objective approach is discussed thatpocates a formal measure of fit into the process. As

a result, an automated method can be used that is based oeattoé $or models by using model selection
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criteria. With this new approach, partial residual plots aot used primarily for model building, but as a tool
to give insight into the models that were constructed. Thdetier also have more time to interpret the results,

since no human interaction is needed while building the GAhibdels.

3.5 The automated construction methodology

Even though neural networks are successfully applied tonabeu of prediction tasks, there are still several
unresolved issues in neural network model building (Du, 2f#06). One of the biggest issues is how to choose
an appropriate network architecture for a specific preatictiroblem. In traditional linear prediction problems,
model selection is a nontrivial issue, but in nonlinear n®deach as neural networks, it is an especially tricky
issue.

To help overcome some of the issues that are faced when gotirstyr GANNS, an automated approach to
the construction of GANNSs is considered in this section. frfethod is objective and relies solely on a model
selection criterion for model selection. As a result, no harmteraction is needed while searching for the best

model. In order to describe the automated constructiorridthge, some terms need to be defined.

3.5.1 Definition of terms

These definitions are illustrated with the example GANN ajfure 3.14.

Definition 3.1 (Neural network)A neural network is an arrangement of many simple processlaments.
These elements work in parallel and the function is detegthlyy connection strengths, network structure, and

the processing performed at computing elements or nodes ¢alled neuronsiDARPA, 1988).
Definition 3.2 (GANN sub-architecturef\ specific input’s neural network structure.

Definition 3.3 (GANN sub-architecture identifieffhe symbol that is used to denote a specific input’s sub-

architecture.

In Table[3.4 (De Waal and Du Toit, 2011), ten standard subi@cture identifiers are listed. These identifiers

proved to be adequate when automating the construction fNEA
Definition 3.4 (GANN architecture identifier)The list of GANN sub-architecture identifiefglentifier;,
identifier, ..., identifieg] which refers to a specific GANN model’s architecture thatkamputs, X, X, .. . , Xk,

where the sub-architecture of inpuyt withi=1,2,... ks referred to by identifigr

An example of a GANN architecture identifier that represen®ANN with five inputs is: [5,1,3,0,2]. This list

represents a GANN architecture where the first input has aR Mith a skip layer and 2 hidden neurons. The
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second input has only a skip layer. The third input has an MR tvhidden neuron and a skip layer. The
fourth input is removed and the final input has an MLP with Idiid neuron and no skip layer. This example

GANN architecture is shown in Figure 3.14.

Definition 3.5 (GANN architecture)A complete GANN model that is formed from a combination of BSAN

sub-architectures.

Definition 3.6 (GANN sub-architecture identifier functiomhe GANN sub-architecture identifier for a partic-

ular GANN model and input; Xs returned with the function suljx

From Figure 3.14, the GANN sub-architecture identifier tiorc produces the following resultsul(x;) =
5,sul(x2) = 1,sub(x3) = 3,sul(x4) = 0 andsub(xs) = 2.

Definition 3.7 (GANN sub-architecture spac&he set that contains all the possible GANN sub-architestur

As shown in Tablé 3]4, the GANN sub-architecture spa¢é,%,2,3,4,5,6,7,8)9 The GANN sub-architectures
are restricted to these neural network structures. Themndas this restriction is to prevent the development of
a model that is too complex and which will consequently ovéré data. This restriction also helps to decrease

the number of possible models in the search space.

Hidden layer

Skip layer

Input layer

X

[l

X—[1]

Output layer

x—L1

x—{1

Figure 3.14: Example GANN model with five inputs
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GANN sub-architecture symbal GANN sub-architecture description

0 Input is not used in the model

MLP with only a direct connection

MLP with only 1 hidden neuron

MLP with a direct connection and 1 hidden neuran

MLP with only 2 hidden neurons

MLP with a direct connection and 2 hidden neuragns

MLP with only 3 hidden neurons

MLP with a direct connection and 3 hidden neurgns

MLP with only 4 hidden neurons

O || N0 |d~|W|IN]|PF

MLP with a direct connection and 4 hidden neurgns

Table 3.4: GANN sub-architecture symbols

The automated construction algorithm uses the GANN subitatures that are defined in Table]3.4 to
automate the interactive construction algorithm of PAf99). In order for the automated construction algo-
rithm to select the best model, a model selection critersomsied. In the next section, model selection criteria

is considered.

3.5.2 Model selection

The modelling of nonlinear relationships has experienaewing interest lately (Du Toit, 2006). A variety of
test procedures that detect nonlinearities have also bmariapped. However, the uncovering of nonlinearities
is not enough when prediction is the aim of the analysis. Aegadte nonlinear model is necessary to describe
these nonlinearities. Unfortunately for many applicagiomeither the correct functional form of the model nor
the relevant input variables are suggested by the appteghaory in the process of model building.

In this section, model selection strategies are discusBhdse strategies are based on statistical concepts
and for models like GANNS, a statistical point of view is peutarly important because of the lack of knowl-
edge regarding an adequate functional form of the underlgindel. A systematic comparison of statistical
selection strategies for neural network models is provigednders and Korn (1999). They also consider the
concepts of information criteria, hypothesis testing ams-validation methods. The conclusion that statisti-
cal analysis should become an integral part of neural n&twardelling was reached when they discussed the
application of these three methods to neural networks.

A good model is one that will fit the data set well and if moreiables are added to the model, the apparent
fit becomes better. Model selection aims, among other thingsalance the increase in fit against the increase
in model complexity. A better defining quality of a good modepossibly the performance of the model on
unseen data from the same process. A model should fit any efatehich arises from a process just as well

as it fits any other data set that originates from the sameepso®©verfitting may occur when the model is too

60



complicated. When this happens, the model may fit the cudatat set well, but may fit subsequent data sets
poorly. Underfitting may occur, on the other hand, when a rhisdeo simple and does not fit any of the data
sets well.

The data analyst must select some appropriate model frotroés®@dels that were generated by collecting
data after a probabilistic model had been proposed for thererent. There may, however, be more than one
definition of “appropriate”. The use of model selectionemid is one way to select the most appropriate model.
However, certain model selection criteria performs bestsfiecific model types and, as a result, there is no
single model selection criterion that will always be bettem another.

There are two broad types of model selection approaches ¢L2006). The first is out-of-sample model
selection by means of cross-validation. The second isnmpgamodel selection that relies solely on a certain
model selection criterion for model selection. In this gatt out-of-sample model selection is considered,
followed by a historical overview of the most prominent amgple model selection criteria. A discussion of
the two opposing views on in-sample model selection is tlwrsidered and finally the SBC, one of the most

widely used in-sample model selection criteria, is congideThe latter criterion is utilized in this study.

Out-of-sample model selection

For out-of-sample model selection, a certain model selediiterion is utilized, together with cross-validation,
to determine the proficiency of the model. The latter tec@jcalso known as the holdout method, uses part
of the data for training the model, part of the data for tegtime model and, if required, part of the data for
validation (Witten and Frank, 2005). Common practice isge a third of the data for out-of-sample testing and
the remaining data for training. This can, however, leadttaiaing or testing data set that is not representative
of the full data set. Although there are in general no way ltafte sample is representative of the full data set,
there is a check that can be performed that may help to tékkiample might not be representative at all. This
is done by checking whether each class in the full data sefpieesented in the sample data sets in about the
right proportions. Stratification is a process that divitesfull data set into two or more subsets by selecting
random instances and ensuring that each class is représdydat equally in each subset. For better results,
stratification can be used witk-fold cross-validation. With the latter technique, theadaét is split intoK
approximately equal partitions. If, for example, 3-folabgs-validation is used, then the data set will be split
into three partitions. Each partition is in turn used fotites while the remaining two partitions are used for
training. Two thirds of the data set is thus used for trainimbile the remaining third is used for testing. The
procedure is repeated three times, so that each partit®dmn used exactly once for testing. According to
Witten and Frank (2005), given a single fixed sample of datatiffed 10-fold cross-validation is the standard
way to predict the error rate of a learning technique likeraenetworks. For this reason, 10-fold cross-
validation was utilized to determine the accuracy of the ef®dinder consideration. To check the accuracy
of the model using cross-validation, the average validatioor (VAVERR) is used. This error measurement
is chosen to enable a comparison between GANNs and MLPs. Ooenated construction algorithm for

GANNSs, described in Section 3.5.3, uses the VAVERR valueirof-sample model selection. Consequently,
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the VAVERR criterion is also utilized for out-of-sample neddelection with MLPs. To determine the accuracy
of a model withK-fold cross-validation, the VAVERR value is averaged overK-folds.

In general, this method of out-of-sample model selectio t@sting is quite effective when it comes to
stopping the tendency of neural networks to overfit the dataTpit, 2006). It has, however, some limitations.
First, it requires a fairly large data sample size and secgplifting the data set may result in subsets that do not
represent the full data set accordingly. Finally, the \dlity of the estimates may also increase by splitting the
data set (Faraway, 1992). In-sample model selection ieritge also used in this study. A historical overview

of this error measurement is considered next.

Historical overview of in-sample model selection criteria

Univariate and multiple regression models were the focustpo the past of much of the research on model
selection criteria (Hurvich and Tsai, 1989). The adjusta;thared?gd jwas the first model selection criterion
that was widely used. It still appears in many regressi@ndture today. When a variable is added to the model,
theR? always increases. Without regards to the relative corttdbuo model fit, theR? will always recommend
additional complexity, as this will increase its value. Teempt to correct for this always-increasing property,
the Rgdj was introduced. The most notable model selection critesagarch that was done in the late 1960s
and early 1970s was Akaike's FPE (Akaike, 1969) and Malld@ps(Mallows, 1973). The Akaike information
criterion (Akaike, 1974) appeared in the 1970s and was basede Kullback-Leibler discrepancy (Kullback
and Leibler, 1951). In the late 1970s, much research onrirdion theory appeared with the proposal of the
Bayesian information criterion (BIC) (Akaike, 1978), thakhan and Quinn (HQ) (Hannan and Quinn, 1979),
GM (Geweke and Meese, 1981), the Schwarz information @itéS1C) (Schwarz, 1978), and FREBhansali
and Downham, 1977). An improved small-sample unbiasednastr of the Kullback-Leibler discrepancy,
called AlCc, was created by Hurvich and Tsai (1989) in the late 1980s laptaty the results of Sugiura
(1978). The AICc proved itself to be one of the best modelcsigle criteria.

Two model selection paradigms

The notion of asymptotic efficiency as a paradigm for satgctihe most appropriate model appeared in the lit-
erature of 1980. On the other hand, associations with tiemof consistency included the SIC, HQ, and GM
model selection criteria. The philosophies of efficient @odsistent model selection criteria are considered

next.

Efficient criteria

In regression and time series, the assumption that the togielrhas infinite dimensions, or that the true model
is not in the set of candidate models, is usually made. Giveet af finite dimensional candidate models, the
objective is to choose one model that best approximatesubenodel. The appropriate choice is assumed to
be the model nearest to the true model. A well-defined distaninformation measure is needed to assess the

model that is “closest”. A model selection criterion thas&d to be asymptotically efficient, is one that picks
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the model with minimum mean squared error distribution igéassamples (Shibata, 1980). The AIC, AlCc, Cp,
and FPE are all examples of asymptotically efficient moddisdels that are based on efficiency are preferred
by researchers when they believe that all the importanalbas cannot be measured or that the system under
consideration is infinitely complicated. The improvemeingfficient (“correct”) criteria for small-samples has
been the focus of much research. AICc may be the best knowaatorersion (Sugiura, 1978; Hurvich and
Tsai, 1989).

The most significant property of a candidate model is soneiits predictive ability. An example of an
early model selection criterion that modelled mean squprediction error is PRESS (Allen, 1974). Another
model selection criterion that selects models that make goedictions is Akaike’s FPE. FPE and PRESS are

both efficient. It is also worth noting that asymptotic effiecy and prediction are related (Shibata, 1980).

Consistent criteria

It is assumed by many researchers that the set of candidatelsniacludes the true model and thus is of fi-
nite dimension. To identify the true model correctly frone fist of candidates is thus the objective of model
selection. A model selection criterion is said to be coasistf it identifies the correct model asymptotically
with a probability of one. The HQ, GM, and SIC are examplesafsistent criteria. The researcher believes,
in this case, that the list of all significant variables candamtified, since adequate knowledge exists about the
physical system under consideration and that all variatdesbe measured. These are strong believes to many
statisticians. They may, however, hold in fields where tlagedarge bodies of theories to justify such believes,
like the field of physics. With these theories, it is assunied the true model belongs to the set of candidate
models.

Asymptotic arguments are used to derive many of the comsistedel selection criteria. The fact that the
consistent criteria do not estimate some distance functiatiscrepancy is part of the reason why more work
has been dedicated to find improvements to efficient critatizer than to consistent criteria.

The choice between efficiency or consistency is highly suivie and there is little agreement on which
philosophy is better. The choice depends on the assessifnitiet @domplexity and measureability of the mod-
elling problem of the individual researcher.

The most widely used in-sample model selection criteriecateria that penalize large models that tend to
overfit, such as the information-based criteria AIC and $i@as decided to use the SIC as in-sample model

selection criterion for this study. In the next sectionsttiiterion is discussed.

Schwarz information criterion

The Schwarz information criterion (SIC or SBC) was devetbfiom a Bayesian perspective, where each
model has equal prior probability and, given the model, trameters have very vague priors. It was assumed
that simple prediction, rather than scientific understagdif the process or system under consideration, was
the goal of the SBC-selected model.

In the literature, a number of different forms of the SBC hbeen suggested. The generic SBC definition
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(Burnham and Anderson, 2002) is
SBC= —2log(z (8y)) + K log(n), (3.25)

where, given the datgandK the number of estimable parameters in the approximatingemdmg(L(é\y))
represents the natural logarithm of the likelihood functid the parameter vector.

For the special case of the Gaussian error model, the SBGiiedeas
SBC= nlog(6?) + K log(n) (3.26)

with

62 = 276'2 ( the MLE of 62), (3.27)
where the estimated residuals for a specific candidate nmsdepresented by; andK represents the total
number of estimated regression parameters, includingiteecept ana?.

Schwarz (1978) and Rissanen (1978) both developed](3.28pandently. It was showed by Rissanen
(1978) that a consistent estimate of the order of an AR medehiduced by the SBC. If the true data-generating
model belongs to the finite-parameter family under conatitam, then the SBC is a consistent model selector.
Models that tend to underfit is selected by the SBC for exptaefamilies, if the previous assumption does
not hold (Haughton, 1989).

The SBC is sometimes abbreviated accidentally as BIC. Hewyélve penalty term of the Bayesian infor-

mation criterion (BIC) differs from that of the SBC. The BI€defined as
BIC = —2log(£ (8ly)) + K + Klog(n). (3.28)

The creation of a search space of possible GANN models,Hegetith an effective search procedure to find
the best model by using some model selection criterion, fibrenbasis for the automation of the interactive

construction algorithm. In the next section, the automatatstruction algorithm is considered.

3.5.3 The automated construction algorithm

A criterion has to be defined to rank the models from “good” kad” for the automated construction algo-
rithm to be effective. The automation of the interactive staiction algorithm is made possible with a model
selection criterion that is used to evaluate the predici@iracy of the models. When a validation data set is
present, models are tested on the validation set, whiclvalloe algorithm to perform cross-validation. Feature
selection (Guyon and Elisseeff, 2003; Blum and Langey, 189also performed automatically by the algo-
rithm. The automated construction algorithm consists déps These steps are shown in Algorithm 3.2.

A best-first search strategy (Rich and Knight, 1991) is zaéidi by the automated construction algorithm

(De Waal and Du Toit, 2011). The state space search problarhecformulated as follows:

e States: Any GANN model that is represented by a valid strihdigits that represents the GANN sub-

architectures.

¢ Initial state: The sub-architecture string that represaritnear GANN model.
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1. A GANN model with a direct connection for each input is ¢egk The univariate functions a
initialized to

fj(in) = WojXji - (3.29)
Each input has one parameter now.

2. Initial estimates of the constant temmand wp; are obtained by using a generalized lingar

model.

3. The full GANN model is fitted. The model is evaluated by gsine model selection criterio
To indicate that the model is available for expansion,akgandedlag is set to false. Finall

the model is denoted as the root of the tree.

4. Where theexpandedlag is false, a search for the best GANN modek performed by usin
the model selection criterion. If such a model is found, éxpandedfag is set to true t
indicate that the model is expanded. If a model cannot bedfauith the expandediag set
to false, the tree is searched for the best model. This medaken reported and the progr

terminated.

5. For each inpux; of m (the model identified in step 4): If& sul(x) <9, then a GANN mode
nis created with the sub-architecturexpfet to sulx;)-1 and the remaining sub-architecturgs
of m are left unchanged. A check is performed to determine whetl®as previously bee
created in the tree and, if not, thans evaluated with the model selection criterion and adfled

as a child node tm. Finally, theexpandedlag of nis set to false.

6. For each inpuk; of the modelm: If 0 < sul(x) < 8, then a GANN modeh is created with
the sub-architecture of set to subj)+1 and the remaining sub-architecturesnofare left
unchanged. A check is performed to determine whethiess previously been created in tjje
tree and, if not, then is evaluated with the model selection criterion and addeticsld node

to m. Finally, theexpandedlag ofn s set to false.

7. Go back to step 4.

Algorithm 3.2: Automated construction algorithm

e Successor function: Any valid sub-architecture stringhwihe digit changed.

e Goal test: When the given time runs out, or after the wholeckespace has been exhausted, the best

GANN model that was found is used.

e Path cost: Since only the best GANN model that was found ispbitance, the path to that model has

no use and, consequently, there is no path cost.
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The most promising model of those that were created so falésted (step 4) at each step of the best-first
search process. To achieve this, the model selectionioritenlue of each generated model is considered.
Steps 5 and 6 are then applied to expand the chosen modeleéntorgenerate its successors. All the newly

created models are added to the set of models that weredmsatfar. The most promising model is chosen

again for expansion and the process continues. The patbha/éal by the best-first search is influenced by the
order in which the sub-architectures are defined in Table Bsually, the size of the search space is reduced
when a problem is solved by choosing a subset of the subtectinies in Table_34.

To implement the best-first search algorithm, two lists alemare needed:

e Open: models that have been created, but not expanded, hgitmddel selection criterion value that

were calculated. Thexpandedlag are set tdalsefor these nodes.
e Closed: models that have been expanded. &pandedlag are set tdrue for these nodes.

With best-first search, the merit of each model that is cteistestimated with a heuristic function. Itis for this
purpose that the model selection criterion is used anddwalithe algorithm to search more promising paths
first.

The automated algorithm’s actual operation is simple, psiteeds in steps. At each step it picks the most
promising of the models that have been created so far witheuntg expanded. The successors of a chosen
model are created and a check is done to determine if any ahthdels have been created previously. A
heuristic function is then applied to the successors andubeessors are added to the list of open models. By
performing this check, it is guaranteed that each model appears once in the tree, even though many models
may point to one model as a predecessor. To guarantee thataiesa finite number of models that must be
searched, and for efficiency reasons, a finite number of etltectures are picked before trying to solve any
real problem.

Since best-first search always moves forward from the md@delsdeems closest to the goal model value,
the paths that were found by the best-first search are likehetshorter than those found with other methods
(Winston, 1992). In the case of the automated construcligorighm, the goal node is the one with the lowest
model selection criterion value. This is a complete seatdtegyy, since, given the finite number of sub-
architectures, all possible models will have been contduarhen the algorithm terminates.

To further enhance the automated construction algorithenWlaal and Du Toit (2011) added a multi-step

expansion feature. This feature is considered next.

Multi-step expansion

So far, the automated construction algorithm only allowfte change to the GANN architecture in each child
node. With this restriction, each change in the architectaguires one iteration of the algorithm. To arrive at
the best GANN architecture, the number of successor fumtibat need to be applied become unrealistically
large for a large number of variables. The multi-step exjpanselaxes this restriction.

It could be sensible to allow multiple changes when two orerehild nodes have better model selection
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criterion values than that of the parent node. The followdag be done to accomplish this:

Identify all the child nodes that have better model selectidteria values than their parent node. This
corresponds to nodes 2, 4 and 5 in the;$i@ta set example of Figure 3115. Note that the three valueadf
node indicate the order of creation, GANN architecture amdiehselection criterion value respectively. All
the changes that were identified in the children are then tsedeate a new child node (node 6) from the
common parent node. Nodes 2 and 4 denote the removal andbadufita neuron to the sub-architecture of
the first input. The change in the best child node (node 4) ésl wghen two or more child nodes (nodes 2
and 4) have better model selection criterion values thapahnent for the same change in the sub-architecture.
Node 5 represents the only change to the sub-architectute alecond input that has a better criterion value.
Consequently, this sub-architecture is utilized as theasuhitecture of the second input of the newly created
node (node 6). There is a good chance that all the changearthaipplied collectively will be worthwhile,
since all the changes that were identified, are worthwhillefrendently of each other. Multiple changes are

thus permitted during an iteration of the algorithm.
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Figure 3.15: S@multi-step expansion

The multi-step also occurs in the interactive constructéitgorithm. Multiple changes to the GANN archi-
tecture can be made during each iteration of the interactimstruction algorithm that is based on the inspection
of partial residual plots. The multi-step expansion thuglet® one iteration of the interactive construction al-
gorithm.

The multi-step expansion decreases the number of itemtitat are needed for the automated construc-
tion algorithm to converge. This heuristic was then furtbehanced by De Waal and Du Toit (2011), and is

considered next.

Improved multi-step expansion

There are no restrictions placed in step 6 of the interactvestruction algorithm on the number of hidden neu-
rons that may be added to or removed from a hidden layer. Foiegicy reasons, the automated construction
algorithm restricts the successor function to slightly encomplex or slightly less complex sub-architectures.
The following can be done to remove this restriction:

Apply another successor function to the generated chile rioithat child node’s model selection criterion
value is better than that of the parent node and then examenasvly created node’s model selection criterion.
Repeat the process of creating additional child nodes ifribdel selection criteria values improve, until the

model selection criterion value of the last node becomese&vorhe best node that is created with this recursive
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process is considered to be the result of the applied sumckswction. This improved multi-step expansion
permits the move in the sub-architectures to non-adjacews of Tabld 3.4. An example of such a step from

the SQ data set is shown in Figuke 3116, where the grey coloured remtesents the best node.
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Figure 3.16: SQimproved multi-step expansion

This strategy has a major drawback, even though it is souddraay decrease the number of iterations
that are needed in the automated construction algorithme drawback is that enumeration partly replaces
intelligent search and is, consequently, counter prodeiciBBased on the inspection of partial residual plots, it
is also very improbable that even an experienced modelliébeiable to make such big changes, since it is
hard to judge the complexity versus degrees of freedom-#dd he strategy can be approximated as follows:

Only an increase in the complexity or number of hidden nesiiorthe GANN architecture are considered,
as the starting point of the search in the automated strasegyinear model. Rather than re-evaluating each
new child node, which requires the training of a neural nekwthe first child node’s (node 2 in Figure 3116)
model selection criterion value can simply be adjusted tmamnodate the extra degrees of freeddth that
is relevant to each additional child node (nodes 3 and 4 inrel8.16), while keeping the maximum likelihood
estimates constant. This produces an approximation to tuehselection criterion values of the child node
and can be calculated immediately without any optimizatibiote that this approximation can be applied to
the SBC model selection criterion, but will not work with sssvalidation. During each evaluation of each
new child node, the model selection criterion will becomeasgoand at some point will be worse than that
of the parent node. This results in an approximation to thgimam possible moves in the GANN model's
sub-architecture.

The improved multi-step expansion further decreases th&eu of iterations that are needed to reach the
best GANN model. De Waal and Du Toit (2011) devised a final isgarwhich performs an intelligent guess
of the best GANN architecture. The search for the best GANNMehthen commences from this intelligent
start architecture. This heuristic can also decrease timbeauof iterations that are performed by the automated

construction algorithm.

68



Intelligent start

With the basic automated construction algorithm (AlgaritB.2), search is initiated from a GANN model
where each input has a sub-architecture identifier of 1. mtadligent start replaces the initial starting model
with a more promising one. An analysis of the results fromegpwise regression is used to determine the
intelligent start architecture.

Stepwise regression is used for variable selection. Thegtmremove the input variables that do not have
a significant effect on the output variables and to keep thiahigs that have a significant effect on the output
(Jiao and Li, 2010). With stepwise regression, all the \@eis are included in the initial model. Stepping
is then performed on this model by adding or removing vaesitaccording to the stepping criterion. Due to
the complexity of the relationships between variables amguds, the importance of a specific variable may
change when other variables are added to the model. Aftbrreag variable is added, a test is thus performed
to determine if some variables can be removed without hasisignificant increase in the residual sum of
squares. The stepwise regression will stop when the moddbdren optimized or when a specified number of
steps have been reached.

A GANN is reformulated as a regression problem after it haanbeonstructed with a skip layer and one
neuron in the hidden layer for each input, and has been trairid the default optimization algorithm. Each
skip layer and hidden layer are used as separate variabtbe meformulated regression problem. Stepwise
regression is then performed and the results are intetheetea GANN model. This GANN model is then
used as the new starting point (root node) for the searchritigo The intelligent start function is presented
in Algorithm 3.3. The automated construction algorithmhatite implemented intelligent start and multi-step
expansion techniques are shown in Algorithm 3.4. Note thgb#thms 3.3 and 3.4 are presented in the style
of Luger (2005), who utilizes lists to manage the search tree

The automated construction algorithm is the solution tadiffeculty of constructing GANNS interactively
and with the improvements that are made to the algorithmtithe taken to arrive at the best GANN model
is drastically decreased. In the next section, the imple¢atiem of the automated construction algorithm is

considered.

3.5.4 Implementation of the automated construction algothm

The SASR) programming language is an assemblage of reporting, datageaent and analysis tools which
are all integrated (SAS Institute Inc., 2005). The user emd rand combine data files in many ways with the
data management features. Simple frequency distribyttbrsugh to complex multivariate techniques, can be
performed with the analysis capabilities of SRSFinally, the user can present data management and analysis
results in a large number of formats with the reporting fesgu

The SASR) system is powerful, since itis integrated. The analysisrapdrting components are able to use
data that are handled by the data management facilitie®wtithe need to modify it. As a result, data formats
and structures are of minimal concern to the user. The systenalso be used throughout different computing

environments. A SA® program that has been developed on an IBM-compatible parsomputer can be
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begin
a GANN is constructed with one hidden neuron and a skip layeedch inpuV;, call it
Guesswith fj(xji) = WojX;i +Wijtanh(Wo1j +W;i) ;
fit the GANN model ;
for each input variable Vin the GANN modedio
V;j _skip :=wojXji ;
Vj_hidden :=wy; tanh(wo1j +W;i) ;
end
using the new variableg; _skip anaV;_hidden, fit a stepwise regression model ;
for each input variable Vin the GANNdo
casethe selected regression model only includgdskipdo
remove the one neuron for variablefrom Guess, consequentfy(x;i) = WojX;ji ;
end
casethe selected regression model only includgdiddendo
remove the skip layer for variablg from Guess, thud;(x;i) = wyj tanh(wo1j + W;i) ;
end
casethe selected regression model does not includskip nor \{_hiddendo
remove variable/; from Guess ;
end
end
return Guess ;

end

Algorithm 3.3: Intelligent start

used, with almost no alteration, on a mini-computer or maime. As a result of all these features, Du Toit
(2006) chose the SA® Macro Language to implement the automated constructioorigthgn. This imple-
mentation was namefutoGANNand was incorporated into the S&S Enterprise Minet™ solution. By
supporting all necessary tasks within one, integratedisoluEnterprise MinéM streamlines the full predic-
tion process from data access to model deployment, all vpindeiding the flexibility for efficient workgroup
collaborations.

The SASR) Macro Language has a procedure, PROC GAM, that uses the ttiagkéilgorithm to fit GAMSs.
An array of powerful tools are provided by this procedurejoltbare based on nonparametric regression and
smoothing techniques. However, this procedure is not impleed as a modelling node in Enterprise Mitfer
AutoGANN fills this gap from a neural network perspectivalcs it is implemented as a modelling node in
Enterprise Minef™. The implementation of the automated construction algoriin SASR) provides a more

user-friendly tool to the data analyst than PROC GAM.
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begin
start := IntelligentStart ;
open := [start] ;
closed :=[];
while, open# [] and specified time not reacheld
remove the first state from open (leftmost state) and call;it X
begin
crossover :=[];
threshold := heuristic value of X ;
minimum := heuristic value of X ;
for, each child of Xdo
if, not open nor closed, contains the chdd
a heuristic value is assigned to the child ;
the child is added to open ;
if, the child’s heuristic value< thresholddo
the child is added to crossover ;
minimum := the child’s heuristic value ;
end
end
end
if there are at least two states in crossoder
a super child is constructed from crossover and called S ;
if S¢ open and & closeddo
a heuristic value is assigned to S ;
if the heuristic value of & minimumdo
Sis added to open ;
end
end
end
end
X is added to closed ;
sort states in open by heuristic value (best leftmost) ;
end
return best state from open and closed by using the heuristic value ;

end

Algorithm 3.4: Updated automated construction algorithm
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The Macro Language of Base S&gpallows for the design of meta-programs that create and éxether
programs. With this powerful capability, AutoGANN can de&ANN source code in real time and then
analyze the predictive power of the models after the coddbes executed. With AutoGANN, GANN models

can be evaluated in a fraction of the time it would take anyatab do it by hand.

AutoGANN description

The SASR Macro Facility was used for implementing the AutoGANN systel'he SAR) Macro Facility is

a tool within the Base SA® software that allows the use of macros (Carpenter, 2004 nfédwcro facility gen-
erates source code and incorporates a macro processanglateamacro code into statements. This statements
can be used by SA® and the Macro Language. Communication with the macro psacds provided by the
Macro Language. With the latter, the user can sent infoondietween DATA and PROC steps. The user can
create SA®) code dynamically after the program has been submitted fargion. The Macro Language also
enables the user to create flexible and generalizable co@ATA step enables the programmer to perform a

number of tasks which include:
e reading of raw data or other SA&S data sets;
e creating a SA® data set;
e writing of reports; and
e Wwriting to external files.

A PROC step invokes a SA® procedure and is part of a S&p program. There are four basic steps in Au-
toGANN, as indicated by Figute 3117. These steps are carsidext.

Initialize AutoGANN system
Enough main memory is reserved for the execution of the pragwith this first step. A consistency check is
performed on the six parameters of AutoGANGtiterion, Start Architecture Search SpacgdPartial Residual
Plots TimeandNumber of Models

The model selection criterion that is used by AutoGANN tdeate different GANN models is set with the
Criterion parameter. The SBC criterion for a least squares analg8i€.dey, is the default value. When the
likelihood of the model must be used to calculate the SB@goih, SBClike must be selected by the user. The
Akaike Information Criterion (Anders and Korn, 1999) casabe selected as the AutoGANN model selection
criterion, withAlIC_devfor least squares analysis aAtC like for likelihood analysis. The average error on the
validation data setyalid_aveerr, is also included. Th&tart Architecturgparameter sets the GANN architec-
ture for the root node of the search tree. The default valltédligent which specifies the intelligent start as
discussed in Section 3.5.3. Another optiotLisear, which indicates a linear model to start with. T8earch
Spaceparameter has a default value of 012345 and defines the shibeature space. Theartial Residual

Plots parameter turns the creation of partial residual plots oofor The default value for this parameter is
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Figure 3.17: AutoGANN flowchart

Yes To force the algorithm to stop after a certain length of titie Time parameter can be set. The default
value islInitialize, which causes the algorithm to stop after the root node hais beated and evaluated. Other
values range from 5 seconds to 2 days. The final parameteg uimber of ModelsThis parameter sets the
number of models that are used for model averaging. The ldefalue is 1. To find a more stable GANN
model, the model averaging technique can be used to avdragdosen number of best models found. This
number can range from 1 to 10. Model averaging (Du Toit, 2068®eyond the scope of this study and was
not considered. System malfunctions may occur when theraaonsistencies in these parameters. This will
cause the program to terminate and generate an error message

The source code for a skeletal GANN model is generated dfteinput data set is analyzed. This skeletal
GANN code can be configured to represent any GANN model ingaech space. The automated construction

algorithm modifies the skeletal GANN code to create diffe@@ANN models in the search tree.

Execute automated construction algorithm

The second step of the AutoGANN system is to execute the ateahconstruction algorithm. A list data
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structure that is stored inside the computer's main menwugéed to maintain the tree of GANN models. The
list is ordered so that the best GANN model, according to tbdehselection criterion, is always found at the
start of the list. The results that are found by the AutoGAN#MStem are exported to external files when the
algorithm terminates, so that other programs can use it.fiTBtatistics are calculated and presented for the
best GANN model. If a score data set exists, score code ig@taeand applied to it automatically. The only
factor that limits the size of the problems that the AutoGAB$tem can solve, is the amount of available

memory. Tablé_3]5 shows the activation and error functibasdre implemented in AutoGANN.

Activation function | Link function Target scale Error function

Identity Identity Interval on[—co, +oco] | Normal

Hyperbolic tangent| Inverse hyperbolic tangentinterval on[—1,+1] | Normal

Exponential Log Nonnegative Poisson

Multiple logit Logit Binary Multiple Bernoulli

Table 3.5: AutoGANN activation functions

Perform model averaging
If the user requires a more stable GANN model than the oneighfaund with the automated construction

algorithm, model averaging can be performed. This is dorstep three.

Create partial residual plots
The last step of the AutoGANN system is to create partiatuesiplots. Partial residual plots of the combined
GANN model are produced when model averaging is used, otbemartial residual plots of the best GANN
model that was found, are created. The method that was usBdtts/(2000) to create these plots is extended
by adding ticks to provide insight into the distribution afittion values. Figurle 3.21 shows an example of this
improved partial residual plot.

Now that the inner workings of the AutoGANN system has besnuiised, the AutoGANN user interface,
which attempts to simplify the necessary user input andymedhe desired results for each experiment, will

be considered.

AutoGANN user interface

In order to keep the system as simple as possible, the usenbaadjust the most important parameters. The
adjustable settings for model selection are shown in Figul8. A typical experiment, where the $@ata set

is connected to the AutoGANN modelling node in Enterprise&fiM | is shown in Figur€ 3.19. The result
screen which is displayed after the successful completi@m @xperiment is shown in Figure 3120. The result

screen consists of seven sub-screens, each giving diff@fermation:
e Score rankings overlay: Not applicable to this study.
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e Solution path: This section shows information about notlasdre on the path from the root node to the

node that represents the best GANN model that was found.

e Model space statistics: This section gives informationuatlbe search space, like the total number of

models that were generated and the number of duplicates/ératfound.
e Output: This is the output text file that is generated by @AS

e Populated search space: Displays information about alhtites that were generated, sorted from the

best model that was found to the worst in terms of the modekts&eh criterion.

e Inputs: The order, name and description of each input aneasthitecture identifier for each input as

they were determined by the best model that was found.

o Fit statistics: The fit statistics part shows informatioke the complexity and accuracy of the best model

that was found.

Partial residual plots (Figufe 3]21) can be inspected bysing theView option. Finally, the system also
generates a text file that can be used with@naephviztree draw program to create an image of the search tree
(e.g. Figuré_3.22).

In the next section, an example is given to illustrate th@mated construction algorithm which utilizes

Haberman'’s Survival data set (Frank and Asuncion, 2010).

Froperty | Yallue

(SEiModel Selection Options

- Criterian SBC_dey

i-/Start Architecture Intelligent

-Link Architecture a

-Search Space 0123456784

- Link Search Space 2103

-Partial Residual Plots B5

-Tirme 1 minute

Figure 3.18: AutoGANN settings screen

foo SO4Diagram

Figure 3.19: AutoGANN that is connected to the Sfata set
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3.5.5 Example

The instances of this data set represent cases from a stadywals conducted between 1958 and 1970 at the
University of Chicago’s Billings Hospital. The study fomesl on the survival of patients who had undergone
surgery for breast cancer. The data set consists of 30taoedtaand has 4 attributes. These attributes are
described in Table_3.6. This is a binary classification pobhand the objective is to predict whether a patient

will survive for 5 years or longer, or will die within 5 years.

Attribute | Description Attribute scale
Age The age of the patient when the operation took place Interval
Year The year when the operation took place (year-1900) Interval

Axillary | The number of positive axillary nodes that were discovered Interval

Survival status of the patient. The status is 0 if the patient

survived for 5 years or longer and 1 if the patient died

Status within 5 years Binary

Table 3.6: Haberman’s Survival data set attributes

Methodology

The GANN sub-architecture space is limited{t1,2,3,4,5 for this example, the SBC is used as model selec-
tion criterion and search time is restricted to 5 seconds GANN architecture is represented by, k»,X3],
wherexq, X, andxz representd\ge YearandAxillary respectively.

In steps 1 to 3 of the automated construction algorithm, a GAnbdel is generated by using the intelligent
start technique. This model is evaluated with the SBC doitewhich produces a value of -516.093. The model
has a GANN architecture of [0,0,2]. It is then set as the réthi® search tree and represented by node number
1in Figure 3.22. Thexpandedlag for this node is set tfalse

The root of the search tree ([0,0,2] model) is identified ashtbst unexpanded model that was created up
to this point in step 4 and this node is denoted as nmoddo indicate that this node is (being) expanded, the
expandedlag of mis set totrue.

Each input of modefnis pruned by one sub-architecture level in step 5. Since ttehfio variables cannot
be pruned any more from the architecture that was obtaired fhe intelligent start technique ([0,0,2]), the
first child nodep, is created with an [0,0,1] architecture. To determine Weehoden has already been placed
in the tree, a check is performed. Since this check is negétivden does not already exist in the tree), the
model is evaluated by the SBC criterion. The SBC value far thodel is -515.308. The nodesgpandedlag
is set tofalseand the model is added as node 2 to the tree (Flguré 3.22).

Each input of modetn ([0,0,2]) is grown by one sub-architecture level in step BisTesults in the creation
of three new child nodes ([1,0,2], [0,1,2] and [0,0,3]). $&@odes are added to the tree and humbered nodes
3, 4 and 5 respectively. Each of these nodegiandedlag is set tdfalse
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In step 7, the algorithm returns to step 4 to identify the lestxpanded node. This node is set to node
In this example, this is node 3 ([1,0,2]), with an SBC valuexif6.456. Step 5 (prune) and step 6 (grow) are
repeated for each input of node Step 5 creates only one new child node [1,0,1], since [Pd)k2ady exists
in the tree. Step 6 creates three new child nodes, namel®]2[0,1,2] and [1,0,3].

The automated construction algorithm continues until #erch space has been exhausted or the time limit
has been reached. For this example, there are 215 modeks sedinch space (6 possible sub-architectures and
3inputs, 6 —1= 215@. The AutoGANN system created 30 models and was stopped hyntledimit of 5

seconds.

Results

The best model that was found, was reported as the third ntloaelas created ([1,0,2]) with an SBC value
of -516.456. The accuracy, as measured by the MSE valuesofrtbdel, is 0.180485. The full search tree that
was created in the time limit of 5 seconds is shown in FiuP®.3The partial residual plots for variables

(Age andxs (Axillary) are shown in Figurds3.23 ahd 3.24 respectively.
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Figure 3.22: AutoGANN search tree for Haberman’s Surviahdset

Conclusions

This algorithm is efficient and fast. In the time limit of 5 seds, the algorithm created and evaluated 30
models. This would be an impossible task to achieve by haridseconds by even the best modeller. The
results are also not subjective to human judgement and geetiviely obtained by evaluating the SBC values.

In the next section, a conclusion to this chapter is pregente

INote that the [0,0,0] architecture is not allowed.
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3.6 Conclusion

Presently, statistical and prediction packages are pirayichore nonlinear modelling procedures, such as neu-
ral networks (Du Toit, 2006). However, linear and neardinmodels, such as GANNSs, are in general easier to
understand and interpret than nonlinear models and shaaldendiscarded as ineffective and useless when it
comes to solving complex multi-dimensional problems. wdr models have their own set of difficulties that
may not be straightforward to solve, such as the curse ofriiioeality, overparametrization and difficulty to
train.

The black box perception of neural networks with respecnterpretation is relieved by the use of the
GANN architecture, since graphical methods can be useddopiret the effect of each input variable on the
fitted model.

Human judgement is, however, needed to interpret the pagBaldual plots when GANNSs are constructed

interactively. This can become a time consuming and dagritek for a large number of variables. Since
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human judgement is subjective, the interactive conswoaigorithm may also result in the creation of subop-
timal models.

The difficulties of the interactive construction algorithssolved with the automated construction algo-
rithm by incorporating a model selection criterion to guikde search for the best GANN model. Consequently,
no human interaction is needed during the execution of therithm. The data analyst must merely set the
parameters of the algorithm before the search for a good GAMNel is started and then interpret the results
after the search has been completed. The automated cdiwstralgorithm is also able to perform in-sample
model selection and cross-validation. Given adequate timevaluate candidate models, the best-first search
technique, implemented by the automated constructiorritigo, is complete and optimal.

The automated construction algorithm is implemented inSASR) Macro Language and callefuto-
GANN The AutoGANN system has a simple, user-friendly and iieitiser interface with default parameter
settings that are ready to construct and interpret a relgtyood model. The output of the AutoGANN system
can also help in guiding the data analyst to gain insighttinéomodels that were developed.

In the next chapter the AutoGANN system is used to searchdod gsANN models on five different data
sets. The models that are found, are compared to MLP modeled GILP models for the five data sets are
found by using a modified version of the N2C2S algorithm. Eheé&é P models are also compared to baseline

MLP models that are created by using a brute force method.
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“Computer Science is no more about computers than astroioabout

telescopes.”

Professor Edsger Dijkstra

Experimental Results

In order to compare multilayer perceptrons (MLPs) and gdimad additive neural networks (GANNS), a
literature study had to be performed first to understancethes types of neural networks better. This has been
accomplished in Chapters 2 and 3. The next step is to perfeperinents on different data sets by using MLP
and GANN models. These experiments must be well defined arstl couwer a broad range of tests to provide
insight into the manner in which these models compare.

Five different data sets were chosen for this study as a basiie comparison of the two types of neural
networks. These data sets include the Adult (Frank and Asan2010), Boston Housing (Frank and Asuncion,
2010), Ozone (Breiman and Friedman, 1985),,$Kiang, 2001) and the Spambase (Frank and Asuncion,
2010) data sets and are all publicly available. The pramidiask that was conducted on each of these data sets

can be divided into one of two categories:

1. Classification In classification prediction tasks, the target is a set asts (Berry and Linoff, 1997).
Characteristics of these tasks are a well-defined definitidhe classes and preclassified examples that
make up the training data set. The accuracy of classificatisks in this study is measured by the

percentage of instances that are classified correctly.

2. RegressionWith regression prediction tasks, the target is a contisualue (Berry and Linoff, 1997).
The prediction task is to estimate the continuous valueaseb} as possible. The accuracy of regression

tasks in the study is measured in terms of the mean squa@dEISE) value.

In this chapter, a description of the different experimeht were performed, is given in Section 4.1. The

Adult data set is considered in Section 4.2 and the resultiseoéxperiments that were performed on this data
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set are also presented and discussed. In Section 4.3, thenBdsusing data set and its experimental results
are considered. The Ozone data set and its experimentétsrapeidiscussed in Section 4.4 and in Section 4.5
the SQ data set and the experiments that were conducted on it asideoed. The final data set, Spambase,
and experiments that were conducted on it, are discusseetciio8 4.6. Finally, a conclusion to this chapter is

presented in Section 4.7.

4.1 Experimental design

All the experiments were conducted on a personal computtravi Inte(® Core™ 2 Quad processor, oper-
ating at 2.66 GHz (per core) with 4 GB of RAM (only 3.5 GB usabii¢h a 32 bit operating system), running
Microsoft Windows XP 32 bit. The custom-built MLP constrioct program was implemented in Base SRS
9.1 and the AutoGANN system in SAS Enterprise Minet™ 5.3.

Each data set was used in MLP and GANN experiments. For the X6&kperiments, the AutoGANN
system, as discussed in Section 3.5.4, was used to seartieftlest model for the specific data set. The
custom-built program for MLP construction, as discusse8éation 2.6.2 (the program code is given in Ap-
pendix A), was used to find the best MLP architecture for eath det.

Key features that are considered in order to compare MLP&#MNNs are the following:

e Model complexity: The complexity of a model (degrees of flem) is measured in terms of the number

of parameters.

e Predictive accuracy: For this study, two measurements sed to report the predictive accuracy of a

model:

1. Percentage of events that are classified correctly. Taasarement is used for classification tasks
and is defined as

o X
Percentage of events classified correetlyﬁ, (4.1)

whereX is the number of events that are classified correctly Mrigl the number of instances. To
report the percentage of events that are predicted correctK-fold cross-validation, the former
is averaged over thi€-folds.

2. Mean squared error (MSE). The MSE is utilized to reportljutése accuracy for regression tasks,

and is defined by Zhang et al. (1998) as

MSE = XlNzl(yl —)7I)2

N (4.2)

whereN is the number of instancey, is the target value ang is the predicted target value. The

MSE for K-fold cross-validation is determined by averaging the M3&kies over th&-folds.
e Time: The time that is taken to find a good model.

In the next section, the experiments that were performeld GANNSs by using the AutoGANN system are

discussed.
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4.1.1 GANN experiments

Two GANN experiments were conducted on each data set by uba@\utoGANN system. For the first
experiment, the AutoGANN system was set to run for 12 houesfopming in-sample model selection (the
whole data set was used for training and validation). Sinceywideline was provided by Du Toit (2006)
on how long to search for a good model, a relatively prolongae& was chosen. With this experiment, the
AutoGANN system used the SBC model selection criterion &odefor a good GANN model. For the second
experiment, the AutoGANN system was also set to run for 12hdaut out-of-sample model selection was
performed (70% of the data set was used for training and 30%di@ation). The average validation error
(VAVERR) was utilized as model selection criterion for tleisperiment to search for a good GANN model.
Both of these experiments used the intelligent start metbatbtermine the starting architecture. The search
space for all the GANN experiments was sef@®1,2,3,4,%. To reduce the size of the search space, Du Toit
(2006) suggested that a subset of the available sub-astiigés should be employed.

In the next section, the MLP experiments are described.

4.1.2 MLP experiments

The MLP construction program that had been developed fersthoidy (Appendix A) was used to conduct the
MLP experiments. Six experiments that involved MLPs wenadtted on each data set. Three experiments
used the modified N2C2S algorithm. The first performed infdarmodel selection (the whole data set was
used for training and validation), the second performedafi#ample model selection with hold-out cross-
validation (70% of the data set was used for training and 30%eodata set for validation) and the third also
performed out-of-sample model selection, but vidttiold cross-validationi = 10). The experiment that used
in-sample model selection used the SBC value as model melaxriterion and the other two experiments used
the average validation error (VAVERR) value as model s&ladtriterion for out-of-sample model selection.
The next three MLP experiments were then performed by ugiegbtute force method of the custom-
built MLP construction program for iterating through a nwnlef MLP architectures. The latter technique
evaluates a range of MLP architectures to gain insight imotumber of hidden neurons that were chosen by
the modified N2C2S algorithm. In other words, the brute fareghod provides a baseline for the modified
N2C2S algorithm. For these experiments, a minimum number lofdden node was chosen, along with a
maximum number of hidden nodes. All the MLP architecturasiging from 1 to the maximum number of
hidden nodes, were then evaluated. The first brute forceadetkperiment used the whole data set for training
and validation, the second brute force method experimesd W% of the data set for training and 30% of
the data set for validation, and the third brute force metaqueriment performeH-fold cross-validation with
K = 10. For the Adult and Spambase data sets, the maximum nurhbetden neurons were set to 30 and
for the remaining three data sets they were set to 15. Thisdeas since the Adult and Spambase data sets
are the largest data sets (in terms of dimensions) that ves@ in this study and may require a more complex
MLP than the smaller data sets. Since these three expesmsatl a brute force approach, no model selection

criterion was necessary.
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In the next section, the naming of the experiments is digtliss

4.1.3 Experiment identification

In total, there were eight experiments conducted on each sktt To identify these experiments, a unique
identification string (ID) is given to each experiment, asvgh in Tabld 4.ll. Note thd-fold cross-validation

is not implemented by the AutoGANN system and was therefanéted by experiments conducted with the
system. This model selection technique was performed byvilhé construction program to gain more in-

sight into the results that were obtained by the system. eSime hold-out (cross-validation) model selection
technique is based on a single sample from the data, moie s&slts can be obtained by performikefold

cross-validation.

Model
Experiment description selection ID
AutoGANN system, using 100% of the data set for training aaléation In-sample AG100
AutoGANN system, using 70% of the data set for training anth 30 the
data set for validation Out-of-sample| AG70
Modified N2C2S algorithm, using 100% of the data set for fregrand
validation In-sample NCS100
Modified N2C2S algorithm, using 70% of the data set for tragrénd 30%
of the data set for validation Out-of-sample] NCS70
Modified N2C2S algorithm, performing 10-fold cross-vatida Out-of-sample| NCS10
Brute force approach, using 100% of the data set for trainimgyvalidation n/a BRUTE100
Brute force approach, using 70% of the data set for trainhy30% of the
data set for validation n/a BRUTE70
Brute force approach, performing 10-fold cross-validatio n/a BRUTE10

Table 4.1: Experiment identification strings

Next, the Adult data set and the experiments that were caedum it will be considered.

4.2 The Adult data set

The Adult data set (Frank and Asuncion, 2010) contains detewas extracted from the 1994 U.S. census
database. The prediction task for this data set is to datermhether a person makes more than fifty thousand
U.S. dollars a year. The data set has 48 842 instances andribGtas, and contains instances with missing

values. These instances were removed, which left the dataitte45 222 instances. The attributes are in-

formation about the persons that are represented by thanoest. Information about the attributes is given in

Table[4.2.
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Attribute Description Attribute scale
Age The age of the person in years Interval
Workclass The sector in which the person works Nominal
Fnlwgt Final weight Interval
Education The education level of the person Nominal
Education-num | The education level of the person Interval
Marital-status | The marital status of the person Nominal
Occupation The occupation of the person Nominal
Relationship The relationship status of the person Nominal
Race The race of the person Nominal
Sex The sex of the person Binary
Capital-gain The amount of capital the person has gained Interval
Capital-loss The amount of capital the person has lost Interval
Hours-per-weekl How many hours the person works per week Interval
Native-country | The country where the person originally comes from Nominal
Indicates whether the person has an income less|or
Income equal to $50 000, or more than $50 000 Binary
Indicates the income status, where 0 is for less of
Status equal to $50 000 and 1 for more than $50 000 Binary

Table 4.2: Adult data set attributes

The Education-numattribute is an interval attribute that is derived from tteminal Educationattribute
and as a result, thEducationattribute is omitted from the experiments. Timeomeattribute is also omitted,
since theStatusattribute is a binary attribute that is derived fréntome The AutoGANN system is designed
to handle only numerical binary target attributes with eslwf O and 1. This necessitated the replacement of
the class target attributacomewith the numerical binary targ&tatus There are thus 14 attributes used in the
experiments, 13 as inputs and 1 as the target.

The results from the experiments, using GANNS, are consitibext.
4.2.1 GANN results

AG100 and AG70 experiments

In the AG100 and AG70 experiments, the AutoGANN system ataltl 554 and 815 models respectively. The
number of models that were generated in the AG70 experintergraater than the number of models that were
created in the AG100 experiment. It takes less time to tfznindividual models on 70% of the data set and
to evaluate the model on the remaining 30% of the data set. rAsudt, more models can be generated in the

allowed time in the AG70 experiment. The best models thaei@und in the AG100 and AG70 experiments,
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according to the SBC and VAVERR values respectively, arevshin Tabl€ 4.8. The accuracies of these models,

in terms of the percentage of events that were correctlysified, are shown in Table 4.4.

Model selection| Model selection
Experiment criterion criterion value | Parameters Time
AG100 SBC -104 254.49 36 12h
AG70 VAVERR 0.307387 45 12h

Table 4.3: Best AG100 and AG70 GANN models on the Adult data se

Data set| False False True True | Accuracy
Experiment| Data role size | positive | negative| positive | negative (%)
Training and
AG100 validation 45222 | 2209 4219 6989 | 31805 85.79
AG70 Validation 13568 | 1255 677 2108 9528 85.76

Table 4.4: Best AG100 and AG70 GANN models’ accuracies orfithalt data set

Table[4.5 shows the GANN sub-architecture of each input @bist GANN model that was found in the
AG100 experiment. From this table, it can be seen that 11 foileol 3 input attributes were used in the best
model. TheRaceandNative-countryattributes were removed from the model. WMerkclass Education-num
Marital-status Occupation Relationshipand Sexattributes all had a linear relationship with the targeteTh
Age Fnlwgt, Capital-gain Capital-lossandHours-per-weelattributes all had a nonlinear relationship with the
target.

The GANN sub-architectures of each input of the best modsllere found in the AG70 experiment are
shown in Tablé 4]6. It can be seen from this table that 12 otkteol.3 input attributes were used in this model.
Only theNative-countnattribute was removed from the model. TWerkclassEducation-numMarital-status
Occupation RelationshipRaceandSexattributes all had a linear relationship with the targete Age Fnlwgt,
Capital-gain Capital-lossandHours-per-weelattributes all had a nonlinear relationship with the target

The root nodes of the search trees for the AG100 and AG70 iexpets were created by using the intel-
ligent start method. The root node of the AG100 experimers raaked 384th out of the 554 models and had
an SBC value of -103 440.65. The GANN architecture of this ehedhs [2,1,0,1,0,1,1,0,0,5,1,2,0]. The root
node of the AG70 experiment was ranked 590th out of the 81%ta@hd had a VAVERR value of 0.313473.
The GANN architecture of this model was [2,1,0,1,0,1,15);02,(H.

INote that although the training data sets for the AG100 an@(®&periments were different, the intelligent start atipon created

the same GANN architecture for the root nodes of the two beaees.
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Table 4.5: Best AG100 GANN model on the Adult data set

Input GANN
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Table 4.6: Best AG70 GANN model on the Adult data set

In the next section, the results from the GANN experiment tas conducted on the Adult data set are

discussed.
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Discussion of GANN results

The accuracies of the two models (the best model from the A&kperiment and the best model from the
AG70 experiment), in terms of events that were correctlydijoted, are very similar. The model from the
AG100 experiment is, however, less complex than that of tB& Aexperiment.

In the next section, the experimental results from the MLeexnents on the Adult data set are considered.

4.2.2 MLP results
NCS100, NCS70 and NCS10 experiments

The best MLP models that were found with the modified N2C28rétlym by using model selection criteria

in the NCS100, NCS70 and NCS10 experiments are shown in flableThe accuracies (percentage events
that were correctly classified) of these models are showrabie[4.8. As seen from this table, the accuracies
only differs with less than one percent in these three erpants, but the models from the NCS70 and NCS10

experiments are much more complex, as seen in Table 4.7.

Model selection| Model selection| Hidden
Experiment criterion criterion value | neurons| Parameters Time
NCS100 SBC -586 444.08 2 31 11m 6s 97ms
NCS70 VAVERR 0.309054 5 76 15m 4s 42ms
NCS10 VAVERR 0.309417 6 91 3h 47m 59s

Table 4.7: Best NCS100, NCS70 and NCS10 MLP models on thet Aldtd set

Data set| False False True True | Accuracy
Experiment| Data role size | positive | negative| positive | negative (%)
Training and
NCS100 validation 45222 | 2505 4172 7036 | 31509 85.24
NCS70 Validation 13 566 714 1231 2152 9469 85.66
NCS10 Validation 4522 238 415 706 3163 85.56

Table 4.8: Best NCS100, NCS70 and NCS10 MLP models’ acasam the Adult data set

In the next section, the BRUTE100, BRUTE70 and BRUTE10 erpemtal results are considered.

BRUTE100, BRUTE70 and BRUTE10 experiments

For these experiments, the brute force method was perfofraedan MLP with 1 hidden neuron through to
an MLP with 30 hidden neurons. The time that was taken to cetaghe brute force experiments is shown
in Table[4.9. The best MLP models that were found by manuaBpecting the results, according to the SBC
(BRUTE100) and VAVERR (BRUTE70 and BRUTE10) values, arergian Table 4.1D.
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Experiment Time

BRUTE100 4h 10m 56s 45ms
BRUTE70 3h Om 58s 81ms
BRUTE10 | 1d 12h 50m 18s 10ms

Table 4.9: BRUTE100, BRUTE70 and BRUTE10 completion timat@nAdult data set

Model selection| Model selection| Hidden
Experiment criterion criterion value | neurons| Parameters
BRUTE100 SBC -586 516.43 2 31
BRUTE70 VAVERR 0.304095 26 391
BRUTE10 VAVERR 0.308925 22 331

Table 4.10: Best BRUTE100, BRUTE70 and BRUTE10 MLP modelthenAdult data set

The accuracies of these MLP models are shown in Tablé 4.11se@s in this table, the accuracies only

differ less than one percent in the three experiments.

Data set| False False True True | Accuracy
Experiment| Data role size | positive | negative| positive | negative (%)
Training and
BRUTE100| validation 45222 | 2364 4090 7118 | 31650 85.73
BRUTE70 Validation 13 566 687 1265 2101 9513 85.61
BRUTE10 Validation 4522 237 409 711 3165 85.70

Table 4.11: Best BRUTE100, BRUTE70 and BRUTE10 MLP modeatsuaacies on the Adult data set

The full results of the BRUTE100, BRUTE70 and BRUTE10 exmenits are shown in Appendix B. In the
next section, the results that were obtained from the paddrexperiments on the Adult data set, using MLPs,

are discussed.

Discussion of MLP results

The modified N2C2S algorithm performed well on this data set produced MLPs with good accuracies.
When the best models that were found in the NCS100, NCS70 &®{lN experiments are compared to the
models from the brute force search method, it can be seenhbanodified N2C2S algorithm successfully
found a good model without overfitting the data.

In the next section, the results from the MLP and GANN experita that were conducted on the Adult

data set are compared.
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4.2.3 Comparison of MLP and GANN results

A comparison between the AG100 and the NCS100 experimest®isn in Tablé 4.12. The table shows that
the accuracies of these two models are very similar. The MbBehis, however, less complex than the GANN
model and the time that was taken to finish the search for a tidelmodel is far less than the time that was

taken to search for a good GANN model.

AG100 NCS100

Parameters 36 31
Accuracy (%)| 85.79 85.24
Time 12h 11m 6s 97msg

Table 4.12: AG100 and NCS100 experimental results compans the Adult data set

A comparison between the AG70 and the NCS70 experimentsoisrsin Table[4.18. The table shows
that the accuracies of these two models are, again, verjasjrhut the MLP model is more complex than the
GANN model. The time that was taken to finish the search foralddLP model is, again, far less than the
time that was taken to search for a good GANN model. Since titeBANN system does not suppdttfold
cross-validation, the NCS10 experiment cannot be compdiredtly to a GANN experiment. The NCS10
experiment did, however, produce an MLP model with an aayunehich is very similar to that of the NCS70

experiment, but the time that was taken to find this model, elsas the model complexity, increased.

AG70 NCS70

Parameters 45 76

Accuracy (%)| 85.79 85.66

Time 12h | 15m 4s 42msg

Table 4.13: AG70 and NCS70 experimental results compaosdhe Adult data set

In the next section, the Boston Housing data set as well asethéts that were obtained from the experi-

ments that had been conducted on it, are considered.

4.3 The Boston Housing data set

The Boston Housing data set (Frank and Asuncion, 2010) ttasgredict average house prices in the suburbs
of Boston. This data set was originally utilized by Harrisamd Rubinfeld (1978) to generate quantitative

estimates of the willingness of people to pay for better aalidy. The data set consists of 506 instances and
has 14 attributes. Each instance represent a certain saleaiwf Boston. The attributes represent information
about the suburb. The goal is to predict the median valled{) of owner-occupied houses in these suburbs
in U.S.$1000s. Sinckledvis an interval attribute, this can be classified as a regregwioblem. Information

about the attributes is presented in Tdble 4.14.
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Attribute | Description Attribute scale

Crim Crime rate per capita Interval
The proportion of land that is zoned for residential lots elihéare

Zn larger than 25 000 square feet Interval

Indus The ratio of acres that consists of non-retail businesses Interval
The Charles River dummy variable. If the piece of land b der

Chas the river, then this value is 1, otherwise itis O Binary

Nox The nitric oxides concentration that is measured in pantd @enillion Interval

Rm The average number of rooms per home Interval
The ratio of homes that were built prior to 1940 and are oclipiy

Age the owner Interval

Dis The weighted distances from five employment centres in Bosto Interval

Rad An index of accessibility to highways Interval

Tax The full value property tax rate per U.S.$10 000 Interval

Ptratio The ratio between pupils and teachers Interval
A value that was computed with the following formula:

B 100Q Bk — 0.63)2, whereBy represents the ratio of blacks in the town Interval

Lstat The percentage lower status of the population Interval
The median value of homes that are occupied by their owners in

Medv U.S.$1000s Interval

Table 4.14: Boston Housing data set attributes

In the next section, the experiments, using GANNSs on thia dat, are considered.

4.3.1 GANN results

AG100 and AG70 experiments

The AutoGANN system was set to run for 12 hours in both the ATA0Ad the AG70 experiments. In this
allowed time, the AutoGANN system created 8 602 differentNBAmodels for the AG100 experiment and
8 878 GANN models for the AG70 experiQOAs in the GANN experiments with the Adult data set, more
models were evaluated in the AG70 experiment than in the AGperiment. The best models that were

found according to the model selection criteria in the AGa68 AG70 experiments are shown in Table 4.15.

The accuracies of these models, in terms of the MSE valueshawn in Table4.16.

2For an unknown reason, the AutoGANN system created less Imatiéhe AG70 experiment than would be expected when

compared to the number of models that were created in the B@&gferiment.
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Model selection| Model selection
Experiment criterion criterion value | Parameters Time
AG100 SBC 1260.11 38 12h
AG70 VAVERR 0.434168 53 12h

Table 4.15: Best AG100 and AG70 GANN models on the Boston kgudata set

Data set| Accuracy
Experiment| Data role size (MSE)
Training and
AG100 validation 506 9.659861
AG70 Validation 354 11.423594

Table 4.16: Best AG100 and AG70 GANN models’ accuracies erBiiston Housing data set

The GANN architecture of the best model that was found in t84.80 experiment is shown in Taljle 4.17.
From this table, it is clear that 10 out of the 13 input attt@suwere used in the best model. The Ageand
Radattributes were removed from the model. TThdus Chas Ptratio, B andLstat attributes all had a linear
relationship with the target. THerim, Nox Rm Dis andTaxattributes all had a nonlinear relationship with the

target.

GANN

Input | sub-architecture

(6]

Crim
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Chas

Nox

Rm
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Table 4.17: Best AG100 GANN model on the Boston Housing detta s
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The best model that was found with the AG70 experiment ondg8out of the 13 input attributes (Table
[4.18). TheZn, Indus ChasandAgeattributes were removed from the model. TRadandTaxattributes had a
linear relationship with the target. Ti@&im, Nox Rm Dis, Ptratio, B andLstat attributes all had a nonlinear

relationship with the target.

GANN

Input | sub-architecture
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Table 4.18: Best AG70 GANN model on the Boston Housing ddta se

The intelligent start method of the AutoGANN system wasizgil to create the root nodes of the search
trees for the AG100 and AG70 experiments. The starting GANddehof the AG100 experiment was ranked
6 788th out of the 8 602 models and had a SBC value of 1 371.96. GANN architecture of this model
was [3,0,0,1,1,5,2,5,1,2,1,3,3]. The starting GANN mooethe AG70 experiment had an architecture of
[1,0,0,1,1,5,2,5,1,1,1,0,1], was ranked 8 102th out oBtB&8 models and had a VAVERR value of 0.621064.

In the next section, the GANN experimental results from tlestBn Housing data set are discussed.

Discussion of GANN results

In both of the GANN experiments, the AutoGANN system seadidheough a large number of GANN models.
The number of models that were generated for the Boston Hguwkita set are far greater than the number of
models that were constructed for the Adult data set. Thisbeaattributed to the fact that the Boston Housing
data set has much less instances, which causes the traimage¢r model to be reduced. The best GANN
model that was found with the AG100 experiment is more ad¢eliraterms of the MSE value than that of the
AG70 experiment. This model is also less complex than thettmatevas found in the AG70 experiment.

The experiments that were conducted by using MLPs are cemesichext.
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4.3.2 MLP results
NCS100, NCS70 and NCS10 experiments

The best MLP models that were found on the Boston Housingsidtaising the modified N2C2S algorithm,
are shown in Table 4.19. The accuracies of these models esenied in Table 4.20. As seen in this table, the

accuracies (MSE) differ substantially in these three drpants.

Model selection| Model selection| Hidden
Experiment criterion criterion value | neurons| Parameters Time
NCS100 SBC -1982.71 3 46 6s 42ms
NCS70 VAVERR 0.614418 4 61 8s 89ms
NCS10 VAVERR 0.489649 3 46 55s 61ms

Table 4.19: Best NCS100, NCS70 and NCS10 MLP models on thBétousing data set

Data set| Accuracy
Experiment| Data role size (MSE)
Training and
NCS100 validation 506 5.709240
NCS70 Validation 354 | 16.291630
NCS10 Validation 455 11.843650

Table 4.20: Best NCS100, NCS70 and NCS10 MLP models’ acagan the Boston Housing data set

In the next section, the BRUTE100, BRUTE70 and BRUTE10 erpemtal results are considered.

BRUTE100, BRUTE70 and BRUTE10 experiments

For these experiments, the brute force method was perfofraedan MLP with 1 hidden neuron through to
an MLP with 15 hidden neurons. The time that was taken to cetapthese experiments are shown in Table

[4.21.

Experiment Time

BRUTE100| 51s42ms

BRUTE70 36s 20ms
BRUTE10 | 6m 59s 84ms

Table 4.21: BRUTE100, BRUTE70 and BRUTE10 completion timete Boston Housing data set
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The best MLP models that were found in the BRUTE100, BRUTEWDBRUTE10 experiments, according
to the SBC (BRUTE100) and VAVERR (BRUTE70 and BRUTE10) valuare shown in Table 4.P2.

Model selection| Model selection| Hidden
Experiment criterion criterion value | neurons| Parameters
BRUTE100 SBC -1977.08 3 46
BRUTE70 VAVERR 0.594371 7 106
BRUTE10 VAVERR 0.486868 5 76

Table 4.22: Best BRUTE100, BRUTE70 and BRUTE10 MLP modeltherBoston Housing data set

The accuracies (MSE) of these MLP models are shown in TaBf&. 4As seen in this table and Table
[4.22, the model from the BRUTE70 experiment has a higher é®xitp and is less accurate than that of the
BRUTE10 experiment.

Data set| Accuracy

Experiment| Data role size (MSE)

Training and
BRUTE100| validation 506 5.773066
BRUTE70 Validation 354 15.918820
BRUTE10 Validation 455 11.050678

Table 4.23: Best BRUTE100, BRUTE70 and BRUTE10 MLP modatsusacies on the Boston Housing data

set

The full results of the BRUTE100, BRUTE70 and BRUTE10 expemts are shown in Appendix B. The

MLP experimental results on the Boston Housing data setiaomigssed in the next section.

Discussion of MLP results

The MSEs of the best MLP models that were found with NCS100SRTand NCS10 experiments differ

substantially. The MSE of the NCS70 experiment is about &silmgher than that of the NCS100 experiment.
The modified N2C2S algorithm performed well overall when paned to the baseline BRUTE100, BRUTE70
and BRUTE10 experiments.

In the next section, the results from the GANN and MLP experita are compared.

4.3.3 Comparison of MLP and GANN results

In Table[4.24, a comparison between the AG100 and the NCSd&@diments is shown. This table shows that
the MLP model is more complex, but was found in a much shoitee than the GANN model. The MLP

model also performs considerably better than the GANN miodiglrms of predictive accuracy.
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A comparison between the AG70 and the NCS70 experimentisrsin Table[4.25. This table shows
that the accuracy of the GANN model is better and that the iniedess complex than the best MLP model.
However, it is worth noting that the more stable model thad feaind with the NCS10 experiment is nearly as
accurate (MSE = 11.843650) as the model that was found in @ig0fexperiment and is also less complex (46

parameters).

AG100 | NCS100

Parameters 38 46

Accuracy (MSE)| 9.659861| 5.709240

Time 12h 6s 42ms

Table 4.24: AG100 and NCS100 experimental results compans the Boston Housing data set

AG70 NCS70

Parameters 58 61

Accuracy (MSE)| 11.423594| 16.291630

Time 12h 8s 89ms

Table 4.25: AG70 and NCS70 experimental results compaosdhe Boston Housing data set

In the next section, the Ozone data set as well as the rekaltsvere obtained from the experiments that

had been conducted on it, are considered.

4.4 The Ozone data set

The Ozone data set contains meteorological data about thardrof ground level ozone in the Los Angeles
metropolis over the course of a year (Breiman and Friedm@85)L They used this data set to estimate the
optimal transformations for multiple regression and datien. The data set consists of 330 observations and
10 attributes. The attributes represent various inforomatibout surface conditions and the objective is to
predict the ground level ozone as a pollutant. The targebate (Ozong is an interval variable and, as a result,
the prediction problem is classified as a regression prablaformation about the attributes are presented in
Table[4.26.
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Attribute | Description Attribute scale
Vh The altitude at which the pressure is 500 millibars Interval
Wind The wind speed in miles per hour Interval
Humid The percentage humidity Interval
Temp The temperature in degrees Fahrenheit Interval
Ibh The inversion base height in feet Interval
Dpg The pressure gradient Interval
Ibt The inversion base temperature in degrees Fahrenheitinterval
Vis The visibility in miles Interval
Doy The day of year Interval
Ozone Ground level ozone as a pollutant Interval

Table 4.26: Ozone data set attributes

In the next section, the experiments, using GANNS on thia dat, are considered.

4.4.1 GANN results
AG100 and AG70 experiments

With the AG100 experiment on the Ozone data set, the AutoGAlétem evaluated 7 857 different GANN
models, but with the AG70 experiment, only 4 636 GANN modetsawvcreated by the AutoGANN syslgm
The best models that were found (according to the model tsahecriteria) in the AG100 and AG70 experi-
ments are shown in Talle 4]27 and the accuracies of thesdsnmoterms of the MSE value are shown in Table
[4.28.

Model selection| Model selection
Experiment criterion criterion value | Parameters Time
AG100 SBC 898.08 23 12h
AG70 VAVERR 0.810853 52 12h

Table 4.27: Best AG100 and AG70 GANN models on the Ozone ddta s

3For an unknown reason, the AutoGANN system generated lesglsin the AG70 experiment than in the AG100 experiment.
This is in contrast to the results of the experiments thaieveenducted on the other data sets and may be as a result ajwmkn
factors that could have influenced the computer’s perfooaaat the time of the experiment. The experiment was repeatddhe

same phenomenon was observed.
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Data set| Accuracy
Experiment| Data role size (MSE)
Training and
AG100 validation 330 11.276206
AG70 Validation 231 11.381018

Table 4.28: Best AG100 and AG70 GANN models’ accuracies erCihone data set

In Table[4.29, the GANN sub-architecture of each input oftttst GANN model that was found in the AG100
experiment is shown. From this table it can be seen that 6fabe® attributes were used in the best model.
The Wind, Tempand Ibh attributes were removed from the model. TWk and Vis attributes had a linear

relationship with the target. Thdumid, Dpg, Ibt and Doy attributes all had a nonlinear relationship with the

target.

GANN

Input | sub-architecture

Vh
Wind
Humid

Temp
Ibh

Dpg
Ibt
Vis

W L |IMNDNWO|O|N|O|F

Doy

Table 4.29: Best AG100 GANN model on the Ozone data set

The GANN architecture of the best model that was found in tB&®@ experiment is shown in Talile 4130.
From this table, it is clear that 8 out of the 9 attributes wesed in the best model. Only thigt attribute was
removed from the model and there were no attributes that Hadar relationship with the target. Théh,
wind Humid Temp Ibh, Dpg, VisandDoy attributes all had a nonlinear relationship with the target

The root nodes of the search trees for both the AG100 and th®A®periments were created by using the
intelligent start method. The AG100 experiment’s startB®yNN model was ranked 3 954th out of the 7 857
models and had an SBC value of 940.70. The GANN architectuteismodel was [0,0,1,1,0,3,2,1,1]. The
root node of the AG70 experiment was ranked 4 627th out of ti86models and had a VAVERR value of
1.644113. The GANN architecture of this model was [0,00(.0,0,0].
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GANN
Input | sub-architecture
Vh 2
wind 3
Humid 5
Temp 4
Ibh 5
Dpg 4
Ibt 0
Vis 3
Doy 4

Table 4.30: Best AG70 GANN model on the Ozone data set

In the next section the results from the GANN experiment cotetl on the Ozone data set are discussed.

Discussion of GANN results

The AutoGANN system chose a good starting GANN model withititelligent start method in the AG100
experiment, as the starting GANN model was ranked better3t#03 other models. The starting GANN model
of the AG70 experiment did, however, not perform as well anly proved to be better than 9 other models.
The results show that the best model that was found in the A&p@riment is, in terms of the MSE value,
slightly less accurate than, but more than twice as commexha best model that was found in the AG100
experiment.

In the next section, the results from the MLP experimentcansidered.
4.4.2 MLP results

NCS100, NCS70 and NCS10 experiments

The best MLP models, according to the model selection @itare shown in Table 4.81. These models were
found by the modified N2C2S algorithm. The accuracies ofdimesdels in terms of the MSE values are shown

in Table[4.32. As seen in the table, the accuracies diffestamltially in these three experiments.
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Model selection| Model selection| Hidden
Experiment criterion criterion value | neurons| Parameters Time
NCS100 SBC -1073.19 3 34 3s 17ms
NCS70 VAVERR 1.383407 2 23 1s 69ms
NCS10 VAVERR 1.063660 3 34 27s 89ms

Table 4.31: Best NCS100, NCS70 and NCS10 MLP models on the®data set

Data set| Accuracy
Experiment| Data role size (MSE)
Training and
NCS100 validation 330 | 10.391040
NCS70 Validation 231 | 17.657960
NCS10 Validation 297 14.357012

Table 4.32: Best NCS100, NCS70 and NCS10 MLP models’ acmsan the Ozone data set

In the next section, the BRUTE100, BRUTE70 and BRUTE10 erpemtal results are considered.

BRUTE100, BRUTE70 and BRUTE10 experiments

For the Ozone data set, the brute force method was set to agaelximum of 15 hidden neurons, starting at 1.

The time that was taken to complete each of the brute forcererpnts on this data set is shown in Tdble 4.33.

Experiment Time

BRUTE100 30s 94ms

BRUTE70 25s 03ms

BRUTE10 | 4m 31s 48mg

Table 4.33: BRUTE100, BRUTE70 and BRUTE10 completion timele Ozone data set

The results were manually analyzed and compared in ternhe &B8C (BRUTE100) and VAVERR (BRUTE70
and BRUTE10) values to determine the best model accorditigetanodel selection criteria. The best MLP
models that were found are shown in Tdble #.34 and the adear@dSE) of these MLP models are shown in
Table[4.35.

The full results of the BRUTE100, BRUTE70 and BRUTE10 expents are shown in Appendix B. These

tables can be used as a baseline for the results of the NCRO®Y0 and NCS10 experiments respectively.
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Model selection| Model selection| Hidden
Experiment criterion criterion value | neurons| Parameters
BRUTE100 SBC -946.11 3 34
BRUTE70 VAVERR 1.082693 2 23
BRUTE10 VAVERR 1.139797 3 34

Table 4.34: Best BRUTE100, BRUTE70 and BRUTE10 MLP modelthenOzone data set

Data set| Accuracy
Experiment| Data role size (MSE)
Training and
BRUTE100| validation 330 10.325550
BRUTE70 Validation 231 14.557900
BRUTE10 Validation 297 15.106363

Table 4.35: Best BRUTE100, BRUTE70 and BRUTE10 MLP modeatsuaacies on the Ozone data set

The MLP experimental results on the Ozone data set are disdus the next section.

Discussion of MLP results

The MLP models that were found by the modified N2C2S algorilfave the same architectures and thus the
same model complexity as the best models that were detainbiyéhe brute force method. These models
also did not overfit the data, since the number of parameteraat too high. This indicates that the modified

N2C2S algorithm performed as expected.

The results from the MLP and GANN experiments are considirége next section.

4.4.3 Comparison of MLP and GANN results

A comparison between the AG100 and the NCS100 experimestsisn in Tablé 4.36. This table indicates
that the MLP model is more complex, but was found in a muchtehéime than the GANN model. The MLP

model also performs better than the GANN model in terms oMISE value.

AG100 NCS100
Parameters 23 34
Accuracy (MSE)| 11.276206| 10.391040
Time 12h 3s17ms

Table 4.36: AG100 and NCS100 experimental results conpans the Ozone data set
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A comparison between the AG70 and the NCS70 experiment®versim Tabld 4.3l7. This table shows that
the accuracy of the GANN model is better than that of the MLRIehobut that the MLP model was found in
far less time and is less complex. The MLP model from the NCS&¢@riment is more complex than that of

the NCS70 experiment, but performs better.

AG70 NCS70

Parameters 52 23
Accuracy (MSE)| 11.381018| 17.657960
Time 12h 1s 69ms

Table 4.37: AG70 and NCS70 experimental results compansdahe Ozone data set

In the next section, the S(@ata set as well as the results that were obtained from treriexgnts that were

conducted on it, are considered.

4.5 The SQ data set

The SQ data set (Xiang, 2001) is relatively small, with only 179tames that contain data of deposits of
sulphate (S@) over 48 neighbouring states and 179 sites in the US in 199@ prediction objective is to

use the coordinates (latitude and longitude variablesyadipt the amount of sulphate at that site. The target
variable 804 is an interval variable and this prediction problem carsthe classified as a regression problem.

There are 3 attributes as described in Tablel4.38.

Attribute | Description Attribute scale
Latitude Latitude coordinate of the SGite Interval
Longitude | Longitude coordinate of the SGite Interval

Amount of sulphate at the site,

S04 measured in grams per square meter Interval

Table 4.38: S@data set attributes

In the next section, the experiments, using GANNS on thia dat, are considered.

4.5.1 GANN results
AG100 and AG70 experiments

The AutoGANN system was set to run for 12 hours for the AG1aDAG 70 experiments on the @ata set.
With only two inputs, the problem has a small search space result, the AutoGANN system generated all

possible GANN models (35) in both the AG100 and the AG70 erpamts. The best models that were found
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Model selection| Model selection
Experiment criterion criterion value | Parameterg Time
AG100 SBC -259.78 11 31s 73ms
AG70 VAVERR 0.267996 15 32s 50ms

Table 4.39: Best AG100 and AG70 GANN models on the, 8&ta set

Data set| Accuracy
Experiment| Data role size (MSE)
Training and
AG100 validation 179 0.180485
AG70 Validation 125 0.267996

in these experiments are shown in Tdble 4.39 and the acesracierms of the MSE value are shown in Table

Table 4.40: Best AG100 and AG70 GANN models’ accuracies ertify, data set

The GANN sub-architecture for each input of the best moda were found in the AG100 experiment is
shown in Tabl&€ 4.41. From this table, it can be seen that Hdtiednput variables were used in the best model

and that both had a nonlinear relationship with the target.

GANN
Input sub-architecture
Latitude 3
Longitude 3

Table 4.41: Best AG100 GANN model on the $@ata set

Table[4.4?2 shows the GANN sub-architecture for each inpth@best GANN model that was found in the
AG70 experiment. From this table, it can be seen that bothefriput variables were used in the best model

and that both had a nonlinear relationship with the target.

GANN
Input sub-architecture
Latitude 4
Longitude 4

Table 4.42: Best AG70 GANN model on the $Anta set
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Both of the root nodes of the search trees for the AG100 anddA&periments were created by using the
intelligent start method. The root node of the AG100 experitnwas ranked 18th out of the 35 models and
had an SBC value of -165.18. The GANN architecture of this @heds [1,2]. The root node of the AG70
experiment was ranked 11th out of the 35 models and had a VR/&R.241324. The GANN architecture of
this model was [1,3].

In the next section, the results from the GANN experiment tiias conducted on the S@lata set are

discussed.

Discussion of GANN results

The results show that the intelligent start method of theo@A&NN system created a good starting GANN
model in both of the GANN experiments. The time that was takefind the best models was also short, since
the search space contained only 35 models. The best GANNIthadevas found in the AG100 experiment is
more accurate than the one that was found in the AG70 expetiméerms of the MSE value. This model is
also less complex than the best model found in the AG70 exert.

In the next section, the results from the MLP experimentcansidered.

4.5.2 MLP results
NCS100, NCS70 and NCS10 experiments

The best MLP models that were found with the modified N2C2%®rityn are shown in Table_4.43. The
accuracies of these models are shown in Tablel 4.44. As sehis itable, the accuracies differ significantly in

these three experiments.

Model selection| Model selection| Hidden
Experiment criterion criterion value | neurons| Parameters Time
NCS100 SBC -1284.77 4 17 25 03ms
NCS70 VAVERR 0.110612 1 5 1s 00ms
NCS10 VAVERR 0.064134 5 21 23s 94ms

Table 4.43: Best NCS100, NCS70 and NCS10 MLP models on thedgfa set

In the next section, the BRUTE100, BRUTE70 and BRUTE10 erpemtal results are considered.

BRUTE100, BRUTE70 and BRUTE10 experiments

For these experiments, the brute force method was perfofroedan MLP with 1 hidden neuron to an MLP
with 15 hidden neurons. The time that was taken to completéothte force experiments is shown in Table
4.48. The best MLP models that were found according to the @RUTE100) and VAVERR (BRUTE70 and
BRUTE10) values are shown in Talple 4.46 and the accuracitesé MLP models are shown in Table 4.47.
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Data set| Accuracy
Experiment| Data role size (MSE)
Training and
NCS100 validation 179 0.083514
NCS70 Validation 125 0.129118
NCS10 Validation 161 0.107660

Table 4.44: Best NCS100, NCS70 and NCS10 MLP models’ acesan the S@data set

Experiment Time
BRUTE100 8s 69ms
BRUTE70 7s 53ms
BRUTE10 | 1m 18s 80ms

Table 4.45: BRUTE100, BRUTE70 and BRUTE10 completion timete SQ data set

Model selection| Model selection| Hidden
Experiment criterion criterion value | neurons| Parameters
BRUTE100 SBC -1 287.82 3 13
BRUTE70 VAVERR 0.054677 4 17
BRUTE10 VAVERR 0.062345 5 21

Table 4.46: Best BRUTE100, BRUTE70 and BRUTE10 MLP modelthenSQ data set

Data set| Accuracy
Experiment| Data role size (MSE)
Training and
BRUTE100| validation 179 0.092193
BRUTE70 Validation 125 0.092898
BRUTE10 Validation 161 0.107044

Table 4.47: Best BRUTE100, BRUTE70 and BRUTE10 MLP modeatsusacies on the S(lata set

The full results of the BRUTE100, BRUTE70 and BRUTE10 expents are shown in Appendix B. These
tables can be used as a baseline for the results of the NCST®70 and NCS10 experiments respectively.

The MLP experimental results on the $@ata set are discussed in the next section.

Discussion of MLP results

The MLP models that were created in the NCS100, NCS70 and R@Sfieriments performed well when
compared to those created in the BRUTE100, BRUTE70 and BRIOT&periments. This indicate that the
modified N2C2S algorithm succeeded in creating good MLP fsaatethis data set.
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In the next section, the results from the GANN and MLP experita are compared.

4.5.3 Comparison of MLP and GANN results

A comparison between the AG100 and the NCS100 experimest®isn in Tablé 4.48. The table shows that
the MLP model is more complex, but was found in a far shortaetthan the GANN model. The MLP model

also performed better than the GANN model.

AG100 | NCS100

Parameters 11 17
Accuracy (MSE)| 0.180485| 0.083514
Time 31s 73ms| 2s03ms

Table 4.48: AG100 and NCS100 experimental results compans the SQ data set

A comparison between the AG70 and the NCS70 experimentsoigrsin Table 4.40. The table shows
that the accuracy of the MLP model is better, the model isdessplex and it was found in less time than the

GANN model.

AG70 NCS70

Parameters 15 5

Accuracy (MSE)| 0.267996| 0.129118

Time 32s50ms 1s

Table 4.49: AG70 and NCS70 experimental results compansahe SQ data set

In the next section, the Spambase data set as well as thésrtgtl were obtained from the experiments

that had been conducted on it, are considered.

4.6 The Spambase data set

The Spambase data set (Frank and Asuncion, 2010) contaimls \and characters that were extracted from
either e-mails that were known to be spam or normal e-ma#shinhstance in the Spambase data set represents
an e-mail and each instance is classified as spam or normakl8pamattribute. Since the targeSpan) is

a binary variable, this can be regarded as a classificationigmn. The data set consists of 4601 instances and

have 58 attributes. The attributes are presented in Tablk 4.
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Attribute Description Attribute scale
48 attributes that represent the frequency (percentage)
Word.freq WORD with which a specifisWORDoccurs in the e-mail Interval
6 attributes that represent the frequency (percentage)
Char_freg. CHAR with which a specifiiCHARoccurs in the e-malil Interval
The average length of an uninterrupted sequence o
Capitalrun_lengthaverage| capital letters Interval
The length of the longest uninterrupted sequence of
Capitalrun_lengthlongest | capital letters Interval
CapitalLrun_length total The total number of capital letters Interval
Spam Classifies the instance as spam (1) or normal e-mai| (0) Binary

Table 4.50: Spambase data set attributes

The results from the GANN experiments on this data set arsidered next.

4.6.1 GANN results

AG100 and AG70 experiments

The AutoGANN system evaluated 1 203 and 1 728 different GAMdhigectures in the AG100 and AG70
experiments respectively. The results of the best modatsitbre found in the AG100 and AG70 experiments

according to the model selection criteria are shown in TdBd and the accuracies of these models in terms

of events that were correctly classified are shown in Taf2.4.

Model selection| Model selection
Experiment criterion criterion value | Parameters Time
AG100 SBC -14 500.12 142 12h
AG70 VAVERR 0.166957 137 12h

Table 4.51: Best AG100 and AG70 GANN models on the Spambadsaesda

Data set| False False True True | Accuracy
Experiment| Data role size | positive | negative| positive | negative (%)
Training and
AG100 validation 4 601 101 109 1704 2 687 95.44
AG70 Validation 1382 46 36 509 791 94.07

Table 4.52: Best AG100 and AG70 GANN models’ accuracies erSjpambase data set
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The GANN architecture of the best model that was createdenAB100 experiment is shown in Table
[4.53. From this table, it can be seen that 47 out of the 5atas were used in this model. From these, 10
input attributes were removed from the model, 30 inputlaitds had a linear relationship with the target and

17 input attributes had a nonlinear relationship with thigata

GANN GANN GANN
Input sub-architecturg| Input sub-architecturg| Input sub-architecture
Make 1 Credit 1 Pm 1
Address 0 Your 3 Direct 1
All 1 Font 1 Cs 1
Word 3d 1 Word 000 1 Meeting 3
Our 3 Money 3 Original 0
Over 1 Hp 3 Project 1
Remove 3 Hpl 0 Re 1
Internet 2 George 1 Edu 3
Order 1 Word 650 1 Table 0
Mail 0 Lab 1 Conference 1
Receive 1 Labs 0 Char1 1
Will 2 Telnet 0 Char.2 1
People 1 Word 857 1 Char.3 0
Report 2 Data 1 Char4 2
Addresses 1 Word 415 1 Char5 3
Free 3 Word 85 1 Char_6 1
Business 1 Technology 3 Lengthaverage 3
Email 0 Word 1999 3 Lengthlongest 0
You 1 Parts 1 Lengthtotal 3

Table 4.53: Best AG100 GANN model on the Spambase data set

The architecture of the best GANN model from the AG70 experitris shown in Table 4.54. From this
table, it can be seen that 40 out of the 57 attributes wereinghs model. From these, 17 input attributes were
removed from the model, 18 input attributes had a lineaticglahip with the target and 22 input attributes had
a nonlinear relationship with the target.

The root nodes of the search trees for the AG100 and the AGF€riaxents were created by using the
intelligent start method. The root node of the AG100 experihwas ranked 1 184th out of the 1 203 models
and had an SBC value of -13 480.67. The GANN architectureisftiodel was

[0,0,0,0,2,0,1,1,0,0,0,1,0,0,0,2,0,0,0,0,2,0,002020,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,2,0,0,(8(RM,?2,0,2].
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GANN GANN GANN
Input sub-architecturg| Input sub-architecturg| Input sub-architecture
Make 3 Credit 1 Pm 1
Address 1 Your 1 Direct 0
All 1 Font 2 Cs 0
Word.3d 1 Word.000 3 Meeting 2
Our 2 Money 2 Original 1
Over 3 Hp 2 Project 0
Remove 1 Hpl 1 Re 3
Internet 1 George 1 Edu 5
Order 0 Word 650 0 Table 0
Mail 1 Lab 1 Conference 2
Receive 0 Labs 0 Char1 1
Will 3 Telnet 1 Char.2 2
People 3 Word 857 0 Char3 0
Report 1 Data 2 Char4 2
Addresses 0 Word 415 0 Char5 2
Free 3 Word 85 0 Char_6 1
Business 0 Technology 2 Lengthaverage 0
Emalil 0 Word 1999 3 Lengthlongest 2
You 1 Parts 0 Lengthtotal 2

The root node of the AG70 experiment was ranked 1 694th outeflt728 models and had a VAVERR
value of 0.263859. The GANN architecture of this model was

In the next section, the results from the GANN experiment #ere conducted on the Spambase data set

are discussed.

Table 4.54: Best AG70 GANN model on the Spambase data set

Discussion of GANN results
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[2,0,0,0,2,2,1,1,0,0,0,2,2,0,0,3,0,0,0,0,2,2,202£0,0,0,0,0,2,0,0,2,2,0,0,0,0,2,0,0,3,5,0,2,132(1,0,2,2].

The AG70 experiment’s best model, with 137 parameterssisdemplex than the AG100 experiment’s model
with 142 parameters and the accuracies of these two modfgdswith less than two percent, with 95.44% for
the AG100 experiment’s model and 94.07% for the AG70 expemi'a model. However, it can be assumed
that it is more important not to classify a normal e-mail aamspand, as a result, the classification accuracy

of non-events (normal e-mails) must be taken into accoumé gredictive accuracy of non-events is shown in



@.3) and[(4.1).

2 687
Predicti f - AG1 =96.10% 4.
redictive accuracy of non-events (AG G-Q)m 96.10% (4.3)
- 791
Predictive accuracy of non-events (AGA)-———— = 95.64% (4.4)

791+ 36

In the next section, the MLP experimental results are censitl
4.6.2 MLP results

NCS100, NCS70 and NCS10 experiments

The best MLP models that were found with the modified N2C28ritlgm in the NCS100, NCS70 and NCS10

experiments are shown in Talble 4.55.

Model selection| Model selection| Hidden
Experiment criterion criterion value | neurons| Parameters Time
NCS100 SBC -59 708.79 8 473 5m 53s 61ms
NCS70 VAVERR 0.202062 2 119 49s 70ms
NCS10 VAVERR 0.197001 2 119 9m 34s 94ms

Table 4.55: Best NCS100, NCS70 and NCS10 MLP models on thelSgse data set

The accuracies of these models are shown in Tablg 4.56. Asisdhis table, the accuracy of the best

model that was found in the NCS100 experiment is very high¢clvimay be the result of overfitting.

Data set| False False True True | Accuracy
Experiment| Data role size | positive | negative| positive | negative (%)
Training and
NCS100 validation 4 601 11 16 1797 2777 99.41
NCS70 Validation 1380 34 60 467 819 93.19
NCS10 Validation 460 13 17 164 266 93.49

Table 4.56: Best NCS100, NCS70 and NCS10 MLP models’ acagan the Spambase data set

In the next section, the BRUTE100, BRUTE70 and BRUTE10 erpemtal results are considered.

BRUTE100, BRUTE70 and BRUTE10 experiments

For these experiments, the brute force method was perfofroedan MLP with 1 hidden neuron to an MLP

with 30 hidden neurons. The time that was taken to completéothte force experiments is shown in Table

[4.57.
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Experiment Time

BRUTE100 2h Om 8s 41ms

BRUTE70 1h 16m 13s 59ms
BRUTE10 | 21h 13m 51s 75ms$

Table 4.57: BRUTE100, BRUTE70 and BRUTE10 completion timdle Spambase data set

The best MLP models that was found according to the SBC (BRIODEand VAVERR (BRUTE70 and
BRUTEZ10) values are shown in Talble 4.58. The accuraciesesEtMLP models are shown in Table 4.59.

Model selection| Model selection| Hidden
Experiment criterion criterion values| neurons| Parameters
BRUTE100 SBC -59 347.61 8 273
BRUTE70 VAVERR 0.190246 2 119
BRUTE10 VAVERR 0.198754 1 60

Table 4.58: Best BRUTE100, BRUTE70 and BRUTE10 MLP modelthenrSpambase data set

Data set| False False True True | Accuracy
Experiment| Data role size | positive | negative| positive | negative (%)
Training and
BRUTE100| validation 4601 10 16 1797 2778 99.43
BRUTE70 Validation 1380 24 63 524 769 93.70
BRUTE10 Validation 460 16 14 168 262 93.44

Table 4.59: Best BRUTE100, BRUTE70 andBRUTE10 MLP modetsieacies on the Spambase data set

The full results of the BRUTE100, BRUTE70 and BRUTE10 exmenits are shown in Appendix B. In the

next section, the MLP experimental results are discussed.

Discussion of MLP results

When the best models that were found in the NCS100, NCS70 &®{lN experiments are compared to the
base line brute force method experiments, it can be seethihaiodified N2C2S algorithm performed well by
finding good MLP models. The high accuracy and high compfexithe model that was found in the NCS100
experiment may, however, indicate that this model has atestfi

The accuracy of predicting a normal e-mail correctly is mioneortant, as was discussed earlier. This
normal e-mail classification accuracy for experiments NEEINCS70 and NCS10 are shown in_{4.5), {(4.6)
and [4.7) respectively.

111



2777

- ) _ 0
Predictive accuracy of non-events (NCS1 77116 99.44% (4.5)
- 819
Predictive accuracy of non-events (NCS#) =9317% (4.6)
19+ 60
- 266
Predictive accuracy of non-events (NCS19 66117 93.99% 4.7)

In the next section, the results that were obtained from th® lnd GANN experiments that had been con-

ducted on the Spambase data set are considered.

4.6.3 Comparison of MLP and GANN results

The comparison between the AG100 and the NCS100 experirigest®wn in Tablé 4.60. The table shows
that the MLP model is much more complex, but was found in a naheinter time than the GANN model. The

MLP model also performs much better than the GANN model.

AG100 NCS100

Parameters 142 473
Accuracy (%)| 95.44 99.41
Time 12h 5m 53s 61ms

Table 4.60: AG100 and NCS100 experimental results compangs the Spambase data set

The comparison between the AG70 and the NCS70 experimeskt®ign in Tablé 4.61. The table shows
that the accuracy of the GANN model is better than that of thévhodel, but is more complex and took much
longer to find. The accuracy of predicting normal e-mail eotly is shown in Table 4.62. As can be seen in
this table, the NCS100 experiment’s model almost has agestore, but this, as mentioned earlier, may be a
result of overfitting. The AG70 experiment’s model perfochimetter than the best models of the NCS70 and
NCS10 experiments.

AG70| NCS70

Parameters 137 119

Accuracy (%) | 94.07 | 93.19

Time 12h | 49s 70ms

Table 4.61: AG70 and NCS70 experimental results compaonsdhe Spambase data set
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Experiment| Accuracy (%)
AG100 96.10
NCS100 99.44
AG70 95.64
NCS70 93.17
NCS10 93.99

Table 4.62: Normal e-mail prediction accuracies comparimothe Spambase data set

In the next section, conclusions to this chapter is pregente

4.7 Conclusion

In this chapter, eight different experiments were definedirsamed. All eight experiments were conducted on
each of the five data sets (Adult data set, Boston Housings#g&t@zone data set, @ata set and Spambase
data set). From the eight experiments, two were experintbatswere conducted with GANN models (one
experiment used in-sample model selection and the otheutili®ed out-of-sample model selection) and the
remaining six experiments were conducted by using MLP nmtme experiment utilized in-sample model
selection, two experiments used out-of-sample model seheand the remaining three experiments were con-
ducted by using a brute force method with no model selectishrtique). The AutoGANN system and the
MLP construction program were utilized to construct the GAadhd MLP models respectively.

A higher level comparison between MLPs and GANNSs with redaraccuracy, complexity, comprehensi-

bility, ease of construction, and utility is given in the hekapter.
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“Statistics: The only science that enables different elgpesing the same

figures to draw different conclusions.”

Evan Esar

Comparative discussion on MLPs and GANNSs

A literature study on multilayer perceptrons (MLPs) andeagafized additive neural networks (GANNS) has
been conducted in Chapters 2 and 3 respectively and resuitsieen obtained from the experiments that were
performed on five publicly available data sets with each es#éhneural networks, as discussed in Chapter 4. It
is now possible to compare MLPs with GANNSs in terms of pradécaccuracy (Section 5.1), model complexity
(Section 5.2), comprehensibility (Section 5.3), ease oftwiction (Section 5.4), and utility (Section 5.5). A

conclusion to this chapter is presented in Section 5.6.

5.1 Predictive accuracy

To compare the predictive accuracies of the MLPs and GANMNsekperiments that were conducted on each
data set can be divided into two groups: First, the experimtrat were performed where in-sample model
selection was utilized (the full data set was used for trgjraind validation) with the AG100 and NCS100
experiments. Second, those experiments that were perfowith out-of-sample model selection (hold-out
and 10-fold cross-validation) with the AG70, NCS70 and NG 8&gperiments. For the experiments that were
performed with in-sample model selection, the SBC value wgasl as the model selection criterion, while the
average validation error (VAVERR) value was used as modetsen criterion for the experiments that were
performed with out-of-sample model selection. To gainHertinsight into the best model that was selected for
the classification problems, the events classificatiorrinégion (percentage correct event prediction) was also
considered. The best models that were found for regresagks tare presented in terms of the mean squared

error (MSE).
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In Table[5.1 the accuracy results that were obtained by theNdeP models that had been constructed, are
summarized. The accuracy results that were obtained byesteGANN models that had been constructed, are
summarized in Table 5.2. Talile 5.3 shows the best modelsvéatbuilt in terms of accuracy when in-sample
model selection and out-of-sample model selection wer@peed on the five data sets. This table is obtained

by comparing Tablds 5.1 ahd 5.2.

In-sample model  Out-of-sample model | Out-of-sample model selectio
MLPs selection selection (cross-validation)  (10-fold cross-validation)
Adult (%) 85.24 85.66 85.56
Boston Housing (MSE 5.709240 16.291630 11.843650
Ozone (MSE) 10.391040 17.657960 14.357012
SO; (MSE) 0.083514 0.129118 0.107660
Spambase (%) 99.41 93.19 93.49

Table 5.1: Accuracy of the best MLP models that were obtained

In-sample model  Out-of-sample model | Out-of-sample model selectio
GANNs selection selection (cross-validation)  (10-fold cross-validation)
Adult (%) 85.79 85.76 n/a
Boston Housing (MSE 9.659861 11.423594 n/a
Ozone (MSE) 11.276206 11.381018 n/a
SO; (MSE) 0.180485 0.267996 n/a
Spambase (%) 95.44 94.07 n/a

Table 5.2: Accuracy of the best GANN models that were obthine

GANNs vs In-sample mode Out-of-sample model
MLPs selection selection (cross-validation
Adult GANN GANN

Boston Housing MLP GANN

Ozone MLP GANN

SOy MLP MLP
Spambase MLP GANN

Table 5.3: Best models that were obtained in terms of acgurac

For the two classification tasks (Adult data set and Spamdetseset), the accuracies are reported in terms

of percentage events that were predicted correctly. Theracies of the three regression tasks (Boston Housing
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data set, Ozone data set and,Sfata set) are presented in terms of the MSE. With in-sampliehs®lection,

both types of neural networks performed well on the Aduladadt, Ozone data set and the Spambase data set.
When in-sample model selection was performed (Table $h8)MLPs outperformed the GANNs in terms of
predictive accuracy in four of the five data sets (Boston lfmudata set, Ozone data set, Sata set and
Spambase data set). Note that the accuracy of the MLP modbekeoBpambase data set that was created by
using in-sample model selection is very high (99.41%). Ty be as a result of overfitting.

When out-of-sample model selection (hold-out cross-edilich) was performed, the GANNs performed
better than the MLPs in four of the five data sets (Adult data Beston Housing data set, Ozone data set
and Spambase data set), as can be seen in[Table 5.3. Thduash af Table 5.1l shows the results that were
obtained by 10-fold cross-validation that was performedf@MLPs. These results are more stable when
compared to the hold-out cross-validation method, as ther g based on a single sample that was taken from
the data. Unfortunately, 10-fold cross-validation was ingblemented in the AutoGANN system, making a
comparison infeasible. Four of the five MLP results (Bostausing data set, Ozone data set,$@ta set and
Spambase data set) showed that the models that had beesdongtht in-sample model selection were more
accurate than those that had been created by using outrgilesanodel selection (hold-out cross-validation and
10-fold cross-validation). The same observation was mattethe GANN experiments, where the in-sample
model selection models performed better than the outwisa model selection models in all five data sets.
This may also be as a result of overfitting.

It is clear from Tablé_5]3 that no single type of neural netwalways outperforms the other in terms of
predictive accuracy. This would suggest that the type ofaleetwork model that is used, is highly dependent
on the problem.

In their simplest form, additive models (GANNS) are unaldertodel interactions (De Waal and Du Toit,
2011). A possible remedy is to add explicit interaction tein variables to the set of independent variables.
These interaction variables are then treated as normalblas and the model is estimated in the usual manner.
Also, since the interactions have been made explicit, timriboition of the interaction terms can be analyzed
by using partial residual plots. This would give added ihsigto the model, which is not possible with an
MLP model, as the interactions in the MLP are intertwinechwiite contributions of the inputs. Interactions
could have an influence on the accuracy and should be furithestigated.

Sometimes, the modified N2C2S algorithm may overfit the dakéch suggests that further research into
this matter should be conducted. Since the SBC model safectiterion was utilized for in-sample model
selection, experiments with other types of criteria shaalkb be performed to determine if this choice of
criterion caused the model to overfit.

When choosing between GANN and MLP models, the followinglglines can now be given, following

the accuracy results of the models:

e MLP models may perform better than GANN models in terms olueaty when in-sample model se-
lection with the SBC criterion is used and may thus be suggefstr problems where in-sample model

selection is used.
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e GANN models may perform better than MLP models in terms ofieacy when out-of-sample model
selection with the average validation error is used and tmag be suggested for problems where out-of-

sample model selection is used.

In the next section, the complexity of these models will besidered.

5.2 Model complexity

Model complexity, as discussed in Section 3.5.2, has atdaffect upon the generalization capability of a

model. The former is controlled by both the modified N2C2%®athm for MLPs and the automated construc-

tion algorithm for GANNSs by means of an in-sample model d@eccriterion when in-sample model selection

is performed and cross-validation when out-of-sample rheelection is done. To determine the appropriate
level of complexity, the principle of parsimony is followég both algorithms.

Model complexity is measured by the number of parameterseofitodel (degrees of freedom). Taliled 5.4
and 5.5 show the number of parameters of the best MLP and GAbldiets that were constructed respectively.
Zhang et al. (1998) describes a rule-of-thumb, statingdhétast 10 records are needed to estimate each pa-
rameter in a model accurately. For the in-sample model Beteexperiments (where the full data sets were
used for training and validation), this heuristic gives aimmaum of 4522 parameters for the Adult problem (the
data set has 45 222 records), 51 parameters for the Bostasirntdgoroblem (the data set has 506 records), 33
parameters for the Ozone problem (the data set has 330 s@chBlparameters for the g@roblem (the data
set has 179 records) and 460 parameters for the Spambadenpriphe data set has 4 601 records). For the
experiments where the hold-out method was used (70% of tlaesdafor training and 30% for validation), the
rule-of-thumb gives a maximum of 3 166 parameters for theltAdiata set (the training data set has 31 656
records), 35 parameters for the Boston Housing data setrétiming data set has 354 records), 23 parameters
for the Ozone data set (the training data set has 231 recd@lgparameters for the S@ata set (the training
data set has 125 records) and 322 parameters for the Spaprbhtam (the data set has 3 221 records). Fi-
nally, for the experiments where 10-fold cross-validatweere used (for each fold, 90% of the data set is used
for training and 10% for validation), the heuristic gives axaimum of 4 070 parameters for the Adult data set
(for each fold the training data set has 40 700 records), 4énpeters for the Boston Housing problem (the
data set has 455 records), 30 parameters for the Ozone préthle data set has 297 records), 16 parameters
for the SQ problem (the data set has 161 records) and 414 parametdhefBpambase problem (the data set
has 4 141 records). In Tables 5.4 5.5 all models are wiikeise bounds, except those that are marked with
*, which may indicate models that are too complex.

When the total number of parameters of the in-sample modisttsen experiments are considered (Tables
and 5.b), it clearly shows that GANNSs are less complex &80 parameters, compared to the 601 pa-
rameters of the MLPs. However, the MLP from the NCS100 expent on the Spambase data set has a very
large number of parameters (473). This may indicate oveaditsince as discussed earlier, the accuracy of this

model is very high (99.41%). The total number of parametetké out-of-sample model selection experiments
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show that MLPs are slightly less complex than GANNS in thegeements.

In-sample mode Out-of-sample model | Out-of-sample model selection
MLPs selection selection (cross-validation)  (10-fold cross-validation)
Adult 31 76 91
Boston Housing 46 61* 46
Ozone 34* 23 34*
SOy 17 5 21*
Spambase 473* 119 119
Total 601 284 311

Table 5.4: Number of parameters of best MLP models that wet@reed

In-sample mode Out-of-sample model | Out-of-sample model selection
GANNSs selection selection (cross-validation) (10-fold cross-validation)
Adult 36 45 n/a
Boston Housing 38 53* n/a
Ozone 23 52* n/a
SOy 11 15* n/a
Spambase 142 137 n/a
Total 250 302 n/a

Table 5.5: Number of parameters of best GANN models that wktained

In general, the GANN models that were selected by the autmhnednstruction algorithm may be more
parsimonious, as it allows finer control over the number ahpeeters in the model than is possible with an
MLP (De Waal and Du Toit, 2011). With an MLP, all the inputs amnected to all the neurons in the hidden
layer. For example, if the given problem has 7 inputs, thedridlayer has 10 neurons and the output layer has
1 neuron, the number of parameters increase or decreasdtiplesuof 9 when a neuron is added or removed
from the hidden layer (7 inputs connected to the neuron, sidna a connection to the output layer). The best
MLP model may be a model with a different number of paramdtera those that are described above.

From the discussion on the complexity of the models, thefahg guidelines can now be given when

choosing between GANN and MLP models:

¢ When in-sample model selection with the SBC criterion igrened, GANN models may tend to be less

complex than MLP models.

e When out-of-sample model selection with the average védidarror criterion is performed, MLP mod-

els may tend to be slightly less complex.

In the next section, the comprehensibility of the consedanodels is discussed.
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5.3 Comprehensibility

In many real-world problems, the need to interpret the tsdiyl understanding the relationships between input
attributes and the target is just as important as the pregliatcuracy of the model. MLP models are considered
to be black boxes, as results that are obtained by these snadedifficult to interpret. On the other hand,
GANN models were developed, in part, to overcome this prokileat MLPs have. Results from GANNSs can
be interpreted with partial residual plots which show tHatienship between inputs and the target. It can thus
be suggested that GANN models should be used with probleresewthe understanding of the relationships
between input attributes and the target is important.

In the next section, the ease with which the models can bdrooted is considered.

5.4 Ease of construction

Another important feature that must be considered when eompGANNSs and MLPs is the relative ease with
which the models are built. In this study, the AutoGANN systeas used to construct the GANN models
and an implementation of the modified N2C2S algorithm was tisduild MLP models. Both programs were
implemented in the SA® Macro Language. Before search commences, only a few pagesmaust be set.
Both the systems then search automatically for the best in@ithout the need for input from the user while
the search is taking place.

Constructing GANNs with the AutoGANN system is much eassémce it has a user-friendly graphical
interface. The MLP construction program does not have ahjrapuser interface and it is required of the user
to change the settings directly in the code of the program.

With the AutoGANN system, the time that is allowed to searchd good GANN model must be set
beforehand. Unfortunately, there is no guideline on howvg libmvill take the system to find such a good GANN
model and as a result, a relatively long time is usually chdd® hours in this study). In contrast, as the
results that were obtained in Chapter 4 indicate, the tiraeightaken to search for a good MLP model with the
modified N2C2S algorithm is sometimes far less than the tiraeis needed to find a good GANN model.

In the next section, the usefulness of these two types ofaheetworks and the programs that are used to

create them are discussed.

5.5 Utility

Both of these types of neural networks are applicable toigtiee problems and are relatively easy to use.
In both the cases of MLPs and GANNSs, the problem lies in sieigahe best neural network architecture
for the problem at hand. The AutoGANN system that was use@aoch for the best GANN model is very

advanced and incorporates many heuristic features thegaas the time it takes to find the best GANN model.
The automated construction algorithm, implemented in theo&ANN system, consists of a complete search

strategy. Consequently, if not stopped by a time limit, thivenated construction algorithm will search through
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all possible models in the search space.

The MLP model selection program that was developed for thidysmay find good MLP models faster
than the AutoGANN system can find good GANN models, as shov@@hapter 4.

Both of these construction programs were developed in th8@AMacro Language. The AutoGANN
system is implemented as a model node in the @ABnterprise MinetM package. Since both the AutoGANN
system and the MLP construction program are developed in@ABiey both require a SA® software
licence. This can be problematic, since SBoftware is relatively expensive.

In the next section, a conclusion to this chapter is pregente

5.6 Conclusion

In this chapter the results that were obtained with MLPs aAdN[Ss on the five chosen data sets (Chapter 4)
and the programs that were used to create the MLP and GANNIsweee compared with regard to predictive
accuracy, model complexity, comprehensibility, ease oftmiction, and utility.

In the next and final chapter, the conclusion of this studyés@nted.

120



“Insanity: doing the same thing over and over again and eupedifferent

results.”

Albert Einstein

Conclusion

The purpose of this study was to investigate and compare GANNMLP models as prediction techniques.
Since theory provides little guidance on the selection efdhpropriate architecture a priori and the architec-
tures of artificial neural networks may differ for each diffet data set, a search had to be performed to find a
good model for a specific data set. As a result, an automatestroation algorithm for GANNSs, implemented
by the AutoGANN system, was used to search for good GANN nsogbile a modified version of the N2C2S
algorithm, implemented by a custom-built program, was usesearch for good MLP models. These two
systems were also investigated and compared.

In this chapter, a summary of findings is presented in Se@itn Section 6.2 focuses on a summary of
the contributions of this study and suggestions for futuoekware presented in Section 6.3. The chapter is

concluded in Section 6.4.

6.1 Summary of findings

The following discoveries were made in this study:

e Predictive accuracy: When in-sample model selection ifopmed with the SBC model selection cri-
terion, the MLP models seem to be more accurate than GANN Isod&hen out-of-sample model
selection is done with the average validation error modeksien criterion, GANN models, on the other
hand, seem to be more accurate than MLP models. Overall,ngtesiype of neural network always

outperforms the other in terms of predictive accuracy. Ty suggest that the type of neural network
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model that was used is highly dependent on the problem.

e Complexity: Overall, MLP and GANN models seem to be very Emn complexity, with the exception
of the in-sample model selection experiment on the Spamttgtseset. In this experiment, the modified
N2C2S algorithm selected a much more complex MLP model. obigh very similar in complexity,
there were, however, slight differences which may sugdestt GANN models are less complex than
MLP models when in-sample model selection is used and whenfeasample model selection is used,

MLP models seem to be the lesser complex model.

e Comprehensibility: The MLP models are considered to bekblamxes in terms of understandability
and interpretability, but the GANN models overcome thisbemn with the use of partial residual plots,
which show the relationships between input attributes Aaddrget graphically. As a result, the use of
GANN models may be suggested when understanding of théareaips between input attributes and

the target is important.

e Ease of construction: Both programs that were used to sdéara@ good GANN and MLP model re-
spectively make it easy to construct the model, but the AANE system is far more advanced and
offers a graphical user interface, whereas the MLP cortstruprogram does not. This makes it easy
for the AutoGANN user to change the settings and select theogpate experiment, whereas the MLP
construction program user would have to do this in the ccfit
The AutoGANN system, however, has one difficulty. There igunileline to help in the selection of the
time that is needed to find a good GANN model. The system wil§ tbontinue to search for a better
GANN model until a specified time has passed or the searctedmes been exhausted. The modified
N2C2S algorithm that was implemented in the MLP constructioogram, on the other hand, will stop

as soon as a good MLP model (according to the model seledtiteni@n) has been found.

o Utility: Both the MLP and GANN models are applicable to pidtin problems and are relatively easy
to use. Moreover, the AutoGANN system and the MLP constoagtirogram that were used in this study
were very useful in finding a good model, since both programasch automatically for a good model by
using a model selection criterion. Search commences aiitéliparameters have been set by the user.
These programs may, however, be expensive to obtain, sotherdquire the SA® software which is

relatively expensive.

6.2 Summary of contributions

The following contributions were made by this study:
e The study provides a literature study on MLP and GANN models.

e A program was developed in the S&5Macro Language to search for a good MLP model on the Adult,

Boston Housing, Ozone, S@nd Spambase data sets. This program incorporated a mogifigidn of
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the N2C2S algorithm and a brute force method.

e Experimental results were obtained from various expertsémat were conducted by using MLP and
GANN models on the five data sets with the AutoGANN system aracctistom-built MLP construction

program.

e The results were analyzed and conclusions were drawn, wasthited in useful information about the
performance of MLP and GANN models as well as informationuttibe construction of MLP and
GANN models. This information that was gained, resulteddme guidelines that can be used when

choosing between an MLP and a GANN model.

6.3 Suggestions for future work

For future work, to gain more insight, more experiments aggssted on different data sets by using MLP and
GANN models. In order to understand the differences andlaiitiés between these two models better, the
data sets that are chosen should also include regresskanaasvell as classification tasks. The size of these
data sets in terms of records and dimensionality shouldvagofrom very small to very large data sets.

Additional research should be performed on the improveroétiie modified N2C2S search algorithm to
ensure that a good MLP model is found each time, without dtiedithe data. The original N2C2S algorithm
has measures that are incorporated to curb the overfittfagtef

Since the GANN architecture allows for the removal of unimaot input attributes from the model, re-
search should be performed on the incorporation of a methioremoving unimportant input attributes from
the MLP models in order to reduce the complexity of MLP models

Additive models (GANNS) in their simplest form are unablemodel interactions (De Waal and Du Toit,
2011). Further research should be conducted on the use lifiekgeraction terms or variables to give added

insight into the model.

6.4 Conclusion

The objectives of this study were to investigate MLP and GAMNbUOels and to compare these two models by
performing a number of experiments with them. The expertaleesults were then used to draw meaningful
conclusions regarding these two models. These objectwes been reached by conducting a literature study
on MLPs (Chapter 2) and GANNSs (Chapter 3), performing experits (Chapter 4) by using the AutoGANN
system and a custom-built MLP program (Appendix A), and méag significant conclusions that resulted in

some guidelines for choosing the appropriate model (MLPAN®) for a specific experiment (Chapter 5).
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“Computers are famous for being able to do complicated ghstgrting from

simple programs.”

Note that the following program code has

comment purposes only.

options nosource nonotes nodate;
options pagesize=32767 mvarsize=max;

ods listing close;

*List of global variables used in the program
Y%global acl ac2 activation algorithm;
Y%global catalog count count2 criterion;
%global data set DataSelection Dir dset;
Y%global err errorfunc extype;

Y%global flag flag?;

%global hidnodes hMax;

Y%global i inputs inputclass inputvar;
Y%global k;

%global Library;

%global netoption nobs nomvar nvars;
%global params prelim;

Y%global r2 records;

%global scorerecords SplitTrain SplitVal;

Seth Lloyd

MLP construction program code

been edited fortipgnpurposes. Lines that begin with * are for
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Y%global target targetype time ttime tdelay;

%global u_aic u_ase u_correct u_correctperc u_sbc u_sse;

*Main program macro

%macro main;

*data set Selection: Adult,House,Ozone,SO4,Spam;

%let DataSelection = SO4;

*Specify the directory of the data set;

%let Dir = 'C:MLP Research’;

*Number of K-Fold cross-validation to be used;

*(1 = user defined split, 0 = complete data set for training an d scoring)
%let k = 10;

*Split size of training data set;

%let SplitTrain = 70;

*Split size of testing data set;

%let Splitval = 30;

*Number of preliminary runs for random weight selection

%let prelim = 10;

*The netoptions to be used (like/dev);

%let netoption = dev;

*Criterion for selecting best model: AIC/SBC/VAVERR (when hidnodes = 0);
%let criterion = SBC;

*0 = use the search algorithm, >0 use the selected amount of hi dden nodes
%let hidnodes = 1;

*Max number of nodes in the hidden layer;

%let hMax = 15;

*Run the settime macro;
Y%settime;
*Set experiment type for results file name;

%let extype = &k. &hidnodes. &hMax;

*Information about the Adult data set;

%if &DataSelection = Adult %then %do;
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libname Adult &Dir;
%let Library = Adult;
%let catalog = &Library..catalog;
%let data set = &Library..adult;
%let inputclass = workclass marital_status occupation
relationship race gender native_country;
%let inputvar = age fnlwgt educational_num
capital_gain capital_loss hours_per_week;

%let target = status;

%let activation = Mlogistic;

%let errorfunc = mbe;

%let targetype = nom;

%let nomvar = 1;

*Creates the Adult data catalog;
proc dmdb batch data=&data set dmdbcat=&catalog;
class &inputclass &target(DESC);
var &inputvar;
run;
%end;
*Information about the House data set;
%else %if &DataSelection = House %then %do;
libname House &Dir;
%let Library = House;
%let catalog = &Library..catalog;
%let data set = &Library..Housing;
%let inputclass = CHAS;
%let inputvar = CRIM ZN INDUS NOX RM AGE DIS RAD TAX PTRAT B LSTA;
%let target = MEDV;

%let activation = exp;

%let errorfunc = poisson;

int;

%let targetype

%let nomvar = 1;

*Creates the House data catalog;
proc dmdb batch data=&data set dmdbcat=&catalog;
class &inputclass;
var &inputvar &target;
run;
%end;
*Information about the Ozone data set;

%else %if &DataSelection = Ozone %then %do;
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libname Ozone &Dir;

%let Library = Ozone;

%let catalog = &Library..catalog;

%let data set = &Library..Ozone;

%let inputs = VH Wind Humid Temp Ibh dpg Ibt Vis

%let target = Ozone;

%let activation = exp;

%let errorfunc = poisson;

%let targetype = int;

%let nomvar = 0;

*Creates the Ozone data catalog;
proc dmdb batch data=&data set dmdbcat=&catalog;
var &inputs &target;

run;

%end,;

*Information about the SO4 data set;

%else %if &DataSelection = SO4 %then %do;
libname So4 &Dir;
%let Library = So4;
%let catalog = &Library..catalog;
%let data set = &Library..So4;
%let inputs = latitude longitude;
%let target = so4;
%let activation = exp;
%let errorfunc = poisson;
%let targetype = int;

%let nomvar = 0;

*Creates the SO4 data catalog;
proc dmdb batch data=&data set dmdbcat=&catalog;
var &inputs &target;
run;
%end;
*Information about the Spam data set;
Y%else %if &DataSelection = Spam %then %do;
libname Spam &Dir;
%let Library = Spam;
%let catalog = &Library..catalog;
%let data set = &Library..spambase;
%let inputs = make address all word_3d our over

remove internet order mail;
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%end;

%let

%let

Yolet

%let

Yolet

%let

%olet

%let

%let

Yolet
Yolet

inputs

inputs

inputs

inputs

inputs

inputs

target

&inputs receive will people

report addresses free business email;

&inputs you credit your font

word_000 money hp hpl george word_650;

&inputs lab labs telnet word_857

data word_415 word_85 technology;

&inputs word_1999 parts pm direct
¢s meeting original project re edu;

&inputs table conference char_1

char_2 char_3 char_4 char 5 char_6;

&inputs length_average

length_longest length_total;

SPAM;

activation = Mlogistic;

errorfunc = mbe;

targetype = nom;

nomvar = 0;

*Creates the Spam data catalog;

proc dmdb batch data=&data set dmdbcat=&catalog;

run;

var &inputs;

class &target(DESC);

*Displays the options selected by the user;

% p u t kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

%put ;

%put &DataSelection data set selected;
%if &hidnodes = 0 %then %do;

%end,;

kkkkkkkkkkkkkkkkk:
1

%put Using search algorithm with &criterion as the search cr

%put Max number of nodes = &hMax;

%else %do;

%end,;

%put Training neural network with &hidnodes to &hMax nodes;

%if &k = 0 %then %odo;

%end,;

%put 100% of data set to be used for training;

%else %if &k = 1 %then %odo;

%end;

%put &SplitTrain / &Splitval split for training/testing;
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%else %if &k > 1 %then %do;
%put &k Fold cross-validation are selected;
%end;
%put &prelim Preliminary runs are selected;
%put Netoptions set to &netoption;

%put ;

%put *kkkkkkkkkkkkkkkkkkkkkkkkrkhkhkhkkkkhrhkkkkkrxkt Kkkkkkkkkkkkkkkkk.
i

%if &hidnodes = 0 %then %do;

*Variables used in the algorithm;
%let flag = 0;
%let flag2 = 0;

%let count = 1;

*Run the CreateTables macro;

%CreateTables;

%put Step 1,

*Begin the algorithm by creating a neural network;
*with random starting weights (repeated K times);
%do i = 0 %to &k-1;

*Run the RandomNeural macro;

%RandomNeural;

%put Step 2;

%put %sysevalf(& + 1)/&k.Fold;

*Run the TotalTable macro;

%TotalTable;

*Run the average macro;

Y%average,;

*Run the TotalAverageTable macro;

%TotalAverageTable;

%end;

*Repeat the loop until the algorithm has finished;
%do %until (&flag);

%if “(&flag2) %then %do;
*Add an extra node to the hidden layer;
%let count = %eval(&count + 1);

%put Step 3;

129



%end,;

*Repeat K times;
%do i = 0 %to &k-1;
%if (&flag2) %then %do;
%put Step 5b (&count nodes);
*Run the RandomNeural macro;
%RandomNeural;
%end;
%else %do;
%put Step 4 (&count nodes);
*Run the InestNeural macro;
%InestNeural;
%end;
%put %sysevalf(& + 1)/&k.Fold;
*Run the TotalTable macro;
%TotalTable;

%end,;

*Run the average macro;

%average,

%if (&flag) %then %do;
%if &criterion = SBC %then %do;
*Get the SBC value (acl stays the same);
proc sql;
SELECT User_SBC INTO :ac2 FROM
&Library.. TempValidateResults2
WHERE NODES = &count;
QUIT;
%end;
%else %if &criterion = AIC %then %do;
*Get the AIC value (acl stays the same);
proc sql;
SELECT User_AIC INTO :ac2 FROM
&Library.. TempValidateResults2
WHERE NODES = &count;
QUIT;
%end;
%else %if &criterion = VAVERR %then %do;
*Get the VAVERR value (acl stays the same);

proc sql;
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SELECT Validate VAVERR INTO :ac2 FROM
&Library..TempValidateResults?2
WHERE NODES = &count;
QUIT;
%end;
%end;
%else %do;
%let num = %eval(&count-1);
%if &criterion = SBC %then %do;
*Get the SBC value for acl and ac2;
proc sql;
SELECT User_SBC INTO :acl FROM
&Library..TempValidateResults3
WHERE NODES = &num;
SELECT User_SBC INTO :ac2 FROM
&Library..TempValidateResults?2
WHERE NODES = &count;
QUIT;
%end;
%else %if &criterion = AIC %then %do;
*Get the AIC value for acl and ac2;
proc sql;
SELECT User_AIC INTO :acl FROM
&Library..TempValidateResults3
WHERE NODES = &num;
SELECT User_AIC INTO :ac2 FROM
&Library..TempValidateResults?2
WHERE NODES = &count;
QUIT;
%end;
%else %if &criterion = VAVERR %then %do;
*Get the VAVERR value for acl and ac2;
proc sql;
SELECT Validate VAVERR INTO :acl1 FROM
&Library.. TempValidateResults3
WHERE NODES = &num;
SELECT Validate VAVERR INTO :ac2 FROM
&Library..TempValidateResults?2
WHERE NODES = &count;
QUIT;
%end;

%end;
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%put &ac2 < &acl ;

*Evaluate the VAVERR from the current and the previous MLP cr eated;
%if %sysevalf(%sysevalf(&ac2) > %sysevalf(&acl)) %then % do;
%put False;
%if (&flag2) %then %do;
*Stop the algorithm if new MLP with random weights;
*is worse than the previous MLP;
%let flag = 1;
%put Step 6 (Terminate Program);
%end;
*Run MLP with random weights;
%else %do;
%put Step 5b (New MLP with &count nodes and
random weights);
%let flag2 = 1;
%end;
%end;
%else %do;
%put True;
*Run MLP with an extra hidden node;
%put Step 5a (New Neural Network with &count + 1 nodes
and initial weights set to previous values);
*Run the TotalAverageTable macro;
%TotalAverageTable;
%let flag2 = 0;
%let acl = &acz;

%end,;

%if %sysevalf(&count > &hMax) %then %do;
*Stop the algorithm if hidden nodes > max nodes;
%let flag = 1;

%end;

%end;
%end,;
%else %do;
*Run the CreateTables macro;
%CreateTables;
%let count2 = 0;

%do hidnodes = &hidnodes %to &hMax;
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%let count2 = %sysevalf(&count2 + 1);

%let count = O;

%put Training Neural Network With &hidnodes Hidden Nodes;

%do i = 0 %to &k-1;
%let count = %sysevalf(&count + 1);
*Run the ManualRandomNeural macro;
%ManualRandomNeural;
%put %sysevalf(& + 1)/&k.Fold;
*Run the "TotalTable" macro;
%TotalTable;

%end;

%let count = &hidnodes;

*Run the average macro;

%average,

%if &count2 = 1 %then %do;
*Combines the Average Train- and Validation Fit statistics
data &Library..&Library.Results&extype;

merge &Library..TempTrainResults2
&Library..TempValidateResults?2;

run;

%end;

%else %do;
*Combines the Average Train- and Validation Fit statistics
data &Library..Results2;

merge &Library..TempTrainResults2
&Library..TempValidateResults2;

run;
*Combines the new results with the other results;
data &Library..&Library.Results&extype;
set &Library..&Library.Results&extype &Library..Resul ts2;
run;

%end;

%end;

%end;

*Run the gettime macro;
%gettime;
*Run the showtime macro;

%showtime;

*Delete certain data sets used:;

proc data sets nolist library=&Library;
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delete trainO-train99 testO-test99;
delete usertemp;

delete logs;

delete temptrainresultsy;

delete temptrainresults2;

delete temptrainresults3;

delete tempvalidateresultsy;
delete tempvalidateresults2;
delete tempvalidateresults3;
delete trainfit;

delete validatefit;

delete temp;

delete start;

delete _namedat;

delete score;

delete catalog/memtype=catalog;
delete Results?;

run;

*Makes a beep sound when the program has finished;
data null_;
call sound(400,80);

run;

%mend main;

*Creates the testing and training data sets;

%macro CreateTables;

*Delete previously created data sets;
proc data sets nolist library=&Library;
delete trainO-train99 testO-test99;

run;

*Create a Training-Testing data set split;
%if &k = 1 %then %do;
Y%partition2(&data set,&SplitTrain,&Splitval,
&Library..train0,&Library. .test0);
%end;
%else %if &k = 0 %then %do;
data &Library..train0;

set &data set;
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%end;

run;
data &Library..testO;

set &data set;
run;
%let k = 1;

*Choose records for K data sets;

%else %do;

%end;

data &Library..temp;
set &data set;
cv = int(ranuni(0)/(1/&k));

run;

%do i = 0 %to &k-1;
*Create K training data sets;
data &Library..train&i;
set &Library..temp;
if cv ne & then output;

run;

*Create K testing data sets;
data &Library..test&i;

set &Library..temp;

if cv eq & then output;
run;

%end;

%mend CreateTables;

*Creates tables that contain the average statistics of the;
*K-fold cross-validations done in all the iterations;

%macro TotalAverageTable;

%if &count = 1 %then %do;

data &Library.. TempValidateResults3;
set &Library.. TempValidateResults2;

run;

data &Library.. TempTrainResults3;
set &Library.. TempTrainResults?2;

run;
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%end;
%else %do;
data &Library.. TempValidateResults3;
set &Library.. TempValidateResults3 &Library.. TempVali dateResults2;

run;

data &Library.. TempTrainResults3;
set &Library.. TempTrainResults3 &Library..TempTrainRe sults2;
run;

%end,;

*Combines the Average Train- and Validation Fit statistics ;
data &Library..&Library.Results&extype;
merge &Library.. TempTrainResults3 &Library..TempValid ateResults3;

run;

%mend TotalAverageTable;

*Creates tables that contain the average statistics K-fold statistics;
*done in a single iteration of the algorithms;

%macro average;

proc sql;

create table
&Library..TempValidateResults2 as
SELECT &count as NODES,
AVG(_VASE_) as Validate ASE,
AVG(_VAVERR ) as Validate VAVERR,
AVG(_VDIV_) as Validate DIV,
AVG(_VERR ) as Validate ERR,
AVG(_VMAX_) as Validate_MAX,
AVG(_VMSE_) as Validate_MSE,
AVG(_VNOBS ) as Validate_NOBS,
AVG(_VRASE_) as Validate RASE,
AVG(_VRMSE_) as Validate_RMSE,
AVG(_VSSE ) as Validate SSE,
AVG(_VSUMW_) as Validate_SUMW,
AVG(_VMISC_) as Validate_MISC,
AVG(_VWRONG_) as Validate. WRONG,
AVG(r2) as User R2,
AVG(User_ASE) as User_ ASE,
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AVG(User_SSE) as User SSE,

AVG(User_AIC) as User AIC,

AVG(User_SBC) as User_SBC,

AVG(User_CorrectPerc) as User_CorrectPerc
FROM &Library..TempValidateResults?;

create table
&Library.. TempTrainResults2 as

SELECT &count as NODES,
AVG(_DFT_) as Train_DFT,
AVG(_DFE_) as Train_DFE,
AVG(_DFM_) as Train_DFM,
AVG(_NW_) as Train_NW,
AVG(_AIC_) as Train_AIC,
AVG(_SBC_) as Train_SBC,
AVG(_ASE ) as Train_ASE,
AVG(_MAX_ ) as Train_MAX,
AVG(_DIV_) as Train_DIV,
AVG(_NOBS_) as Train_NOBS,
AVG(_RASE_) as Train_RASE,
AVG(_SSE ) as Train_SSE,
AVG(_SUMW_) as Train_SUMW,
AVG(_FPE_) as Train_FPE,
AVG(_MSE_) as Train_MSE,
AVG(_RFPE_) as Train_RFPE,
AVG(_RMSE ) as Train_RMSE,
AVG(_VAVERR_) as Train_VAVERR,
AVG(_ERR_) as Train_ERR

FROM &Library..TempTrainResultsl;

QuUIT;
%mend average;

*Creates tables that contains the statistics of the K-fold ¢ ross-validation;

%macro TotalTable;

*Run the calculater2 macro;
%calculater?;
*Run the UserCalculate macro;

%UserCalculate;
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data &Library..validatefit;
set &Library..validatefit;
R2 = &r2;
User ASE = &u_ase;
User SSE = &u_sse;
User AIC = &u_aic;
User SBC = &u_shc;
User_CorrectPerc = &u_correctperc;

run;

%if & = 0 %then %do;
data &Library.. TempValidateResults1;
set &Library..validatefit(firstobs=2);

run;

data &Library.. TempTrainResults1;
set &Library..trainfit(firstobs=2);
run;
%end;
%else %do;
data &Library.. TempValidateResults1;
set &Library.. TempValidateResultsl &Library..validate fit(firstobs=2);

run;

data &Library.. TempTrainResults1;
set &Library. TempTrainResults1 &Library..trainfit(fi rstobs=2);
run;

%end,;

%mend TotalTable;

*Creates and run an MLP with random initial weights and;
*user specified number of hidden nodes;

%macro ManualRandomNeural;

proc neural data=&Library..train&i dmdbcat=&catalog ran dom=0;

%if(&nomvar) %then %do;
*Nominal input variables;
input &inputclass/ level=nom id=in1;
*Integer input variables;

input &inputvar/ level=int id=in2;
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%end,;

*Target variable, activation function, error function;

target &target/ level=&targetype id=out
act=&activation error=&errorfunc bias;
netoptions object=&netoption;

*Units in hidden layer;

hidden %eval(&hidnodes) / bias id=hid1;

*Connect nominal input variables with hidden layer;

connect inl hidl;

*Connect Integer input variables with hidden layer;

connect in2 hidi;

*Connect hidden layer with output;

connect hidl out;

*Number of preliminary runs;

prelim %eval(&prelim);

train outfit=&Library..trainfit outest=start maxiter=1
score data=&Library..test&i

nodmdb out=&Library..Score
outfit=&Library..validatefit

role=validation;

%else %do;

*Integer input variables;

input &inputs/ level=int id=in;

*Target variable, activation function, error function;

target &target/ level=&targetype id=out
act=&activation error=&errorfunc bias;
netoptions object=&netoption;

*Units in hidden layer;

hidden %eval(&hidnodes) / bias id=hid1;

*Connect Integer input variables with hidden layer;

connect in hidl;

*Connect hidden layer with output;

connect hidl out;

*Number of preliminary runs;

prelim %eval(&prelim);

train outfit=&Library..trainfit outest=start maxiter=1
score data=&Library..test&i

nodmdb out=&Library..Score
outfit=&Library..validatefit

role=validation;
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%end,;

run;

%mend ManualRandomNeural;

*Creates and run an MLP with random initial weights;

%macro RandomNeural;

proc neural data=&Library..train&i dmdbcat=&catalog ran

dom=0;

%if(&nomvar) %then %do;

%end;

*Nominal input variables;

input  &inputclass/ level=nom id=ini;

*Integer input variables;

input &inputvar/ level=int id=in2;

*Target variable, activation function, error function;
target &target/ level=&targetype id=out
act=&activation error=&errorfunc bias;

netoptions object=&netoption;

*Units in hidden layer;

hidden %eval(&count) / bias id=hidl;

*Connect nominal input variables with hidden layer;
connect inl hidl;

*Connect Integer input variables with hidden layer;
connect in2 hidl;

*Connect hidden layer with output;

connect hidl out;

*Number of preliminary runs;

prelim %eval(&prelim);

train outfit=&Library..trainfit outest=start maxiter=1 0000;
score data=&Library..test&i

nodmdb out=&Library..Score
outfit=&Library..validatefit

role=validation;

%else %do;

*Integer input variables;
input &inputs/ level=int id=in;
*Target variable, activation function, error function;

target &target/ level=&targetype id=out
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act=&activation error=&errorfunc bias;
netoptions object=&netoption;

*Units in hidden layer;

hidden %eval(&count) / bias id=hidl;

*Connect Integer input variables with hidden layer;
connect in hidl;

*Connect hidden layer with output;

connect hidl out;

*Number of preliminary runs;

prelim %eval(&prelim);

train outfit=&Library..trainfit outest=start maxiter=1 0000;
score data=&Library..test&i

nodmdb out=&Library..Score
outfit=&Library..validatefit

role=validation;

%end;

run;

%mend RandomNeural;

*Creates and run an MLP with initial weights set to previous b est;

%macro InestNeural;

proc neural data=&Library..train&i dmdbcat=&catalog ran dom=0;
%if(&nomvar) %then %do;
*Nominal input variables;
input  &inputclass/ level=nom id=ini;
*Integer input variables;
input &inputvar/ level=int id=in2;
*Target variable, activation function, error function;
target &target/ level=&targetype id=out
act=&activation error=&errorfunc bias;
netoptions object=&netoption;
*Units in hidden layer;
hidden %eval(&count) / bias id=hidl;

*Connect nominal input variables with hidden layer;
connect inl hidl;
*Connect Integer input variables with hidden layer;

connect in2 hidl;
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*Connect hidden layer with output;
connect hidl out;
*Set the initial weights to previously saved weights;
initial inest=start;
*Number of preliminary runs;
prelim %eval(&prelim);
train outfit=&Library..trainfit outest=start maxiter=1 0000;
score data=&Library..test&i
nodmdb out=&Library..Score
outfit=&Library..validatefit
role=validation;
%end,;
%else %do;
*Integer input variables;
input &inputs/ level=int id=in;
*Target variable, activation function, error function;
target &target/ level=&targetype id=out
act=&activation error=&errorfunc bias;
netoptions object=&netoption;
*Units in hidden layer;

hidden %eval(&count) / bias id=hidl;

*Connect Integer input variables with hidden layer;
connect in hidl;

*Connect hidden layer with output;

connect hidl out;

*Set the initial weights to previously saved weights;
initial inest=start;

*Number of preliminary runs;

prelim %eval(&prelim);

train outfit=&Library..trainfit outest=start maxiter=1 0000;
score data=&Library..test&i

nodmdb out=&Library..Score
outfit=&Library..validatefit

role=validation;

%end,;

run;

%mend InestNeural;

*Gets the current system time;
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%macro settime;

%let ttime = %sysfunc(datetime());

%mend settime;

*Calculates the time passed;

%macro gettime;

%local a b ¢ d e

%let tdelay = %sysevalf(%sysfunc(datetime()) - &ttime);
%let a = &tdelay;

%let b = %sysevalf(&a / 86400, integer);

%let a = %sysevalf(&a - 86400 * &b);

%let ¢ = %sysevalf(&a / 3600, integer);

&a - 3600 * &c);

%let d = %sysevalf(&a / 60, integer);

%let e = %sysevalf(%sysfunc(round(&a - 60 * &d, 0.01)));
%let time = &b:&c:&d:&e;

%let a = %sysevalf

(
(

%mend gettime;

*Shows the time in the log;

%macro showtime;

%put ;
%put elapsed time = &time;

%put ;
%mend showtime;

*Calculates the Correlation Coefficient (R2);

%macro calculater2;

%local t;

%let t = &target;

proc sgl noprint;
select mean(&t.) into :mean
from &Library..score;

run;
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data _null_;

run;

set &Library..score;

retain suml O;

retain sum2 O;

suml + (&t - p_&t.)*2;
sum2 + (&t. - &mean)**2;
call symput ('suml’, suml);

call symput ('sum2’, sum2);

%let r2 = %sysevalf(l - (&uml / &sumz2));

%mend calculater2;

*Gets the number of observations and;

*variables from a specified data set;

%macro obsnvars(ds,nvarsp,nobsp);

%let dset=&ds;

%let dsid = %sysfunc(open(&dset));

%if &dsid %then %do;

%end;

%else

%mend obsnvars;

%let nobs =%sysfunc(attrn(&dsid,NOBS));
%let nvars=%sysfunc(attrn(&dsid,NVARS));

%let rc = %sysfunc(close(&dsid));

%put Open for data set &dset failed - %sysfunc(sysmsg());

*Partition a specified data set into two;

*data sets with specified percentage of;

*the original data set;

%macro partition2(source,pl,p2,setl,set2);

%let seed = O;

%obsnvars(&source,nvars,nobs);

%let cutoffl
%let cutoff2

%sysevalf(&nobs * &pl / 100, ceil);
%eval(&nobs - &cutoffl);
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data &setl &set?;
drop _c00: ;
set &source;
if (ranuni(&seed) * 1000 < %sysevalf (&pl * 10, ceil)
and _c000001 < &cutoffl) then do;
_c000001 + 1;
output &setl,;
end;
else
if _c000002 < &cutoff2 then do;
~c000002 + 1;
output &set2;

end;
else do;
_c000001 + 1;
output &setl;
end;

run;

%mend partition2;

*Calculations to verify statistics;

%macro UserCalculate;

%let p=P_;

data &Library..UserTemp;

set &Library..score;

%if &targetype = nom %then %do;
Round_err = Round(&p.&target.1,1);
User_Err = &target - &p.&target.1;

%end;

%else %do;
Round_err = Round(&p.&target,1);
User_Err = &target - &p.&target;

%end;

User_SqrErr = (User_Err+*2);

if &target = Round_err then do
Correct = 1;

end;

else do
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Correct = 0;

end;

run;

proc sql;
SELECT AVG(User_SqrErr) INTO :u_ase FROM &Library..UserT emp;
SELECT SUM(User_SqrErr) INTO :u_sse FROM &Library..UserT emp;
SELECT SUM(Correct) INTO :u_correct FROM &Library..UserT emp;
SELECT _DFM_ INTO :params FROM &Library..trainfit;
SELECT _DFT_ INTO :records FROM &Library..trainfit;

QUIT;

%let err = &u_ase;

data logs;
LogX = LOG(&err/&records);
LogN = LOG(&records);

run;

%local LogX;
%local LogN;
proc sql;
SELECT LogX INTO :LogX FROM logs;
SELECT LogN INTO :LogN FROM logs;
QUIT;

%if %sysevalf(&netoption = like) %then %do;
%let u_aic = %sysevalf((2 * &err) + (2 * &params));
%let u_shc = %sysevalf(2 * &err) + (&params * &LogN));
%end;
Y%else %if %sysevalf(&netoption = dev) %then %do;
%let u_aic = %sysevalf((&records * &LogX) + (2 * &params));
%let u_shc = Y%sysevalf((&records * &LogX) + (&params * &LogN ));

%end;

%let dsid=%sysfunc(open(&Library..score));

%let num=%sysfunc(attrn(&dsid,nlobs));

%let rc=%sysfunc(close(&dsid));

%let scorerecords = &num;

%let u_correctperc = %sysevalf(%eval(&u_correct) /

Y%eval(&scorerecords) * 100);

%mend UserCalculate;

*Run the main macro;

%main;
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“A man should look for what is, and not for what he thinks slobloé.”

Albert Einstein

MLP brute force method results

In this appendix, the results from the brute force MLP experits (BRUTE100, BRUTE70 and BRUTE10)
are shown in table format. These results can be used as aneaf®l the results of the MLP experiments
that utilized the modified N2C2S algorithm (NCS100, NCS7@ &ICS10). The result tables are arranged
according to the data set and the experiment that was cadiugirst, the results from the experiments that
were conducted with the Adult data set by using the brutesfonethod are shown (BRUTE100, BRUTE70
and then BRUTE10), then the results from the brute force raxgats with the Boston Housing data set are
presented (BRUTE100, BRUTE70 and then BRUTE10). This isfiad by the experimental results from the
Ozone data set in which the brute force method was used (BROT,BBRUTE70 and then BRUTE10), then the
results from the brute force experiments that were condueith the SQ data set are presented (BRUTE100,
BRUTE70 and then BRUTE10). Finally, the brute force experital results with the Spambase data set are
shown (BRUTE100, BRUTE70 and then BRUTE10).
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Number of hidden neurons Number of parameters  SBC Accuracy (%)
1 16 -586 248.46 84.89
2 31 -586 516.43 85.25
3 46 -586 192.00 85.32
4 61 -586 075.60 85.69
5 76 -585 556.71 85.76
6 91 -584 861.46 85.93
7 106 -584 261.18 85.92
8 121 -583 100.14 85.86
9 136 -581 003.01 85.41
10 151 -580 131.39 85.48
11 166 -581 321.90 86.15
12 181 -578 849.42 85.68
13 196 -577 756.22 85.61
14 211 -578 467.37 86.14
15 226 -577 867.09 86.18
16 241 -576 583.95 86.20
17 256 -575 861.57 86.16
18 271 -574 813.58 86.05
19 286 -574 312.79 86.27
20 301 -573 364.29 86.22
21 316 -572 262.04 86.06
22 331 -571471.83 86.18
23 346 -569 740.99 85.86
24 361 -569 493.44 86.13
25 376 -568 924.81 86.26
26 391 -568 148.16 86.20
27 406 -567 710.68 86.43
28 421 -566 762.18 86.34
29 436 -565 506.18 86.24
30 451 -565 321.94 86.43

Table B.1: BRUTE100 results on the Adult data set
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Number of hidden neurons Number of parameters VAVERR | Accuracy (%)
1 16 0.331499 84.54
2 31 0.319356 84.97
3 46 0.311373 85.33
4 61 0.307451 85.52
5 76 0.309672 85.64
6 91 0.310592 85.58
7 106 0.308023 85.53
8 121 0.307989 85.49
9 136 0.309302 85.55

10 151 0.307018 85.54
11 166 0.30785 85.52
12 181 0.307723 85.60
13 196 0.306812 85.56
14 211 0.306202 85.76
15 226 0.306466 85.63
16 241 0.304596 85.69
17 256 0.308354 85.38
18 271 0.307312 85.43
19 286 0.308569 85.44
20 301 0.304105 85.68
21 316 0.307371 85.69
22 331 0.306259 85.43
23 346 0.308959 85.49
24 361 0.308886 85.52
25 376 0.310335 85.57
26 391 0.304095 85.61
27 406 0.308271 85.52
28 421 0.308054 85.51
29 436 0.309942 85.48
30 451 0.306603 85.58

Table B.2: BRUTE70 results on the Adult data set
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Number of hidden neurons Number of parameters VAVERR | Accuracy (%)
1 16 0.327534 84.84
2 31 0.319237 85.11
3 46 0.313656 85.40
4 61 0.311689 85.46
5 76 0.311471 85.48
6 91 0.309602 85.66
7 106 0.312170 85.37
8 121 0.309848 85.57
9 136 0.310119 85.63

10 151 0.311394 85.49
11 166 0.310701 85.57
12 181 0.310618 85.50
13 196 0.310921 85.42
14 211 0.309766 85.57
15 226 0.309320 85.60
16 241 0.311408 85.57
17 256 0.309925 85.62
18 271 0.309190 85.58
19 286 0.309300 85.62
20 301 0.309015 85.62
21 316 0.310431 85.62
22 331 0.308925 85.70
23 346 0.310947 85.51
24 361 0.309784 85.56
25 376 0.310518 85.47
26 391 0.309945 85.53
27 406 0.309314 85.72
28 421 0.309845 85.67
29 436 0.310976 85.60
30 451 0.310944 85.53

Table B.3: BRUTE10 results on the Adult data set
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Number of hidden neurons Number of parameters SBC MSE
1 16 -1 662.31| 15.555990
2 31 -1858.93| 8.769547
3 46 -1977.08| 5.773066
4 61 -1956.36| 5.000743
5 76 -1899.36| 4.653638
6 91 -1929.77| 3.643612
7 106 -1878.56| 3.352132
8 121 -1861.06| 2.885232
9 136 -1789.30| 2.764449
10 151 -1704.41| 2.718357
11 166 -1761.07| 2.020741
12 181 -1669.45| 2.013672
13 196 -1711.17] 1.541766
14 211 -1606.65| 1.576033
15 226 -1606.15| 1.311662

Table B.4: BRUTE100 results on the Boston Housing data set

Number of hidden neurons Number of parameters VAVERR MSE
1 16 0.781956| 18.919640
2 31 1.835688| 200.914400
3 46 0.902232| 47.047140
4 61 1.021484| 39.108760
5 76 0.601183| 14.093970
6 91 5.972047| 1 303.487000
7 106 0.594371| 15.918820
8 121 0.670548| 15.938900
9 136 0.922856| 28.352260
10 151 0.840043| 20.351250
11 166 1.144861| 33.489850
12 181 1.231336| 35.282320
13 196 0.965153| 23.985820
14 211 1.496066| 46.057140
15 226 1.608093| 60.631880

Table B.5: BRUTE7O0 results on the Boston Housing data set
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Number of hidden neurons Number of parameters VAVERR MSE
1 16 0.707133| 16.969953
2 31 0.764980| 34.694599
3 46 0.496325| 10.938516
4 61 0.514646| 13.530875
5 76 0.486868| 11.050678
6 91 0.569609| 14.504891
7 106 0.539869| 13.055272
8 121 0.695531| 18.737204
9 136 0.553737| 13.139862
10 151 0.683851| 16.473891
11 166 0.740993| 19.381405
12 181 0.987968| 24.276840
13 196 1.095268| 29.491034
14 211 0.990657| 29.880732
15 226 0.939331| 25.304731

Table B.6: BRUTE10 results on the Boston Housing data set

Number of hidden neurons Number of parameters SBC MSE
1 12 -938.19| 15.567830
2 23 -934.81| 12.963540
3 34 -946.11| 10.325550
4 45 -917.89| 9.270305
5 56 -897.58| 8.125972
6 67 -847.14| 7.803900
7 78 -829.10| 6.793455
8 89 -808.92| 5.952597
9 100 -847.42| 4.366050
10 111 -833.72| 3.751110
11 122 -656.85| 5.284338
12 133 -705.59| 3.757401
13 144 -642.35| 3.751188
14 155 -676.87| 2.784722
15 166 -660.91| 2.409009

Table B.7: BRUTE100 results on the Ozone data set
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Number of hidden neurons Number of parameters VAVERR MSE
1 12 1.244689| 16.734990
2 23 1.082693| 14.557900
3 34 1.130124| 15.256380
4 45 1.183423| 16.722250
5 56 1.710985| 25.560680
6 67 1.460380| 22.779450
7 78 2.551725| 42.313030
8 89 2.239165| 37.606780
9 100 2.394974| 41.911400
10 111 2.801250| 48.464590
11 122 3.372007| 67.772670
12 133 5.261488| 115.724500
13 144 4.711515| 99.501110
14 155 5.123945| 120.854700
15 166 3.990240| 69.250170
Table B.8: BRUTE7O results on the Ozone data set
Number of hidden neurons Number of parameters VAVERR MSE
1 12 1.346970| 16.879764
2 23 1.273780| 16.614138
3 34 1.139797| 15.106363
4 45 1.229552| 16.172386
5 56 1.333431| 17.873299
6 67 1.405833| 18.781528
7 78 1.824317| 23.881712
8 89 1.730560| 31.552813
9 100 2.440511| 41.056634
10 111 1.968626| 29.122909
11 122 2.542599| 40.499850
12 133 2.577597| 43.656292
13 144 2.815467| 43.622020
14 155 3.988830| 139.881048
15 166 3.195163| 50.825107

Table B.9: BRUTE10 results on the Ozone data set
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Number of hidden neurons Number of parameters SBC MSE
1 5 -1105.41| 0.322067
2 9 -1192.88| 0.175952
3 13 -1287.82| 0.092193
4 17 -1284.33| 0.083718
5 21 -1271.91| 0.079911
6 25 -1263.69| 0.074511
7 29 -1244.87| 0.073712
8 33 -1 247.63| 0.064640
9 37 -1201.55| 0.074465
10 41 -1175.45| 0.076724
11 45 -1199.89| 0.059605
12 49 -1185.35| 0.057575
13 53 -1173.11| 0.054901
14 57 -1153.22| 0.054637
15 61 -1141.79| 0.051866
Table B.10: BRUTE100 results on the $@ata set
Number of hidden neurons Number of parameters VAVERR MSE

1 5 0.147243| 0.256515
2 9 0.121748| 0.209630
3 13 0.080277| 0.104616
4 17 0.054677| 0.092898
5 21 0.055323| 0.099312
6 25 0.061801| 0.102103
7 29 0.081793| 0.146781
8 33 0.086488| 0.135128
9 37 0.081401| 0.144120
10 41 0.120920| 0.229561
11 45 0.076118| 0.146338
12 49 0.130656| 0.176114
13 53 0.077771| 0.147034
14 57 0.076056| 0.125791
15 61 0.073424| 0.125603

Table B.11: BRUTE7O0 results on the $@ata set
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Number of hidden neurons Number of parameters VAVERR MSE
1 5 0.189700| 0.335896
2 9 0.126817| 0.197753
3 13 0.079668| 0.109535
4 17 0.063151| 0.101856
5 21 0.062345| 0.107044
6 25 0.076598| 0.126063
7 29 0.074230| 0.131305
8 33 0.075888| 0.127790
9 37 0.082921| 0.130947
10 41 0.079019| 0.135428
11 45 0.073381| 0.123816
12 49 0.079877| 0.130903
13 53 0.091622| 0.129548
14 57 0.089610| 0.141690
15 61 0.084496| 0.130659

Table B.12: BRUTE10 results on the $@ata set
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Number of hidden neurons Number of parameter SBC Accuracy (%)
1 60 -52 556.83 94.31
2 119 -52 684.04 94.87
3 178 -53 547.87 96.26
4 237 -55 064.12 97.44
5 296 -55 043.63 97.91
6 355 -54 700.62 98.00
7 414 -57 478.46 99.11
8 473 -59 347.61 99.43
9 532 -55 409.83 98.80
10 591 -56 964.27 99.20
11 650 -56 178.18 99.17
12 709 -57 526.04 99.43
13 768 -56 632.28 99.30
14 827 -55 963.06 99.39
15 886 -57 676.69 99.65
16 945 -56 407.95 99.50
17 1004 -56 539.76 99.61
18 1063 -56 500.42 99.65
19 1122 -55794.38 99.59
20 1181 -55 357.97 99.65
21 1240 -55 344.85 99.63
22 1299 -54 213.22 99.59
23 1358 -54 294.42 99.67
24 1417 -50 841.59 99.37
25 1476 -53 272.06 99.67
26 1535 -52 662.19 99.67
27 1594 -52 377.14 99.65
28 1653 -52 148.23 99.67
29 1712 -51 401.25 99.67
30 1771 -51 940.25 99.70

Table B.13: BRUTE100 results on the Spambase data set
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Number of hidden neurons Number of parameters VAVERR | Accuracy (%)
1 60 0.190574 93.77
2 119 0.190246 93.70
3 178 0.219910 93.70
4 237 0.239873 93.12
5 296 0.731697 92.25
6 355 0.471034 92.10
7 414 0.608570 91.38
8 473 0.893028 92.46
9 532 0.579423 91.67
10 591 0.526023 92.32
11 650 0.440628 93.55
12 709 0.399910 92.39
13 768 0.367853 93.19
14 827 0.354482 93.91
15 886 0.391671 92.90
16 945 0.354328 93.77
17 1004 0.439693 92.46
18 1063 0.375745 93.26
19 1122 0.397949 93.77
20 1181 0.399680 92.83
21 1240 0.428946 94.20
22 1299 0.351746 94.49
23 1358 0.395222 93.91
24 1417 0.374867 93.26
25 1476 0.355396 94.13
26 1535 0.326509 94.06
27 1594 0.280652 94.28
28 1653 0.384702 93.04
29 1712 0.344357 94.35
30 1771 0.415189 93.19

Table B.14: BRUTE7O0 results on the Spambase data set
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Number of hidden neurons Number of parameters VAVERR | Accuracy (%)
1 60 0.198754 93.44
2 119 0.205768 93.39
3 178 0.238180 93.36
4 237 0.251255 93.41
5 296 0.392936 92.74
6 355 0.629614 92.44
7 414 0.862891 91.86
8 473 1.034209 91.71
9 532 0.432075 92.82
10 591 0.454756 93.06
11 650 0.469864 92.70
12 709 0.471734 93.06
13 768 0.465625 92.97
14 827 0.489211 92.73
15 886 0.482830 93.00
16 945 0.472985 93.22
17 1004 0.507718 93.11
18 1063 0.468729 93.07
19 1122 0.431768 93.56
20 1181 0.421669 93.23
21 1240 0.451414 93.24
22 1299 0.425484 93.75
23 1358 0.452078 93.45
24 1417 0.423939 93.44
25 1476 0.430619 93.40
26 1535 0.428210 93.45
27 1594 0.419633 93.30
28 1653 0.463558 93.61
29 1712 0.440156 93.26
30 1771 0.406101 93.28

Table B.15: BRUTE1O0 results on the Spambase data set
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