Investigation of Pt supported on carbon, ZrO₂, Ta₂O₅ and Nb₂O₅ as electrocatalysts for the electro-oxidation of SO₂

Boitshoko Goitseone Modingwane 17030285

Submitted in partial fulfillment of the requirements for the degree of M.Sc in Chemistry in the Department of Chemistry, North-West University (Potchefstroom campus)

Supervisors: Dr R.J Kriek Prof V.K Ramani

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

Innovation through diversity [™]

DECLARATION

I declare that this dissertation entitled "Investigation of Pt supported on carbon, ZrO_2 , Ta_2O_5 and Nb_2O_5 as electrocatalysts for the electro-oxidation of SO_2 " is my own work and that it has not been submitted for any degree or examination in any other university, and that all sources I have used or quoted have been indicated and acknowledge by complete references.

Boitshoko Goitseone Modingwane

Signature

Date.....

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to the following people and organisations:

- The Lord my Saviour, for enriching me with passion and perseverance to pursue my dreams,
- Dr R.J Kriek, my supervisor, for his guidance throughout the duration of the project,
- The department of Chemistry, North-West University,
- The Chemical Resource Beneficiation (CRB) and the Hydrogen Infrastructure Centre of Competence, without who's funding this project would not have been possible,
- Dr Tiedt and Mrs Pretorius for their assistance with TEM analysis
- Belinda Venter, for her expertise in X-ray diffraction and
- Finally, to my family, for all the support.

ABSTRACT

The gradual depletion of and dependence on fossil fuels, air pollution and global warming have all accelerated the development of alternative energy systems which use hydrogen as an energy carrier. The hybrid sulphur cycle (HyS) is the foremost electro-thermochemical process that can produce hydrogen as the energy carrier.

The HyS cycle consists of two units, namely the sulphuric acid decomposition reactor and the sulphur dioxide electrolyser (SDE). The SDE is responsible for the SO₂ electrooxidation to sulphuric acid and protons at the anode and the electro-reduction of protons to hydrogen at the cathode. This research study focuses on the kinetic data collected from the prepared catalysts for SO₂ electro-oxidation at the anode.

Platinum dispersed on carbon, niobium pentoxide, tantalum pentoxide and zirconium dioxide as electrocatalysts were prepared using sodium borohydride as a reducing agent. These electrocatalysts were characterized using transmission electron microscopy and x-ray diffraction. Cyclic voltammetry was used to study the electrochemical active surface area (EAS) and the results showed that Pt/ZrO₂-C had a higher EAS area than Pt/Ta₂O₅-C, Pt/Nb₂O₅-C and Pt/C. The high EAS of Pt/ZrO₂-C can be explained by the low crystal size however after a series of linear polarisation scans Pt/ZrO₂-C experiences a much greater area loss than all the other catalysts.

Linear polarisation scans for each of the catalysts revealed that the influence of increased temperature and sulphuric acid concentration were showed improved results. Levich and Koutecky-Levich plots revealed that the SO₂ oxidation is a multistep reaction on all the prepared catalysts and that there are regions which are kinetic and diffusion controlled and diffusion-only controlled. Pt/Ta₂O₅-C catalysts exhibited superior catalytic activity and stability compared Pt/Nb₂O₅-C, Pt/ZrO₂-C and Pt/C. The Pt/ZrO₂-C exhibited the most inferior catalytic activity and stability.

Keywords: Hydrogen, Hybrid sulphur, SO₂ electro-oxidation, platinum, tantalum pentoxide, niobium pentoxide and zirconium dioxide

TABLE OF CONTENTS

Declaration	i
Acknowledgements	ii
Abstract	iii
List of figures	х
List of tables	xii
List of acronyms	xiii
CHAPTER 1 INTRODUCTION	1
1.1 Background and rationale	1
1.1.1 Problems	1
1.1.1.1 Depletion of fuel reserves	1
1.1.1.2 Political and economic effects	2
1.1.1.3 Environmental pollution	2
1.1.2 South Africa's greenhouse gas emissions	2
1.2 Energy in South Africa	3
1.3 Hydrogen as an energy carrier	4
1.3.1 Hydrogen produced from coal	6
1.3.2 Hydrogen produced from hydrocarbons	6
1.3.3 Hydrogen produced from nuclear energy	7
1.3.4 Hydrogen produced from renewable sources	7
1.4 Hybrid sulphur (HyS) cycle	7
1.4.1 Process description	8
1.4.2 Description of the SDE	11
1.4.3 The effect of sulphuric acid on SO ₂ oxidation	16
1.4.4 Solubility of sulphur dioxide	20
1.5 Research problem and objectives	23
CHAPTER 2 LITERATURE SURVEY	27
2.1 Importance of electrocatalysis	27
2.2 Catalysts parameters	28
2.2.1 Catalyst supports	28
2.2.1.1 Niobium pentoxide (Nb ₂ O ₅)	30
2.2.1.2 Tantalum pentoxide (Ta_2O_5)	31
2.2.1.3 Zirconium dioxide (ZrO ₂)	32
2.2.2 Preparation of electrocatalysts	33

2.2.2.1 Types of dispersion	34
2.2.2 Thermal treatment	37
2.2.3 Preconditioning	38
2.2.4 Pt loading, dispersion and utilization	38
2.2.5 Pt Dissolution and sulphur poisoning	39
2.3 The use of Pt/C as electrocatalyst for SO_2 oxidation	41
2.4 Mechanism of SO ₂ oxidation on Pt	42
2.5 Alternative electrocatalysts	45
2.6 Electrochemical Catalyst testing	47
2.6.1 Electrocatalytic measurements	49
2.6.2 Cyclic voltammetry	49
2.6.3 Linear polarization	51
2.7 Surface characterization of the catalyst	52
2.7.1 Transmission electron microscope	53
2.7.2 X-ray diffraction	54
2.8 Conclusions	55
CHAPTER 3 EXPERIMENTAL	57
3.1 Catalyst preparation	57
3.1.1 Reagents	57
3.1.2 Synthesis of Pt-MO _x /C catalyst	57
3.1.3 Electrode preparation	58
3.2 Characterization	58
3.2.1 Transmission electron microscope	59
3.2.2 X-ray diffraction	59
3.3 Electrochemical measurements	59
3.3.1 Preconditioning	59
3.3.2 Catalyst testing	60
3.4 Pt dissolution	60
3.4.1 Inductively coupled plasma optical emission spectroscopy	60
CHAPTER 4 RESULTS AND DISCUSSION	62
4.1 Characterization	64
4.1.1 Transmission electron microscope	64
4.1.2 X-ray diffraction	64
4.2 Cyclic voltammetry	67
4.2.1 Electrochemically Active Surface Area (EAS)	76

4.2.2 Pt dissolution	79
4.3 Stability tests	80
4.4 Catalyst testing	80
4.4.1 Influence of sulphuric acid concentration and temperature	82
4.4.2 Levich experiments	90
4.4.3 Koutecky-Levich experiments	93
4.4.4 Influence of the metal oxides on Pt/C	97
CHAPTER 5 CONCLUSION	98
5.1 Conclusions	98
5.2 Recommendations	99
REFERENCES	100
APPENDIX	113
Appendix A: Electrochemical active surface area	113
Appendix B: XRD patterns of Ta_2O_5	115
Appendix C: Influence of H_2SO_4 and temperature on catalytic activity	116
Appendix D: Levich and Koutecky-Levich plots	128
Appendix E: Linear polarisation scans at different rotation speeds	153

LIST OF FIGURES

Figure 1.1 Primary energy supplies in South Africa in the year 2000	3
Figure 1.2 South African final energy uses by sector in the year 2000	4
Figure 1.3 Representation of the global hydrogen use	4
Figure 1.4 Different systems used for the global hydrogen production	5
Figure 1.5 Hybrid sulphur (HyS) cycle	8
Figure 1.6 SO ₂ -depolarised electrolyser for hydrogen production	12
Figure1.7 Westinghouse's design for parallel plate SDE	15
Figure 1.8 A PEM (proton exchange membrane) fuel electrolyser design	15
Figure1.9 Electrolyser set up (MEA)	16
Figure1.10 Reaction steps once-through hybrid sulphur cycle	19
Figure 1.11 SO ₂ solubility in sulphuric acid as a function of acid	21
concentration. The system temperature is 80° C and the pressure is 1bar	
Figure 1.12 SO_2 solubility in sulphuric acid as a function of system	22
pressure. The concentration of sulphuric acid is 50wt%	
Figure 2.1 Activation energy for catalytic and non-catalytic pathway for a	23
chemical reaction	
Figure 2.2 Schematic illustrations of (a) impregnation (b) precipitation (c)	36
colloidal and (d) ion exchange methods	
Figure 2.3 Sketch of a rotating disc electrode (RDE)	48
Figure 2.4 Cyclic voltammetry of Pt catalyst	50
Figure 3.1 Electrode assembly kit from PINE instruments	58
Figure 3.2 Photograph of the actual experimental setup	61
Figure 3.3 Photograph of the actual electrochemical cell	61
Figure 4.1 TEM image Pt/C under 28500X magnification	64
Figure 4.2 TEM image Pt/Nb_2O_5 -C under 28500X magnification	64
Figure 4.3 TEM image Pt/Ta_2O_5 -C under 28500X magnification	65
Figure 4.4 TEM image Pt/ZrO ₂ -C under 28500X magnification	65
Figure 4.5 TEM image Pt/C under 73000X magnification	67
Figure 4.6 TEM image Pt/Nb_2O_5 -C under 73000X magnification	67
Figure 4.7 TEM image Pt/Ta_2O_5 -C under 73000X magnification	68
Figure 4.8 TEM image Pt/ZrO ₂ -C under 73000X magnification	68
Figure 4.9 X-ray diffractographs of Vulcan carbon XC-72 and Pt/C	70
Figure 4.10 X-ray diffractographs of Nb ₂ O ₅ , Pt/C and Pt/Nb ₂ O ₅ -C	72
Figure 4.11 X-ray diffractographs of Ta_2O_5 , Pt/C and Pt/ Ta_2O_5 -C	73

Figure 4.12 X-ray diffractographs of ZrO_2 , Pt/C and Pt/ ZrO_2 -C Figure 4.13 Cyclic voltammogram of Pt/C, Pt/Nb ₂ O ₅ -C, Pt/ Ta ₂ O ₅ -C and Pt/ ZrO_2 -C	74 78
Figure 4.14 Catalyst mechanical default	79
Figure 4.15 LP scan of Pt/C at different rotation speeds and SO ₂ bubbled in	80
1.5M H ₂ SO ₄ at 30°C	
Figure 4.16 LP scan of Pt/Nb_2O_5 -C at different rotation speeds and SO_2	81
bubbled in 1.5M H ₂ SO ₄ at 30°C	
Figure 4.17LP scan of Pt/Ta ₂ O ₅ -C at different rotation speeds and SO ₂	81
bubbled in 1.5M H ₂ SO ₄ at 30°C	
Figure 4.18 LP scan of Pt/ZrO_2 -C at different rotation speeds and	82
SO_2 bubbled in 1.5M H ₂ SO ₄ at 30°C	
Figure 4.19 Influence of acid concentration and temperature at 0rpm on	83
Pt/C	
Figure 4.20 Influence of acid concentration and temperature at 900rpm on	83
Pt/C	
Figure 4.21 Influence of acid concentration and temperature at 1600rpm on	85
Pt/C	
Figure 4.22 Influence of acid concentration and temperature at 2500rpm on	85
Pt/C	
Figure 4.23 Influence of acid concentration and temperature at 0rpm on	86
Pt/Nb ₂ O ₅ -C	
Figure 4.24 Influence of acid concentration and temperature at 400rpm on	86
Pt/Nb ₂ O ₅ -C	
Figure 4.25 Influence of acid concentration and temperature at 2500rpm on	87
Pt/Nb ₂ O ₅ -C	
Figure 4.26 Influence of acid concentration and temperature at 0rpm on	87
Pt/Ta ₂ O ₅ -C	
Figure 4.27 Influence of acid concentration and temperature at 400rpm on	88
Pt/Ta ₂ O ₅ -C	
Figure 4.28 Influence of acid concentration and temperature at 0rpm on	89
Pt/ZrO ₂ -C	
Figure 4.29 Influence of acid concentration and temperature at 400rpm on	89
Pt/ZrO ₂ -C	
Figure 4.30 Levich plot of Pt/C in 0.5M H_2SO_4 at 30°C	91

Figure 4.31 Levich plot of Pt/Nb ₂ O ₅ -C in 0.5M H_2SO_4 at 20°C	91
Figure 4.32 Levich plot of Pt/Ta ₂ O ₅ -C in 0.5M H_2SO_4 at 20°C	92
Figure 4.33Levich plot of Pt/ZrO ₂ -C in 0.5M H_2SO_4 at 20°C	92
Figure 4.34 Koutecky-Levich plot of Pt/C in 0.5M H_2SO_4 at 30°C	94
Figure 4.35 Koutecky-Levich plot of Pt/Nb ₂ O ₅ -C in 0.5M H_2SO_4 at 20°C	94
Figure 4.36 Koutecky-Levich plot of Pt/Ta ₂ O ₅ -C in 0.5M H_2SO_4 at 20°C	95
Figure 4.37 Koutecky-Levich plot of Pt/ZrO ₂ -C in 0.5M H_2SO_4 at 20°C	95

١

LIST OF TABLES

Table 1.1 SDE HyS cycle design parameters	
Table 1.2 Net thermal efficiency benchmarking	19
Table 2.1 Acid corrosion resistance of Zirconium compiled by D.F Taylor	32
Table 3.1 Mass ratios of precursor salts used to synthesise catalysts	58
Table 3.2 Experimental parameters for CV and LP	60
Table 4.1 The true metal ratios and crystal sizes of the catalyst	75
Table 4.2 The Pt loading, electrochemical active surface area and Pt area	75
loss	
Table 4.3 Pt dissolution concentration	77
Table 4.4 The number of electrons transferred and heterogeneous rate	96
constant ofPt/C in 1.5M H ₂ SO ₄ at 30°C	
Table 4.5 The number of electrons transferred and heterogeneous rate	96
constant of Pt/Nb ₂ O ₅ -C in 1.5M H ₂ SO ₄ at 30°C	
Table 4.6 The number of electrons transferred and heterogeneous rate	96
constant of Pt/Ta_2O_5 -C in 1.5M H_2SO_4 at 30°C	
Table 4.7 The number of electrons transferred and heterogeneous rate	97
constant of Pt/ZrO ₂ -C in 1.5M H ₂ SO ₄ at 30°C	

LIST OF ACRONYMS

Abbreviation	Description	
CV	Cyclic voltammetry	
H ₂ O	Water	
H_2SO_4	Sulphuric acid	
HyS	Hybrid sulphur cycle	
LP	Linear polarisation	
OCP	Open Circuit Potential	
O ₂	Oxygen	
OLI-MSE	OLI Mixed Solvent Electrolyte	
Ot-HyS	Once-through Hybrid sulphur cycle	
MEA	Membrane electrode assembly	
PEMFC	Proton exchange membrane fuel cell	
RDE	Rotating disc electrode	
SDE	SO ₂ Depolarised Electrolyser	
SEM	Scanning electron microscope	
SRNL	Savannah River National Laboratories	
TEM	Transmission electron microscope	
THF	Tetrahydrofuran	
XRD	X-ray diffraction	

Property	SI units	Description of the SI units
Temperature	°C	Degree Celsius
Pressure	bar	Bar units
Current density	mA/cm ⁻²	Milliampere per centimetre squared
Energy/ Work	Petajoules	10 ¹⁵ joules
Potential	V	Volts
Concentration	Wt%	Weight percentage