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Abstract 
Pulsars, as rotating magnetised neutron stars got much attention during the last 40 

years since their discovery. Observations revealed them to be gamma-ray emitters with 

energies continuing up to the sub 100 GeV region. Better observation of this upper energy 

cut-off region will serve to enhance our theoretical understanding of pulsars and neutron 

stars. 

The H-test has been used the most extensively in the latest periodicity searches, 

whereas other tests have limited applications and are unsuited for pulsar searches. If the 

probability distribution of a test statistic is not accurately known, it is possible that, after 

searching through many trials, a probability for uniformity can be given, which is much 

smaller than the real value, possibly leading to false detections. The problem with the H-test 

is that one must obtain the distribution by simulation and cannot do so analytically. 

For such simulations, random numbers are needed and are usually obtained by 

utilising so-called pseudo-random number generators, which are not truly random. This 

immediately renders such generators as useless for the simulation of the distribution of the H- 

test. Alternatively there exists hardware random number generators, but such devices, apart 

from always being slow, are also expensive, large and most still don't exhibit the true 

random nature required. 

This was the motivation behind the development of a hardware random number 

generator which provides truly random U(0,l) numbers at very high speed and at low cost 

The development of and results obtained by such a generator are discussed. The device 

delivered statistically truly random numbers and was already used in a small simulation of 

the H-test distribution. 

KEY WORDS: H-test, pulsar searches, periodicity searches, gamma-ray astronomy, random 

number generator, true randomness. 



Opsomming 

DIE ONTWIKKELING VAN 'N HARDEWARE KANSGETAL 

GENERATOR VIR GAMMA-STRAAL ASTRONOMIE 

Gedurende die laaste 40 jaar sedert hul ontdekking het pulsare, as roterende 

gemagnetiseerde neutronsterre, baie aandag gekry. Hulle is observeer as gamma-stralers met 

energie tot in die sub 100 GeV gebied. 'n Meer indiepte observering van hierdie boonste 

energie afsnit gebied sal ons teoretiese kennis van pulsare en neutronsterre verbeter. 

Hedendaags word die H-toets uitgebreid gebruik in soektogte na periodisiteite, waar 

ander toetse beperkte toepassing het en ongeskik is vir pulsarsoektogte. As die 

waarskynlikheidsverdeling van 'n toetsstatistiek nie akkuraat bekend is nie is dit moontlik 

dat, na deur baie toetse gesoek is, 'n waarskynlikheid vir uniformiteit gegee kan word wat 

heelwat kleiner as die ware waarde is en kan lei tot valse deteksies. Die problem met die H- 

toets is dat die distribusie met simulasies verkry moet word aangesien dit nie analities 

moontlik is nie. 

Vir sulke simulasies word kansgetalle benodig en wat gewoonlik verkry word deur 

van skyn kansgetal generators gebruik te maak, wat sagteware tegnieke gebmik. Wanneer 

heelwat (>lo4) sulke getalle gebruik word, duik probleme gewoonlik op aangesien die 

generators nie waarlik stogasties is nie. Sulke generators is dus nie geskik vir simulasie van 

die distribusie van die H-bets tot op 'n beter as die huidig bekende vlak van 10.' nie. As 

alternatief bestaan daar hardeware kansgetal generators maar sulke toestelle, bo en behalwe 

dat hul altyd stadig is, is ook duur, goot  en meeste toon steeds nie die ware stogastiese 

eienskap nie. 

Dit het as motivering gedien vir die ontwikkeling van 'n hardeware kansgetal 

generator wat ware ewekansige U(0,l) getalle teen 'n baie hoe spoed en lae koste lewer. Die 

ontwikkeling daawan en die resultate verkry vanuit so 'n generator word bespreek. Die 

toestel het statistiese 'n ware stogastiese uitset gelewer, wat reeds in 'n klein simulasie van 

die H-toets se distribusie gebmik is. 

SLEUTELWOORDE: H-toets, pulsarsoektogte, periodisiteitssoektog, gamma-straal 

astronomic, kansgetal generator, ware kansgetalle. 
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Chapter 1 

Introduction 

Gamma-ray astronomy had a spectacular development in the last few years. This 

started with the CGRO EGRET telescope (Fichtel et al. 1983) operational from 1991 

to 1999; which revealed the very high energy universe much richer than expected. Of 

the EGRET catalogue of 271 sources, 6 are galactic pulsars. At about the same time, 

ground-based gamma-ray astronomy came into being with instruments like Whipple (Kren- 

nrich et, al. 1997) and CANGAROO (Kifune et al. 1997), which progressed t,o  instrument,^ 

such as VERITAS (Weekcs et al. 1997), MAGIC Telescope (Petri & Thc MAGIC Tele- 

scope Group 1999) and H.E.S.S. (Krawczynsky & H.E.S.S. Collaboration 1999). Recently, 

very high energy gamma-rays resulting from particle acceleration in the shell of a supernova 

remnant was discovered witah H.E.S.S. (Aharonian et al. 2004). All t,hese  instrument,^ work 

on the principle that gamma radiation entering the atmosphere initiates particle showers 

which emit Cerenkov light. This Cerenkov light is then detected. A newer space gamma-ray 

telescope called GLAST is underway (Wood, Michelson & The GLAST Collaboration 1995) 

which should discover many gamma-ray pulsars. 

Pulsars were named so because of the observed regular, high stability pulses of emission 

radiated in a certain direction. Pulsars, as rotating magnetised neutron stars, have reccived 

much attention during the last 40 years since their discovery by Hewish et al. (1968). 

Observations revealed them to also be gamma-ray emitters with energies continuing up 

to the sub-100 GeV region, depending on the theoret,ical model used. Bet,ter observat,ion 

of this upper energy cut-off region will serve to cnhance our theoretical understanding of 

pulsars and neutron stars. For the studies to become more generalised, one must include 

the data in this cut-off region from even more than the currently 1400f known pulsars 

to see if i t  fits the predictions of certain theoretical models. Also; the pulsar flux in the 

energy cut-off region is quite low on reaching the Earth. Even though attempts are made 

to maximise the collection area of detectors and minimise the acceptance of background 
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events, further improvement of searches for pulsed emission can be achieved if optimised 

search techniques are employed. 

One way to achieve this is by implementing statistical tests for uniformity, of which the 

H-test (De Jager et al. 1986) has been used the most extensively in the latest periodicity 

searches. De Jager et al. (1989) discussed the merits of a number of statistical tests for 

urlifornlity for pulsar det,ect,ions: t,he H-t,est was found to be powerfill against. a wide variet,y 

of pulsar pulse profilcs and has been used to detcct a number of X-ray and gamma-ray 

pulsars (Hessels et al. 2004; Kaspi et al. 2000; Chang & Ho 1997). Other tests like 

the 2: test (Buccheri et al. 1983) have limited applications and are unsuited for pulsar 

searches. This applies specifically because some pulsars may be radio quiet (like Geminga) 

so that one does a blind search in y-rays. To effectively employ the H-test to the high 

levels of accuracy required, the distribution of this test must be known very accurately. 

Unfortunately the problem with the H-test is that it is impossible to obtain an analytical 

distribution; one must obtain the distribution by simulation. Currently the distribution is 

known up t,o an accuracy of - lo-', but even for modern instruments, t,his is not accurate 

cnough. This comcs as a result of thc largc collection areas and high sensitivities, rcsulting 

in many more events and the signal still being hidden in the noise. To be able to detect 

fainter pulsars, the H-test must be accurate up to a level of lo-'' or better. Simulation 

up t,o t,his level is therefore required, i.e. > 10'' random numbers are needed to obtain a 

bctter distribution of the H-tcst than previously known. 

If the probability distribution of a test statistic is not accurately known, it is possible 

that, after searching through many trials, a probability for uniformity can be given, which 

is much smaller than the real value, possibly leading to false detections such as discussed by 

De Jager et al. (1988) and finally proved by Nel et al. (1993). Therefore a false detection 

may be claimed- even after the proper number of statistical trials have been takcn into 

account. A proper evaluation of the H-test is due, given the fact that it is already widely 

in use as discussed above. 

For simulations, random numbers are usually obt,ained by utilising pseudtrrandorn nunl- 

ber generators, which employ software techniques. On levels of > 10' numbers certain 

problems with these generators, which are due to them not being truly random, start 

to occur. This immediately renders such generators as useless for the simulation of the 

distribution of the H-test as required here. Alternatively. there exist hardware random 

number generators, but such devices, apart from always being slow, are also expensive, 

large and most still don't exhibit the true random nature required. This motivated the 
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Unit for Space Physics at the North-West University to develop and implement a hardware 

random number generator which has as features: 

1. Truly random number output of U(0,l) distribution 

2. Very high speed 

3. Rclatively low cost 

The first prototype of this device was used in the simulation of the distribution of the H-test. 

The device was also awarded a patent during 2004 for the unique implementation and 

plans to fnrthcr the commercial development of the dcvice were successfully implemented 

thus far. Random numbers have a wide variety of applications, from the scientific need 

for simulations, to the security of data which uses random numbers to encrypt data, to 

t,he rnodelling of financial market changes and long-term1 effect,s by employing Monte Carlo 

techniques. Potential applications of such a device arc thcreforc widespread and it provides 

an important spin-off from the research done. 

This dissertation is split into two main sections: chapter 2 on gamma-ray astrophysics 

and chapter 3 on random number generation for astrophysical purposes. In chapter 2 we 

progress from a general introduction to gamma-ray astrophysics towards pulsars and a 

basic model of how the radiation is created. After considering the emission spectra, the 

Atmospheric Cerenkov Technique is discussed as detection method of the interaction of 

high energy radiation with the Earth's atmosphere. A further discussion of the H.E.S.S. 
ground-based detect,or of such Cerenkov light follows aft,er which it is placed in the frame 

work of worldwide past, present and future gamma-ray astronomy ventures. 

As discussed, the H-test is the method employed for pulsar searches and since it has its 

origins in statistics we start off in chapter 3 with a short overview of the relevant statistical 

theory. A general framework for tests of uniformity is discussed after which the H-test is 

discussed as one specific case. From the nature of the test it is then clear that no analyt,ical 

distribution exists for the test. Therefore we move on to the problem of generating the 

random numbers in an appropriate fashion for the simulation of the distribution of the 

H-test. This is achieved by first considering problems surrounding most random number 

generators, after which the development t,owards a device with the required properties 

follows. The Quantum Bit Extractor is the first step in such a direction and a discussion of 

the employed statistical tests for randomness follow. Problems with the basic Quantum Bit 

Extractor pushed us towards a more in-depth statistical analysis as to where the problems 

originat,e and how to compensate and correct for such problems. A complet,e discussion of 

this process towards the final hardware implementation of a device providing statistically 
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truly random numbers forms the heart of this dissertation. The applicability of such a 

device covers wide fields in various sectors and a general overview of this follows. Since 

the initial motivation for such a device originated from the need to simulate the H-test's 

distribution, a short discussion of the obtained distribution is given. 

The code used to simulate the H-t,est distribution under null hypothesis in given in 

Appendix I in the Borland Delphi 5 programming language. Appendix I1 contains t,he 

patent description of thc dcvice. Appendix I11 contains a list of acronyms and abbreviations 

used in this text. 



Chapter 2 

Gamma-Ray Astrophysics 

2.1. Gamma-Ray Astrophysics in general 

I11 1911 Victor Hess est,ablished t,he existence of a nlystrrious radiation of "ezlrcmely 

high penetrating power" entering thc atmosphere from spacc, which started the eventual 

development of current very high energy (VHE) TeV gamma (?)-ray astronomy. This 

radiation was called "cosmic rays", and it was only realized at a later stage that cosmic 

rays consisted mostly of particles. Forty-two years later the first ground-based detection 

of the Cerenkov radiation, associated with y-rays (see section 2.3), was made by Galbraith 

& Jelley (1953). 

Primary cosmic rays consist mainly of nuclei, some electrons, positrons, neutrinos and 

y-rays, all with energies ranging from 10seV - 1020eV. Charged cosmic rays are deflected 

by the int,erst~ellar and int,ergalact,ic magnetic fields. Thus det,ection of such a part,icle gives 

no indication as to where or by what specific mechanism they originated, or the distance 

travelled. The arrival times of the charged component of cosmic radiation can be treated as 

random events with a uniform distribution in both space and time. Therefore the sources of 

most of the cosmic rays are still unknown and the solution to this is one of the major goals 

of VHE astronomy. There are however good theoretical reasons to believe that shell-type 

supernova remnants (SNRs) should be VHE y-ray sources because they are also thought 

to be major sources of galactic cosmic rays (Volk 1997). 

Theoretically, high-energy y-rays are usually the result of particle acceleration in collec- 

tive processes involving wave and particle int.eractions. This interaction of charged particles 

and waves is equivalent to thc reflection of charged particlcs on moving magnetic mirrors 

and the particle energy distribution is therefore not in thermal equilibrium. To observe 

cosmic rays is therefore to observe the non-thermal universe. Gamma-rays produced by 

charged particles accelerat,ed in magnetic fields are, under certain conditions, unaffected 

by magnetic fields and thcn move along uncurved paths, allowing us to detect where intcr- 
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actions with cosmic rays occur. Thus to study y-rays also serves towards studying cosmic 

rays and the regions where electromagnetic interaction with cosmic rays occur. 

2.2. Pulsars as Gamma-Ray sources 

A group of Cambridge astronomers headed by Anthony Hewish detected astronomical 

objects having pulsed radio emission in 1967 (Hewish et al. 1968). It was a significant 

event for subsequent astrophysical research and Hewish was awarded a Nobel prize in 

1974 for the discovery. At the time of the discovery Pacini (1967) had already published 

a preliminary model of a simple magnetic dipole rotator capable of converting neutron 

st,ar rotAona1 energy int.0 rlect,rornagnetic radiation, with hi? work support,ed by t,heories 

of Hoyle, Narlikar & Whecler (1964), Tsuruta and Cameron (1966), Woltjcr (1964) and 

Wheeler (1966). 

The identification of pulsars with neutron stars was not immediately obvious to astro- 

physicists, but Gold (1968) argued that the observed pulsars were in fact rotating neutron 

stars with surface magnetic fields of - 10I2G. Shortly thereafter the slowdown of the Crab 

pulsar was discovered and he showed that the implied energy loss was approximately the 

same as the energy required to power the Crab nebula (Gold 1969). The success of Gold's 

model led to the acceptance of the rotating magnetized neutron star as the basis for all 

sul)seqnent, pulsar models. 

Further observations of pulsars revealed them to be y-ray emitters up to thc sub-100 

GeV region, the theoretical upper limit dependant on the pulsar magnetic field strength at 

the emitting regions (Figure 2.1) (Thompson 2000). Figure 2.2 shows the typical emission 

pat,t,erus of t,hree well-st,udied pulsars. The double peak is a t.ypical feature of observed 

pulsar emission and must thercforc he cxplained by the theoretical modcls. 

Associations between SNRs and neutron stars have also traditionally been identified 

with the detection of radio pulsars. Three such objects, the Crab, Vela and PSR B1509-58, 

have been included in a review by Helfand & Becker (1984). The associations between SNRs 

and neutron stars are often dubious because of a lack of supporting evidence of association, 

rather than evidence against association. 

2.2.1. Pulsar  models in general 

The key ohservat,ional facts of pulsars mdy be summarised from the ATNF Pulsar 

Catalogue (2004) and Shapiro & Theukolsky (1983) as follows: 
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Figure 2.1. High-energy spectrum of the Vela pulsar showing a spectral turnover near 10GeV. The 
Polar Cap and Outer Gap models are discussed in section 2.2.1. 

1. they have periods in the range 1.56 ms to 11.76 s; 

2. the periods increase very slowly, except for occasional 'glit,ches', 

3. pulsars are remarkable clocks, with somc periods measured to 13 significant digits. 

Only rotat,ing neut,ron star models can explain all of the above observed features. Un- 

fortunately, no single model dcvelopcd for the pulse cmission mechanism cxplains all of 

the observed features in the pulse profile. Nonetheless, the simple rotating-dipole model 

illustrates how pulses of high regularity may arise (Bowers & Deeming 1984), thus it will 

be the basis for the models discussed here. 

Consider a rotating magnetic neutron star with mass - l A l o  and radius - 10 km. 

Assuming that generally the rotation and magnetic axis of the pulsar makes an angle (o 

with each other, the speed of the magnetic field lines at a distance r from the rotation 

axis is expected to be u = w x r. The speed of the field lines can be greater than the 

speed of light because magnetic field lines do not exist physically. If particles are coupled 

to the magnctic field by some mechanism thcy will co-rotate with the field and then the 

restriction iul = Iw x rl = u r s i n e  5 c applies, since the tangential velocity of the particles 

may not exceed the speed of light. This defines the light cylinder which is the furthest 

point from the rotatlion axis of the st,ar where the mat,t,er can co-rotate with the magnetic 

field and it hau a radius Tr. = c/w from the rotation axis (Bowcrs & Deeming 1984). 
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Figure 2.2. Full pulse profiles as from EGRET observations of pulsars for E > lOOMeV (Kanbach 
1997). The relevant spin periods are -33 ms (Crab); -89 ms (Vela) and -237 ms (Geminga). 

Using this approach, there exist both open and closed field lincs: the closed field lincs 

are those which do not cross the light cylinder, whereas those field lines, which in the 

absence of rotation would have closed at larger distances, penetrate the light cylinder and 

become open field lines. Charged particles will cerotate with these field lines; for the 

closed field lines the particles are stationary relative to the field lines and for the open field 

lines the particles can move along them (Figure 2.3). 

For simplicity we assume an aligned rotator (i.e. p = 0)'; following the case considered 

in Bowers & Deeming (1984), since this allows us to easily demonstrate emission mecha- 

nisms and estimate order-of-magnitude result,~: t,he characteristics of t,he magnetosphere 

must be similar to those of the non-aligned rotator (Mestel 1971). 

We define the polar cap to be the region 0 < 0, (using spherical coordinates) on the 

surface of the star, such that all the field lines crossing the light cylinder originate from 

t,his region. For a dipole field, (sin2 0)lr  is a constant,, thus for t,he angle 0, defining t,he 

polar cap region and the last field line just touching the light cylinder (see Figure 2.3), we 

have 

with R the radius of the star and TL the radius of the light cylinder. From this the radius 

Charged 1);trtic:les leaving the st,ar's surface t.hrongh t,his polar cap region earl esc:;tI)e t.o 

infinity along the open field lines. 

This aligned rotator model however, cannot produce the observed radiation since it has been shown 
that an inclined rotator is essential (Michel 1997). 
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Figure 2.3. Magnetospere of an aligned pulsar showing the open and closed field lines. Charges 
of different signs are the result of the magnetosphere attempting to obtain a state of minimum 

onergy. 

To retrieve the equations for the electromagnetic fields in- and outside a pulsar we 

consider a frame a t  rest relative to a star with conductivity u,. Ohm's law relates the 

current density j, and electric field E, by 

The reference frame in which E, is measured moves relative to  a frame a t  rest with respect 

to  the Galaxy with velocity (vl = Iw x rl. Performing a Galilean transformation from the 

star's rest frame to the Galaxy's rest frame yields 

with E and B measured in the Galaxy's rest frame. The electrical conductivity a, of 

matter inside a neutron star is extremely large (- co) because of the degenerate state of 

t,he mat,t.er, t,herefore one can rreat t,he pulsar a? a rotatling maguet,izetl perfect contlnc:t,or. 

Since j, must be finite inside a conductor, E, must hc zero from Ohm's law and thus 
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which is the equation we must solve for inside a neutron star. 

From the boundary conditions in electrodynamics, the component of the electric field 

parallel to the surface of the conducting star is continuous across the surface, thus the 

component of the electric field parallel to the star's surface, just outside the star, is zero. 

Since magnetic fields are also present on the surface of the star, the electric field is contained 

in t,l~e component perpendicular t,o t,he surface at the surface, because we deal here with a 

non-static magnctic ficld. For typical magnetic field strengths of 1012G, we can make an 

order of magnitude estimate for the electric field strength outside the surface from (2.2) as 

with P the pulsar rotation period. 

The gravitational force F, on the particles at the surface is much weaker than the force 

FE on the particles due to the electric field: 

depending on the charged particles under consideration, with M the stellar mass and 

m, t,he particle m a s .  Thuq charged particles can be drawn out, of t,he crust into tlhe 

surrounding magnetosphere (M6szaros 1992; Lyne & Graham-Smith 1990). Charge flowing 

into the magnetosphere produces currents that induce additional electromagnetic fields 

which modify the structure of the magnetosphere. A self-consistent solution to the problem 

has not yet been obtained. We do however know that the induced electric field wants to 

arrange the configuration outside the star in such a way that the lowest possible energy 

configuration is reached, resulting in a zero net force on particles. The magnetosphere is 

highly conducting along but not perpendicular to the magnetic field lines, helping with the 

flow of charge in such a way as to reach equilibrium. This condition in the magnetosphere 

is similar to the high conductivity of the stellar interior and the magnetosphere seems to 

be an extension of the solid interior. In both regions, then, the induced clectric field is 

cancelled by a static field, so that (2.2) is valid for outside the star as well. Note that this 

holds for the region of cc-rotation of the matter and magnetic field lines, i.e. the region 

of t,he closed field lines. For t,he open field lines no stmatic configurat,ion is possible, there 

is a net outflow of charge and the electric ficld h a  a non-zcro component parallel to the 

magnetic field, which also serves to accelerate the charges along these field lines. 
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For the aligned rotator, w = WE, using cylindrical coordinates. Assuming that inside 

the star the magnetic field is 

Bin = BOiZ (2.3) 

and outside we have a dipole field 

we have for t-he electric field imide tlhe st,= from using (2.3) in (2.2) t,hat 

Bowr . E. - ----- 
z n  - sin 0 (sin 0& + cos OGe) 

C 

Notme that E.B = O inside the neutron stjar, as expect,ed from a coud~~ct,or. Using E,, and 

the boundary conditions at the surface, the electric field outside the neutron star is 

Eat = - ---- i, + cos 0 sin 0& 

Using (2.4) and (2.6) the component of E parallel to B outside the pulsar is 

EOut.B,t 2wR R 
4 

- - 
E l l  = B,, 

- ( )  Bo cos 0 
3c 

This is valid for the region of the open field lines where current flow occurs. For the closed 

field line region of the plasma we have a force-free charge distribution because the charge 

cannot escape and reaches a static configuration. 

The magnetic field line which intersects the light cylinder at right angles2 is called the 

critical field line (see Figure 2.3) and is assunled t.o leave t,he stjar's surface at polar angle 

0,. This critical field line is at the same clectrostatic potential as the interstellar medium 

at the star's surface. For 0 < 0, the field lines at  the surface are at lower potential than 

the surrounding medium. Therefore electrons stream out along these magnetic field lines 

which pass through the polar cap of radius r, = Rsin0,. For 0 > 0, the electrostatic 

potential exceeds the interstellar value and positive ions stream out along the field lines 

lying in the annular region 0, < 0 < 0,. The value of 0, is fixed by the requirement that 

the net current flow through the polar cap must be zero. Therefore a negative current 

flows out along the the poles (0 < 0,) and an equal positive current (protons and ions) 

Mathematically, R,(rL)  = 0 
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flows out in the annular sheath 0, < B < 0,. Each current distribution induces a magnetic 

field that is toroidal about the magnetic axis. Near the light cylinder the toroidal field 

bends backwards as it passes the light cylinder and trails the co-rotating magnetosphere. 

The maximum energy an electron can obtain from the dynamo potential difference over 

the polar cap region, for an acceleration distance of order of the polar cap radius, is 

The total particle loss rate is 

according M&sz&ros (1992). For pulsars with a Goldreich-Julian charge density streaming 

out a t  relativistic speeds which utilizes the full potential difference across the polar cap, 

the particle energy per second produced is 

with A@,,k, the maximum accelerating potential according Goldreich & Julian (1969). 

Bowers & Deeming (1984) have estimated the total electromagnetic energy radiated from 

the pulsar as 

which is equal to the energy loss rate from a dipole in vacuum within an order of magnitude. 

Thus the total particle luminosity is proportional to the magnetic dipole radiation power: 

Taking general relativistic 

according to Venter (2004) is 

(GR) effects into account, the primary electron luminosity 

with 7 and K dimcnsionless constants. This has thc same functional form as with the 

non-GR case. A more detailed analysis of the aligned rotator can be found in Fitzpatrick 
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& Mestel (1998). The simplified model presented here must however be modified in at  

least two ways to obtain a reasonable model of pulsars: 

1. it must be generalized to non-aligned rotation and magnetic axes, 

2. a self-consistent model including the induced fields must be obtained and solved 

Great advances have been made with rccent models explaining ncarly all of the obscrva- 

tional details, but no fully working model has as yet been developed (Arons 1996). Two 

popular models for pulsar emission are the polar cap and outer gap%odels. The first 

places t,he source of emission immediat,ely above a rrlagmetic pole; t,he other places it, far 

out in thc outer magnctosphere, closc to the light cylinder. 

The polar cap (PC) model assumes that radiation is emitted primarily from the region 

of the field lines which delineate the polar cap, by charges being accelerated from the star's 

surface along these field lines. 

The outer gap (OG) models for yray pulsars assume the existence of a vacuum gap 

in the outer magnetosphere between the last open field line and the null charge surface 

(n.B = 0) in charge-separated magnetospheres. These gaps arise because charges escaping 

through the light cylinder along open field lines above the null charge surface cannot be 

replenished from below. 

If a pulsed flux is detected from young pulsars at TeV energies, polar cap models will 

be obsolete. If however; upper limits to pulsed flux above 100 GeV continue to decrease, 

outer gap models will be terminally constrained (Harding & De Jager 1997). 

Roughly six or more y-ray pulsars were observed by the CGROIEGRET instrument 

during its mission between 1991 and 1997. Several hard-spectrum unidentified EGRET 

sources were also observed and are thought to be y-ray sources for which the EGRET 

statistics are too small to resolve periodicity (Grenier 2001). With the H.E.S.S. telescope 

(see par. 2.4) we hope to observe several of these objects. 

2.2.2. Radiation mechanisms 

In both the PC and OG theories the location and direction of emission generated is 

mainly determined by the dipolar magnetic field. The high-energy radiation observed 

from pulsars is very broad-band, which is typical of synchrotron and curvature radiation. 

The radio regime is narrow-band, which is typical of coherent radio mechanisms (Lyne & 

Graham-Smith 1990). Primary accelerated particles at high enough energies give rise to 

This is also known as the relativistic beaming or vacuum gap model 
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Figure 2.4. Thc cascade process in the outer magnetosperic gap. Electrons and positrons (-/+) 
acceleratcd in the gap emit y-rays (--), which, in turn, create e+e- pairs, the process moving 

progressively into the polar cap region. 

e+e- cascades producing high-energy radiation in the strong magnetic field via the syn- 

chrotron or inverse Compton mechanisms. The contribution t,o pulsed y-ray emissions from 

t,he inverse Compton nlechanism is much less than t,hat of cilrvat,ure radiation (Harding & 

Muslimov 1997, Harding 2001). 

In the pulsar magnetosphere the motion of the particles is in general a combination of 

both gyration about the field lines and streaming along them. The gyration of the particles 

about the field lines cause synchrotron radiation and the streaming of the particles along 

the field lines causes curvature radiation. Both the gyration and streaming cause a loss 

of energy for the particles. Due to the strong electric field, the particles have relativistic 

velocities, and being constrained to move along the field, the radiation is strongly beamed. 

This beaming, coupled with the rotation of the star gives rise to a pulsed emission pattern. 

In PC models t,he basis of pulsed emission lies in tlhe synchrot,ron and curvature radi- 

ation from particles as they are acceleratcd by the electric field (2.7) along the field lines 

delineating the polar cap. This can create y-rays of high enough energy to produce e+e- 

pairs, giving rise to a cascading process described below. 

In the OG model, thermal X-rays and soft y-rays from near t,he neutron star surface 

interact with primary radiation and produce e + e  pairs. This pair production plays a 
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critical role in the production of the high-energy emission: it allows current to flow and 

particle acceleration to take place in the gap (Harding 2001). The creation of an e + e  pair 

(at point 2  in figure 2.4) results from the interaction of a y-ray with either the magnetic field 

or a lower-energy photon. The created particles accelerate along the field lines; reaching 

energies comparable to the available potential. In this process they radiate y-rays, either 

by curvat,ilre radiation or by inverse Con~pt,on collisions wit,h low-energy phot,ons. These 

y-rays can then crcatc further e+e- pairs, giving rise to a cascading process. This process 

is discussed in more detail in section 2.2.3 on page 21. 

Some idea of the balance between these processes can be obtained from a paper by 

(Cheng, Ho & Ruderman 1981). Since both theoretical models have emission associated 

with synchrotron and curvature radiation as well as inverse Compton mechanisms, we will 

consider all three physical processes in short. 

2.2.2.1. Synchrotron radiation 

Synchrotron radiation implies a change in the transverse momentum4 of the particles. 

Since synchrotron radiation is relativistic cyclotron radiation we first consider the more 

simplistic cyclotron radiation process. Cyclotron motion is the circular motion of a charged 

particle in a magnetic field and is described by the cyclotron formula 

with m the mass of a particle, charge e moving with non-relativistic speed v around a circle 

of radius R. The radiation from such a particle is at the Larmor frequency 

For an electron or positron, UL = 2 . 8 M H ~ . ~ a u s s - ' .  The rate of energy loss through this 

radiation is 

with = vlc  (Lyne & Graham-Smith 1990). A polar diagram of the radiation is shown in 

Figure 2.5 a. 

Harmonics of the cyclotron frequency are generated when the particle's circular Larmor 

orbit is distorted by the wave fields El and B1 which are first order approximations to 

with respect to the magnetic field B 
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Figure 2.5. The radiation pattern (a) from an electron in a circular orbit perpendicular to the 
magnetic field, (b) from an electron streaming along the magnetic field. The total power (I), 
linearly (Q) and circularly (V) polarised are the Stokcs parameters (after Lyne & Graham-Smith 

1990). 

oscillations in the fields. This usually happens when particles have relativistic velocities, 

reducing the gyration frequency 
eB 

V -- 
- 27rm 

below the Larmor-frequency because of the increased mass of the electron, thus distorting 

the Larmor orbit. Most of the radiated power now lies in the harmonics but the fuuda- 

mental cyclotron frequency is still emitted with intensity (2.8) but with the actual gyro 

frequency vg substituted for VL. 

A charged particle with high velocity, i.e. l? = (1 - @2)-''2 >> 1, radiates a spectrum of 

harmonics which extends to frequencies of order f2vL (i.e. to r3vg). When r is large this 

radiation may be regarded as a continuous spectrum. This is then synchrotron radiation. 

Consider the electric field radiated by a single electron, gyrating perpendicular to the 

magnetic field, and observed in its plane of orbit. This gives observable pulses, each 

occurring as t,he electron t,ravels towards the observer. The relativist,ic velocity concentrates 

the field in the forward dircction (Figure 2.6). 
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Fignrc 2.6. Radiation lobes for chargcs having relativistic velocities. The v indicat,es thc dircctiou 
of propagation and the a the direction of acceleration, this specific case referring to synchrotron 

radiation 1281. 

2.2.2.2. Curvature radiation 

Curvature radiation implies a change in the longitudinal component of the momentum5 

of the particles. In the super-strong magnetic field of a pulsar magnetosphere, an electron 

may follow the path of a magnetic field line very closely, with pitch angle nearly zero. The 

magnetic field lines are generally curved due to their dipolar nature, so that the electron will 

be accelerat.ed t,rarlsversely and radiate along the tangent.ia1 direct,ion of t,he field line. This 

radiation, which is closely related to synchrotron radiation, is called curvature radiation. 

Electrons gain energy by being accelerated by the electric field (2.7) along the magnetic 

field lines, having radiation lobes as shown in figure 2.5 b. These velocities are highly 

relativistic, so we have an energy gain rate 

and radiation lobes similar to that of synchrotron radiation depicted in figure 2.6. An 

elrctmn wit,h relat,ivist,ic velocit,y, const,rained t,o follow a pat,h wit,h radius of c:irrvat.ure pc 

radiates in a similar way as in a synchrotron process and the theory will not be repeated 

here. The particle radiates with a typical maximum frequency of 

with respect to the magnetic field B 
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Figure 2.7. Mechanism of the normal Compton scattering. The process in reverse describes inverse 
Compton scattering. 1281 

The rate of curvature radiation energy loss is given by (M&sz&os 1992) 

2e2c 
/33r4ergs.s-1 

loss 3 ~ f  

The total rate change of energy considering only curvature radiation and Ell acceleration 

is then, from (2.9) and (2.10), 

with K1 only dependent on the velocity. Thus we have a limited acceleration region because 

as the particles accelerate away from the surface, Ell decreases and the second term in (2.11) 

starts to  dominate; making dE/dt negative. 

2.2.2.3. Inverse Compton radiation 

When a photon of energy Eo 'bounces' off an electron and both the photon and electron 

travel off at a different energy and angle, the process is called Compton scattering (see figure 

2.7). The change of wavelength for Compton scattering is given by 

h, 
A X =  - (1 - cos 0) 

met 

with 0 the deflection angle. The maximum change in the wavclength is therefore AX = 
2h/m,c (Griffiths 2003). 

The most extreme case of the inverse of the process is that an electron and photon 

can collide, the photon absorbs all the energy of the electron and a single high-energy 

photon travels off. For electrons with high relativistic vclocities this can bc a significant 
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Figure 2.8. Spectrum of synchrotron radiation [52] 

contribution to the energy of a photon if all the momentum from such a electron is absorbed 

by the photon. This process then contributes to the high-energy unpulsed y-ray flux up to 

TeV energies, since t,he phot,ons are not emitt,ed in preferred directions. 

2.2.3. Emission spectra 

For synchrotron radiation we have a continuous spectrum of harmonics that is emitted 

for large I?. For a single charge, most of the radiated power is in the harmonics, but 

the fundamental cyclotron frequency is still emitted with intensity (2.8) with the actual 

gyro frequency ug suhstituted for u ~ .  For an individual charge, t,his radiat,ion may be 

insignificant in comparison with the harmonic radiation, but the coherent radiation from 

many electrons may be concentrated in the fundamental and the lower harmonics only. We 

have a frequency u,, = 4.6B(Eh,cu)2 where the radiated power is the maximum. Below urn 

the spectrum is a power law proportional t,o d l 3  and above u, it falls exponentially as e-"Iuc 

with u, the critical frequency (Ginzbnrg & Syrovatskii 1969). The radiated synchrotron 

spectrum is shown in figure 2.8. 

Electrons with relativistic velocities constrained to follow a path with radius of cur- 

vature p, radiate in a similar way a s  an electron in a circular orbit with gyro frequency 

c/2?rpc. As in synchrotron radiation there is a critical frequency given by 
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and the maximum intensity of radiation is at a frequency 

This spectrum is of the same form as that for synchrotron radiation, see figure 2.8. 

We have so far considered the synchrotron and curvature radiation of a single charged 

particle. In practice there is an ensemble of charged particles with a range of energies. 

Thc radiation from each is concentrated about its critical frequency, so that the resultant 

spectrum depends on the distribution of critical frequency among the ensemble. If the 

particle energies are distributed according a power law with index K so that N(E) oc E-" 

t.hen t.hr spectrnn~ also follows a power law P(u)  rx u-". Here 

3a + 1 curvature 

2a + 1 synchrotron 

This applies only if the energy power law extends over a sufficient range of energies. If 

there is a change of exponent K in the energy spectrum, it will be reflected in a change of 

exponent in the radiation spectrum, but the change will be smoothed out over a range of 

frequencies. A full analysis is given by (Ginzhurg & Syrovatskii 1969). 

With the radiation from t,he inverse Compt,on effect we have t,he transfer of energy from 

high-energy electrons to radiation. The radiation from a cloud of high-energy electrons 

therefore increases the total flux of radiation energy and puts the increased energy in 

shorter wavelengths. This radiation mechanism does not depend on collisions or on a 

st,eady magnetic field, and therefore gives rise t,o t,he unpulsed TeV emissions which are 

observed. 

The energy of the y-rays is 

and it can escape the magnetosphere if, with 4 the angle between the y-ray and the 

magnetic field, 

E,Bsin@ < Kz (2.12) 
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where K z  is a critical value for photon-photon pair production and the cut-off energy of 

emitted y-rays is 
Kz Eo = - (2.13) 
BL 

with BL the magnetic field strength perpendicular to the direction of the photon. If 

E, B sin 4 > K2; ef e- pair production takes place and the secondary electrons can emit a 

further generation of y-rays. 

The c ' e  pair creat,ion processes a lkr  the charge density sufficiently t,o short out t,he 

strong accelerating electric ficld. This happens at a well-defined 'pair formation front' 

above which the beam coasts: creating more y-rays whose subsequent cascades radiate a 

spectrum of y-rays observable by favourably located observers. Thus, depending on the 

magnetic field strength, the maximum energy observable is either from the real maximum 

energy obtainable by the electrons, or by the cut-off at the critical energy value where 

e+e- pair creation starts cascading. This places a very sharp upper limit to the radiation 

spectrum. Estimates for this upper cut-off energy range from 5 GeV to 100 GeV. Following 

the outer gap model, it seems that long period pulsars with low magnetic fields will be 

the best candidat,es for det,ection above 20 GeV (Harding 2001). Also, as the pulsar grows 

older, we expect the multiplicity for pair creation to decrease, with the resulting effect of 

spectra becoming harder with increasing age. 

A generic PC model for the tails of differential spectra is given by 

according Nel & de Jager (1995). A PC model is assumed here because it gives more 

conservative upper cut-off energies as the OG model. If b is consistently greater than 

1, it would make ground based detections more difficult, since the collection area A ( E )  

increases with energy E and a significant overlap of A(F)  and dN/dE would be required for 

a detection. They assumed b = 2 for the most conservative rates. The spectral parameters 

for pulsars for E > 1 GeV which will be used in par. 2.4 for calculation of detection rates 

are listed in table 2.1. 

2.3. The Atmospheric Cerenkov technique 

As y-rays of more than a few GeV enter Earth's atmosphere they produce Cerenkov radi- 

ation, which is electromagnetic radiation of 90 to 330 nm, emitted by a beam of high-energy 
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Table 2.1. Assumed pulsed spectral parameters (E > 1GeV) with parameters m and b as defined 
in (2.14) (De Jager 2002) 

( Object I k ( ~ l O - ~ ) ( / c m ~ / s / G e V )  I m 1 Eo(GeV) I b I F ( >  1 GeV) (/cm2/s) ( 
1 Crab I 24.0 1 2.08 1 30 1 2  1 22 1 

charged particles passing through a transparent medium at speeds > c for that medium. 

Cerenkov radiat,ion was discovered by Pavel Cerenkov in 1934 while observing radioactive 

radiation underwater and in 1958 he shared thc Nobel Prize for Physics with Igor Tamm 

and Ilya Frank for their help in explaining the phenomenon. 

The idea to detect Cerenkov light flashes from extensive air showers (EAS) comes from 

simple physical reasoning. Primary cosmic rays of a high energy entering the atmosphere 

produce a cascade of the secondary charged particles and y-ray photons having energy 

well above the energy threshold of Cerenkov light production. Thus a single high-energy 

primary particle can produce an EAS of secondary particles distributed over a large area 

(Weekes 1994; Konopelko 1997). With each conversion in the cascade, the mean energy of - 
each particle or phot,on halves, giving E -- 2-d/'Eo with d the distance t,ravelled into the 

atmosphere, t the mean frce path of the particle in the atmosphere and Eo the primary 

particle's energy (Figure 2.9). 

The EAS particles arrive at  the Earth's surface in a -- lo-% time interval, makeing it 

possible to measure the Cerenkov light emission within an exposure time of 10 - 30 ns. The 

amount of night sky light detected for such a short time interval is negligible compared 

with Cerenkov light flashes from the EAS if the optical reflector used has a sufficient mirror 

area. To decrease the energy threshold of the detector one can increase the mirror area of 

the optical detector and use multichannel fast electronics to get more Cerenkov light from 

the EAS against the night sky backgrolind. An effective registIration of y-rays of energy 

as low as 10 GeV is expected (Konopelko 1997). The low enegry threshold of 10 GeV for 

ground-based atmospheric Cerenkov Telescopes is complementary to the Compton GRO 

and EGRET satellites which can measure up to -20 GeV (Mirzoyan 1997, Weekes 1994, 

Hartling & de .Jager 1997) 

The Atmospheric Ccrenkov Technique (ACT) is unique in astronomy in that the at- 

Vela 
Geminga 
PSR B1951+32 
PSR B1055-52 
PSR B1706-44 

1.62 
1.42 
1.74 
1.80 
2.10 

138 
73.0 
3.80 
4.00 
20.5 

8.0 
5.0 
40 
20 
40 

1.7 
2.2 
2 
2 
2 

148 
76 
4.9 
4.5 
20 
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Figure 2.9. Diagram illustrating the basic Cerenkov radiation mechanism 

mosphere forms the detection medium. Thus, as well as having to calibrate the telescope, 

one also needs to know the atmospheric parameters. An extensive analysis of the effects of 

atmospheric composition on the development of y-ray cascades has been made by Bernlohr 

(2000). He concluded that pressure, temperature, ozone, aerosol and water vapour profiles 

were all significant. Accurate measurement of these parameters is essential to obtain the 

desired lower detectaim energy threshold. 

The Atmospheric Ccrenkov Technique is particularly suited for y-ray astronomy for a 

number of reasons, including: 

- the inherent angular resolution of the technique is high because the Cerenkov light 

retains t8he original direct,ion of the primary phot,on, 

- the light does not sprcad out apprcciably so that thc light pool reaching thc ground 

has dimensions of several hundreds of meters, making detection easier, 

- t,he Cerenkov light is a calometric component of the shower and can be used as a good 

est.imat,or of the primary energy, 

- the very short duration of the light pulses is well-matched to fast pulse counting elcc- 

tronics so that the shower can be detected against the night sky. 

Initially it was assumed that y-ray and hadronic showers were identical in a general way 

bnt simulations made it clear t,hat, because of the smaller t,rmsverse momentum in elect,ro- 

magnetic interactions, the clectrornagnetic cascade is much more tidy and compact than its 
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Figure 2.10. Examples of hadron, muon and gamma-like detections. The gamma detection is
much more concentrated.

hadronic counterpart (see Figure 2.10). Therefore a drawback of the ACT is the presence of

a heavy background from cosmic ray nuclei which produces EAS at a much higher rate than

gamma-rays. The eventual implementation of image intensifiers and stereoscopic imaging

led to the modern-day detection of -y-rays against a background of hadronic radiation.

Stereoscopic imaging relies on the detection of directional anisotropy amongst the arrival

directions of cosmic ray air showers, with the assumption being made that the interstellar

and interplanetary magnetic fields render the charged component isotropic (Weekes 1996).

2.4. The H.E.S.S. Telescope

H.E.S.S. (High Energy Streoscopic System) is a 3rd generation ground based Imaging

Atmospheric Cerenkov Telescope (IACT) detecting Cerenkov radiation from EASs. The

first phase, which consists of four 13-m diameter dishes and cameras with lO-ns detection

time, went fully operational on 10 December 2003. It is located in Namibia and is one

of the major atmospheric Cerenkov telescopes together with CANGAROO (Kifune et al.

1997), MAGIC (Petri & The MAGIC Telescope Group 1999) and VERITAS (Weekes et

al. 1997). The basic goals of the H.E.S.S. group are to study processes in the universe

with high energy turnover and to find the origin of cosmic rays. This includes exploring

the TeV -y-ray sky and other non-thermal sources, surveying of the galactic centre, all-sky

surveying, studying of supernova remnants and extragalactic sources like relativistic jets

from black holes. It will also contribute to the theory of active galactic nuclei (The H.E.S.S.
Project 2004).

H.E.S.S. has a low t.hreshold energy and high sensitivity, an order of magnitude better

than previous instruments (see figure 2.11). It has a field of view of rv 5° x 5° degrees with

--- - - - - --
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Figure 2.11. Comparison of sensitivity between H.E.S.S. and other past and present projects.

a 0.1 degree angular resolution and an effective area of a few times 104m2. Its detection

energies for imaging range from 50 GeV to 100 TeV and the stereo imaging capability

results in a significant rejection factor against background events. It can however trigger

on events above 10 - 30 GeV and this feature will be exploited for pulsar searches, even

though imaging is not possible in this energy range. The stereo imaging capability still

allows some background events to be rejected at these energies.

The stereo imaging technique has several advantages (Punch 2002):

- Being able to locate the origin of the shower unambiguously, giving the instrument a

good angular resolution.

- Multiple measurements of a shower allows for a good energy resolution and a high level

of hadron shower rejection.

- The stereo trigger mechanism helps with the complete rejection of the local muon

background and gives the instrument a lower energy threshold.

The relationship between the detection area and "}'-rayenergy of H.E.S.S. is given in figure

2.12, with the fit to the detection area having functional form (Konopelko 2001)

--- - - --- - - - - - - - - - - --
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Figure 2.12. The detection area of H.E.S.S. as a function of incident 'Y-ray energy.

Using the collection area A(E) the expected rate of triggers from pulsed Cerenkov showers

is given by

14 = J A( E) (~~ ) dE
(2.15)

Statistics and an additional trigger rate can reduce an incoming cosmic ray background

trigger rate Rb from about 1 kHz to about 8 Hz. From these pulsed and background trigger

rates, the detection sensitivities have been calculated by (De Jager 2002) for canonical

high-field pulsars as shown in table 2.2. It is clear that H.E.S.S. will only be able to detect

Table 2.2. Estimated pulsed rates Rpand observation times for H.E.S.S.

---- - - - - -- - - - - - - - - -- - - - - - - -

Object 14 (hr-1) T (lO-hr days) Eo (GeV)
Crab 100 3 30
Vela 8 400 8.0

Geminga «1 - 5.0
PSR B1951+32 180 1 40
PSR B1055-52 8 420 20
PSR B1706-44 240 1 40
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Figurc 2.13. Plot of period derivative P of radio pulsars (grey dots) from the ATNF Pnlsar 
Catalogue, with confirmed (solid squares) and candidate (open squares) y-ray pulsars. Dashed 

diagonal lines indicate constant magnetic field strength. 

pulsed emission if Eo > 30 GeV, which is realised a t  least for PSR B1706-44 and PSR 

B1951+32. 

Pulsars visible in the radio regime have rotation periods P between 1 ms and 10 s, with 

magnetic field strengths Bo of 10' to  1014 G as shown in figure 2.13. To select possible 

candidates for observation with H.E.S.S., we see from (2.12) that the lower the value of 

the magnetic field of a given pulsar, the higher the energy of thc escaping y-rays. In figurc 

2.13 this represents the lower left section of the plot. 

Important discoveries has been made with the H.E.S.S. instrument thus far. One im- 

portant discovery was proof of high-energy particle acceleration in t,he shell of a supernova 

remnant (Aharonian 2004), which point to the origin of the galactic cosmic rays. Many cx- 
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With just these few examples it is clear that gammeray astronomy is a rapidly ex- 

panding field. The main goal of the last few years was to close the observation gap of 

10 GeV (upper threshold for EGRET) and 300 GeV. New telescopes have already lowered 

the threshold energy to below 60 GeV. At around 10 to 40 GeV the universe becomes 

near-transparent and one should be able to see y-emitting objects a s  far as a redshift of -> 

3. 



Chapter 3 

The development of a hardware random 

number generat or 

3.1. Introduction 

In astronomy tthe need qnit,e oft,en arises t,o identify a periodicity in dat,a dorninat,ed by 

counting statistics. Usual procedures involve supcrposition (or folding) of thc arrival times 

on some phase interval, normally 10, 1) or (0, ZT) ,  using appropriate parameters like the 

period P and period derivative P. This interval then represents one full period of rotation 

and in the absence of any periodicity the folded events will be distributed uniformly. One 

can then test for any periodicities by applying a test for uniformity on the chosen interval. 

In observing cosmic rays, the charged cosmic ray component (i.e. the nuclei) is of an 

isotropic and incoherent nature and cannot be traced back directly to  particular sources. 

This is thought to  be the effect of both the production mechanisms and interstellar and in- 

t,ergalactic scat,tering mainly by magnetic fields. Therefore t,he arrival times of t,he charged 

cosmic ray component are stochastic, i.e. independent and uniform. The y-ray compo- 

nent of cosmic rays, however, arrives at  Earth in a nearly undisturbed fashion and can 

be associated directly with certain point sources. The Cerenkov radiation from both the 

charged and y-ray components of cosmic rays is detected by IACTs. The y-rays from 

pulsars however are of a periodic nature as discussed earlier, but the ratio of these y-ray 

fluxes to the charged cosmic ray flux is low and one is forced to approach the problem 

with proper statistical methods if these y-rays are to be properly identified. Therefore one 

has to rely on hypothesis testing to provide an answer to the possible presence of pulsed 

y-ra.ys. 

The necessity to have a sound statistical basis, which we discuss in the next section, is 

quite clear. This also comes in handy when simulating arrival times (or events) of Cerenkov 

showers at  an IACT, with goal to test the accuracy and distribution of the H-test (see 

section 3.6). This calls for t,he use of t,ruly random numbers, sect,ion 3.5.1 explaining in 

detail what we imply with tmly. The lack of a generator being able to generate such truly 
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random numbers at the frequency required gave the motivation for the Space Research 

Unit at the Potchefstroom University to develop such a truly random number generator, 

described in section 3.5.2. This generator unit in itself does not generate numbers which 

are totally independent and uniformly distributed, so procedures bad to be implemented to 

account for and correct these problems (see section 3.5.4). Also, one often needs numbers 

t,hat have a st,andard normal dist.ribut1ion for simulat,ions, t,his being dwcussed in sect,ion 

3.5.5. 

The design and implementation for such a truly random number generator is not mo- 

tivated by astrophysical needs alone, but has an extensive range of applications. These 

spin-offs and further possible applications are discussed in section 3.7. 

3.2. Statistical basics 

A quick overview of important and relevant statistical concepts and laws is given here, 

forming the basis of the statistical tools needed further on. 

A random variable is a variable which can take on more t,han one value, either discreet, 

or continuous, this value not being prcdictable in advance. The distribution of the variable 

may well be known; this giving the probability of a given value (or infinitesimal range of 

values) being obtained. The probability density function of a random variable u gives the 

probabilit,~ of finding the random variable u' within du of a given value u, denobed by g (,u) 

as 

g ( u ) d u =  P ( u  < u l <  u f d u )  

This is normalised in such a way that the integral over all u is 1, implying that the total 

probabilit,y of finding all the possible values is one. The diktribution function is defined 

through 

C (u) = / g (r) dz 
-m 

and is a monotonically increasing function taking on values from zero to one. 

Considering two random variables u and ir with density h(u, v), IL and t i  are stochastically 

independent if and only if h(u, v) = P(U)~(W).  For more than two variables the concept 

of independence becomes more complicated and all possible pairs, triplets, etc. (i.e. all 

combinations but not permutations) have to be considered. 

The definit,iom of random sampling, which is a fundamental point of departme in st.atis- 

tics can now be given: 
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Let X I ,  x z ,  . . , x ,  be some sample drawn. The sample is random if and only if 

1. xi is independent from x, for all i f j and i, j = 1, . . . , n. 

2. the probability density function of each xi is the same, meaning that the xi's are iden- 

tically distributed. 

The expectation value of a fuxkion j ( u l )  is defined as t,he average or mean valne of the 

function: 

The variance of a function or variable is the average of the squared deviation from its 

expectation: 

Expectation is a linear operator but variance is non-linear. Also note that 

witall C o u ( x ,  y) the covariance between x and y. For independent, variables t,he covariance 

between them is zero. Often, instead of the variance, the standard deviation is used and is 

given by the relation 

.(.f) = m 
It can be interpreted as the r.m.s. deviation from the mean. 

The law of large numbers concerns the behaviour of sums of a large number of random 

variables. Choosing n numbers ui randomly with an identical probability density. thus 

E(ui.) = p and using the average u, = CY=, u,, we have that 

An important theorem is the central limit theorem, csscntially stating that the sum of a 

large number n of identically distributed and independent random variables will always 

be normally distributed, provided n is large enough. It does not however specify when 

71 is considered large enough, t,hat, has t,o he induced from convergence properties for t,he 

specific case under consideration. Mathematically the central limit theorem can be written 
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with the standard normal distribution, basically stating that it is distributed normally 

with average p and standard deviation u/&, 

This implies that 

3.3. Tests for Uniformity 

Beran (1969) derived a complete class of tests for uniformity on the circle and some 

of the most useful astrophysical tests are special cases from his class. Important cases 

are Pearson's well-known X2-test with K bins and the Zm2-test (Buccheri et al. 1983) 

which involves the sum of the Fourier powers of the first m harmonics. Both these tests 

are dependent on a smoothing parameter: the number of bins K or harmonics m. If 

the periodic shape is unknown a priori it is impossible to make the correct choice for 

the snloofhing paramekr. De Jager et al. (1989) and references therein showed that the 

capability or "power" of these tests to detect specific pulsc shapes is strongly dependent 

on the choice of a smoothing parameter if the signal is weak. Proposed as a solution the 

H-test. In this section we consider tests for uniformity in general and in the next section 

we give attention to one special case? the H-test. 

Consider a set of arrival times t ,(i  = 1, . . . : n,). Assume firstly that the frequency 

parametcrs of the source are known so that folding of the t ik  according to these pararnetcrs 

gives the phases 0, E 10, 2a) .  Testing for the presence of a periodic signal is accomplished 

by making the null hypothesis Ho, which is characterized by a test for uniformiw, and 

testing for a reject,ion of this. The null hypot,hesis may, in this case, be written a.s 

1 
H,  : f ( 0 )  = - with 0 E [0, 2 a )  

2a (3.2) 

In t,he presence of a known periodic: signal denoted by a source function f, (0) giving 

the relative radiation intensity, (3.2) will differ and may be written undcr the alternative 
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wit,h p c [0, 1 )  t.he strengt,h of the periodic: signal. To det,errnine the presence of a periodic: 

signal in thc data one tests thc hypothesis Ho : p = O against H A  : p > 0 and to do this 

we measure the deviation between f ( 8 )  and the uniform density 1/27r. A good measure is 

Ho should then be rejected when 11 ( f )  is too large. 

A problem in this is that 11 ( f )  is unknown since f ( 8 )  is unknown and therefore one has 

to estimate the functional. This is usually done in a 'crude' manner by replacing f  with a 

consistent estimator fh, these esimators being characterised by some smoothing parameter 

h. Stat,ist,ical literat,nre gives an ext,ensive discussion of variow choices of f h  and t,heir 

properties under the heading "density cstimators". De Jagcr ct al. (1986) also discussed 

their implementation in perodic analysis. 

For a histogram-like dataset one sets h = K for the corresponding number of bins. In 

this case Eq. (3.4) results within constants to the well-known X 2  statistic of Pearson, this 

being asymptotically distributed to X 2  with K - 1 degrees of freedom under Ho: 

with X ,  the number of events in the the j'th bin. This statistic is however dependent on 

the choice of bin positions, unfortunately making it variant under rotations. 

Specifying fm as the Fourier Series Estimator (FSE) with m harmonics, we have from 

De Jager et. al. (1986) t,hat, 

m 

(EI;  cos (k8)  + Sk sin ( k 8 ) )  I 
where the empirical trigonometric moments are given by 

1 " 1 " 
Ck = - cos ( k & )  and ZI; = - sin ( M i )  

n, n, 
1=1 i=l 
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with both & and & distributcd N (0, 1/ (2n)'I2) for uniform 0,'s (U (0,27r)) according 

Mardia (1972). For this case Eq. (3.4) reduces to the Z i  statistics, introduced by Buccheri 

et al. (1983), within constants: 

This is rotationally invariant and therefore has an advantage over Pearsons xz-test. It is 

a pot,ent,ially good test in the sense t,hat, the number of harmonics m can be adjust,ed to 

detect both narrow (large m) and broad (small m) pulse shapes. The problem here remains 

that f, (0) is not known a priori, however, and m cannot be chosen before inspection of 

the data has been done, thus we still have a problem with the smoothing parameter. 

3.4. The H-Test for uniformity 

Most tests for periodicity suffer from the problem that they are only powerful enough 

to detect some kinds of periodic shapes in the case of weak signals. This causes one to, 

after inspection of the data, subjectively select specific tests for the identification of weak 

periodic signals, causing a possible false identification of sources. The H-test (De Jager 

1987, De Jager et al. 1989) is a consistent and powerful test for uniformity against most 

periodic shapes encountered in astronomy and is especially useful if no a priori information 

about the periodic shape is available. It is independent of a subjectively chosen smoothing 

paramet,er and is simple t,o calculat,e, requiring order 4011 calculat,ions, with n the number 

of recorded events. 

Z: statistics form the basis of the H-test with rn chosen as a specific function of the 

data 0, using Hart's rule (Hart 1985). From Hart's rule one obtain a value for m, say M, 
so t,hat it minimizes XI estimator of t,he mean inbegratled squared-error (MISE) between 

the FSE, eq. (3.6), and the true unknown periodic shape f (0). This is written as 

2 s  2 

M I S E  (m) = E / [f. (0) - f (0)] d0 
0 

effectively giving MISE(M) 5 MISE(rn), m = 1 , 2 ,  .... For practical purposes one usually 

only searches through the first 20 harmonics because t,he main signal component is expected 

to be contained in it. Also ncglccting terms of the order l l n  arising from Hart's rule, we 
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can define the H-test as 

max 
H = (Z:-4m+4) = Z& - 4 ~ + 4  

1 5 m 5 2 0  

and it only assumes positive values. This is now our test for uniformity and is independent 

of any subjectively chosen smoothing parameter. The H-test is useful in general cases, 

except where more than three peaks are anticipated in the periodic shape, in which case 

the Zi,-test is preferable. The number M obtained in Eq. (3.10) is a good estimate of the 

t,rue opt.ima1 number of harmonics. This srnoot,hing paran~et~er is chosen in an ohjective and 

automatic way without requiring any knowledge a priori of f, (0) and it is nearly thc most 

powerful test for most possible light curve shapes (De Jager et al. 1989). It is important 

to realise that, because the H-Test scans through 20 harmonics, it actually comes down 

to the same as using 20 independent tests. This fact makes it powerful for blind pulsar 

searches. 

The probability distribution of H under uniformity is used to determine the significance 

of a detection. Unfortunately this distribution cannot be obtained analytically and must 

be determined from simulations. These simulations use a set of uniform random numbers, 

-U(O, 27r) for the unit circle, to obtain t,he dist,ribution of H. 

De Jager et al. (1989) considered both the small n and largc n cases. Nowadays it is 

not necessary to consider small n values since collection areas and integration times have 

increased to the extent that only large n values are obtained (n  >> 100). The probability 

distribution for large n-values was obt,ained as 

Prob ( H  > h) = aeCbh if 0 < h < 23 
(3.11) 

Prob ( H  > h) = ~ e - ~ ~ + ' ~ ~  if 23 < h < 50 

with thc constants of the fit given by a = 0.9999755, b = 0.39802, c = 1.210597, d = 0.45901 

and e = 0.0022900. For h-values larger than 50 they could not give a reliable parametric 

equation, because they simulated only 10' values for H but they also mentioned that 

Prob(H > 50) -- 4 x lo-'. For uniformly distributed events both the mean and standard 

deviation arc 2.51. 

The efficiency of any statistical test to reject the null hypothesis, given it has been 

falsely assumed, is quantified by its power. The power of a test as seen from a periodic 

point of view, is the probability that a periodic source will he identified above a given 

detection threshold for a given sample of size n. The detection threshold is the probability 



Chapter 3. The development of a hads~are random number generator 39 

a to falsely reject Ho. The choice of a is very subjective and depends on the situation 

but usually 0.001 5 n 2 0.05. The H-test stands out as a fairly powerful test compared 

to other tests for uniformity, for both broad and narrow periodic peaks. If the number of 

peaks increases above three however, it is best to use the Z2-test, this being independent 

of the duty cycles involved. Very few physical processes call for this approach however. 

Nun~erous examples exist. of where the H-t,est has been employed in periodicity searches 

(Hesssels et al. 2004; Kaspi et al. 2000; Chang & Ho 1997). It has been applied for pulsar 

searches in EGRET data and will also be applied for this cause on MAGIC and H.E.S.S. 
data. It will also serve as one of the periodicity search algorithms on GLAST (Kniffen 

2002). 

3.5. Random number generation for simulations 

As mentioned in section 3.4, random numbers are needed to simulate the distribution 

function of the H-test. This is by far not a unique case, as there are numerous fields in 

physics alone that require simulations based on random numbers. One practical example 

having relation to cosmic ray research is the simulation of the Cerenkov shower itself. The 

time of existence (and therefore the distance travelled) for any entity in the shower before 

the next stage can be modelled on a statistical basis including for example the collisional 

cross sect.ion. 

Having fast access to truly random numbers is an essential component in effcctive 

modelling, especially if one needs accurate information. The uses of a random number 

generator (RNG) stretches from applications in everyday homes, industrial applications 

to the frontlien of research and development. In this section we consider t,he problerus 

surrounding current RNGs, discuss a solution and its implcmcntation as well as further 

uses for a truly RNG. 

3.5.1. Problems surrounding random number generators 

Recall in section 3.2 the definit,ion of a random sample. It states that the elements of 

the sample must  all be independent and the distribution of each element must  be identical. 

Even the slightest deviation from these conditions will render the sample as non-random, 

but not necessarily useless. This has been exploited for many years by the pseudo-random 

number generahrs bnilt int,o PC's and software, and we must. t.herefore distinguish clearly 

between truly random and pseudo-random scqucnces. It is common to confuse the ran- 
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domness properties of a sequence with its distribution. A truly random sequence may 

have any distribution whereas a perfectly uniformly distributed sequence may not at  all 

be random. We now consider two general types of pseudo-random generators, namely the 

mzxed congmental and r250 methods, for the demonstration of these general properties. 

The most commonly used type of random number generator is the mixed wngmental 

geuerat,or discussed in James (1980). A sequence of random riunibers i? obtained by using 

ri = (art-, + b) mod m 

with a, b and m constants and the MOD operation giving the remainder after division 

with m. A computer is however a deterministic machine with no room for statistical 

fluctuations or t,he like. Using t,his method it ge~ierat~es random sequences by st,arting 

with a seed ro, chosen by some or thc other mechanism simulating near-random behaviour. 

Thereafter it performs a series of simple operations on it, the result forming the next 

number in the sequence. This is all well if only a few 'random' numbers are needed, but 

when a large number of them are needed (typically > lo4), the situation changes. In the 

sequence of random numbers produced, one may obtain one of the numbers previously 

occurring in the sequence, having as effect that the same sequence of numbers follows, 

one then being stuck in an infinite loop of the same numbers repeating in exactly the 

same order. This is due to the deterministic nature of computers and cannot be undone, 

t,his effect violating both the coudit,ions t.hat have been set, for a sequence of numbers t,o 

be truly random. The maximum period for this type of generator is generally of lcngth 

m/4 according James (1980). The numbers generated are unfortunately also sparse and 

not useful when high resolution is needed. Another drawback is the regularity in numbers 

produced in a d-dimensional space, known as the Marsaglia effect, which he described in his 

classical paper Random numbers fall mainly in the planes, Marsaglia (1968), which finally 

brought some genuine understanding into the art of pseudo-random number generation. 

He showed that if successive d-tuples produced by the multiplicative congruental method 

are taken as coordinates of points in d-dimensional space, all the points will lie on a certain 

finite number of parallel hyperplanes, depending on the bit length of inkger arithmetic on 

thc machine. This was onc of thc typical problems with IBM's RANDU function in the 360 

series. Some values are given in table 3.1, from which it is clear that problems will most 

certainly arise during simulations using a large number of these pseuderandom numbers. 

The Dietel-Ahrens solution wm proposed by Diet,er & Ahrens (1971) but it still used the 
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Table 3.1. Maximum number of hyperplanes - (d!2l)  l l d  

( Number of bits ( d=3 I d=4 / d=6 1 d=10 1 
1 16 1 73 1 35 1 19 1 13 1 

same basic method of producing random sequences, thus only lessening the extent of the 

problem by increasing the number of hyperplanes. 

Another popular method is the r250 algorithm, described by Kirkpatrick and Stoll 

(1981) and named so because of the 25klement array used. Consider 

with the a's generated bits and the c's coefficients, with values of either 1 or 0. Thus having 

a set of bits that have been previously generated, one can multiply them by the coefficients 

and add them together to create a new pseudo-random bit after the mod operation. The 

maximum period is achieved by choosing the polynomial primitive. This is usually done 

by setting only coefficients 103 and 250 as 1, and we simply have a simple XOR-operation 

bet,ween t,hese t,wo bit.s. As the new bit is generat.ed the sequence shifts on one p1ac:e and 

the same operation is now applied to the bits now residing in the same positions. If onc 

needs a 16-bit number, then 16 of these sequences are used in parallel. This method is 

an order of magnitude faster than the mixed congrnental method. Problems with this 

method mostly occur when the different sequences of 250 bits are linearly dependant and 

regularities arise. This usually results because t,he seed bits (250 of them for each parallel 

sequence) are chosen in the same way as with the mixed congruental method by some or 

the other mechanism simulating near-random behaviour, this introducing some extent of 

linear dependence. 

The effect of pseudrrrandomness can nsually be det,ect,ed by using the law of large 

numbcrs at levels of > 10' numbers (somctimes cven at levels of lo4 numbcrs). At such 

high levels patterns start to emerge in both the numbers produced and in the sequence 

they are generated in. Therefore we need to use a truly RNG for simulations requiring 

more than 10' random nnmbers, specially if one wants t,o study distribution tails or if high 

resolution is requircd. A sequence of truly random numbers is totally unpredictable and 



Chapter 3. The development of a hardware random number generator 42 

therefore irreproducible and can only be generated by using some random physical process 

such as radioactive decay, thermal noise, cosmic ray arrival times, etc. which has a high 

entropy. In a wide sense entropy can be interpreted as the measure of disorder; the higher 

the entropy the greater the disorder. In practice however there has been great difficulty in 

constructing such high entropy truly RNGs which are fast, small and inexpensive enough, 

at t,he same time being accurate, producing uniform (or Gaussian) numbers. 

In 1978 Frigcrio and Clark used a radioactive source and high-resolution counter for 

fixed time intervals of 20ms to extract truly random numbers. Whenever the count was odd 

they recorded a zero bit, and when even, a one bit, all stored on magnetic tape. Corrections 

were made for the bias and the apparatus yielded about 6000 31-bit truly random numbers 

per hour. This is however one of the rare cases of truly random number extractions and 

speed, size and cost still posed a problem. 

3.5.2. The Quantum Bit Extractor 

The Unit for Space Physics at the North-West University in South-Africa developed a 

truly random number extractor (not generator, since that will point to some deterministic 

process, again indicating a lack of t,rue randomness) specifically to help in determining t,he 

distribution of thc H-test to a much higher accuracy than previously known. Thc general 

importance of such a device has been recognised beforehand as well, resulting in an even 

higher level of motivation and input for the project. 

Goals for the final Quantum Bit Extractor (QBE) implementation are: 

1. It should be a small and compact device that can fit onto any portable implementation 

2. to provide random numbers of required bit-length 

3. according a specified distribution 

4. at an appropriately high speed. 

Research and design up to the level before implementation into a single-chip device has 

been completed and required results have been achieved. A patent was awarded for the 

QBE under A hardware generator for uni form and Gams ian  deviates employing analogue 

and digital correction circuits, which is contained in Appendix I. Only a short discussion 

of the basic elements is given here. 

The basic design is shown in figure 3.1. The Noise Element can be a resistor or avalanche 

process which is known t.o generat,e true randomlike signals, given the physics involved. 

This has to be chosen carefully because electromagnetic interference, temperaturc and 
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1. Noise El- 
2. mh P s r  AmpHRu 
3. Analog dkcrhnkutar level control 
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Figure 3.1. Basic QBE diagram 

humidity fluctuations, etc. can have a measurable influence on the output of such a device, 

which we want t,o be as stable as possible for the expect,ed parameter ranges. From t,his de- 

vice the high-frequency noise is amplified using a high-pass amplifier so that it is detectable 

by any discriminating technique such as a Schmidt trigger, comparator or discriminator. 

Feedback loops can regulate parameter variations so that some extent of unbiasing (i.e. 

production of a near-equal number of "0" and "1" bits) occurs on an analogue level. The 

flip-flop output then serves as the input to the digital corrector section as a Digital Input 

Sequence (DIS) shown in figure 3.2, the digital corrector discussed in section 3.5.4. 

Output from the noise element is some continuous function; sampled in one way or 

another to produce a digital output sequence as input to the digital corrector. This digital 

output srcpence 1.herefore has some correlation between the bits sampled at, a fixed rate 

because of the continuous nature of the source signal obtained from the noise element. 

Also, a certain level of biasing remain because the analogue debiasing can not always 

be perfect due to parameter variations. The digital output stream is sampled at discreet 

times, regulat,ed by a clock (6 in figure 3.1) wit,h frequency lower t,han t,hat of t,he maximum 

frequency fo of the broadband noise. This bits resulting from the sampled stream therefore 



Chapter 5. The development of a hardware random number generator 44 

Figure 3.2. Logic of Digital Input Sequence (DIS) as the digital corrector receives it from the 
flip-flop. The clock is shown a9 CLK, which is nr. 6 in figure 3.1, and BOut is t.he Bit,st,rcarn 

Output as the digital corrector then effectively receives it. 

may still have some level of bias and probably even correlation, thus giving motivation for 

implementation of a digital corrector. 

3.5.3. Employed tests for randomness 

Before coming to the actual corrections that have to be made to the raw data to 

achieve both independence and uniformity on decimal level, we give a brief overview of the 

statistical tests used to verify randomness on certain levels. Many tools are available to 

test randomness and the method devised by Knuth is often used. Knuth suggested that 

~tat~istical analysis such a5 distrib~itiou of values and aut,o correlation of different sets of 

values could be made. The DIEHARD test suitc dcvcloped by Marsaglia (1995) is popular 

and regarded as the defacto test suite. The Federal Information Processing Standard (FIPS 

140.2) document developed by National Institute of Standards and Technology (NIST) 

recommended the Monobit Test, Poker Test and Runs Test to test random number series 

(NIST 2004). All new standard RNGs need to pass through these test suites to prove 

themselves as generators of 'true' random numbers. The results of a battery of tests must 

be interpreted carefully. As Marsaglia states: 

By all means, do not, as a statistician might, think that a p < ,025 or p > ,975 

means that the RNG has "failed the test at  the .05 level." Such p's happen among 

t,he hundreds that DIEHARD produces, even with good RKG's. 

If the null hypothesis is true, and if the statistical t,est is exact, we expect ipl < 0.05 5% of 

thc timc. 

We will not submit the developed Truly RNG to the DIEHARD and NIST test suites 

at this developmental stage but only submit it to some basic tests of randomness. The runs 

test and Chant,illey k s t  are variat.ions of the same basic test for randomness in a random 

binary sequence. After convcrting a binary sequence to decimal numbers we also need a 
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test for uniformity on decimal level to verify that the numbers used satisfy the necessary 

conditions for randomness. Pearson's Chi2 ( X 2 )  test comes in handy for this purpose. 

3.5.3.1. The runs test 

A nonparametric test for randomness is provided by the theory of runs by Bradley 

(1968). A run is defined as a set of identical symbols contained between two different 

sy~nhols (or no symbol, at t,he beginning or end of a sequence). Consider t,he sequence 

Proceeding from left to right the first run, indicated by a vertical bar 1 :  consists of two a's; 

similarly the second run consists of three b's, the third run of one a,  etc. There are seven 

rims in all (V = 7) and the number of a's are N, = 12 and Nb = 8. 

It is clear that some relationship exists between randomness and the number of runs. 

The sequence 

a l b l a l b l a l b l a l b l a l b l  

has a cyclic pat,t,ern which has very low probability of being random: in t,his case we have 

too many runs V. On the other hand, for the sequence 

we have a trend pattern of clustering and there are too few runs V ,  and we would not 

consider t,he sequence to be random. 

To quantify the idea of randomness, we consider sequences with a total of N = N, + Nb 

symbols and the collection of all these sequences provides us with a sampling distribution. 

In this way we are led to the sampling distribution of the statistic V .  This sampling 

distribution has a mean and variance, from Shaum & Spiegel (1961), given by 

If both N,, and Nb are at least 8 then the sampling distribution of V  is very nearly a normal 

distribution. Thus 



Chapter 3. The development of a halriu~are random number generator 46 

Table 3.2. Distribution of Runs for a 1'048'555 bit stream 

I Runs 1 Expect,ed I Dat,a I Runs I Expected I Data ( 
I 1 1 262144 1 263231 1 11 I 256 

is very nearly a standard normal distribution (mean 0 and variance 1) and can easily be 

tested for using the standard tables. 

3.5.3.2. T h e  Distribution of Runs  test 

The distribution of runs test of Hawthorne (2002) is a versatile test for accessing impor- 

t,ant charact,erist.ics of st.rearns of different kinds. In evaluating t,hr merit,s of an apparent, 

random bit stream there is a tendency to be suspicious of long runs of 0's or 1's. Most arc 

surprised to learn that in a random stream of 1 048 555 bits, the expectation is that 127 

of the runs will be in excess of 12! 

Say we have a binary stream starting with a 1 bit. Under conditions of randomness 

and uniformity, the probability that the next bit will be a 1 is 0.5, in which event the run 

will have accumulated to 2. The probability that the next two bits will be 1 is 0.25 and so 

on. In general, 
P (run = N) 

= 2. 
P (vun = N + 1) 

For this we need a sample stream of not less than N = 2'+' - P - 2 terms with P a 

positive integer. Thus for P = 19, N = 1048555. The expected distribution of run lengths 

in such a stream is shown in table 3.2 together with some test data. This test also gives 

conclusion as to whether a stream is satisfactory for use in an encryption algorithm. 

3.5.3.3. Uniformity test o n  decimal level 

The test that will be used here is Pearson's well known x2 test as described in Rice 

(1995), wit,h binning employed where necessary. A goodness of fit may be assessed infor- 

mally by comparing the observed 0 and expcctcd counts E which appear to agree quite 
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Figure 3.3. The bia..<;ingplot of the 4 extractors before and after the NOT correction, for each
extractor producing 108 bits.

3.5.4.1. Initial Trials

Initially it was thought that only the biasing on binary level posed a problem and had

to be corrected for. Of the 4 QBE units under test, the probability of obtaining a high

bit (a "I") was between 0.42 and 0.47. Ideally we want this at 0.500... , within certain

fluctuations acceptable from a statistical point of view. This has been achieved by pairing

the bits in groups of two bits and applying the NOT operation to both bits in every second

group, l.e.

became
, ,

XIX2 X3X4 X5X6... 00 01 11 01 01 01 00 01.

This NOT correction worked to some extent, apparently removing the biasing and

giving
1

P(O) ~ P(l) ~-,2

figure 3.3 giving a representation of before and after. After this procedure the resulting

sequence even satisfied the runs test for randomness on binary level, this shown for different

NOT correction group sizes in figure 3.4. Note that only the 2 bit group sizes in the NOT

correction were successful. The problems with this approach became clear when these

binary sequences were used to obtain decimal numbers of any bit length, even when some

-- -- - - -- -- - - - -- - - - -- - - -- - -- - - -----
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Figure 3.4. Graph showing change of average z-value obtained from the runs test (see section
3.5.3.1), for different number of bits used in the test. Note that only the 2 bit NOT correction

groups satisfy statistical requirements by using the law of large numbers.

bits were discarded between adjacent conversion sequences (intermediate bits). In all cases

the decimal numbers obtained showed some pattern, as some numbers were more probable

to be obtained than others. This was outside of the fluctuations allowed by the statistical

approach for uniformity. Figure 3.5 gives a good representation of this problem. The fault

with this approach was a violation of one of our important conditions for randomness:
the distribution of all elements had to be identical. This was not the case after the NOT

operation has been applied since this correction made 0.53 < P(I) < 0.58 for those inverted

bits, while 0.42 < P(I) < 0.47 still held for the other bits in the sequence, thus the

distribution of the elements in the sequence were not identical. Possible cross-talk between

extractors can pose problems and should be considered later on during the development of

the product.

3.5.4.2. Markov Correction for independence

We follow a similar path a..<;discussed by Peres (1992).

XIX2"'Xn'" generated by a stationary two-state (like 0 and

assume that only adjacent bits have some dependence,

Assume we have a sequence

1) Markov process. We also

(3.14)

---- - -- - - - - - - - - - - --- -- -----
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Figure 3.5. Graph showing a measure of uniformity on the decimal level for 2-bit NOT eorrection
groups.

In the simple case of tossing a coin this implies that picking up a coin that shows heads

may affect the next t.oss's out.come. Specifically, in binary language we can writ.e t.his as

P (Xi = 0 IXi-l = 0) = ao =1= al = P (Xi = 0 IXi-l = 1)

P (Xi = 11Xi-l = 0) = !3o=1=!31= P (Xi = 11 Xi-l = 1) .

This then takes into account the previous bit extracted but no other information. Since we

know that one of the basic properties of density functions is that the sum of the probabilities

of all possible outcomes must be one, we can use this normalisation condition:

1 = EalliP(Xi)

=p(O)+p(l)

= P(Xi = 0 I Xi-l = 0) + P(Xi = 1 IXi-l = 0)
= aO + !3o

We have used the Markov property as in equation 3.14 between lines 2 and 3 for trigger

state O. The proof for trigger state 1 follows the same route except that condition Xi-l = 1

is used. Because, for all four QBE units we had P (0) > P (1), we wish to use this property

to obtain the most possible output bits which are independent. Several mappings are given,

of which the most efficient then is obtained by using the 0 trigger state:

00 -t 0 01 -t 1 1O-t0 11 -t 0, (3.15)

-- - --- ---- - -- - ------
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0 implying no output and the resulting independent output stream is denoted by y1y2 ...y,.... 

Mapping (3.15) produces 0 and 1 outputs for yk in the C-state of the process (which 

occurs more frequently). The output digits of this mapping are then independent but not 

necessarily equiprobable. The efficiency of mapping (3.15) is 2 but > if the more 

probable trigger state is selected. 

It must be notred however t,hat t,he problem could have heen solved to a high degree 

of approximation by the Von Neumann method (section 3.5.4.3) itself when pairing up 

non-adjacent items: but those say 10 items apart, say for ex. xlxl l  and x21x31 and so 

forth. This however wastes 90% of the data, resulting in a very inefficient procedure which 

only gives approximate results and will therefore not be considered further on. 

3.5.4.3. Von Neumann Correction for uniformity 

Von Neumann (1951) described a procedure for generating an output sequence zlz2 ... z,, ... 
of statistically independent and equiprobable binary digits from an input sequence ylyz ...y,... 

of independent bits. For the inpiit, stream we have for all n, P (x, = 1) = p and P (z, = 0) = 

1 - p = q,  0 < p < 1. Say possible mappings for each of thc pairs y1y2, y3y4, ... are 

with 0 again representing no output, to produce the output sequence zlz2 ... z, ... of indepen- 

dent and unbiased bits. If the output bit has a probability P' we have from the mapping 

that 

P' ( 1 )  = pq = qp = P' (0) 

which proves t,hat t,he output bits are equiprobable. 

The efficiency of this proccdurc is thc expected number of output digits per input digit. 

For each input pair the probability of generating an output digit t is Zpq, so the efficiency 

is pq, which is a at p = q = and less elsewhere. The mapping (3.16) is independent of 

the value of p, the output 0's and 1's are statistically independent and equiprobable (thus 

uniform) for any p E (0, l) ;  but the efficiency depends on p. 

3.5.4.4. Results of corrections 

The input data x l x  2...x,,..., which were correlated and identically distributed, were fed 

to the digit,al corrector section. This st,arted with a Markov correct,ion procednre t,o deliver 

a strcam of identically distributed but independent output bits yly2 ...y,.... This was again 
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well. This idea is quantified by Pearson's chi-squared statistic: 

(0, - EJ2 

all cells 

and it has degrees of freedom df = number of cells - number of indep. params. fitted - 1. 

As a rule of thumb, the fit is good if the value of ,y2 is about the same (within 10%) as the 

degrees of freedom. The closer t,he vah~es are to each other, the higher the probability of 

a good fit. 

This test can easily be employed for a uniformity test on decimal level. For a 12-bit 

binary number, we have 4096 possible decimal integer outcomes (0 to 4095) and the number 

of degrees of freedom is 4095. We obtain our X 2  value by taking the total number of decimal 

outcomes used and divide that by 4096 to obtain the expected number of occurrences 

of each number, E,. We then use the observed number of occurrences of each decimal 

outcome 0, in the formula for all possible outcomes. This then gives a fast and easy way 

to statistically analyse the uniformity of the resulting decimal sequence. 

3.5.4. Corrections for independence and uniformity 

At first it was assumed that only a correction of the biasing (and therefore uniformity) 

in the bits had to be applied. This has been tried in several ways which, after proving 

t,o be unsuccessful, was approached from a t,heoret,ical point of view and found to he 

crroncous. Further theoretical investigation into the statistical approach to unbiasing led to 

implementation of a process described by Von Neumann (1951) to unbias an independent 

and identically distributed sequence of binary numbers. This unbiasing alone did not 

prove effective since problems with uniformity were encountered once these unbiased bits 

were converted to decimal numbers. After much thought and experimentation it was 

found that there existed a dependence (and therefore a correlation) between adjacent bits 

in the output sequence, because of the continuous source signal from which they were 

extracted, thus violating the condition of independence. Assuming that we had a two-state 

Markov process, certain steps could be taken to remove this correlation between adjacent, 

bits, according Sarnuelson (1968). The final process thus involves first correcting for the 

correlation between adjacent bits assuming a two-state Markov process and then unbiasing 

the resulting binary sequence using a Von Neumann process to obtain a truly independent, 

unbiased and random sequence of binary bits. This is t,hen in an appropriate format, for 

convcrsion to uniform decimal numbers of the desired bit lcngth. 
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Figure 3.6. The uniformity of 32- and 48-bit numbers from QBE units 1 & 2, with the bits
implying the number of bits used from the random binary stream and converted to obtain each

decimal number. 16383bins have been employed to plot the data and to obtain X2 statistics.

used as the input for the Von Neumann correction procedure that delivered as output a

stream of independent and unbiased bits, ZlZ2...Zn The resulting output stream was used

to obtain decimal numbers of the required bit length. The results were tested statistically

and shown to be successful, as depicted in both the graph of uniformity (figure 3.6) and

the X2 test (table 3.3). Therefore we had successfully corrected the input stream to the

digital corrector to an output stream of independent and unbiased bits which were truly

random in nature and appropriate for conversion to decimal numbers, which also proved

to be independent and uniform. This is the base format in which we need the decimal

random numbers to be of practical use. From these numbers, other distributions like the

Gaussian distribution (see section 3.5.5) can quite easily be obtained, leaving the end-user

free to choose the required distribution, the QBE hardware and its software drivers taking
care of the rest.

For the simulation of the H-test distribution discussed in section 3.6, a dataset of

-- ---- -- - - - - - - - -- -- - - --- -- -
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Table 3.3. Table of expected ancl oht.ained X 2  values from QBE units I & 2 for the uniformity 
test on the decimal level (some shown graphically in figure 3.6). Note that for the 32- and 48-bit 

numbers binning of size 16384 has been employed. 

Decimal Number I QBEl X2 I QBE2 X2 I E(x') 

10 bit 
11 bit 2095 2047 
12 hit 4104 3981 4095 
32 bit 16471 16858 16383 
48 bit 16288 16316 16383 

Table 3.4. Table showing the X2 values for the Distribution of Runs (DoR) test and uniformity 
(U) test on decimal level, for the dataset employed in the simulation of the H-test distribution. 

I I Generator 1 I Generator 2 1 Generator 3 1 Generator 4 1 Ex~ected I 

4,361 x 10' truly random 32-bit numbers were used. Four generator units were used to 

obtain this data and each unit produced 249 datasets. On the binary level the Distribution 

of Runs test (section 3.5.3.2) was employed to verify randomness and on the decimal level 

the X2 test for uniformity was employed (section 3.5.3.3). Table 3.4 shows the values 

obtained, confirming that the generator produces truly random numbers. 

3.5.4.5. Hardware implementation of correction processes 

The abovementioned correction procedures were first extensively tested using software 

which proved to be a long and tedious process, especially with the large volumes of dat,a that 

required processing. This provided motivation for the implementating a hardware solution 

by means of digital electronics. Since for both the Markov and Von Neumann correction 

processes groups of 2 adjacent bits are compared for a possible output bit, comparison can 

be activated by a divideby-two counter in hardware. Bits are read into a shift register 

(2 bit length) and as soon as the shift register has been filled the divideby-two counter 

activates comparison for a possible output to the ncxt level. The digital clock (6) in figure 

3.1 drives the whole process of acquiring data and correcting it. 

The full circuit is given in figure 3.7. The Digital Input Stream (DIS) and Clock (CLK) 
are inpnts t,o t,he first section taking care of t,he Markov correction for independence. This 

section consists of 3 D-type latches and a single 2-input AND gate. The rightmost latch in 
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Figure 3.7. Schematic of logic of the Digital Corrector. Symbols are defined in the text. 

the diagram is connected as a divide-by-two clock, that activates possible output on every 

second pulse of CLK, i.e. it divides the DIS in groups of two bits for comparison. The 

other two D-type latches MBO and MB1 are connected in a shift register setup to store 

two adjacent hits of the DIS and the AND gate is connected for a trigger 0 event (the first 

bit of a group from the DIS must be 0), as depicted in mapping (3.15). The output from 

the AND gate (VNCLK) drives the Von Neumann corrector section to indicate a valid bit 

on MDOut, which according the mapping should be the last of the two bits entering the 

shift register. VNCLK is not periodic anymore hut gives a pulse each time a valid output 

bit from the Markov corrector can be stored. 

The Von Neurnann corrector works in essentially the same way with a divide-by-two 

clock and shift register formed by VNBO and VNB1. At also compares hits in groups of 

two bits, the XOR gate taking care of the condition of different bits as depicted in mapping 

(3.16) with the output taken as t,he inverse of the last, bit to enkr the shift regist,er (making 

the output the same state as the first bit to enter). VNCOut gives thc output clock pulses 
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to indicate when a new valid output bit can be read from data output VNDOut, and is 

also not of a periodic nature. This data output stream then consists of independent and 

unbiased bits which are ready to be used for uniform, truly random numbers. 

The Interface / Communication controller stores these data in buffers and gives the 

appropriate signal to the application once it is ready with at least a specified number of 

bits (sect,ion 8 in figure 3.1). This is t,he usually input, to a PC using USB, PCI, Ethernet or 

Firewirc interfaces. A software driver takes care of the formatting of the numbers according 

to the user preset selection and provides access to the data in the proper way. 

3.5.5. Hardware Gaussian Number  generation 

Recall that the Central Limit Theorem (section 3.2) gives an estimate of the distribution 

of a sum of a large number n of independent but identically distributed random numbers 

as a normal distribution. This is independent of the distribution of the random variables, 

provided they have finite expectations and variances and n is 'large enough' (see section 

3.2). This gives us the means to easily construct a Gaussian number generator using 

random numbers with any distribution whatsoever, simply by using the sums of random 

numbers. 

We denote the sum of n uniform U (0 , l )  random numbers as &, so that R1 will 

be a random number distributed uniformly (between zero and one). Then Rz would bc 

distributed with a density function which is a triangle with possible outcomes from 0 to 

2, the most probable outcome as 1. This kind of distribution is familiar to gamblers using 

dice, where the out,come is the sum of two numbers uniformly di~tribut~ed bet.ween one 

and six. Thc extreme values of the sum (2 and 12) are the least likely, where the middle 

value 7 is the most likely. RQ already has a continuous-like curve which is beginning to 

look like the well-known bell-shaped Gaussian curve. After & the distribution is almost 

indistinguishable from a true Gaussian by eye, except for the extreme tails which are of 

course of finite length whereas true Gaussian tails go to infinity in both directions. Figure 

3.8 gives a graphical representation of this. Because of the importance of the tails in the 

simulation of the H-test, care must be taken to ensure that the approximation is close 

enough. 

Since the expect,at,ion and variance of t,he uuiform U(0,l) distribut,ion are 4 and & 
respectively, we havc 

n n 
E ( & )  = Var (RJ = -. 

12 
(3.17) 
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Figure 3.8. Normalised distributions of Rn in blue with n as denoted for each graph, compared
to t.he standard Gaussian distribution N(O,l) in purple. In each case Rn was calculated using the

same set of 8672418 32-bit uniformly distributed truly random numbers.

Usually we want a standard Gaussian distribution N (0, 1), therefore we take

x - J-L_ Rn - n/2

(J In/12 ~ N (0,1).

This also makes it more appropriate to use specifically uniform numbers in the hardware

process since these parameters are known analytically beforehand, whereas with other

distributions, these parameters would need to be calculated each time.

During tests, it was noted that with RlOOand RlOOOthe main form of the Gaussian

was accurately represented (the X2 test proved this). Clearly the tails of the distribution

of Rn, n :S 1000 will only accurately represent a Gaussian if the number of times Rn is

obtained is large enough, since the probability included in the tails is so small. Table 3.5

shows how the possible outcomes for z rv N(O,l) is influenced by n. It seems that it is

better to take n = 100 and obtain more z-values in such a way as to accurately represent

most of the tails as well, with the boundaries also being large enough since a z-value of

::1::7already has a probabilit.y of rv 10-12, well wit.hin the accuracy with which we want to
simulate the H-test.

-- - ---
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Table 3.5. The boundary and obtained values of z - N(O, 1) for different n values and input set 
size. Note the improved observed outcomes when the input set size wns increased by an order of 

magnitude. 

Implementation of the Rloo arithmetic in hardware should be straightforward: A binary 

adder of 101 32-bit numbers, wit,h t,he st,art,ir~g number equal to -; = -50 is used afkr 

which the result is divided by fi = 17.32 .... The resulting numbers arc then distributed 

N(0 , l )  as required. This hardware process is considerably faster than the processing via 

software counterpart on a PC, making it quite useful as a possible addition to the final 

device 

3.6. Simulation and Results: HM test distribution 

The goal here, and the final goal for this dissertation, is to determine the distribution 

of the HM test (as defined by 3.10 on page 38) by utilising the developed hardware truly 

random number generator. This will serve to demonstrate the applicability of this generator 

to  such tasks as well as build confidence in the obtained output. Later simulations of the 

H-t.est up to an accuracy of 10-l2 will help in identifying a periodic signal in a large 

dataset (>I0 000 events) with a very low signal-to-noise ratio, especially when no previous 

knowledge of the light curve is available. 

To obtain the distribution of 

we first need to obtain 

with 

max 
H = (22 - 4m + 4) 

1 5 m 5 2 0  
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6',6 [O ,  27r) and n the number of events. The 4, are the phases of the events modulo the 

pulse period searched for, and are obtained by folding the event data on the unit circle by 

using 
1 .  1 .. 

4i = 40 + f ( t ,  - to) + - 2 f ( t i  - to)' + - 6 f ( t i  - 0, = 2?r4i (3.21) 

with f the tested for pulse frequency and ti the time of event i. For pulsar 0833-45 (Vela) for 

example we have f = 11.1390092984739s-', f = -1.55781 x 1 0 - " ~ - ~ ,  f = 8.92 x 10-22s-3 

and to = 52775.000000202 M J D  from the ATNF Pulsar Catalogue. 

The modus operandi in this section will be to show that using the statistical properties of 

the cosmic ray background arrival times, the phase folding produces a uniform distribution 

as expected. Therefore it will not be necessary to simulate this phase folding but one can 

use the random numbers in the same format as the distribution obtained after phase folding. 

This will also serve t,o verify the true randomnms of the QBE since it, will be clear that 

the obtained distribution and analytical distribution are within statistical limits of each 

other. This process will be repeated through the sine and cosine moments distributions, 

equation (3.20) up to the distribution of the Z: test, equation (3.19). Once this has been 

proved to be a X ; ,  dist,ribut,ion, it, will only be necessary t,o use t,he random numbers from 

the QBE and transform them to the Xi, distribution of the Z: test, which can then be 

used in obtaining the distribution of the H-test. Therefore this procedure eliminates the 

unnecessary use of many random numbers and computing time. 

The arrival times of Cerenkov events always include those of the cosmic ray background, 

which is isotropic and uniform in nature as discussed earlier. These arrival times may 

however include a pulsed cosmic ray component if observations are madc on certain periodic 

cosmic ray emitters like pulsars. The arrival times t ,  of only background Cerenkov events 

are distributed as a Poisson process with parameter X as the count rate. The waiting time 

between these arrival t,irnes is t,hen dist,ributed exponentially with paramet,er A. For t,he 

background Ccrcnkov events we can take to  = 0 and 

as the arrival times of the subsequent events. 

For simulation of the distribution of the H M  test we then only need to simulate this 

cosmic ray background component, since we want to test for the null hypothesis. A rejection 

of this null hypothesis then indicates the presence of some periodic component in the arrival 

times. Using the arrival times as obtained from (3.22) in (3.21) to obtain the phases 
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Figure 3.9. Graph of normalised probabilit.y f (4)) using only random arrival t.imes as in eq. (3.22)
and folding the data according eq. 3.21 using as parameters those of the Vela pulsar.

according some parameters, we expect the distribution of 4> to be rv U (0, 1) when no

periodicities are present. Figure 3.9 shows that the outcome of the phase folding is again

uniform as expected. This clearly indicates that it is not necessary to obtain the phase

probabilities by calculation but to rather use the extracted U (0,1) numbers directly and

multiply them with 271"to obtain the O/s as used in eq. (3.20).

Using U (0,1) numbers in eq. (3.20), we expect that both are distributed independently

and asymptotically N (0, 1/ (2n)1/2) from Mardia (1972). Note that the use of uniform
data result in an independence of the distribution of both Ck and Sk of the k-parameter.

Taking n as 10 and 100 respectively we clearly obtain the expected Gaussian distribution as

seen in figure 3.10. Therefore we again need not calculate the Ck and Sk values of but only

need to transform U (0,1) numbers to be distributed N (0, 1/ (2n)1/2). These transformed
numbers can then be used directly in eq. (3.19).

The Z;;-distribution is also distributed as X~m(Bendat & Piersol, 1971), this being

easy to simulate since it is by definition the sum of 2m values of Z2 with Z a standard

Gaussian random variable. In calculation of eq. (3.19) we need as input numbers dis-

tributed as N (0, 1/(2n)I/2). Thus we need to convert the uniform U(O,I) numbers to
standard Gaussian numbers and obtain the required Gaussian distribution by using the

fact. that, if X rv N (J1.,(T2)and Y = aX + b, then Y rv N (aJ1.+ b, a2(T2). To obtain

the standard Gaussian numbers from U (0, 1) numbers, we used a variant of the standard

- - - -- --- --------- -- ---
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Figure 3.10. Graph showing the obtained and expected distribution of Ck for different values of n.

Box-Muller transformation (Gentle 2003). The Box-Muller transformation is also known

as the polar method and states that having two uniform numbers VI and V2, one obtains

two independent N (0, 1) numbers X and Y using

X = J-2IogVI cos (21rV2)

Y = J-21ogV1 sin (21rV2).

Figure 3.11 shows that the distribution obtained using this method agrees extremely well

with the analytical standard Gaussian distribution. The variant of this method is called

the rejection method and provides a minor increase in speed by eliminating the calculation

of sine and cosine functions. The algorithm also uses two uniform numbers VI and V2 to

obtain two independent N (0,1) numbers X and Y:

if w = V.2+ \1;2< 1, continue to calculate k = J - 21n(w)/ w to obtain

X=k~, Y = kV2.

- -- - -- - - - - - - - - - --- - - - - -- - - ---
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Figure 3.11. Comparison between the analytical standard Gaussian distribution and values ob-
tained using the Box-Muller transformation on uniform random numbers.

The rejection method is generally about 30% faster than the normal Box-Muller transfor-
mation.

The analytical density of the X~m distribution involves gamma-functions and is quite

difficult to compute for non-integer values. Since the uniform output of the generator has

been shown to accurately produce normally distributed numbers, we can use these N (0,1)

numbers to simulate the X~mdistribution directly, by summing the required number of the

squares of such N (0,1) values:

2 N 2 N.2 N.2X2m = 1 + 2 + '" + 2m (3.23)

Comparing it with the distribution obtained by using N (0, 1/ (2n)1/2) numbers in eq.
(3.19) one can see the statistical equivalency between the two in figure 3.12.

At this point, all that remains to be done is the simulation of the H-test. This can

now ea..<;ilybe obtained by transforming the U(O, 1) numbers obtained from the generator

to the X~m distribution which is statistically equivalent to the Z;. distribution as in eq.

(3.23), and use them in eq. (3.18). The code is given in Appendix I and the obtained

distribution together with the functional fit obtained by De Jager et al. (1989) is given in

figure 3.13. From this figure it is clear that the previous fit for the H-test wa..<;unaccurate-

it underestimated the uniformity probability for 0 < H < 8 and overestimated for H > 9.

- ------ - -- - ------
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Figure 3.12. Comparison between the distributions obtained for the Z~ and X~m statistics.

This simulation utili sed r-.J 107 H-values and only contained dense enough data up to

H = 20. Further simulations of > 1010values of H will be necessary to obtain the tail of

the distribution accurately and be able to make a fit to the totality of the H-distribution.

It seems like the functional form will be something like

y = aexp( -bh) + cx3 + dx2 + ex + xo.

Determination of this within the required accuracy will provide a more powerful tool for

periodicity searches.

3.7. Further uses for real random numbers and other generators

Randomness and random numbers have traditionally been used for a variety of purposes.

It is used in computer games, scientific experiments and simulations, and in the generation

of cryptographic keys. In finanacial markets Monte Carlo simulation is a popular method

for pricing financial options and other drivative securities because of recent advances in

applying the tool. Thus we can describe randomness on three basic levels: for everyday,

scientific and commercial purposes.

Everyday uses include computer applications such as games using dice, shuffled cards

etc. Typically, random numbers used in such applications need not be of the truly random

- -- -- - --- --- --- ---
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Figure 3.13. The distribution of the H-test as from simulation (black) and the functional fit from
De Jager et al. (1989) superimposed (red).

nature as modern pseudo-random generators will suffice in providing 'random enough'

numbers. Typically then in such cases there is some level of predictability in the sequence

but not at a level that is observable without mathematical and statistical analysis.

For scientific use it may be sometimes convenient that a series of random numbers

can be reused, either for several experiments or for debugging purposes. For this purpose

pseudo-random numbers are well suited. On the other hand, simulations may need a large

number of unpredictable and identically distributed random numbers. For this a truly

random number generator is necessary. Usually these truly random numbers are needed

at a high rate so as not to slow down any calculations being made with them. This is

typically the requirements of the H-test, where the simulation of an accurate distribution

is the reason behind the development of the Truly Random Number Extractor.

For encryption purposes, the level of security required determine the type of random

number (pseudo or truly) and the encryption algorithm required, together with word

- - -- --- --- ---
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length. Cryptographic algorithms come in a variety of flavours. Some are strong (meaning 

difficult to decipher) hut make substantial demands to processing power and key man- 

agement. Others are weak (meaning easier to decipher) hut generally less demanding 

and therefore better suited for some applications. All strong cryptography requires truly 

random numbers to generate keys, but how many depends on the encryption scheme. The 

strongest possible met,hod, One Time Pad encryption, is the most demanding of all; it 

requires as many random bits as there arc bits of information to be encrypted. Weak 

encryption schemes on the other hand, typically employ pseudo-random generators which 

are much faster and can be implemented on any PC. 

In a modern economy, it is important for firms to be able to select an appropriate level of 

risk in their transactions. In practice, simulation is often used to price derivative securities. 

It is also used for estimating sensitivities, risk analysis, and stress testing portfolios. Such 

simulations are employed using Monte Carlo methods, this being attractive relative to other 

techniques because it is flexible, easy to implement and modify, and its applicability does 

not, depend on t,he dimension of t,he problem. Complex analytical real optlions models suffer 

the curse of dimensionality: when scveral sourccs of uncertainties and several investment 

options are considered simultaneously, analytical methods start to fail. Because of this, 

Monte Carlo methods are used more frequently nowadays since it doesn't suffer from this 

curse of dimensionalit,y. These methods rely heavily on uniformly distributed random 

numbers, where it is known that the best pscudo RNG successfully handles up to 623 

dimensions. The commonly used LIBOR market model is a practical example of where the 

dimensionality of the problem easily exceeds 700. The availability of a very fast and truly 

uniform RNG is therefore of the utmost importance for the continued use of Monte Carlo 

methods in financial markets. 

A few hardwarc truly random numbcr generators exist on the market. These are rare 

and usually either costly (since they employ quantum mechanical-like measurements) or 

don't produce truly random data at a very fast rate (>lhfbps). Two such hardware im- 

plementations are the Intel RNG (Intel RNG Whitepaper 1996) and VIA C3's Nehemiah 

RNG. Intel embedded a RNG into its architecture in 1999. It utilises undriven resistors 

as source for white noise and a Von Neumann-like correction is applied later on to remove 

biasing. The VIA C3 Nehemiah RNG (VIA C3 Webpage, 2004) is called the VIA Padlock 

Data Encryption Engine and is used in several processor ranges. Freewheeling oscillators 

act as the entropy source and a Von Neumann whitener is used to reduce biases. 

Another option is websites providing random data online. HotBits (2004) from Four- 
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milab use sampled radioactive decays which are a really good source of entropy. Another 

source of entropy could be atmospheric noise as heard on an ill-tuned radio, this being used 

by mndom.org. The lavarnd.org group at  Silicon Graphics uses lava lamps to generate ran- 

dom numbers. These are also not suitable for purposes that require large sets of random 

data at high speeds. A weakness of web-based random numbers for applications calling 

for st,rong encryption, is that t.he random dataset can be int.ercept,ed during transmission 

from the server to thc clicnt. 

Generally it has been found that there exits a need for a very fast and easily accessible 

truly random number generator. If a device such as the truly random number generator 

described here can be fitted into a CPU or IC on the PC motherboard, all users will 

have effective access to fast and reliable random numbers of any length needed for most 

applications. This also defines one of the goals for the developed truly RNG, which we 

hope to realise soon. 



Chapter 4 

Conclusion 

In astrophysics the need quite often arises to search for periodicities in data. Because 

t,he H-Test scans through 20 harmonics, it actually comes down to the same as using 20 

independent tests, which makes it powerful for blind pulsar searches. Therefore the H-test 

is one of the most powerful test known for such searches if the number of pulses and pulse 

shapes are unknown beforehand. In gamma-ray astronomy specifically, it has been applied 

numerous times for pulsar searches at very high energies and it is being implemented in 

many experiments which arc underway such as GLAST and CANGAROO 111. Because of 

the extremely low signal-to-noise ratio of pulsar gamma-rays, it is very important to know 

the distribution of the H-test with high accuracy, so that tests against the null hypothesis 

give significant, results. 

Previously the distribution of the H-test was obtained by utilising pseudo-random num- 

ber generators. The problems with these generators originates in the deterministic nature 

of computing devices. This leads to dependencies between numbers and it also has a sparse, 

non-uniform distribution. For numbers to be truly random, 2 conditions must he satisfied: 

1. Every number must be independent from all the other numbers 

2. All numbers must have the same distribution function. 

Problems start to occur when many (> lo4) of these numbers are used simultaneously. 

This can be explained by the Marsaglia effect, which states that that if successive d-tuples 

produced by the multiplicative congruental method are taken as coordinates of points in 

a d-dimensional space, all the points will lie on a cerhin finit,e number of parallel hyper- 

planes. This immediately shows the non-random effects of this type of generator through 

the patterns and the non-uniform distribution it produces. Other more modern software 

methods usually suffer from the same problems but usually to a lesser extent. On the other 

hand, hardware generators available are always slow and usually very expensive and not 

very portable, apart from not always having a uniform output distribution. Therefore most 
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available random number generators are inappropriate for the simulation of the H-test up 

to the required levels of accuracy. 

The development of the Quantum Bit Extractor, with goals: 

1. To provide truly random numbers 

2. from a device that is in a cheap and portable implementation 

3. at very high speed 

was hugely successful as comes forth from the fact that a patent was awarded for the devicc 

in 2004. It utilises some source of high entropy like thermal noise and, after some sampling 

and feedback procedures, one ends up with a near-random stream of bits. It is near-random 

because there still exist,s a correlation between adjacent bits, which comes from the fact that 

sampling of the continuous noise yields this corrclation factor. This problem is corrected for 

by assuming a twwstate Markov process and that only directly adjacent bits are correlated. 

The statistics show that the simple procedure to select a common trigger state and to 

take the next bit as corrected data, yields the required bitstream of totally uncorrelated 

and identically distributed bits. This resulting bitstream however has the property that 

P (0) # P (I), while we would like to utilise a perfect uniform distribution, U (0 , l ) .  To 

format the data according to this requirement, a procedure by Von Neumann is employed 

to remove the biasing, which then has as output a stream of truly random and unbiased 

bits. 

Applying these statistical corrections to the raw data as obtained from the sourcc of 

entropy using software, takes much processing power and therefore makes the process very 

slow. To obtain the high speeds required, these statistical procedures were implemented us- 

ing electronic hardware in the form of D-latches and logic gates. This speeds up the process 

by orders of magnitude. The full hardware implementation has huge applicability in other 

fields like the financial and data security markets which gives it a great commercialisation 

and marketing potential. 

A small simulation of the distribution of the H-Test was completed, with the results 

already clearly indicating t,he necessity for such a generator because of problems with the 

pscudo-randon number generators used previously. Simulation of > 10'' valucs of thc 

H-test is our next goal and the results will be published once available. 

Hopefully all this will further especially pulsar astronomy by helping to tighten the 

model parameters and determining the corr&ness of Outer Gap and Polar Cap models. 

The further applicability of such a device in the financial and data sccurity markcts renders 
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this device highly applicable and the obtained positive results agreed perfectly with what 

was set out to be done. 
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procedure H-Test(Filein,FileOut:String); 
Var 

FIn, FOut : TextFile; 
m, tel : Integer; 
Ugetl, Uget2, vl, v2,w, nl, n2, y, Hmaks, H-stat, chi-sq, a : Real; 
H-array : Arrayl0..60001 of integer; 
InStr : Array[O.. 60001 of string; 

begin 
for tel := 0 to 6000 do H-array[tell := 0; 
a := 60/ln(60); // Constant for scaling 
AssignFile(FIn,FileIn); // File with 32 bit uniform random numbers 
AssignFile(FOut,FileOut); 
Reset(F1n); 

Hmaks := 0; 
While not EOF (FIn) do 

bagin 
For m := 1 to 20 do // Run through harmonics 
begin 

chi-sq := 0; 
repeat // Basic transformation to N(0,l) numbers 

If not EOF(Fin) then Readln(Fin,ugetl); 
If not EOF(F1n) then Readln(FIn,uget2); 
vl := 2*ugetl - 1; 
v2 :=  2*uget2 - 1; 
w := vl'vl + v2*v2; 

until ((w > 0) and (w < 1) ) or EOF(F1n); 
If not Eof (FIn) then // If valid data in previous step 

begin // Continue transformation to N(0,I) numbers 
y := sqrt(-2*ln(w)/w); 
nl := vl*y; 
n2 := v2*y; 

// Calculate Z"2 and H statistics 
chi - sq := chi-sq + nl'nl + n2*n2; 
H-stat := chi-sq -4*m + 4; 
If H-Stat > Hmaks then 

Hmaks := H-stat; 
end; 

end; // for m = 1 to 20 

// Use exponential scale to store data 
inc(H-array [round(lOOinco (61-exp( (60-Hmaks) /a) ) )I ,I); 
Hmaks := 0; 

end; // EOF(FIn) reached 
CloseFile(F1n); 

try 
Reset (FOut) ; 

except 
begin // Create file with H values 

Rewrite (FOut) ; 
for tel := 100 to 6000 do 

Writeln(FOut,FloatToStr(60-atln(61-tel/lOO))); 
Reset (FOut) ; 

end 
end; 

for tel := 100 to 6000 do // Read file lines 
Readln(FOut,inStr[tell); 

Rewrite (FOut) ; 
for tel := 100 to 6000 do // Add new number of occurences of H 

Writeln(FOut,InStr[tell + '; ' +  FloatToStr(H-array[tel])); 
CloseFile (FOut) ; 

end; 
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A HARDWARE GENERATOR FOR UNIFORM AND GAUSSIAN 

DEVIATES EMPLOYING ANALOG AND DIGITAL CORRECTION 

CIRCUITS 

5 TECHNICAL FIELD 

This invention relates to a random number generator (RNG) and more 

particularly a hardware RNG for generating at an output a train of successive 

truly random bits of first and second states andlor truly random numbers 

having a Gaussian distribution. 

10 

Both software and hardware random number generators are known in the 

art. The output signals of the known soflware generators are not truly 

random, but pseudo random and these generators are generally slower than 

hardware generators. Some known hardware RNG's comprise quantum 

15 mechanical optical devices, are expensive, bulky and diflicult to implement. 

The outputs of other hardware RNG's do not exhibit statistically truly random 

behaviour. In this specification the term "truly random" is used to denote a 

collection of elements wherein the elements are independent From one 

another and identically distributed. 

OBJECT OF THE INVENTION 

Accordingly it is an object of the present invention to provide a hardware 

random number generator and a method of generating random numbers 



with which the applicant believes the aforementioned disadvantages may 

at least be alleviated. 

SUMMARY OF THE INVENTION 

According to the invention there is provided a hardware random number 

generator (RNG), comprising: 

- a source of entropy for providing an input bit stream comprising 

successive bits of a first state and a second state; 

- a first digital corrector comprising a first input and a first output; 

- the corrector being configured to provide at the first output from two 

successive bits in the input bit stream an output bit of a first output 

bit stream according to a first scheme wherein a first bit of a first 

state and a second bit of the first state yield an output bit of a third 

state and wherein a first bit of the first state and a second bit of a 

second state yield an output bit of a fourth state, wherein the third 

and fourth states are inverse to one another and wherein the third 

state is equal to one of the first state and the second state, thereby 

to ensure that successive bits in the output bit stream at the first 

output of the corrector are independent from one another. 

The first output of the first corrector is peferably connected to a first 

input of a second digital corrector, the second digital corrector comprising 

a first output and being configured to provide at the first output from two 



successive bits at the first input of the second corrector an output bit of a 

second output bit stream according to a second scheme wherein a first 

bit of a first state and a second bit of a second state yield an output bit of 

a third state and wherein a first bit of the second state and a second bit 

of the first state yield an output bit of a fourth state, wherein the third and 

fourth states are inverse to one another and wherein the third state is 

equal to one of the first state and the second state, thereby to ensure 

that successive bits in the second output bit stream are both 

independent from one another and unbiased and hence truly random. 

The source of entropy may comprise a white noise generating element 

having an output connected to an analogue high pass amplifier having an 

output and a cut off frequency of fo. 

The output of the high pass filter may be connected to an input of a voltage 

level discriminator circuit having an output. 

The output of the level discriminator circuit may be connected to a first input 

of a flip-flop, to generate the input bit stream at an output thereof. 

An analogue voltage level compensation circuit may be provided at an input 

of the voltage level discriminator circuit. The compensation circuit may 

comprise an RC circuit having an RC time constant which is shorter than llfo. 



The RNG may comprise a Gaussian generator comprising an input 

connected to either the first output of the first digital corrector or the first 

output of the second digital corrector, the generator comprising an adder 

arrangement for generating a sum of j words of i sequential bits each 

received from the corrector; subtractor means for deriving a difference 

between the sum and a mean value of the sum; and a divider arrangement 

for dividing the difference by a standard deviation, thereby to generate at an 

output of the Gaussian generator a Gaussian deviate. 

According to another aspect of the invention there is provided a method of 

generating a random bit stream comprising the steps of: 

- utilizing a source of entropy for providing an input bit stream 

comprising successive bits of a first state and a second state; 

- utilizing a first hardware digital corrector comprising a first input and a 

first output to provide at the first output from two successive bits in the 

input bit stream at the first input an output bit of a first output bit 

stream according to a first scheme wherein a first bit of a first state 

and a second bit of the first state yield an output bit of a third state 

and wherein a first bit of the first state and a second bit of a second 

state yield an output bit of a fourth state, wherein the third and fourth 

states are inverse to one another and wherein the third state is equal 

to one of the first state and the second state, thereby to ensure that 



successive bits in the output bit stream at the output of the corrector 

are independent from one another. 

The method may include the further step of utilizing a second digital 

corrector comprising an input and an output in series with the first corrector 

and wherein the second digital corrector is used to provide at said output 

from two successive bits at said input of the second corrector an output bit of 

a second output bit stream according to a second scheme wherein a first bit 

of a first state and a second bit of a second state yield an output bit of a third 

state and wherein a first bit of the second state and a second bit of the first 

state yield an output bit of a fourth state, wherein the third and fourth states 

are inverse to one another and wherein the third state is equal to one of the 

first state and the second state, thereby to ensure that successive bits in the 

second output bit stream are both independent from one another and 

unbiased. 

BRIEF DESCRIPTION OF THE ACCOMPANYING DIAGRAMS 

The invention will now further be described, by way of example only, wth 

reference to the accompanying diagrams wherein: 

figure 1 is a block diagram of a hardware random number generator 

(RNG) according to the invention; 

figures 2(a), 2(b) and 2(c) are waveforms against time of signals at points 

2(a), 2(b) and 2(c) in figure 1 ; 



figure 3 is a logic diagram of one embodiment of a first digital corrector 

circuit forming part of the RGN in figure 1; 

figures 4(a), 4(b), 4(c), 4(d), 4(e) and 4(9 are waveforms against time of 

signals at points 4(a), 4(b), 4(c), 4(d), 4(e) and 4(9 in figure 3; 

5 figure 5 is a logic diagram of one embodiment of a second digital 

corrector circuit forming part of the RGN in figure 1; 

figures 6(a), 6(b), 6(c), 6(d), 6(e) and 6(9 are waveforms against time at 

points 6(a), 6(b), 6(c), 6(d), 6(e) and 6(9 in figure 5; 

figure 7 is a logic diagram of the first and second digital correctors 

10 circuits connected in series; and 

figuresB(a), 8(b), 8(c), 8(d), 8(e), 80,  8(g), 8(h), 8(i) and 8(j) are 

waveforms against time of signals at points 8(a),8(b), 8(c), 

8(d), 8(e), 8(9,8(g), 8(h), 8(i) and 8(j) in figure 7; and 

figure 9 is a high level block diagram of the RNG according to the 

invention. 

DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION 

A hardware random number generator (RNG) according to the invention is 

generally designated by the reference numeral 10 in figure 1. 

20 

The RNG 10 comprises a source of entropy 12 generating a wide bandwidth 

analogue output signal 14. The source of entropy may comprise a thermal 

noise element such as a semiconductor junction, resistor or an avalanche 



noise generator for generating random or white noise. The element is 

connected to a high pass amplfier 16 having a cut off frequency 6 and 

providing an amplified output signal 18. 

5 The amplifier is connected to an analogue control circuit 20 for controlling a 

discrimination level for a known inverting discriminator 22. At an output of the 

discriminator there is provided an analogue signal having an average 

frequency <fz. The circuit 20 comprises an RC feedback loop 23 to control 

and correct for temperature and power supply variations which may 

10 influence the element 12 and amplifier 22. 

The output of the discriminator is connected to flip-flop 24 to yield a digital bit 

stream 26 shown in figure 2(a). The RC time constant of the circuit 23 is 

slower than lh. In this manner substantially equal numbers of bits of a first 

15 state and bits of a second state are generated at the output of the flipflop. 

Hence, the bit stream 26 in figure 2(a) comprises a sequence of successive 

bits having one of the first state and the second state. The states may be a 

logic high or 'I" and a logic low or "0". As illustrated in figure 9, it is known 

that these bits are typically not independent from one another nor unbiased. 

20 Therefore, the bit stream 26 is not truly random. As will hereinafter be 

described, a hardware digital corrector arrangement 28 comprising a first 

digital corrector circuit 30 (shown in figures 3. 7 and 9) and a serially 

connected second digital corrector circuit 32 (shown in figures 5,7 and 9), is 



used to remove correlation between bits and bias respectively, thereby to 

provide a truly random bit stream 34. The RNG further comprises a clock 

generator 36 for generating a clock signal 38 shown in figure 2(b). The RNG 

10 further comprises a hardware Gaussian generator 40 which receives the 

5 truly random bit stream 34 as an input and generates words with standard 

Gaussian deviates, mean zero and variance 1, as will hereinafter be 

described. An output of the generator 40 is connectable to an input of any 

suitable application 42. 

10 The frequency of the clock signal 38 is typically lower than the average or 

means frequency of the digital input stream (DIS) 26. In other embodiments 

a DIS 44 with a lower average frequency than the clock signal may be used. 

The DIS 26 or 44 is provided as one input to the first digital corrector circuit 

30. The other input being the clock signal 38. 

The first digital corrector circuit 30 is a circuit for removing inter bi 

dependence in the DIS 26 or 44 comprising successive bits sl , ~ 2 , ~ 3 , .  . . . . .%. It 

has been found that a circuit implementing a first scheme according to the 

following first truth table in respect of two immediately successive bits in the 

20 stream 26 or 44 (wherein the first bit is leading the second bi in time) and 

having one of a first state p and a second state q, would achieve this result: 

l'bii, 2"%t +p,p+c (third state) 

I 'bit, 2%it +p,q +c' (fourth state) 



any other- no output 

with c and c' being the inverse of the other, and c equal to p or q. 

In this first scheme, successive pairs of immediately adjacent bits in stream 

5 26 or 44 are used and no two bits are used more than once. 

In one embodiment of the invention, the aforementioned first scheme is 

implemented by circuit 30 shown in figure 3 and comprising a first flip-flop 

45, a second flip-flop 47 and a third flip-flop 49 as shown in figure 3. The 

10 circuit 30 has a first input 51, a second input 53, a first output 55 and a first 

clock output 57. Referring to figures 3 and 4(a) to 4(9, the bit stream 26 is 

applied to the first input 51 and the clock signal 38 to second input 53. The 

sequence 44 shown in figure 4(a) appears at the output of flip-flop 45 and at 

the output of flip-flop 47, one clock cycle later, as indicated at 50 in figure 

15 4(c). A clock signal divided by two is provided at a Qoutput of flip-flop 49 

and is illustrated at 52 in figure 4(d). The comparison between signals 44 

and 50 according to the first truth table is made on the rising edges of signal 

52. An output bit stream 56 is generated by the first scheme and in 

accordance with the aforementioned first truth table at first output 55 of the 

20 circuit 30 and is designated 56 in tigure 4(9. At the first clock output 57 of the 

circuit 30, an output clock signal 54 comprising intermittent and not periodic 

pulses 58.1 to 58.n is generated, successive pulses being associated with 

and synchronized with successive bits tl, t, t3 ...t, in the output bit stream 56 



of the first wrrector circuit. These output b i  are substantially independent 

of one another in that correlation is removed by the first wrrector. 

In embodiments wherein the clock frequency is higher than the frequency of 

5 the DIS 44, the DIS 44 may be used to latch the clock signal. That is, the 

signals at inputs 51 and 53 are changed around. 

The RNG 10 comprises a sewnd digital wrrector circuit 32 for correcting 

bias of aforementioned b i  b, 8, b....t, The sewnd wrrector circuit 32 is 

10 connected in series with the first corrector circuit 30 as shown in figure 7. 

The first output 55 of the first circuit 30 is connected to a first input 60 of the 

second corrector circuit and the first clock output 57 of the first corrector 

circuit is connected to a second input 62 of the sewnd circuit 32. To illustrate 

the operation of the second circuit, the second circuit is shown on its own in 

15 figure 5. 

It has been found that a circuit 32 implementing a second scheme according 

to a sewnd truth table ( shown herebelow) in respect of two immediately 

successive b i i  in a DIS 26 or 44 having one of a first state p and a second 

20 state q, would substantially remove bias of the b i  in the DIS: 

lSbit, 2""bit +p,q +c (third state) 

lsbii, 2""bit +q,p+c3 (fourth state) 

any other- no output 



with c and c' being the inverse of the other, and c equal to p or q. 

In one embodiment of the invention, the aforementioned second scheme is 

implemented by circuit 32 shown in figure 5 and comprising a first flip-flop 

5 64, a second flip-flop 66 and a third flip-flop 68. Apart from the 

aforementioned first and second inputs 60,62 the circuit 32 has a first output 

70 (or a second for the arrangement 28) and a second clock output 72. 

Refening to figures 5 and 6(a) to 6(9, the bi stream 44 (which for this 

illustration is the same as that applied to the first corrector hereinbefore) is 

10 applied to the first input 60 and the clock signal 38 to second input 62. The 

sequence 44 appears at the output of flip-flop 66 one clock cycle later than 

at the Qoutput of flip-flop 64 and is designated 74 in figure 6(c). A clock 

signal divided by two is provided at a Q-output of flip-flop 68 and is illustrated 

at 76 in figure 6(d). An output bit stream 80 is generated by the circuit 32 in 

15 accordance with the second scheme and the aforementioned second truth 

table at output 70 and is shown in figure 6(9. At the second clock output 72 

an output clock signal 78 comprising intermittent and not periodic pulses 

82.1 to 82.k is generated, successive pulses being associated with coincides 

with successive bits b ,  h, b...I, in the output bit stream 80 of the second 

20 corrector circuit. Bias of bits in the output stream 80 is substantially removed. 

As shown in figures 7 and 9 the first and second corrector circuits are 

connected in series, to remove both correlation between bits and bias 



respediely and thereby to yield a truly random bit stream 34 in which the 

b i  are independent, unbiased and hence equi-probable or uniformly 

distributed. 

5 Waveforms for this serial connection of circuits 30 and 32 are shown in 

figures 8(a) to 8(j). Since the input bit stream 44 is the same as that used in 

the description of figure 3, figures 8(a) to 8(f) correspond with the waveforms 

in figures 4(a) to 4(9. However, with the serial connection of circuits 30 and 

32 the output signals 54 and 56 are connected to the inputs 60 and 62 

10 respectively of the second corrector circuit 32. The resulting signals at the Q- 

outputs of the flipflops 64 and 66 are shown at 56 and 84 in figures 8(9 and 

8(g). The clock signal divided by two generated at the Q output of flip-flop 

68 is shown at 86 in figure 8(h). The cutput bit stream of the corrector 

arrangement 28 is shown at 34 in figure 8a). A clock signal to indicate 

15 successive bits in the output bit stream 34 is illustrated 88 in figure 8(i). 

As shown in figure 9, a hardware Gaussian generator 40 is connected to 

either output 55 or output 70 of the digital corrector arrangement 28. 

20 According to the central limit theorem in statistics, by summing by means of 

a suitable hardware adder or summing arrangement sufficient random words 

j results in a sum T which approaches that of a Gaussian deviate with known 

mean <T> and known standard deviation SN. The generator 40 is configured 



to sum j words of i b i i  in the stream 34 each. The generator is further 

configured intermittently to compute sums T as aforesaid, to subtract by a 

suitable hardware arrangement an average <T> of the sums and to divide 

the difference by a standard deviation S~uti l i ing a suitable hardware divider 

5 arrangement, to yield Gaussian deviates Z with a zero mean and unity 

standard deviation. 

It is believed that the RGN 10 herein described may be implemented in the 

form of an integrated chip and housed in a plug-and-play device, comprising 

10 a USB memory stick. Once the device is activated, the generator 40 starts 

adding words until a default number or user specified number is reached, 

which would result in a Gaussian deviate as hereinbefore described and 

which would be available for input by the application 42. 



1. According to the invention there is provided a hardware random 

number generator (RNG), comprising: 

- a source of entropy for providing an input bit stream 

comprising successive bits of a first state and a second state; 

- a first digital corrector comprising a first input and a first output; 

- the corrector being configured to provide at the first output 

from two successive bits in the input bit stream an output bit of 

a first output bii stream according to a first scheme wherein a 

first bit of a first state and a second bit of the first state yield an 

output bit of a third state and wherein a first bit of the first state 

and a second bit of a second state yield an output bit of a 

fourth state, wherein the third and fourth states are inverse to 

one another and wherein the third state is equal to one of the 

first state and the second state, thereby to ensure that 

successive bits in the output bi stream at the first output of the 

corrector are independent from one another. 

20 2. An RNG as claimed in claim 1 wherein the first output of the first 

corrector is connected to a first input of a second digital corrector, the 

second digital corrector comprising a first output and being configured 

to provide at the first output from two successive bits at the first input 



of the second corrector an output bit of a second output bit stream 

according to a second scheme wherein a first bit of a first state and a 

second bit of a second state yield an output bit of a third state and 

wherein a first bit of the second state and a second bit of the first 

state yield an output bit of a fourth state, wherein the third and fourth 

states are inverse to one another and wherein the third state is equal 

to one of the first state and the second state, thereby to ensure that 

successive bits in the second output bit stream are both independent 

from one another and unbiased. 

3. An RNG as claimed in claim 1 or claim 2 wherein the source of 

entropy comprises a white noise generating element having an output 

connected to an input of an analogue high pass amplifier having an 

output and a cut off frequency of fo. 

4. An RNG as claimed in claim 3 wherein the output of the high pass 

filter is connected to an input of a voltage level discriminator circuit 

having an output. 

20 5. An RNG as claimed in claim 4 wherein the output of the level 

discriminator circuit is connected to a first input of a flipflop, to 

generate the input bit stream at an oulput thereof. 



6. An RNG as claimed in any one of claims 4 and 5 wherein an 

analogue voltage level compensation circuit is provided at the input of 

the voltage level discriminator circuit. 

5 7. An RNG as claimed in claim 6 wherein the compensation circuit 

comprises an RC circuit having an RC time constant which is shorter 

than lffo. 

8. An RNG as claimed in any one of claims 1 to 7 comprising a 

10 Gaussian generator comprising an input connected to the first output 

of the first digital corrector, the generator comprising an adder 

arrangement for generating a sum of j words of i sequential bits each 

received from the corrector arrangement; a subWactor arrangement 

for deriving a difference between the sum and a mean value of the 

sum; and a divider arrangement for dividing the difference by a 

standard deviation, thereby to generate at an output of the Gaussian 

generator a Gaussian deviate. 

9. A method of generating a random bit stream cornprising the steps of: 

- utilizing a source of entropy for providing an input bit stream 

comprising successive bits of a first state and a second state; 

- utilizing a first hardware digital corrector comprising a first input 

and a first output to provide at the first output from two 



successive bits in the input bit stream an output bit of a first 

output bit stream according to a first scheme wherein a first bit 

of a first state and a second bit of the first state yield an output 

bit of a third state and wherein a first bit of the first state and a 

second bit of a second state yield an output bit of a fourth 

state, wherein the third and fourth states are inverse to one 

another and wherein the third state is equal to one of the first 

state and the second state, thereby to ensure that successive 

bits in the output bit stream at the output of the corrector are 

independent from one another. 

10. A method as claimed in h i m  9 wherein a second digital corrector 

comprising an input and an output is utilized in series with the first 

corrector, wherein the second corrector is used to provide at the first 

output from two successive 'ts at the first input of the second 

corrector an output bit of a second output bit stream according to a 

second scheme wherein a first bit of a first state and a second bit of a 

second state yield an output bit of a third state and wherein a first bit 

of the second state and a second bit of the first state yield an output 

bit of a fourth state, wherein the third and fourth states are inverse to 

one another and wherein he third state is equal to one of the first 

state and the second state, thereby to ensure that successive bits in 



the second output bit stream are both independent from one another 

and unbiased. 
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Appendix 111. Acronym and Abbreviation List 

I Acronvm / Abbreviation Description I 
I ACT Atmos~heric Cerenkov Techniaue I 
I ATNF Australia Telescope National Facility 

Collaborat,ion of Australia and Nippon for a Gamma Ray Ob- I CANGAROO 

senratorv in the Outback I 
Com~tom Gamma-Rav Observatow I CGRO 

Digital Input Sequence 

Extended Air Showers 

I DIS 

I EGRET Energetic Gamma Ray Experiment Telescope 

I FIPS Federal Information Processinrr Standard I 
1 FSE Fourier Series Estimator 1 
1 GLAST Gamma Ray Large Area Space Telescope 

General Relativistic 1 
High Energy St.ereoscopic System 

1 IACT Imaging Atmospheric Cerenkov Telescope 

I LIBOR London Interbank Offered Rate 1 
I MAGIC Major Atmospheric Gamma Imaging Cherenkov 

Markov Bit I 
Markov Clock Out 1 

I MDOut Markov Data Out 1 
1 MISE Mean Integrated Squared-Error 

Modificd Julian Datc 

National Institute of Standards and Technology 

Outer Gap 



Appendix 111. Acronym and Abbreviation List 72 

I Acronvm / Abbreviation I Description I - .  
PC I Polar Cap 

QBE I Quantum Bit Extractor 

SNR. I Supernova Remnant 

1 VNCLK I Von Neumann Clock 1 

1 
VERITAS 

VHE 

VNB 

I VNCOut / Von Neumann Clock Out I 

Very Energetic Radiation Imaging Telescope Array System 

Very High Energy 

Von Neumann Bit 

1 VNDOut I Von Neumann Data Out 1 
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