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Summary 

One of the main objectives of this dissertation is to derive efficient nonparametric es- 

timators for an unknown density f .  It is well known that the ordinary kernel density 

estimator has, despite of several good properties, some drawbacks. For example, it suffers 

from boundary bias and it also exhibits spurious bumps in the tails. Various solutions 

to overcome these defects are presented in this study, which include the application of a 

transformation kernel density estimator. The latter estimator (if implemented correctly) 

is pursued as a simultaneous solution for both boundary bias and spurious bumps in the 

tails. The estimator also has, among others, the ability to detect and estimate density 

modes more effectively. 

To apply the transformation kernel density estimator an effective transformation of the 

data is required. To achieve this objective, an extensive discussion of parametric trans- 

formations introduced and studied in the literature is presented firstly, emphasizing the 

practical feasibility of these transformations. Secondly, known methods of estimating the 

parameters associated with these transformations are discussed (e.g. profile maximum 

likelihood), and two new estimation techniques, referred to as the minimum residual and 

minimum distance methods, are introduced. Furthermore, new procedures are developed 

to select a parametric transformation that is suitable for application to a given set of 

data. Finally, utilizing the above techniques, the desired optimal transformation to any 

target distribution (e.g. the normal distribution) is introduced, which has the property 

that it can also be iterated. A polynomial approximation of the optimal transformation 

function is presented. It is  shown that the performance of this transformation exceeds 

that of any transformation available i n  the literature. 

In the context of transformation kernel density estimation, we present a comprehensive 

literature study of current methods available and then introduce the new semi-parametric 



transformation estimation procedure based on the optimal transformation of data to nor- 

mality. However, application of the optimal transformation in this context requires special 

attention. In order to create a density estimator that addresses both boundary bias and 

spurious bumps in the tails simultaneously in an automatic way, a generalized bandwidth 

adaptation procedure is developed, which is applied in conjunction with a newly devel- 

oped constant shift procedure. 

Furthermore, the optimal transformation function is based on a kernel distribution func- 

tion estimator. A new data-based smoothing parameter (bandwidth selector) is invented, 

and it is shown that this selector has better performance than a well established band- 

width selector proposed in the literature. 

To evaluate the performance of the newly proposed semi-parametric transformation es- 

timation procedure, a simulation study is presented based on densities that consist of a 

wide range of forms. Some of the main results derived in the Monte Carlo simulation 

study include that: 

0 the proposed optimal transformation function can take on  all the possible shapes 

of a parametric transformation as well as any combination of these shapes, which 

result in high p-values when testing normality of the transformed data. 

the new minimum residual and minimum distance techniques contribute to better 

transformations to normality, when a parametric transformation is applicable. 

0 the newly proposed semi-parametric transformation kernel density estimator per- 

f o m  well for unimodal, low and high kurtosis densities. Moreover, it estimates 

densities with much curuature (e.g. modes and valleys) more effectively than exist- 

ing procedures i n  the literature. 

0 the new transformation density estimator does not exhibit spurious bumps in the 

tail regions. 

0 boundary bias is  addressed automatically. 

In conclusion, practical examples based on real-life data are presented. 



Opsomming 

Een van die hoof mikpunte van hierdie proefskrif is om doeltreffende nie-parametriese 

beramers vir 'n onbekende digtheidsfunksie f af te lei. Dit is alombekend dat die gewone 

kerndigtheidsfunksie beramer, ten spyte van verskeie goeie eienskappe, ook sekere defekte 

besit. Voorbeelde hiervan is grenssydigheid asook die voorkoms van kunsmatige bulte in 

die stertgebiede. Verskeie oplossings om hierdie tekortkominge aan te spreek, word in 

hierdie studie gegee, wat die toepassing van 'n transformasie kerndigtheidsfunksie be- 

ramer insluit. Laasgenoemde beramer (indien korrek toegepas) word voorgestel as 'n 

gelyktydige oplossing vir beide grenssydigheid en die voorkoms van kunsmatige bulte in 

die sterte. Die beramer besit ook, onder andere, die vermoe om modusse meer effektief 

waar te neem en te beraam. 

'n Effektiewe datatransformasie word benodig om die transformasie kerndigtheidsfunksie 

beramer te kan implementeer. Ten einde hierdie mikpunt te verwesenlik, word daar 

eerstens 'n uitgebreide bespreking van bestaande parametriese transformasies in die lit- 

eratuur gegee, en die praktiese toepasbaarheid van die transformasies word bespreek. 

Tweedens, word bekende metodes van die beraming van parameters wat geassosieer word 

met hierdie transformasies, bespreek (bv. profiel maksimumaanneemlikheid). Verder 

word twee nuwe beramingsmetodes, nl. die minimum residu metode en die minimum 

afstand metode, voorgestel. Nuwe prosedures word ook ontwikkel vir die seleksie van 

'n parametriese transformasie wat geskik is om toegepas te word op 'n gegewe datas- 

tel. Laastens, word die optimale transformasie na enige teikenverdeling (bv. die nor- 

maalverdeling) m.b.v. bogenoemde tegnieke bekendgestel. 'n Polinoombenadering van 

die optimale transformasiefunksie word gegee. Dit word aangetoon dat die gedrag van 

hierdie transformasie beter uaar as enige transformasie in die literatuur. 

'n Omvattende literatuurstudie van bestaande transformasie kerndigtheidsfunksie be- 



ramers word gegee. Hierna word 'n nuwe semi-parametriese transformasie beramingsprose- 

dure, wat gebaseer is op die optimale transformasie van data na normaliteit, bekendgestel. 

Vir die korrekte toepassing van laasgenoemde prosedure, word 'n algemene bandwydte 

aanpassingsprosedure ontwikkel, wat in samewerking met 'n nuwe konstante skuifparam- 

eter toegepas word. 

Die optimale transformasiefunksie is gebaseer op 'n kerndistribusiefunksie beramer. 'n 

Nuwe data-gebaseerde gladstrykparameter word ontwikkel, en dit word aangetoon dat 

hierdie data-gebaseerde gladstrykparameter beter vertoon as voorgestelde metodes in die 

literatuur. 

Ten einde nuutvoorgestelde prosedures te evalueer, word 'n omvattende Monte Carlo 

studie uitgevoer. Die hoofresultate wat verkry is uit hierdie studie bestaan daaruit dat: 

die voorgestelde optimale transformasiefunksie alle vorms van 'n parametriese trans- 

formasie, e n  enzge kombinasie van hierdie vorms, kan aanneem. Dit lei tot hoe 

p-waardes wanneer die getransformeerde data vir normaliteit getoets word. 

a die nuwe m i n i m u m  residu tegniek e n  min imum afstand tegniek dra by tot beter 

tmnsformasies na  normaliteit, indien 'n parametriese tmnsformasie van toepassing 

is. 

a die nuwe semi-parametriese transformasie kemdigtheidsfunksie beramer is  effektief 

o m  unimodale, lae e n  hoe hr-tose digtheidsfunksies, asook digtheidsfunhies me t  

baie kurwes te beraam. 

a die nuwe tmnsformasie digthezdsfunksie beramer besit n ie  kunsmatige bulte in die 

stertgebiede nie. 

grenssydigheid word outomaties aangespreek. 

Ten slotte, word die nuutvoorgestelde prosedures op werklike data toegepas. 
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Introduction 

1.1 Overview 

The probability density function is a fundamental concept in statistics. Consider any 

random variable X that has probability density function f .  Specifying the function f 

gives a natural description of the distribution of X, and allows probabilities associated 

with X to be found from the relation 

Suppose now that X I ,  Xz,  . . . , X,  are independent and identically distributed (i.i.d.) con- 

tinuous random variables having a density f .  Density estimation, as discussed in this dis- 

sertation, is the construction of an estimate of f from the observed data XI, X z ,  . . . , X,. 

The parametric approach to estimation off  involves assuming that f belongs to a para- 

metric family of distributions, such as the normal or gamma family, and then estimating 

the unknown parameters using, for example, maximum likelihood estimation. On the 

other hand, a nonpammetric density estimator assumes no pre-specified functional form 

off.  Nonparametric density estimation is an important data analytic tool which provides 

a very effective way of showing structure in a set of data a t  the beginning of its analysis. 

The oldest and most widely used nonparametric density estimator is the histogram. This 

is usually formed by dividing the real line into equally sized intervals, often called bins. 
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The histogram is then a step function with heights being the proportion of the sample 

contained in each bin divided by the width of the bin. Two choices have to be made 

when constructing a histogram: the binwidth and the positioning of the bin edges. Each 

of these choices can have a significant effect on the resulting histogram. The binwidth is 

usually called a smoothing parameter since it controls the amount of "smoothing" being 

applied to the data. All nonparametric curve estimates have an associated smoothing 

parameter. We will see in the following chapters that, for kernel density estimators intr* 

duced in Chapter 2, the scale of the kernel plays a role analogous to that of the binwidth. 

The sensitivity of the histogram to the placement of the bin edges is a problem not shared 

by other density estimators such as the kernel density estimator. The bin edge problem 

is one of the histogram's main disadvantages. 

The histogram has several other problems not shared by kernel density estimators. Most 

densities are not step functions, yet the histogram has the unattractive feature of estimat- 

ing all densities by a step function. A further problem is the extension of the histogram 

to the multivariate setting, especially the graphical display of a multivariate histogram. 

Finally, the histogram can be shown not to use the data as effectively as the kernel es- 

timator. Despite these drawbacks, the simplicity of histograms ensures their continuing 

popularity. 

A large class of nonparametric density estimators has appeared in the statistical lit- 

erature as alternatives to the histogram, of which the kernel approach (mentioned above) 

is a popular and conceptually simple one. Kernel estimators have been around since 

the seminal papers of Rosenblatt (1956) and Parzen (1962). These estimators have the 

advantage of being very intuitive and relatively easy to analyze mathematically. 

It is well known that the ordinary kernel density estimator has, despite of several good 

properties, some drawbacks (a comprehensive discussion of kernel density and distribu- 

tion function estimation is given in Chapter 2). For example, it suffers from boundary 

bias and it also exhibits spurious bumps in the tails. Various solutions to overcome these 

defects are presented in this study, which include the application of a transformation 

kernel density estimator. The latter estimator (if implemented correctly) is pursued as 

a simultaneous solution for both boundary bias and spurious bumps in the tails. The 
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estimator also has, among others, the ability to detect and estimate density modes more 

effectively. 

To apply the transformation kernel density estimator an effective transformation of the 

data is required. To achieve this objective, an extensive discussion of parametric trans- 

formations introduced and studied in the literature is presented in Chapter 3 firstly, 

emphasizing the practical feasibility of these transformations. Secondly, known meth- 

ods of estimating the parameters associated with these transformations are discussed 

(e.g. profile maximum likelihood), and two new estimation techniques, referred to as the 

minimum residual and minimum distance methods, are introduced. Furthermore, new 

procedures are developed to select a parametric transformation that is suitable for appli- 

cation to a given set of data. Finally, utilizing the above techniques, the desired optimal 

transformation to any target distribution (e.g. the normal distribution) is introduced, 

which has the property that it can also be iterated. A polynomial approximation of the 

optimal transformation function is presented. It is shown that the performance of this 

transformation exceeds that of any transformation available i n  the literature. 

In the context of transformation kernel density estimation, we present in Chapter 4 a 

comprehensive literature study of current methods available and then introduce the new 

semi-parametric transformation estimation procedure based on the optimal transforma- 

tion of data to normality. However, application of the optimal transformation in this 

context requires special attention. In order to create a density estimator that addresses 

both boundary bias and spurious bumps in the tails simultaneously in an automatic way, 

a generalized bandwidth adaptation procedure is developed, which is applied in conjunc- 

tion with a newly developed constant shift procedure. 

Furthermore, the optimal transformation function is based on a kernel distribution func- 

tion estimator. A new data-based smoothing parameter (bandwidth selector) is invented 

in Chapter 2, and it is shown that this selector has better performance than a well es- 

tablished bandwidth selector proposed in the literature. 

To evaluate the performance of the newly proposed semi-parametric transformation esti- 

mation procedure, a simulation study is presented in Chapter 5 based on densities that 



CHAPTER 1. INTRODUCTION 

consist o f  a wide range o f  forms. Some o f  the main results derived in  the Monte Carlo 

simulation study include that: 

r the proposed optimal tmnsformation function can take on all the possible shapes 

of a parametric transformation as well as any combination of these shapes, which 

result i n  high p-values when testing normality of the transformed data. 

0 the newly formulated minimum residual and minimum distance techniques con- 

tribute to better transformations to normality, when a parametric tmnsformation is 

applicable. 

r the newly proposed semi-parametric transformation kernel density estimator per- 

forms well for unimodal, low and high kurtosis densities. Moreover, it estimates 

densities with much curvature (e.9. modes and valleys) more effectively than exist- 

ing procedures in the literature. 

0 the new transformation density estimator does not exhibit spurious bumps in  the 

tail regions. 

r boundary bias is addressed automatically. 

In conclusion, practical examples based on real-life data are presented 

1.2 Mathematical notation and some known facts 

In this section a summary o f  the most prominent mathematical notation and some math- 

ematical calculations will be presented. This section serves as a quick reference and 

promote readability in the rest o f  this dissertation. T h e  informed reader may proceed t o  

Chapter 2. In this section an unqualified integral sign will be taken to mean integration 

over the entire real line, R. 

1. General notation 

( a )  T h e  jth moment: pi(k)  = $ x jk (x )dx ,  for some density function k ,  with the 

assumption that $ lx l jk (x)dx  < m, V j  > 0. 

(b) k is a rth - order kernel i f  

pa(k) = 1, 
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w pj(k)=O, j = l ,  . . . ,  T-1, 

~ 4 )  Z 0. 

(c) The convolution of f and g : (f * g) (x) = J f (x - y)g(y)dy. 

(d) Real-valued 0 and o notation: Let {a,) and {b,) be sequences of real numbers 

then 

w a, = O(b,), if and only if limsup,,, bn < co and consequently a, = Ikl 
O(1) is equivalent to a, being bounded. We will say "a, is of order 6," if 

a, = O(b,). 

w a, = o(b,), if and only if limn,, 12) = 0 and consequently a, = o(1) is 

equivalent to a, + 0 as n + cm. 

(e) Asymptotic notation: a, is asymptotically equivalent to b, thus a, - b, if and 

only if lim,,, (2 )  = 1. 

(f) Derivatives: 

w k(")(x) = g k ( x ) .  

0 If k(x) is a symmetric function then k(")(x) is also a symmetric function 

for m being even, hence 

k(") (-x) if m is even. 
k(m)(x) = (-I)"!-&")(-x) = 

- k(") (-2) if m is odd. 

(g) The kernel estimate of f (")(x) is given by 

(h) Taylor's theorem: Assume that f has m continuous derivatives in an interval 

(x - 6, x + 6) for some 6 > 0. Then for any sequence a, converging to zero 

(i) Define: R(k) = 1 k ( ~ ) ~ d x .  

(j) For k(.) and K(.)  the symmetric around zero kernel density and distribution 

functions respectively, we have: 
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ii. itw k ( x ) ~ ( x ) d ~  = 318. 

iii. it" [K(z)12 k(z)dz = 7/24. 

iv. itw k(z) [2K(z) - 112dz = 116. 

(k) Let F(x)  be a distribution function with associated density function f (x) and 

let g(x) be any real valued function assuming values between 0 and 1. If 

2. Properties of the normal distribution 

(a) The standard normal probability density function: 4(x) = 1 / f i  e-z2/2. 

(b) The standard normal probability distribution function: @(x) = J?, $(t)dt. 

(c) Rescaling: The N (p, u2) normal density is defined as 

(d) Define the odd factorial for m = 0,1, .  . . as 

(e) Define the mth Hermite polynomial as 
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Table 1.1: The first 10 Hermite polynomials 

(f) The Hermite polynomial and odd factorial will be used to calculate the deriva- 

tives of the normal distribution, using 

i. 4("')(x) = (-l)mHm(x)4(x). 

(-1)m/2&O~(m)u-m-1 if rn is even. 
ii. &')(o) = 

if m is odd. 

(h) For u > 0, m = 0,1,2, .  . . and X N N(p, u2), 

where 1x1 = greatest integer less than or equal to x. 

(i) For X - N(O, u2), 

umOF(m) if m is even. 
E (X") = 

if m is odd. 

(j) For u1,02 > 0 
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2 
where p* = ~ 2 ~ 1 +  ~ $ 2  

u? + 0; ' 

(k) 
1 

4(x)" = - (27r)('-m)/24m-1/2 (x). m1/2 

(1) Using the properties above it is a simple matter to verify that 

- 1 
ii. 4(')(0) = - 

Jz;;' 
3 

iii. 4"(0) = - 
Jz;;' 



Two nonparametric estimation methods 

In this section the kernel density estimator and kernel distribution function estimator 

are discussed in detail. In the context of kernel density estimation we will discuss an 

appropriate discrepancy measure, difficulty of estimation, the choice of an appropriate 

kernel function, the choice of the smoothing parameter, boundary bias and spurious 

bumps in the tails. In the context of kernel distribution estimation we will discuss an 

appropriate discrepancy measure, the choice of an appropriate kernel function and the 

choice of the smoothing parameter. For the choice of the smoothing parameter, a slight 

alteration to an existing plug-in selector will be introduced. 

2.1 Kernel density estimation 

Let XI,. . . , X,, be i.i.d. continuous random variables from the probability law Fx, having 

a continuous univariate density fx. Using the compact notation kh(u) = i k  (f) , the 

kernel density estimator is then given by 

where k is the so-called kernel (or weight) function and h is the smoothing parameter 

or bandwidth. In this and subsequent chapters the kernel estimator will be referred 

to as f (z ;  h), fh(x), fn,h(z)  or f,(x). We assume the kernel function has the following 

properties 
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0 1 k(u)du = h ( k )  = 1, hence k is a density function. 

0 k(-u) = k(u), hence k is a symmetric function. This implies that 

Requiring that k must be a density function, ensures that the kernel estimate is also a 

density function. Using the standard normal density function as kernel, one can think of 

the kernel density estimator (2.1) at a specific point, say x, as the average of n normal 

density functions with means Xi, i = 1, . . . , n, and standard deviation h. This is explained 

graphically in Figure 2.1, where a sample of 10 data points from the standard normal 

distribution is used for illustration. From Figure 2.1 it should be clear that data points 

Figure 2.1: Kernel density estimation 

in the region of x contribute more to the estimation of the density in that point. The 

visualization given in Figure 2.1 is useful when explaining concepts such as boundary 

bias and spurious bumps in the tails. These concepts will be explained in greater detail 

in Section 2.1.5 and Section 2.1.6. 
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2.1.1 An appropriate discrepancy measure 

In order to assess the performance of the kernel estimator given in (2.1), one needs to 

define a discrepancy measure between the estimator and the target density. In existing 

literature, the most popular discrepancy measures are the mean squared error (MSE), 

the mean integrated squared error (MISE) and the asymptotic mean integrated squared 

error (AMISE). Wand and Jones (1995) pointed out that there are good reasons for 

working with other discrepancy measures such as the mean integrated absolute error de- 

fined as M I A E { ~ ^ ( . ;  h ) }  = E /  l f^(x;  h )  - f ( x ) d x .  The interested reader is referred to 

Devroye and Gyorfi (1985), Loots (1995) p.43, and Jones, Marron and Sheather (1996) 

for further discussion of other discrepancy measures as well as references to other papers. 

Henceforth, an unqualified integral sign will be taken to mean integration over the / 
entire real line, R. For verification and mathematical derivation of the results presented 

in this section, the reader is referred to Wand and Jones (1995) and Koekemoer (1999). 

The mean squared error 

The mean squared error of the kernel estimator f ( x ;  h )  at some point x E R is given by 

M S E  [ f^ (x ;  h)]  = E [ f^ (x ;  h )  - f ( x ) I 2 .  

This expression can be written in an alternative, easier to interpret way namely 

M S E  [ f ^ ( x ;  h )]  = Var [ f ^ ( x ;  h)]  + { ~ i a s  [ f ^ ( x ;  h ) ] ) 2 .  

Using notation from Section 1.2 we can write the bias term in (2.2) as 

Bias [ f ^ ( x ;  h )]  = Ef^ (x ;  h )  - f ( x )  

= / k h b  - u ) f  (YPY - f ( x )  

= (kh * f ) ( x )  - f (5) .  

Using the same notation we can write the variance term as 

Var [f^(x; h )]  = E f ^ ( x ;  h)' - [ E ~ ^ ( x ;  h)I2 

Substitution of (2.3) and (2.4) into (2.2) lead to an expression for the discrepancy measure 

MSE at a single point x. This is given by 

1 1 
M S E  [ f^ (x ;  h)]  = - ( k i  * f )  ( 2 )  - - (kh * f )2  (2)  + {(kh * f ) (2)  - f ( x ) I 2 .  (2.5) n n 
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The mean integrated squared error 

The mean squared error can be used as a discrepancy measure at a point x. This measure 

is, therefore, a local measure of discrepancy. Evaluating (2.5) at each x point and then 

integrating with respect to x gives rise to the mean integrated squared error, which is 

consequently a global measure of discrepancy. A successful kernel density estimator in 

all points x E R will result in a small MISE. The MISE is defined as M I S E  [f^(.; h)] = 

I M S E  [f(x; h)] dx. Using (2.5) we can write the MISE in a more manageable form: 

M I S E  [f^(.; h)] 

1 
= - / (ki * f) (x)dx + (1 - i) / (kh * f)' (x)dx - 2 / (kh * j )  (x)f(x)dx + / f (x)'dx 

n 

(2.6) 

where 

Substituting (2.7) into (2.6) lead to the following MISE expression 

The MISE given in (2.8) can be used to find the optimal smoothing parameter, for which 

this discrepancy measure will be small. The MISE expression depends, however, on h in 

a complicated manner. For this reason, the asymptotic mean integrated squared error 

is developed. This expression depends on h in a simple manner and gives rise to the 

asymptotic optimal bandwidth. 

The asymptotic mean integrated squared error 

In this section we will derive large sample approximations for the leading variance and 

bias terms in (2.8), and then study the dependence on h of the resulting expression. In 

order to derive these approximations we need to make some assumptions. These are 
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1. The density f has a continuous, square integrable and ultimately monotone second 

derivative f i r .  An ultimately monotone function is one that is monotone over both 

(-m, - M )  and ( M ,  +a) for some M > 0. 

2. The bandwidth h is a non-random sequence of positive numbers. Also assume that 

h satisfies 

lim h = 0 and lim nh = m. 
n-m n-m 

This is equivalent to saying that h approaches zero slower than n goes to infinity. 

3. The kernel function k is a bounded probability density function with finite fourth 

moment, and is symmetric about the origin. 

Assumption ( 2 )  is made mainly to ensure that the asymptotic variance term converges 

to zero, see expression (2.13) below for more detail. Understanding this assumption is 

important since it places a restriction on the order of h. For example, one can take 

h = ~ n - ~  where 0 < t < 1,  (2.9) 

and c is a finite positive constant. It is worthwhile to note that larger values of t imply 

faster convergence rates of h to zero as n -+ m, thus smaller bandwidths. 

We will now proceed with first finding the asymptotic mean squared error (AMSE) ,  and 

then the asymptotic mean integrated squared error (MISE). The bias and variance terms 

are treated separately. From (2.3) it follows that, using the notation from Section 1.2, 

( l a ) ,  the bias term is given by: 

1 
Bias [ f ^ ( x ;  h ) ]  = -h2p2(k)  f l ' ( x )  + o(h2).  

2 

Note that the leading term in (2.10) is 0(h2)  and therefore, using assumption ( 2 ) ,  it 

follows that f ( x ;  h )  is asymptotically an unbiased estimator for the target density f .  

Next, we will find an asymptotic expression for the variance term. From (2.4) we find, 

using the notation from Section 1.2, ( l i ) ,  that 

1 
V a r  [ f ^ ( x ;  h ) ]  = ; E ~ E R ( ~ )  f ( x )  + o 

Note that the leading term in (2.11) is 0(&) and therefore, using assumption ( 2 ) ,  it 

follows that V a r  [f^(z; h)] converges to zero. Using (2.2), (2.10) and (2.11) we define the 

AMSE to be 
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We will now proceed with the calculation of the AMISE. Using (2.12) we find that 

From (2.13) it is important to note that the asymptotic integrated squared bias is pro- 

portional to h4, and hence we need to choose h as small as possible. Contrary to this, 

the asymptotic variance is proportional to 5,  hence small values of h will increase the 

variance term. This is known as the variancebias trade-off. The consequence of this 

phenomenon is that for small h, we will get a density estimate that is spiky (under 

smoothed), and for large h, we will get a density estimate that is smooth, with larger 

bias (over smoothed). It is clear that we must find a balance between the 0(h4)  squared 

bias term and the 0 (&) variance term. It is easy to show that this balance is given by 

the following choice of h 

To implement (2.14) in practice an estimate of ~ ( f " )  is needed, this is discussed in 

Section 2.1.4. By substituting (2.14) into (2.13) we find that 

5 
inf AMISE [f(.; h)] = - ~ ( k ) R ( f " ) ' / ~ n - ~ / ~ ,  
h>O 4 

where C(k) = pz(k)2/5R(k)4/5 is a constant only depending on the kernel function k. 

Expression (2.15) is the smallest possible AMISE that can be attained using haMIsE and 

the kernel function k. 

2.1.2 Efficiency measure for the kernel density estimator 

In this section we will derive a formula that measures how well a particular density can 

be estimated using the kernel density estimator. This section is extremely important 

in the context of the transformation kernel density estimator (which will be defined in 

Chapter 4), since the result obtained here is instrumental in finding an optimal distri- 

bution for the transformed data. Using the asymptotic optimal bandwidth (2.14), the 

global discrepancy measure AMISE given in (2.15) should be smaller for a density that 

is easy to estimate when compared to a target density that is difficult to estimate. On 

closer inspection of (2.15) it is clear that this expression only depends on the unknown 
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target density f via the functional ~ ( f " ) .  We can, therefore, conclude that the functional 

~ ( f " )  = / f " ( ~ ) ~ d x  gives us an indication of how well f can be estimated even when h 

is chosen optimally. For target densities, f ,  with "sharp" features such as high skewness 

or several modes ( fl'(x)l will take on relatively large values resulting in a large value 

of ~ ( f " ) .  For densities without these features ~ ( f " )  should be smaller, hence easier to 

estimate. 

Ultimately, one would like to compare the estimation difficulty of different target densi- 

ties. This, however, cannot be accomplished using ~ ( f " )  since ~ ( f " )  is not scale invari- 

ant, thus distributions with a larger scale measure, uz > 0, will result in larger values of 

~ ( f " ) .  Consider the random variable X with density fx and set Y = X/u,, where ux is 

the population standard deviation of X. The random variable Y is scale invariant, hence 

using the density of Y, we can construct a scale invariant difficulty measure. Noting that 

the density of Y is given by fy(y) = u, fX(rxy) it is easily verified that 

is the scale invariant difficulty measure, henceforth referred to as D(f).  Small values of 

D( f )  entail that f is easy to estimate. Comparing the difficulty measure for several 

target densities requires a reference point. The beta(a, P) density function is defined as 

where r(.) is the gamma-function. Choosing a = -1 and b = 2, Terell (1990) showed 

that R(f(')) is minimized by the beta(r + 2, r + 2) density function. Hence, ~ ( f " )  is 

minimal for the beta(4,4) density defined as 

Note that any shift or rescaling off* will also minimize D(f).  One can therefore conclude 

that the beta(4,4) density is the easiest to estimate using kernel density estimation, and 

can be used as a reference point. The beta(4,4) density is shown in Figure 2.2. Using 

the beta(4,4) density as reference point, the efficiency measure of the kernel estimator is 

defined as 

Table 2.1 summarizes the efficiency measure for several densities. For the definition and 

graphical inspection of these densities the reader is referred to Section 5.1. From Table 2.1 
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Figure 2.2: The beta(4J) density 

Table 2.1: Efficiencies of the kernel estimator for several densities 

it is clear that although the beta(4,4) density is the easiest to estimate, the normal 

density is almost as easy. This is useful information in the context of transformation 

kernel density estimation, since this enables us to transform data to normality and then 

estimate the density of the transformed data with a high efficiency. Hence, this serves as 

a motivation for a transformation to normality when applying the transformation kernel 

density estimator. This topic is explored in greater detail in Chapter 4. Chapter 3 is 

devoted to transforming data to normality. 
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2.1.3 The choice of an appropriate kernel function 

In this section the choice of an appropriate kernel function is explored, after which a 

few possible kernel functions will be defined for utilization. The kernel function, k, is a 

rth-order kernel if (using notation from Section 1.2, ( la))  

It should be noted that for higher-order kernels, (r > 2), the restriction that k must 

be a density function is relaxed and consequently better rates of convergence of AMISE 

to zero can be obtained. This, however, is not advised since the density restriction on 

k ensures that the kernel estimate will be a density. For this reason only second order 

symmetric kernels will be considered in this dissertation. The interested reader is referred 

to Wand and Schucany (1990), Miiller (1991), Jones and Foster (1993) and Wand and 

Jones (1995) for a discussion of these higher-order kernels. 

Following the same logic from Section 2.1.2 we will find the optimal kernel function in 

the AMISE sense. Recall that from (2.15), using an optimal bandwidth (see (2.14)), the 

resulting AMISE is given by 

5 
inf AMISE [f(.; h)] = - C ( k ) ~ ( f " ) ' / ~ n - ~ / ~ ,  
h>O 4 

where C(k) = p2(k)2/5~(k)4/5 = {p2(k)1/2~(k)}4/5 is a constant only depending on 

the kernel function k. Since this equation only depends on the kernel function via the 

constant C(k), it should be clear that an optimal kernel will minimize this constant. C(k) 

is however not scale invariant. Hodges and Lehmann (1956) showed that the quantity 

C(k) is minimized for the kernel function 

I O7 
otherwise, 

where a is an arbitrary scale parameter. The simplest version of ka corresponds to 

a2 = 115, and is often called the Epanechnikov kernel. This kernel is given by 

- x 2 ,  -1 < x < 1, 

otherwise. 
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The Epanechnikov kernel is shown in Figure 2.3. Using this kernel as reference point, 

Figure 2.3: The Epanechnikov kernel 

consider the kernel efficiency measure 

The kernel efficiency measure (2.19) can be used to compare the performance of other 

kernels to the optimal Epanechnikov kernel. 

Next, two popular choices of the kernel functions will be discussed and subsequently 

compared to the Epanechnikov kernel using (2.19). These two choices are summarized in 

the following list 

0 The standard normal density. This is a kernel with unbounded support and is 

defined as 
1 e-f12, k(x) = - -m < x < +m. 

Jz;; 
0 The compactly supported "polynomial kernel". 

T 
where k, = r > 0, s 2 0 and B ( s ,  r )  is the beta-function. 

2 B  ( s  + 1,  :)' 
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The compactly supported "polynomial kernel" gives rise to five popular kernels, for cer- 

tain parameter choices, namely 

r Rectangular or uniform kernel: s = 0. 

w Epanechnikov kernel: T = 2, s = 1 

w Biweight kernel: T = 2, s = 2. 

r Triweight kernel: r = 2, s = 3. 

r Triangular kernel: T = 1, s = 1. 

Note that by setting a = -1 and b = 2 in the definition of the beta(a,P) density given 

in (2.17) it also follows that the rectangular kernel is the beta(l,l),  the Epanechnikov 

kernel is the beta(2,2), the biweight kernel is the beta(3,3) and the triweight kernel is 

the beta(4,4). Using (2.19) and (2.20) the formula for these kernel functions and their 

efficiencies are displayed in Table 2.2. The message from Table 2.2 is that AMISE is 

Table 2.2: Kernel functions and their efficiency 

1 Biweight 1 z(1 - x2)2 0.994 I l l  I 

Kernel Function 

I Triweight I g(1 - x ' ) ~  ( 1 0.987 1 
Triangular 0.986 

0.951 

I I I 

Definition 

Rectangular I 1 0.930 / 

insensitive to the choice of the kernel function k. It should be noted that uniform kernels 

are not very popular in practice since the corresponding density estimate is piecewise 

constant, and even the Epanechnikov kernel gives an estimate having a discontinuous 

first derivative which can be unattractive because of its "kinks". We conclude, therefore, 

p2(k) Eff (k) 
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that k should be chosen based on other issues, such as ease of computation. For this 

reason the standard normal kernel is used in this dissertation. 

2.1.4 The choice of a smoothing parameter 

There exists an extensive literature on the selection of the optimal data-based smoothing 

parameter. In this section we will present a short summary of the existing methods after 

which the normal scaled rule of thumb and the high-tech plug-in procedure of Sheather 

and Jones (1991) will be discussed in some detail. The normal scaled rule of thumb plays 

an important role in understanding the high-tech procedure of Sheather and Jones (1991) 

and can be considered as a special case of this procedure. The authors, Sheather and 

Jones (1991), consider their selection procedure to be second to none in the existing liter- 

ature. It should therefore be no surprise that we based all bandwidth selection required 

in this dissertation on this widely regarded procedure. Nevertheless, we will now proceed 

with a short literature study of the most prominent procedures. 

Rudemo (1982) and Bowman (1984) proposed the least-squares cross-validation proce- 

dure which is based on the MISE expansion of the form 

MISE [ f ( . ;  h ) ]  - / f (x)'dr = E [/ f i x ;  h)'dx - 2 / f ( x ;  h )  f ( x ) ~ x ]  . 

The authors propose to minimize 

2 n n 

L S C V ( ~ )  = / f ( x ;  h)'dx - C C kh (X i  - X j )  r 
n(n - 1 )  i=l j=l 

with respect to h. For the least-squares cross-validation procedure, the discrepancy mea- 

sure used is the exact MISE. Scott and Terell (1987) proposed using the asymptotic 

counterpart, i.e., AMISE presented in (2.13). The resulting selector is called the biased 

cross-validation method and minimizes 

with respect to h,  where 
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Miiller (1985), Staniswalis (1989) and Hall, Marron and Park (1992) proposed the smoothed 

cross-validation bandwidth selection procedure that is based on a approximate MISE dis- 

crepancy measure given by (see (2.8)) 

1 
MISE I f ( . ;  h ) ]  i - R ( k )  + 1 (kh  * f - f)' ( x ) d x .  

n h  

The proposed procedure minimizes 

where 
2 

1 3 ( h )  = 1 (kh * jl(.; g) - fd.; d) ( x )dx .  

and 
I 

.fi(.; 9)  = - C 1, (X - Xi) , 
n i=1 

is a pilot kernel density estimator with a possibly different kernel 1 and bandwidth g. 

Chiu (1991a), Chiu (1991b) and Chiu (1992) rewrote the MISE expression [see (2.6)] in 

terms of the characteristic function, which he then minimizes utilizing cross-validation. 

Chiu also considered the MISE discrepancy measure obtained for the density estimator: 

where +(t) is the sample characteristic function, to determine the cut-off frequency A 

required in his cross-validation procedure. Lastly, Chiu considered the AMISE optimal 

bandwidth presented in (2.14) and found an estimator for R ( f " )  based on the character- 

istic function. For a more extensive discussion concerning the methods described above, 

the reader is referred to Wand and Jones (1995) and Koekemoer (1999). Simulation and 

comparative studies can be found in Park and Marron (1990), Park and Tbrlach (1992), 

Cao, Cuevas and Gonzdez-Manteiga (1994), Loader (1995), Jones et al. (1996), Chiu 

(1996) and Koekemoer (1999). We will now proceed with a detailed discussion concern- 

ing the normal scaled rule of thumb and the high-tech procedure proposed by Sheather 

and Jones (1991). 

Normal scaled rule of thumb 

In the rest of this section we will assume that the kernel function is the standard normal 
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density, thus k(.) = q5(.). Recall that from the AMISE point of view we may write the 

asymptotic optimal bandwidth (2.14) as 

From this expression it is clear that the only unknown value is R(fr'). A novel idea is 

to assume that the unknown density f is a normal density with mean p and variance 

u2. This can then be used to calculate ~ ( f " )  and consequently the asymptotic optimal 

bandwidth. Using the properties of the normal distribution as discussed in Section 1.2, 

in specific (2d), (2f) and (2g), we find that 

Replacing the quantities calculated above into expression (2.14) the normal scaled rule 

of thumb is found to be 

To implement (2.21) it is necessary to estimate the scale parameter u, which can be af- 

fected by outlier data points. Consequently, a larger bandwidth will be obtained, meaning 

that the density estimate will tend to oversmooth. Silverman (1986) p.47 suggested the 

use of the robust scale estimator 

where and G3 are the first and third sample quartiles respectively, s is the usual sample 

standard deviation and a(.) is the standard normal distribution function. Throughout 

the discussions below this scale estimator will be used when determining the bandwidth 

for any data, i.e., the original input data and any subsequent transformed data. For a 

discussion on more sophisticated scale estimates the reader is referred to Janssen, Marron, 

Veraverbeke and Sarle (1995). It is also important to note that in the context of data 

transformation, standardization is required, and the scale estimate is determined in a 

similar fashion as above. 
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Estimation of density functionals 

In order to calculate the asymptotic optimal bandwidth given in (2.14), one needs to 

find an estimate of the unknown quantity ~ ( f " ) .  Once this estimate is obtained, one can 

plug the estimate into expression (2.14) to find the asymptotic optimal bandwidth. This 

procedure is in essence the highly regarded Sheather and Jones (1991) plug-in method. 

It is therefore essential to find a good estimate for the unknown quantity. The quantity 

~ ( f " )  fulfil an important role in the context of density estimation, since this quantity is 

used to 

a measure the difficulty of estimating f (see Section 2.1.2), 

0 calculate the well respected Sheather and Jones (1991) plug-in bandwidth, 

0 find the appropriate transformation parameters. (see Section 3.3.3 and Section 4.1). 

It is therefore imperative that the reader should understand the estimation procedure 

of ~ ( f " ) .  It should also be noted that ~ ( f " ' ) ,  R(fi"), . . . will be required in the method 

of Sheather and Jones (1991). In addition, ~ ( f ' )  plays an important role in the con- 

text of kernel distribution function estimation (see Section 2.2.1 and Section 2.2.3 for 

more detail). Hence, an attempt is made to find an estimate for the general functional 

R(f(')), s = 0,1,2 ,3 , .  . .. The bandwidth used to estimate this quantity is denoted by g 

and the kernel function by w. For all practical purposes we will set w(.) = k ( . ) ,  where 

k ( . )  is the kernel function used for estimating the density f ,  when the estimate of R(f(")) 

is employed. 

With the assumption of sufficient smoothness on f ,  we may write 

(with m = 2s and s = 0,1,2 , .  . .) 

It is therefore appropriate to consider estimation of functionals of the form 

~ ( f " ~ ~ ) )  = = /f(m)(x) f (x)dx = E [ f " ) ( ~ ) ]  , (2.23) 

where m will be an even integer. Hall and Marron (1987) and Sheather and Jones (1991) 

proposed the following estimator 
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Hall and Marron (1987) argued that the terms for which i = j do not involve the data 

and can be thought of as bias terms, and so they proposed an estimator which explicitly 

excludes those terms. However, Sheather and Jones (1991) showed that the excluded 

terms can actually be used to improve the estimator by cancelling other bias terms. In 

order to find the bandwidth, g, an expression for the asymptotic mean squared error of 

&(g) is required. 

Before proceeding with the derivation, consider the following assumptions 

1. The kernel w is a symmetric kernel of order r, r = 2,4 , .  . . , possessing m derivatives, 

such that 

(- l)(m+r)/2+lw(m) (O)P&J) > 0. 

2. The density f has p continuous derivatives that are each ultimately monotone, 

where p > r. 

3. The bandwidth g = g, is a positive-valued sequence of bandwidths satisfying 

lim g = 0 and lim ng2"+' = co. 
n-m n-m 

Thus g2"'+' decays to zero at a slower rate than n increases to infinity. 

Assumption (3) is made mainly to ensure that the asymptotic variance term converges 

to zero, see expression (2.41) for more detail. From this assumption it is clear that g can 

be restricted to the form 

g = c d Z m + ' )  for 0 < t < 
1 

2 m +  1' 
(2.25) 

where c is a positive finite constant. The realization of this restriction will come in handy 

when minimizing the asymptotic mean squared error. Furthermore, we may write the 

estimator (2.24) as 

1 1 
4"(9) = , C C wjm) ( X i  - X,) + -wim)(0), 

n i=1 j=1 n 
j#i 

where wim)(0)/n is a constant. By noting that 
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we are now able to derive an expression for the asymptotic mean squared error of 4,(9). 

Using (2.26) and (2.27) we will calculate the asymptotic bias and variance in turn. For 

the mathematical derivation of the results presented below the reader is referred to Wand 

and Jones (1995) and Koekemoer (1999). 

The following lemma will be needed to derive an expression for the bias term. 

Lemma 2.1: I f f  is sufficiently smooth then 

/ - Y ) ~ ( Y ) ~ Y  = / W A X  - Y ) ~ ( ~ ) ( Y ) ~ Y  and (2.28) 

/ / ' " ) ( Y ) ~ ' " ( Y ) ~ Y  = / f ( " + " ( ~ ) f  (YPY = $m+r. (2.29) 

Using (2.26) it follows that 

1 1 
E [Gm(g)] = ( I  - ;) E [wjm) ( X I  - X Z ) ]  + -wjm)(0). n (2.30) 

From (2.30) it is clear that an expression is needed for E [win) ( X I  - X Z ) ]  . Using (2.28) 

and (2.29) it can be shown that 

9' 
E [wjm) ( X I  - xz)] = *, + -p(~)$,+, r .  + 0 (gT+l) . (2.31) 

Using (2.30) and (2.31) we can now calculate the asymptotic bias of Gm(g) 

Bias [&n(g)] = ~ * r n ( g )  - $m 

1 9' 
= -wLm)(0) + -pr(w)*,+, + 0 (gP+') . 

n r ! 
(2.32) 

The following lemma will be needed to derive an expression for the variance term 

Lemma 2.2: 

1. Let X I ,  X Z ,  . . . , X ,  be a set of i.i.d. random variables and let 

U = 2 5  ~:c: =;lGi+, S ( X i  - X i ) ,  where the function S is symmetric about zero. 

Then 
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2. wfm) is a symmetric function for m even. 

3. With the assumption of significant smoothness on f 

We will now proceed to derive the asymptotic variance term. Using (2.24), (2.33) and 

( 2 )  from Lemma 2.2 it follows that 

- - 2(n  - 1)  
V a r  [wim) (XI  - x Z ) ]  

n3 

4 ( n  - l ) (n  - 2) + Cm [ w p  ( X I  - X 2 )  , wJm) (X2 - X3)]  . (2.35) 
n3 

In order to calculate (2.35) it should be noted that we may write the variance term as 

V a r  [w?) ( X I  - xz)] = E [wim) ( X I  - X2)]  ' - [EW~" ' ) (X~  - X 2 ) ]  , (2.36) 

and the covariance term as 

c o u  [ w p  (XI  - X z )  , wim) (XZ - x3)] 

[")(XI - X ~ ) W ~ ; " ) ( X ~  - x3)] - Ewg = E [wg '"1 (x, - X ~ ) E W ~ ~ ) ( X ~  - X3). (2.37) 

The calculation of V a r  [ 4 m ( g ) ]  will proceed as follows: first we will calculate the val- 
2 

ues E [wim)(Xl - X Z ) ]  , E W ~ ~ ) ( X ~  - X Z )  and E [w~'")(X1 - X ~ ) U J ~ ~ ) ( X ~  - x ~ ) ]  , we will 

then plug these values into (2.36) and (2.37), which will be used to calculate the asymp 

totic variance expression given in (2.35). 

First we find 

Secondly, using (2.28) it follows that: 
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Lastly, using (2.34) we find 

The asymptotic variance Var [&(g)] can now be calculated by substituting (2.38), (2.39) 

and (2.40) into (2.36) and (2.37), then substitute the results into (2.35). The result of 

these substitutions are 

Using the expressions for the asymptotic bias (2.32) and the asymptotic variance (2.41), 
A 

we can now proceed to calculate the asymptotic mean squared error of &(g) using (2.27). 

It follows that 

In this section will find the optimal data-driven bandwidth by minimizing the AMSE given 

in expression (2.42). At first sight this seems a daunting task. However, by utilizing the 

restricted form of g, given in (2.25), the minimization process can be simplified. One 

would hope that the asymptotic expression (2.42) will converge to zero as n 7- co. This 

will happen if both the asymptotic variance and asymptotic squared bias terms converge 

to zero. By inspecting (2.42) it is clear that the required convergence will be obtained if 

both of the terms 

converge to zero. The first term given above belongs to the asymptotic variance and 

the second term belongs to the asymptotic squared bias expression. Recall that the 
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restriction on g, given in (2.25), is given by 

Using this choice of g we find that 

must both converge to zero. The convergence is obtained if 

-2 + t ( 2 m  + 1 ) ( 2 m  + 1 )  < 0 and - 2 + t ( 2 m  + 1 ) ( 2 m  + 2 )  < 0 ,  

implying that 

O < t <  
2 

and 0 < t < 2 
( 2 m  + l ) ( 2 m  + 1) ( 2 m  + l ) ( 2 m  + 2 )  ' 

From the expressions above it is clear that if we choose the value of t according to the 

variance term, the squared bias might not converge to zero, but, if we choose t according 

to the bias term, both the squared bias and variance terms will converge to zero. For 

the reason outlined above, we will minimize (2.42) by allowing the bias term to vanish. 

Thus, by setting the bias term (see (2.32)) equal to zero we obtain the AMSE optimal 

bandwidth 
ll(m+r+l)  

n-ll(m+r+l) SAMSE, ,  = 

Replacing the AMSE optimal bandwidth (2.43) into (2.42) yields that 

if we choose T = 2 (second order kernel) and m = 4 for the estimation of G4 = ~ ( f " ) .  

The method of Sheather and Jones 

In this section the well respected plug-in method of Sheather and Jones (1991) will be 

described. Before proceeding consider the following short summary of important previous 

results. 

a From (2.14), the AMISE optimal bandwidth for estimation of f is given by 
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From (2.24), the estimator 

1 "  I n n  
Gm(g) = - C pyx,; g)  = 7 C C w y  (Xi - Xj) , 

n i=1 n i=lj=l 

is proposed for the unknown parameter @, = R( f (m/2)) 

a From (2.43), the AMSE optimal bandwidth for estimation of @, is given by 

where T is the order of the kernel function w. Note that since the standard normal 

kernel is used in this dissertation we have T = 2. 

From the summary given above it is clear that in order to find an AMISE optimal 

bandwidth an estimate of G4 is required. The AMSE optimal bandwidth, g, needed to 

estimate $4 requires an estimate of g6.  Again using the kernel method to estimate g6, an 

estimate of $8 is required for the optimal AMSE bandwidth. In general and estimate of 

&+, is required for the estimation of @,,,. The procedure is therefore recursive. Sheather 

and Jones (1991) proposed to stop this recursive behavior after I stages by plugging in 

the normal reference for f in the l th  stage. Hence, the normal scaled rule of thumb (2.21) 

can be considered as a Sheather & Jones procedure with 1 = 0. 

Using a normal reference for f and properties of the normal distribution from Section 1.2, 

in specific (2f) and (Zg), it follows that 

(-1)m/2m! 
@ m =  I$m' b (X - P)&(x - P ) ~ X  = for m even. (2.44) 

(2u)"+l (m/2)!fi 

AN EXAMPLE: 

SHEATHER AND JONES (1991) PROCEDURE WITH 1 = 2 and w = $ 
- 

For comfortable reading we will use the notation g ,,,,,, = grn and $,(g ,,,,,,) = Ilr, 

in the following illustration. We will also use the standard normal kernel function in all 

the estimation procedures, thus k ( . )  = w(.) = $(.). 

Step 1 Estimate $8 using the normal reference, thus 

105 
= 32fi59'  

[ using (2.44), and @ as defined in (2.22) ] 
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Step 2 Use 48 to estimate g6, thus 

1 " "  
4 6  = 7 x x d$) (Xi - Xi) , where " i-1 j=1 

1 e-z2/2 4(6)(x) = (x6 - 15x4 + 45%' - 15) - 
Jz;; 

[ using from Section 1.2, (2e) and (2f) ] 

In the expression above ij6 is obtained through direct application of (2.43), thus 

-24(6)(0) 'I9 -15 
8 6 = [  - 1  n-lI9, where pZ(4) = 1 and @)(0) = - 

~ 2 ( 4 ) * 8  6' 
[ using from Section 1.2, 2(l)i and 2(l)iv ] 

Step 3 Use 4 6  to estimate 7 j 4  = ~ ( f " ) ,  thus 

I n n  (4) 1 
4 4  = 7 x 4Q4 (Xi - X 3 ) ,  where 4 ( 4 ) ( ~ )  = (x4 - f,x2 + 3) -e-=2/2 

i=lj=1 Jz;; 

[ using from Section 1.2, (2e) and (2f) ] 
In the expression above ij4 is obtained through direct application of (2.43), thus 

[ using from Section 1.2, 2(l)i and 2(l)iii ] 

Step 4 Use 4 4  to calculate the AMISE optimal bandwidth, h, (direct plug-in) 

[ using from Section 1.2, 

In the example above the two-stage procedure was described. One can, however, speculate 

as to what a suitable value of I will be. Wand and Jones (1995) simulated 500 bandwidths 

(iDPI,L) using the direct plug-in rule with 1 = 0,1,2 ,3  for samples of size 100 from the 

skewed bimodal density (see Section 5.1 for the definition and a graph of this density). 

Subsequently they calculated loglo (iDpI,,) - loglO(hMISE) and estimated the densities 

from these samples. The reader is referred to Figure 3.4, p. 73, of Wand and Jones 

(1995) for inspection of the results, from which it is clear that as 1 increases the selected 

bandwidth becomes less-biased, however, the extra functional estimation steps for larger 
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I lead ta increased variability in the selected bandwidth. Hence, a variance-bias trade-off. 

According to some theoretical considerations, Aldershof (1991) and Park and Marron 

(1992) suggest to choose I to be at least 2, with I = 2 being a common choice and 

consequently implemented in this dissertation. Sheather and Jones (1991) also suggested 

a so-called solve the equation method, which will not be considered in this dissertation. 

2.1.5 Boundary bias 

In this section we will explore the behavior of the kernel density estimator near the 

boundary domain of the random variable considered, provided that the random variable 

is naturally bounded from below, above or both. Consider the i.i.d. random variables 

XI, X 2 , .  . . , X, with support on [a, b]. Suppose that the associated density is estimated 

using the kernel density estimator (2.1), with the usual restrictions on the kernel function, 

i,e., k is a nonnegative symmetric kernel function so that / k ( r ) d r  = 1, / i k ( r ) d r  = 0 

and 1 i Z k ( z ) d z  < m and the usual assumptions for the asymptotic calculations to be 

valid with special reference to the restriction lim,,, h = 0 and lirn,,, nh = a. Then 

from arguments leading to the bias expression (2.10) it is clear that from asymptotic 

considerations we may write 

In what is to follow it will become apparent that the kernel function k plays an important 

role in the occurrence of boundary bias. Hence, we will consider the behavior of the ker- 

nel estimates at the boundary using both the compactly supported "polynomial kernel" 

(-1 5 z 5 1) and the standard normal kernel function which enjoys unbounded support. 

The reader is referred to Table 2.2 for a summary of these kernels. For explanatory pur- 

poses, the standard exponential population density and the uniform population density 

on [O,1] will be considered. These densities are bounded with the support (0 ,  +co) and 

[O, 11 respectively. 

Boundary behavior when using compactly supported "polynomial kernels" 

By positioning ourselves at the lower bound a, using (2.45) and the fact that ( a  - b ) / h  + 

-a and (b - a ) / h  + +m since lim,,, h = 0, it should be clear that 

0 0 1 
~ j ( o ;  h) = / ( a )  * - b  k ( z )dr  + O ( h )  = / ( a )  J !+)dl + ~ ( h )  = - / ( a )  + ~ ( h ) ,  - 

h -1 2 



CHAPTER 2. TWO NONPARAMETRIC ESTIMATION METHODS 32 

and similarly, if the support is bounded from above, then a position assumed at the 

bound b will result in 

b - o  1 1 
~ f ( b ;  h) = f (b) /* k(z)dz + O(h) = f (b) / k(z)dz + O(h) = f (b) + O(h). 

0 0 

From the two expressions above and (2.45) it is clear that 

0 Half of the actual density is returned on expectation at the boundaries. 

0 The order of the remaining bias terms will reduce from 0(h3) (for densities with a 

unbounded support) to O(h) in the region of the boundaries. 

0 In the interior (see later on for a definition of the interior) of the bounded support, 

no boundary effects are detectable. 

One needs to explain this phenomenon mathematically in order to rectify it. The oc- 

currence of this phenomenon is easily understood once we inspect the actual form of the 

kernel density estimator given in (2.1) ,i.e., 

From the expression above it is clear that the kernel estimator is an average of n kernel 

functions evaluated in the points (x - Xi)/h and scaled according to h. Consequently, 

although the density f might be compactly supported, the kernel weights will be signif- 

icantly different from zero outside the compactly supported domain. This means that 

the support of f (x;  h) will be wider than the support of f (x). The support of the kernel 

estimator, f(x; h), depends on the support of the kernel function k. For the "polynomial 

kernels" considered here, the kernel weight contributions to f^(x; h) will be zero for any 

Consider the order statistics X(l), X(z), . . . , X(,), then, the inequalities above imply that 

the kernel estimator will be compactly supported on the interval 

which, in addition, means that extrapolation beyond these bounds is impossible. This 

serves as another motivation for using the standard normal kernel, for which extrapolation 
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is possible further into the tails of densities with an unbounded support. Consider the 

positions a + h and b - h, then using (2.45) we find 

1 +1 
~ f ( b  - h ;  h) = f (b - h )  + ihZ f f ' (b  - h )  1 Z k ( z ) d z  + 0(h3).  

-1 

The expressions above is also true for any point, x ,  in the interval 

which is defined as the interior of the bounded domain where no boundary bias is present. 

Hence, for the "polynomial kernels" boundary bias is restricted to the domains 

[a; a  + h )  and (b - h; b] 

Broadly speaking, one may think of boundary bias as the kernel estimator having to 

find a compromise between estimating the two distinct values of f on either side of the 

boundary. An example is shown in Figure 2.4 using the standard normal kernel. It was 

noted earlier that the effect of boundary bias is determined by the kernel used, thus, 

preceding some popular solutions, a short discussion now follows to illustrate this effect 

when the standard normal kernel is used. 

Boundary behavior when using t h e  unbounded standard normal kernel 

For the standard normal kernel, k( . )  = d( . ) ,  defining the support of the kernel estimator 

is not as clear since the support of the kernel function is infinite. However, using the fact 

that a random variable following the standard normal distribution contains almost all of 

its possible values between the bounds [-4; $4 ] we may argue that 

The kernel weight contributions to f ( x ;  h )  will then be zero for any x  where 

The inequalities above imply that the kernel estimator will for all practical purposes be 

compactly supported on the interval 
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where X( l )  and X(,) are the minimum and maximum values respectively. Similar argu- 

ments as presented previously lead to the domain 

[ a ; a + 4 h )  and ( b - 4 h ; b ] ,  

where boundary bias is observed and 

where boundary bias is absent. A comparison of (2.46) with (2.47) reveals that the domain 

in which boundary bias is expected is larger when using a standard normal kernel as 

opposed to a "polynomial kernel". Although the conclusion is correct, one should keep in 

mind that the AMISE optimal bandwidths utilized for each of these kernels are different. 

To explain this, consider the Epanechnikov kernel for which it is easy to verify that, using 

(2.14), the AMISE optimal bandwidth is given by 

In comparison, the AMISE optimal bandwidth for the standard normal kernel is given 

Consequently, the AMISE optimal bandwidth obtained from the Epanechnikov kernel is 

more than twice the size of the AMISE bandwidth based on the standard normal kernel. 

Hence, the domain in which boundary bias can be expected using the standard normal 

kernel is greater than that of the Epanechnikov kernel but not four times greater as indi- 

cated in the expressions (2.46) and (2.47). It is merely twice as big. It is evident that the 

boundary bias effect could be combated far more efficiently by only considering compactly 

supported kernels. Using the standard normal density as kernel, the boundary bias effect 

is explained graphically using 10 data points from the standard exponential and the uni- 

form distribution on [ O , l ] .  The output is displayed in Figure 2.4. The kernel weights are 

superimposed on both of these graphs, showing the cause of boundary bias. Note that for 

the uniform density the kernel estimate attempts to estimate 1 in the domain [ O , l ]  and 

0 elsewhere. Hence, a compensation is made leading to the appearance of boundary bias. 
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Weights causing boundary bias 

k z ; h )  

. 
4.6 6 .6  -1.11 1 . 6  -0.8 -0 .3  0.2 0.i 1.2 1.1 

Figure 2.4: 
Left Panel: boundary bias for n = 10 values from the standard ezponen- 
tial distribution 
Right Panel: boundary bias for n = 10 values fmm the uniform distribu- 
tion on [O,1] 

Some popular solutions 

Since the location of the boundary is usually known, f ( x ;  h )  can be adapted to achieve 

better performance in the boundary vicinity. There is an extensive literature on how to 

correct this boundary effect. From the discussion above it is clear that the boundary 

effect is more efficiently combated using compactly supported kernels. It is therefore 

no surprise that the existing literature utilizes these kernels. The plug-in bandwidth 

selection procedure proposed by Sheather and Jones (1991) may be employed in the 

discussion below. For convenience, consider the frequently occurring case where the 

support of the unknown density f is in the interval [0, co). For this domain and using a 

compactly supported kernel function we find that from (2.45) 

a 
where v l r ( k )  = / zlk(z)dz and o = min(z/h, 1). Fmn the expression above an obvious 

-1 

first solution is to normalize f ( x ;  h )  by dividing with ~ ~ , ~ ( k ) ,  this will achieve consistency 

near the boundary, but still results in O(h)  bias there. 

Alternatively, we may replace each observation Xi with its positive reflection -Xi and 

consider the estimation problem of f at and near 0 based on the extended sample 
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{XI,. . . , X,, -XI,. . . , -Xn). This is the ordinary reflection method of Schuster (1985), 

Silverman (1986) and Cline and Hart (1991). The resulting density estimator utilized in 

Silverman (1986) is then given by 

1 "  
f(x; h) = - x [ k h ( ~  - Xi) + kh(x + Xi)] . 

n i=1 

Another possible solution is to replace the kernel function with a secalled "boundary 

kernel". These boundary kernel functions reduce to ordinary kernel functions in places 

where no boundary bias is present and changes form for each value of x where boundary 

bias is present. One family of boundary kernels is given by Gasser and Miiller (1979) and 

where k(.) is any of the "polynomial kernels." From the expression above it is clear that 

the boundary kernel will reduce to the ordinary kernel function, k(.), if a = 1, i.e., x > h. 
Another boundary kernel that can be used is (see Zhang, Karunamuni and Jones (1999)) 

Note that if a = 1, i.e., x > h, then the boundary kernel given above reduces to the 

Epanechnikov kernel. The reflection idea and the use of the boundary kernel are also 

easily implemented for the case where f is compactly supported on the interval [a, b], 

with minor adjustments. For a boundary kernel, the kernel function is varying in the 

region where the boundary bias is present. Zhang and Karunamuni (1998) proposed to 

vary the bandwidth in this region as well. Using the boundary kernel k,(z) the resulting 

boundary kernel estimator with bandwidth variation function is then defined as 

where h, = (2 - a)h. Again note that the estimator given above reduces to the usual 

kernel estimator in regions where boundary bias does not exist. 

Zhang et al. (1999) proposed a more advanced reflection technique where a transfor- 

mation is used to generate pseudo data beyond the left endpoint of the support of the 

density. The kernel estimator is then of the form 

1 
f(x; h) = - x [k h(x - Xi) + kh(x + gn(Xi))], 

n i=1 
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where g,(x) = x+dnx2+Ad~x3.  With the requirement that 3 A  > 1 and the recommended 

value being A = 0.55. Zhang et al. (1999) suggest d, = (log f:(h) - log f : ( O ) )  / h  where 

f;(h) = fn(h)  + l /n2 and fA(0) = max (fB (0) ,  l /n2)  . Here f,(.) is the ordinary kernel 

density estimator as defined in (2.1) and j ~ ( . )  is as defined previously in this discussion. 

Another pseudo data method estimator is that of Cowling and Hall (1996), defined by 

where X(-i) = -5X(i13) - 4 X p p )  + (10/3)X(i)  and X(i )  is the ith order statistic of 

X I , .  . . , X,,. The authors suggest using m = ngllO. 

Jones and Foster (1996) proposed the nonnegative adaptation estimator 

where f ( x ;  h) = [ l / ( n h  ~z~ k( z )dz ) ]  C,"=, k (9) and where f ( x ;  h )  may be replaced by 

a boundary kernel estimate. Alternative boundary correction procedures are proposed 

by Hjort (1996), Alberts and Karunamuni (2003) and Burnham, Anderson and Laake 

(1980), among others. 

From the discussion above it is clear that the topic of boundary bias has been studied 

extensively. In this dissertation the transformation method will be employed to combat 

boundary bias. Marron and Ruppert (1994) utilize the kernel transformation estima- 

tor defined in (2.48) below to reduce boundary bias where the support of the unknown 

density f is in the interval [ O , l ] .  They propose to transform the data, using parametric 

transformations, to a density that has its first derivative equal to 0 at both boundaries 

of its support. The density of the transformed data is estimated, and an estimate of the 

density of the original data is obtained by a change of variable. Although Marron and 

Ruppert (1994) estimate the density of the transformed data using a reflection estimator, 

the usual kernel density estimator will be employed in this dissertation. In this disser- 

tation we will consider the transformation Y,  = t ( X i ) ,  that transforms the input data 

to normality. To avoid confusion with the bandwidth, g, used to estimate $J, we will 

use the notation t( .)  to indicate the transformation function in the discussion to follow. 

The transformation function will, however, be redefined in Chapter 4,  where gx(.) will 

indicate the transformation to normality. Since the normal distribution has unbounded 
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support, it is clear that the boundary bias problem for the density estimate of the random 

variable Y is eliminated. Using standard probability theory the density estimate of the 

input data is then given by 

fxb)  = tl(x)fy ( t b ) ) ,  (2.48) 

where fy (t(x)) is the usual kernel density estimator of the transformed data as defined in 

(2.1). A discussion on how to select the AMISE optimal bandwidth required is presented 

in Chapter 4. The idea of a transformation to normality is conceivable as a more natural 

solution for boundary bias, since 

Boundary bias is eliminated for the kernel density estimator of the random variable 

Y, consequently the kernel estimator of the random variable X will be unaffected by 

boundary bias provided that the transformation t(.) does not inherit the boundary 

bias. The latter statement is important since, for some nonparametric transfor- 

mation functions the boundary bias problem is evident in the derivative of the 

transformation function. The reader is referred to Chapter 4 for more detail. 

The boundary bias problem is addressed automatically and for any bounded sup- 

port, i.e., [a, b], [a, +m) or (-a, b]. Hence, no special adaptation is required to 

implement the transformation procedure for different bounded supports. 

Provided that the transformation function t(.) does not inherit the boundary bias, 

the standard normal kernel function can be used as opposed to one of the "polyno- 

mial kernels." 

From the discussion above it is apparent that the transformation t(.) should be well 

defined and be able to transform any data successfully to normality. The reader is 

referred to Chapter 3 for a discussion of transformations and the introduction of a new 

optimal transformation to normality. 

2.1.6 Spurious bumps in the tails 

In this section the behavior of the kernel density estimator is inspected in regions where 

data are scarce. To illustrate this behavior, consider the kernel density estimator (2.1) 

with k ( . )  = $(.) for 10 data points from the kurtotic unimodal distribution (see Sec- 

tion 5.1 for the definition of this density) displayed in Figure 2.5. The tail region of 

the kernel estimator for the exponential data presented in Figure 2.4 also displays this 
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Weirrhts causin 

Figure 2.5: The kernel density estimator for 10 data 
points jbm the kurtotic mimodal distribution with the 
kernel weights superimposed 

behaviour. Recall that from Section 2.1, using the standard normal density function as 

kernel, one can think of the kernel density estimator (2.1) at a specific point, say x, as the 

average of n normal density functions, each with mean Xi and standard deviation h. With 

this realization, the spurious bumps present in Figure 2.5 are easily explained. From ar- 

guments leading to (2.47) one can conclude that the weight contribution of the standard 

normal kernel function at the value X,  to the kernel estimator at a specific point, x, is 

zero if Xi is further than 4 bandwidths away from x. Similarly, from arguments leading 

to (2.46) it is clear that the weight contribution of the "polynomial kernel" function at 

the value Xi to the kernel estimator at a specific point, x, is zero if Xi is further than 1 

bandwidth away from x. Consequently, we find that in regions where data are scarce only 

a limited amount of kernel functions contribute to the kernel estimator. Hence, spurious 

bumps occur in these regions, usually the tail regions of a distribution. It should be 

noted that although the "polynomial kernels" are more effective at combating boundary 

bias, the performance of these kernels is worse than that of the standard normal kernel 

at combating spurious bumps in the tails! 

Some popular solutions 

One natural way to deal with the occurrence of spurious bumps is to increase the band- 

width. However, from (2.13) it is clear that an increased bandwidth will result in a 
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density estimate that is less variable with increased bias, hence an over-smoothed es- 

timate. Abramson (1982) suggests to use broader kernels in regions of low density. To 

identify regions of low density a pilot kernel estimate at the points Xi  is obtained which is 

then used to scale the global AMISE bandwidth h.  The procedure is outlined as follows: 

S tep  1 Find a pilot kernel estimate f ( x ;  b) that satisfies f(xi; b) > 0 Vi .  

Step  2 Define the local bandwidth factors X i  by 

1 "  
where log g = - log f (xi; b). 

n i=, 

g is the geometric mean of f(xi; b) and a is the sensitivity parameter, such 

that 0 5 a 5 1. 

S t ep  3 Define the adaptive kernel estimate f ( x ;  h )  by 

where k ( . )  is the kernel function and h is the bandwidth. 

The procedure outlined above is not sensitive to the pilot estimate f ( z ;  b), thus the usual 

kernel density estimator (2.1) may be used with a quick and simple bandwidth such as 

the normal scaled rule of thumb presented in (2.21) and (2.22). In this dissertation, 

however, the method of Sheather and Jones (1991) is employed, hence, we let b = h.  

The larger the power a, the more sensitive the method will be to variations in the pilot 

density, and consequently greater differences are observed between bandwidths used in 

different regions. For the value a = 0, the adaptive kernel estimator reduces to the usual 

kernel estimator defined in (2.1). The recommended value a = $ is used in this disser- 

tation. The factor ga has the advantage of freeing the bandwidth factors from the scale 

of the data and imposes the constraint that the geometric mean of the Xi  Is is equal to one. 

Davison and Hall (1997) proposed a variable-bandwidth method that uses approximately 

equal amounts of information to estimate the density at all points. They argued that the 

amount of information, or number of data values, in the case of a compactly supported 

kernel, used to construct the estimate f ( x ;  h )  is approximately proportional to n h f  ( z ) .  

Therefore, an equal-information argument suggests choosing h = h ( x )  to ensure that 

h f ( z 1 h )  x E ,  where E > 0 represents the fraction of total information used to construct 
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each estimate. This motivates an empirical construction of the bandwidth as a function 

of E and is given by the following expression 

i, = inf { h  : hf(x1h) 2 E )  . 

Alternatively, the transformation kernel density estimator may be used to address the 

problem of spurious bumps. Recall that the transformation kernel density estimator 

(2.48), utilizing the transformation = t ( X i ) ,  is given by 

where h, is used to show the dependence of h on Y. Then, using the mean-value theorem, 

i.e., t'(vi) = ( t ( x )  - t ( X i ) ) / ( x  - X i )  where Q is between x and Xi,  we may write 

This shows that the transformation kernel density estimator with a bandwidth h, is 

similar to the conventional kernel estimator with bandwidth h,/f ( x ) .  Hence, the trans- 

formation kernel density estimator can also be viewed as an estimator with a variable- 

bandwidth. In this dissertation transformation to normality is investigated. The new 

optimal semi-parametric transformation proposed in Section 3.4 has the property that 

d ( x )  is proportional to the density of a parametric pilot transformation of the input data. 

Therefore, although not the same, striking similarities are evident between the transfor- 

mation method and the adaptive method of Abramson (1982), since both methods adapt 

the bandwidth according to density considerations. To avoid unnecessary detail at this 

stage, the reader is referred to Section 3.4 for the definition of the new transformation 

and to Chapter 4 for the implementation. For the transformation method, however, a 

lurking danger exists. To illustrate this, consider the transformation method as presented 

in (2.48). For a transformation to normality, it should be clear that fY ( t ( x ) ) ,  will be an 

estimate of the normal distribution, which is a light tailed distribution and consequently 

we can conclude that no spurious bumpiness will be present in the kernel estimate. How- 

ever, the bumpy behavior can spill over to the derivative d ( x ) ,  for certain nonparametric 

transformations. As a result the estimate f x ( x )  will have spurious bumps in the tails 

of the distribution. However, the optimal transformation to normality presented in Sec- 

tion 3.4 is constructed to avoid this from happening. 
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In conclusion the following remarks: From the discussion presented in Section 2.1.5 and 

Section 2.1.6 it is clear that the transformation kernel density estimator addresses both 

the boundary bias and spurious bumps in the tails problems associated with kernel density 

estimation, in a natural and automatic manner. It should therefore be no surprise that 

this method of density estimation is recommended in this dissertation for both the novice 

and experienced statistician. Chapter 3 is devoted to the topic of transformation, since 

identifying the correct transformation is essential for the success of the transformation 

kernel density estimator. 

2.2 Kernel distribution function estimation 

Let XI , .  . . , Xn be i.i.d. continuous random variables from the probability law Fx, having 

a continuous univariate density fx. Recall that from (2.1) the kernel density estimator 

is defined as 

where h is the bandwidth or smoothing parameter and k is the so-called kernel function 

satisfying 

a / k ( u ) d u  = po(k)  = 1, hence k is a density function. 

a k ( -u )  = k ( u ) ,  hence k is a symmetric function. 

The corresponding kernel distribution function estimator is then defined as 

"' 
where K(u)  = / k ( t ) d t ,  limu--, K(u)  = 0 and limu-+m K(u)  = 1 Although (2.50) 

-m 
suggests choosing the bandwidth h according to density considerations, i.e., h should be 

of order 0 (n-'I5) as presented in (2.14), AMISE calculations for the estimator (2.50) 

suggest that the optimal bandwidth should actually be of order 0 (n-'I3) . This is further 

explored in Section 2.2.1. Using the standard normal distribution function as kernel 
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function, i.e., K( . )  = a(.), the kernel distribution function estimator (2.50) at a point, 

say x ,  can be explained as the average of n normal distribution functions each being 

centered about Xi and having a standard deviation h. Consequently, values of Xi closer 

to x contribute more to the estimate at the point x. Using 10 data points from the 

standard normal distribution and K(.) = a(.), the kernel distribution function estimator 

is graphically explained in Figure 2.6. Another well-known distribution function estimator 

Figure 2.6: Kernel distribution function estimate for 10 
data points from the standanl normal distribution with 
the kernel weights superimposed 

is the empirical distribution function defined by 

1 "  
Fn(x) = - I x), 

n i=1 

where I ( . )  denotes the indicator function. It is easily verified that the expected value is 

E [F.(x)] = / 1 ( t  5 x)dF(t)  = F ( x ) ,  hence the empirical distribution function is an 

unbiased estimator. Furthermore, it is easily verified that 

1 
V ~ T  [Fn ( x ) ]  = -Var [I(Xl 1 x)] 

n 
1 

= -F(x)  [ l -  F(x)]  . 
n 

Next, the relationship between the empirical distribution function and the kernel distribu- 

tion function estimator will be explored. To assist in the establishment of the relationship 
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note that, as h -+ 0,  we find 

Hence, as h -+ 0,  we may write the kernel distribution function estimator as 

Let X p ) ,  X(2), . . . , X(,) be the associated order statistics of X I ,  X 2 , .  . . , Xn then, from the 

expression above, it is clear that p ( x ;  0 )  and Fn(x) differ only when evaluated in these 

order statistics, i.e., 

The relationship presented in (2.51) is important since the form p ( x ;  0 )  is often utilized 

instead of Fn(x),  for example in the construction of qq-plots (see Section 3.1) and in 

some of the parameter estimation procedures discussed in Section 3.3.3. It should also 

be pointed out that in some situations, such as finding an optimal transformation, the 

discrete nature of Fn(x) can be problematic and therefore a smooth estimate such as 

the kernel distribution function estimator should be implemented. Furthermore, Reiss 

(1981) shows that kernel smoothing (2.50) reduces the variance, ( l / n ) F ( x )  [l - F ( x ) ]  , 

of the empirical distribution function by an amount whose leading term is of the form 

-Clh/n,  where Cl > 0. However, the kernel estimator is not an unbiased estimator. It 

can be shown that the bias is of order 0 ( h 2 ) .  The reader is referred to the variance and 

bias expressions leading to (2.55) below for verification of the above-mentioned results. 

These results provide a theoretical justification for the usefulness of the kernel estimator 

(2.50). 

2.2.1 An appropriate discrepancy measure 

It was mentioned previously that AMISE calculations for the estimator (2.50) suggest 

that the optimal bandwidth is of order 0 (n-'I3) . To verify this claim let's proceed by 
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first calculating the asymptotic mean squared error and then find the global discrepancy 

measure AMISE. For the mathematical derivation of results presented in this section 

the reader is referred to van Gram (1982). The usual assumptions concerning the kernel 

functions k  and K are adopted for the following derivation. Usually k  is assumed to have 

a bounded support, but this assumption can be relaxed for certain kernel functions such 

as the standard normal density function which enjoys unbounded support. In addition 

it will be assumed that f is continuous, f ' ( x )  exists and that 

lim h  = 0  and lim n h  = co. 
n-co n-m 

It is well known that 

MSE [ F ( x ;  h ) ]  = E [ p ( x ;  h )  - ~ ( x ) ] '  

= V a r  [ p ( x ;  h)]  + { ~ i a s  [ p ( x ;  h ) ] I 2  . (2.52) 

Using (2.50), notation from Section 1.2, ( la) ,  the i.i.d. assumption and assuming that f 

and k  are both sufficiently smooth, we can calculate the following expectation 

/ 1 
Similarly, using the fact that k ( z ) K ( z ) d z  = -, we find 

2  

where CI = / z k ( z ) K ( z ) d z .  Using (2.53) and (2.54) we may write the asymptotic bias 

and variance terms as 

1  
Bias [ p ( x ;  h)]  = -h2 fr (x)p2(k)  + 0 (h3)  

2  

It should be noted that 2 h f ( x ) C l / n  can be increased by choosing larger values of h ,  

which will result in a smaller variance expression but larger bias, hence, a variance-bias 
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trade-off. Substitution of these values into (2.52) leads to the asymptotic mean squared 

error 

We can also define global measures of discrepancy between p ( x ;  h) and F ( x ) .  From 

similar arguments as those presented in the context of density estimation, we may define 

the mean integrated squared error 

2 
M I S E  [p(.; h ) ]  = 1 E [ P ( x ;  h )  - ~ ( x ) ]  dx .  (2.56) 

A more general choice would be to introduce weights so that the resulting discrepancy 

measure is always bounded, such a measure is given by 

W M I S E  IF(-; h ) ]  = 1 E [ F ( x ;  h )  - ~ ( x ) ] ' W ( x ) d F ( x ) ,  (2.57) 

where W ( x )  is a nonnegative bounded weight function. Jones (1990), Bowman, Hall 

and Prvan (1998) and Polansky (1997) considered the discrepancy measure (2.56) and 

in contrast Reiss (1981), Swanepoel (1988), Sarda (1993) and Altman and L6ger (1995) 

considered the discrepancy measure presented in (2.57), which has a more intuitive ap- 

peal. We will consider these global discrepancy measures in turn. 

THE ASYMPTOTIC MEAN INTEGRATED SQUARED ERROR 

If F has two bounded, continuous derivatives, each of which is ultimately monotone in 

both tails, and has sufficiently many finite moments, then it follows from (2.55), (2.56) 

and notation from Section 1.2 that 

A M I S E  [F(.;  h)]  

1 2h 1 
= -1 F ( x )  [ I  - F ( x ) ]  dx  - -Cl + ; h 4 p z ( k ) 2 ~ ( f ' )  

n n 

Differentiating this AMISE expression with respect to h and using (2.23) results in the 

AMISE optimal bandwidth 
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To evaluate the performance of the AMISE optimal bandwidth, we substitute (2.58) into 

the AMISE expression above which yields 

1 
inf A M I S E  [P(-; h] = - / ( x  1 - F ( x ) ]  dx  - 

3 ( 2 ~ 1 ) ~ ~ ~  I n-4/3, 
h>o n [4 ( ~ ~ ( k ) ~ R ( f ~ ) ) ~ ~ ~  

(2.59) 

This shows that, if we use h = h,,,,, defined in (2.58), the MISE of p(z; h )  is asyptot- 

ically smaller then that of the empirical distribution function F,(x). 

THE WEIGHTED ASYMPTOTIC MEAN INTEGRATED SQUARED ERROR 

Provided that F is sufficiently smooth, it follows from (2.55) and (2.57) that 

1 2h 1 
W A M I S E  [E(- ;  h)] = - / P ( x )  [ I  - F ( x ) ]  W ( x ) d F ( z )  - -C1C2 + jh4ji2(k)2C3. 

n n 

where 

c3 = / [ f i ( x ) ] ' f  ( x ) w ( x ) d x .  

Differentiating this WAMISE expression with respect to h results in the WAMISE optimal 

bandwidth 

It should be noted that the conditions that F is twice differentiable and both F and 1 f'l 
are bounded from below on the support of W, imposed by Sarda (1993), are considered not 

necessary by Altman and L6ger (1995). Hence, the bandwidth presented in (2.60) should 

be preferred over the bandwidth defined in (2.58) as it is derived from a well-defined 

discrepancy measure. However, in the context of the newly proposed semi-parametric 

transformation to normality, a distribution function estimate is required based on data 

that are approximately normally distributed. Therefore, the assumptions made in the 

construction of hAMISE in (2.58) should be valid and consequently (2.58), which is easier 

to implement, may be employed. The reader is referred to Section 3.4 for a detailed 
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discussion of this transformation. To evaluate the performance of the WAMISE optimal 

bandwidth, we substitute (2.60) into the WAMISE expression, yielding 

1 
inf WAMISE I@(.; h)] = - / F ( X )  [ I  - f ( x ) ]  W ( x ) d F ( x )  - 
h>o n 

Estimation of the optimal bandwidth, considering both the discrepancy measures AMISE 

and WAMISE, will be explored further in Section 2.2.3. 

2.2.2 The choice of an appropriate kernel function 

In this section the choice of an appropriate kernel function will be explored. In the 

context of density estimation it was shown that the Epanechnikov kernel is the optimal 

kernel for estimating densities. The reader is referred to Table 2.2 for detail. With the 

application of the AMISE and WAMISE optimal bandwidths defined in (2.58) and (2.60) 

respectively, it is clear that the resulting AMISE and WAMISE presented in (2.59) and 

(2.61) only depend on the kernel function, K(.) ,  through 

Clearly the kernel function that maximizes the functional C ( k )  will minimize the resulting 

AMISE and WAMISE and will consequently be the optimal kernel function in the sense 

of AMISE and WAMISE. Consider the rescaled kernel function 

It should be noted that the functional C ( k )  is invariant to rescaling of k ,  i.e., C(ks,)  = 

C(k8,) for any J1, J2 > 0. Thus, any rescaled version of the optimal kernel function will 

still have optimal performance in the sense of AMISE and WAMISE. To find such an 

kernel, van Graan (1982) and Jones (1990) used the Cauchy-Schwarz inequality, i.e., 

while the proofs presented by Swanepoel (1988) are based on the calculus of variations. 

Using the Cauchy-Schwarz inequality we will proceed by finding an upper bound for the 
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functional p2(k)-1/2C1, 

[ using the substitution t = -Z ] 

[ symmetry about zero ] 

[ using the Cauchy-Schwarz inequality and 1(j)v from Section 1.2 ] 

It is easy to verify that, for the uniform kernel function, i.e., 

{ i -1 5 z 1 1, 
k*(z) = 

otherwise. 

z < -1, 

1 
we find p2(k*)-1/2~1 = p2(k*)-'I2 L:' rk*(r)K*(z)dz = Hence, the upper bound is 

2 6  
attained with the use of the uniform kernel function, which is the optimal kernel function 

when estimating a distribution function with the kernel distribution function estimator 

(2.50). It should be noted that since C(k) is invariant to rescaling the kernel function 
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k,  any rescaled version of the uniform kernel function will also be optimal. To compare 

other kernel functions to the optimal uniform kernel we define the efficiency measure 

The efficiency measure is displaced in Table 2.3 for different kernel functions. The main 

Table 2.3: Kernel functions and their efficiency when estimating distribution functions 

I Kernel Function 

Uniform 

/ Epanechnikov 

Biweight 

Triangular 

Triweight 

1 Standard Normal 

Kernel Function 

Uniform 

Epanechnikov 

Biweight 

Triangular 

Triweight 

Standard Normal 

message conveyed in Table 2.3 is that many other popular kernel functions result in 

AMISE and WAMISE negligible worse than that associated with the optimal uniform 

K ( z )  Support 

[1 + z] - 1 < z < l  
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kernel function. Also, one should choose the kernel function K using other considerations, 

such as smoothness of p(s; h) or ease of computation. It is interesting to note that the 

uniform kernel causes "less smooth distribution function estimates. For reasons outlined 

above the standard normal kernel distribution function, @(.), is used in this dissertation. 

2.2.3 The choice of a smoothing parameter 

In this section we will discuss the choice of a suitable data-dependent smoothing param- 

eter based on the two discreparlcy measures generally used to assess the performance 

of the kernel distribution function estimator. It should be noted that the unweighted 

discrepmcy measure defined in (2.56) will be utilized in this dissertation. However, for 

general application the weighted discrepancy measure defiiled in (2.57) is prescribed. 

BANDWIDTH SELECTION BASED ON THE ASYMPTOTIC MEAN INTEGRATED SQUARED 

ERROR 

In this section bandwidth selection is considered when the discrepancy measure defined 

is used. Bowman et al. (1998) proposed a method of cross-validation appropriate for 

the smoothing of distribution functions. Their method was compared to those of Sarda 

(1993), Altman and L6ger (1995) (these two methods are based on the discrepancy mea- 

sure (2.57)) and a simple plug-in bandwidth based on (2.58). They found that their 

cross-validatory proposal works well and that the simple plug-in bandwidth is also quite 

effective. Based on the good performance of the plug-in method, similar arguments from 

Altman and L6ger (1995), and the success of the Sheather and Jones (1991) I-stage plug- 

in bandwidth utilized for density estimation, the plug-in method proposed by Polansky 

(1997) will be discussed and implemented in this dissertation with the standard normal 

distribution function as the kernel function. 

Normal scaled rule of thumb 

From expression (2.58) it is clear that the only unknown value is R(f l ) .  As in the case of 

density estimation, the normal scaled rule of thumb involves replacing the only unknown 
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quantity f with a normal reference with mean p and variance u2. Using the properties 

of the normal distribution as discussed in Section 1.2, (2d), (2f) and (2g), we find that 

Hence, with the normal reference and the standard normal density function as kernel we 

find the normal scaled rule of thumb, by replacing the quantities calculated above into 

(2.58), i.e., 

h,, = 41/3un-1/3 = 1.5874un-'I3. (2.63) 

To implement (2.63) it is necessary to measure the spread of the data. Here, as in the 

case of density estimation we will use the robust scale estimator defined in (2.22),i.e., 

& = min s, 
G3 - G i  [ m-I (a) - m-1 (i) I ' 

The method of Polansky (1997) 

Polansky (1997) rightfully observed that an 1-stage plug-in estimate of the AMISE optimal 

bandwidth, similar to that proposed by Sheather and Jones (1991) in the context of den- 

sity estimation, is obtainable by estimating the functional (-l)m/2$Jm = ~ ( f ( ~ / ' ) ) ,  rn = 

0,2,4 ,6 , .  . . as suggested by Hall and Marron (1987) and Sheather and Jones (1991). The 

estimation of the functional $J, is discussed in detail in Section 2.1.4 and is summarized 

as follows 

where w is the kernel function. 

where r is the order of the kernel function used. 
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w From (2.43) it is clear that the estimate of $2 depends on $4 which in turn depends 

on '$6 etc., if a second order kernel function, such as the standard normal, is used. 

In general, an estimate of $,+z is required for the estimation of $,. The procedure 

is therefore recursive. 

Fron 

using a normal reference for f. 

Polansky (1997), similar to Sheather and Jones (1991), proposed to stop the recursive 

behavior after 1 stages by plugging in the normal reference for f in the l th stage, with 

1 = 2 being the norm. Hence the normal scaled rule of thumb (2.63) can be considered as 

a Polansky procedure with 1 = 0. Given the success of the Sheather & Jones procedure in 

the context of density estimation one can expect that the method proposed by Polansky 

will result in a highly effective plug-in procedure provided that the assumptions made 

to derive (2.58) are met. As mentioned previously, these assumptions will be considered 

valid in this dissertation since distribution function estimation is applied to data already 

possessing some form of normality. Consequently, the method of Polansky will be applied. 

The method for 1 = 2, w(.) = 4(.) and K(.)  = @(.) is as follows: 

Step  1 Estimate $6 using the normal reference, thus 

[ using (2.44), and 6 as defined in (2.22) ] 

Step 2 Use & to estimate $4, thus 

[ using from Section 1.2, (2e) and (2f) ] 

In the expression above 4 4  is obtained through direct application of (2.43), 

thus 

[ using from Section 1.2, 2(l)i and 2(l)iii ] 
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1 n n  ?j2 = - 
1 4;' (Xi - X,) , where 4(')(x) = (x2 - 1) -e-z212. 6 n2 <=I ,=I 

[ using from Section 1.2, (2e) and (2f) ] 

In the expression above 4 2  is obtained through direct application of (2.43), thus 

-&p)(o) -1 

h = [  - 1  n-'I5, where ~ ~ ( 4 )  = 1 and q5(')(0) = - 
~ 2 ( 6 ) $ 4  6' 

[ using from Section 1.2, 2(l)i and 2(l)ii ] 

Step 4 Use 42 to calculate the AMISE optimal bandwidth, h, (direct plug-in) thus 

[ using from Section 1.2, 2(l)i and 2(l)xii ] 

BANDWIDTH SELECTION BASED ON THE WEIGHTED ASYMPTOTIC MEAN INTEGRATED 

SQUARED ERROR 

In this section bandwidth selection is considered when the discrepancy measure defined 

in (2.57), i.e., 

W M I S E  [p( . ;  h)] = / E [ P i ;  h) - ~ ( x ) ] ~ W ( z ) d F ( x ) ,  

is used. Recall from (2.60) that the asymptotic optimal bandwidth using this discrepancy 

measure is given by 

hwAM1.m = (i:,f:b3) 'I3 n-113, 

where (as before) 
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Chu (1995) proposed the selection of the smoothing parameter via bootstrapping. Sarda 

(1993) proposed a leave-one-out cross-validation procedure to select the smoothing pa- 

rameter. However, Altman and LBger (1995) showed that the leaveone-out procedure is 

asymptotically equivalent to a leaving-none-out procedure. In addition, they showed that 

the expected value of the derivative, with respect to h, of the leave-none-out criterion 

is asymptotically positive, which suggests that the criterion is increasing and that for 

sufficiently large samples the smallest available bandwidth will always be selected. Con- 

sequently, Altman and L6ger (1995) proposed a plug-in estimator using the asymptotic 

optimal bandwidth (2.60). 

Normal scaled rule of thumb 

In this section the normal scaled rule of thumb will be discussed with W ( x )  = 1 and 

K(. )  = a(.). The unknown density function f is replaced with a normal reference with 

mean p and variance a2. Using the properties of the normal distribution as discussed in 

Section 1.2, (21), we find 

1 
Cl = - 

1 
c2 = - 

1 c3 = -(2 -1 -4 
2 f i '  2 f i u '  3 f i  ) a and p2(k )  = 1. 

Replacing these quantities into (2.60) the normal scaled rule of thumb is given by 

h,, = ( 3 ~ 5 ) ' / ~ a n - ' / ~  = 1 . 7 3 2 1 ~ n - ' / ~ ,  (2.64) 

where the robust scale estimator defined in (2.22) is utilized to estimate the scale param- 

eter a. Note that the normal scaled rule of thumb given in (2.64) based on the weighted 

discrepancy measure (2.57), is slightly larger than the normal scaled rule of thumb de- 

fined in (2.63) based on the unweighted discrepancy measure (2.56). Hence, smoother 

distribution function estimates can be expected with the former bandwidth. It is, how- 

ever, a difficult task to compare these two bandwidths directly since they are based on 

different discrepancy measures. 

The method of Altman & Leger 

In this section the notation w l ( . ) ,  w2( . )  and w3(.)  will be used to denote possible different 

kernel functions, and gl ,  g2 and g3 will be the associated smoothing parameters. Altman 

and L6ger (1995) proposed to estimate the unknown quantity C2 = [f (x ) I2  W ( x ) d x  by 
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and the quantity Cs = / [ f ' ( ~ ) ] ~  f ( x ) W ( x ) d x  by 

1 n n n  xi - x, 
92 ) W; 

ft xk) w(xi) 

Substitution of these estimates into (2.60) results in the Altman & Lkger plug-in estimator 

In order to find the asymptotically optimal bandwidth, g2, Altman and Lkger (1995) 

calculated the asymptotic mean squared error of e3 under the assumptions 

1. The kernel function wz has mean 0 ,  finite variance and wi(0)  = 0 

2, The density f has a bounded fourth derivative. 

3. The bandwidth g2 is a non-random sequence of positive numbers, satisfying 

lim 92 = 0 and lim ngz = co. 
n-m n-m 

Hence, g2 can be of the form g2 = c K t ,  where 0 < t < 1 and c is a positive 

constant. 

The asymptotic mean squared error of 6 3  is given by 

A M S E  [63] = 2E:z) / [f(x)14 ~ ( x ) d x  

where C(w2) = /// w;(s)w;( t )w;(u)w~(t  + u - s)dsdtdu. Fkom (2.65) it easily follows 

that the asymptoti&Ay optimal bandwidth is given by: 

where @,, = f ( m ) ( x ) j ( p ) ( x )  f ( x ) ~ ( x ) d x .  The effect of the AMSE optimal bandwidth 1 
given in (2.66) on the AMSE presented in (2.65) can be measured by replacing (2.66) 

into (2.65). This shows that the AMSE converges to zero at the rate of 0 (n-81g). 

Although not discussed by Altman and Lkger (1995), one is tempted to set the weight 

function W ( x )  = 1. With this choice, a number of simplifications and improvements for 

the proposed method is possible. These are summarized as follows: 
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The unknown quantity C z  = [ f ( x )12dz  may be estimated using the 1-stage / 
estimator as suggested by Hall and Marron (1987) and Sheather and Jones (1991), 

i.e., & ( Q I ) ;  see (2.23), (2.24), (2.43) and (2.44). . The unknown quantity h = / [ f 1 ( x ) l 2  f ( x ) d z  may also be estimated using an 

1-stage estimator, with a normal reference utilized at  stage 1. Note that a general 

estimator for the quantity Q,,, = f(,)(z) f ( ~ ) ( x )  f ( x ) d x  is given by / 

where wz( . )  and w3(.) are possibly different kernel functions with different associated 

bandwidths gz and g3 respectively. 

The 1 = 0 stage procedure results in the normal scaled rule of thumb presented in (2.64). 

Next, the procedure for 1 = 1, wl( . )  = wz(.) = w3(.) = $(.), K )  = ( )  W ( x )  = 1 

and a normal reference with mean p and variance o2 for the unknown density f will be 

described: 

Step  1 Estimate $2 using the normal reference, thus 

[ using (2.44), and 6 as defined in (2.22) ] 

S tep  2 Use 4 2  to estimate C2 = $0 = R ( f ) ,  thus 

In the expression above is obtained through direct application of (2.43), thus 

1 ' I 3 ,  where pZ(q5) = 1 and $(0) = - 
Jz;; 

2 
S tep  3 Estimate C3 = Q1.l = / [ f l ( x ) ]  f ( x ) d x  by 

where, using the normal reference and (2.66) 
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1 
ij2 = - [405] ' /~6n-~/~ = 0.9743 6n-'l9. 

2 
[ see Section 1.2, 2(l)ix, 2(l)xi and 2(l)xii ] 

Step 4 Use e2 and e3 to calculate the WAMISE optimal bandwidth, h, (direct plug- 

in), thus 

[ see Section 1.2, 2(l)i and 2(l)xii ] 

Conclusion 

In this section we presented the bandwidth selection procedure proposed by Polansky 

(1997), based on the discrepancy measure (2.56) and presented a slight alteration to the 

procedure proposed by Altman and L6ger (1995), based on the weighted discrepancy mea- 

sure (2.57). We conclude that the latter is based on a more sound discrepancy measure 

and should be favored for general application. However, in the context of the transfor- 

mation kernel density estimator a parametric pre-transformation will be employed for 

the newly proposed semi-parametric transformation to normality discussed in Chapter 3. 

Hence, the data used for distribution function estimation, will be approximately normally 

distributed and consequently adhere to the assumptions necessary in setting up the dis- 

crepancy measure (2.56). For this reason we advocate the use of the method proposed 

by Polansky (1997), since this method is faster and simpler to implement. 



Transformation of data 

In this chapter transformation of data to normality will be considered. The relationship 

between qq-plots and an optimal transformation will be discussed in Section 3.1. Sec- 

tion 3.3 can be viewed as a general introduction to parametric transformations. New 

contributions include: 

w Establishing a new transformation to any distribution (Section 3.2) 

Using polynomials to approximate transformation functions (Section 3.2). 

0 Introducing two alternative parametric transformation parameter estimation tech- 

niques (Section 3.3.3). 

w Defining a new optimal semi-parametric transformation to normality (Section 3.4). 

3.1 QQ-plots: key to transformations 

To understand the logic behind transformations one must understand qq-plots. This 

section is devoted to this topic and explains the relationship between qq-plots and trans- 

formations. Let XI, . . . , X, be i.i.d. random variables from the continuous distribution 

function Fx, with the associated order statistics X(l), . . . ,X(,). Also, let Ul,. . . , U, be 

i.i.d. uniformly distributed random variables on [0, 11, with the associated order statistics 
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, , . . , U .  Suppose that the distribution function of X, Fx, is unknown and of the 

form 

then Fx belongs to the class of location-scale distributions, where Fo is a standardized 

distribution function. With Fx unknown, one can speculate as to what the true distribu- 

tion function is. Suppose that the hypothesized distribution is Gx, then, a qq-plot can 

be used to test this claim graphically. The qq-plot is constructed using the hypothesis 

HO : Fx(t) = Gx(t) .  Using the location-scale definition, this is equivalent to 

If the null hypothesis is correct and since both Fx(.) and Go(.) are monotonic increasing 

functions and u, > 0 it follows that for i = 1,. . . , n, 

which is equivalent (in distribution) to 

Since the density of U(i) is given by 

it is easy to verify that 

Taking expectations on both sides of the equation in (3.2), using (3.3) and a first-order 

Taylor expansion about EU(i) we have, 
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The meaning of (3.4) is twofold: 

If the null model is correct we can expect a straight line with intercept 0 and 

gradient 1 when plotting 

where c, and 6, are estimates of p, and a, respectively, based on the data X I , .  . . , X ,  

If the null model is correct we can expect a straight line with intercept fi, and 

gradient 6z when plotting 

The null model implied by the qq-plot representation is therefore given by 

Note that the convention i/(n + 1) is not unique and is sometimes replaced with 

(i - 0.5)ln. This is equivalent to using the kernel distribution function estimator, (2.50), 

with the bandwidth, h equal to zero, i.e., &(x; 0). For a discussion on this relationship 

the reader is referred to Section 2.2, (2.51). The qq-plot used in this dissertation is to plot 
i - 0.5 

Z v s  G ( )  . The reason for using the standardized order statistics is that this 

plot allows for the creation of convex to convex, concave to concave, convex to concave 

and concave to convex transformations (see Section 3.3.2 for more detail on this), since 

the curvature of the parametric transformations considered can change form about zero. 

Example 1: In the rest of this section, for illustration purposes, 50 data points drawn 

from a standard lognormal distribution, X - Logn(0,l) = Fx, will be considered. The 

data is then standardized, i.e., Z = (X - fi,) 16, - FZ, for reasons explained above. We 

know that the ideal transformation to transform standard lognormal data to normality is 

given by y = ln(x) and that the optimal back transformation is x = ev. The curvature of 

these optimal transformations can be used as a reference for comparison with alternative 

transformations. The aim is therefore to transform the input data to normality, i.e., 

X + Z + Y - GO(.) - a(.). Subsequently, we will show how to obtain this transforma- 

tion. 
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W h a t  is t h e  relationship between qq-plots a n d  t h e  ideal transformation? 

To explain this, consider the data from Example 1, and argue that we want to  trans- 

form this data so that the transformed data will have a normal distribution. In this case 

G o  = a ) .  The curvature of the transformation function required to transform this 

data to normality should be similar to the curvature of the qq-plot. It should be noted 

that the traditional qq-plot cannot be used to model the ideal transformation, since the 

dependent variable is given by G;' (A) , which is non-stochastic. For this reason we 

need to replace the traditional qq-plot with an "ideal" qq-plot. The ideal qq-plot will be 

defined as a plot of 

Z v .  G ( u )  , i = I , .  . . , n. 

The ideal transformation function, henceforth denoted by g, is defined by 

where FZ(t)  is (as before) the distribution function of Z = (X - b,) /5,. The transfor- 

mation function g is called "ideal" because if we set 

then 

which implies that qi) is distributed as the ith order statistic of a random sample from Go. 

In view of the discussion given above, we will show in the section below how to de- 

rive an estimated ideal transformation function, say 6, henceforth called the optimal 

transformation function. This 6 can therefore be applied practically to transform any 

given data set to a set of data having distribution function Go. 

3.2 A new transformation to any distribution 

3.2.1 The transformation 

In this section a new method of transformation will be described that has the advantage 

that it can assume convex to convex, concave to concave, convex to concave, concave 
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to convex and any combination of these forms into one transformation function (these 

shapes as well as where they are applicable are discussed in Section 3.3.2). Traditional 

transformation methods, for example the Box-Cox transformation, are not armed with 

this flexibility. This property improves the p-value for a goodness-of-fit test dramatically. 

The proposed transformation can also be iterated to improve the p-value after each 

iteration. We impose the following restrictions that should be satisfied by the newly 

proposed transformation: 

1. The transformation should transform the data with a high p-value when testing the 

goodness-of-fit of the transformed data. 

2. The transformation should be a monotonic increasing function. This will ensure 

the existence of the back transformation, more specific a oneto-one mapping from 

input data to transformed data. 

3. The transformation should (preferably) be written in a simple mathematical form. 

It should be noted that the ideal transformation function g, given in expression (3.6), 

cannot be applied in practice, since Fz is (under the alternative hypothesis) unknown. 

We therefore suggest estimating g by 

where pz(.) is an appropriate estimate of Fz(.). Henceforth, ij will be referred to as the 

optimal transformation function. The transformed data will be defined as (see (3.7)) 

For the data from Example 1, the estimated ideal qq-plot and optimal transformation 

function are shown in Figure 3.1. 

Properties of the transformation (3.8) are summarized in the following list: 

0 Since G;'(.) is a continuous function the transformation g(.) will also be continuous 

provided that Fz(.) is continuous. 

Furthermore, the transformation g(.) will be a monotonic increasing function pro- 

vided that the estimate,Fz(.), is monotonic increasing. 
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Figure 3.1: Estimated ideal qq-plot, showing the opti- 
mal transformation function to  transform standardized 
standard lognormal data ( n  = 50) to  normality. 

0 Perhaps the most important property of this transformation is that i(.) can take on 

any monotonic increasing form. The transformation function can therefore change 

form from convex to convex, concave to concave, concave to convex, convex to 

concave or any combination of the above, depending on the shape of ~z('z(.). 

0 The transformation can also be iterated to improve the p d u e  when testing the 

goodness of fit. This is discussed in Section 3.4. 

In order to apply ij(.), defined in (3.8), we need to define a suitable estimator PZ(.). Three 

such estimators will now be discussed. 

One method is to set up a wide and exhaustive range of possible distribution func- 

tions, then perform goodness-of-fit tests to find a suitable probability model for Z. Let's 

call this the goodness-of-fit approach. After the initial model selection we need to 

estimate, using standard estimation techniques (e.g. maximum likelihood), the unknown 

parameter(s) 8 of the model selected. The problems here are, firstly to find a suitable 

set of candidate distributions, secondly, to find a suitable goodness-of-fit test. Should we 

use a standard X2 goodness-of-fit test or should we incorporate diierent techniques asso- 

ciated with each distribution in our set of distributions? A simple well-known example 

here is the Shapiro and Wilk (1965) test for normality. One feels that the goodnese-of-fit 
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approach should be implemented by a specialist (or in supervision of) in goodness-of-fit 

techniques, since there are so many gray areas. Nevertheless, once the probability model 

is decided upon, the optimal transformation in (3.8) is given by 

A second approach is to replace Pz(.) by the empirical distribution function 

Let's call this the empirical approach. At first glance Fn,z(t) appears to be a good 
+a 

candidate in the current context since, EFn,z(t) = / I(I 5 t ) d F z ( ~ )  = Fz(t), thus 
-m 

we have an unbiased estimator. However, after careful inspection of the transformation 

implied by this estimate, viz. 

it is clear that the empirical approach has poor properties in the current context. These 

properties are summarized in the following list: 

0 FnaZ(t) is a discrete step function, hence not strictly monotonic. This implies that 

g(t) is also a discrete step function. 

0 For any t < min(Z1,. . . , Z,) we have that Fn,z(t) = 0 and also for any t 2 

max(Z1,. . . , Z,) we have that FnrZ(t) = 1. Note that G,'(P) approaches +m and 

-m if Go(.) = a(.) and p + 1 and p -+ 0 respectively. Hence, the range of g(t) is 

a bounded interval, determined by the values of Z(1) and Z(,). 

It should be clear that we can improve the procedure by replacing the empirical estimate 

FnaZ(t) by a smooth version such as the adaptive kernel distribution function estimator 

where K is the so-called kernel function, h is the bandwidth and Xi is a scaling factor. 

Let's call this the kernel approach. For the kernel distribution function estimator it 

can be shown that ~ P z ( t ;  h) = Fz(t) + 0(h2).  The reader is referred to Section 2.2.1 

for more detail. We use the adaptive kernel distribution function estimate here instead 

of the traditional kernel estimate since Gil(p) approaches +m and -m if Go(.) = a(.) 
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and p + 1 and p -+ 0 respectively. The result is that artificial outliers are created in the 

transformed data. This phenomenon has a negative effect on the estimation of densities 

when the transformation kernel density estimator (2.48) is applied. For this reason we 

developed the adaptive kernel distribution function estimator. The reader is referred to 

Section 4.2 for a more detailed discussion on the choice of X i .  The smoothing parameter h 

is chosen according to the methods described in Section 2.2.3. With this kernel approach 

the optimal transformation function (using (3.8)) is given by 

The transformation procedures in (3.8) and (3.9) can be iterated to improve the pvalue. 

This is discussed further in Section 3.4. Using the data from Example 1, the optimal 

transformation function, using X i  = 1 Vz, is shown in Figure 3.1. 

Sometimes one is interested not only in the forward transformation but also in the back- 

ward transformation. In the latter case we have (compare with (3.8)) 

so that, if evaluated in the transformed data (see (3.9)), we obtain the original data 

It should be noted that quantile estimation is required to implement the optimal backward 

transformation. For an excellent account of kernel quantile estimation procedures, the 

reader is referred to Sheather and Marron (1990). The bxkward transformation and 

corresponding qq-plot are displayed in Figure 3.2. 

3.2.2 Polynomial approximation of the optimal transformation 
function 

Sometimes it is convenient to approximate the optimal transformation function ij(t), 

defined in (3.8), by a suitable polynomial, viz. 
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Figure 3.2: Backward tmnsformation for the data of Example 1.  

where p is the order and &,&, . . . , iP are estimated coefficients. In the estimation proce- 

dures presented below tl,  . . . , t ,  are equally-spaced grid points and G,' (pz(ti; h ) )  , i = 

1 , .  . . , m are the corresponding optimal transformation d u e s .  For each h e d  p, the es- 

timates &, 61,. . . , bP can, for example, be derived by using the least-squares estimation 

method. The degree p of the polynomial can then be determined by minimizing the 

AICc criterion with respect top,  which is given by 

AICc = log 6' + 2bJ + 1) 
m - p - 2 '  

The interested reader is referred to Hurvich and Simonoff (1998) for a discussion of this 

and related criteria. Alternatively, the degree of the polynomial may be selected by 

fitting the lowest degree polynomial achieving a specified R2 d u e .  Two useful Fortran 

subroutines are "RPOLY" and "RCURV". For the data from Example 1 the polynomial 

approximation of g(t) is shown in Figure 3.3 and is given by 

where 
x - 1.25972 

t = 
0.94842 . 

Comparing Figure 3.3 with Figure 3.1, shows that the polynomial approximation of j(t)  

is exceedingly well. 
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From (3.10) it is clear that a successful transformation depends solely on the efficacy of the 

Figure 3.3: Polynomial appmximation. 

adaptive kernel distribution function estimator Fz. To improve the performance of this 

estimator a parametric pre-transformation on Z is implemented. This technique together 

with a motivation of the chosen transformation distribution, a(.), will be discussed next. 

3.3 Parametric transformations 

3.3.1 Overview 

It can be shown, Terell (1990), that the beta(4,4) density is the easiest to estimate using 

kernel density estimation (see Section 2.1.2 for a more detailed discussion and the defini- 

tion of the efficiency measure). The efficiency of the kernel estimator for estimating this 

density is 1 (1 = easiest to estimate, 0 = most difficult to estimate using kernel density 

estimation). Since the normal density is similar to the beta(4, 4) density in shape and is 

also easy to estimate (efficiency measure = 0.908), we decided to transform all random 

variables, for which a density estimate is required, to the normal distribution, primarily 

because of ease of use. For this reason the following paragraphs will be devoted to t rans 

formation to normality. 

Next, a short summary of possible parametric transformations will be presented. Tukey 
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(1957) introduced a family of power transformations defined by 

for x > 0. This family contains a discontinuity at X = 0. Box and Cox (1964) modified 

this transformation to take account of the discontinuity a t  X = 0 and defined 

for x > 0. Box and Cox (1964) also proposed the shifted power transformation defined 

A2 = 0. 

This transformation can be applied to negative values of x. X2 is called the transforma- 

tion parameter and XI is chosen such that XI > -min {XI,. . . , X,). In the context of 

transformation kernel density estimation, Wand, Marron and Ruppert (1991) considered 

an alternative version of this transformation defined by 

Manley (1976) defined the following transformation 

This transformation can be applied to negative values of x and is effective in turning 

skew unimodal distributions into nearly symmetric normal-like distributions. 

John and Draper (1980) defined the modulus transformation, which is considered to 

normalize distributions already possessing some measure of approximate symmetry. This 

transformation is given by 
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Bickel and Doksum (1981) suggested the following transformation 

with X > 0. This transformation is designed to handle kurtosis rather than skewness. 

Burdige, Magee and Robb (1988) compared the inverse hyperbolic sine transformation 

proposed by Johnson (1949) (a member of a transformation family) with the transfor- 

mation proposed by Bickel and Doksum (1981), in a study to reduce the influence of the 

extreme observations. This transformation is defined over the whole real line and given 

by 

They concluded that when the input data can take on the value 0, an immediate ad- 

vantage of the inverse hyperbolic sine transformation is apparent, since the likelihood 

function of the Bickel and Doksum (1981) transformation will not be defined when such 

observations occur. 

xp where J = +I,  c = E [0, a), AM E (0 , l )  and p 2 $ is a tuning constant which is 

needed for smoothness of g,,x(x) as a function of A. For this transformation to be valid 

there must be some restrictions on c. These restrictions are summarized in Table 3.1. 

Yang and Marron (1999) reparameterized the Johnson (1949) system of transformations. 

This family is a versatile set of transformations since they can assume numerous forms, 

and they are able to address both kurtosis and skewness. The family of transformations 

is given by 

g7,x(x) = 

' log(1 + cJx)/cJ o < X < X ~ , y = l ,  

~ O ~ ( C X  + (c2x2 + 1)lf2)/c 0 < X < AM,  Y = 2, 

1 cx 
log (A) I(2c] o < X < X ~ , y = 3 ,  

, x X = 0, Y = l ,2 ,3 ,  
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Table 3.1: Restrictions on c for the Johnson transformation. 

Parameter Choices Range of the input data - 
y = l , J = + l  x E (0,  m) 

x E (-a, 0 )  

x E (-a, m) 

y = l , J = - 1  x E (0 ,  m) 

x E (-a, 0 )  

x E (-a, m) 

r = 2 x E R  

Restriction 

This transformation is well-defined on the whole real line and is appropriate for reducing 

skewness and to approximate normality. 

Yeo and Johnson (2000) introduced a new power transformation: 

In the context of transformation kernel density estimation, (2.48), Ruppert and Wand 

(1992) introduced the following kurtosis reducing transformation 

g d x )  = 

for 0 < a: 5 1, where a(.) is the standard normal distribution function, 

I + ( -  x > 0 ,  X # 01, 

log(x + 1) ( x  2 O , X =  O ) ,  

( x t O , X # 2 ) ,  

, - log(-x + 1) ( x  < 0,X = 2).  

3.3.2 Transformation curvature 

To fully understand how these parametric transformations work and to see where they 

could be applied one needs to understand the curvature of these transformations. Origi- 
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nally, attempts were made to transform data repeatedly using a Box-Cox transformation. 

This failed drastically. To understand why, consider once again the kernel qq-plot for the 

data from example 1 of Section 3.1. The output given in Figure 3.1, suggests a transfor- 

mation that is concave in form. This is exactly what is produced by the shifted Box-Cox 

transformation with Xz < 1. The pvalue of the transformed data for example 1, utiliz- 

ing the Shapiro-Wilk test for normality is 0.86914. Although successful, one is tempted 

to repeat this Box-Cox transformation, i.e., to transform the transformed data again to 

improve the p-value for normality. This appears to be a novel idea, but it is doomed to 

failure. 

The reason is that the Box-Cox transformation family can only model transformations 

which assume shapes that are convex or concave. This is rather limited considering the 

huge number of probability models from which the data might be drawn. A convex or 

concave transformation model cannot be used where the qq-plot suggests a transforma- 

tion that changes shape from convex to concave or vice versa (e.g. data from a skewed 

unimodal or kurtotic unimodal density), not even to mention suggested transformations 

that must change shape more than once. The Box-Cox transformation can therefore not 

be used without first considering the density of the input data. This is where kernel 

density estimation can come in handy. Since the curvature of the qq-plot determines the 

curvature of the transformation an inspection of the available transformations is needed. 

Hence, convex, concave, concave to convex and convex to concave transformations will 

be inspected next. Note that the newly proposed optimal transformation can take any 

form and from there its versatility. 

Convex or concave transformations 

Transformations of this class can take the form described in Figure 3.4. 

Where  should these transformations b e  applied? 

Convex 

This type of transformation is applied to data that are skewed to the left, for example, 

data from a skewed unimodal distribution (see Section 5.1 for a graph). The left tail of 

this transformation will contract the left tail of the input data whilst the right tail of the 

transformation will protract the right tail of the input data. 



CHAPTER 3. TRANSFORMATION OF DATA 

Figure 3.4: Left panel: Convex transformation. 
Right panel: Concave transformation. 

Concave 

This type of transformation is applied to data that are skewed to the right, for example, 

lognormal data. The left tail of this transformation will protract the left tail of the input 

data whilst the right tail of the transformation will contract the right tail of the input 

data. 

Which parametric transformations are convex or concave? 

To inspect the curvature of the different transformations it is useful to inspect the second 

derivative of these transformations. From the transformations presented earlier, those 

having a convex or concave shape are summarized in Table 3.2. It is clear that the 

shape of the transformation is determined by the parameters of the transformation. The 

first derivative is also presented, since it is needed when applying the transformation 

kernel density estimate and setting up the profile log-likelihood function for estimating 

the transformation parameters. Note that the power transformation renders a curvature 

that is monotonic decreasing for X < 0. This is unacceptable when estimating densities 

using the transformation kernel density estimator, since this will result in negative den- 

sity estimates. The Johnson (1949) family of transformations is the only family that can 

assume a number of different shapes (see Tables 3.2 and 3.3). 

Transformations that do not change shape are therefore summarized in the following 
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list: 

0 Tukey's power transformation, 

0 Box-Cox one parameter transformation, 

0 Shifted Box-Cox transformation, 

0 Manley's transformation, 

w Yeo and Johnson's transformation, 

0 Johnson (1949) transformation with y = 1. 

Convex to concave or concave to convex transformations 

Transformations of this class can take the shape displayed in Figure 3.5. Note that 

these transformations change shape around the origin. Therefore, to make full use of the 

change in curvature it is recommended to use these transformations for input data that 

can assume both negative and positive values. If, however, the input data can assume 

only negative or only positive values, this class of transformations reduces to convex or 

concave transformations. 

Figure 3.5: Left panel: Convex to concave transformation. 
Right panel: Concave to convex transformation. 



Transformation 
Power transformation 

X = O  

Box-Cox 1 parameter 

Shifted Box-Cox 

Table 3.2: Summary of the convex and concave transformations. 

I Curvature 

concave Vx E (0, a )  v -i 

< 

I 
convex if X > 1 Vx E (0, a )  +/ , /' 

I /' 

, 
convex if X < 0 Vx € (0, a )  -+ 

-- - .. 

i 

convex if X > 1 Vx E (0, a )  + 

concave if 0 < X < 1 Vx E (0, a )  - 

I ,/- 
! ,, 

concave if X < 1 Vx E ( 0 , a )  - i f  '- Y 
1 

concave Vx E (0, a )  +i 

( convex if X2 > 1 + AL 



Transformation 
Manley 

Yeo & Johnson 

x 2 0 , X + O  

Johnson 

y=l 

Curvature 

convex if x > o vx E R + I,/'' 
--., 

concave if A < 0  Vx E R -7r 

I concave if X < 1 + 
/' 

,' 
concave -I,,/ 

convex if x > 1 + 71 I' 
concave if A < 1 -/...-I 

convex - ,,/ 
," 

convex if J = -1 Vx t R - ,I,/' 
-- 

concave if J = +1 Vx E R +/ 



CHAPTER 3. TRANSFORMATION OF DATA 

Where should these transformations be applied? 

Convex to concave 

This type of transformation is applied to data that have long tails to the left and right, 

for example, data from a kurtotic unimodal distribution (see Section 5.1 for a graph). 

The left tail of this transformation will contract the left tail of the input data whilst the 

right tail of the transformation will contract the right tail of the input data. 

Concave to convex 

This type of transformation is applied to data that have short tails to the left and right, 

for example, data from a uniform, U(0, I ) ,  distribution. The left tail of this transforma- 

tion will protract the left tail of the input data whilst the right tail of the transformation 

will protract the right tail of the input data. 

Which parametric transformations are convex to concave or concave to con- 
vex? 

From the transformations presented earlier, those having a convex to concave or con- 

cave to convex shape are summarized in Table 3.3. Note that the Bickel and Doksum 

transformation has a serious drawback that renders it unusable in the context of trans- 

formation kernel density estimation. For this transformation we have that dA(0) = co 

for 0 < X < 1, this will result in a density estimate that is infinite in the point x = 0. 

Also, the derivative of the John & Draper transformation involves absolute values that 

imply a non-smooth derivative. For this reason this transformation is also not suitable 

for application in the context of transformation kernel density estimation. 

Transformations that change shape around zero are therefore summarized in the fol- 

lowing list: - John and Draper's transformation, 

r Bickel and Doksum's transformation, 

0 Johnson (1949) transformation with y = 2 or y = 3, 

r Ruppert and Wand transformation. 



Table 3.3: Summary of the convex to concave and concave to convex transformations. 

Transformation 
John & Draper 

Bickel & Doksum 

Johnson 

Curvature 

concave if x < 0 

convex if x > 0 

convex if x < 0 I/- - + 
concave if x > 0  

1 concave if x > 0 / I  

concave if x < 0 

convex if x > 0 

convex if x < 0 
O < X < 1  

{concave if x > 0 + 

convex if x < 0  

concave if x > 0  /' 
concave if x < 0  : /,/' 

+ -+~- /' ; 
convex if x > 0 
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convex if x < 0 
Curvature: 

concave if x > 0 

Transformation 

Ruppert & Wand 

Black Box 

To transform data successfully to normality a black box of possible pilot transforma- 

tions is utilized. For this black box to be exhaustive in the number of shapes that the 

transformations can possess, the input data is standardized so that transformations that 

change shape will be included automatically. When standardizing data one must take 

into account the possible effect of outliers on the location and scale estimates. These 

estimates can also be greatly affected by data that are highly skewed to the left or right. 

For this reason one must turn to more robust methods for estimating the location and 

scale parameters. The method of standardizing data used in this dissertation is given by 

d x )  

a + 1 - a )  4 (5) 
uz 

where ji, is the sample median of the data X I , .  . . , X ,  and 

&(x) 

G x  
( 1  - a)- 4 (I) 

62 01 

where and & are the first and third sample quartiles respectively and s: is the usual 

unbiased sample variance. Note that this robust standardization will only be applied to 

the input data X ,  after which the usual sample mean will be employed for any subsequent 

standardizations. 

Hence, the mapping used in this dissertation will be as follows: 

X + Z - + Y ,  

where the linear standardization described above will be used to proceed from X to 2. 

Then one of the pilot transformations from the black box, defined below, will be applied 
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to transform the data from Z to Y. After these two initial transformations the newly 

proposed optimal transformation will be employed. The black box of transformations 

decided upon is given i n  the following list: 

The shifted Box and Cox (1964) transformation. 

0 The Yeo and Johnson (2000) transformation. 

0 The John and Draper (1980) transformation (not used in the context of transfor- 

mation kernel density estimation). 

The Johnson transformation as given by Yang and Marron (1999). 

0 The Ruppert and Wand (1992) transformation. 

Note that this black box contains three transformations that cannot change shape (Box- 

Cox, Yeo & Johnson and the Johnson transformation with y = 1) and three transfor- 

mations that change shape around zero (John & Draper, Johnson with y = 2,3 and the 

Ruppert & Wand transformation). Tukey's power transformation and the one parameter 

Box-Cox transformation are only valid for positive data and since the input data are 

standardized these transformations are not an option anymore. Manley's transformation 

was left out of the black box since enough transformations that cannot change shape are 

included. The transformation of Bickel & Doksum was omitted on account of the poor 

behaviour of its first derivative at x = 0. 

3.3.3 Parameter estimation and transformation selection 

In this section attention is given to the estimation of the parameters of the transforma- 

tions nominated to be in the black box. The profile maximum likelihood method as well 

as two new methods, namely the minimum residual and minimum distance methods will 

be discussed. In addition, we will define the procedure to select an optimal transforma- 

tion from the black box. It should be noted that this selection procedure is performed 

after, and independently of the parameter estimation procedures. 

Markovitch and Krieger (2000) studied four methods of estimating the Box-Cox param- 

eter used to transform data to normality. Although they only studied the one parameter 

Box-Cox transformation, the results are well worth mentioning. Three of the methods 
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were based on optimizing test statistics for normality. They are tests based on skewness, 

kurtosis and the Shapiro-Wilk test. The fourth method utilized the profile maximum like- 

lihood procedure as described in Box and Cox (1964) and Atkinson (1985). Markovitch 

and Krieger (2000) found that the estimator based on the Shapiro and Wilk (1965) 

statistic generally gives rise to the best transformation, while the maximum likelihood 

estimator performs almost as well. They also concluded that estimators based on opti- 

mizing skewness and kurtosis do not perform well in general. 

The Shapiro-Wilk test is considered by some to be the standard test of normality to 

date. In order to assess the performance of the different transformations in the black box 

the Shapiro-Wilk test statistic will be used. That transformation with the highest p-value 

based on the Shapiro- Wilk test will be selected as the optimal pilot transformation. It 

seems logical that the parameter estimation technique and the method of selecting the 

optimal pilot transformation from the black box should differ. Thus, care is taken not to 

introduce bias into the selection procedure. For this reason the profile likelihood proce- 

dure will, among others, be applied to estimate the unknown transformation parameters. 

Note, however, that the Shapiro-Wilk p-value can only be calculated for sample sizes 

5 2000 when using the Fortran subroutine "SPWLK. For any sample size > 2000 

we propose the selection of the optimal transformation from the black box, using the 

difficulty measure defined in Section 2.1.2 (see (2.16)), i.e., 

where R ( f ; )  can be estimated using the procedure discussed in Section 2.1.4 and C T ~  

with the robust scale estimator (2.22). The transformation selection procedure defined 

above will ensure that the selected transformation renders data from some density which 

is easy to estimate. Alternatively, Tan, Gan and Chang (2004) proposed the use of a 

normal quantile plot to select a suitable transformation function. However, their proce- 

dure is not automatic but requires visual inspection of the resulting qq-plots. Hence, this 

procedure will not be utilized in this dissertation. Instead, we propose in Section 3.3.3 a 

fully automatic procedure based on qq-plots. 

The transformation selection procedure in this dissertation is summarized as follows. 
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Select the transformation that: 

a maximizes the Shapiro-Wilk pvalue of the transformed data if n 5 2000, 

minimizes an estimate of the functional u ~ R  (fg) if n > 2000. 

Note that this selection procedure is implemented after parameter estimation which is 

discussed next. 

In the context of transformation kernel density estimation Wand et al. (1991) used a 

transformation that is scale preserving. Motivation for this scale preservation follows 

from the discrepancy measure used to assess the performance of the kernel estimator, 

i.e., the MISE (see Section 2.1.1 for more detail on this measure). The mean integrated 

squared error (MISE) on the transformed scale, MISEy [fy(.; h, A)], is easier to apply 

when searching for the optimal smoothing h and transformation parameter(s), than the 

mean integrated squared error based on the original scale, MISEX [fx(.; h, A)]. The 

MISE on the transformed scale is however not invariant to the scale transformation 

Y + cY(c # 0). For this reason Wand et al. (1991) ensured that the scale is pre- 

served when mapping from X to Y. (See Section 4.1 for a more detailed discussion of 

the above statements.) To accomplish the scale invariance, the authors suggested the 

transformation 

SA(Z) = (ux/%) h(z), (3.21) 

where Jx(.) is one of the parametric transformations from the black box; a, and u, are 

scale parameters. Since a, is a function of A, the question arises as to what the influence 

of the unknown parameter in this scale measure will be when using maximum likelihood. 

It turns out that the scale change in (3.21) does not affect the estimation procedure, the 

proof of which is to follow. 

Let X I , .  . . , X,, be 2.2.d. random variables. Let Zi = (Xi - p,) /ox, where p, and u, 

are the location and scale parameters of X respectively, estimated using robust methods. 

Define for i = 1,. . . , n, 
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where gx ( z )  is a monotonic real-valued function and cx is some positive constant, both de- 

pending on the parameter(s) A. Denote the location and scale parameters of Y and by 

( p y ,  uy) and ( p g ,  ug) respectively. Also, suppose ( consists of the location-scale densities, 

i.e., 
1 t - p  

{ : f ( t ) f o ( - ) , - m < P < m . o > o  u I , 
for some fixed known density function f,, 

Theorem 3.1: The ~rof i le  likelihood function of X based on the Y ,  's, with density fyl E (, 

attains its maxima at the same A-values as those that maximize the profile likelihood func- 

tion of X based on  the g ' s ,  with density fFl E (. 

Proof: Note that p, and uz do not depend on A, and can therefore be seen as fixed 

when setting up the likelihood function for estimating A. The likelihood function of X 

based on the Xi's, and written in terms of the x ' s ,  is 

The likelihood function of X written in terms of the g ' s  is 

Hence, 

which completes the proof of the theorem. 
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The effect of this is that the likelihood function may be maximized for the transfor- 

mation gx(.) after which the transformed data may be scaled in order to preserve the 

scale of the input data. 

The profile likelihood method 

Next, a general formula for the profile likelihood function for transformation to normality 

will be presented. This formula will be used to construct the profile likelihood functions 

of the chosen transformations. From (A) the likelihood function of A is given by: 

Suppose that a transformation to normality is required then f,(.) = 4(.), where 4 is the 

standard normal density. The likelihood function will then be 

The log-likelihood function is given by 

n n n l n  n 
2 l(X, p,, u,) = -- log(27r) - - log u, - n log a, - -- 

2 2 20; n C ( ~ ~ ( z i )  - + i=l C l o g & ( z i )  

The dilemma here is that the location and scale parameters p, and u, both depend on 

the unknown transformation parameter A. This is where the profile likelihood function 

comes in. The assumption made above is that for a given A, the transformed data 

= gx(Zi) will be normally distributed for i = 1,. . . , n, with mean & and variance uj. 

Using this assumption the maximum likelihood estimates of p, and ui ,  for a given A, are 

found and given by 

The profile log-likelihood function is constructed by replacing these estimates into the 

log-likelihood function and removing terms that does not depend on A, rendering 
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Maximizing i(X, by, c?~) with respect to X yields A,,,. Expression (3.22) is a general form 

of the profile log-likelihood function needed to transform data to normality. Using Ta- 

ble 3.2 and Table 3.3 from Section 3.3.2 in conjunction with expression (3.22), one can 

construct the profile log-likelihood functions for all of the transformations considered in 

the black box. The result is shown in Table 3.4. Of course, when optimizing the profile 

Table 3.4: Profile log-likelihood functions for transformations in the - 
black box. 

Transformation I 0, by, 

1 Yeo & Johnson 1 -; log 6; + (A - 1) sign(Zi) log(1 Z, 1 + 1) 

Johnson 

y = l  

y = 2  

y = 3 

log-likelihood function one must adhere to the parameter restrictions as outlined in the 

definitions of the transformations. 

John & Draper 

Ruppert & Wand 

Although maximum likelihood can be employed for the one parameter Box-Cox trans- 

formation, this method breaks down for the shifted Box-Cox power transformation as 

the problem is nonregular. The problem is nonregular since for the shifted Box-Cox 

transformation to apply we require X1 > - min{Zl, . . . , Zn), so that the support of the 

distribution of Z must be (-XI, a). With the range of the observations dependent on 

the unknown shift parameter XI,  the distribution of the maximum likelihood estimate i1 
cannot be assumed to be close to normality. The effect of nonregularity on likelihood 

inference is discussed in Section 9.3 of Atkinson (1985), where numerical results show 

- - - - - 

* 
-5 log&: + (A - 1) C,"=, log(lZ,I + 1) 

-;log&: + log [a + (1 - a)&+ (z,/&,)] 
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that the ordinary likelihood function is unbounded at  the edge of the parameter space, 

and may or may not have a local maximum somewhere else. Thus, there is an unbounded 

global maximum at - min{Z1,. . . ,Z,). Atkinson, Pericchi and Smith (1991) show fur- 

ther that, as XI -. - min{Zl,. . . , Z,}, then Xz -+ 0, meaning that, regardless of the data, 

the log transformation is chosen. To solve this problem Atkinson et al. (1991) proposed 

the use of grouped likelihood, which removes the unbounded maximum of the likelihood. 

However, to apply this method special attention should be given to numerical details, 

in specific, Atkinson et al. (1991) use approximate conditional probabilities in order to 

avoid inaccurate differencing of normal integrals. A related procedure is the maximum 

product of spacings proposed by Cheng and Amin (1983), for which Titterington (1985) 

showed that this may be interpreted as a form of grouped likelihood. In  this dissertation 

neither the likelihood nor the grouped likelihood estimation procedures are considered for 

the shifted Box-Cox transformation. Two new methods are proposed to estimate trans- 

formation parameters. The first method minimizes a quantile discrepancy measure and 

will be called the minimum residual method, whilst the second method minimizes a 

probability discrepancy measure and is called the minimum distance method. 

The minimum residual method 

Let XI , .  . . , X, be 2.i.d. random variables distributed according to the probability law 

Fx and let Zi = (Xi - p,) /uz, i = 1 , .  . . , n, be the standardized data. Also, let gx(.) 

be a monotonic increasing transformation that takes as input Z and transform this data, 

such that the output data follow the probability law Gy. Let Gy be a location-scale 

distribution, thus of the form Gy(y) = Go - - py , where Go is a known distribution ( uv ) 
function. Finally, let ql), . . . ,q,) be the order statistics of Yl, .  . . ,Y,. 

The purpose of the transformation model gx(.) is to relocate the input data in such 

a way that the output (transformed) data follow the probability law Gy. From this point 

of view transformation can be seen as a matter of relocating data. The success of this 

relocation can be measured with a qq-plot of the standardzed order statistics of the 
y -Pu transformed data versus the quantiles of Go, i.e., vs. Gr1(?). A successful 

Y -0, 
transformation will render a qq-plot where the data points [+ ; G,'(?)] are as 

close as possible to the straight line with intercept zero and gradient one. Figure 3.6 

shows the resulting plot using the data from Example 1 of Section 3.1, and applying the 
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shifted Box-Cox transformation with an arbitrarily chosen A to assist in the explanation 

of this method. Note that here Go(.) = a(.). For a correct parameter choice A, the 

Figure 3.6: Normal qq-plot of the tmnsfomed data. 

implied null model is Yi) M jiu + kUGi1 (y). For an incorrect parameter choice, the 

implied null model will not be valid, thus the straight line connotation does not apply. 
F .  -p, Using the straight line one can, however, find the position on the y-scale for which 

-1 i-0.5 the model qi) x &, +i+,G, (y) is correct. This is explained graphically in Figure 3.6. 
Y, -& 

The idea is to find that parameter choice that would move as close as possible to - 
Y . -p, Y - &  -%-. This will be accomplished by minimizing a discrepancy measure between - 

"u - "v 
Y -p, 

and *, where qi) is replaced by the implied null model. Define the residuals 

Mathematically, the minimum residual method entails the minimization of the following 

discrepancy measure 

with respect to A, where g ~ ( . )  is any transformation from the black box. When trans- 

forming data to normality, Go = @, and the resulting discrepancy measure is given by 
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The minimum distance method 

Using the same notation as described in the minimum residual method, one may argue 

that an estimate of the distribution of a successful transformation must be close to the 

desired distribution Gy. This can be quantified by using a weighted mean integrated 

squared error, WMISE, as described in Section 2.2. The distribution estimate used in 

this section, however, will be the empirical distribution function of the transformed data. 

The discrepancy measure is therefore defined as follows: 

where Fn,y(t) = Cy=l I(Y, 5 t)  is the empirical distribution function of the trans- 

formed data. Using the substitution x = % and using the definition of the empirical 

distribution function, the WMISE is given by 

(using the substitution t = Go(.)) 

Remarks: 

0 If w(t) = 1, then &(A) is the so-called "Cram&-von Mises" discrepancy measure. 

To minimize En(X) with respect to X is equivalent to minimizing 

See D'Agostino and Stephens (1986) (p. 101) for verification. 

0 If w(t) = - t(1-t) then en(X) is the so-called "Anderson-Darling" discrepancy mea- 

sure. To minimize &(A) with respect to X is equivalent to minimizing 



CHAPTER 3. TRANSFORMATION OF DATA 

(Yi)+; A) 
n2 i=l 

+(2n + 1 - 22) log 

See D'Agostino and Stephens (1986)(p. 101) for verification. 

In this dissertation the unwezghted distance measure (w(t) = 1) is considered. Also note 

that for transformation to normality Go(.) = a(.). The discrepancy measure to minimize 

is then given by 

Alternative parameter estimation techniques 

In the context of transformation kernel density estimation, Wand et al. (1991) and Yang 

and Marron (1999) estimate the transformation parameters such that the performance 

of the density estimate is asymptotically optimized. The reader is advised to first look 

at Section 2.1 (kernel density estimation) before reading the rest of this section. Also, 

note that in this section only a short outline of the methods proposed by the above- 

mentioned authors will be discussed, for a more detailed discussion the reader is referred 

to Chapter 4. The asymptotic mean integrated squared error (AMISE,) is used in order 

to find an optimal bandwidth. The discrepancy measure is based on the Y-scale for 

computational reasons as discussed in Section 4.1. Recall that from Section 2.1 (see 

(2.13)) the asymptotic mean integrated squared error was found to be 

1 1 
AMISEY[~,(.; h)] = -R(k) + qh4p2(k)2~(f;). 

nh 
(3.25) 

Minimizing the right-hand side of (3.25) with respect to h results in the asymptotic 

optimal bandwidth 

Having found the asymptotic optimal bandwidth in (3.26), it is substituted back into 

(3.25), yielding 
5 " 1/5n-4/5 

inf A M I S E ~ [ ~ ,  (.; h)] = -C(k) R( f,) 
h>O 4 

(3.27) 
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where C(K) = ~ ( k ) ~ / ~ ~ 2 ( k ) ~ / ~  is a constant that only depends on the kernel k. In order 

to minimize the right-hand side of (3.27) one can minimize the constant C(k) and the 

value R(f;)ll5. The effect of minimizing the constant C(k) is discussed in Section 2.1.3. 

The quantity ~ ( f ; )  is a measure of how easy the density fy can be estimated. This 

quantity is however not scale invariant. A scale invariant version of this quantity is given 

by 

~ p ( f 2 .  (3.28) 

Terell (1990) showed that the expression in (3.28) is minimized by the beta(4,4) density, 

thus the beta(4,4) density can be considered to be the easiest to estimate in terms of 

AMISE. For a more detailed discussion on the quantity in (3.28), the reader is referred 

to Chapter 2, Section 2.1.2. Wand et al. (1991) constructed the transformation in such 

a way that the transformed data are scale preserving (see equation 3.21), and therefore 

they chose the transformation parameter X that minimizes an estimate of R(f;)'l5. Yang 

and Marron (1999), however, did not construct the transformation in a scale preserving 

manner, and therefore they chose the transformation parameter X that minimizes an 
" 1 5 estimate of uyR(fy) 1 . Note that these two methods are equivalent, thus an attempt is 

made to choose X in such a way that X is optimal for the density estimate in terms of 

AMISEy. The idea is that the chosen transformation parameter estimate, A, will force 

the transformed data to have a distribution that is as close as possible to the beta(4,4) 

distribution. Note that this method is asymptotically optimal estimating densities and 

not to transform data to normality. In this dissertation, however, an attempt is made to 

transform data to normality, therefore, the above-mentioned procedure will only be used 

for reference purposes. 

3.4 A new optimal semi-parametric transformation 
to normality 

In this section results from Section 2.2, 3.2 and 3.3 will be utilized to define the opti- 

mal semi-parametric transformation to normality. Thereafter, graphs will be presented 

to illustrate the efficacy of the new transformation. Data from a uniform distribution 

on [0, 11, negatively skewed unimodal distribution, positively skewed unimodal distribu- 

tion, skewed bimodal distribution, kurtotic unimodal distribution, bimodal distribution, 

trimodal distribution and the claw distribution (a distribution with five modes) will be 
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considered. The distributions considered above were carefully selected to put the newly 

developed method under strain. Let XI , .  . . , X, be i.i.d. random variables distributed 

according to the probability law Fx with the associated order statistics X(l), . . . , Xg). 

Notation 
x - p ,  Suppose that ZZj = +-, j = 1,. . . ,n, then, for ease of notation , the subscript j will 

be suppressed, i.e., we write Z, instead of Zzj. The little x will therefore indicate that 

the X-data are standardized. Also, if x,j, j = 1,. . . , n, denote the transformed data 

at the i-th iteration step, we will simply write Y,  (omitting the index j). The index i 

will therefore be used as an iteration step index throughout the discussion below. The 

method is summarized as follows: 

Step 1 Standardize the input data, X, using the robust standardization method as 

described in Section 3.3. Thus 

where fi, = & and 6, = min {s,, (& - GI)/  (@-'(a) - @-'(a))). Here 41, & ,  Q 

are the sample quartiles and s, the usual sample standard deviation. 

Step 2 Apply the black box of transformations to Z,, thus 

where gx(.) is any of the transformations in the black box, i.e., the 

Shifted Box-Cox transformation, 

Yeo-Johnson transformation, 

John-Draper transformation, 

a Johnson family of transformations, 

a Ruppert-Wand transformation. 

The parameter X is estimated using the following methods: 

0 Profile maximum likelihood, 

Minimum residual, 
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Minimum distance. 

The ultimate transformation and estimation method chosen from this black 

box, is the transformation-estimation combination that has the highest p-value 

when testing for normality using the Shapiro-Wilk test statistic for n 5 2000, 

and the combination that renders the easiest to estimate density if n > 2000. 

The reader is referred to Section 3.3.3 for a more detailed discussion on these 

transformation selection procedures. 

Step 3 For each i = 1,2, .  . . , T iterate the nonparametric transformation given in (3.10) 

by following steps one and two described below: 

1. Calculate the standardized data 

where &-, and CV,_, are the sample mean and robust scale estimate based 

on the transformed data from the previous iteration. 

2. Apply the nonparametric transformation given by 

The bandwidth required may be selected according to the procedure of 

Polansky (1997) as described in Section 2.2.3. Also, no bandwidth a d a p  

tation, i.e., Xi = 1 V j  in (3.10) renders the highest pvalue. 

Step 4 The last iteration from Step 3 produces the transformed data Y,. If scale preser- 

vation is required, then, the scale of the transformed variable produced in the 

last iteration is changed to the scale of the original input data. This is done 

by replacing Y, with 

where 6, and Sy, are the scale estimates of the original and transformed data 

respectively. 



CHAPTER 3. TRANSFORMATION OF DATA 93 

3.5 Application of the optimal transformation to sim- 
ulated data 

Next, the newly proposed semi-parametric transformation to normality will be applied 

to a random sample (n = 400) from some carefully selected distributions. The iteration 

number is fixed at r = 2 throughout the following illustrations. We will compare the 

new semi-parametric transformation with the "best" parametric transformation. The 

parametric transformation is selected from the black box according to the ShapireWilk 

p-value. No bandwidth adaptation was performed, i.e., we used Xj  = 1 b'j in (3.10). The 

legend used to describe the transformation results (first column of Table 3.6) is given in 

Table 3.5. The second column of Table 3.6 represents the density from which the data 

Table 3.5: Descriutive leaend for the first column - 
of Table 3.6. 

Distribution from which data are drawn 

Curvature of the distribution utilized 

Parametric transformation selected 

Parameter estimation method selected 

Estimated parameters 

Shapiro-Wilk pvalue (parametric) 

Shapiro-Wilk p-value (semi-parametric) 

are drawn. The third column represents the semi-parametric transformation function 

represented in red and the "best" parametric transformation represented in blue. The 

fourth column represents an ordinary kernel density estimate of the transformed data. If 

the transformation is successful, we would expect a normal like density in this column. 

The estimated density of the semi-parametric transformed data is presented in red and 

that of the parametric transformed data in blue. 

Conclusions: 

The parametric transformation performs well in cases where only a convex, concave, 

convex to concave or concave to convex transformation is required. However, this 

transformation fails drastically when more than one shape change is required. 



CHAPTER 3. TRANSFORMATION OF DATA 94 

For the data considered, the semi-parametric transformation outperformed the 

parametric counterpart significantly in all cases except for the lognormal data, 

where the two transformations performed almost identically. In this case a higher 

iteration value (T > 2) may be considered. The new transformation can assume all 

the shapes possible for a parametric transformation and any combination of these. 

Hence, input data are relocated more significantly which results in the high p-value 

when testing normality of the transformed data. In addition, the density estimate 

of the semi-parametric transformed data, appears to be much closer to the normal 

density than the density estimate of the parametric transformed data. Hence, using 

the newly proposed procedure will render data for which the density is easier to 

estimate. 

In the context of transformation kernel density estimation, the derivative of the 

transformation is required. From the graphs presented in Table 3.6 it should be 

clear that bandwidth adaptation is required to stabilize these derivatives in tail 

regions. This adaptation will be explored in Chapter 4. 

We propose T = 2 iterations in cases where the parametric transformation fails. 

However, T = 0 and T = 1 may also be considered otherwise. 

Remarks 

The reader is referred to tables displayed in Sections 5.1.1-5.1.13 where interesting Monte 

Carlo results are provided regarding mean pvalues, the percentage number of times 

a certain transformation is selected and the percentage number of times a parameter 

estimation technique is chosen. These results are discussed in more detail in Section 5.1. 
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Transformation kernel density estimation 

In this chapter we will discuss the transformation kernel density estimator which has 

the property of automatically addressing boundary bias and spurious bumps in the tails, 

both which are characteristics of the ordinary kernel density estimator. These issues 

enjoyed serious attention in the literature. The interested reader is referred to Chapter 2 

for an account. In addition, the advantage of using transformations is that it still allows 

the use of a global bandwidth, although on a transformed scale. The different amount 

of smoothing needed at  different locations is absorbed in the transformation function, 

making it possible to use a global bandwidth effectively. This is important since much is 

known about global bandwidth selection (see Section 2.1.4), but not for local bandwidth 

choice. New contributions in this dissertation to the field of kernel density estimation 

are: 

A new adaptation scheme that incorporates both an initial density and distribution 

function estimator as opposed to the procedure proposed by Abramson (1982) (see 

(2.49) for more detail). 

Modification of the newly proposed optimal transformation to normality as dis- 

cussed in Section 3.4, to utilize it in a robust way for density estimation. 

The layout of this chapter is as follows: 
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Section 4.1 contains a discussion of the transformation kernel density estimator 

with special reference to the selection of an appropriate smoothing parameter. 

Section 4.2 is devoted to a newly proposed transformation kernel density estimator 

(TKDE). 

4.1 The transformation kernel density estimator 

The use of transformations in kernel density estimation has been proposed by Devroye 

and Gyorfi (1985), Silverman (1986) and Wand et al. (1991). Related work were pre- 

sented by Park, Chung and Seog (1992), Ruppert and Wand (1992), Marron and Ruppert 

(1994), Ruppert and Cline (1994), Hossjer and Ruppert (1995), Yang and Marron (1999), 

Markovitch and Krieger (2000) and Bolanci, Guillen and Nielsen (2003). Let XI , .  . . , X, 

be a sample having density fx, also let gx(x) be a monotonic increasing transformation. 

The transformation kernel density estimator (henceforth referred to as TKDE) is given 

by 
1 

.~x(x; h, A) = ~ ; ( x ) . ~ Y ( ~ A ( x ) ;  h, A) = - C d;(x)h { ~ A ( x )  - g ~ ( X i ) ) ,  (4.1) 
n i=l 

where X is the transformation parameter(s), h is the smoothing parameter and kh(.) = 

k(./h)/h. It is important that the transformation function is sufficiently smooth so that f y  

inherits the smoothness properties of fx. Estimation of the transformation parameter(s) 

and transformation selection are discussed in Section 3.3.3. It is important to note that 

the derivative of the John & Draper transformation function entails absolute values which 

render this transformation unusable in the context of the TKDE. The global discrepancy 

measure MISE will be employed to find a suitable smoothing parameter, h. Hence, we 

are interested in minimizing 

with respect to h. Hence, utilizing (4.1) we find 

using the substitution y = gx(x) I 
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Minimizing (4.3) with respect to h yields the asymptotic optimal bandwidth 

where L r ( A )  = / fC(y; A)' [g;  ( g i l ( y ) ) ]  dy. Substituting the asymptotic optimal band- 

width in (4.4) into (4.3) we find that, for a fixed A, the smallest possible AMISEx is 

given by 

where C ( k )  = ! ~ ~ ( k ) ~ / ~ ~ ( k ) ~ / ~  is a constant only depending on the kernel function k .  It 

should be noted that the bandwidth in (4.4) is difficult to implement in practice, since 

the integral L y ( A )  is difficult to estimate. However, it might be argued that, for a trans- 

formation to normality, the unknown f;(y; A)  may be replaced with a normal reference, 

which will render a simple calculation of L y ( A ) .  Such an argument comprises two flaws. 

Firstly, the transformation gx(x)  should be successful in transforming the input data to 

normality, if this is not the case the resulting bandwidth can be considered to be in the 

class of the quick and simple normal scaled rule of thumb bandwidths. Secondly, the 

newly proposed semi-parametric transformation to normality, discussed in Section 3.4, 

has the ability to transform any input data successfully to normality, however, the in- 

verse transformation involves quantile estimation. Such an exercise may be performed 

using kernel quantile estimators, which in turn requires additional bandwidth selection. 

For this reason we will not pursue the calculation of the optimal bandwidth by means of 

expression (4.4). 

As an alternative we may consider the MISEy of f y  (.; h, A ) .  However, MISEy is not 

invariant to the scale transformation Y H cY with c # 0, hence, we need to ensure 

that the scale of the input data is preserved when mapping from X to Y. This is easily 
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accomplished by dividing the transformed data with an estimate of its scale measure, 

and then multiply the result with an estimate of the scale measure of the original data. 

Applying the asymptotic results presented in Section 2.1.1, in specific (2.10), (2.11) and 

(2.13) we find 

Minimizing (4.5) with respect to h results in the asymptotic optimal bandwidth 

where, for a given A, the density functional R (f;(.; A)) may be estimated according to 

the methods presented in Section 2.1.4. Hence, the bandwidth selection procedure proposed 

by Sheather and Jones (1991) may be utilized. Substituting (4.6) into (4.5) we find that 

the smallest possible AMISEY, for a given A, is given by 

From (4.7) it is clear that one may select the transformation parameter A to minimize 

R (f; (.; A)) or a scale invariant version thereof (see (2.16) for more detail). This is the 

route followed by most authors. The logic behind this procedure is to minimize the curva- 

ture in the density estimate of the transformed data, since R (f;(.; A)) is a global measure 

of the curvature present in a density, as discussed in Section 2.1.2. Terell (1990) showed 

that the beta(4,4) density minimizes this roughness measure. Consequently, by choosing 

the transformation parameter(s) to minimize R (f;(.; A)) is an attempt to transform the 

data to have a density similar in shape than the beta(4,4) density. Alternatively, one 

might argue that this is an attempt to choose A that yields the "easiest to estimate" 

density over the family of transformed densities indexed by A. This transformation pa- 

rameter(~) selection procedure was previously discussed in Section 3.3.3. However, for the 

newly proposed TKDE procedure an attempt is made to transform the data to normality 

and therefore the transformation parameter(s) needs to be selected on different consider- 

ations. The transformation parameter(s) estimation procedures for the newly proposed 

TKDE's can be found in Section 3.3.3. It should be clear that the asymptotic optimal 
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bandwidth in (4.6), is easier to implement in practice than the bandwidth in (4.4). How- 

ever, keep in mind that we seek good performance of fx. Hence, we will establish the 

relationship between the discrepancy measures based on the X -  and Y-  data. 

using the substitution y = gx(x) I 
The MISEY expression given above may be compared to the MISEx expression based on 

the X -  data, i.e., 

Such a comparison lead to the conclusion that MISEy [fy(.; h, A)] can be interpreted as 

a weighted X -  data MISE, and vice versa. Wand et al. (1991) comment that in the simu- 

lated examples they considered, little practical difference was found between the density 

estimators attempting to minimize MISEX and MISEy. Based on the above-mentioned 

and computational considerations, bandwidth selection will be executed by using MISEY. 

Next, a short summary of the existing literature will be presented. Perhaps the most 

informative article on the topic was written by Wand et al. (1991). The transformation 

considered is the shifted Box-Cox of the form 

Note that the shape of this transformation is convex if Xz > 1 and concave if Xz < 1. 

Hence, the ability of the proposed transformation to transform any given data is limited. 

However, the authors primarily considered density estimation for positive, skewed data. 

The interested reader is referred to Section 3.3.2 for a more detailed discussion concerning 

the curvature of transformations. The transformation is then scaled to preserve the scale 

of the original input data, i.e., 
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This rescaling is necessary since the transformation parameter estimation technique prw 

posed by Wand et al. (1991) is based on MISEy which is not scale invariant. Hence, 
115 

the transformation parameters are selected based on the criterion R (fG(.; A)) . From 

Section 3.3.3 we note that for the shifted Box-Cox transformation the parameter XI is 

extremely difficult to estimate. To address this, Wand et al. (1991) found a reparametriza- 

tion of (XI ,  Xz) ,  which will be described next. 

Let ql < q2 < q3 be three points in the range of X, where ql, q2, q3 might be the three 

quartiles. Let 
6. - J 

z - gx(qi), i = l ,2 ,3 .  

It was shown in Section 2.1.6 that the TKDE defined in (4.1) can be viewed as the 

conventional density kernel estimator with bandwidth h/iji(x). Based on this observation 

Wand et al. (1991) defined 

Note that dz = 1. Since the effective bandwidth a t  qi is h/&, the reparametrization has 

intuitive appeal in the sense that dl is the ratio of the effective bandwidth at qz to the 
h h  

effective bandwidth at ql, hence, dl = -/- = b1/b2. The parameter d3 has a similar 
62 61 

interpretation. Thus, one can choose h to control the degree of smoothing at the center 

of the X- data (near qz) and then choose dl and d3 to control the smoothing in the right 

and left tails, respectively. If Xz > 1, the shape of tjx(x) is convex and consequently 

&(x) will increase as x increases, hence, dl < 1 < d3. Conversely, if Xz < 1, jx(x) is 

concave, hence, dl > 1 > dg. Note that not all pairs (dl,d3) are possible, since we have 

the restrictions - min(X1,. . . , X,) < X1 < +m and -cc < X2 < +a. The algebraic 

manipulation to follow is greatly simplified if qz = 1 and min(X1, . . . , X,) = 0. This can 

be accomplished by using the linear preliminary transformation 
- X - min(Xl, . . . , Xn) 
X =  

q2 - min(X1, . . . , X,) ' 
(4.10) 

where q, is the median based on the data XI, .  . . , X,. Utilizing (4.10) we note that 
- - 

@Z = 1 and min(X1,. . . , X,) = 0. 

Note that from (4.9) we have 
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Next we will find the bounds for (21 and &. With some algebraic manipulation of the 

constraint > 0 we find 

1 > 1 ( + 1) > 0 and 

From (4.12) and (4.13) it follows that 

To determine a lower bound for ln(i3)/ ln(Jl) note that from (4.11) 

- 
A2 = ln(&) + 1 and + 1) 

where EG, = (Gi - 1)/(1 + XI). Utilizing (4.15) and (4.16) and some simple algebraic 

manipulation we find 

7 )  (fg3) = (eg3 + - rq6g3 - 1 = 0, (4.17) 

where rd = ln(&)/ln(&) and rq = (41 - l)/(q3 - 1). Hence, the root of equation (4.17), 

will produce a value for 11, which may be substituted into expression (4.15) or (4.16) to 

find Xz. From the restriction X1 > 0 we find that 

From this restriction and the fact that +(0) = 0 it follows that 7 )  (x) should have a 

turning point between 0 and eG3. This yields that 

The restrictions (4.14) and (4.19) determine the bounds, which are given by 
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After observing that a rectangular grid of pairs dl, & based on (4.20) is unsatisfactory, 

Wand et al. (1991) suggested to use a trigonometric grid design based on (4.20). Let 

1ndl=rcos0  and lnd3=rsin0,  (4.21) 

In d3 
0 = tan-' (-) and r = \/-, 

lndl 

Hence, from (4.20) we find 

It should be noted that when ijx(.) is convex, then dl < 1 < d3 and conversely if gx(.) 

is concave, then dl > 1 > d3. This information should be incorporated in the polar grid 

design, hence, we will subtract .rr from the bounds given in expression (4.22) for the case 

where ijA(.) is convex. Let OL, and OR be the left and right sides of (4.22), respectively. A 

grid of points are generated via 

oi = eL + (0" - %L) 2 f i j  and r.--,  i , j = l ,  . . . ,  10. 
10 3 -  10 

(4.23) 

A grid point (0, T) corresponds to (dl, 23) through the relation (4.21). Putting together 

the ideas discussed above, the following general procedure should be followed for the 

implementation of the Wand et al. (1991) procedure: 

Step  1 

S tep  2 

S t ep  3 

s t e p  4 

S t ep  5 

S tep  6 

Apply the linear preliminary transformation (4.10) to the input data. 

Determine the grid (Oi, rj) with i, j = 1,.  . . , l o ,  according to (4.22) and (4.23). 

For each grid point ( B ~ , T , ) ,  calculate (dl, 23) according to (4.21) 

For each pair (dl,&), find the root of (4.17), and solve q3 = (g3 - 1)/(1 + X I )  
to find i1. Also find Xz using (4.15) or (4.16). 

For each pair ( X I ,  iz) calculate the transformed value 5 = gj;(z) and preserve 

scale as outlined in (4.8), rendering the transformed value y. 

The optimal transformation parameters are then selected according to MISEy 

considerations, that is, the pair (Jl, i z )  that minimizes an estimate of R (f;(.; h)) 
Note that if scale is not preserved a scale invariant version of this quantity is 
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required, i.e., the version defined in (2.16). Kernel estimation is discussed in 

Section 2.1.4 (see (2.24) with associated bandwidth calculated according to 

(2.43)). This leads to the 1-stage high-tech procedure of Sheather and Jones 

(1991) as discussed in Section 2.1.4. In addition, the robust scale estimator 

(2.22) may be utilized. 

Step 7 Estimate the density f x ( x )  using (4.1) with associated bandwidth calculated 

according to the procedure outlined in (4.6). Bandwidth selection is based on 

MISEy as pointed out previously. 

Park et al. (1992) investigated the performance of the TKDE based on the procedure 

proposed by Wand et al. (1991) through a simulation study. The authors considered dis- 

tributions which have support [0, co) and report that the method works quite well, but 

is not so effective for distributions with relatively high density near zero. As a remedy, 

they proposed to restrict the range of XI to XI > c ( c  > 0) in the minimization procedure. 

This is equivalent to considering a preliminary transformation X H X + c, where c is not 

involved in the minimization procedure but is predetermined. The authors reported that 

the preliminary shift transformation significantly improves the performance of the TKDE 

for distributions with relatively high density near zero. For other distributions, prelimi- 

nary shift is not harmful in the sense of mean integrated squared error. They suggested 

that one should always make a preliminary shift transformation before attempting to 

find the best shifted power transformation. However, no guidance is given how to choose 

the preliminary shift parameter c. In Section 4.2 a preliminary shift parameter will be 

introduced for the implementation of the TKDE. 

Ruppert and Wand (1992) considered densities with high kurtosis. The kurtosis of a 

probability density function f x  can be described in terms of its "peakedness" in the cen- 

ter and "heaviness" in the tails. A density with a high kurtosis generally has a sharp peak 

in the center and long tails, e.g., the Cauchy density. Ruppert and Wand (1992) made 

the assumption that f x  is symmetric around 0 and unimodal. The center of symmetry is 

achieved by subtracting the sample median from each observation, rendering the linear 

preliminary transformation - 
X = X - q z  
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To reduce kurtosis a convex to concave transformation is required. Such a transformation 

has the effect of taking probability mass from both the peak and the tails and moving it 

to shoulders, which reduces peakedness and lightens the tails. Ruppert and Wand (1992) 

proposed the use of the transformation 

{ 
1 

Q = &(XI = a x  + (1 - a)bG @(x/ez) - -} 
2 ' 

(4.24) 

for 0 5 a 5 1, where a(.) is the distribution function of the standard normal distribution. 

Decreasing a strengthens the kurtosis reduction of the transformation. When a = 1, ga(.) 

has no effect, since the identity transformation is returned. The scale of the input data 

is preserved according to (4.8), i.e., 
A 

c'z - 
Y = ga (x) = ~ g a  (x) . (4.25) 

'Jg 

For the scale estimates the robust scale estimator (2.22) is recommended. In accordance 

with Wand et al. (1991), Ruppert and Wand (1992) chose the transformation parameter a 

according to MISE considerations, i.e., that a that minimizes an estimate of R (fi(.; a) )  . 

The estimation of this quantity can be performed utilizing the high-tech procedure pro- 

posed by Sheather and Jones (1991), see Section 2.1.4 for more detail. The TKDE is then 

given by (4.1) with associated bandwidth calculated according to the procedure in (4.6). 

From a small simulation study, Ruppert and Wand (1992) concluded that the TKDE 

based on the transformation (4.24) is superior to the ordinary kernel density estimate 

for densities with high kurtosis, whilst similar performance can be expected for densities 

close to normality, i.e., densities that are easy to estimate. 

Marron and Ruppert (1994) utilized the TKDE to reduce boundary bias where the s u p  

port of the unknown density is in the interval [0, 11. They proposed to transform the data 

to have a density with first derivative equal to zero a t  both boundaries of its support. 

Ruppert and Cline (1994) were the first authors to propose the use of a nonparamet- 

ric transformation to a predetermined target distribution Go(.) to reduce bias in kernel 

density estimation. The associated target density will be denoted by go(.). The transfor- 

mation is then given by 

Y = G,' [$x(x)] , (4.26) 

where @x(.) is a smooth estimate of the cumulative distribution function Fx of XI , .  . . , X,. 

From arguments leading to the bias expression in (2.10) it follows that the bias for the 
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ordinary kernel density estimator defined in (2.1) at x has a formal asymptotic expansion 

of the form 

2 hq f y ) ( x )  1 uzik(u)du/ (2 j ) ! .  
j=1 

The authors argued that a uniform target distribution (where Go(.) is the identity func- 

tion) is particularly interesting, since its density has all derivatives equal to 0 so that bias 

is asymptotically negligible. However, for distributions with bounded support and for es- 

timation of the density of the transformed data, boundary bias will occur. For a detailed 

discussion concerning boundary bias the reader is referred to Section 2.1.5. Moreover, 

spurious bumps in the tails will also be evident of the procedure. The reader is referred to 

Section 2.1.6 for a detailed discussion concerning spurious bumps in the tails. To confirm 

the occurrence of boundary bias and spurious bumps in the tails, consider the iterative 

procedure proposed by Ruppert and Cline (1994). Let t be the number of iterations. For 

j = 1 , .  . . , t ,  A(.) and e.(.) are defined as follows: 

and 

if t 2 2 then, from the definition of the TKDE in (4.1), for j = 2, .  . . , t ,  

and 

Note that if Go(.) is the uniform target distribution then (4.27) reduce to 

From (4.27) and (4.28) the following disappointing conclusions can be reached: 

The transformation derivative f j - l ( x )  / go [G;' ( p j - l ( x ) ) ]  inherits both boundary 

bias and spurious bumps in the tails, since f j - l ( x )  is present in the derivative. This 

behavior was mentioned in Sections 2.1.5 and 2.1.6. 
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a If Go(.) is the uniform target distribution then, from (4.28) it is clear that boundary 

bias will be present in the estimation of the density of the transformed data. For this 

reason Ruppert and Cline (1994) utilize boundary kernels to estimate the density 

of the transformed data. 

a The derivative fj-l(s) / go [G,' (&l(z))] appearing in (4.27) can become very 

large in the tail regions. This will cause explosive behavior of the final density 

estimate in these regions. This phenomenon will be addressed subsequently in 

Section 4.2. 

Another point of criticism is that the authors use the bandwidths hi, j = 1,. . . , t ,  

appearing in the density estimates fi also as bandwidths for the distribution func- 

tion estimates gi. Surely, appropriate bandwidths for pi can differ from appropriate 

bandwidths for fj . 

For reasons outlined above, the TKDE developed by Ruppert and Cline (1994) will 

not be included in the simulation study. Despite the occurrence of these potentially 

harming effects, Ruppert and Cline (1994) implemented the procedure with Go(.) being 

the uniform distribution. Their findings are: 

The nonparametric TKDE seems to be highly effective at capturing interesting 

features such as multiple modes and densities with sharp peaks. 

For extremely skewed or heavy-tailed densities, the poor performance of the initial 

kernel density estimate seriously degrades the performance of the TKDE. In such 

situations they recommend using an initial parametric transformation as discussed 

in Wand et al. (1991) and in Ruppert and Wand (1992). This idea is essentially 

pursued in the newly proposed TKDE's (see Section 4.2). 

For densities with compact support, the boundary bias of the initial kernel density 

estimate will persist in later iterations. To avoid this problem, they recommend 

using the parametric TKDE developed by Marron and Ruppert (1994) to get the 

initial estimator. 

For the newly proposed TKDE's (Section 4.2) the target distribution Go(.) will be the 

normal distribution function, a(.). Hence, assuming some measure of normality of the 

data used in density estimates, boundary bias should not be a problem. Hossjer and 
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Ruppert (1995) studied the asymptotics for the nonparametric TKDE proposed by Rup- 

pert and Cline (1994). 

Yang and Marron (1999) proposed the use of the TKDE, where the transformation uti- 

lized is defined as a reparametrization of the versatile transformation family proposed by 

Johnson (1949). This family includes convex, concave, convex to concave and concave 

to convex transformations (see (3.19)). Note that the curvature of the transformation 

changes around zero. The reader is referred to Section 3.3.2, Table 3.3 for confirmation. 

For this reason we will employ the linear preliminary transformation 

Let y = g,(x) denote the transformation, with c the transformation parameter. Unlike 

Wand et al. (1991), Yang and Marron (1999) do not preserve the scale of the input data 

as described in (4.8). If the transformation parameter selection rule is based on MISE 

considerations, i.e., choose the parameter that minimizes an estimate of R (fG(.; c)) , then, 

a scale invariant version of this quantity is required. From Section 2.1.2 (see (2.16)) we 

define the following scale invariant version 

Kernel estimation of R (fi(.;c)) is discussed in Section 2.1.4, see (2.24), with associated 

bandwidth calculated according to (2.43). The robust scale estimator in (2.22) is utilized 

to estimate ug. Yang and Marron (1999) proposed to estimate the parameter c for each 

member of the transformation family, and to choose the family member for which E ( t )  
is the smallest. This will ensure that the member selected is optimal in the sense that 

it produces the easiest to estimate density. The authors also noted that L(c) can be re- 

garded as a global roughness measure or global measure of curvature, and less curvature 

makes estimation easier. The TKDE, (4.1), is then applied with MISEy optimal band- 

width calculated according to (4.6). The bandwidth selection procedure of Sheather and 

Jones (1991) is employed. In addition it should be noted that the original input data can 

be transformed more than once, utilizing the Johnson family of transformations. This is 

a result of the richness of the family (the curvature it can assume). As a consequence the 

procedure proposed by Yang and Marron (1999) can be iterated any number of times. 

The authors found that transforming the data twice yields an estimate much superior to 
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the estimate without transformation, and in most cases, little improvement is achieved 

after two transformation steps. Specifically, they report that the transformation density 

estimate is better than the untransformed estimate in overall smoothness and the cap- 

turing of peaks. 

Markovitch and Krieger (2000) considered TKDE to study VVWW (World Wide Web) 

- traffic measurements since different traffic characteristics can be modelled by long-tail 

distributed random variables. The data considered have a support [O; a). The transfor- 

mation proposed is 

2 
y = g(x) = -tan-'(x) with i ( x )  = 

2 
7r 7r (1 + x2)' 

This transformation is convex to concave and changes curvature around zero. For the 

data considered the transformation is concave. The proposed transformation is somewhat 

disappointing, since it does not depend on parameters to be estimated. Nevertheless, the 

input data will be mapped to the bounded domain [O; I ) ,  hence, boundary bias will be 

present in the density estimate of the transformed data. Markovitch and Krieger (2000) 

employed reflection to overcome this obstacle (see Section 2.1.5 for more detail on this 

technique). The usual TKDE defined in (4.1) is used. 

Bolanc6 et al. (2003) estimate actuarial loss distributions based on a symmetrized ver- 

sion of the transformation approach proposed by Wand et al. (1991). From an actuarial 

background, the authors gave valuable motivational insight for the application of the 

TKDE in the actuarial context. The loss distribution is the probability distribution of 

the amount to be paid to the insured for the damage. Traditional methods for loss distri- 

butions use parametric models. Two of the most popular distributions are the lognormal 

(overall shape) and the pareto (tail behavior). Loss distributions have typically one mode 

for the low loss values and then a long heavy tail. The authors showed by means of a 

simulation study that the proposed method is able to estimate all three possible kind 

of tails, as defined in Embrechts, Kliippelberg and Mikosch (1997), namely the Fr6chet 

type, the Gumbel type, and the Weibull type, which makes the methodology extremely 

powerful for actuaries in various disciplines. The authors also showed that the TKDE 

is able to estimate a heavy-tailed distribution beyond the data. Consider the following 

short summary of the three classes of tails: 
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Fre'chet Type This class includes the Pareto, Burr, loggamma, Cauchy and t-distributions 

as well as various mixture models. We will refer to distributions in 

this class as heavy-tailed. Not all moments are finite for distributions 

in the Frkhet class. 

Gumbel Type This class contains distributions whose tails decay roughly exponen- 

tially and we call these distributions medium-tailed. All moments 

exist for distributions in the Gumbel class. Examples are the nor- 

mal, lognormal, exponential and gamma. 

Weibull  Type This class contains distributions that are short-tailed for example the 

uniform and beta. 

It should be noted from the summary given above, that the Frkhet type distributions are 

of vital importance for financial applications. In conclusion, the authors mentioned that 

the TKDE can be useful to estimate the tail index (a), which is the shape parameter of the 

extreme value distribution. They reported that the closest possible Pareto distribution 

fit in the tail, using the weighted discrepancy measure 

WISE = Iirn {j(x; g) - f (x; a))' x2dx, 
-m 

where f(x; k) represents the TKDE and f (x; a) the extreme value density, is much better 

than the Hill estimator (Hill (1975)) that is widely used in actuarial science and finance. 

Note that the use of a weighted discrepancy measure places more importance on the 

tail. An additional advantage of the proposed procedure is that all the data are used 

and consequently the estimation technique does not have to bother about where the 

tail begins such as the Hill estimator has to. For a more detailed discussion concerning 

extreme value theory and related topics, the reader is referred to Beirlant, Teugels and 

Vynckier (1996) and Embrechts et al. (1997). The TKDE proposed by Bolanc6 et al. 

(2003) basically applied the procedure proposed by Wand et al. (1991), but, with a slight 

deviation since they only considered transformations that give a symmetric distribution. 

The authors also mentioned that Pareto tail shape belongs to the class of transformations 

they considered, i.e., the shifted Box-Cox. Hence, we can expect that the TKDE behaves 

extremely well in the tails of distributions with heavy tails. Bolanc6 et al. (2003) gave 

the following motivations for a symmetric transformation distribution: 



CHAPTER 4. TRANSFORMATION KERNEL DENSITY ESTIMATION 114 

A transformation that results in a symmetric distribution is bound to have a sig- 

nificant influence on a possibly heavy tail of the original distribution. 

Bandwidth selection for estimating the density of the transformed data is simplified, 

since a simple rule of thumb may be employed. 

The boundary problem will more or less disappear since the transformed distribu- 

tion can be expected to level off slowly. Therefore, boundary kernels or other forms 

of correcting at the boundary may be ignored. 

The procedure proposed by Bolanc6 et al. (2003) is exactly the same as that proposed 

by Wand et al. (1991) with the slight alteration that they restrict the set of parameters 

X to give approximately zero skewness for the transformed data Yl, . . . , Y,. Skewness is 

This restriction is easily incorporated at  Step 6, in the stepwise procedure provided in 

the discussion of the method proposed by Wand et al. (1991). 

4.2 The new optimal semi-parametric TKDE 

From the literature study presented in Section 4.1 it should be clear that the TKDE 

has the ability to overcome the boundary bias and spurious bumps in the tails com- 

monly associated with the ordinary kernel density estimator, (2.1), and in addition is 

able to capture density curvature more prominently. The transformation density estima- 

tion method is able to do all that, provided that the correct transformation is selected 

and correctly applied. It is widely accepted that there is no single best method to esti- 

mate densities. However, in this section we will present a new semi-parametric procedure 

that will automatically detect and address the problems commonly associated with the 

ordinary kernel density estimator. The newly proposed procedure consists of a paramet- 

ric transformation selected from a black box of transformations and a non-parametric 

counterpart. The parametric transformation is responsible for removing spurious bumps 

in the tails as well as minimizing boundary bias. The non-parametric transformation is 

responsible for minimizing boundary bias, removing spurious bumps in the tails as well as 

capturing density curvature more effectively. The TKDE can be considered similar to the 

original kernel estimator with a variable bandwidth (see Section 2.1.6 and Section 4.1 for 
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more detail) as a direct consequence of the use of the transformation. Hence, the trans- 

formations (both parametric and non-parametric) can be seen as an attempt to adapt the 

bandwidth (make it a more local choice) according to the grid position where the density 

estimate is required. In addition we will also introduce a generalized adaptation scheme 

that adapt the bandwidth according to the data, i.e., kernels with larger variances will be 

utilized in places where data are scarce, and conversely utilization of kernels with smaller 

variances where data are abundant. The use of such an adaptation scheme is vital for 

consistent density estimation in the tail regions. It turns out that the newly proposed 

adaptation scheme includes the adaptation scheme proposed by Abramson (1982), (see 

(2.49)), as a special case. A new location shift procedure will also be introduced. 

fiom the broad overview given above it should be clear that the newly proposed procedure 

combines a number of high-tech procedures znto one package an a natural way, rendering 

the possibility of optimal density estimation. These procedures include: 

Parametric transformations to normality, with a variety of transformation param- 

eter estimation techniques. 

0 The newly proposed optimal non-parametric transformation, that may be iterated. 

A newly proposed generalized adaptation scheme. 

0 A newly proposed shift procedure, 

Utilization of the high-tech bandwidth selection procedures proposed by Sheather 

and Jones (1991) and Polansky (1997). 

The transformation kernel density estimator. 

In this section it will become apparent that at the core of a well executed transformation 

kernel density estimate lies the selection of a suitable transformation function and the 

estimation of the transformation function derivative. Hence, the broader the range of 

distributions that can be transformed successfully, the broader the application potential. 

We claim that our procedure handles density estimation in an automatic and quite natural 

way, hence the combination of the parametric and nonparametric transformations handles 

a wide variety of distributions. To prove this claim, the following densities will be included 

in the simulation study (Chapter 5): 
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a Densities from the Fre'chet- and Gumbel Type, to show the removal of spurious 

bumps in the tails and the boundary bias correction ability. 

a Densities with bounded support, such as the uniform density, to show the boundary 

bias correction ability. 

Densities with more than one mode, to show the ability of capturing density cur- 

vature. 

a Densities that are easy to estimate using the ordinary kernel estimator, to show the 

behavior where little or no transformation is required. 

If the newly proposed procedure is successful, as claimed, to estimate densities of the 

various forms described above, one would be tempted to challenge the general consensus 

that there is no single best method of density estimation, at least using the kernel method. 

Furthermore, the procedure will be valuable to practitioners from a non-mathematical 

audience, since all potentially harmful side effects of the density estimation process are 

automatically handled. We will now proceed with a discussion of the proposed procedure. 

In essence, the newly proposed procedure utilizes the optimal semi-parametric trans- 

formation to normality (see Section 3.4) after which the ordinary TKDE defined in (4.1) 

is applied. Let XI,. . . , X ,  be i.i.d. random variables distributed according to the prob- 

ability law Fx. The zero-step iteration of the optimal transformation is given (using the 

"ease of notation" by suppressing subscripts as described in Section 3.4) by 

The first-step iteration of the optimal transformation is then given by 

Location-scale and bandwidth parameters are estimated according to the conventions de- 

scribed in Section 3.4. The parametric transformation function is given by gA(.), selected 

from the proposed black box of transformations with parameter estimation and trans- 

formation selection as described in Section 3.4. Note that scale preservation is strictly 

speaking not necessary since transformation parameter(s) estimation is not based on 
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MISE considerations. Implementation of the TKDE in a predetermined grid point, say 

xo, requires the derivative of the transformation in (4.30): 

From (4.31) it should be clear that this derivative could be highly explosive in the tail 

regions, i.e., where FZYO (zyo; h,) could be close to 0 or 1. In these cases $(.) approaches 

zero and the derivative will explode, having a devastating effect on the TKDE in these 

regions. For subsequent iterations the occurrence of this possible explosive behavior will 

continue. Observation of this potentially unfortunate behavior could raise doubt concern- 

ing a transformation to normality as one may favour a transformation to an alternative 

bounded distribution, such as the uniform distribution proposed by Ruppert and Cline 

(1994), for which this behaviour will certainly be less severe. However, the normal distri- 

bution was chosen based on ease of estimation (see Section 2.1.2), and more importantly, 

since this distribution has an unbounded support and its density approach 0 in the tail 

regions. Hence, boundary bias will be eliminated in the resulting TKDE. Next, we will 

focus on finding a sufficient procedure to estimate the derivative presented in expression 

(4.31). 

First, observe that theoretically the derivative in (4.31) requires density and distribution 

function estimation using the same bandwidth, Lo. However, from AMISE considerations 

(see Chapter 2, specifically (2.14), (2.58) and (2.60)) we observe that the AMISE optimal 

bandwidth required for density estimation is of the order 0 (n-'I5), while the AMISE 

optimal bandwidth for distribution function estimation is of the order 0 (n-'I3). We can 

therefore replace ho in the density estimate appearing in the numerator of the right-hand 

side in (4.31) by a bandwidth specifically designed for density estimation, such as the 

Sheather and Jones (1991) procedure. However, our numerical results indicate that such 

a choice weakens the ability of our TKDE to capture density curvature. For this reason 

we recommend the use of ho (both in the numerator and denominator) determined for 

distribution function estimation, such as the bandwidth selection method proposed by 

Polansky (1997). 

In addition, it was shown in Section 2.1.3 and Section 2.2.2 that the optimal kernel 

functions used for density and distribution function estimation are the Epanechnikov 
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density and uniform distribution kernel functions respectively. However, (4.31) suggests 

use of k and K,  the density and distribution function counterparts. Since the normal 

density and normal distribution function are effective for estimating both densities and 

distribution functions (see Table 2.2 and Table 2.3), implementation of this kernel func- 

tion is utilized in this dissertation. 

It turns out that the best way to handle the potential explosive behavior in (4.31) is 

prevention combined with a suitable bandwidth adaptation scheme. This include al- 

tering the parametric as well as nonparametric transformations, hence, the proposed 

solution addresses all levels of transformation. To motivate alteration of the transforma- 

tion at  parametric level, consider standard lognormal input data. It is well known that 

the logarithmic transformation of this data will produce standard normally distributed 

data. Hence, a successful transformation, e.g., the shifted Box-Cox transformation (see 

(3.15)) should resemble the log function. Ideally, one would not wish to alter the shape 

of this transformation, which raises the question: how can we alter the parametric trans- 

formation to prevent the explosive behavior in (4.31), without altering the shape of the 

transformation? Once we understand the manner in which the parametric transformation 

influences the derivative (4.31), the answer to the question posed above will be trivial. 

Again, consider the standard lognormal data and the log transformation function, input 

data close to 0 are mapped to -co while input data in the right tail are retracted. If 

these transformed data values are smaller than -4 we are in a region where pzv0 (zv0; LO) 
will be close to zero, resulting in the explosive behavior mentioned above. Furthermore, 

keep in mind that the transformation parameters are estimated using the data, but, for 

the simulation studies a general grid is required that could exceed the bounds of the 

data. Hence, even if the minimum input data point is not mapped to a dangerously large 

negative value, the minimum input grid point might be. 

Given this insight, we conclude that the parametric transformation indeed influences 

the derivative in (4.31) and consequently the TKDE's. Also, it is apparent that the 

parametric transformation is potentially harmful in regions where the input data are 

stretched out, i.e., when the transformation is concave at the lower bound and/or convex 

at the upper bound. It is also important to note that in these regions the derivative 

of the parametric transformation function is large and when combined with the large 
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value of the derivative of the nonparametric transformation the resulting TKDE's may 

tend to infinity in these regions. The remedy proposed in this dissertation is to deter- 

mine the parametric transformation and then to add a shift quantity to the input data. 

The transformation is then applied to the shifted input data. In this way the shape of 

the transformation is preserved. Consider the log transformation to transform standard 

lognormal data to normality as an example, adding a shift constant to the input data 

would make any input data point close to zero slightly larger and consequently map these 

points to smaller negative values without altering the shape of the transformation. Note 

that Park et al. (1992) proposed adding a constant c > 0 to the data when applying 

the TKDE proposed by Wand et al. (1991), and report that this exercise improves the 

performance of the method, probably because of smaller transformation derivatives in 

the potentially harmful tail regions. However, no indication was given how c might be 

chosen. Subsequently, we will introduce a procedure similar to the idea of Park et al. 

(1992). This procedure will be described in the stepwise algorithm of the newly proposed 

TKDE's presented below. 

Consider the next level of correction, i.e., at the nonparametric level. Since the non- 

parametric transformation is employed after an initial parametric transformation, one 

may argue that the input data at this level possess some level of normality. Hence, 

the density and distribution function estimates needed in the derivative (4.31) should 

resemble the normal distribution in some sense, depending on the success of the initial 

parametric transformation. A bandwidth adaptation scheme is also introduced in the 

density and distribution function estimators based on the transformed data, so that the 

eventual bandwidths utilized in the tail regions are increased. This adaptation scheme 

is necessary, since ordinary density estimates suffer from spurious bumps, especially in 

regions where the derivative of the parametric transformation is large. For convenient 

notation and without loss of generality, consider the random variables Yl, . . . , Y, having 

density and distribution function, fy and Fy respectively. The estimation procedure 

proposed by Abramson (1982) qualifies as such a bandwidth adaptation candidate. This 

procedure is discussed in Section 2.1.6. Recall that 
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The notation Xi here should not be confused with the A-parameter appearing in the 

transformations of the black box. 

In the expression given above g is the geometrical mean of a pilot density estimate 

f (Y,; b) , with bandwidth b. Abramson (1982) proposed the use of a = 112 based on 

theoretical considerations. Although this adaptation could be employed to estimate the 

density and distribution function present in the derivative of the nonparametric transfor- 

mation, one might argue that a proper adaptation scheme for the derivative estimation 

should also incorporate a pilot distribution function estimate. Based on this argument we 

developed a new adaptation scheme that includes both pilot density and pilot distribution 

function estimates, which includes as a special case the adaptation scheme proposed by 

Abramson (1982). The newly proposed adaptation scheme is based on the fact that the 

TKDE can be considered as an ordinary kernel density estimator with variable bandwidth 

determined according to the reciprocal of the derivative of the transformation utilized. 

For a discussion on this topic the reader is referred to Section 2.1.6. Based on this obser- 

vation and the versatility of the compactly supported beta density function, we propose 

a nonparametric transformation to the beta(a, P) distribution. The adaptation X i  is then 

given by the derivative of the nonparametric transformation normalized with its geomet- 

ric mean, raised to the power ti and inverted. Let be(., a, P) and Be(., a,  P) be the beta 

density and distribution function respectively with support [0, 11. For a definition of the 

beta density the reader is referred to Section 2.1.2, specifically (2.17). From Section 3.2.1 

(see (3.10)) it follows that we can define an optimal transformation to a predetermined 

beta distribution as follows 

where & is an ordinary kernel distribution function estimate (see (2.50)) with bandwidth 

determined according to the method proposed by Polansky (1997) (see Section 2.2.3). The 

derivative of this transformation is 
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where fy is an ordinary kernel density estimate (see (2.1)). Let 

i ' (Y , )  
-ir 

1 " , where l o g g = - E l o g i l ( k ; ) .  
n i=l 

Also, let . . . , &,) be the order statistics associated with i l , .  . . ,in. The proposed 

adaptation scheme is then given by: 

where c, is a positive constant, that determines the smallest bandwidth used. The shift 

(1 - &l))/c, is motivated from the fact that smaller bandwidths lead to an increase in 

variance of the resulting density and distribution function estimators (see Section 2.1.1 

and Section 2.2.1). Hence, to control the possible increase in variance of the adaptive 

density and distribution function estimators (since some bandwidths will be forced to 

be smaller), we introduce the shift constant (1 - i(,))/c,. The corresponding adaptive 

density and distribution function estimators are then given by 

1 "  1 y - k ;  
Y = - -  n i=, Xib and 

For the choice c, = 1, the smallest bandwidth used in the estimates presented in (4.33) 

and (4.34) will be b and h respectively. Also, note that the procedure proposed by 

Abramson (1982) uses c, = +m, hence, bandwidths smaller than b and h are used in 

areas where data are abundant. In this dissertation, the choice c, = 1 is utilized. The 

bandwidths should be chosen optimally for density and distribution function estimation 

as described in Chapter 2. However, to estimate the derivative in (4.31) we will take 

b = h, as mentioned previously. Note that this adaptation scheme involves both pilot 

density and pilot distribution function estimation, hence, better performance can be ex- 

pected when estimating the derivative in (4.31). The sensitivity parameter & will be fixed 

at Eu = 112, which is similar to the choice made by Abramson (1982). Choosing a = P 
for the adaptation in (4.32) seems logical in the current context, since for this choice 

the beta density is symmetric around 112. For a: = P = 1 the beta density becomes 

the uniform density, and as a: = P increases the resulting density takes an increasingly 

normal like form. From this observation we conclude that a = P = 1 will cause more 
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drastic adaptation, while larger a: = P will result in less adaptation. Hence, larger values 

of a: = /3 will cause a higher gvalue for the transformed data while smaller values of 

a: = /3 tend to apply more smoothing in the tail regions and consequently reduces the 

obtainable pvalue. It should also be noted that the new adaptation scheme reduces to 

the adaptation scheme proposed by Abramson (1982) when a = /3 = 1, c, = +m and 8 
(bandwidth optimal for density estimation) are used. The adaptation scheme proposed 

by Abramson (1982) can therefore be seen as similar to the application of an TKDE for 

a transformation to the uniform distribution. The effect of various values of a = /3 is 

illustrated in Figure 4.1. We are now armed with tools to estimate derivatives similar to 

Figure 4.1: Values of Xi generated by the newly proposed 
adaptation scheme for certain values of IY = /3. 

that presented in equation (4.31) successfully. 

Next, the stepwise algorithm (with discussion) of the newly proposed optimal semi- 

parametric TKDE's will be presented. We will deviate slightly from the transformation 

procedure proposed in Section 3.4 to implement the procedures described above. Let 

X I , .  . . , X,  be i.i.d. random variables with probability law Fx. Also, let XI,. . . , x, be 

a finely spaced grid where m is the grid size. It should be noted that in the procedure 

described below all the calculations performed on the data are also performed on the grid. 

Define 6 as a shift constant and let 0 < E 5 1. Also, we will use the "ease of notation" 

by suppressing subscripts as described in Section 3.4: 
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Step 1 Standardize the input data, i.e., let 

where ji, = Qz is the sample median and 6, is the robust scale estimator 

presented in equation (2.22). The standardized grid is then given by z, = 

(X - fiz)/&. 

Step 2 Apply the black box of transformations to Z,, thus 

The black box of transformations includes the Shifted Box-Cox, Yeo-Johnson, 

Johnson family and Ruppert-Wand transformations. The parameter(s) X islare 

estimated using the profile maximum likelihood, minimum residual and min- 

imum distance methods. For sample sizes, n < 2000, the ShapireWilk test 

statistic will be utilized to select the best transformation - parameter estima- 

tion combination. For larger sample sizes an estimate of the scale invariant 

global roughness measure 

is minimized by the best transformation - parameter estimation combination. 

Kernel estimation of R (f;o (.; A)) is discussed in Section 2.1.4, see (2.24), with 

associated bandwidth calculated according to (2.43). The robust scale estima- 

tor (2.22) is utilized to estimate ova. The transformed grid is then given by 

Yo = g x ( 4  

Step 3 Determine the curvature of the parametric transformation selected, utilizing 

results from Section 3.3.2. Knowledge of the curvature can be utilized to protect 

the TKDE against potentially explosive behavior in the tail regions. Let m, 

and M, be the minimum and maximum data-points respectively, i.e., 

m, = 
X(1, - fi, and M, = 

X(*) - fiz 

6.z 6, 
Also, consider the bias corrected density estimate (evaluated in the data-points) 

according to the adaptation scheme presented in expression (4.32) with a = 

p = 4, i.e., 
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reason we devised the following stop criteria (for the discrepancy measure in 

(4.36)) in the search for an ideal 6. Let hi, i = 1, .  . . , r ,  be the a-th 6 value 

considered. It should be noted that we always select 61 = 0 and 

6, = 0.5 , if 0 5 6, 5 0.5, and 

6, = -0.5, if -0.5 5 6, 5 0, 

for 2 = 1 ,  T If gi(.) is a concave to convex transformation, we apply 

Criterion 1, and for all other transformation shapes Criterion 2 is applied. 

Criterion 1: Stop the search when max {gi (m, + 6,) , gi (M, + 6,) ) 
1 max {gi (m, + 6i-1) , gi (M, + 6i-1) ), i = 2, . . . , T.  This will 

ensure that no artificial outliers are created in the transformed 

data. 

Criterion 2: Stop the search when [gA (M, + 6,) - g i  (m, + 6,)] 

5 ~ [ g i  (M,) - g i  (m,)], i = 2, .  . . , r. For the simulation study 

presented in Chapter 5, we used E = 0.8. This criterion ensures 

that the range of the shifted transformed data is not too small. 

It should be noted that other ways of choosing 6 can be invented to improve 

the performance of the eventual TKDE's. However, this was not pursued any 

further. 

Once 6 is determined, the transformed data and grid utilized is given by 

Y o  = gi(Z, + 6) and 

YO = gi(z, + 6), 

respectively. To choose a and P for the newly proposed adaptive scheme, we 

proceed to the following step. 

Step 4 The 0-step TKDE is then given by 

where fyo ( y o ;  go)  is the adaptive KDE (see 4.33) for which the newly proposed 

adaptation scheme (see 4.32) is utilized. Also, & is chosen by the Sheather and 
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Jones (1991) procedure. To choose an appropriate value of a and P required 

in expression (4.38), we minimize the following discrepancy measure: 

For the simulation study presented in Chapter 5, we restricted the values of a 

and /3 to 1 5 (Y 5 1.5 and 1 5  P 5 1.5. 

Step  5 The semi-parametric transformed data and grid are defined as 

K = V1 [py0(&; LO)] and 

Y1 = [%(YO; Lo)] , (4.40) 

respectively, which yields the newly proposed 1-step TKDE 

f x ( z ;  il, Lo, A) = 
f6 (YO;  Lo) 

dJ (a-l [Pk, (yo; L o ) ] )  
( )  Y ( I  I ) .  (4.41) 

Note that the adaptation scheme applied for the density and distribution func- 

tion estimates is similar to that described in Step 4. However, we used a = 

p = 1 to estimate the derivative in expression (4.41) and replaced fx  (xi; io, A) 
with f ~ ( ~ i ;  61, Lo, A) to calculate the values of a and p required for the den- 

sity estimate f ~ ~ ( ~ 1 ;  &) in expression (4.41). Also, Lo and & ,  above are chosen 

according to the procedures of Polansky (1997) and Sheather and Jones (1991) 

respectively. 

Step  6 The semi-parametric transformation can be iterated to obtain an 1-step TKDE 

by repeating steps 4 and 5. 



Empirical studies 

In this chapter we present a Monte Carlo simulation study to evaluate the performance of 

the newly proposed semi-parametric TKDE's. Real-life applications are also presented. 

The Fortran code and real-life data can be found on the CD-ROM attached to the back 

cover of this dissertation. 

5.1 Simulation study 

The densities considered in this simulation study are summarized in Table 5.1. The 

parameter choice considered (where applicable) are indicated in the first column. 

Table 5.1: Densities condidered in Monte Carlo simulation study 

Densitv 

1) Standard Normal 
p = 0 
u = l  

Graph 
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2 )  Uniform 

3) Bimodal 

4) Trimodal 

5) Claw 

1, 

where 0 5 x 5 1. 

Graph 
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Density 

6) Skewed Bimodal 

7) Skewed Unimodal 

8 )  Weibull 
a = l  
0 = 1.5 

9) Lognormal 
p = o  
o = l  

1 e - 0 . 5 [ ( l n z - p ) / o ] Z  
Jz;;za 

where x > 0. 

Graph 
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Density 

10) Exponential 
X = l  

11) StrictPareto 
(Y = 1.5 

12) Kurtotic Unimodal 

13) Separated Bimodal 

XecX", 

where X > 0, x 2 0. 

aZ-~-l 

where (Y > 0, x _> 1. 

Graph 
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The normal mixture densities were introduced by Marron and Wand (1992) and is consid- 

ered to be extremely difficult to estimate using the ordinary KDE. The standard normal 

density is included to test the performance of the semi-parametric TKDE's in cases where 

little or no transformation is required. The uniform density is included since this density 

has a low kurtosis and has a bounded support. Hence, the usual kernel density estimate 

suffers from boundary bias effects. The bimodal, trimodal, claw and skewed bimodal 

densities are included since these densities contain more than one mode. The separated 

bimodal density is included as an example where all proposed parametric transformations 

fail drastically in transforming this data to normality. The skewed bimodal, weibull, stan- 

dard exponential, standard lognormal and strict pareto densities are skewed to the left 

or right with potentially long tails. In addition, most of these densities have a bounded 

support. Hence, for these densities the performance of the semi-parametric TKDE's will 

be tested in the tail regions where spurious bumps can occur. Also, boundary bias occurs 

for the exponential and strict-pareto densities. The kurtotic unimodal density is included 

since this density has a high kurtosis, i.e., a high peak and heavy tails. Here we will test 

the ability of the semi-parametric TKDE's to estimate the density in the tail regions 

without spurious bumps, whilst capturing the peak of the density. 

From the discussion presented above it should be clear that the densities selected covers 

a wide range of density forms and more importantly, the semi-parametric TKDE's will be 

subjected to data, where both boundary bias and spurious bumps in the tails can occur. 

The competitive density estimators are the: 

ordinary KDE (see (2.1)) denoted by OD!:, 

TKDE proposed by Wand et al. (1991) (see Section 4.1) denoted by W-M-R, 

TKDE proposed by Yang and Marron (1999) (see Section 4.1) denoted by M-Y, 

adaptive KDE proposed by Abramson (1982) (see (2.49)) denoted by ADAP. 

It should be noted that the TKDE procedures proposed by Wand et al. (1991) and 

Yang and Marron (1999) also suffer from the potential explosive behavior observed for 

the newly proposed semi-parametric TKDE's (see Section 4.2). For this reason we also 

added a constant shift 6 (see (4.37)) to the input data. The constant shift 6 is based 

on the procedure used in Step 4 of our stepwise procedure, introduced in Section 4.2. 
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However, no bandwidth adaptation was performed for these two density estimators. 

In order to assess the influence of iteration on the semi-parametric TKDE we consider 

zero, one and two iterations of the newly proposed semi-parametric TKDE. The procedure 

used to implement this method can be found in Section 4.2. Hence, our candidates will 

be the: 

semi-parametric TKDE (see Section 4.2) without iteration denoted by SElII-0, 

semi-parametric TKDE with one iteration denoted by SEMI-1, 

semi-parametric TKDE with two iterations denoted by SEMI2  

The abbreviations used for the transformations from the black box are summarized in Ta- 

ble 5.2. The abbreviations used for the transformation parameter estimation techniques 

Table 5.2: Abbreviations for the transformations 
from the black box 

1 Transformation I Abbreviation I 
I Shifted Box-Cox 1 SBC I 
I YeeJohnson I Y-J I 

I Ruppert-Wand I R-W I 

Johnson family (7 = 1, J = +1) 

Johnson family (7 = 1, J = -1) 

Johnson family (y = 2) 

Johnson family (7 = 3) 

I Identity 1 NONE I 

JJ(+l) 

JJ(-1) 

JU 

JB 

are summarized in Table 5.3. For all the densities (except the claw density) considered, 

the Monte Carlo study was performed for sample sizes n = 100, n = 200 and n = 500. 

Sample sizes considered for the claw density were n = 500, n = 800 and n = 1000. The 

Monte Carlo repetition number used was MC = 200. A general fixed grid was constructed 

between the minimum and maximum data values observed after pooling all the Monte 

Carlo samples. For each density estimator an average value (over all the Monte Carlo 

samples) was obtained at each grid point, enabling us to assess the performance of the 

estimators with regard to bias graphically. However, the ISE ( integrated squared error) 
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Table 5.3: Abbreviations for the parameter esti- 
mation techniques 

I Estimation technique I Abbreviation I 

Minimum residual 

Minimum distance 

was calculated between the minimum and maximum data value of each Monte Carlo 

sample. Hence, let XI, . . . , X, be i.i.d. random variables with associated order statistics 

X(l), . . . , X(,). Also, let fc,i(x) be any of the candidate density estimates evaluated for 

the i-th Monte Carlo sample, i = 1,. . . , MC. We then define: 

I= [&.)I = JX(")(f& - ~ ( x ) ) ~  dx, i = 1,. . . , 
X(1) 

MC, (5.1) 

which will be calculated for each Monte Carlo repetition. The Monte Carlo estimate of 

the MISE (mean integrated squared error) of the candidate density estimate fc is then 

calculated as follows: 

1 M C  A 

MEE [L(.)] = C I S E  [fc,i(.)] . 
z=1 

(5.2) 

The Monte Carlo estimate of SE (standard error) is calculated as follows: 

For each Monte Carlo trial the Shapirc+Wilk pvalue was recorded for the transformed 

data obtained from the selected parametric transformation from the black box of transfor- 

mations. Recall that the transformation selection procedure is described in the stepwise 

algorithm presented in Section 4.2. Let pl ,  . . . , p ~ c  denote these pvalues. The average 

Monte Carlo pvalue was calculated according to 

with associated standard error calculated according to 
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For each of the densities considered, the following output will be presented: 

The Monte Carlo MISE and SE for each of the densities considered, calculated 

according to (5.2) and (5.3). See Tables 5.4, 5.9, 5.14, 5.19, 5.24, 5.29, 5.34, 5.39, 

5.44, 5.49, 5.54, 5.59 and 5.64. 

0 The average Monte Carlo ShapireWilk pvalue and the associated SE for the para- 

metric transformed data. See Tables 5.5, 5.10, 5.15, 5.20, 5.25, 5.30, 5.35, 5.40, 

5.45, 5.50, 5.55, 5.60 and 5.65. 

The percentage of times that each parametric transformation was selected according 

to the transformation selection procedure. See Tables 5.6, 5.11, 5.16, 5.21, 5.26, 

5.31, 5.36, 5.41, 5.46, 5.51, 5.56, 5.61 and 5.66. 

The percentage of times that each parameter estimation technique was selected. 

SeeTables5.7, 5.12, 5.17, 5.22, 5.27, 5.32, 5.37, 5.42, 5.47, 5.52, 5.57, 5.62and 

5.67. 

Selective graphical output of the estimated densities. See Tables 5.8, 5.13, 5.18, 

5.23, 5.28, 5.33, 5.38, 5.43, 5.48, 5.53, 5.58, 5.63 and 5.68. 

Remarks: 

Each population density is indicated with a thick grey line in the graphical output. 

Figure 3 from Table 5.58 is a plot of all the (Monte Carlo average) density estimates, 

except the ordinary and adaptive KDE's, for which spurious bumps in the tail 

regions were evident. 

0 Several conclusions derived from the Monte Carlo studies are presented in Sec- 

tion 5.1.14. 
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5.1.1 Normal

Table 5.4: Mean Integrated Squared Error (x 103)

Table 5.5: Shapiro-Wilk p-value

Table 5.6: Transformation selected

Table 5.7: Parameter estimation

Method n=100 n=200 n=500

MISE SE MISE SE MISE SE

\ II E 6.32 0.34 3.60 0.19 1.93 0.08

SEl\ILO 6.98 0.37 4.05 0.21 2.21 0.09

SEML1 8.74 0.42 5.47 0.24 3.29 0.11

SEMI--2 9.91 0.46 6.40 0.26 3.89 0.13

ADAP 7.40 0.42 4.15 0.23 2.20 0.10

M-Y 6.90 0.38 3.78 0.20 1.90 0.08

W-M-R 6.42 0.35 3.67 0.19 1.94 0.08

n=100 n=200 n=500

p-value SE p-value SE p-value SE
0.677 0.033 0.655 0.034 0.655 0.034

Transformation % Selected

n=100 n=200 n=500

JJ( +1) 5 2 2

JJ(-1) 14 16 10

JU 0 0 0

JB 39 47 56

Y-J 20 18 14

R-W 2 0 0

SBC 20 17 18

NONE 0 0 0

Estimation Method % Selected

n=100 n=200 n=500

ML 52 48 39

MR 33 30 21

MD 15 22 40
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-3.5

-4

-4

Table 5.8: Density estimates

n=100

-2.5 -0.5 0.5 2.51.5-1.5

n=200

-3 o 1 2-2 -1

n=500

-3 -2 o-1 1 2

136

3.5

3 4

3 4



CHAPTER 5. EMPIRICAL STUDIES 137

5.1.2 Uniform

Table 5.9: Mean Integrated Squared Error (x 103)

Table 5.10: Shapiro-Wilk p-value

Table 5.11: Transformation selected

Table 5.12: Parameter estimation

Method n=100 n=200 n=500

MISE SE MISE SE MISE SE

( )1)' 37.91 1.33 29.60 0.76 21.08 0.43

SK\ILO 28.06 1.80 15.92 0.84 9.90 0.45

SEML1 34.99 1.89 22.20 0.83 14.27 0.48

SEMI-2 39.96 2.00 26.18 0.88 16.73 0.48

ADAP 54.44 1.87 41.85 1.07 29.36 0.57

M-Y 30.00 1.88 16.32 0.77 9.18 0.32

W-M-R 39.29 1.40 30.37 0.79 21.32 0.43

n=100 n=200 n=500

p-value SE p-value SE p-value SE
0.159 0.026 I 0.140 0.025 0.056 0.016

Thansformation % Selected

n=100 n=200 n=500

JJ( +1) 0 0 0

JJ(-l) 5 0 0

JU 0 0 0

JB 88 96 93

Y-J 0 0 0

R-W 0 0 0

SBC 7 4 0

NONE 0 0 7

Estimation Method % Selected

n=100 n=200 n=500

ML 73 83 87

MR 9 5 10

MD 18 12 3
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Table 5.13: Density estimates

0=100
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5.1.3 Bimodal

Table 5.14: Mean Integrated Squared Error (x 103)

Table 5.15: Shapiro-Wilk p-value

Table 5.16: Transformation selected

Table 5.17: Parameter estimation

Method n=100 n=200 n=500

MISE SE MISE SE MISE SE

, IIH 7.85 0.32 4.60 0.19 2.40 0.09

SEILO 8.51 0.37 4.76 0.20 2.35 0.09

SEML1 8.38 0.38 5.20 0.20 2.94 0.11

SEMI...2 8.93 0.41 5.97 0.22 3.42 0.12

ADAP 8.59 0.42 5.14 0.23 2.51 0.11

M-Y 9.09 0.38 5.01 0.21 2.54 0.10

W-M-R 8.22 0.35 4.71 0.20 2.41 0.09

n=100 n=200 n=500

p-value SE p-value SE p-value SE
0.149 0.025 0.077 0.019 0.041 0.014

Transformation % Selected

n=100 n=200 n=500

JJ( +1) 0 0 0

JJ(-l) 7 1 0

JU 0 0 0

JB 85 96 99

Y-J 1 0 0

R-W 0 0 0

SBC 7 3 1

NONE 0 0 0

Estimation Method % Selected

n=100 n=200 n=500

ML 83 88 90

MR 7 3 2

MD 10 9 8
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Table 5.18: Density estimates

0=200

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

0=500

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

0=500 (Zoom: modes)

-1.8 -1.3 -0.8 -0.3 0.2 0.7 1.2 1.7
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5.1.4 Thimodal

Table 5.19: Mean Integrated Squared Error (x 103)

Table 5.20: Shapiro-Wilk p-value

Table 5.21: Transformation selected

Table 5.22: Parameter estimation

Method n=100 n=200 n=500

MISE SE MISE SE MISE SE

()IH 9.13 0.30 6.07 0.21 3.26 0.10

SE:\'lLO 9.43 0.35 6.20 0.23 3.22 0.09

SEML1 9.14 0.33 6.14 0.23 3.32 0.10

SEMI--2 9.58 0.34 6.66 0.24 3.68 0.11

ADAP 9.99 0.39 6.20 0.25 3.03 0.10

M-Y 9.89 0.36 6.51 0.23 3.50 0.10

W-M-R 9.32 0.32 6.16 0.22 3.28 0.10

n=100 n=200 n=500

p-value SE p-value SE p-value SE
0.073 0.018 0.047 0.015 0.002 0.003

Transformation % Selected

n=100 n=200 n=500

JJ( +1) 0 0 0

JJ(-l) 5 0 0

JU 0 0 0

JB 87 97 94

Y-J 2 2 1

R-W 0 0 0

SBC 6 1 0

NONE 0 0 5

Estimation Method % Selected

n=100 n=200 n=500

ML 86 89 92

MR 7 3 5

MD 7 8 3
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Table 5.23: Density estimates
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5.1.5 Claw

Table 5.24: Mean Integrated Squared Error (x 103)

Table 5.25: Shapiro-Wilk p-value

Table 5.26: Transformation selected

Table 5.27: Parameter estimation

Method n=100 n=200 n=500

MISE SE MISE SE MISE SE

uD£ 42.74 0.25 37.57 0.29 34.64 0.30

SEMLO 42.95 0.23 37.86 0.26 34.78 0.27

SEML1 34.32 0.35 23.07 0.35 17.78 0.29

SEMI...2 29.79 0.38 17.39 0.31 12.53 0.25

ADAP 41.10 0.34 33.28 0.38 28.94 0.37

M-Y 42.99 0.25 37.95 0.28 34.98 0.29

W-M-R 42.63 0.25 37.27 0.29 34.31 0.30

n=100 n=200 0=500

p-value SE p-value SE p-value SE
0.447 0.050 I

0.359 0.048 0.284 0.045

Transformation % Selected

n=100 n=200 n=500

JJ( +1) 0 0 0

JJ(-1) 10 14 5

JU 0 0 0

JB 67 67 81

Y-J 7 7 4

R-W 0 0 0

SBC 16 12 10

NONE 0 0 0

Estimation Method % Selected

n=100 n=200 n=500

ML 14 11 5

MR 16 17 9

MD 70 72 86
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Table 5.28: Density estimates
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5.1.6 Skewed bimodal

Table 5.29: Mean Integrated Squared Error (x 103)

Table 5.30: Shapiro-Wilk p-value

Table 5.31: Transformation selected

Table 5.32: Parameter estimation

Method n=100 n=200 n=500

MISE SE MISE SE MISE SE

ji .11. 10.09 0.31 6.35 0.22 3.44 0.12

SEMLO 9.79 0.34 5.85 0.23 3.00 0.11

SEMLI 10.15 0.38 6.11 0.25 3.39 0.12

SEMI...2 10.68 0.42 6.71 0.27 3.88 0.13

ADAP 10.86 0.43 6.38 0.27 3.20 0.13

M-Y 9.83 0.35 5.73 0.22 2.98 0.11

W-M-R 9.45 0.33 5.69 0.22 3.00 0.11

n=100 n=200 n=500

p-value SE p-value SE p-value SE
0.171 0.027 0.080 0.019 0.015 0.009

Transformation % Selected

n=100 n=200 n=500

JJ( +1) 0 0 0

JJ(-I) 50 58 81

JU 0 0 0

JB 43 39 16

Y-J 5 3 3

R-W 0 0 0

SBC 2 0 0

NONE 0 0 0

Estimation Method % Selected

n=100 n=200 n=500

ML 71 70 76

MR 14 12 5

MD 15 18 19
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Table 5.33: Density estimates
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5.1.7 Skewed unimodal

Table 5.34: Mean Integrated Squared Error (x 103)

Table 5.35: Shapiro-Wilk p-value

Table 5.36: Transformation selected

Table 5.37: Parameter estimation

Method n=100 n=200 n=500

MISE SE MISE SE MISE SE

UDr 9.28 0.45 5.18 0.22 2.66 0.11

SEILO 8.91 0.47 5.21 0.23 2.66 0.12

SEML1 10.70 0.51 6.97 0.28 4.09 0.16

SEMI-2 12.19 0.55 8.19 0.32 4.91 0.18

ADAP 10.03 0.56 5.95 0.29 2.89 0.13

M-Y 9.97 0.51 5.47 0.24 2.77 0.12

W-M-R 8.65 0.44 4.75 0.21 2.50 0.12

n=100 n=200 n=500

p-value SE p-value SE p-value SE
0.654 0.034 0.655 0.034 0.633 0.034

Thansformation % Selected

n=100 n=200 n=500

JJ( +1) 0 0 0

JJ(-l) 47 41 52

JU 0 0 0

JB 1 0 0

Y-J 45 57 48

R-W 1 0 0

SBC 6 2 0

NONE 0 0 0

Estimation Method % Selected

n=100 n=200 n=500

ML 43 47 32

MR 40 37 29

MD 17 16 39
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Table 5.38: Density estimates
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5.1.8 Weibull

Table 5.39: Mean Integrated Squared Error (x 103)

Table 5.40: Shapiro-Wilk p-value

Table 5.41: Transformation selected

Table 5.42: Parameter estimation

Method n=100 n=200 n=500

MISE SE MISE SE MISE SE

If 14.00 0.67 8.69 0.36 4.61 0.18

SEMLO 11.52 0.62 8.09 0.40 4.03 0.17

SEML1 14.77 0.70 11.36 0.49 6.25 0.22

SEMI--2 17.34 0.76 13.56 0.55 7.53 0.25

ADAP 17.70 0.82 11.97 0.50 6.70 0.25

M-Y 11.46 0.71 7.25 0.39 3.28 0.15

W-M-R 11.46 0.63 7.73 0.41 3.47 0.15

n=100 n=200 n=500

p-value SE p-value SE p-value SE
0.429 0.035 0.315 0.033 0.205 0.029

Transformation % Selected

n=100 n=200 n=500

JJ(+l) 11 4 1

JJ(-l) 0 0 0

JU 0 0 0

JB 0 0 0

Y-J 0 0 0

R-W 0 0 0

SBC 89 96 99

NONE 0 0 0

Estimation Method % Selected

n=100 n=200 n=500

ML 5 2 0

MR 76 74 85

MD 19 24 15
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Table 5.43: Density estimates
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5.1.9 Lognormal

Table 5.44: Mean Integrated Squared Error (x 103)

Table 5.45: Shapiro-Wilk p-value

Table 5.46: Transformation selected

Table 5.47: Parameter estimation

Method n=100 n=200 n=500

MISE SE MISE SE MISE SE

ODE 19.32 0.76 11.35 0.38 6.01 0.18

SEILO 9.44 0.53 5.95 0.29 3.08 0.13

SEML1 11.44 0.55 7.65 0.34 4.47 0.17

SEMI--2 13.20 0.61 8.97 0.37 5.44 0.19

ADAP 18.19 0.79 10.70 0.39 5.86 0.19

M-Y 8.83 0.49 5.67 0.30 2.82 0.13

W-M-R 9.31 0.50 5.85 0.36 2.67 0.13

n=100 n=200 n=500

p-value SE p-value SE p-value SE
0.618 0.034 0.584 0.035 0.602 0.035

Transformation % Selected

n=100 n=200 n=500

JJ(+1) 45 39 27

JJ(-1) 0 0 0

JU 0 0 0

JB 0 0 0

Y-J 0 0 0

R-W 0 0 0

SBC 55 61 73

NONE 0 0 0

Estimation Method % Selected

n=100 n=200 n=500

ML 32 26 16

MR 44 49 55

MD 24 25 29
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Table 5.48: Density estimates
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5.1.10 Exponential

Table 5.49: Mean Integrated Squared Error (x 103)

Table 5.50: Shapiro-Wilk p-value

Table 5.51: Transformation selected

Table 5.52: Parameter estimation

Method n=100 n=200 n=500

MISE SE MISE SE MISE SE

()DE 38.28 1.06 29.10 0.78 20.15 0.39

SEMLO 11.93 0.79 7.46 0.40 3.71 0.17

SEMLI 15.14 0.90 10.05 0.47 5.80 0.23

SEMI-2 17.97 0.99 12.07 0.54 7.06 0.26

ADAP 37.66 1.15 27.91 0.80 19.16 0.38

M-Y 14.51 0.98 9.90 0.48 5.92 0.20

W-M-R 15.58 0.93 10.37 0.53 6.01 0.23

n=100 n=200 n=500

p-value SE p-value SE p-value SE
0.418 0.035 0.320 0.033 0.195 0.028

'Iransformation % Selected

n=100 n=200 n=500

JJ( +1) 8 3 0

JJ(-I) 0 0 0

JU 0 0 0

JB 0 0 0

Y-J 0 0 0

R-W 0 0 0

SBC 92 97 100

NONE 0 0 0

Estimation Method % Selected

n=100 n=200 n=500

ML 4 0 0

MR 73 79 83

MD 23 21 17



CHAPTER 5. EMPIRICAL STUDIES 154

Table 5.53: Density estimates
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5.1.11 Strict-Pareto

Table 5.54: Mean Integrated Squared Error (x 103)

Table 5.55: Shapiro-Wilk p-value

Table 5.56: Transformation selected

Table 5.57: Parameter estimation

Method 0=100 0=200 0=500

MISE SE MISE SE MISE SE

( >T)l 81.12 1.82 93.70 1.00 257.97 2.16

SEMLO 28.30 1.27 32.15 1.43 85.78 3.09

SEMLI 30.69 1.37 34.38 1.57 85.55 3.60

SEMI-2 33.23 1.50 35.72 1.77 83.30 4.28

ADAP 68.93 1.48 91.02 1.36 254.32 2.81

M-Y 30.90 1.18 38.36 1.34 107.22 3.01

W-M-R 31.43 1.41 40.98 1.62 128.47 3.60

0=100 0=200 0=500

p-value SE p-value SE p-value SE
0.643 0.034 0.652 0.034 0.588 0.035

Transformatioo % Selected

0=100 0=200 0=500

JJ(+l) 56 43 33

JJ(-l) 0 0 0

JU 0 0 0

JB 0 0 0

Y-J 0 0 0

R-W 0 0 0

SBC 44 57 67

NONE 0 0 0

Estimatioo Method % Selected

0=100 0=200 0=500

ML 43 36 32

MR 33 34 25

MD 24 30 43
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Table 5.58: Density estimates

n=500 (Zoom: boundary)

n=500 (Zoom: tail)
0.00001

0.000009

0.000008

0.000007

0.000006

0.000005

0.000004

0.000003

0.000002

0.000001

1.4

1.2

1

0.8

0.6

0.4

0.2

0
1 1.5 2 2.5 3

600 1200 1800 2400 3000 3600

n=500 (Zoom: tail)
0.00001

0.000009

0.000008

0.000007

0.000006 J (' I,0.000005

0.000004

0.000003

0.000002

0.000001

0

0 600 1200 1800 2400 3000 3600



CHAPTER 5. EMPIRICAL STUDIES 157

5.1.12 Kurtotic unimodal

Table 5.59: Mean Integrated Squared Error (x 103)

Table 5.60: Shapiro-Wilk p-value

Table 5.61: Transformation selected

Table 5.62: Parameter estimation

Method n=100 n=200 n=500

MISE SE MISE SE MISE SE

ODE 66.49 2.67 36.89 1.27 16.87 0.56

SEJ\'1LO 56.92 2.62 27.85 1.16 10.69 0.44

SEML1 47.16 2.46 22.02 1.03 9.95 0.38

SEMI.2 40.83 2.18 19.20 0.89 9.80 0.35

ADAP 40.19 2.00 20.18 0.79 10.60 0.34

M-Y 54.99 2.53 30.78 1.19 13.78 0.60

W-M-R 66.99 2.69 36.84 1.27 16.91 0.56

n=100 n=200 n=500

p-value SE p-value SE p-value SE
0.147 0.025 0.042 0.014 0.000 0.001

Transformation % Selected

n=100 n=200 n=500

JJ( +1) 1 1 0

JJ(-l) 5 0 0

JU 0 0 0

JB 0 0 0

Y-J 8 2 0

R-W 85 97 100

SBC 1 0 0

NONE 0 0 0

Estimation Method % Selected

n=100 n=200 n=500

ML 93 97 100

MR 5 2 0

MD 2 1 0
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Table 5.63: Density estimates
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5.1.13 Separated bimodal

Table 5.64: Mean Integrated Squared Error (x 103)

Table 5.65: Shapiro-Wilk p-value

Table 5.66: Transformation selected

Table 5.67: Parameter estimation

Method n=100 n=200 n=500

MISE SE MISE SE MISE SE

UDE 11.39 0.41 7.06 0.24 3.46 0.12

SE1fLO 15.95 0.71 6.75 0.22 3.42 0.12

SEMLI 12.42 0.54 7.46 0.22 4.55 0.14

SEMI...2 12.72 0.52 8.08 0.24 4.99 0.15

ADAP 10.20 0.44 6.23 0.22 3.44 0.12

M-Y 16.20 0.62 8.23 0.31 3.68 0.13

W-M-R 15.16 0.74 7.23 0.25 3.50 0.12

n=100 n=200 n=500

p-value SE p-value SE p-value SE
0.000 0.000 I 0.000 0.000 0.000 0.000

'Iransformation % Selected

n=100 n=200 n=500

JJ( +1) 2 0 0

JJ(-1) 17 0 0

JU 0 0 0

JB 54 1 0

Y-J 5 0 0

R-W 0 0 0

SBC 19 0 0

NONE 3 99 100

Estimation Method % Selected

n=100 n=200 n=500

ML 59 0 0

MR 25 99 100

MD 16 1 0
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Table 5.68: Density estimates
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5.1.14 Conclusions

. The O-step TKDE performs generally well when applied to data obtained from

densities without excessive curvature such as the normal, uniform, skewed unimodal,

weibull, lognormal, exponential and pareto densities. We recommend the O-step

TKDE for application to unimodal and low-kurtosis densities.

. The I-step TKDE is suitable for capturing density curvature, hence detecting, for

example, density modes. We recommend this estimate for application to densi-

ties such as the bimodal, trimodal, claw, skewed bimodal, kurtotic unimodal and

separated bimodal.

. The performance of the 2-step TKDE is similar to that of the I-step TKDE with the

advantage that the 2-step procedure captures density curvature more profoundly.

. Spurious bumps in the tail regions are significantly removed by all the newly proposed

procedures. The reader is referred to the graphical output of the following densities:

skewed unimodal, lognormal, exponential and pareto. It should be noted that the

O-step procedure seems to be most effective at estimating density tails.

. Boundary bias is addressed automatically. The reader is referred to the graphical

output of the following densities for visual confirmation: uniform, exponential and

pareto.

. The somewhat larger MISE values observed for the I-step and 2-step TKDE's for

the bimodal, trimodal, skewed bimodal and separated bimodal densities are unex-

pected. However, empirical investigation confirms that these relatively larger MISE

values are caused by only a few samples where the density peaks were excessively

over estimated and the density valleys under estimated by the I-step and 2-step

TKDE's. To rectify this phenomenon the value Cagiven in expression (4.32) should

depend on the data. An open research problem is to construct an effective data-

dependent choice of Ca. This will not be pursued in this dissertation. Also, more

advanced procedures can be invented to select the values of a and (3 required to

implement the newly proposed adaptation scheme given in expression (4.32). For

densities with sharp peaks and/or valleys, for example the claw and kurtotic uni-

modal densities, the occurrence of this MISE performance is absent. Nevertheless,
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the exceptional ability of the 1-step and 2-step TKDE's to capture density curvature

is evident from the graphical output presented.

. The Shapiro-Wilk p-value indicates that the parametric transformation to normal-

ity of data from densities with curvature, Le., the bimodal, trimodal and skewed

bimodal is not successful. Data from the kurtotic unimodal (high kurtosis) and

uniform (low kurtosis) densities were also not transformed successfully, using a

parametric transformation. The parametric transformation to normality of data

from the normal, skewed unimodal, weibull, lognormal, exponential and strict-

pareto densities performed exceptionally well, yielding moderate to high p-values.

It should also be noted that the parametric transformation failed drastically for the

separated bimodal density. Surprisingly, the parametric transformation performed

well for the claw density. The performance of the parametric transformation to

normality is easily explained by inspection of the shape of these transformation

functions. For a more detailed discussion of the above-mentioned issue, the reader

is referred to Section 3.3.2. It should be noted that the performance of the optimal

transformation function (see 3.10) can assume all the possible shapes of a para-

metric transformation and any combination of these shapes, which results in high

p-values when testing normality of the transformed data. The reader is referred to

Table 3.6 for a more comprehensive illustration of this remark.

. The transformation selection procedure (i.e., select the transformation that pro-

duces the highest Shapiro-Wilk p-value when testing for normality) performs well

for all the densities considered. The dominant transformation functions selected for

each density are summarized in Table 5.69. The reader is referred to Section 3.3.2 for

a detailed discussion concerning the applicability of the parametric transformations

considered. The message conveyed in Table 5.69 is that the proposed transformation

selection procedurefrequently selects the correct transformation.

. The profile maximum likelihood parameter estimation technique (ML) was selected

predominantly for the densities containing some measure of curvature, Le., bimodal,

trimodal and skewed bimodal densities. Again, the claw density was an exception

where the minimum distance (MD) procedure was preferred. In addition, the profile

maximum likelihood parameter estimation technique (ML) also favours densities

with high kurtosis, for example the kurtotic unimodal density and densities with
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Table 5.69: Dominant transformation functions selected

low kurtosis, for example the uniform density. For all the other densities considered,

Le., the unimodal densities, the minimum residual (MR) and minimum distance

(MD) parameter estimation techniques were more dominant, with the MR technique

selected more often. It is interesting to note that in all the cases were the profile

maximum likelihood parameter estimation technique was dominant, low Shapir<r

Wilk p-values were returned when testing for normality. Hence, we conclude that the

newly formulated minimum residual and minimum distance techniques contribute to

better transformations to normality (according to the Shapiro- Wilk p-value), when

a parametric transformation is applicable.

. The Yang and Marron (1999) density estimator performs well in most cases. This

density estimator can, however, be considered in the class of O-step TKDE's.

. The Wand et al. (1991) density estimator performs well in cases where the density

considered is unimodal skewed to the left or right. In all other cases this estimator

has similar performance as that of the ordinary kernel density estimator. The Wand

et al. (1991) density estimator can also be considered in the class of O-step TKDE's.

. Perhaps the most competitive kernel density estimator is the adaptive kernel density

estimator proposed by Abramson (1982). However, empirical studies suggest that

this estimator sometimes seriously over estimates density peaks and under estimates

density valleys.

Transformation function Densities

SBC exponential, weibull

SBC, JJ(+1) lognormal, strict-pareto

JJ(-1), Y-J skewed unimodal

SBC, Y-J, JB normal

JB uniform, bimodal, trimodal, claw

JB, JJ(-1) skewed bimodal

R-W kurtotic unimodal

NONE separated bimodal
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5.2 Applications to real data

Throughout this section we consider the O-step, I-step and 2-step TKDE's (see Sec-

tion 4.2). The same colour scheme used in the simulation study is utilized. Hence, our

candidates are the following estimators:

. semi-parametric TKDE without iteration denoted by SE:\ifLO.

. semi-parametric TKDE with one iteration denoted by SEML1.

. semi-parametric TKDE with two iterations denoted by SEMI-2.

5.2.1 Example 1: British income data

This data consist of 7201 British incomes, see Wand (1997), for the year 1975, and were

divided by their sample average, yielding the observations Xl!. .. ,Xn. Let

Xi - 0.9188 i = 1,. . . ,7201.Zx,i = n. , 1 ,

For this sample the scale invariant global roughness measure

was minimized by the best transformation - parameter estimation combination. The

shifted Box-Cox (SBC) transformation was selected with the minimum residual (MR)

parameter estimation technique. The estimated parameter values are Al = 1.7459 and

A2 = 0, rendering the log transformation. The constant shift parameter 0 (see 4.37)

is 0.185. Table 5.70 displays the transformation function and resulting transformation

function derivative for iterations 0,1 and 2. The effect of the constant shift parameter,

0, is visible in both the transformation function and transformation function derivative,

since the input data are mapped to a smaller domain and the derivative at the lower

bound (potential explosive behaviour of the TKDE can occur at the lower bound) is

smaller. The reader is referred to Section 4.2 for a more detailed discussion concerning

the potential explosive behaviour of the TKDE.
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Table 5.70: Transformation functions and transformation

function derivatives

Transformation function

3.6

-2 10 14

Transformation function derivative

12

10

B

6

4

-2 2 6 10 14

Table 5.71 displays the density estimates of the O-step (SEMLO), I-step (SEMLI) and 2-

step (SEMI-2) semi-parametric TKDE's. The density estimates resemble the lognormal

density, however, two modes are detected near the left bound. It is clear that the 1-

step and 2-step procedures capture too much density curvature, while all three estimates

perform well in the tail region. Hence, the O-step semi-parametric TKDE should be

preferred, which is displayed in Table 5.72.
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Table 5.71: Density estimates
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Table 5.72: O-Step (SEMLO)

The a-step semi-parametric TKDE clearly shows a sharp bimodal structure in the data,

which was also found by Wand (1997) and de Beer and Swanepoel (1999).

5.2.2 Example 2: Astrophysical data

This data were obtained from an Astrophysical experiment by considering all pulsar

phases above 50 MeV for the Geminga pulsar (see Mayer-Hasselwander (1994)). The

data consisting of 5018 phases were extracted from the public domain Phase I of the

EGRET experiment on Compton Gamma Ray Observatory. The data were standardized

yielding
Xi - 0.5487 .

Zx,i = 0.3026 ' z = 1, . . . ,5018.

The scale invariant global roughness measure

was minimized by the best transformation - parameter estimation combination. The

Johnson (1949) family of transformations with 'Y= 3 (JB) was selected with the minimum

residual (MR) parameter estimation technique. The estimated parameter is c = 0.5448.

The constant shift parameter 8 (see 4.37) is 0.165. Table 5.73 displays the transformation

function and resulting transformation function derivative for iterations 0, 1 and 2. It

should be clear that for the first and second iteration steps, the transformations change

shape more often, from convex to concave and vice versa, than the a-step transformation.

These changes in shape are clearly visible from inspection of the transformation function
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derivatives. The effect of these shape changes is that the resulting I-step and 2-step

semi-parametric TKDE's will capture the density curvature more profoundly.

Table 5.73: Transformation functions and transformation

function derivatives

Transformation function

3

1

2

0.6 1.2 1.8

-1

-2

-3

Transformation function derivative

70

60

50

40

30

20

10

-1.8 -1.2 -0.6 o 0.6 1.2 1.8

Table 5.74 displays the density estimates of the O-step (SEMLO), I-step (SEMLl) and 2-

step (SEMI-2) semi-parametric TKDE's. The O-step semi-parametric TKDE appears to

over smooth the density. It should be noted that the I-step and 2-step estimators appear

to be similar, which can be ascribed to the fact that a large sample was used. Hence, the

I-step semi-parametric TKDE should be preferred, which is displayed in Table 5.75.
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Table 5.74: Density estimates

1
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Table 5.75: I-Step (SEMLl)

2

2.5

1.5

1

0.5

o
o 0.2 0.4 0.6 0.8 1

The I-step parametric TKDE complies to all the profiles of the Geminga pulsar described

by de Jager (1994). De Beer & Swanepoel (1999) derived similar conclusions.

5.2.3 Example 3: Buffalo snowfall data

This data set is the well-known Buffalo snowfall data which consist of 63 observations (see

Scott (1992), p.279). Much controversy exists in the literature regarding the distribution

of this data. According to Scott (1992, p.109) some researchers argued that this data

appear to be trimodal, while others suggested a unimodal distribution. The data were

standardized yielding
Xi - 79.6

Zx,i = 23.72 ' i = 1, . . . ,63.
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Since n ::; 2000, the Shapiro-Wilk p-value for normality was maximized by the best trans-

formation - parameter estimation combination. The Johnson (1949) family of transform a-

tions with 'Y= 3 (JB) was selectedwith the profilemaximumlikelihood(ML)parameter

estimation technique. The estimated parameter is c = 0.3545. The Shapiro-Wilk p-value

for normality is 0.832 and the constant shift parameter 8 (see 4.37) is 0.165. Table 5.76

displays the transformation function and resulting transformation function derivative for

iterations 0, 1 and 2.

function derivatives

Table 5.76: Transformation functions and transformation

Transformation function

3

-3

Transformation function derivative

0.1

0.09

0.08

0.07

0.06

0.05

0.03

0.02

0.01

-2.2 -1.4 -0.6 0.2 1 1.8

Table 5.77 displays the density estimates of the O-step (SEMLO), I-step (SEMLl) and

2-step (SEMI-2) semi-parametric TKDE's. The O-step semi-parametric TKDE appears
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to be unimodal, while the I-step and 2-step TKDE's appear to be trimodal. For this

example we prefer the 2-step semi-parametric TKDE, which is displayed in Table 5.78.

Table 5.77: Density estimates

60 12080 100

Table 5.78: 2-Step (SEMI-2)

60 80 100 120

The 2-step semi-parametric TKDE clearly suggests a trimodal density. This conclusion

is in contrast to the finding of other researchers who suggested a unimodal density.

Moreover, it is also in contrast to the conclusion reached by de Beer and Swanepoel

(1999) that the underlying density of the data is bimodal. Hence, we conclude that the

newly proposed semi-parametric TKDE has the ability to capture density features more

efficiently. It should also be noted that the sample size used to calculate the density

estimate given in Table 5.78 is relatively small and, if increased, we believe that the

trimodal nature of the population density would become even more visible.
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