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ABSTRACT 

Good quality management decisions often rely on the evaluation and interpretation of data.  One 

of the most popular ways to investigate possible relationships in a given data set is to follow a 

process of fitting models to the data.  Regression models are often employed to assist with 

decision making.  In addition to decision making, regression models can also be used for the 

optimization and prediction of data.  The success of a regression model, however, relies heavily 

on assumptions made by the model builder.  In addition, the model may also be influenced by 

the presence of outliers; a more robust model, which is not as easily affected by outliers, is 

necessary in making more accurate interpretations about the data.  In this research study robust 

techniques for regression models with minimal assumptions are explored.  Mathematical 

programming techniques such as linear programming, mixed integer linear programming, and 

piecewise linear regression are used to formulate a nonlinear regression model.  Outlier 

detection and smoothing techniques are included to address the robustness of the model and to 

improve predictive accuracy.  The performance of the model is tested by applying it to a variety 

of data sets and comparing the results to those of other models.  The results of the empirical 

experiments are also presented in this study. 

Keywords: robust regression, outlier detection, piecewise linear regression, linear 

programming, smoothing techniques, optimization. 
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OPSOMMING 

ROBUUSTE TEGNIEKE VIR MODELLE MET MINIMALE AANNAMES 

Om hoë kwaliteit bestuursbesluite te maak hang dikwels af van die evaluering en interpretasie 

van data.  Een van die mees algemene en gewilde maniere om moontlike verwantskappe in ‘n 

gegewe datastel te ondersoek, is om ‘n proses te volg wat ‘n model op die data pas.  ‘n 

Regressiemodel word dikwels aangewend om die besluitnemingsproses te ondersteun.  

Behalwe vir besluitneming kan ‘n regressiemodel ook gebruik word in optimering en 

voorspelling.  Die sukses van ‘n regressiemodel hang egter grootliks af van die aannames wat 

deur die modelbouer gemaak word.  Die regressiemodel kan ook maklik beïnvloed word deur 

die teenwoordigheid van uitskieters.  ‘n Meer robuuste model, wat nie maklik deur uitskieters 

beïnvloed word nie, is nodig om meer akkurate interpretasies oor die data te maak.  In hierdie 

navorsingstudie word robuuste tegnieke vir regressiemodelle met minimale aannames 

ondersoek.  Wiskundige programmeringstegnieke, o.a. lineêre programmering, gemengde 

heeltallige lineêre programmering en stuksgewyse lineêre regressie, word gebruik om die 

robuustheid van die model aan te spreek en die akkuraatheid van voorspellings te verbeter.  

Die model is getoets deur dit op verskillende datastelle toe te pas en die resultate te evalueer.  

Die resultate van die empiriese eksperimente word ook in hierdie studie voorgehou. 

Sleutelwoorde: robuuste regressie, opspoor van uitskieters, stuksgewyse lineêre regressie, 

lineêre programmering, gladmakingstegnieke, optimering. 
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Chapter 1 

1. Introduction and problem statement 

1.1 Introduction 

The successes or failures that managers experience in business are largely dependent upon 

the quality of the decisions that they make.  The difference between a good and a bad decision 

is, to a great extent, based on the evaluation and interpretation of data.  A good decision is one 

that is based on logic, that considers all of the available data and, in many cases, that applies a 

quantitative approach.  One of the most popular and valuable techniques that complies with 

these requirements is regression analysis.  Its purpose is to understand the relationship 

between different variables and to predict the value of one variable based on the others.  

Results can then be used to guide the process of decision-making and to enable managers to 

make more appropriate and informed decisions. 

The classical linear regression model is represented as follows: 

          (1.1) 

where   is an      vector of observed values,   is an       given matrix of values 

where each column vector corresponds to a predictor,   is an       vector of unknown 

parameters and   is an       vector of (random) errors,   .   

It is assumed that the error terms are independently distributed continuous random variables, 

with  (  )    and    (  )       .    is usually estimated by employing the least squares 

error criterion. 

A good exposition of the technical detail concerning how to construct and test linear regression 

models can be found in Kutner et al. (2005).  Two specific challenges that researchers and 

decision makers have to deal with when developing and using linear regression models are: the 

various assumptions on which the models are based and the influence of outliers on the final 

model.  These challenges are the basis of this study.  In the problem statement below, these 

two issues are further described. 

The purpose of this chapter is to guide the reader through the research study by explaining the 

problem statement, the objectives of the study and the methodology employed.  A layout of the 

study, explaining the purpose of each chapter is also presented. 
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1.2 Problem statement 

The success of a regression model relies heavily on assumptions made by the model builder.  

There are a large number of literature resources that deal in great detail with these assumptions 

which include: the non-stochastic and uncorrelated nature of independent variables, the normal 

distribution of error variables and the linear and adequate nature of the regression function.  

The second issue regarding outliers is associated with the robustness of a model.  Outliers can 

be defined as observations that do not follow the same model as the rest of the data (Hoeting et 

al., 1996) while robust regression tries to devise estimators that are not strongly affected by 

outliers (Rousseeuw & Leroy, 2003).  The presence of outliers may lead to models that are not 

reliable as they cause so-called “masking problems” wherein multiple outliers in a data set may 

conceal the presence of additional outliers. 

To address the two abovementioned problem areas, this study will use an existing minimal 

assumption regression model (Wagner, 1962) and add certain extensions to it to improve the 

model’s robustness.  The extensions are implemented through the use of linear and mixed 

integer linear programming techniques and include outlier detection and smoothing techniques. 

1.3 Objectives of the study 

The primary objective of this study is to investigate robust techniques for regression models 

with minimal assumptions by using linear programming techniques.  This will be accomplished 

by addressing the following secondary research objectives: 

 gain a clear understanding of and present an introductory overview of linear regression, 

outliers and linear and integer linear programming; 

 perform an exploratory investigation into robust techniques for regression models with 

minimal assumptions; 

 address robustness by introducing an adapted minimal assumption mixed integer linear 

programming model that is able to deal with possible outliers and the smoothing of 

functions; and 

 apply the adapted model to different data sets in order to evaluate its performance.  

1.4 Research methodology 

The research study can be divided into three sections, a literature study, a model development 

phase and an empirical study. The general literature survey gives an overview of linear 

regression, linear programming, robust regression, outliers and mixed integer linear 

programming techniques.  The model development phase consists of the minimal assumption 
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regression model used in this study as well as the extensions that are added to refine the 

model.  This will be followed by empirical experiments using mathematical programming 

techniques to formulate and illustrate the effectiveness of the minimal assumption regression 

model using real world data.  

1.5 Chapter outline 

This section explains the purpose of each chapter and how it is structured. 

Chapter 2 presents an overview of linear regression, outliers and linear programming.  The 

most important types of model will be briefly reviewed and, where appropriate, the mathematical 

formulation will also be provided.   

Chapter 3 introduces the minimal assumption regression model that is used as the basis of this 

study.  The model will be thoroughly described and a data set will be used to illustrate how the 

model can be applied to data.  A brief overview of other researchers who referred to this 

approach is also included in Chapter 3.   

Chapter 4 introduces an adapted minimal assumption regression model which is used to 

address issues of robustness.  Outlier detection is incorporated into the model through the use 

of a mixed integer linear programming technique. Smoothing techniques are also included in 

the model.  Finally, a piecewise linear regression model is introduced for comparative purposes. 

Chapter 5 applies the adapted model to a variety of data sets from the literature and the results 

of the empirical study are evaluated and discussed. 

Finally, Chapter 6 summarises the objectives set forth for the study and how these were 

achieved.  Opportunities for further studies will also be pointed out. 

1.6 Chapter summary 

Chapter 1 served as an introduction to the research study and explained the problem 

statement, objectives of the study and the methodology to be followed for the rest of the study.  

A layout of the study, explaining the purpose of each chapter, was also presented. 
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Chapter 2 

2. Linear regression modelling and robustness 

2.1 Introduction 

The primary objective of this study is to investigate robust techniques for regression models 

with minimal assumptions.  To provide sufficient background and to gain a sound understanding 

of techniques that will be used, this chapter presents an introductory overview of the concepts 

used in subsequent chapters. 

The chapter starts with a review of linear regression models and will describe three well known 

methods that are commonly used to estimate regression parameters: the least squares (  -

norm), the least sum of absolute deviation (  -norm) and the Chebychev (  -norm) methods.  

Next, a definition of outliers and their influence on regression models will be presented while 

robust regression methods will also be discussed.  Finally, the basic theory of a linear 

programming model will be explained.  Aspects such as the formulation and solving of a linear 

programming model will be briefly reviewed. 

2.2 Linear regression 

Regression analysis is a quantitative technique that estimates relationships between dependent 

variable(s) and other variables, often called predictor or explanatory variables (Kutner et al., 

2005).  The predictor variables are also known as independent variables, but according to 

Chatterjee and Hadi (2006) this name is preferred least because the independence of predictor 

variables is rarely a proper assumption in practice.  Regression techniques are widely used in 

areas such as business, biological, social and behavioural sciences, and are normally used for 

the prediction, description and optimization of variables.   

A linear regression function is referred to as a simple linear regression model when only one 

predictor variable is used to estimate values of the dependent variable,   (see Appendix A, 

section A.1).  Multiple linear regression is used when two or more predictor variables are made 

use of to predict values of the dependent variable.  The parameters of the regression model can 

be estimated using the   -,   - or   -norm and will be further discussed in subsequent 

sections.   
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2.2.1 Multiple linear regression (  -norm) 

Often one variable in a regression model does not explain the dependent variable satisfactorily.  

For such cases the simple linear regression model can be extended to a multiple linear 

regression model by introducing additional predictor variables.  A regression model that 

employs more than one predictor variable is termed a multiple linear regression model.  The 

general form of such a model is defined by Bowerman et al. (2005) as follows: 

The linear regression model relating   to            is 

 where 

                        is the mean value of the dependent variable   

when the values of the predictor variables are           ; 

              are unkown regression parameters relating the mean value of   to 

          ; and 

   is an error term that describes the effects on   of all factors other than the 

values of the predictor variables           . 

For equation (2.1) it is assumed that   observations exist, with each observation consisting of 

an observed value of   and corresponding observed values of           . 

As is the case with the simple linear regression model, the important assumptions for the 

multiple linear regression model can be summarized as follows: the error terms are assumed to 

be independently and identically distributed normal random variables each with a mean of zero 

and constant variance,   .  The implied assumptions are given by Bowerman et al. (2005) as:  

 Independence assumption.  Any one value of the error term   is statistically independent 

of any other value of  .  That is, the value of the error term   corresponding to an 

observed value of   is statistically independent of the value of the error term 

corresponding to any other observed value of  ; 

 Normality assumption.  At any given combination of values of           , the population 

of potential error term values has a normal distribution; 

 At any given combination of values of           , the population of potential error term 

values has a mean equal to zero; and 

 Constant variance assumption.  At any given combination of values of           , the 

population of potential error term values has a variance that does not depend on the 

combination of values of           .  That is, the different populations of potential error 

 
                               

2  
(2.1) 
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term values corresponding to different combination of values of           , have equal 

variances.  The constant variance is denoted by   . 

According to Kutner et al. (2005) the multiple linear regression model defined in (2.1) can also 

be expressed in matrix terms 
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]  (2.2) 
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]  (2.5) 

Note that the   matrix contains a column of 1s to allow for   , the intercept, as well as a column 

of the   observations for each of the   variables in the regression model (therefore the 

dimensions are different from the classical model presented in (1.1)).  The row subscript for 

each element     in the   matrix identifies the trail or case, while the column subscript identifies 

the predictor variable.  In matrix terms, the general linear regression model can be described as 

 

 
   

  
  (   )

 
(   )   

  
   

  (2.6) 

where 

    is a vector of responses; 

    is a vector of parameters; 

    is a matrix of constants; 

    is a vector of independent normal random variables with an expectation of 

   { }   ; and with a variance-covariance matrix of 

 

  { }
   

 [

     
     
 
 

 
 

 
     

]       . (2.7) 
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Consequently, the random vector   has an expectation of 

 
 { }
   

      (2.8) 

and the variance-covariance matrix of   is the same as that of   

 
  { }
   

     . (2.9) 

Once a relationship is established, the strength of the model must be described.  This is 

undertaken by estimating the regression coefficients first and then looking at the significance of 

the coefficients by making inferences.  The regression coefficients               are usually 

unknown and must be estimated.  The method of least squares (  -norm) considers the 

deviations of    from its expected value 

     (                          )  (2.10) 

where           denotes the   observations.  The sum of the   squared deviations, 

can be denoted by   and the least square estimators, denoted by            , are those 

values of             that minimize  .  Set 

 
 (          )   ∑(                              ) 
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                                      (2.11) 

  is minimized by setting 
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   for          . That is 
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and 
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    (2.13) 

for          .  Solving    and   , for           results in the following least squares 

normal equations 
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  (2.14) 

The solutions to these     normal equations are the least squares estimators            , 

which can be denoted as  , where 

 

 
(   )   

  [

  

  

 
  

]  (2.15) 

Using matrix notation is a convenient way of representing multiple linear regression models.  

Applying the method of least squares (  -norm) requires finding the vector   that will minimize 

 
 ( )   ∑  

      

 

   

 

 ( )   (    ) (    ) 

 ( )                         

 

  ( )                                   (2.16) 

Therefore 

   

  
               (2.17) 

which simplifies to the least squares normal equations for the multiple linear regression 

model 

           (2.18) 

while the least squares estimators are 

   (   )       (2.19) 

The multiple linear regression model plays an important role in this research project and the 

remainder of this section will therefore present a brief overview of the most important 

techniques used to judge overall model quality.  This concise survey is based on the work of 

Bowerman et al. (2005) and some of the definitions and descriptions are quoted from this 

source without referencing it again. 
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In order to compute intervals and test hypotheses when using a multiple linear regression 

model, it is necessary to calculate point estimates of    and   (the constant variance and 

standard deviation of the different error term populations). 

Suppose that the multiple linear regression model 

                             

utilizes   predictor variables and thus has ( +1) parameters              .  Then, if the 

regression assumptions are satisfied and if     denotes the sum of squared residuals for the 

model, and   is equal to the number of observations 

 a point estimate of    can be denoted by    as follows 

    
   

  (   )
  (2.20) 

 and a point estimate of   can be denoted by   as follows 

 

  √
   

  (   )
  (2.21) 

To assess the utility of a multiple linear regression model, a quantity called the multiple 

coefficient of determination, denoted by   , is often calculated.  This coefficient is computed 

using the following formulas: 

 Total variation = ∑(    ̅) ; 

 Explained variation = ∑( ̂   ̅) ; 

 Unexplained variation = ∑(    ̂) ; 

 Total variation = Explained variation + Unexplained variation; and 

 The multiple coefficient of determination is then given by 

 
   

                   

               
  (2.22) 

    is the proportion of the total variation in the  -observed values of the dependent 

variable that is explained by the overall regression model. 

The multiple correlation coefficient is denoted by   √  . 
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Many analysts recommend the use of an adjusted multiple coefficient of determination to avoid 

overestimating the importance of the predictor variables.  The adjusted multiple coefficient of 

determination,     
 , is given as 

 

    
  (   

 

   
) (

   

  (   )
)  (2.23) 

 where    is the multiple coefficient of determination,   is the number of observations, 

and   is the number of predictor variables in the model under consideration. 

Another way to assess the utility of a regression model is to test the significance of the 

regression relationship between   and           .  This is called an  -test and is performed as 

follows: 

Suppose that the regression assumptions hold and that the multiple linear regression model 

contains (   ) parameters; the test is 

                 (2.24) 

 versus 

                                                 (2.25) 

The overall  -statistic is defined to be 

 
 (     )  

                     

                         (   ) 
  (2.26) 

Also the  -value related to  (     ) is defined to be the area under the curve of the  -

distribution (having   and    (   )  degrees of freedom) to the right of  (     ).  Then,    

is rejected in favour of    at level of significance   if either of the following equivalent conditions 

holds: 

1.  (     )      ; or 

2.  -value <  . 

The point      is based on   numerator and   (   ) denominator degrees of freedom. 

In addition to the above techniques, it is also possible to construct confidence intervals for 

means and prediction intervals for individual values.  A comprehensive discussion and technical 

details of these aspects can be found in Bowerman et al. (2005).   
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To conclude this section, it should be noted that the linear regression model and the use of the 

least squares (  -norm) technique have been studied for more than 200 years (Giloni & 

Padberg, 2002).  The theory behind the model is highly developed, as shown in the above 

discussion, and goodness of fit, statistical properties and quality of the regression coefficients 

are some of the aspects that have been developed over the years.  The next sections briefly 

look at the   - and   -norm. 

2.2.2 Least sum of absolute deviations regression (  -norm) 

The least sum of absolute deviations method is an alternative technique to the least squares 

method to estimate regression parameters for a linear regression model.  This method 

minimizes the sum of the absolute errors (or deviations), rather than the squared errors, as is 

the case with the least squares method. 

The problem of minimizing the sum of absolute deviations can be handled, according to Gass 

(1958), as follows: 

Let    ,         and           denote a set of   observational measurements on   

predictor variables.  Let   ,         denote the associated measurements on the dependent 

variable.  The problem is to find the regression coefficients    such that 

 

∑|∑     

 

   |

 

 (2.27) 

is minimized.  This means that values must be found for the regression coefficients such that 

the sum of the absolute differences (2.28) is a minimum. 

 

|∑     

 

   | (2.28) 

Let  

 

  
    

      ∑     

 

  (2.29) 

   
    

      (2.30) 

Since the expression    ∑        for any set of    can be positive or negative, the difference 

can be represented as the difference of two nonnegative members.  The problem can then be 

rewritten as follows: 
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         ∑(  
    

  )

 

                     (2.31) 

 

            ∑        
    

     

 

  (2.32) 

   
    

        (2.33) 

with the variables    being unrestricted in sign. 

Since   
  and   

   in a basic and feasible solution cannot both be positive, the optimum basic 

solution will select a set of    which minimizes the sum of the absolute differences. 

Although the   -norm regression problem has been studied since the 18th century (Harter, 

1974), the computational complexity of this technique was only overcome in the 1960s with the 

advent of modern computers.  Little is known about the error distribution of this technique and 

the statistical theory for the   -norm regression problem is not as extensive as the   -norm 

regression problem, but Giloni and Padberg (2002) proved the unbiased nature of the   -norm 

estimators under certain assumptions.  The dependence of the   -norm estimator on the errors 

is also more complicated than it is with the   -norm regression problem.  In the last 50 years or 

so, a renewed interest in the   -norm regression problem has developed and more attention 

has been given to the abovementioned problems (Bassett & Koenker, 1978; Giloni & Padberg, 

2002). 

2.2.3 Chebychev regression (  -norm) 

The Chebychev regression technique uses polynomials in the process of approximating a 

function.  The minimization of the maximum residual error, the minimax principal, is used to 

estimate parameters.  The Chebychev problem can be described as follows (Gass, 1958): 

Let    ,         and           denote a set of   observational measurements of   

predictor variables.  Let   ,         denote the associated measurements of the dependent 

variable.   

The Chebychev criterion is to find a set of coefficients    such that the following is true 

 

        {       |∑        

 

|}  (2.34) 
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This means that a set of    must be found such that the maximum deviation of the estimates of 

the    is a minimum. 

Consider the constraints   |∑          | for each  .  The variable   is nonnegative and the 

aim is to have   as a minimum.  This inequality in absolute terms can be rewritten for each   as 

two inequalities, in other words the value of ∑           can lie between   and –  , or    

∑            . 

The problem can now be stated as follows: 

                                                    (2.35) 

 

           ∑        

 

      (2.36) 

 

           ∑        

 

      (2.37) 

                                      (2.38) 

with the variables    being unrestricted in sign. 

The objective function is non-differentiable and the unique nature of an optimal solution cannot 

be guaranteed.  Although the   -norm regression problem is the preferred method in cases 

where the sample midrange estimator of centrality is more effective than the sample mean or 

sample median, statistical literature on the   -norm regression problem is scarce (Giloni & 

Padberg, 2002).   

2.3 Outliers 

Outlier detection is an important aspect of this study, and therefore this section will present a 

definition and overview of outliers, an explanation of their occurence, and why it is important to 

detect outliers and how to do so.   

Outliers can be defined as observations that do not follow the same model as the rest of the 

data (Hoeting et al., 1996) or as data which are different from the majority (Ortiz et al., 2006).  

When an observation is removed from the data set and the features of the regression analysis 

(for example, point estimates of    and  ) change considerably, this observation is considered 

influential.  According to Bowerman et al. (2005) an observation can be an outlier because of its 

  values or its   values or both, but an outlier is not necessarily influential even though it may 

be. 
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As stated by Kutner et al. (2005), outliers can create great difficulty in regression problems.  

When the least squares method is applied to data this difficulty can be explained particularly 

well: the sum of the squared deviations is minimized and the fitted line may be pulled toward the 

outlying observation in a disproportionate way.  If this outlying observation is due to a mistake 

or irrelevant cause it could cause a misleading fit and explanation of the model.  This problem 

might also influence predictions in such a way that they cannot be trusted.   

The presence of outliers can be attributed to a variety of irregularities.  Human error may 

influence the recording or transcription of data, the malfunction of measuring instruments might 

lead to measurement error and fraudulent behaviour or even natural deviation in populations 

could also be the cause of outliers. 

With respect to the   values of outliers there exist several measures to detect outlying cases.  

In the case of simple linear regression it is sometimes possible to spot potential outliers through 

scatter plots, box plots and stem-and-leaf plots, but for multiple variables this may become a 

difficult task.  For the detection of outliers in multiple linear regression, the following measures 

can be employed: residuals, studentized residuals, deleted- and studentized deleted residual 

and Cook's distance measure (Bowerman et al., 2005).  With respect to the   values, the 

leverage value of outliers can be used as a method of detection.  In the rest of this section 

these measures will be discussed. 

2.3.1 Leverage values 

Bowerman et al. (2005) define the leverage value as a measure of the distance between the 

observation’s   values and the centre of the experimental region.  When this value is large, an 

observation is considered outlying with respect to its   values.  When a leverage value is twice 

the average of all the leverage values, it is considered to be large.   

2.3.2 Residuals and semistudentized residuals 

To identify outliers with respect to their   values, residuals (2.39) or semistudentized residuals 

(2.40) may be considered.      denotes the mean square error (or residual) of the model.  Any 

residual that is substantially different from the rest is suspect (Kutner et al., 2005). 

         ̂  (2.39) 

   
  

  

√   
 (2.40) 

To identify outliers with respect to their   values more effectively, some refinements to the 

analysis can be made.  To do so it is necessary to introduce the hat matrix. 
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Let the vector of the fitted (or expected) values,  ̂ , be denoted by  ̂ and the vector of the 

residual terms         ̂  be denoted by  .  According to Kutner et al. (2005) the fitted values 

are represented by  

 

 ̂
   

     (2.41) 

and the residual terms by 

 
 

   

    ̂        (2.42) 

The vector of the fitted values  ̂ can be expressed in terms of the hat matrix as follows: 

 

 ̂
   

     (2.43) 

where 

 
 

   

  (   )      (2.44) 

The residuals    can also be represented as a linear combination of the    observations using 

the hat matrix 

   (   )   (2.45) 

The variance-covariance matrix of the residuals is 

   { }    (   )  (2.46) 

and the variance of residual   , indicated by   {  }, is 

   {  }    (     )  (2.47) 

where     is the  th element on the main diagonal of the hat matrix.   

The covariance between residuals    and    (   ) is 

  {     }    (     )       
             (2.48) 

where     is the element in the  th row and  th column of the hat matrix.  These 

variances and covariances are estimated by using     as the estimator of the error 

variance    
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   {  }     (     )  (2.49) 

  {     }      (   )            (2.50) 

2.3.3 Studentized residuals 

To improve the effectiveness of the identification of outliers with respect to their   values using 

residuals, it must be considered that the residuals    may have substantially different variances 

  {  }.  When the magnitude of each    relative to its estimated standard deviation is 

considered, the differences in the sampling errors of the residuals are recognized.  Kutner et al. 

(2005) derive the standard deviation of    from (2.49) as 

  {  }  √   (     )  (2.51) 

The ratio of    to  {  } is called the studentized residual, denoted by    

    
  

 {  }
  (2.52) 

The studentized residuals    have constant variance when the model is appropriate. 

2.3.4 Omitted data points and residuals 

Another improvement upon residuals, to more effectively identify outliers with respect to their   

values, is to determine the  th residual        ̂  when the fitted regression uses all the data 

points except the  th one (Kutner et al., 2005).  The reason for this improvement is that if 

observation   is an outlier with respect to its   value and it is included in the computation of the 

least squares point estimates the point prediction  ̂  might be “drawn” towards    causing the 

resulting residual to be small.  On the other hand, if the  th observation is excluded before the 

least squares point estimates are calculated the point prediction  ̂  is not influenced by the  th 

observation.  This will cause the resulting residual to be larger, and therefore more likely to 

disclose the outlying observation with respect to its   value. 

This improvement can be made by deleting the  th case and fitting the regression function to 

the rest of the data.  Thus the estimate of the expected value for the  th case  ̂ ( ) can be 

determined.  The deleted residual for the  th case   , is the difference between the observed 

value    and the estimated expected value  ̂ ( ) 

        ̂ ( )  (2.53) 
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The following expression can be used without recalculating the regression function for each  th 

observation that is omitted (Kutner et al., 2005) 

    
  

     
  (2.54) 

where    is the usual residual for the  th case and     is the  th diagonal element in the 

hat matrix.   

Deleted residuals will sometimes reveal outlying observations with respect to their   values 

when ordinary residuals would not have revealed them.   

2.3.5 Studentized deleted residuals 

The improvements in section 2.3.3 and 2.3.4 can be combined, utilizing the deleted residual,   , 

in (2.54) and studentize it by dividing it by its estimated standard deviation. This results in the 

studentized deleted residual, denoted by    

 
   

  

 {  }
 

 
  

√   ( )(     )

   

 

(2.55) 

According to Kutner et al. (2005) a simple relationship between     and    ( ) can be used to 

express the studentized deleted residuals,   , in terms of the residuals   , the error sum of 

squares,    , and the hat matrix values     for all   observations. This will result in the 

equivalent expression for    

 

     [
     

   (     )    
 ]

 
 ⁄

  (2.56) 

This expression can be calculated without having to fit new regression functions each time a 

different observation is omitted. 

2.3.6 Cook’s distance measure 

Following the identification of outliers with respect to their   values and/or their   values, the 

next step is to determine whether the observations are influential.  As noted earlier, an 

observation is regarded as influential if its exclusion causes major changes in the features of 

the regression analysis. 
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Cook’s distance measure, denoted by     can be used to determine whether an observation is 

influential or not.  When    is large, classifying observation   as influential, it indicates that there 

is a substantial difference in the least squares point estimates calculated by using all   

observations and the least squares point estimates calculated by using all   observations 

except for observation  .  Cook’s distance measure can be described as follows (Kutner et al., 

2005): 

 
   

∑ ( ̂   ̂ ( ))
  

   

(   )   
  (2.57) 

where   denotes the number of variables in the model,     denotes the number of 

parameters to be estimated. 

According to Bowerman et al. (2005)    can be classified as large when it is compared to two  -

distribution points – the 20th percentile of the  -distribution,        , and the 50th percentile of the 

 -distribution,         – based on (   ) numerator and    (   )  denominator degrees of 

freedom.  The  th observation exerts little apparent influence and should not be considered 

influentail if    is less than        .  On the other hand, if    is close to or greater than         the 

 th observation could be considered influential. 

   can be expressed in terms of the residuals   , the mean error sum of squares,    , and the 

hat matrix values     for all   observations (Kutner et al., 2005) 

 
   

  
 

(   )   
[

   

(     )
 ]  (2.58) 

This is useful because the least squares point estimate does not have to be recalculated each 

time an observation is deleted. 

2.3.7 Treatment of outlying and influential observations 

Once outliers with respect to their   values and/or their   values have been identified and 

classified as influential or not, Bowerman et al. (2005) suggest dealing with outliers in terms of 

their   values first, because other problems will often diminish or disappear.  According to 

Bowerman et al. (2005), there could be several reasons for the presence of outliers; each case 

should be evaluated to decide what should be done with the outliers.   

When dealing with outliers the first step is to check if the   value was correctly recorded: if this 

is not the case, the value should be corrected and the regression rerun.  If it is not possible to 

correct the value, the observation should be discarded and the regression should be rerun 



19 

again.  If the presence of the outlier(s) is not due to incorrect recording, other possible reasons 

should be investigated.   

Sometimes the   value is caused by an effect that the regression model is not required to 

describe, such as a natural disaster.  If this is the case, the observation can be discarded.  

Outliers can also occur because of inefficiency, for example, when the profit of one of ten 

similar businesses is significantly lower than the rest.  Investigation may show that this is due to 

a manager who lacks basic business skills.  This might possibly be corrected by training, but the 

observation should be removed from the data set, because the model should not be based on 

data from an inefficient source.  Another explanation for the presence of outliers could be that 

the predictor variable, which would explain the seemingly large value of  , is not included in the 

model.  This could be rectified by the re-evaluation of the predictor variables which are included 

in the model. 

Section 2.3 described diagnostic measures based on the deletion of single observations, which 

are useful to identify outliers and influential observations in regression analysis.  According to 

Rousseeuw and van Zomeren (1990) it is more difficult to detect multiple outliers, especially 

when more than two predictor variables are included in a model, because the data cannot be 

visually presented and evaluated.  Classical diagnostic measures do not detect the outliers 

either, because the bases of these measures, the sample mean and covariance matrix, are also 

influenced by the outliers.  In this way the outliers become masked. 

Deleting one outlying observation at a time, when multiple outliers are present in the data, may 

prove to be inefficient and incorrect because accurate observations could inadvertently be 

deleted when real outliers have been masked.  In the following section the robustness of a 

model will be addressed.  

2.4 Robustness of a model 

As mentioned earlier, outliers are observations which are different from the majority of the data 

which has been collected.  This can cause great difficulty in regression analysis because such 

irregularities may distort the least squares point estimates, causing the incorrect prediction and 

interpretation of the model.  Regression analysis cannot explain a model accurately unless all of 

the outliers can be deleted beforehand.  Usually, not all of the outliers can be deleted in 

advance because they are often masked.  Therefore another approach is needed to deal with 

multiple outlying observations. 

According to Rousseeuw and Leroy (2003) robust regression techniques can be defined as 

methods that try to devise estimators that are not strongly affected by outliers.  Therefore the 
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results or the estimators remain reasonably stable and reliable even in the presence of multiple 

outlying observations.  In contrast to ordinary regression analysis, which detects and deletes 

outliers before the model is developed, robust regression techniques first develop a model 

which explains the bulk of the data.  After this model has been developed, the outlying 

observations are identified by their residuals. 

Two approaches to improve the robustness of a model will be discussed in the following 

sections. The first approach is used to perform residual analysis while the second is to use 

more robust methods.   

2.4.1 Residual analysis 

Direct diagnostic plots for the dependent variable are often not useful in regression analysis 

because the values of the observations of the dependent variable are a function of the level of 

the predictor variable(s).  Indirect diagnostics for the dependent variable can be made by 

examining the residuals.  The assumptions of the error terms are stated in section 2.2; that is, 

the error terms are assumed to be independent normal random variables, with a mean of zero 

and constant variance,   . 

According to Kutner et al. (2005) some important deviations from these assumptions can be 

noticed by examining the residuals (denoted by  ).  These include the regression function not 

being linear, the error terms not having a constant variance, the error terms not being 

independent, the model fitting all but one or a few outlying observations and the error terms not 

being normally distributed.   

In the case of a residual plot against the predictor variable, when the residuals fall within a 

horizontal band centred around zero, a linear regression model seems appropriate (see figure 

2.1).  Figure 2.2 depicts a situation in which a linear regression function is not appropriate and a 

curvilinear function is more so.  Plots of the residuals against the predictor variable(s) are not 

only helpful to study whether a linear regression function is appropriate or not, but also to 

examine whether the variance of the error terms is constant.  Figure 2.1 displays a constant 

variance, while figure 2.3 shows the nonconstancy of the error variance.  The error variance 

increases with   in a megaphone type of manner.  The nonindependence of the error terms 

over time is displayed in figure 2.4 while residual outliers can be identified from residual plots as 

indicated in figure 2.5. 
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Figure 2.1 – Linearity assumption seems appropriate 

 

Figure 2.2 – Linearity assumption not appropriate 

 

 

Figure 2.3 – Nonconstant variance of the error terms 

 

Figure 2.4 – Nonindependence of the error terms 

 

 

Figure 2.5 – Residual outlier identified 

 

2.4.2 Robust methods 

To measure the effectiveness of different robust estimators, the number of outliers that the 

estimators can deal with can be compared, for example, how many outliers can be present in 
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the data before an estimator breaks down (when the bulk of the data can no longer be 

explained).  Thus, the breakdown points can be compared.  Although low breakdown points are 

desirable attributes for a method, it must be noted that this alone is not sufficient. 

Rousseeuw and Leroy (2003) show that one outlier can cause the least squares regression 

method to break down.  For a sample size of  , its breakdown is     which tends to 0% when   

increases.  The breakdown point for least absolute deviation regression is also 0%, because, 

although this method is more robust regarding outlying observations with respect to their   

values, one influential leverage value (an outlying observation with respect to its   value) may 

cause the method to break down. 

Two high-breakdown regression methods are introduced by Rousseeuw and Leroy (2003): the 

least median of squares and the least trimmed squares; these will be briefly described in the 

following two subsections. 

2.4.2.1 Least median squares regression 

By replacing the summation sign, ∑, of the least sum of squares by the median, which is very 

robust, Rousseeuw and Leroy (2003) proposed the least median of squares, which is given by 

 
        

 

        
 

 (    ̂ )
   (2.59) 

The technical details of this method are described by Rousseeuw and Leroy (2003) who show 

that the breakdown point of this method is 50%, this being very good.  This is the maximum 

value for a breakdown point because if more than 50% of the observations are outliers it is not 

possible to detect the ‘correct’ part of the sample anymore.   

2.4.2.2 Least trimmed squares regression 

Let       ̂ , then the least trimmed squares regression can be formulated as 

 

         ∑(  )   

 

   

  (2.60) 

where the residuals are first squared and then ordered, (  )      (  )   , and   is 

the number of observations not trimmed from the model.   
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As a result the largest squared residuals are not used in the summation and a breakdown point 

of 50% can be achieved.  The properties of this estimator are considered in Rousseeuw and 

Leroy (2003). 

In chapter 4 another robust outlier detection method will be introduced to assist in the 

development of a robust regression model with minimal assumptions.  In the next section the 

subject of linear programming will be broached.   

2.5 Linear programming 

Managers often have to make decisions regarding the production or quantities of different 

products with different profit margins, bearing in mind the available resources such as labour, 

materials, time and money.  This and many other problems that are accompanied by their own 

intricacies regarding the most effective use of available resources can be solved by a widely 

used mathematical modelling technique called linear programming. 

The objective function of any linear programming problem is to minimize or maximize a certain 

quantity, such as profit or cost.  Another requirement for linear programming problems is the 

presence of constraints which limit the extent to which the problem can be minimized or 

maximized; for example having a limited amount of money available for marketing, or, a 

machine only being able to produce a limited quantity of items per hour.  Therefore, a linear 

programming problem can be defined as a model consisting of linear relationships representing 

a decision, or decisions with objectives and resource constraints.  The general mathematical 

representation of such a model can be defined as follows (Moore & Weatherford, 2001): 

          (           )   (       ) 

                            

             (       ) 
 
 
 

   , 

              

             (       ) 
 
 
 

   . 

(2.61) 

 

(2.62) 

 

(2.63) 

Although there are different types and extensions of general linear programming problems, 

according to Bazaraa et al. (2005) all of these variations can be manipulated into the following 

form of linear programming problem  
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(2.64) 

(2.65) 

(2.66) 

 

(2.67) 

(2.68) 

 

where                  is the objective function to be minimized.  The            

coefficients are the (known) cost coefficients while            are the (unknown) 

decision variables.  The inequality ∑      
 
       denotes the  th constraint and the 

right-hand-side vector is represented by           .   

When the decision variables do not take on negative values, a non-negativity constraint, 

            , is added to the formulation.  A feasible solution is obtained when a set of 

values for the variables            satisfies all of the constraints.  Thus, a linear programming 

problem aims to find, among all feasible solutions, the one that minimizes (or maximizes) the 

objective function. 

For ease of illustration, the linear program can be formulated in matrix notation.  The row vector 

(          ) can be denoted by  .  The column vectors   and   and the     matrix   can be 

denoted by 
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(2.69) 

The problem can now be written as 

          

           

   

    , 

      . 
 

(2.70) 

(2.71) 

(2.72) 

Every model employs several assumptions.  When the model is used it is important to take note 

of the assumptions and make sure that it can endure the given situation.  The inherent 

assumptions of linear programming are given below (Bazaraa et al., 2005): 

 Proportionality.  If the value of    doubles, the contribution of    to cost      doubles and 

the contribution of    to the  th constraint       also doubles.  No savings are realized 

through the usage of more of   ; 
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 Additivity.  The sum of the individual costs forms the total cost while the total contribution 

to the  th restriction is the sum of the individual contributions of the individual activities.  

There are no interaction effects among the activities; 

 Divisibility.  Non-integer values for the decision variables are permitted such that 

decision variables with fractional levels can be interpreted; and 

 Deterministic.  The coefficients   ,     and    are known deterministically and are 

approximations of any probabilistic or stochastic elements. 

Although these assumptions seem restrictive, linear programming certainly helps to solve a very 

wide range of problems.  By adjusting the program it can often be used to approximate 

nonlinear problems and help solve linear problems with integer restrictions on some or all of the 

variables.   

There are different methods to solve linear programming problems.  A problem with two 

decision variables can be solved by using graphical methods or, for larger problems, the 

simplex method can be employed.  These methods are explained and illustrated in Appendix A, 

sections A.2 to A.4. 

2.6 Integer programming 

One of the assumptions of linear programming, mentioned earlier in section 2.5, is that of 

divisibility, which means that non-integer values for the decision variables are permitted.  

However, a large amount of problems can only be solved if the variables have integer values: 

for example, a company cannot hire 2.33 labourers or purchase 3.88 machines; the values 

must be exactly 2, 3, 4 or another integer amount.   

Integer linear programming models possess the same constraint and objective functions as 

ordinary linear programming models and they are also formulated in the same way; the only 

difference is that there are one or more predictor variables that have to take on integer values in 

the final solution.  There are cases, however, in which all of the predictor variables are required 

to have integer values; these problems are pure integer linear programming problems.  When 

some, but not all, of the predictor variables are required to take on integer values, this is called 

a mixed integer linear programming problem.  Sometimes all the predictor variables must have 

values of either 0 or 1; this is termed a zero-one integer linear programming problem. 

According to Salkin and Mathur (1989) a mixed integer linear program can be written in the 

following way 
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where 

    is an   row vector; 

    is an    row vector; 

    is an   by   matrix; 

    is an   by    matrix; 

    is an   column vector of constants (the right-hand side); 

    is an   vector of integer variables; and 

    is an    vector of continuous variables. 

When     , the continuous variable   disappears and an integer program is left.  If 

    , there are no integer variables   and the problem reduces to a linear program. 

Many mathematical programs can be converted to problems with integer variables.  For 

example, suppose a variable    is allowed to take only one of several values, say 

             .  This is equivalent to setting 

                         (2.77) 

with 

               (2.78) 

and 

                      (2.79) 

To solve an integer linear programming problem is much more difficult than solving a linear 

programming problem.  If the predictor variables take on fractional values in the solution of a 

linear programming problem, the simplest approach would be to round the values off, but this 

approach produces two problems.  Firstly, the new integer solution may be outside of the 

feasible region and thus not a viable solution, and secondly, even if the rounded values result in 

a feasible solution it may not be the optimal feasible one. 

          

           

      

         

         

           
 

(2.73) 

(2.74) 

(2.75) 

(2.76) 
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Salkin and Mathur (1989) state that the principal approaches for solving mixed integer (or 

integer) programs are cutting plane techniques, enumerative methods, partitioning algorithms 

and group theoretic approaches.   

The general intent of cutting plane algorithms is to deduce supplementary inequalities or "cuts" 

from the integrality and constraint requirements which, when added to the existing constraints, 

eventually produce a linear program whose optimal solution is an integer in the integer 

constrained variables.   

The basic approach for the integer program involves the following steps: 

Step 1:  Starting with an all-integer tableau, solve the integer program as a linear one.  If it is 

infeasible, so is the integer problem and thus one must terminate the problem.  If the 

optimal solution is all-integer, the integer program is solved and thus one must again 

terminate the problem.  If none of this step applies, go to Step 2. 

Step 2:  Derive a new inequality constraint (or "cut") from the integrality and other current 

constraint requirements which "cuts off" the (current) optimal point but does not 

eliminate any integer solution.  Add the new inequality to the bottom of the simplex 

tableau which then exhibits primal infeasibility.  Go to Step 3. 

Step 3:  Reoptimize the new linear program using the dual simplex method.  If the new linear 

program is infeasible, the integer problem has no solution and the problem must be 

terminated.  If the new optimal solution is in integers, the integer program is solved and 

the problem must be terminated.  If this does not apply, go to Step 2. 

The Beale tableau and Gomory cut is often used to solve mixed integer (or integer) problems in 

this manner.  For a detailed explanation see Salkin and Mathur (1989). 

The aim of enumerative methods is to enumerate, either explicitly or implicitly, all possible 

solution candidates to the mixed integer (or integer) program.  The feasible solution which 

maximizes the objective function is optimal.   

To solve the mixed integer (or integer) problem explicitly, one must list all of the feasible 

solutions and compute the objective value for each solution; the solution with the best objective 

function is the optimal solution.  This method is applicable to small data sets, but is daunting 

and often impossible to apply to larger data sets. 

Another enumerative method is the well known branch-and-bound method.  This is an implicit 

enumerative method.  Branching only takes place on variables that are required to take on 

integer values; the feasible region is divided and subproblems are formed and solved.  
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Bounding is used to develop bounds for the different subproblems.  By comparing the objective 

values (or bounds) of the subproblems it is possible to eliminate certain subproblems from 

consideration (thus, certain feasible solutions cannot improve the current solution and do not 

have to be investigated further; these points are enumerated implicitly).  Dakin's variation 

(Salkin & Mathur, 1989) of the branch-and-bound method is explained and illustrated in 

Appendix A, section A.5. 

A comprehensive discussion and the technical details of partitioning algorithms and group 

theoretic algorithms can be found in Salkin and Mathur (1989).   

2.7 Chapter summary 

The aim of this chapter was to provide a sufficient background to, and gain a good 

understanding of, techniques and concepts that will be used in the subsequent chapters. An 

introductory overview of the concepts of linear regression models and the three associated 

techniques used to estimate regression parameters, the least squares (  -norm), least sum of 

absolute deviation (  -norm) and Chebychev (  -norm) methods, were presented.  This was 

followed by a discussion regarding outliers, outlier detection and robust regression methods.  

The chapter was concluded with the basic theory of linear programming models. 

Chapter 3 will furnish a description of the specific linear programming model which forms the 

basis of this research study, followed by an example illustrating the model’s application.   
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Chapter 3 

3. A minimal assumption regression model 

3.1 Introduction 

In the previous chapter the basic concepts of linear regression models, outliers and linear 

programming were discussed.  The aim of this chapter is to introduce the minimal assumption 

regression model that was used as a basis for this research study.  The use of linear 

programming techniques, to solve least absolute deviation regression problems, will briefly be 

presented.  This will be followed by an explanation and illustrative example of the minimal 

assumption regression model.  The chapter will then be concluded with a brief literature review 

of other researchers who have referred to or used the minimal assumption regression model. 

3.2 Absolute value regression using a linear programming technique 

Certain problems involving absolute value terms can be transformed into a standard linear 

programming formulation.  The absolute deviation (  -norm) technique for estimating regression 

parameters plays a central role in this study and has already been discussed in chapter 2, 

section 2.2.2.  For this reason, the problem of minimizing the sum of absolute deviations is 

briefly recapitulated here. 

Wagner (1959) supposes a set of   observational measurements of   predictor variables 

              and          and dependent variables             is given.  Find the 

regression coefficients    that will 
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  (3.1) 

As explained in chapter 2, section 2.2.3, this problem can be transformed and reduced to 
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for          ,    unrestricted in sign and     and     nonnegative.   
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The variables     and     can be interpreted as vertical deviations “above” or “below” the fitted 

plane for the     observation.  The absolute difference between the estimate ∑        and    is 

given by         in an optimal solution.  From linear programming theory it is known that     

and     cannot both be strictly positive in an optimal solution. 

3.3 A minimal assumption regression model 

During 1962, Harvey M. Wagner published a linear programming model that provides a fit for 

regression functions according to the criteria of minimal sum of absolute deviations but without 

specifying a mathematical form for the functions to be estimated (Wagner, 1962). The only 

restrictive assumption needed is one of monotonicity of the functions, that is, the regression 

functions are assumed to be monotonically non-increasing or non-decreasing.  These are the 

only assumptions that have to be made and in this sense the model employs minimal 

assumptions. 

The model entails the following: 

Using Wagner’s notation, assume an additive regression model of the form 

 

  ∑  (  )

 

   

       (3.4) 

is applicable with   the dependent variable and               , the predictor variables.  

Assume that   observations on the variables   and    are available given by (                ) 

for          .  Wagner’s model now aims to determine estimators of function values   (   ), 

which are abbreviated as    , from this data, such that estimates  ̂   ∑   (   )  of the response 

are optimal in the   -norm sense.   

Each function    need not be linear and no mathematical form needs to be specified.  Wagner 

categorized this model as curvilinear regression.  The moderate restrictions applicable to the 

behaviour of the functions are restrictions of monotonicity.  Thus, a given function    must be 

monotonically non-increasing or non-decreasing. 

Wagner argued that there are a number of situations in which it is difficult to a priori specify a 

mathematical form for the function   , and where it appears suitable to require only mild 

restrictions on the functions.  An example from an economic viewpoint is that of diminishing 

marginal productivity or return.  That is, after a certain point, each extra unit of variable input (for 

example, man-hours) produces smaller increases in outputs, and therefore reduce each 
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worker’s mean productivity.  In this case, the form of the function    is not known exactly.  What 

is known, however, is that    will probably be monotonically non-decreasing.   

Linear programming methods are used to estimate the function variables,    , using only 

minimal assumptions to constrain the required shape.  The least sum of absolute deviation 

regression (  -norm) is used to estimate the parameters.   

Starting with a simple special case, the fundamental nature of the model will be explained.  In 

doing so, complex notation is avoided and the important aspects of the model are highlighted.  

The additive constraints can be formulated as follows: 

 

∑   

 

   

             

                    

(3.5) 

(3.6) 

for          . 

Monotonically non-increasing or non-decreasing constraints are imposed on the functions   .  

For illustrative purposes, Wagner assumed that the observations of variable    are sorted as 

follows:                  .  The constraints in the case of non-decreasing functions are 

             (3.7) 

for             and          .  To constrain a monotonically non-increasing 

function the inequalities are reversed.   

In the case of a more general approach, the values     for each   need not be distinct and are 

not necessarily ordered.  If there are values of     that are identical, the corresponding relevant 

functions variables must also have the same values: that is, if        , then         when 

   .  To simplify the inequality constraints, the     values are ranked.  A dense ranking 

function is defined wherein         (   ) denotes the rank for each value of the    variables.  

In other words, when the variables are sorted, equal     values receive the same ranking 

number and the following     value receives the ranking number that immediately follows it.  

The ranking can be done in increasing or decreasing order, depending on the specified 

monotonicity.  If the function is non-decreasing, a non-decreasing ranking order will be used, on 

the other hand, a non-increasing ranking order will be used if the function is non-increasing.   

For a given   a monotonically non-decreasing function constraint can be rewritten in the 

following way, using the rank values 
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                        (3.8) 

and 

                        (3.9) 

for             with    . 

A constraint for a monotonically non-increasing function can be created by reversing the 

inequality relations.   

The objective function for the minimal assumption regression model is to find values for     that 

will 

 
        [∑(       )

 

   

]  (3.10) 

subject to the abovementioned linear constraints.   

Even when the number of variables is high the method stays feasible because current hardware 

and software are powerful enough to solve large linear programs.  When the model is solved, 

the values of the function variables,    , can be used as they are, or they can be plotted against 

    to investigate the mathematical form of each    function.  To estimate the parameters for the 

mathematical form a least squares or least absolute deviation method can be followed.   

Below is the formulation of the minimal assumption regression model as it is used in this study 

 
          ∑(     

 

   

   ) 

            ∑   

 

   

                            

 

                                

                                                                   , 

                             

 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

where     is unrestricted in sign for all   and  . 

(Note that not all constraints in (3.13) are necessary when the model is implemented since it 

need only be considered when          .) 
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Although the minimal assumption regression model is designed to make the minimum 

assumptions, it is still necessary to decide the direction of monotonicity.  One way to approach 

this problem is by performing a multiple regression beforehand and using the signs of the 

estimated coefficients to determine whether a function should be restricted to be non-increasing 

or non-decreasing. 

3.4 Illustrative example 

In this section a data set from the literature will be used to illustrate how the model can be 

applied.  The data set chosen is called the delivery time data set (Montgomery & Peck, 1992) 

and consists of 25 observations.  Suppose that several outlets have vending machines that 

should be serviced at regular intervals.  The time spent at each outlet, called the delivery time, 

is measured in minutes and depends on the number of vending machines that need to be 

serviced and stocked in that outlet and the distance walked there, which is measured in feet.  

Table 3.1 shows the data set. 

The delivery time is the dependent variable,  , while the predictor variables are: 

  :  number of products; and 

  :  distance. 

  1 2 3 4 5 6 7 8 9 10 

   16.68 11.50 12.03 14.88 13.75 18.11 8.00 17.83 79.24 21.50 

    7 3 3 4 6 7 2 7 30 5 

    560 220 340 80 150 330 110 210 1460 605 

           

  11 12 13 14 15 16 17 18 19 20 

   40.33 21.00 13.50 19.75 24.00 29.00 15.35 19.00 9.50 35.10 

    16 10 4 6 9 10 6 7 3 17 

    688 215 255 462 448 776 200 132 36 770 

           

  21 22 23 24 25      

   17.90 52.32 18.75 19.83 10.75      

    10 26 9 8 4      

    140 810 450 635 150      
Table 3.1 – Delivery time data set (Montgomery & Peck, 1992) 

The minimal assumption regression model will now be applied to the delivery time data set.   
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The application consists of the following steps: 

 determine monotonicity for each variable; 

 rank the variables; 

 create inequality constraints; 

 formulate the model; and  

 obtain the model solution.   

Each of these steps will be discussed in the forthcoming sections. 

3.4.1 Determining monotonicity 

Before the model can be applied to the data, the direction of monotonicity for each variable 

must be estimated.  To determine this, a multiple regression was done using Microsoft Excel 

2007.  The results are given in table 3.2.  The coefficients of    and    are positive; therefore 

both    and    will be constrained as monotonically non-decreasing functions. 

 
Coefficients 

Intercept 2.341 

   1.616 

   0.014 

        Table 3.2 – Multiple regression coefficients 

3.4.2 Assign ranks and create inequality constraints 

The next step is to assign a rank to each    , wherein   denotes the data point and   denotes the 

predictor variable, and also to create the inequality constraints.  Table 3.3 indicates the delivery 

time data set with assigned ranks and associated function variables.  The first column,  , 

indicates the data point, the second column contains the   values while the next three columns 

are the     variable values, the assigned rank values and the associated function variables,    .  

The last three columns are the    variable values, the assigned rank values and the associated 

function variables,    .   

For this example, both variables are monotonically non-decreasing functions, and thus the first 

ranking value, 1, will be assigned to the smallest     value for each variable; therefore      and 

      both have ranks with the value of 1.  The values of variables      and      are equal and 

therefore both have rank values of 2.  By using the associated function variables, the inequality 

constraint for variables     ,      and      can be set up as follows: the rank of      is less than 

the rank of     , and therefore          .  The rank of      is equal to the rank of      and 

therefore the function variables are also equal,          .  This can be done for all the function 
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variables, using the rank to impose the inequality constraints.  (Note that a comma is used to 

separate   and   and therefore       is the 23rd observation of the first variable.) 

                             

1 16.68 7 6      560 17      

2 11.50 3 2      220 10      

3 12.03 3 2      340 13      

4 14.88 4 3      80 2      

5 13.75 6 5      150 6      

6 18.11 7 6      330 12      

7 8.00 2 1      110 3      

8 17.83 7 6      210 8      

9 79.24 30 13      1460 24      

10 21.50 5 4       605 18       

11 40.33 16 10       688 20       

12 21.00 10 9       215 9       

13 13.50 4 3       255 12       

14 19.75 6 5       462 16       

15 24.00 9 8       448 14       

16 29.00 10 9       776 22       

17 15.35 6 5       200 7       

18 19.00 7 6       132 4       

19 9.50 3 2       36 1       

20 35.10 17 11       770 21       

21 17.90 10 9       140 5       

22 52.32 26 12       810 23       

23 18.75 9 8       450 15       

24 19.83 8 7       635 19       

25 10.75 4 3       150 6       

Table 3.3 –     values, ranks and the associated     
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3.4.3 Model formulation 

The model formulation starts with the objective function to be minimized, followed by the 

constraints. 

                                                              

                                        

                                        

                                       

                                       

            

                                           

     

                        

                        

                         

                         

             

                         

                         

                        

                         

             

                         

      

                                    

                                                        

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

 

(3.21) 

 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

 

(3.30) 

 

(3.31) 

(3.32) 

3.4.4 Model solution 

The data was imported from a text file into a C++ program which connects with CPLEX (version 

10.1) using Concert Technology from ILOG (ILOG, 2006).  The model was solved using this 

software to find solution values for the function variables,    , and the objective value thereof 

(minimization of the sum of the error variables).  Other information, such as shadow prices, the 

right-hand-side range, the range of insignificance and the range of optimality can be obtained 

from CPLEX to make further calculations and to determine the model’s sensitivity. 
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Table 3.4 records the distinct    values with their associated    values after the model was 

solved. 

   2 3 4 5 6 7 8 9 10 16 17 26 30 

  (  ) -7.08 -6.33 -4.33 0 0 0 0 0 2.82 15.27 15.27 26.14 53.06 

Table 3.4 – Function values for    

The complete data set is contained in table 3.5.  The first column,  , indicates the data point, the 

second column contains the    values, followed by the values of the first variable,    , and the 

associated function values,   (   ) in the third column, followed by the values of the second 

variable,    , and the associated function values,   (   ).  The second last column,  ̂ , is the 

estimated value, calculated by adding   (   ) and   (   ), and the last column contains the 

absolute deviations, |    ̂ |, (the difference between the observed and estimated   value). 

           (   )       (   )  ̂  |    ̂ | 

1 16.68 7 0 560 19.75 19.75 3.07 

2 11.50 3 -6.33 220 17.83 11.50 0 

3 12.03 3 -6.33 340 18.36 12.03 0 

4 14.88 4 -4.33 80 15.08 10.75 4.13 

5 13.75 6 0 150 15.08 15.08 1.33 

6 18.11 7 0 330 18.11 18.11 0 

7 8.00 2 -7.08 110 15.08 8.00 0 

8 17.83 7 0 210 17.83 17.83 0 

9 79.24 30 53.06 1460 26.18 79.24 0 

10 21.50 5 0 605 19.83 19.83 1.67 

11 40.33 16 15.27 688 19.83 35.10 5.23 

12 21.00 10 2.82 215 17.83 20.65 0.35 

13 13.50 4 -4.33 255 17.83 13.50 0 

14 19.75 6 0 462 19.75 19.75 0 

15 24.00 9 0 448 18.75 18.75 5.25 

16 29.00 10 2.82 776 26.18 29.00 0 

17 15.35 6 0 200 15.35 15.35 0 

18 19.00 7 0 132 15.08 15.08 3.92 

19 9.50 3 -6.33 36 15.08 8.75 0.75 

20 35.10 17 15.27 770 19.83 35.10 0 

21 17.90 10 2.82 140 15.08 17.90 0 

22 52.32 26 26.14 810 26.18 52.32 0 

23 18.75 9 0 450 18.75 18.75 0 

24 19.83 8 0 635 19.83 19.83 0 

25 10.75 4 -4.33 150 15.08 10.75 0 
Table 3.5 – Data, function values and residuals 
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Figure 3.1 depicts the absolute residuals for each data point graphically.  It can be observed in 

this figure that data points 11 and 15 indicate the largest deviation, followed by points 4 and 18.  

This deviation may be due to possible outliers.  In the next chapter this possibility will be further 

investigated. 

 

Figure 3.1 – The absolute deviation for each data point 

In figures 3.2 and 3.3 the function values of    and    are plotted against the    and    values 

respectively.  In both figures it is easy to perceive that the functions are monotonically non-

decreasing, as specified by the multiple regression performed beforehand and the inequality 

constraints in the model. 

 

Figure 3.2 –    values plotted against    values 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
b

so
lu

te
 d

ev
ia

ti
o

n
s 

Data points 

-10

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

   

  (  ) 



39 

 

Figure 3.3 –    values plotted against    values 

In this section the minimal assumption regression model was applied to the delivery time data 

set.  Firstly, the direction of monotonicity for the two predictor variables was estimated, followed 

by the assignment of ranks and the creation of inequality constraints to enforce monotonicity.  

The problem was formulated as a linear programming problem and solved with CPLEX.  The 

form of each function can be seen by plotting the function values against the values of the 

predictor variables (figures 3.2 and 3.3). 

One of the problems of this model is that it may be difficult to estimate a value for     if     is not 

in the data set. Therefore it is sometimes necessary to use interpolation or extrapolation to 

determine the value of a certain    .  An extrapolation method will be discussed in the following 

section. 

3.5 Extrapolation 

To obtain a function value,    , of a distinct     value, table 3.4 (section 3.4.4) can be used to 

read the value as the solution of the model was given in table form.  For example: if the   value 

is 2 then the function value is -7.08; if the   value is 8 the function value is 0; and if the   value 

is 30 the function value is 53.06.  There is, however, no specific function to determine the     

value of a   value that is not specified in the table.  To solve this problem, interpolation and 

extrapolation can be used.  The formula for interpolation or extrapolation is given below (Cho & 

Skidmore, 2006) 

 
   

(     )

(     )
(     )      (3.33) 
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When extrapolation is utilized, it may be difficult to decide which two points should be used to 

determine the third point.  To illustrate this, consider variable    and suppose a function value 

for    must be determined where      .  Using the extrapolation formula (3.33) above, the 

extrapolated function value will typically be calculated as follows using the last two data points 

(B and C in figure 3.4) (see table 3.4 for the values used in the extrapolation formula) 

   
(     )

(     )
(           )        

       

This point is indicated as E in figure 3.4.   

It is, however, also possible to use the first and the last available data points (A and C in figure 

3.4).  In this case the extrapolation function value is 

   
(    )

(    )
(      (     ))  (     ) 

       

This point is indicated as D in figure 3.4. 

In this example, it appears as if it may be desirable to use the first and last data points (A and 

C) instead of the usual last two available points (B and C). 

 

Figure 3.4 – Extrapolation techniques 
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To conclude the discussion on Wagner’s model, the next section will present a brief literature 

review of other researchers who have referred to or used the minimal assumption regression 

model. 

3.6 Literature review of other research using Wagner's model 

In this section examples of other researchers who referred to or used the minimal assumption 

regression model developed by Harvey M. Wagner in 1962 will be furnished.  Most of the 

references are dated with the exception of one new reference from 2005.  This may be 

attributed to the fact that in the 1960s computers were not readily available and the 

computations in this method were perceived to be difficult and laborious. 

An interesting paper, “Utility functions for test performance” (Dyer et al., 1973), discusses a 

utility function estimation procedure to assist elementary school principals with curriculum 

planning.  The goal was to determine the priorities of parents, communities, and the school.  

The results helped in decision making and prioritisation. 

The utility function is based on the scores of a group of students in different areas of the 

curriculum.  To establish the priorities, different principals were given a questionnaire.  For each 

question a scenario was described, with certain criteria which could be improved upon.  The 

principal had to choose which criteria he/she preferred to improve.  Dyer et al. (1973) 

mentioned the following question as an example of those in the questionnaire: 

“Your students have just taken a nationally standardized test in creativity.  The test has two 

parts, A and B, and they represent two aspects of a subject which are equally important to you.  

Test results are in percentile scores for school norms.  Your school averages were: 

 Part A   50 percentile 

 Part B   70 percentile 

Which increase would be worth more to you –  

Part A from 50 to 60 percentile 

or 

Part B from 70 to 85 percentile?” 

The principal had to choose whether he/she preferred to improve criterion A, for example, from 

a 50 percent to a 60 percent average, or criterion B from a 70 percent to an 85 percent average.  

If the principal indicated that an increase in Part A was worth more than an increase in Part B, 

the constraint can be written as follows 

  (  )   (  )   (  )   (  )  (3.34) 
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or 

  (  )   (  )   (  )   (  )  (3.35) 

By using this technique it was possible to state that the difference between  (  ) and  (  ) was 

more important than the difference between  (  ) and  (  ).  This can be done for several 

criteria, so that from these results information in relation to curriculum planning could be 

derived.  Dyer et al. (1973) state that “this curve-fitting technique is similar in spirit to the 

approach proposed by Wagner.” 

A couple of other researchers only mentioned the approach Wagner used as an alternative 

regression method (Schlossmacher, 1973; Fama, 1965a; Fama 1965b; Walsh, 1963).  

Schlossmacher (1973) noted that absolute deviations curve fitting can be carried out using 

linear programming as Wagner proposed.  He also noted that the program could become very 

big and that linear programming algorithms are not always accessible parts of statistical 

packages.  Fama (1965a) used absolute value regression as an alternative estimation 

procedure to develop a portfolio analysis model for a stable paretian market.  Fama (1965b) 

noted that an alternative technique, such as absolute-value regression, can be used to 

approach the stable paretian process.  Walsh (1963) also briefly mentioned that least absolute 

deviation could be used to develop a regression method that possesses substantial curve-fitting 

flexibilities without substantial changes in the desirable computational properties.  The non-

linear regression problem that Diewert and Wales (2005) suggest for a single turning point 

smoothing procedure is very closely related to the nonparametric regression model by Wagner. 

Another survey attempted to collect and classify different applications of linear programming to 

numerical analysis (Rabinowitz, 1968).  Rabinowitz classified five different approximation 

problems: discrete linear Chebyshev approximation,    approximation, fitting by spline curves, 

fitting by rational functions and lastly, general regression which used Wagner’s paper as a 

basis.   

There are a few other sources which mention the problems of using a specific method, but 

these are also only very brief in their explanation of the possibility of using the minimal 

assumption regression model to overcome these obstacles.  

3.7 Chapter summary 

In this chapter the minimal assumption regression model formulated by Harvey M. Wagner in 

1962 was introduced.  This model constitutes the basis of this research study and an example 
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was used to demonstrate its features.  A brief literature review of other research that referenced 

the work of Wagner concluded the chapter.   

The next chapter will be devoted to a discussion about robust model development which is 

implemented by adapting the minimal assumption regression model proposed by Wagner.  
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Chapter 4 

4. Model development 

4.1 Introduction 

Following the literature and background reviews in chapters 2 and 3, Chapter 4 will concentrate 

on the research design and model development techniques employed to ensure greater model 

robustness and improved predictive accuracy.  The chapter starts with two extensions made to 

the minimal assumption regression model introduced by Wagner (1962).   

The first extension is intended to detect possible outliers by implementing mixed integer linear 

programming techniques.  The second extension addresses the potential problem of overfitting 

the model by using constrained second derivatives to smooth the functions.  These extensions 

are included in the model to ensure that the identification of outliers, smoothing and model 

development can be carried out in order to improve its robustness.   

The second part of the chapter is dedicated to the problem of specifying mathematical forms for 

the functions   (   ). This is performed by using a piecewise linear regression model.  This 

model, implemented through a mathematical programming approach, is used for comparative 

purposes when evaluating the results obtained by the minimal assumption regression model 

and the suggested robust extensions. 

4.2 Robust model development 

4.2.1 Identification of outliers for linear models 

As discussed in Chapter 2, outliers can seriously distort a model and it is often difficult to detect 

these outliers if there are more than two predictor variables.  To detect outliers a number of 

useful techniques were presented in Chapter 2 (section 2.3).  In addition to these techniques, it 

is also possible to do so by using mixed integer linear programming techniques (Hattingh et al., 

2005).  This method is applicable to linear models. 

Hattingh et al. (2005) developed a mixed integer linear programming model to simultaneously 

detect outlying data points and select certain predictor variables.  A part of the motivation for 

this approach is that one-at-a-time case diagnostics may not be suitable for cases which are 

jointly but not individually outlying or where multiple outliers conceal the presence of additional 

outliers (the masking problem).  Another reason for this approach is that predictor variables may 
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appear to be candidates for inclusion because of outliers and thus, when outliers and predictor 

variables are selected simultaneously, this need no longer be a problem. 

Hattingh et al. (2005) used the following model to eliminate data and discard predictors at the 

same time 
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(4.8) 

(4.9) 

where   is the number of data points to be deleted from the model and   is the number 

of predictor variables not included in the model.  For a detailed account Hattingh et al. 

(2005) can be consulted. 

Although the abovementioned problem is applicable to linear models, the same principles and 

techniques will be used in this study to detect outliers for nonlinear models. 

4.2.2 Identification of outliers for nonlinear models 

To try and identify possible outliers, similar mixed integer linear programming techniques are 

incorporated into Wagner’s model.  The model is used in 4.10 – 4.18 wherein    is an 

unrestricted slack variable.  The absolute value of    is constrained by     where   is a large 

number and    is a binary variable.  In experiments a value of   larger than the span of the    

values proved sufficient.  If    is zero,    is also constrained to zero and the  th absolute residual 
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contributes to the objective, but if    is one, the optimization process will choose the  th residual 

to be zero, since    takes up the slack.   

In this manner the absolute residual for data point   is omitted from the model and from the 

objective function.  The data point that will be omitted from the model is the point that will cause 

the greatest decrease in the objective function when it is omitted.  The variable   specifies the 

number of data points omitted from the model.  In this study the value of   will be determined by 

experimentation. 
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(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

The delivery time data set introduced in Chapter 3 will now be used to illustrate how the above 

model can be applied to a data set.  The first step is to decide how many data points should be 

omitted; therefore a value for   should be determined.   

4.2.2.1 Determination of   

In this study the value of   is determined experimentally as follows: the model is solved for 

    (no data points are omitted) and the value of the objective function is recorded.  The 

model is then solved repeatedly and the value of   is incremented by 1 each time the model is 

solved, with the respective objective values also being recorded.  The different values of   (the 
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number of points omitted) are then plotted against the relevant recorded values to observe how 

the objective value has changed.   

In figure 4.1 the number of points omitted ( ) is plotted against the respective objective values.  

The values in the brackets shown on the graph indicate the data points that are omitted.  One 

can read from the graph that when 0 points are omitted the objective value is 25.7 but when 6 

points (points 1, 4, 18, 20, 23 and 24) are omitted the objective value decreases to 1.1.  It is 

important not to omit too many data points as the data set may become too small to construct a 

meaningful model.   

The value of   can be based on the change in the objective value.  When a certain number of 

points, for instance  , are omitted, the change in the objective value can be determined when 

an additional point,    , is omitted.  When the change in the objective value becomes 

smaller, the data point omitted does not reduce the objective value as much as the previous 

data points that were omitted.  This may indicate that this data point is not an outlier and it will 

not be included in the value of  .   

However, if there is no definite change in the decrease of the objective value,   can be selected 

as a value that represents 10-20% of the data points.  This prevents the data set from becoming 

too small.  In this case the objective function decreases very gradually, thus, for illustrative 

purposes, the value of   will be chosen as 3 (approximately ten percent of the data). 

 

Figure 4.1 – Number of data points to omit 
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version thereof).  Using this heuristic, the rate of change (improvement) in the adjusted    

remains relatively high while outliers are eliminated.  When all the outliers have been eliminated 

and “good” points are being eliminated, the rate of change in the adjusted    becomes smaller.  

See Du Plessis (2010) for a more detailed description and implementation of this heuristic. 

4.2.3 Smoothing 

The second extension to the minimal assumption regression model addresses the problem of 

possible overfitting of the model.  As mentioned, this occurs when a function fits a data set “too 

well”, when the number of parameters estimated from the data set is too large and thus error 

estimation becomes unreliable.  Overfitting is a very serious problem because it affects the 

prediction capability of a model and makes it less reliable (Hitchcock & Sober, 2004). 

Some of the important goals of a model are to generate accurate predictions and describe 

relationships “correctly”.  In this research study it is important to formulate a model which makes 

accurate predictions.  One way to prevent overfitting is by using a polynomial of a lower degree 

which still fits the data well, but not as well as a higher degree polynomial (Hitchcock & Sober, 

2004).  Another way to prevent a model from overfitting the data is to smooth the functions, or in 

other words to adjust the functions by making them less sensitive to the data without reducing 

the appropriateness of the model. 

The smoothing effect is also incorporated into the model because of fluctuations, especially in 

small data sets.  While large data sets may reveal relatively smooth functions   (   ), small data 

sets may show sudden, large fluctuations.  To illustrate this, consider the following two variables 

from different data sets on which the minimal assumption regression model has been applied.   

 

Figure 4.2 – Second variable of a liver surgery data set (Neter et al., 1990) 

Figure 4.2 is a representation of the function of the second variable of a liver surgery data set 

(Neter et al., 1990) that consists of 108 data points.  The function is quite smooth without any 

-0.6

-0.4

-0.2

-1E-15

0.2

0.4

0.6

0 50 100 150

f(
x)

 

   

  (  ) 



49 

large, sudden changes and the relationship is clearly observable.  Figure 4.3 is a representation 

of the function of the second variable of the stack loss data set (Brownlee, 1965) that consists 

of 21 data points.  This function is clearly not as smooth as the one in figure 4.2 and it also 

illustrates some fluctuations.  Appropriate smoothing on the function can lessen this effect.   

 

Figure 4.3 – Second variable of the stack loss data set (Brownlee, 1965) 

To incorporate smoothing into the minimal assumption regression model some constraints are 

added to the model.  The smoothing technique used in the minimal assumption regression 

model is intended to constrain the second derivative of the function, or in other words, the rate 

of direction change.  The slope of a function cannot change more than a specified value and 

this constrains sudden large fluctuations in the slope. 

To implement the smoothing of a function, constrained second derivatives are employed and 

can be described as follows:  
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The absolute rate of change in direction (the second derivative) is now constrained by the 

parameter  .  This parameter is estimated by experimentation in this study.   

It should be noted that extra constraints usually restrict the model further and thus the objective 

value may also become affected.  In the case of a minimization problem, the optimal objective 

value will not decrease if additional restrictive constraints are added to the model.   

Before the steps to determine the value of   are explained, another concept must be 

introduced.  This is a method for carrying out cross-validation which is proposed in the next 

section. 

4.2.3.1 Cross-validation 

Cross-validation is a technique for estimating the performance of a predictive model.  To test 

the performance a data set can be divided into two subsets: the model is applied to one set and 

the accuracy of that model is then tested against the other set. 

Various cross-validation methods can be used to test the forecast accuracy of a model 

(Browne, 2000; Geisser, 1975; Stone, 1974).  In this study a “leave one out” jack-knife 

approach (Efron & Gong, 1983) was used to determine how well the model predicts.  This 

method consists of the following steps: 

 delete the points    from the data set one at a time; 

 recalculate the prediction rule on the basis of the remaining     points; 

 see how well the recalculated rule predicts the deleted point; and 

 average these predictions over all   deletions of   .   

The mean absolute deviation calculated in the last step gives an indication of how well the 

model explains the data.  Generally a small mean absolute deviation is preferred because this 

will provide more accurate predictions.   

The mean absolute deviation is used as a measurement to determine the value of  .  This 

approach is explained in the following section. 

4.2.3.2 Determination of   

In this study it was established by experimentation that a smoothing factor between 1 and 400 

will smooth the model sufficiently.  To determine a smoothing factor   (4.19), set   equal to 25 

and solve the model.  Determine the mean absolute deviation and record the value.  Increase   

by 25, and solve the model again.  Record the mean absolute deviation for each iteration until 
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     .  Plot the recorded mean absolute deviations against the   values.  Select the   value 

which results in the lowest mean absolute deviation.   

In figure 4.4 the mean absolute deviation values were calculated for      to       with 

increments of 25.  The mean absolute deviation of the delivery time data set was the lowest for 

     and therefore the rest of the calculations in this illustrative example will be performed 

with     . 

 

Figure 4.4 – Mean absolute deviation for different values of   

To illustrate the change in the form of the functions a smoothing factor of      is applied to 

the delivery time data set.  In figures 4.5 and 4.6 the representations of the functions of the 

minimal assumption regression model are shown, indicated as   (  ) and   (  ) respectively.   

 

Figure 4.5 – Change in function    after smoothing with   = 25 
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The smoothed functions with      are also shown and are indicated as    (  ) and    (  ) in 

figures 4.5 and 4.6 respectively.  In these two figures it is noticeable that the slope of the 

smoothed functions changes more gradually from one data point to the next. 

 

Figure 4.6 – Change in function    after smoothing with   = 25 

The extensions to the minimal assumption regression model can be explained as follows.  A 

model is made more robust by omitting outliers, but when too many data points are omitted the 

data set may become too small to estimate the relationship between the dependent variable 

and the predictor variables.  By smoothing the functions the model is prevented from overfitting 

the data, but when a function is smoothed too much it might only indicate a general trend and 

predictive accuracy is compromised.  It is therefore important to find the balance between 

omitting outliers and smoothing in order to develop the model. 

The next section will introduce another mathematical programming approach, piecewise linear 

regression, to specify mathematical forms for the functions   (   ).  This model will also be used 

for comparative purposes when evaluating the results obtained by the minimal assumption 

regression model and the suggested robust extensions. 

4.3 Piecewise linear regression 

Another method to approach nonlinear functions is by using a piecewise linear regression 

model.  In this section a model of this type is developed in order to compare the results of this 

model with the results of the minimal assumption regression model. 

To be able to obtain alternative mathematical models, a piecewise linear approach is used.  

Piecewise linear regression is a form of regression that allows multiple linear models to be fitted 
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to data for different ranges of   (Ryan & Porth, 2007).  Breakpoints are the values of   where 

the slope of the linear function changes.  The value of a breakpoint may or may not be known 

before the analysis, but typically it is unknown and must be estimated.  Data sets in this study 

are either modelled as one linear regression model or as piecewise linear continuous segments, 

each represented by a linear model.  

A model using two breakpoints and therefore producing three linear models of the form 

       is illustrated below. In this model,     and     represent the two breakpoints which 

were chosen to be the 33rd and 66th percentiles.  The variables     and     (              

     )  are the coefficients of the different linear models. 
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(4.29) 

The purpose of this model is to simultaneously fit piecewise linear models to the (additive) 

regression model.  Outliers can be omitted from this model in the same way as described in 

section 4.2.2. 

To illustrate the performance of the piecewise linear regression model, the model specified 

above is applied to the delivery time data set (Montgomery & Peck, 1992).  Figures 4.7 to 4.9 
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depict the function    with zero, one and two breakpoints respectively.  Figure 4.7,    with no 

breakpoint, is simply a   -norm regression with the linear model   (  )              .   

For this study, in the case of one breakpoint (figure 4.8), the 50th percentile was chosen as 

breakpoint     while in the case of two breakpoints (figure 4.9), the 33rd and 67th percentiles 

were chosen as breakpoints     and    .  It should be noted that the 50th percentile (   ) in 

figure 4.8 is not necessarily located in the middle of the data on the graph.  This is due to the 

fact that there are duplicate data values for    and consequently the corresponding   (  ) 

values also take on similar values.  The same explanation can be provided when two 

breakpoints, the 33rd and 67th percentiles, are specified in figure 4.9. 

 

Figure 4.7 –    with no breakpoint 

 

 

Figure 4.8 –    with one breakpoint 
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Figure 4.9 –    with two breakpoints 

The two results of the models introduced in this chapter, the minimal assumption regression 

model with extensions, and the piecewise linear regression model, can now be compared.  

Since the mean absolute deviation measures the accuracy of the predictive capability of a 

model, this measure will be used to compare the models with their different extensions.  This 

comparison is discussed in the following section. 

4.4 Model comparison 

It is often difficult to weigh up different models; however, in this study the predictive capability of 

the different models will be compared.  This is done by employing a simple form of cross-

validation, the “leave one out” jack-knife procedure, explained in section 4.2.3.1.  The mean 

absolute deviation measurement, obtained from the jack-knife procedure, is used for comparing 

the different models.  The difficulty in this approach is determining which data points must be 

used to compute the mean absolute deviation.  A regression procedure is not supposed to 

predict outlying data points well.  Therefore, when data points are omitted, these data points are 

not estimated and they do not contribute to the mean absolute deviation because they are 

considered as outliers.   

In this section and in Chapter 5, models that do not omit outliers will be compared separately 

because these models still have to estimate possible outliers.  Models that omit outliers and 

incorporate other extensions do not estimate omitted data points. 

Consider table 4.1 which shows the comparison for the   -norm regression,   -norm regression 

and the original minimal assumption regression model introduced by Wagner.  No extensions 

(outlier detection and smoothing) were implemented and from the mean absolute deviation it 

will be noticed that the   - and   -norm regression outperformed the original Wagner model.  
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Model 

Mean 

absolute 

deviation 

  -norm regression 2.878 

  -norm regression 2.536 

Original minimal assumption regression model (Wagner, 1962)  3.885 

Table 4.1 – Comparison of models that do not omit outliers 

To illustrate the effect of the proposed extensions and the piecewise linear regression 

technique, consider table 4.2 below.  In all cases 3 data points (outliers) were omitted (in 

section 4.2.2.1 the value of   was chosen as 3).  By introducing a smoothing factor,      (as 

proposed in section 4.2.3.2), to the minimal assumption regression model, a significant 

improvement in the mean absolute deviation was observed (from 3.75 to 2.739).  However, for 

this specific data set, the   -norm piecewise linear regression model (no breakpoint) 

outperformed all the other models with a mean absolute deviation of 1.652.  

Model 

Mean 

absolute 

deviation 

Wagner’s model omitting 3 data points 3.75 

Wagner’s model omitting 3 data points and a smoothing factor of      2.739 

  -norm regression omitting 3 data points and no breakpoint 1.652 

Piecewise   -norm regression omitting 3 data points and one breakpoint 2.732 

Piecewise   -norm regression omitting 3 data points and two breakpoints 3.826 

Table 4.2 – Comparison of models that omit outliers 

The methods and techniques that were introduced in this chapter will be investigated in more 

detail in Chapter 5, in which the models are applied to several other data sets. 

4.5 Chapter summary 

In this chapter, two extensions (outlier detection and smoothing) to the minimal assumption 

regression model were suggested in order to improve robustness and to enhance the predictive 

capabilities of the model.  A linear programming model to incorporate piecewise linear 

regression techniques was also introduced, and all the suggested techniques were explained 

and illustrated using a data set from the literature. 

The next chapter will present empirical tests and results obtained by applying the models to 

different data sets.    
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Chapter 5 

5. Empirical experiments and results 

5.1 Introduction 

In chapter 3 the minimal assumption regression model, introduced by Wagner (1962) was 

presented.  This research study is based on Wagner’s model and in Chapter 4 some extensions 

were made to improve the predictive accuracy of the model.  The objective in adding these 

extensions (outlier detection and smoothing of functions) is to make the model more robust.  

Also included in Chapter 4 is a piecewise linear regression model.  This model specifies 

mathematical forms for the   (   ) functions.  The results of this model are compared with the 

results of the minimal assumption regression model. 

This chapter is dedicated to empirical experiments and results.  Five data sets are used to test 

and evaluate the model that has been developed.  The minimal assumption regression model 

will be applied to each data set, as described in section 3.4.1 to 3.4.4.  To determine the 

smoothing factor, or the number of data points to omit, some further experiments will be carried 

out (explained in section 4.2).  The piecewise linear regression model will also be applied to 

each data set as described in section 4.3.  The results for each data set will then be compared 

and the end results will be used to draw some conclusions.   

The minimal assumption regression model has some specific features, such as the specification 

of the function form.  The function is restricted, to be only monotonically non-increasing or non-

decreasing.  To observe how this model will perform when a data set with specific elements is 

used, different data sets were simulated and the results of the different models were compared. 

In the following section, the five data sets that will be used in this study are introduced.   

5.2 Data sets 

5.2.1 Stack loss 

The stack loss data set (Brownlee, 1965) was also examined by Hoeting et al. (1996).  They 

developed a method for simultaneous variable selection and outlier identification based on the 

computation of posterior model probabilities.  Their model appears as if it could identify masked 

outliers successfully.   
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The relationship between the dependent variable, the percentage of unconverted ammonia that 

escapes from a plant, and three predictor variables was inspected over 21 days.  The data set 

is presented in table 5.1.  The three predictor variables are: 

  :  air flow, which measures the rate of operation of a plant; 

  :  inlet temperature of cooling water circulating through coils in a tower; and 

  :  a value proportional to the concentration of acid in the tower. 

  1 2 3 4 5 6 7 8 9 10 11 

   42 37 37 28 18 18 19 20 15 14 14 

    80 80 75 62 62 62 62 62 58 58 58 

    27 27 25 24 22 23 24 24 23 18 18 

    89 88 90 87 87 87 93 93 87 80 89 

            

  12 13 14 15 16 17 18 19 20 21  

   13 11 12 8 7 8 8 9 15 15  

    58 58 58 50 50 50 50 50 56 70  

    17 17 19 18 18 19 19 20 20 20  

    88 82 93 89 86 72 79 80 82 91  

Table 5.1 – Stack loss data (Brownlee, 1965) 

5.2.2 Scottish hill racing 

The second data set comprises data about Scottish hill runners (Atkinson, 1986).  The 

relationship between the dependent variable, record time in minutes, and the two predictor 

variables was evaluated for 35 hill races.  The two predictor variables are: 

  :  distance, the total length of the race, measured in miles; and 

  :  climb, the total elevation gained in the race, measured in feet. 

The longer the race and the higher the climb, the longer one can expect the record time to be.  

The data set is shown in table 5.2. 

  1 2 3 4 5 6 7 8 9 10 

   16.083 48.350 33.650 45.600 62.267 73.217 204.617 36.367 29.750 39.750 

    2.5 6 6 7.5 8 8 16 6 5 6 

    650 2500 900 800 3070 2866 7500 800 800 650 

           

  11 12 13 14 15 16 17 18 19 20 

   192.667 43.050 65.00 44.133 26.933 72.250 98.417 78.620 17.417 32.567 

    28 5 9.5 6 4.5 10 14 3 4.5 5.5 

    2100 2000 2200 500 1500 3000 2200 350 1000 600 
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  21 22 23 24 25 26 27 28 29 30 

   15.950 27.900 47.633 17.933 18.683 26.217 34.433 28.567 50.500 20.950 

    3 3.5 6 2 3 4 6 5 6.5 5 

    300 1500 2200 900 600 2000 800 950 1750 500 

           

  31 32 33 34 35      

   85.583 32.383 170.250 28.100 159.833      

    10 6 18 4.5 20      

    4400 600 5200 850 5000      
Table 5.2 – Scottish hill racing data (Atkinson, 1986) 

5.2.3 Weisberg fuel consumption 

The third data set contains data about fuel consumption in different states in America 

(Weisberg, 2005).  The relationship between the dependent variable, fuel consumption in 

gallons per person, and the four predictor variables was evaluated for 48 states (see table 5.3 

below).  The four predictor variables for each state are: 

  :  tax, the 1972 amount of tax per gallon, measured in cents;  

  :  income, the 1972 per-capita income in thousands of dollars; 

  :  road, the 1971 thousands of miles of primary highway; and 

  :  licence, the percentage of the population with a driver’s licence. 

  1 2 3 4 5 6 7 8 9 10 

   554 628 632 524 457 587 540 574 631 635 

    7 7.5 7 7 10 7 8 8 7.5 7 

    3.333 3.357 4.300 5.002 5.342 4.449 4.983 4.188 3.846 4.318 

    6.594 4.121 3.635 9.794 1.333 4.639 0.602 5.975 9.061 10.340 

    51.3 54.7 60.3 59.3 57.1 62.6 60.2 56.3 57.9 58.6 

           

  11 12 13 14 15 16 17 18 19 20 

   648 471 580 649 534 487 414 464 541 525 

    8.5 7.5 8 7 9 8 7.5 9 9 7 

    3.635 5.126 4.391 4.593 3.601 3.528 4.870 4.897 3.571 4.817 

    3.274 14.186 5.939 7.834 4.650 3.495 2.351 2.449 1.976 6.930 

    66.3 52.5 53 66.3 49.3 48.7 52.9 51.1 52.5 57.4 
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  21 22 23 24 25 26 27 28 29 30 

   566 603 577 704 566 714 640 524 467 699 

    7 7 8 7 9 7 8.5 9 8 7 

    4.332 4.206 3.063 3.897 3.721 3.718 4.341 4.092 5.126 3.656 

    8.159 8.508 6.524 6.385 4.746 4.725 6.010 1.250 2.138 3.985 

    60.8 57.2 57.8 58.6 54.4 54 67.7 57.2 55.3 56.3 

           

  31 32 33 34 35 36 37 38 39 40 

   782 344 498 644 610 464 410 577 865 571 

    6 8 7 6.58 7 8 8 8 7 7 

    5.215 5.319 4.512 3.802 4.296 4.447 4.399 3.448 4.716 3.640 

    2.302 11.868 8.507 7.834 4.083 8.577 0.431 5.399 5.915 6.905 

    67.2 45.1 55.2 62.9 62.3 52.9 54.4 54.8 72.4 51.8 

           

  41 42 43 44 45 46 47 48   

   640 591 547 561 508 510 460 968   

    5 7 9 9 7 9 8.5 7   

    4.045 3.745 4.258 3.865 4.207 4.476 4.574 4.345   

    17.782 2.611 4.686 1.586 6.580 3.942 2.619 3.905   

    56.6 50.8 51.7 58 54.5 57.1 55.1 67.2   
Table 5.3 – Weisberg fuel data (Weisberg, 2005) 

5.2.4 Gross national product (GNP) 

The fourth data set was obtained from Roux (1994).  He performed a regression study relating 

the gross national product (GNP) to 10 factors for 43 different countries.  Using linear model 

selection Hattingh et al. (2005) simultaneously selected data points and variables that could be 

omitted from the data set.  According to this research, variables 8, 9 and 10 can be omitted from 

the data set.   

Based on the study undertaken by Hattingh et al. (2005), 7 of the 10 variables were selected to 

be included in the data set, which is presented in table 5.4.  The predictor variables are 

described as follows: 

  : Nett exports per capita.  If the value is negative the country imports more than it exports 

whereas if the value is positive the country exports more than it imports; 

  : Change in inflation.  If the value is negative it means there was an improvement in the 

inflation (the inflation decreased); 

  : Agriculture as a percentage of the gross household product (GHP).  A high percentage 

points to a greater dependency on agriculture in the GHP of the country; 
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  : Political situation.  A 1 symbolizes a more autocratic rule, whereas 5 represents a more 

democratic rule; 

  : Average illiteracy of the population in the country.  A high percentage suggests a high level 

of illiteracy; 

  : Growth in life expectancy of the inhabitants of the country.  If the percentage is high, there 

is a positive growth in the life expectancy of the population and the people live longer; and 

  : Growth in the population of the country. 

  1 2 3 4 5 6 7 8 9 10 11 

   105 169 202 281 276 306 317 349 542 597 687 

    -14 -29 47 8 -42 -4 -17 -23 60 -77 61 

    12 7 0.5 35 2 0.2 6 -4 27 -2 32 

    60 41 38 25 54 26 15 38 25 31 39 

    1 2 2 2 2 2 2 2 3 2 2 

    38 59 58 39 41 57 31 70 26 72 24 

    20 2 4 13 7 13 9 6 15 12 10 

    42 35 31 30 31 30 32 27 23 22 13 

            

  12 13 14 15 16 17 18 19 20 21 22 

   697 901 972 1180 1239 1345 1141 1467 1883 1715 1639 

    -50 20 -88 -103 -76 17 88 -278 81 168 9 

    3 -1 2 3 20 14 140 -3 1 256 -5 

    28 39 26 22 24 40 24 33 7 17 34 

    2 2 2 2 2 3 3 2 2 3 3 

    14 41 67 9 26 12 15 12 10 5 50 

    3 12 9 6 6 5 7 4 1 1 16 

    24 21 16 15 17 29 8 11 16 14 6 

            

  23 24 25 26 27 28 29 30 31 32 33 

   2083 2085 2189 2310 2359 3475 3699 9379 10113 12135 12983 

    -98 272 109 136 11 -875 -606 -692 -525 -793 -52 

    6 4 196 1 60 8 7 -3 91 -5 1 

    28 28 26 7 29 8 5 5 18 1 3 

    3 3 3 3 3 3 4 4 4 4 4 

    25 29 22 5 10 8 16 5 5 3 3 

    1 1 5 3 5 4 6 5 6 4 3 

    6 9 11 9 16 9 5 3 9 2 8 
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  34 35 36 37 38 39 40 41 42 43  

   15053 16889 16523 18867 20440 20559 20306 22297 23217 25758  

    -153 -244 -314 32 1162 -582 -269 809 550 -1016  

    -1 -2 -2 -1 -3 -3 -4 -2 -6 -2  

    1 17 5 11 1 11 4 2 6 1  

    3 4 4 4 4 4 4 4 4 4  

    3 3 3 3 3 3 3 3 3 3  

    4 7 4 4 3 3 3 3 4 4  

    4 4 3 7 2 2 6 3 3 4  
Table 5.4 – Gross national product data (Roux, 1994) 

5.2.5 Financial ratios 

The last data set, contained in table 5.5, was taken from the book “Regression analysis by 

example” (Chatterjee & Hadi, 2006).  To identify any financial decline in an organization is a 

crucial aspect in the control and management of a business.  Chatterjee and Hadi (2006) point 

out that failure to identify poor performance can lead to severe difficulties, such as the savings-

and-loan fiasco of the 1980s in the United States of America.  The data set consists of specific 

information ratios of 66 firms, of which 33 went bankrupt after two years while 33 remained 

solvent during the same period.  The dependent variable is defined as 

  {

                               

                                   
 

The three predictor variables are operating financial ratios and are described as follows: 

   
                 

            
  

   
                                  

            
     

   
     

            
  

  1 2 3 4 5 6 7 8 9 10 11 

   0 0 0 0 0 0 0 0 0 0 0 

    -62.8 3.3 -120.8 -18.1 -3.8 -61.2 -20.3 -194.5 20.8 -106.1 -39.4 

    -89.5 -3.5 -103.2 -28.8 -50.6 -56.2 -17.4 -25.8 -4.3 -22.9 -35.7 

    1.7 1.1 2.5 1.1 0.9 1.7 1 0.5 1 1.5 1.2 
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  12 13 14 15 16 17 18 19 20 21 22 

   0 0 0 0 0 0 0 0 0 0 0 

    -164.1 -308.9 7.2 -118.3 -185.9 -34.6 -27.9 -48.2 -49.2 -19.2 -18.1 

    -17.7 -65.8 -22.6 -34.2 -280 -19.4 6.3 6.8 -17.2 -36.7 -6.5 

    1.3 0.8 2 1.5 6.7 3.4 1.3 1.6 0.3 0.8 0.9 

            

  23 24 25 26 27 28 29 30 31 32 33 

   0 0 0 0 0 0 0 0 0 0 0 

    -98 -129 -4 -8.7 -59.2 -13.1 -38 -57.9 -8.8 -64.7 -11.4 

    -20.8 -14.2 -15.8 -36.3 -12.8 -17.6 1.6 0.7 -9.1 -4 4.8 

    1.7 1.3 2.1 2.8 2.1 0.9 1.2 0.8 0.9 0.1 0.9 

            

  34 35 36 37 38 39 40 41 42 43 44 

   1 1 1 1 1 1 1 1 1 1 1 

    43 47 -3.3 35 46.7 20.8 33 26.1 68.6 37.3 59 

    16.4 16 4 20.8 12.6 12.5 23.6 10.4 13.8 33.4 23.1 

    1.3 1.9 2.7 1.9 0.9 2.4 1.5 2.1 1.6 3.5 5.5 

            

  45 46 47 48 49 50 51 52 53 54 55 

   1 1 1 1 1 1 1 1 1 1 1 

    49.6 12.5 37.3 35.3 49.5 18.1 31.4 21.5 8.5 40.6 34.6 

    23.8 7 34.1 4.2 25.1 13.5 15.7 -14.4 5.8 5.8 26.4 

    1.9 1.8 1.5 0.9 2.6 4 1.9 1 1.5 1.8 1.8 

            

  56 57 58 59 60 61 62 63 64 65 66 

   1 1 1 1 1 1 1 1 1 1 1 

    19.9 17.4 54.7 53.5 35.9 39.4 53.1 39.8 59.5 16.3 21.7 

    26.7 12.6 14.6 20.6 26.4 30.5 7.1 13.8 7 20.4 -7.8 

    2.3 1.3 1.7 1.1 2 1.9 1.9 1.2 2 1 1.6 
Table 5.5 – Financial ratio data (Chatterjee & Hadi, 2006) 

5.3 Model application 

As explained in Chapter 3, section 3.4.4, the programming and data preparation for all of the 

models was done in C++ and CPLEX (version 10.1) using Concert Technology from ILOG 

(ILOG, 2006).  A CD is included in this dissertation which contains the programs which were 

developed to implement the models as well as the data sets that are used in the study. 

In this section the results of the models, applied to the five data sets, will be presented.  To 

ensure that a comprehensive explanation is provided and that the practical limitations of the 

written study report are adhered to, the first application to the stack loss data set will be 
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described in detail.  For the remaining four data sets only the main results and associated 

graphs will be presented. 

5.3.1 Stack loss 

The minimal assumption regression model will now be applied to the stack loss data set.  

Before this model can be applied to the data, the direction of monotonicity for each variable 

must be estimated.  To determine this, a multiple regression was performed using Microsoft 

Excel 2007.  The results are given in table 5.6.  The coefficients of    and    are positive and 

the coefficient of    is negative; therefore both    and    will be constrained as monotonically 

non-decreasing functions while    will be constrained as a monotonically non-increasing 

function. 

 
Coefficients 

Intercept -38.863 

   0.726 

   1.260 

   -0.163 

        Table 5.6 – Multiple regression coefficients 

As explained in Chapter 3, an unknown function value,    , is assigned to each     value, and for 

each   the     values are ranked by using a dense ranking function, depicted as    .  Table 5.7 

reports the stack loss data with   values, ranks, and associated function variables. 

                                         

1 42 80 7      27 9      89 4      

2 37 80 7      27 9      88 5      

3 37 75 6      25 8      90 3      

4 28 62 4      24 7      87 6      

5 18 62 4      22 5      87 6      

6 18 62 4      23 6      87 6      

7 19 62 4      24 7      93 1      

8 20 62 4      24 7      93 1      

9 15 58 3      23 6      87 6      

10 14 58 3       18 2       80 9       

11 14 58 3       18 2       89 4       

12 13 58 3       17 1       88 5       

13 11 58 3       17 1       82 8       

14 12 58 3       19 3       93 1       

15 8 50 1       18 2       89 4       

16 7 50 1       18 2       86 7       
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17 8 50 1       19 3       72 11       

18 8 50 1       19 3       79 10       

19 9 50 1       20 4       80 9       

20 15 56 2       20 4       82 8       

21 15 70 5       20 4       91 2       
Table 5.7 – Stack loss data with function values and ranks 

The model formulation for the minimal assumption regression model starts with the objective 

function that should be minimized.  This is followed by the constraints, first the additive 

constraints and then the inequality constraints and finally the range constraints.   
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The results obtained from the model (5.1 – 5.22) are recorded in table 5.8.  For each unique   

value the corresponding  ( ) value is given.   

   50 56 58 62 70 75 80     

   -7 -1 0 2 7 16 16     

            

   17 18 19 20 22 23 24 25 27   

   -1 0 1 2 2 2 12 12 12   

            

   93 91 90 89 88 87 86 82 80 79 72 

   6 6 9 14 14 14 14 14 14 14 14 
Table 5.8 – Stack loss   values and associated function values,  ( ) 

The complete data set is shown in table 5.9.  The first column,  , indicates the data point, while 

the second column reports the   values, followed by the variables,   , and the associated 

function values,   (   ).  The second last column,  ̂ , contains the estimated value which is 

calculated by adding the function values.  The last column represents the absolute deviations, 

|    ̂ |, which is the difference between the observed and estimated   value. 

           (   )       (   )       (   )  ̂  |    ̂ | 

1 42 80 16 27 12 89 14 42 0 

2 37 80 16 27 12 88 14 42 5 

3 37 75 16 25 12 90 9 37 0 

4 28 62 2 24 12 87 14 28 0 

5 18 62 2 22 2 87 14 18 0 

6 18 62 2 23 2 87 14 18 0 

7 19 62 2 24 12 93 6 20 1 

8 20 62 2 24 12 93 6 20 0 

9 15 58 0 23 2 87 14 16 1 

10 14 58 0 18 0 80 14 14 0 

11 14 58 0 18 0 89 14 14 0 

12 13 58 0 17 -1 88 14 13 0 

13 11 58 0 17 -1 82 14 13 2 

14 12 58 0 19 1 93 6 7 5 

15 8 50 -7 18 0 89 14 7 1 

16 7 50 -7 18 0 86 14 7 0 

17 8 50 -7 19 1 72 14 8 0 

18 8 50 -7 19 1 79 14 8 0 

19 9 50 -7 20 2 80 14 9 0 

20 15 56 -1 20 2 82 14 15 0 

21 15 70 7 20 2 91 6 15 0 
Table 5.9 – Data, function values and residuals 
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Figure 5.1 depicts the absolute deviation for each data point graphically.  In this figure, data 

points 2 and 14 exhibit the largest deviation, followed by point 13.  This deviation could be due 

to possible outliers.   

 

Figure 5.1 – The absolute deviation for each data point (Stack loss data) 

In figures 5.2 to 5.4 the function values of   ,    and    are plotted against the   ,    and    

values respectively.  In the first two figures (5.2 and 5.3) it is easy to see that the functions are 

monotonically non-decreasing, as specified by the multiple regression performed beforehand 

and the inequality constraints in the model.  The third figure (5.4) depicts the monotonically non-

increasing function. 

 

Figure 5.2 –    values plotted against    values (Stack loss data) 
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Figure 5.3 –    values plotted against    values (Stack loss data) 

 

Figure 5.4 –    values plotted against    values (Stack loss data) 

This concludes the application of the minimal assumption regression model to the stack loss 

data.  The next steps will be to apply the various extensions introduced in Chapter 4.  The first 

extension is to omit data points.  To identify possible outliers, two other variables are 

introduced into the model, a binary variable,   , and an unrestricted slack variable,   , for 

       .  The slack variable is added to the additive constraints for each data point such that 

for data point 1 the extended additive constraint is given by 
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where   is a large number, so that if     ,    is also constrained to   and there are no 

changes in the additive constraint.  If     ,    can have any value and because    is 

not in the objective function, it is able to take up the slack between    and  ̂  instead of 

     or      taking up the slack.   

In this manner a set of points that would realize the greatest decrease in the objective function 

will be omitted. 

As explained in Chapter 4 (section 4.2.2.1), to determine how many points to omit some 

experimentation must be done.  In figure 5.5 the number of points omitted,  , are plotted 

against the respective optimal objective values.  The values in brackets indicate the data points 

that are omitted.  When more than 2 points are omitted there is no longer such a large decrease 

in the objective function.  Therefore, in this case 2 data points (points 2 and 14) are omitted. 

 

Figure 5.5 – Number of data points to omit (Stack loss data) 

To prevent the model from the possibility of overfitting, the second extension (smoothing of 

factors) are incorporated into the model.  Section 4.2.3.2 described how to choose a smoothing 

factor.  The constrained second derivative is used to limit the change in the slope of the function 

by the smoothing factor  . 

The influence of the smoothing factor on the form of a function is illustrated in figure 5.6.  The 

functions of the minimal assumption regression model are shown, indicated as   (  ),   (  ) 

and   (  ).  The smoothed functions with      are also depicted and are indicated as    (  ), 

   (  ) and    (  ).  In the case of functions   (  ) and   (  ), the smoothing effects are more 

pronounced. 
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Figure 5.6 – Smoothing effect with   = 10 (Stack loss data) 

The smoothing factor can be determined by the following steps: 

 using the jack-knife approach; 

 determining the mean absolute deviation for different values of  ; 

 evaluating the solutions by comparing the different mean absolute deviations; and 

 choosing the solution with the   value that produce the smallest mean absolute 

deviation. 

In figure 5.7 the value of   is incremented by 25 from 25 to 200.  It is clear that      gives the 

lowest mean absolute deviation and it is therefore assumed that a   value of 50 will yield the 

best results for the stack loss data set. 

 

Figure 5.7 – Mean absolute deviation for different values of   (Stack loss data) 
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In figure 5.8 the original function and the smoothed function are shown for    with    50.  The 

other functions, not shown here, follow in the same way. 

 

Figure 5.8 – Change in function    after smoothing with   = 50 (Stack loss data) 

Before the results of the extensions to the minimal assumption regression model are discussed, 

the piecewise linear regression model, introduced in section 4.3, will be applied to the stack loss 

data set.  Piecewise linear regression with no breakpoints is equivalent to least absolute 

deviation regression (  -norm) where only one function is specified for the whole range of  .  

With one breakpoint two linear models are specified, one for the   values smaller than the 50th 

percentile and the other model for the   values greater than the 50th percentile.  When two 

breakpoints are used these are specified as the 33rd and 67th percentile.  For this study the 

breakpoints are chosen in this manner, but other choices are possible.  Figure 5.9 illustrates 

how the function of variable    changes with zero, one, and two breakpoints.  The other 

functions, not shown here, follow in the same way. 

 

Figure 5.9 –   (  ) with zero, one and two breakpoints (Stack loss data) 
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When a model is developed its effectiveness must be tested.  In this study the models are 

tested by their predictive accuracy and the mean absolute deviation measurement is used for 

comparing different models.   

Consider table 5.10 which reports the comparison for   -norm regression,   -norm regression 

and the original minimal assumption regression model introduced by Wagner.  No extensions 

(outlier detection and smoothing) were implemented and it can be noted from the mean 

absolute deviation that the original Wagner model outperformed   -norm regression.  The mean 

absolute deviation of the   -norm regression is only 0.042 (or about 2%) less than the mean 

absolute deviation of Wagner’s model. 

Model 

Mean 

absolute 

deviation 

  -norm regression 2.887 

  -norm regression 2.035 

Original minimal assumption regression model (Wagner, 1962)  2.077 

Table 5.10 – Comparison of models that do not omit outliers (Stack loss data) 

In table 5.11 the results of the proposed extensions and the piecewise linear model are given.  

In all cases 2 data points (outliers) were omitted.  As stated earlier, points 2 and 14 were 

omitted.  By introducing a smoothing factor of       the minimal assumption regression model 

outperformed all the other models with a mean absolute deviation of 1.220.  The extensions 

added to the minimal assumption regression model decreased the mean absolute deviation by 

41% (from 2.077 to 1.220).  This value is also 12% less than the second lowest mean absolute 

deviation of the   -norm regression model which omits 2 data points with no breakpoints. 

Model 

Mean 

absolute 

deviation 

Wagner’s model omitting 2 data points 2.194 

Wagner’s model omitting 2 data points and a smoothing factor of      1.220 

  -norm regression omitting 2 data points and no breakpoint 1.394 

Piecewise   -norm regression omitting 2 data points and one breakpoint 1.882 

Piecewise   -norm regression omitting 2 data points and two breakpoints 2.150 

Table 5.11 – Comparison of models that omit outliers (Stack loss data) 
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The same steps and methods that were used for examining this data set will be employed for 

the other data sets in the results that follow, though the next sections will only contain 

explanatory graphs and results. 

5.3.2 Scottish hill racing 

The functions of the two variables (figures 5.10 and 5.11) of the Scottish hill race data set are 

both monotonic non-decreasing because the longer the race and the higher the climb, the 

longer one can expect the record time to be.  This was confirmed by regression analysis 

performed on the original data. 

 

Figure 5.10 –    values plotted against    values (Scottish hill race data) 

 

Figure 5.11 –    values plotted against    values (Scottish hill race data) 
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In figure 5.12 the objective values are plotted against the number of data points to be omitted.  

There is a significant drop in the objective function when data point 18 is omitted.  After the 

omission of data point 18, a constant decrease in the objective function value can be observed 

(figure 5.12).  According to Atkinson (1988) data point 18 is indeed an outlier because the time 

was incorrectly recorded; instead of 1 hour, 18 minutes, 39 seconds it should only be 18 

minutes, 39 seconds.  This graph does not clearly indicate how many points to omit and it was 

decided to omit 4 data points, which represent about ten percent of the data.  The four data 

points omitted by the model were data points 6, 12, 14 and 18. 

 

Figure 5.12 – Number of data points omitted (Scottish hill race data) 

To determine the smoothing parameter, the mean absolute deviation is plotted against different 

values of  .  Figure 5.13 indicates that a smoothing factor of      results in the lowest mean 

absolute deviation value.  

 

Figure 5.13 – Mean absolute deviation for different values of   (Scottish hill race data) 
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Figure 5.14 illustrates the change in the function of the second variable,   , from 0 to 2 

breakpoints.  Although it does not seem as if the functions alter much, there is quite a large 

decrease in the mean absolute deviation value from 0 to 1 breakpoints (see table 5.13).  The 

change in the function of the first variable,   , follows in the same manner. 

 

Figure 5.14 –   (  ) with zero, one and two breakpoints (Scottish hill race data) 

By comparing the different models without any extensions (table 5.12), it can be noted that the 

mean absolute deviation of the minimal assumption regression model lies between the values 

of the mean absolute deviation of the   -norm and   -norm regression models. 

Model 

Mean 

absolute 

deviation 

  -norm regression 9.367 

  -norm regression 8.211 

Original minimal assumption regression model (Wagner, 1962)  8.927 

Table 5.12 – Comparison of models that do not omit outliers (Scottish hill race data) 
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mean absolute deviation decreases from 8.927 to 3.921, a reduction of 56%.  The piecewise   -
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Model 

Mean 

absolute 

deviation 

Wagner’s model omitting 4 data points 8.469 

Wagner’s model omitting 4 data points and a smoothing factor of      3.921 

  -norm regression omitting 4 data points and no breakpoint 4.253 

Piecewise   -norm regression omitting 4 data points and one breakpoint 3.559 

Piecewise   -norm regression omitting 4 data points and two breakpoints 4.280 

Table 5.13 – Comparison of models that omit outliers (Scottish hill race data) 

5.3.3 Weisberg fuel consumption 

Figures 5.15 to 5.18 depict the functions of the four variables in this data set: the first three 

variables are monotonically non-increasing whereas the last one is monotonically non-

decreasing; this has been estimated by carrying out regression analysis beforehand.   

 

Figure 5.15 –    values plotted against    values   

                       (Weisberg fuel data) 

 

Figure 5.16 –    values plotted against    values  

                       (Weisberg fuel data) 

 

Figure 5.17 –    values plotted against    values    

                       (Weisberg fuel data) 

 

Figure 5.18 –    values plotted against    values    

                       (Weisberg fuel data) 
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It is difficult to determine the number of data points to be omitted for this data set.  By looking at 

figure 5.19, it appears that there is a slight change in the slope of the line at 6 data points to be 

omitted.  6 points constitute about ten percent of the data and therefore this number is chosen 

as the amount of data points to be omitted.  The data points omitted are points 4, 5, 18, 20, 38 

and 40. 

 

Figure 5.19 – Number of data points omitted (Weisberg fuel data) 

Figure 5.20 indicates that     is a good smoothing parameter, and the next two figures 

(figures 5.21 and 5.22) exemplify the change in the forms of the functions of    and    when a 

smoothing factor of     is implemented.  The changes in the forms of the other functions are 

not portrayed here, but follow in the same way. 

 

Figure 5.20 – Mean absolute deviation for different values of   (Weisberg fuel data) 
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Figure 5.21 – Smoothing effect with   = 1     

                       (Weisberg fuel data) 

 

Figure 5.22 – Smoothing effect with   = 1  

                       (Weisberg fuel data) 

The last figure before the results are shown, figure 5.23, furnishes a good example of piecewise 

linear regression.  It demonstrates how the function form changes as the breakpoints increase 

from zero to two.  This figure represents only the change in the function form for the third 

variable,   . 

 

Figure 5.23 –   (  ) with zero, one and two breakpoints (Weisberg fuel data) 
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deviation 

  -norm regression 54.532 

  -norm regression 49.466 
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Table 5.14 – Comparison of models that do not omit outliers (Weisberg fuel data) 
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Table 5.14 contains the comparison of the   -norm regression,   -norm regression and the 

original minimal assumption regression model.  No extensions (outlier detection and smoothing) 

were implemented and the mean absolute deviation of the original Wagner model lies between 

the mean absolute deviation values of the   -norm and   -norm regression model respectively.   

By omitting 6 data points (table 5.15) it is evident that the mean absolute deviation decreases 

considerably.  It does not seem that a smoothing factor of     improves the mean absolute 

deviation.  The piecewise   -norm regression model with one breakpoint outperformed all the 

other models with a mean absolute deviation of 33.293.  This is only slightly better (about 1%) 

than the mean absolute deviation of the minimal assumption regression model omitting 6 data 

points (33.639).  In this case the models all give comparable results. 

Model 

Mean 

absolute 

deviation 

Wagner’s model omitting 6 data points 33.639 

Wagner’s model omitting 6 data points and a smoothing factor of     37.425 

  -norm regression omitting 6 data points and no breakpoint 35.426 

Piecewise   -norm regression omitting 6 data points and one breakpoint 33.293 

Piecewise   -norm regression omitting 6 data points and two breakpoints 44.320 

Table 5.15 – Comparison of models that omit outliers (Weisberg fuel data) 

5.3.4 Gross national product (GNP) 

The functions of the seven variables that were chosen for this data set are illustrated in figures 

5.24 to 5.30.  Functions 1, 4, 6 and 7 are monotonically non-decreasing while the rest of the 

functions are monotonically non-increasing.  This was confirmed by regression analysis 

performed on the original data. 

 

Figure 5.24 –    values plotted against    values 

                       (GNP data) 

 

Figure 5.25 –    values plotted against    values 

                       (GNP data) 
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Figure 5.26 –    values plotted against    values 

                       (GNP data) 

 

Figure 5.27 –    values plotted against    values 

                       (GNP data) 

 

 

Figure 5.28 –    values plotted against    values 

                       (GNP data) 

 

Figure 5.29 –    values plotted against    values 

                       (GNP data) 

 

 

Figure 5.30 –    values plotted against    values 

                       (GNP data) 
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There is a constant decrease in the objective value (figure 5.31); therefore ten percent of the 

data points, which is equal to about 4 points, is chosen as the number of data points to be 

omitted.  The points that were omitted are points 9, 26, 39 and 43. 

 

Figure 5.31 – Number of data points omitted (GNP data) 

Figure 5.32 depicts the mean absolute deviation against different values of  .  The smoothing 

factor is chosen as      , because it yields the lowest mean absolute deviation.   

 

Figure 5.32 – Mean absolute deviation for different values of   (GNP data) 

Once again the models that do not omit outliers are compared.  Table 5.16 makes clear that 

Wagner’s model lies between   -norm and   -norm regression, but is much closer to the lower 
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Model 

Mean 

absolute 

deviation 

  -norm regression 4038.425 

  -norm regression 3215.116 

Original minimal assumption regression model (Wagner, 1962)  3282.140 

Table 5.16 – Comparison of models that do not omit outliers (GNP data) 

All the models in table 5.17 omit 4 data points.  By adding a smoothing factor of       the 

mean absolute deviation decreases by almost 45%, from 3282.14 to 1820.18.  This value is 

only 6% bigger than the lowest mean absolute deviation of the piecewise   -norm regression 

model with two breakpoints, which is 1713.885.   

Model 

Mean 

absolute 

deviation 

Wagner’s model omitting 4 data points 2764.669 

Wagner’s model omitting 4 data points and a smoothing factor of       1820.180 

  -norm regression omitting 4 data points and no breakpoint 2360.977 

Piecewise   -norm regression omitting 4 data points and one breakpoint 2782.106 

Piecewise   -norm regression omitting 4 data points and two breakpoints 1713.885 

Table 5.17 – Comparison of models that omit outliers (GNP data) 

5.3.5 Financial ratios 

In this data set the mean absolute deviation does not seem to be improved by the omission of 

outliers or the smoothing of the functions.  To increase the number of breakpoints from zero to 

two does prove to lower the mean absolute deviation, but in this case the original Wagner 

model seems to give the best results.   

Model 

Mean 

absolute 

deviation 

  -norm regression 0.3228 

  -norm regression 0.3297 

Original minimal assumption regression model (Wagner, 1962)  0.0531 

Piecewise   -norm regression with one breakpoint 0.1893 

Piecewise   -norm regression with two breakpoints 0.0965 

Table 5.18 – Comparison of models that do not omit outliers (Financial ratios data) 
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In table 5.18 the mean absolute deviation values for models which do not omit outliers or 

incorporate smoothing factors are evaluated.  The original minimal assumption regression 

model obtained the lowest mean absolute deviation followed by the piecewise   -norm 

regression model with two breakpoints. 

Figure 5.33 depicts the function form of variable    for Wagner's model without extensions while 

figure 5.34 illustrates the piecewise   -norm regression with two breakpoints.  

 

Figure 5.33 –    values plotted against    values (Financial ratios data) 

 

Figure 5.34 –   (  ) with two breakpoints (Financial ratios data) 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

-320 -270 -220 -170 -120 -70 -20 30 80

  

  

0

0.2

0.4

0.6

0.8

1

1.2

-320 -270 -220 -170 -120 -70 -20 30 80

  

  

   

   

  (  ) 

  (  ) 



84 

5.4 Specific cases 

In the previous section the mean prediction errors using absolute deviations for the different 

models were compared.    -norm,   -norm regression and the minimal assumption regression 

model without any extensions were compared.  The other models, when outliers are omitted 

and a smoothing factor is incorporated into the minimal assumption regression model, can be 

compared with   -norm regression that omits outliers and piecewise   -norm regression with 

one, two or three breakpoints; each of these models omits some data points.   

The monotonicity constraints, specified by Wagner’s minimal assumption regression model, 

should enable this model to fit a specific kind of non-linear function better than other models.  

To determine whether there are some specific cases where the minimal assumption regression 

model may outperform the other models, data sets with certain specific features were 

simulated.  A range of data sets were simulated and tested: in sections 5.4.1 – 5.4.3 three 

cases will be presented.   

The simulation of a data set was carried out as follows: 

 Choose a dimension for the data; 

 Randomly select some   values and sort it in an increasing or decreasing order for each 

decision variable; 

 Determine the function values for a specific range of the   values for each variable by a 

straight line equation        , for example         .  The equation can be 

different for each decision variable; 

 For the rest of the   values the function values are equal to a randomly chosen constant, 

for example 200.  The value can be different for each decision variable; 

 Randomly add or subtract a certain error from the function values; and 

 Calculate the   value of each data point by adding the function values of each variable 

for each data point. 

All random selections were based on a discrete probability distribution for the specific selection.  

After the data is simulated the different models are used and the prediction capability is tested.  

The mean absolute deviation values for each model are compared to evaluate how each of 

these models performs with the specific set of data.   

Table 5.19 constitutes an example of a simulated data set of 30 points.  The function values are 

first determined by an equation or a chosen constant value after which a random error is added 

or subtracted.  The dependent variable,  , is determined by adding the function values for each 

data point.  Take, for example, data point 10.  The value for       was selected as 19.  The 

equation that was used to determine       is             ; therefore           before an 
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error value is added or subtracted.  In this case a random error of 11.48 was added to      , and 

the final value is equal to 298.48.  Another equation was used in the same way to determine 

     .  The value of the dependent variable,    , was determined by adding the values of       

and      . 

  1 2 3 4 5 6 7 8 9 10 

   1402.36 1465.56 1473.70 1496.64 1528.90 1698.60 1714.28 1851.20 1901.00 2020.48 

    4 4 8 11 11 13 13 15 17 19 

    195 202.80 195 187.20 198.90 209 209 209 261 298.48 

    200 201 219 222 228 248 256 263 268 268 

    1207.36 1262.76 1278.70 1309.44 1330.00 1489.60 1505.28 1642.20 1640.00 1722.00 

           

  11 12 13 14 15 16 17 18 19 20 

   1949.76 2005.46 2063.78 2337.92 2398.12 2407.00 2405.28 2573.01 2541.64 2551.11 

    21 23 23 24 24 25 26 29 29 29 

    300.48 339 345.78 337.92 352 365 393.12 404.49 417 429.51 

    281 281 281 328 329 335 344 349 356 363 

    1649.28 1666.46 1718.00 2000.00 2046.12 2042.00 2012.16 2168.52 2124.64 2121.60 

           

  21 22 23 24 25 26 27 28 29 30 

   2772.20 2946.00 3134.60 3145.00 3159.85 3126.08 3173.60 3159.40 3178.24 3156.38 

    30 30 33 35 35 36 36 37 38 38 

    430 430 469 495 509.85 487.68 508 521 512.64 517.98 

    393 414 448 448 451 453 464 478 485 496 

    2342.20 2516.00 2665.60 2650.00 2650.00 2638.40 2665.60 2638.40 2665.60 2638.40 
Table 5.19 – Example of simulated data 

5.4.1 Case 1 

 

Figure 5.35 –   values plotted against    values (Raw artificial data, case 1) 
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Figure 5.36 –   values plotted against    values (Raw artificial data, case 1) 

In the first case the data in table 5.19 was used.  Figures 5.35 and 5.36 depict the   values 

plotted against the two decision variables,    and   , respectively.  From the graphs it can be 

observed that both functions are generally monotonically non-decreasing and therefore that the 

function variables will also be constrained as monotonically non-decreasing.  The same 

procedure as in section 5.3.1 was followed to determine the mean absolute deviation value for 

each model.  In this section only the summary of the experiment will be presented.  The number 

of data points to be omitted,  , was chosen as 2; a smoothing factor of       was also 

incorporated into the minimal assumption regression model.   

Figures 5.37 and 5.38 portray the function values,   (  ) and   (  ), plotted against the 

decision variables,    and   , for the minimal assumption regression model when 2 data points 

are omitted and a smoothing function of       is incorporated into the model. 

 

Figure 5.37 –    values plotted against    values (Artificial data, case 1) 
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Figure 5.38 –    values plotted against    values (Artificial data, case 1) 

Model 

Mean 

absolute 

deviation 

  -norm regression 69.025 

  -norm regression 78.096 

Original minimal assumption regression model (Wagner, 1962)  44.275 

Table 5.20 – Comparison of models that do not omit outliers (Artificial data, case 1) 

For the models that do not omit outliers (table 5.20), the minimal assumption regression model 

contributed the lowest mean absolute deviation, with a value of 44.275.  This is about 36% 

better than the mean absolute deviation of the   -norm regression. 

Model 

Mean 

absolute 

deviation 

Wagner’s model omitting 2 data points 37.180 

Wagner’s model omitting 2 data points and a smoothing factor of       37.179 

  -norm regression omitting 2 data points and no breakpoint 71.699 

Piecewise   -norm regression omitting 2 data points and one breakpoint 59.580 

Piecewise   -norm regression omitting 2 data points and two breakpoint 62.679 

Piecewise   -norm regression omitting 2 data points and three breakpoint 39.482 

Piecewise   -norm regression omitting 2 data points and four breakpoints 40.835 

Table 5.21 – Comparison of models that omit outliers (Artificial data, case 1) 

Table 5.21 reports the mean absolute deviations of the models that omit 2 data points. By 

implementing the omission of 2 data points the mean absolute deviation value decreases with a 
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further 16%.  In this case, the smoothing factor does not really improve the mean absolute 

deviation.  By increasing the breakpoints to three, the mean absolute deviation of the piecewise 

  -norm regression that omits 2 data points also improved, but it is still 6% more than Wagner’s 

model which omits 2 data points. 

5.4.2 Case 2 

The data set for Case 2 was simulated in the same manner as with Case 1 in the previous 

section, but both functions in this case are generally monotonically non-increasing (see figures 

5.39 and 5.40); therefore the function variables will also be constrained as monotonically non-

increasing. 

 

Figure 5.39 –   values plotted against    values (Raw artificial data, case 2) 

 

Figure 5.40 –   values plotted against    values (Raw artificial data, case 2) 
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In this case, the number of data points to be omitted,  , was chosen as 2; a smoothing factor of 

     proved to enhance the predictive capability of the minimal assumption regression model 

further.   

Figures 5.41 and 5.42 depict the function values,   (  ) and   (  ), plotted against the decision 

variables,    and   , for the minimal assumption regression model when 2 data points are 

omitted and a smoothing function of      is incorporated into the model. 

 

Figure 5.41 –    values plotted against    values (Artificial data, case 2) 

 

Figure 5.42 –    values plotted against    values (Artificial data, case 2) 

From table 5.22 it is clear that the mean absolute deviation values of the   -norm regression 

model and the minimal assumption regression model are almost the same and approximately 

11% lower than the mean absolute deviation of the   -norm regression model. 
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Model 

Mean 

absolute 

deviation 

  -norm regression 72.164 

  -norm regression 64.425 

Original minimal assumption regression model (Wagner, 1962)  64.602 

Table 5.22 – Comparison of models that do not omit outliers (Artificial data, case 2) 

The improvement in the mean absolute deviation of the minimal assumption regression model, 

when 2 data points are omitted and a smoothing function of      is introduced, is quite 

remarkable.  With a 44% improvement (from 64.602 to 36.133) this model gives the best mean 

absolute deviation for the data set in Case 2. 

Model 

Mean 

absolute 

deviation 

Wagner’s model omitting 2 data points 52.813 

Wagner’s model omitting 2 data points and a smoothing factor of      36.133 

  -norm regression omitting 2 data points and no breakpoint 60.680 

Piecewise   -norm regression omitting 2 data points and one breakpoint 44.817 

Piecewise   -norm regression omitting 2 data points and two breakpoint 44.817 

Piecewise   -norm regression omitting 2 data points and three breakpoint 47.467 

Piecewise   -norm regression omitting 2 data points and four breakpoints 40.888 

Table 5.23 – Comparison of models that omit outliers (Artificial data, case 2) 

5.4.3 Case 3 

 

Figure 5.43 –    values plotted against    values (Artificial data, case 3) 
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Figure 5.44 –    values plotted against    values (Artificial data, case 3) 

For the last data set (raw data not given) the first function variable,   (  ), is constrained as 

monotonically non-decreasing while the second function variable,   (  ), is constrained as 

monotonically non-increasing.  Figures 5.43 and 5.44 depict the function values,   (  ) and 

  (  ), plotted against the decision variables,    and   , for the minimal assumption regression 

model with no extensions.  

Model 

Mean 

absolute 

deviation 

  -norm regression 43.523 

  -norm regression 41.579 

Original minimal assumption regression model (Wagner, 1962)  24.685 

Table 5.24 – Comparison of models that do not omit outliers (Artificial data, case 3) 

The minimal assumption regression model with no extensions outperformed the other two 

models which do not omit outliers (table 5.24).  The mean absolute deviation of this model is 

43% better than that of the   -norm regression model.   

In this case the omission of outliers does not improve the mean absolute value and neither does 

the incorporation of a smoothing factor (see table 5.25).  By increasing the breakpoints of the 

piecewise   -norm regression omitting 1 data point to three breakpoints, the mean absolute 

deviation decreases to 25.268.  The mean absolute deviation of the minimal assumption 

regression model with no extensions is still 2% smaller and thus gives the best results for the 

data set used in Case 3. 
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Model 

Mean 

absolute 

deviation 

Wagner’s model omitting 1 data point 24.822 

Wagner’s model omitting 1 data point and a smoothing factor of       30.099 

  -norm regression omitting 1 data point and no breakpoint 37.275 

Piecewise   -norm regression omitting 1 data point and one breakpoint 25.611 

Piecewise   -norm regression omitting 1 data point and two breakpoint 25.449 

Piecewise   -norm regression omitting 1 data point and three breakpoint 25.268 

Piecewise   -norm regression omitting 1 data point and four breakpoints 28.855 

Table 5.25 – Comparison of models that omit outliers (Artificial data, case 3) 

In all three cases the minimal assumption regression model with no extensions did better than, 

or was at least equal to, the other models that did not omit outliers.  The minimal assumption 

regression model with the added extensions (omission of outliers and/or incorporation of a 

smoothing factor) outperformed the other model in all three cases.   

If one considers these results it seems permissible to draw the conclusion that cases can be 

constructed for which the minimal assumption regression model, and extensions thereof, will 

yield better results than other models. 

In the next section the results of this section will be discussed and conclusions that are reached 

will be explained. 

5.5 Discussion and summary of results 

From the results obtained in section 5.4 it is possible to arrive at some conclusions about the 

performance of the minimal assumption regression model and extensions thereof.   

In the results of the first four data sets (indicated in table 5.26 as Stack loss, Scottish hill race, 

Weisberg fuel and GNP) the value of the mean absolute deviation of the minimal assumption 

regression model without extensions was always situated between the values of the mean 

absolute deviation of the   -norm and   -norm regression models.  In two out of the four times 

(for the Stack loss and GNP data sets) the value of the mean absolute deviation of the minimal 

assumption regression model compared very well with the   -norm regression model (which 

gave the lowest mean absolute deviation in all four cases).  In the other two cases the mean 

absolute deviation of the minimal assumption regression model was approximately in the middle 

of the results of the other two models. 
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Model Stack loss 
Scottish 

hill race 

Weisberg 

fuel 
GNP 

  -norm regression 2.887 9.367 54.532 4038.425 

  -norm regression 2.035 8.211 49.466 3215.116 

Original minimal assumption regression 

model (Wagner, 1962) 
2.077 8.927 52.726 3282.140 

Table 5.26 – Summary of models that do not omit outliers (Four datasets) 

The results obtained for the financial ratio data set (see table 5.18) indicate that the value of the 

mean absolute deviation of the minimal assumption regression model without extensions 

outperformed the   -norm and   -norm regression models, with a value more than 80% less 

than the values of the   -norm and   -norm regression models.  In this data set the mean 

absolute deviation did not improve by adding extensions to the model.  Omitting outliers in the 

piecewise linear regression models did not help either.  The breakpoints in the piecewise   -

norm regression model, without omitting outliers, did improve the mean absolute deviation, but 

the mean absolute deviation of the minimal assumption regression model without extensions 

was still the lowest.   

For the other four data sets the extensions were implemented, and the results improved 

considerably in all of the cases.  In table 5.27 the mean absolute deviation values for the 

different models and data sets are recorded.  The number of data points omitted or the specific 

smoothing factor incorporated into the model is not included in this table because it differs for 

each data set.  These values can be obtained in sections 5.3.1 – 5.3.4 where the results of the 

specific data set are discussed.  They are also highlighted in the discussion that follows. 

Model Stack loss 
Scottish 

hill race 

Weisberg 

fuel 
GNP 

Wagner’s model omitting data points 2.194 8.469 33.639 2764.669 

Wagner’s model omitting data points 

with a smoothing factor 
1.220 3.921 37.425 1820.180 

  -norm regression omitting data points 

and no breakpoint 
1.394 4.253 35.426 2360.977 

Piecewise   -norm regression omitting 

data points and one breakpoint 
1.882 3.559 33.293 2782.106 

Piecewise   -norm regression omitting 

data points and two breakpoints 
2.150 4.280 44.320 1713.885 

Table 5.27 – Summary of models that omit outliers (Four datasets) 
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For the stack loss data set the omission of 2 data points and a smoothing factor of      

incorporated into the minimal assumption regression model resulted in the lowest mean 

absolute deviation of 1.220; the next mean absolute deviation is 12% larger than this value. 

When the different models are applied to the Scottish hill race data set, the piecewise   -norm 

regression model omitting 4 data points with one breakpoint yields the lowest mean absolute 

deviation value (3.559).  The value of the mean absolute deviation of the minimal assumption 

regression model omitting 4 data points with a smoothing factor of     differs by less than 

10% from the best results in this case. 

The piecewise   -norm regression model omitting 6 data points with one breakpoint (33.293) 

yielded the lowest mean absolute deviation value for the Weisberg fuel consumption data set.  

The minimal assumption regression model which omits 6 data points but does not include a 

smoothing factor follows closely with the second best result (1% difference). 

The best result for the gross national product data set was produced by the   -norm regression 

model omitting 4 data points (1713.885).  The results of the minimal assumption regression 

model omitting 4 data points with a smoothing factor of       differs by less than 6% from the 

best results in this case. 

To summarize, the minimal assumption regression model (or extensions thereof) obtained the 

best mean absolute deviation value for two out of the five data sets.  For the other three data 

sets, the minimal assumption regression model with one or both of the extensions closely 

followed the model with the best result. 

In table 5.28 a summary of the models that do not omit outliers is given for the three cases 

discussed in section 5.4.  In Case 2 the mean absolute deviation values of the   -norm 

regression model and the minimal assumption regression model are very close, but for the 

other two cases the minimal assumption regression model gave the best results. 

Model Case 1 Case 2 Case 3 

  -norm regression 69.025 72.164 43.523 

  -norm regression 78.096 64.425 41.579 

Original minimal assumption regression model 44.275 64.602 24.685 

Table 5.28 – Summary of models that do not omit outliers (Artificial datasets) 

When the extensions were incorporated into the model the minimal assumption regression 

model with extensions still outperformed the other models (see table 5.29).   
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Model Case 1 Case 2 Case 3 

Wagner’s model omitting data points 37.180 52.813 24.822 

Wagner’s model omitting data points with a 

smoothing factor 
37.179 36.133 30.099 

  -norm regression omitting data points and no 

breakpoint 
71.699 60.680 37.275 

Piecewise   -norm regression omitting data points 

and one breakpoint 
59.580 44.817 25.611 

Piecewise   -norm regression omitting data points 

and two breakpoints 
62.679 44.817 25.449 

Piecewise   -norm regression omitting data points 

and three breakpoints 
39.482 47.467 25.268 

Piecewise   -norm regression omitting data points 

and four breakpoints 
40.835 40.888 28.855 

Table 5.29 – Summary of models that omit outliers (Artificial datasets) 

From table 5.26 it can clearly be seen that the minimal assumption regression model without 

extension compares well with the   -norm and   -norm regression models.  Although it did not 

yield the best results, it also did not give the worst results.  It is also feasible to solve these 

types of models with current software such as CPLEX.  The conclusion that can be arrived at is 

that if one is unsure about the validity or applicability of the assumptions made by a model 

(which will not necessarily be suitable for the data that is used) it may be advisable to use the 

minimal assumption regression model.  The results obtained should not be worse than the 

results obtained by a   -norm regression model; in other words the results will be comparable.  

By implementing the robust extensions as described in this study, the predictive capabilities as 

measured by the mean absolute deviation values should improve significantly.  It is feasible, as 

noted, to solve these kinds of models with current software such as CPLEX.  In one of the four 

cases (stack loss) in which extensions were added to the models, the minimal assumption 

regression model with extensions provided the best results.  In the other three cases the 

minimal assumption regression model with extensions was very competitive. 

One conclusion that can be deduced from the models which implemented extensions is that 

these enhanced the predictive accuracy of the models.  The robustness of the models is thus 

improved.  Another conclusion is that the minimal assumption regression model with various 
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extensions can be implemented and give results that are competitive with other types of 

regression models.   

5.6 Chapter summary 

In this chapter several data sets were used to undertake empirical experiments.  The first data 

set was used to explain the process of applying Wagner’s minimal assumption regression 

model and of incorporating extensions such as the omission of outliers and the smoothing of 

functions.  The data set was also used to introduce piecewise linear regression.  The other data 

sets were discussed by showing explanatory graphs and the results they illustrated.  For each 

data set the predictive capabilities of each model were compared.   

The minimal assumption regression model with extensions compared fairly well with the other 

models.  Although this model did not contain the lowest mean absolute deviation in all the data 

sets investigated, the results were always comparable to the results of the other models.   

In section 5.4 data was simulated to test whether there are instances in which the minimal 

assumption regression model will perform better than other models.  The data were simulated 

with specific features to test the monotonicity constraints of the model.  These data sets showed 

that this is possible. 

The next chapter furnishes some final remarks. 
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Chapter 6 

6. Summary and conclusions 

6.1 Introduction 

Chapter 6 presents the final comments and concluding remarks of the study.  The objectives of 

the study and their achievement will be summarised.  The new problems and opportunities for 

further study that were presented during the research project will also be outlined. 

6.2 Objectives of the study 

Chapter 1 stated that the primary objective of this study was to investigate robust techniques for 

regression models with minimal assumptions by using linear programming and integer linear 

programming techniques.  To accomplish this, a list of four secondary research objectives was 

defined in order to achieve the primary objective.  These were to: 

 gain a clear understanding of, and present an introductory overview of linear regression, 

outliers and linear and integer linear programming; 

 perform an exploratory investigation into robust techniques for regression models with 

minimal assumptions; 

 address robustness by introducing an adapted minimal assumption mixed integer linear 

programming model that is able to deal with possible outliers as well as the smoothing of 

functions; and 

 apply the adapted model to different data sets in order to evaluate its performance.  

A summary of how these objectives were addressed follows below: 

Gain a clear understanding of and present an introductory overview of linear regression, outliers 

and linear and integer linear programming. 

This objective was addressed by describing linear regression models and three different ways 

of estimating parameters for such models by using the   -norm,   -norm and   -norm methods 

(Chapter 2, section 2.2).  The influence of outliers and the detection thereof (ordinary and 

robust methods of detection) was then discussed (Chapter 2, section 2.3).  Sections 2.5 and 2.6 

of Chapter 2 presented some fundamentals of linear and integer linear programming. 
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Perform an exploratory investigation into robust techniques for regression models with minimal 

assumptions.   

Harvey M. Wagner proposed a different approach to solving regression problems and 

introduced a model that made minimal assumptions about the form of a regression function.  To 

address this objective a detailed explanation of the minimal assumption regression model was 

presented (Chapter 3, section 3.3).  An example of how the model was applied to data was 

given (Chapter 3, section 3.4) and a brief literature review of other researchers who referred to 

the minimal assumption regression model was provided (Chapter 3, section 3.5). 

 

Address robustness by introducing an adapted minimal assumption mixed integer linear 

programming model that is able to deal with possible outliers as well as the smoothing of 

functions. 

This objective was addressed by offering a comprehensive explanation of the development of a 

robust model (Chapter 4, section 4.2) which includes the concepts of outlier identification and 

smoothing techniques (Chapter 4, section 4.2.1 – 4.2.2).  These extensions were incorporated 

to make the model more robust. 

 

Apply the adapted model to different data sets in order to evaluate its performance. 

To test whether the suggested robust model compares well with other models, a piecewise 

linear regression model was introduced (Chapter 4, section 4.3).  This objective was addressed 

by applying the different models to five different data sets and the results were compared 

(Chapter 5, section 5.3).  In addition, data sets with specific features were simulated to 

investigate the performance of the minimal assumption regression model (Chapter 5, section 

5.4). 

To summarize, all objectives set forth in Chapter 1 were addressed.  Based on the results and 

discussion presented in chapter 5, it was concluded that: 

 It is feasible to solve regression problems with the minimal assumption regression 

model; 

 The minimal assumption regression model compares favourably with two other classical 

techniques; 
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 The extensions towards robustness that were incorporated into the minimal assumption 

regression model seem to improve the predictive capability of the model; 

 It is feasible to solve regression problems by the minimal assumption regression model 

with extensions.  This model also compares favourably with other techniques and in 

some cases outperforms them; 

 There are specific cases where the minimal assumption regression model with or 

without extensions will perform better than other regression models; 

 Modern optimization software, such as CPLEX, seems powerful enough to solve 

regression problems using the minimal assumption approach.  The software can also 

handle models for the omission of outliers and smoothing of regression functions; and 

 By using the minimal assumption regression model, small to medium sized problems 

can be solved in a relatively short time. 

6.3 Problems experienced 

Model selection and robustness issues remain a challenge in regression analysis.  Measures to 

test the suitability of models are also by no means an easy task.  Many researchers are making 

contributions to this field and this study merely begins to explore the merits of the Wagner 

method. 

6.4 Possibilities for further research 

The estimation of the parameters   (the number of data points to omit) and   (the smoothing 

factor) could be explored further.  Experiments with different parameter values of   and   might 

be performed on a large number of data sets.  By applying the model to more data sets a 

general guideline may be set up in order to specify   and  .  This may lead to further refinement 

of the model. 

This model could be extended by incorporating simultaneous variable selection, as suggested 

by some researchers, which may improve model performance.  Techniques to handle larger 

data sets more effectively might also be investigated. 

6.5 Chapter summary 

Chapter 6 is the final chapter of this study.  The chapter presented a summary of the initial 

objectives and how the objectives were addressed.  In conclusion, the problems experienced 

and possible future research opportunities were outlined. 
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Appendix A 

A.1 Simple linear regression 

A simple linear regression model assumes that a straight line can approximate the relationship 

between the dependent variable, which is denoted  , and the predictor variable, denoted  .  

Bowerman et al. (2005) formally defines a simple linear regression model as follows: 

where 

     is the  -intercept.     is the mean value of   when   equals 0; 

   is the slope.     is the change (amount of increase or decrease) in the mean 

value of   associated with a one-unit increase (or decrease) in  .  If    is positive 

the mean value of   increases as   increases.  If    is negative, the mean value 

of   decreases as   increases; and 

  is an error term that describes the effects on   of all factors other than the 

value of the predictor variable  . 

The main assumptions about the simple linear regression model are summarized as follows: the 

error terms are assumed to be independently and identically distributed (iid) normal random 

variables each with a mean of zero and constant variance,   .  This statement implies four 

assumptions which are explained by Bowerman et al. (2005) as: 

 Independence assumption.  Any one value of the error term   is statistically independent 

of any other value of  .  That is, the value of the error term   corresponding to an 

observed value of   is statistically independent of the value of the error term 

corresponding to any other observed value of  ; 

 Normality assumption.  At any given value of  , the population of potential error term 

values has a normal distribution; 

 At any given value of  , the population of potential error term values has a mean equal 

to zero; and 

 Constant variance assumption.  At any given value of  , the population of potential error 

term values has a variance that does not depend on the value of  .  That is, the different 

populations of potential error term values corresponding to different values of   have 

equal variances.  The constant variance is denoted by   . 

 
            

A.  
(A.1) 
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The point estimates    and    of the parameters    and    can be calculated using the least 

squares point estimate (  -norm) for the simple linear regression model.  The formulas are 

given by Taylor (2001) as  

 
   

∑     ̅ ̅

∑      ̅ 
  (A.2) 

 and 

     ̅     ̅  (A.3) 

where 

                                 number of observations; 

                               ̅  
∑  

 
     

                               ̅  
∑  

 
  

Following the construction of a simple linear regression model, it is possible to test the 

significance of the predictor variables to calculate a confidence interval for the mean value of 

the dependent variable.  It is also possible to calculate a prediction interval for an individual 

value of the dependent variable.  A technical discussion and examples of such calculations can 

be found in Bowerman et al. (2005) and will not be presented here.  This section is concluded 

with a brief reference to a measure of the usefulness of a simple linear regression model, called 

the simple coefficient of determination, as well as a measure of the relationship between the 

two variables   and  , termed the simple correlation coefficient. 

The simple coefficient of determination for a simple linear regression model is defined as 

 
   

                   

               
  (A.4) 

where 

  Total variation = ∑(    ̅) ; 

  Explained variation = ∑( ̂   ̅) ; 

  Unexplained variation = ∑(    ̂) ; and 

  Total variation = Explained variation + Unexplained variation. 

   is the proportion of the total variation in the   observed values of the dependent variable that 

is explained by the simple linear regression model. 

The simple correlation coefficient, which measures the strength of the linear relationship 

between the variables   and  , is defined as 
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    √                         (A.5) 

    √                            (A.6) 

where 

     is the slope of the least squares line relating   to  . 

The correlation coefficient   can take on values between -1 and 1, because the value of    is 

always between 0 and 1.  A value of   close to 0 indicates little or no linear relationship between 

  and  , while a value of   close to 1 or -1 indicates a strong linear relationship between   and 

 .  A value of   close to 1 means that   and   are highly related and are positively correlated 

whereas a value of   close to -1 means that   and   are highly related and negatively 

correlated.  When    1,   and   have a perfect linear relationship with a positive slope and 

when    -1,   and   have a perfect linear relationship with a negative slope. 
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A.2 Graphical methods for linear programming problems 

As explained in section 2.5 of Chapter 2, the objective function of any linear programming 

problem is to minimize or maximize a certain quantity such as profit or cost.  Another 

requirement for linear programming problems is the presence of constraints or restrictions; 

these constraints limit the extent to which the problem can be minimized or maximized.  When 

there are only two variables to consider, a graphical representation is the easiest way to solve 

the problem.  The isoprofit and corner point methods are two ways to solve a two-variable 

problem graphically.  Each method consists of four steps, which will be presented below, 

followed by an example. 

A.2.1 Isoprofit method 

According to Moore and Weatherford (2001) the isoprofit line can be defined as a contour of a 

profit function.  A contour of the function  (     ) is the set of all combinations of values for the 

variables (     ) such that the function  (     ) takes on a specified constant value.  The steps 

for the isoprofit method are as follows: 

1. Graph all constraints and find the feasible region; 

2. Select a specific profit (or cost) line and graph it to find the slope; 

3. Move the profit (or cost) line in the direction of increasing profit (or decreasing cost) 

while maintaining the slope.  The last point it touches in the feasible region is the optimal 

solution; and 

4. Find the values of the decision variables at this last point and compute the profit (loss). 

A.2.2 Corner point method 

Bazaraa et al. (2005) demonstrate that if an optimal solution for a problem exists, then an 

optimal extreme point (or corner point) also exists.  Hence, it is only necessary to evaluate all 

the corner points, because the optimal solution will be found at one of them.  For a two-variable 

problem this is fairly easy; the steps for the corner point method are listed below: 

1. Graph all constraints and find the feasible region; 

2. Find the corner points of the feasible region; 

3. Compute the profit (cost) at each of the feasible corner points; and 

4. Select the corner point with the best value of the objective function found in step 3.  This 

is the optimal solution. 

To illustrate these concepts a two-variable example is furnished:  
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Example A.1  Suppose a company can manufacture two products,    and   .  Each unit of 

product    yields a profit of R5 and each unit of product    is sold for a profit of R3.  To 

manufacture one unit of product    requires 3 labour hours and 3 units of material.  One unit of 

product    requires 1 labour hour and 2 units of material.  For the current production period 

there are 120 labour hours available and 210 units of material at hand.  The company is 

interested in the best possible combination of products    and    to manufacture in order to 

maximize the profit.  This situation can be formulated as the following linear programming 

problem: 

          

           

        

               

              

        
 

 

 

 

 

To find a solution for the linear program, values for the decision variables need to be chosen 

which will maximize the objective function.  These values should be located in the feasible 

region.  Graphically the objective function (or isoprofit line) can be moved from the origin, 

parallel to itself, until it reaches the extreme point within the feasible region.  Outside of the 

feasible region the decision variables will take on values which will violate the constraints. 

 

Figure A.1 – Graphical solution for example A.1 

Figure A.1 depicts the feasible region as the region within the corner points ABCD.  The dotted 

line is the objective function (or isoprofit line) whereas the solid lines represent the constraints.  

The optimum point is B, with    equal to 10 and    equal to 90.  The maximum value, when the 
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solution values are substituted into the equation, is 320.  Any point outside of the feasible region 

will result in an infeasible solution. 

The other corner points are A (0, 105) which gives an objective value of 315, C (40, 0) which 

gives an objective value of 200 and D (0, 0) which, consequently, gives an objective value of 0.   

The solution of a linear program can either be unique, as in this example, or alternative 

solutions can be found.  They can be found when there is a constraint that is parallel to the 

objective function, which implies that any point on the constraint line is considered optimal.  

When there is no constraint that restricts the objective function the objective function can be 

increased indefinitely; this is an unbounded solution scenario.  If no feasible solution exists, the 

problem is infeasible. 

Graphical methods provide a good conceptual basis for solving linear programming problems, 

but to solve real life problems with numerous variables and constraints, a solution procedure 

called the simplex method is usually used.  This method is described in appendix A, section 

A.3. 
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A.3 The Simplex method 

Example A.1, in section A.2, contains only two decision variables and it is possible to solve the 

problem graphically by using the methods described in the previous section.  However, 

business problems may contain hundreds, even thousands, of variables and for these cases a 

graphing technique will not suffice.  For these instances the simplex method, a more powerful 

technique, can be used.  It was developed by George B. Dantzig in 1947, and is a popular and 

effective tool for solving optimization problems (Bazaraa et al., 2005).  It is a simple concept; 

examine the corner points in an iterative, systematic manner until an optimal solution is 

reached.  The optimum solution will lie at a corner point of the many-sided, many-dimensional 

figure in the area of the feasible solutions.  For each iteration the objective value obtains a 

higher value and is always moving closer to the optimal solution.  

The setup of an initial simplex method tableau will be illustrated by using the linear 

programming model presented in example A.1.  Firstly the inequality constraints must be 

converted into equations.  This can be achieved by adding slack variables,    and    to the 

constraints 

                  

                

Thus, the unused resources are represented by the slack variables    and   .  To find a solution 

for the tableau, an initial solution must be obtained.  A basic feasible solution can be 

established by setting the decision variables equal to 0, if        , then        and 

      .   

The initial tableau is set up as in table A.1, where    and    are the decision variable columns 

and    and    the slack variable columns.  The ‘Solution Mix’ column shows which variables are 

in the production mix while the    column depicts the profit per unit.  The ‘Quantity’ column is 

the constant column.  The second row reports the profit per unit and in the following two rows 

each of the constraint equations is given.     is the gross profit row, while       represents the 

net profit. 

 Solution Mix             Quantity 

    R5 R3 R0 R0  

R0    3 1 1 0 120 

R0    3 2 0 1 210 

    R0 R0 R0 R0 R0 

       R5 R3 R0 R0  

Table A.1 – The initial simplex tableau 



107 

After an initial tableau has been completed a series of five steps is followed to compute all the 

values needed for the next tableau (Render et al., 2009): 

1. Determine which variable to enter into the solution mix next.  One way of doing this is by 

identifying the column (pivot column), and hence the variable, with the largest positive 

number in the       row of the preceding tableau.  Producing this variable will 

contribute the greatest additional profit per unit; 

2. Determine which variable to replace.  A basic variable must be chosen to make room for 

the new variable chosen in step 1.  Divide each amount in the quantity column by the 

corresponding number in the column selected in step 1.  The row (pivot row) with the 

smallest nonnegative number calculated in this way will be replaced in the next tableau. 

The pivot number is the number at the intersection of the pivot row and pivot column; 

3. Compute new values for the pivot row.  To do this, divide every number in the row by the 

pivot number; 

4. Compute the new values for each remaining row.  All remaining row(s) are calculated as 

follows 

(               )  (                  ) 

  [(
            

        
            

)  (
                       
                         
                      

)]   

5. Compute the    and       rows, as demonstrated in the initial tableau.  If all numbers in 

the       row are 0 or negative, an optimal solution has been reached.  If this is not the 

case, return to step 1. 

To apply these steps, the pivot column, -row and -number must be identified in table A.1.  In this 

case    is the pivot column, with the largest positive       value.     provides the smallest 

nonnegative number and is therefore the pivot row.  The pivot number, 3, is located at the 

intersection of the pivot column and -row.  After establishing this information the second tableau 

can be completed.  Table A.2 provides the second simplex tableau. 

 Solution Mix             Quantity 

    R5 R3 R0 R0  

R5    1 1/3 1/3 0 40 

R0    0 1 -1 1 90 

    R5 R1.666 R1.666 R0 R200 

       R0 R1.333 -R1.666 R0  

Table A.2 – The second simplex tableau 

The same procedure is followed to obtain the last tableau.  In this case    is the pivot column, 

   the pivot row and 1 the pivot number.  Table A.3 presents the third and last tableau which 
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contains the optimal solution for this problem, with       and       to obtain a profit of 

R320. 

 Solution Mix             Quantity 

    R5 R3 R0 R0  

R5    1 0 2/3 -1/3 10 

R3    0 1 -1 1 90 

    R5 R3 R0.333 R1.333 R320 

       R0 R0 -R0.333 -R1.333  

Table A.3 – The third simplex tableau 

The procedure for solving linear programming maximizations problems is summarized by 

(Render et al., 2009) as follows: 

I. Formulate the linear programming problem’s objective function and constraints; 

II. Add slack variables to each less-than-or-equal-to constraint and to the problem’s 

objective function; 

III. Develop an initial simplex tableau with the slack variables in the basis and the decision 

variables equal to 0.  Compute the    and       values for this tableau; 

IV. Follow these five steps until an optimal solution has been reached: 

1. Choose the variable with the greatest positive       value to enter the solution.  

This is the pivot column; 

2. Determine the solution mix variable to be replaced and the pivot row by selecting 

the row with the smallest (nonnegative) ratio of the quantity-to-pivot column 

substitution rate.  This row is the pivot row; 

3. Calculate the new values for the pivot row; 

4. Calculate the new values for the other row(s); and 

5. Calculate the    and       values for this tableau.  If there are any       values 

greater than 0, return to step 1.  If there is no       values that are greater than 0, 

an optimal solution has been reached. 

Note that the procedure for solving linear programming minimizations problems is similar to the 

abovementioned procedure and that the details can be found in Render et al. (2009).   
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A.4 Sensitivity analysis 

When an optimal solution for a linear programming problem is found, it is important to know how 

sensitive the solution is to changes in the data.  For example, will a small change in resources 

or profit per product cause the optimal solution to change?   

Linear programming problems are often used to determine quantities for production for a future 

time period.  In real-world situations it is not always possible to know the exact values of, for 

example, profit per product or available material.  Estimated values can be used to solve the 

problems, but when a solution is found it would be helpful to know how sensitive the optimal 

solution is to any inexact data.   

The basis of sensitivity analysis is the proposition that all parameter values, except for one 

number, in the model are held fixed (Moore & Weatherford, 2001).  By determining a range for 

each parameter which will not affect the optimal solution, the sensitivity of the solution values 

can be considered.  Sensitivity analysis can be used to determine how much the objective 

function coefficient of a parameter can change before the objective value changes.  A change in 

the right-hand-side values (or resources) can cause the feasible region to change and it may 

lead to a different optimal solution; sensitivity analysis can indicate how much these values can 

change without influencing the optimal solution.  Most of these answers can be derived from the 

final simplex tableau. 

A detailed discussion of sensitivity analysis can be found in Render et al. (2009). 
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A.5 The branch-and-bound method 

As explained in section 2.6 of Chapter 2, the branch-and-bound method is an implicit 

enumerative method that can be used to solve integer linear programming problems.  

Branching only takes place on variables that are required to take on integer values; the feasible 

region is divided and subproblems are formed and solved.  Bounding is used to develop bounds 

for the different subproblems.  By comparing the objective values (or bounds) of the 

subproblems it is possible to eliminate certain subproblems from consideration (thus, certain 

feasible solutions cannot improve the current solution and do not have to be investigated 

further; these points are enumerated implicitly).   

Render et al. (2009) list the following steps to solve an integer linear programming maximization 

problem using the branch-and-bound method (in a minimization problem the roles of the upper 

and lower bounds are reversed): 

1. Find an initial solution by solving the linear programming relaxation of the integer 

programming problem.  If integer values are assigned to the required predictor variables, 

an optimal solution has been found.  If not, the objective value provides an initial upper 

bound; 

2. Any feasible solution can be used for a lower bound; 

3. Select any predictor variable that is constrained to be integer, but does not have an 

integer value.  Branch the problem into two subproblems based on the integer values 

that are immediately above and below the non-integer value; 

4. Create nodes at the end of the new branches by solving the new problems; 

5. a) A branch can be terminated if it yields an infeasible solution; 

b) If a feasible solution for the linear programming problem is found, but it is not an 

integer solution, go to step 6; 

c) When a feasible integer solution is found, evaluate the objective function.  An 

optimal solution is reached when this value is equal to the upper bound.  If this 

value is less than the upper bound, but exceeds the lower bound, set it as the new 

lower bound and go to step 6.  The branch can be terminated when this value is 

less than the lower bound; and 

6. Inspect the branches and find the maximum value of all the objective functions at the 

final nodes; set the upper bound equal to this value.  If the upper bound is equal to the 

lower bound, stop.  If not, go back to step 3. 

To illustrate Dakin’s variation (Salkin & Mathur, 1989) of the branch-and-bound method, an 

example will be presented. 
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Example A.2 Consider the integer linear programming model in which the objective is to 

                   

                      

            

                  

                   

Figure A.2 shows the branch-and-bound tree for this example.  Each node refers to a 

subproblem with the constraint indicated on the arc added to the linear programming problem of 

the parent node.  The values of the variables,    and    are denoted by a vector,    (     ).  

The linear programming relaxation of the integer programming problem is solved in the root 

node, node 0, with an optimal solution when   (         ) which results in an objective value 

of        .   This value will serve as an initial upper bound.  Rounding down gives   (   ) 

and objective value     , which is feasible and can be used as a lower bound.  Although 

  (         ) is an optimal solution for the linear programming problem, it is not optimal for 

the integer linear programming problem.  As a result it is necessary to branch on either    or   .  

If branching on    takes place, the region of    is split into two regions,        and     .  

In node 1 the constraint      is considered and included into the subproblem.  The optimal 

solution is   (       ) with           (new upper bound).  Branching takes place on   , 

splitting the region of    into      and     .  Node 2 deals with the constraint      

resulting in a feasible integer solution with   (   ) and      (new lower bound).  The 

solution at node 3 is also optimal with   (   ) and      (new lower bound).   

Returning to node 4,      is added to the initial linear programming problem resulting in 

  (     ) with an associated objective function of        (new upper bound).  This is still not 

an integer solution, and therefore branching takes place, resulting in nodes 5 and 6.  At node 5, 

   is constrained to     , resulting in a solution with   (     ) and       .  This objective 

function value is lower than the current lower bound and this branch will not be explored further.  

Node 6, with     , produces a solution that is infeasible and therefore it can be discarded.  

Node 3 produced the best feasible integer solution and   (   ) is consequently the optimal 

solution with an objective value of     . 
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Figure A.2 – The branching tree for the branch-and-bound method in example A.2. 
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Appendix B 

The following paper was presented at the 2nd International Conference on Applied Operational 

Research held at Turku, Finland on 25 – 27 August 2010.  The paper was subjected to a double 

blind peer review process and was published in ‘Lecture Notes on Management Science’, 

August 2010, ISSN: 2008-0050, pp. 34-44 (van der Westhuizen et al., 2010). 
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