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ABSTRACT 

This work develops a one dimensional, slab geometry, multigroup collision probability code named 

Oklo which solves both criticality calculations and fixed source problems. The code uses the classical 

collision probabilities approach where the first flight collision probabilities are calculated analytically for 

void, reflected and periodic boundary conditions. 

The code has been verified against analytical criticality benchmark test sets from Los Alamos National 

Laboratory, which have been used to verify MCNP amongst other codes. The results from the code 

show a good agreement with the benchmark test sets for the critical systems presented in this report. 

The results from the code also match the infinite multiplication factors k  and average scalar flux 

ratios for infinite multiplicative systems from the benchmark test sets. 

The criticality results and the fixed source results from the Oklo code have been compared with 

criticality results and fixed source results from a discrete ordinates code and the results for both types 

of problems show a good agreement with the results from the discrete ordinates code as we increase 

the N  for the discreet ordinates code.  

 

Keywords: Integral Transport Equation, Collision Probability, Isotropic Scattering, Flat Flux 

Approximation, Discrete Ordinates 
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Abbreviations 

This list contains the abbreviations used in this document. 

Abbreviation or 
Acronym 

Definition 

CPU Central Processing Unit 

WNA World Nuclear Association 

Oklo 
Name of the code developed in this project, named after the location in 

Gabon where fission was discovered to have occurred naturally. 
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1. PROJECT MOTIVATION 

The quest for lower carbon emissions has resulted in a new nuclear renaissance, which has seen a 

large number for nuclear reactors being constructed worldwide. Nuclear energy accounts for about 

15% of the total electricity generation in the world, and this share is expected to increase considerably 

with 65 reactors under construction [1]. The new growth comes with an increased need for reactor 

safety, to avoid incidents.  

Nowadays, there is a great emphasis on safety of reactor designs from the experience gained on 

operating existing nuclear reactors. The new generation of reactors use evolutionary and passive 

safety measures. The evolutionary designs have improvements on safety systems from existing 

designs but still use active systems whilst the passive safety systems are designed to be reliant on 

natural phenomena to operate for example, gravity and heat transfer through natural means like 

convection, and conduction instead of relying on active systems like diesel engines which still have a 

chance to fail. There is an increased need for even more efficient reactor physics codes which are 

used for reactor design. Reactor physics codes are used to calculate amongst others the following 

variables:  

• Neutron flux 

• Neutron multiplication factor 

• Power profile 

• Reaction rates 

• Control rod worth 

• Critical dimensions 

It is obviously practical to adjust these variables using a model until an optimum design is achieved 

than through experimental means, hence the importance of neutron transport codes in reactor design. 

The computational methods used for simulating and modelling neutron transport and interactions in 

the reactor core are either deterministic or stochastic in nature. The deterministic methods discretize 

the problem (space, angle, energy) resulting in a system of equations that are solved numerically [2]. 

Neutron transport codes are used to perform criticality safety calculations in support of design, 

development and licensing of nuclear installations. 

 

Deterministic neutronics codes play a major role in reactor core modelling and simulation. The collision 

probabilities code in one dimension is useful in performing lattice calculations. This project will deliver 

a product that can be used to perform lattice calculations and it is also an academic exercise to help 

learn the design of a neutron transport code. The project develops a deterministic code to solve the 

integral transport equation using the method of Collision Probabilities.  
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1.1 Problem Statement 

The project focuses on developing and implementing the method of collision probabilities to solve the 

integral Boltzmann transport equation. The integral transport equation is solved for criticality and fixed 

source problems. 

1.2 Knowledge Gap to be filled 

The project shall equip the student with the skills of developing deterministic neutron transport 

methods. This will enhance appreciation of the theory of reactor physics covered on the course work 

of the master’s programme. The project shall also provide the university with a neutron transport 

method that can be used to train other students in designing deterministic neutron transport methods 

using different techniques. 

1.3 Project Aims and Objectives 

Develop a one-dimensional multigroup neutron transport code that solves the Boltzmann transport 

equation for multiplicative and non-multiplicative systems. The code will calculate the multiplication 

constants and flux distributions for fixed source problems. The code will be verified against some 

analytic benchmarks and some problems solved will be analyzed against a Discrete Ordinates code. 

 

1.4 Structure of Report 

The report is presented in 7 chapters with an addendum containing the structure of input files attached 

at the end of the report. Chapter 2 covers the literature review on the subject of this project. The 

literature review gives an over view of the transport equation. The review then covers different 

computational methods for solving the transport equation. The review culminates with the current state 

of methods with collision probabilities solvers. Chapter 3 discusses the theory on the subject matter 

that the project is based on. This section starts with a brief introduction of the integro-differential 

transport equation, followed by the integral transport equation. The method of the Collision 

Probabilities which is used to solve the integral transport equation is then discussed. Chapter 4 

introduces the flow diagram on which the multigroup iteration scheme is based. In chapter 5 the 

results for different test cases executed in the project are presented, followed by a chapter that 

summarizes the results. 

The conclusion of the work is presented in chapter 7 of the report. 
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2. LITERATURE REVIEW 

This section introduces the literature that was consulted in this project on the neutron transport theory 

and methods development in this area. The section does not go into detail with the mathematical 

derivations of any of the concepts, with Section 3 of the report dealing extensively with the derivations. 

2.1 Computational Methods for Neutron Transport 

There are two classes of methods used to solve the neutron transport equation: deterministic and 

stochastic methods. This project develops a deterministic method that uses the method of Collision 

Probabilities to solve the integral form of the neutron transport equation. The different ways in which 

we treat the space and angular variables of the neutron transport equation yields different 

deterministic methods. 

Lewis and Miller [2] gives a detailed discussion on the derivation of both the integro-differential 

transport equation and the integral transport equation. This book gives an introduction to the transport 

equation followed by the energy and time discretization of the transport equation. The energy 

discretization technique, which we will explain as applicable to the integral transport equation in the 

next Chapter of this report is used in several neutron transport methods. Amongst the neutron 

transport methods that are covered by Lewis and Miller [2] are the discrete ordinates, the collision 

probabilities and the Monte Carlo methods. 

Stammler’s book [3] offers a good insight into the numerical methods of steady state reactor physics. 

The book introduces the transport equation and then describes typical nuclear data libraries. The book 

then covers a number of numerical methods used to solve the transport equation, developing them 

with the underlying approximations in detail. Amongst these methods that are discussed is the 

Collision Probabilities method alongside the integral transport theory, the LP  approximations, the 

diffusion theory and the discrete ordinates method. The book also gives a good development of the 

multigroup iteration method and the flow diagram of this project’s multigroup scheme was largely 

based on this work. 

2.2 The Boltzmann Transport Equation 

The roots of the transport theory dates back more than 100 years ago to the Boltzmann equation, first 

formulated for studying the kinetic theory of gases. With the advent of nuclear reactors in the 1940s, 

an interest in solving the neutron transport problem aroused [2]. Over the years, increasingly 

sophisticated numerical methods have been designed. The rapid decline in the cost of high computing 

power has also enhanced the design of powerful numerical methods without computing being the 

bottleneck. These methods are used to solve the neutron transport problem that is encountered in 

nuclear reactors and radiation shields in a multiregional and multidimensional form [2]. 

In deriving the neutron transport equation, only neutron interactions with the materials of the medium 

are considered. Neutron- neutron interaction can be safely neglected due to the low density of free 

neutrons compared with the atomic density of the media. The statistically large number of neutrons in 

a nuclear reactor allows averaging and the application of the linear Boltzmann equation [3]. 

The integral transport equation can be derived using first flight kernels to relate the angular flux in an 

element of phase space to the neutron emission rate due to fixed, scattering, and fission sources 

everywhere in the medium, and to sources on the boundary [4]. The result is not an explicit solution for 

the angular flux, but is an alternative form of the Boltzmann equation in an integral form. The integral 

transport equation leads to a treatment of the angular variable that is exact. Integral transport 

techniques were originally applied almost exclusively to the calculation of periodic flux distributions 

within the fuel-moderator-coolant cells of infinite reactor lattices because the highly absorbing regions 

and small spatial domains associated with such problem domains require a high-order angular 

approximation but relatively few spatial mesh points [2]. In this work, the integral transport equation for 

the angular flux is derived from physical definitions of neutronics quantities [5].The integral transport 
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equation will be obtained from the integro-differential equation in Section 3.2 of the report. From this 

equation we obtain the integral equation for scalar flux by simple integration on the angular variable. 

The integral equation for scalar flux is then transformed to the multigroup integral transport equation 

which will be solved in the project for criticality eigenvalue and fixed source problems using the 

method of Collision Probabilities. 

2.2.1 Monte Carlo Methods 

In solving the neutron transport equation using deterministic computational methods, systematic 

computational errors are introduced by amongst other factors the discretization of the time, space, 

angle and energy and the representation of three-dimensional configurations [2]. In contrast, Monte 

Carlo methods are able to treat complex three-dimensional models. The continuous treatment of 

energy, space and angle removes the discretization errors that are associated with deterministic 

computational methods. 

A Monte Carlo calculation on a high level consists of the following actions [2]: 

 Simulating a finite number of particle histories through the use of pseudo random numbers. In 

each history the pseudo random numbers are used to track the length distances between 

collisions amongst other variables. Each history is begun by sampling the source distribution 

to determine the particle’s initial positions energy and direction. 

 The points of collision are determined using the mean free paths which are dependent on the 

material. By sampling the cross section data it can be determined with which nuclide the 

particle collided and what type collision occurred. 

 These steps are repeated for a particle until it is absorbed or leaks from the system. 

There are a number of production grade Monte Carlo codes in existence. Examples of such codes 

include MCNP, KENO Monte Carlo codes and TRIPOLLI4 Monte Carlo code to name but a few. 

Aragones J.M. et al [6] gives a good review of the existing core physics codes, both deterministic and 

Monte Carlo. 

2.2.2 Deterministic Methods 

The deterministic methods are based on discretizing the Boltzmann transport equation in each of the 

independent variables and solving the typically large system of algebraic equations that result. Lewis 

and Miller [2], Stammler [3] and The Nuclear Engineering Handbook [4] all give a detailed discussion 

of the different deterministic methods used to solve the transport equation. 

The multigroup approximation method has been developed to discretize the energy variable in the 

neutron transport equation. The multigroup cross sections are determined so that significant reaction 

rates and/or leakages are preserved respect to the exact continuous energy problem. In this project 

we do not calculate cross sections but use them as a provided input from benchmark test sets. The 

application of the multigroup approximation to the integral transport equation is shown in Section 2 of 

this report. 

The angular variable is generally discretized in discrete directions, e.g. the Discrete Ordinates ( NS ) 

method, or in polynomial expansions as in the spherical harmonics ( LP ) method. In this project the 

angular dependence is integrated out in the transport equation as will be shown in Section 2 of the 

report. 

The spatial variable has probably been subjected to a greater variety of discretization methods than 

any other independent variable in the Boltzmann transport equation. Examples of common 

discretization techniques applied to the transport equation are the finite difference method (diamond 

difference and weighted diamond difference), finite element, nodal and characteristic methods. An 

important issue in the discretization of the space variable is the number of unknowns that must be 

calculated and stored per spatial cell [3]. Methods that require a minimum amount of storage are 
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generally less accurate on a specified grid, but the storage demand for neutron transport problems 

can be so high such that in many problems the simpler methods are preferred. 

To improve the efficiency of both deterministic and probabilistic methods, some hybrid approximations 

of Monte Carlo and deterministic methods have been developed. For example the determination of 

some problem dependent biasing parameters which arises with variance reduction in Monte Carlo 

codes can be done efficiently with deterministic codes. Most available neutron transport codes are 

either deterministic or Monte Carlo, but there are a small number of hybrid codes which are now 

available [4]. For example the hybrid code MCBEND uses a multigroup diffusion solver to determine 

weight windows for Monte Carlo simulation [4]. The recent SCALE 6.0 package from Oak Ridge 

National Laboratory contains software which makes it possible to produce deterministically generated 

multigroup discrete ordinates solutions and turn them into weight windows for use in Monte Carlo 

simulations [4]. The Nuclear Handbook [4] explores the question of whether there is a class of hybrid 

methods for which Monte Carlo can be used to directly assist the accurate calculation of deterministic 

solutions. The main difficulty with deterministic solutions is the laborious calculation of multigroup 

cross sections. If a continuous energy Monte Carlo simulation could be used to calculate the problem 

dependent cross sections and supply this to the deterministic method, in this way the Monte Carlo 

method could significantly influence deterministic methods. The book cites some promising work that 

is being developed in this area. If such methods come to fruition then future transport methods will 

contain both Monte Carlo and deterministic modules where the Monte Carlo module supplies the 

multigroup cross section data to the deterministic module, and the deterministic module supplies 

biasing parameters to the Monte Carlo module. Such transport methods would be very close to black 

box systems, requiring minimal input from the user. 

2.3 Solving the Integral Transport Equation using the Method of Collision Probabilities 

The Collision Probability method is based on the integral form of the neutron transport equation. The 

main idea behind the integral transport method is to integrate out the angular dependence and to 

solve the neutron transport equation for the scalar flux directly [5]. The significant assumptions of the 

Collision Probability Method are the flat flux approximation and the isotropic scattering. The application 

of these assumptions in the development of the method will be shown in Section 3.2 of this report. The 

treatment of the spatial variables in the integral transport equation leads to dense matrices. This 

strong spatial coupling of large, dense matrices, which used to put a strong demand on computer 

memory and CPU time is no longer a serious problem with the advances in availability of computing 

power.  

The Collision Probabilities method generally proceeds in three steps [4]: 

1. A tracking process is applied over the lattice geometry to cover a sufficiently large number of 

neutron trajectories 

2. The numerical calculation of the Collision Probabilities ijP  which involves integration over the 

angle as will be shown in Section 2 of the report. The Collision Probabilities have to be 

calculated for all energy groups. 

3. Once the ijP  are known the flux can be computed. 

For a problem containing N  regions, the solution to the multigroup Collision Probabilities method 

produces a NN *  matrix in each energy group. Collision Probabilities can be defined over an infinite 

domain such as a lattice of identical cells. Reflective or periodic boundary conditions can be used to 

model the infinite system as will be shown in Section 3.4.5.2 of this work. 

2.4 The Method of Characteristics 

The method of characteristics (MOC) solves the integral transport equation for angular flux by 

following the straight neutron paths as the neutron moves across a domain [4]. This MOC is based on 

an iterative calculation of the particle flux by solving the transport equation of the neutron tracks 
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crossing the domain. The scalar flux per region and energy group is calculated by summing all mean 

angular fluxes from angular flux entering the domain and sources inside the domain. 

It is interesting to note that the MOC has the same tracking information as the Collision Probability 

method. The MOC offers an alternative to the Collision Probability method and it overcomes the 

following limitations inherent in the Collision Probability method [4]: 

 The Collision Probability method produces full square matrices of order equal to the number of 

regions in the domain whereas in the MOC the transport equation is solved for each of the 

neutron tracks through the domain which results in a fewer equations to solve. Memory and 

execution time requirements for the MOC increase linearly with the angular and spatial detail 

of the problem. 

 The MOC can easily account for higher orders of anisotropy, whereas the Collision Probability 

method may have difficulties even with linear anisotropy. 

 The MOC is preferred in cases where the number of regions exceeds a few hundred. The 

Collision Probabilities method would be preferred if one is interested in relatively strong local 

flux variations in a small system of the size of a pin cell. 

 The MOC is usually more sensitive to the mesh size and may require a much finer 

discretization for the same accuracy as the Collision Probability method. Thin and small zones 

are undesirable because for certain azimuthal angles they are not covered by enough 

characteristics rays. 

 The MOC is a good candidate for parallel computing to speed the execution time because the 

calculation for each characteristic track can be performed independently of other tracks. 

It is beneficial to have both MOC and Collision Probability solvers in one code, in such cases the same 

geometrical description of the problem and track generating module can be used for both solvers. 

2.5 The State of the Collision Probabilities Codes 

There are a number of neutron transport codes which solve the neutron transport equation using the 

method of Collision Probabilities. What follows is a brief overview of a few codes with Collision 

Probability solvers [6]: 

i. The DRAGON designed by the Ecole Polytechnique de Montreal Canada has an 

implementation of the Collision Probability method. The code has a 2 dimensional and 3 

dimensional implementation of the Collision Probability method. 

ii. APOLLO2 code has a one- dimensional and 2 dimensional implementation of the Collision 

Probability method.  

iii. CASMO-5 code contains modules implementing the one-dimensional Collision Probability 

method and a two-dimensional method of characteristics implementation.  

iv. The WIMS code, which consists of nuclear transport methods developed in the United 

Kingdom over a period of 30 years, has one and two-dimensional implementations of the 

Collision Probability method.  

v. Another code which implements a Collision Probability solver is the HELIOS which has a 2 

dimensional Collision Probability solver and a MOC solver in the latest version. 

The list of Collision Probability solvers in existence discussed above is in no way exhaustive. This 

project aims to discuss the use of the Collision Probability methods to solve the integral transport 

equation in a clear and concise manner which is lacking in the available literature. 
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3. THEORY 

This section covers the integro-differential transport equation, omitting the detailed derivation, the 

integral transport equation and it’s the multigroup formalism. 

3.1 The Integro-Differential Neutron Transport Equation 

The solution of the neutron transport equation determines the distribution of neutrons in a system. In 

turn this distribution determines the rate at which various nuclear reactions occur within the system. 

The straight-line path of a neutron in a medium can be disturbed by the interaction of the neutron with 

the nuclei of the medium by different interactions: fission, capture and scattering to name a few.  

The interaction of neutrons with nuclei of materials is governed by the concept of cross sections. The 

microscopic cross section )(Ex  is the effective cross- sectional area per nucleus seen by particles 

whilst the macroscopic cross section )(Ex  is the probable number of reactions of type x  per unit 

path length, and are both energy dependent. 

 

The neutron transport equation is fundamental to reactor physics. The equation describes how the 

neutron distribution is established in a system with given cross section data. Only neutron interactions 

with the materials of the medium are considered. Neutron-neutron interaction can be safely neglected 

due to the low density of free neutrons compared with the atomic density of the media. This report is 

not giving the details of the derivation of the integro-differential form of the Boltzmann transport 

equation but only its description from the physics involved. The Boltzmann transport equation is given 

as 
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,        (3.0) 

where: 

),,ˆ,( tEr 


  = angular flux as function of space r


, energy E , angle ̂  and time t , 

),( Ert


  = total neutron macroscopic cross section, 

)',ˆ'ˆ,( EErs 


 = macroscopic scattering cross section form describing the transfer of particles 

with initial coordinates 'ˆ,' E  before the interaction to ̂,E after the interaction, 

)',( Erf


  = macroscopic fission cross section, and 

)(E  = fission neutron energy spectrum. 

 

Nuclear data is treated as time independent because the time period over which any transient can 

occur is very much shorter than the time over which nuclear cross section data changes.  

In this work we consider only the steady state transport equation. In this case, since the angular flux 

does not depend on the time variable, Eq. 3.0 is expressed as: 
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               (3.1) 

 

After eliminating the time dependence in the neutron transport equation as given by Eq. 3.1, the 

neutron transport equation is dependent on six variables namely: three position variables represented 

by r


, two direction variables represented by ̂  and the energy variable E . 

It is not warranted that the system solved with Eq. 3.1 has a steady state solution. The criticality 

problem is formulated by assuming that  , the average number of neutrons emitted per fission can be 

adjusted to obtain a time independent solution. To ensure that Eq. 3.1 has a steady state solution we 

modify the production term by dividing it by k . It can be shown that k  is the measure of the number 

of neutrons in the current generation divided by the number of neutrons in the previous generation, 

which is defined as criticality. A reactor is critical if it has a self-sustaining neutron population without 

any external source, i.e., neutrons are only produced by neutrons in the system. In other words, 

physically a system containing fissionable material is said to be critical if there is a self-sustaining time 

independent chain reaction in the absence of external sources of neutrons [3]. 

A value of 1k  means that the hypothetical number of neutrons per fission 
k


, required to obtain a 

stationary flux is larger than  , the number of neutrons available per fission in reality. Therefore, such 

a system is sub critical and the modified fission rate has to be increased in order to obtain a non-trivial 

steady state solution for the neutron flux [2]. 

Conversely, if 1k , it means that fewer neutrons born in fissions are required to obtain a stationary 

flux than are currently produced in reality, a reduction in the fission rate is necessary to obtain a 

steady state solution. Therefore, such a system is supercritical. This can be summarized up as follows: 

if 1k  the system is supercritical, 

if 1k  the system is critical, and 

if 1k  the system is sub – critical. 

 

For a sub-critical system we can get a non-trivial solution to Eq. 3.1 by introducing an external neutron 

source. In this case, Eq. 3.1 can be written as: 
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,                            (3.2) 

where ),ˆ,( ErQ 


= is the external neutron source which emerge in the system from events other than 

fission. 

 

If a neutron is inserted into a critical system, then after sufficient time has elapsed for the decay of 

transient effects, a time independent distribution of neutrons will exist in which the rate of neutron 

production is just equal to the rate of losses due to absorption and leakage from the system. If such an 
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equilibrium cannot be established, then the distribution of neutrons will either increase or decrease 

with time. 

If neutrons from a time independent source are supplied to a sub critical system, the system will reach 

an equilibrium state characterized by stationary flux distribution in which the production rate from the 

external sources plus fission is in equilibrium with the absorption and leakage rates from the system. 

But if the system is critical or supercritical no such equilibrium can exist in the presence of an external 

source and the neutron flux will be an increasing function of time. 

 

When doing criticality calculations, i.e., calculating the value of the multiplicative constant k , we use 

Eq. 3.1 and modify the production term by dividing the number of neutrons born per fission by k , 
k

 . 

In this project the integral form of the neutron transport equation is solved for both criticality and fixed 

source problems, with the detailed derivation shown in Section 3.4 of this report. 

 

The effective multiplication factor effk  gives the multiplication factor for a finite system whilst the 

infinite multiplication factor k  gives the multiplication factor for an infinite system. 

3.2 The Integral Neutron Transport Equation 

To obtain the integral form of the transport equation we will look first for one equation for the angular 

flux, ),,ˆ,( tEr 


 , i.e. neutrons with energy E  that at the instant t are in r


 flying with direction ̂ .  

Let )',,'ˆ,'( tErq 


 be the number of neutrons per SteradianeVcm  sec3
 that are born at 'r


 

with energy E , direction '̂  at time 't , see Figure 1. Note that in order to arrive to the point r


at time 

t , neutrons have to be born at time 
v

R
tt '  at 'r


, where v  is the absolute value of their velocity, 

 ˆvv


. If all the neutrons are born in void where there are no collisions, all of them will contribute to 

),,ˆ,( tEr 


 , therefore 

dR
v

R
tErqtErd ),,ˆ,'(),,ˆ,( 


 .            (3.3) 

If the medium is not void, the neutrons that arrive to ),,ˆ,( tEr 


 without colliding are 

dRe
v

R
tErqtErd R ),,ˆ,'(),,ˆ,(


 ,                   (3.4) 

where 

 
R

t ERrrERrdRR
0

),ˆ,(),'ˆ('


 .           (3.5) 

Taking into account the contribution of all neutrons along the trajectory from 'r


 to r


, 

),',(

),,ˆ,'(),,ˆ,(
0

Err

e
v

R
tErdRqtEr

 




 


,           (3.6) 

where the source is composed of an external source, scattering and fission contributions to the 

direction defined by ̂ . 
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Figure 1: Path for Neutron Travel 

In a finite system where sR  is the distance from r


 to the boundary along the direction ̂ , the integral 

transport equation is expressed as  

),',(),',(

),,ˆ,(),,ˆ,'(),,ˆ,(
0

ErrErrs

e
v

R
tEre

v

R
tErdRqtEr s

s

R   




  ,         (3.7) 

Equation 3.7 is the integral form of the Boltzmann transport equation for the angular flux. The first term 

of the right hand side (RHS) of this equation can be interpreted as the non-collided contribution to the 

angular flux at r


 from all sources at 'r


 contained in the straight line that goes from r


 to  ˆ
sRr


 as 

shown in Figure 1. The uncollided neutrons that contribute to the angular flux at r


 from the incoming 

flux at the boundary of the system are given by the second term of the RHS of this equation. The 

angular flux is not any new “uncollided” type of flux but the usual one since the source term in Eq. 3.7 

contains the scattering source which takes into account all collided neutrons that are redirected into 

̂ . 

In this work, we solve Eq. 3.7 under the following assumptions: 

1. Steady state, which means that )()(
v

R
tt  ,  

2. Isotropic scattering, and 

3. Isotropic external source 

Under the last two assumptions, the source term which is composed of external, scattering and fission 

terms can be expressed as: 
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,(3.8) 

where ),'( Erqext 
 is the external source. 

Then Eq. 3.7 can be written as  

),',(),',(
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Errs Err

eEreERrdRQEr s
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  .                       (3.9) 
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In order to obtain the integral equation for the scalar flux, we multiply and divide the first term of the 

RHS of Eq. 3.9 by 
22 |'| rrR


  and integrate Eq. 3.9 in 4 , 
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Noting that dRdRrd  ˆ' 23
, Eq. 3.10 can be written as  
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,       (3.11) 

which is the integral equation for scalar flux. Note that ),'( ErQ


 depends on the scalar flux, then, in 

the absence of incoming flux at the boundary at sr


 or in an infinite system with no sources at infinite, 

Eq. 3.11 is an equation only in the scalar flux that is expressed as: 
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 .          (3.12) 

The next section of the report shows how to obtain the multigroup form of the previous equation. This 

form is the one solved in this work with the Collision Probability method.  
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3.3 Multigroup Formulation 

In most numerical methods the neutron scalar flux is not treated as dependent on a continuous energy 

variable but the multi-energy group approximation. In our case, the scalar flux as a function of energy 

and space is the unknown to be obtained from Eq. 3.12. The methodology used in this work to solve 

the space dependence of the integral transport equation is the Collision Probabilities method which is 

explained in Section 3.4.1 of this report. The treatment of the energy variable with the multigroup 

approximation, which is common to all deterministic computational methods, is explained in this 

section. 

 

Using the multigroup approximation the energy domain  max,0 E  is divided into a number of disjoint 

intervals gE  called energy groups, see Figure 2. 

ΔE2 ΔE1

E

EG Eg Eg-1 E2 E1 E0

……ΔEg

 

Figure 2: Division of the energy range into G energy groups 

 

The subscripts on Figure 2 increase with decreasing energy which means that 1E  has a higher energy 

that 2E  for example. 

 

The cross sections within each energy group are treated as constants i.e. equal to an average over 

the energy group. With the multigroup approximation applied the neutron transport equation becomes 

independent of energy within each group, then only dependent on space r


. 

The equations that follow show the multigroup approximation applied to the integral transport 

equation, culminating with the appropriate multigroup formulation. 

Integrating Eq. 3.12 in energy between the limits of group gE , i.e. gE  and 1gE  we get 
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The integral of the scalar flux between 1gE  and gE  is defined as the total flux g , 
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 ,          (3.14) 

being 
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 .          (3.15) 

Using Eq. 3.13, Eq. 3.14 can be written as 
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 .         (3.16) 

In the same way we can perform the integration involving the source term ),'( ErQ


 with the source 

term given by Eq. 3.8. We will define for a group g  the external source, fission and scattering terms 

respectively. In the same way, being the external source a density in the energy variable, the total 

external source in group g  is defined as 

)(),(
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rqdEErq
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E

ext
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.                (3.17) 

The total average group cross section is defined such that the total reaction rate in the group is 

preserved, which gives 

)()(
1

EEt

g

tg


  . 

The exponential in Eq. 3.16 can be taken out of the integral by using the mean value theorem, 
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 ,                (3.18) 

then Eq. 3.16 becomes 
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 .                      (3.19) 

The integral over gE  of the fission term is given by  
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,       (3.20) 

where the fission spectrum over the group g  is defined as 






1
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g

E

E

g EdE .           (3.21) 

Defining fg  as the average value of )(Ef  in gE , using the same concept used for the total 

cross section, the fission source term can finally be expressed in the multigroup approximation as 
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Integrating the scattering term from Eq. 3.8 within gE , it follows that  
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,    (3.23) 

which this gives 
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.             (3.24) 

The resulting source term as given by Eq. 3.8 under the multigroup approximation then becomes: 
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.        (3.25) 

Substituting for the multigroup approximation of the source term into Eq. 3.19 we arrive at the 

multigroup integral transport equation: 
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  .          (3.26) 

The source term )'(rQg


 in Eq. 3.26 which is given by Eq. 3.25 relates the flux in group g  with fluxes 

from all other groups through the scattering and fission terms. With the use of the definitions, the 

transport equation which was dependent on both space and energy has now been written such that it 

is only dependent on space. 
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3.4 The Collision Probabilities Method 

This section shows the derivation of the set of equations solved for average scalar flux with the scalar 

flux integral equation 
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  ,          (3.27) 

as the starting point, and the group source terms for criticality and fixed source calculations given by  














 



G

g
gfg

g
G

g
ggsgg rr

k
rrQ

11 '

''

'

'' )()'()(
4

1
)'(








        (3.28) 

and  
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respectively. 

3.4.1 Solution of the Integral Transport Equation Using the Collision Probabilities 
Method 

The integral transport theory is used to perform calculations of reactor lattices, with the integral 

transport equation Eq. 3.12 as the starting point [7]. In this section we obtain the set of equations of 

the collision probabilities method for a system in void. The extension of collision probabilities to infinite 

systems is discussed in Sections 3.4.5.2.1 and 3.4.5.2.2 of this document.  

The scalar flux integral equation, Eq. 3.26, is used as the starting point for the collision probabilities 

discussion and is repeated here: 
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 ,           (3.30) 

where the group subscript has been omitted for simplicity. 

Defining 
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,           (3.31) 

and stating the scattering term explicitly from the source term, Eq. 3.30 can be written as: 

 
V

s rQrrrrnrdr )]'()'()'()['(')( 3 
 .          (3.32) 

 

We note that )'( rrn


  is the non-collided flux at r


 due to an isotropic unit point source at 'r


 and 

the source )'(rQ


 term now contains fission and external contributions only. 
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In order to define the collision probabilities approximation to solve Eq. 3.26, the system is discretized 

into N  disjoint volumes NiVi ...1,  . Integrating Eq. 3.32 in the volume iV  and dividing by iV , we 

get the average scalar flux in the region iV  given by  
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 .        (3.33) 

Since the set  iV  is disjoint, Eq. 3.33 can be expressed as 
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 .                     (3.34) 

 

We make the following assumptions: 

1. The cross sections are constant within each region, i.e. )(ri


  if iVr 


. 

2. The flux is constant in each volume and is equal to its average value, )(ri


   if iVr 


. 

This assumption is known as the flat flux approximation, FFA. 

3. In each volume the source is constant and equal to its average value, )(rQQi


  if iVr 


. 

This assumption is known as the flat source approximation, FSA. 

Note that the FSA is only an approximation in the presence of external sources in the system, 

otherwise if there are no external sources the source term is only made up of reaction rates (fission, 

scattering), which are constant due to the FFA. 

From these assumptions Eq. 3.34 can be written as 
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 .        (3.35) 

We define 
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 ,         (3.36) 

then using this definition Eq. 3.35 can be written as  





N

j

jjsjijjiii QPVV
1

][  , Ni ,...,1 .         (3.37) 

Equation 3.37 gives a set of N  equations, that are solved for N  unknowns, Nii ,...,1,  , as 

functions of the cross sections, volumes and the coefficients ijP . It is important to note that the integral 

transport equation has been transformed into a system of linear equations through the use of the three 

assumptions discussed previously. 

Obtaining the solution for Eq. 3.37, and the different ways in which ijP  are calculated gives rise to the 

different collision probability methods. 

The coefficients ijP  given by Eq. 3.36 are the first flight collision probabilities from region i  to region 

j  as they give the probability for a neutron born isotropically and uniformly distributed within region i  
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to have its first collision in region j . The first flight collision probability interpretation is clear if we note 

that Eq. 3.31 gives the uncollided flux at r


 due to an isotropic unit point source at 'r


. Then, the 

integral over jV  of this kernel divided by the volume of region j  gives the number of neutrons that 

arrive at 'r


 without colliding from one neutron born isotropically and uniformly distributed in jV . This 

number of neutrons multiplied by i  and integrated over the volume iV  gives the total collision rate at 

iV  produced by one uncollided neutron born isotropically and uniformly distributed in jV . 

The solution to the integral transport equation using the method of collision probabilities improves in 

accuracy if the discretization is refined due to the flat flux approximation in the collision probabilities 

method. 

From Eq. 3.37 it follows that for a domain with N  meshes the resulting collision probabilities matrix is 

of size NN   per energy group. This matrix easily becomes very dense and expensive to solve and 

store. For example for a 6- energy group problem with 100 meshes in the domain a 100 by 100 matrix 

is solved at least 6 times without taking into account the number of outer iterations required before 

convergence of the multiplication factor for a criticality calculation.  

The program developed in this project solves Eq. 3.37 for a one-dimensional slab geometry. It first 

calculates the first flight collision probabilities per energy group and stores them. The first flight 

collision probabilities are evaluated only once when a run is started because they are dependent on 

only material properties which do not change during multigroup iterations. Thereafter, the code 

calculates the sources per mesh and energy group due to the isotropic scattering and fission. Then 

the linear system of equations is solved for average scalar fluxes for the current energy group using 

Lower Upper (LU) matrix decomposition from the GNU Scientific Library [8]. The multiplication factor 

effk  is then calculated for a criticality problem or the infinite multiplication factor k  calculated for an 

infinite system. 

Note that ijP  are not independent. For example, in a system without leakages a neutron will suffer its 

first collision somewhere in the system, then 

1
j

ijP .            (3.38) 

Neutron paths are reversible i.e. the path traversed by the neutron from i  to j  is the same path 

traversed by a neutron from j  to i . Using this observation in Eq. 3.30 it follows that 

)()( jiij rrnrrn


 .           (3.39) 

If we exchange subscripts j for i  we get the first flight collision probability jiP . From Eq. 3.36 we can 

write expressions for )( ij rrn


  and )( ji rrn


 , equating these expressions we get 
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.          (3.40) 

Equation 3.40 is known as the reciprocity relation. The reciprocity relation can be used to infer for 

example jiP  from some already calculated and stored ijP , and this can result in a big memory saving 

for storage of the collision probability matrix if we apply the reciprocity relation to calculate jiP  for 

dense matrices as we need them instead of storing all of them, but in this project we are not yet using 

this property at this stage. This is one property of the collision probabilities that has been used to verify 

the collision probabilities results of the code developed for both void and reflective boundary 

conditions as shown in Section 5.1. 
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The next section shows the one-dimensional expressions corresponding to the generic equation for 

the first flight collision probabilities ijP  given by Eq. 3.36. These expressions are used in the code for 

evaluating the first flight collision probabilities for void reflective and periodic boundary conditions. 

3.4.2 Expressions for First Flight Collision Probabilities for a Slab Geometry 

The aim of this section is to derive an expression for the first flight collision probabilities in slab 

geometry expressed in terms of the exponential integral 1E  using Eq. 3.36. 

 

Figure 3: Spatial Discretization for Slab Geometry  

Introducing Eq. 3.31 into Eq. 3.36 it follows that 
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 ,          (3.41) 

where the coordinates used can be seen in Figure 3. 

Within the volume iV , the differential volume can be expressed as Adxrd 
3

 where A  is the 

transversal area to î . Note that ii AV   with i  equal to the thickness of the slab i . 

Based on Figure 3 we can write the differential volume where particles arrive as 

dxdrd 23 


           (3.42) 

with R  given by |'| rrR


 ,and  
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dssrr
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 .           (3.43) 

Using the previous expressions in Eq. 3.41, it follows that  
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 .           (3.44) 

The following change of variables can be identified from Figure 3: 
22 '  xxR , then 

dRdR  . Using this change of variable Eq. 3.44 can be written as 
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.          (3.45) 

To transform )',( rr


  to the correct variables to perform the integration, we do a change of variables: 

cosst     dsdt cos , where 
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  as can be seen from Figure 3. Then Eq. 3.43 

can be written as 
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Substituting for )',( rr


  as given by Eq. 3.46 in Eq. 3.45 we get 
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If we define a variable 
'cos
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 , it follows that 
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Using the above mentioned expressions Eq. 3.47 can be expressed as 
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Using the definition of exponential integrals we can realize that the last integral in Eq. 3.48 

corresponds to the exponential integral 1E  and the equation can be written as 
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which is the first flight collision probability expressed in terms of exponential integral 1E . 
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3.4.3 Derivation of Self Collision Probability Expression iiP  Slab Geometry 

Equation 3.49 is used as the starting point for the derivation of the self-collision probability expression. 












1

|'|
'

2

xx

i

i
ii

i

ii

e
d

dxdxP





          (3.50) 

Due to the absolute value in the exponent in the last integral in Eq. 3.50, the integral is decomposed 

into 2 integrals depending on whether xx '  or not giving: 
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Performing the integration in the curly brackets in Eq. 3.51 yields 
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Multiplying out the exponents in Eq. 3.52 gives 
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Opening the curly brackets in Eq. 3.53 we get 
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The first part of Eq. 3.54 can be recognized as the exponential integral E2, which can be evaluated to 

give: 1)0(2 E . Integrating the exponents in x  gives 
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,         (3.55) 

which can be simplified further by using the properties for exponential integrals to get the final 
expression for evaluating self-collision probability for slab geometry 
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3.4.4 Derivation of First Flight Collision Probability Expression ijP  Slab Geometry 

We consider a neutron born at point 'x  having its first collision at point x  as shown in the Figure 4 

below. 

xj-1/2 xj+1/20 xi+1/2

x x'

i j

 

Figure 4: Discretization of slabs i and j  

We will start the derivation with the same equation used for the derivation of the self-collision 

expression iiP  in the previous section: 
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The optical distance between the two points x  and 'x  is 

ijijjjii xxxxxx   )'()()',( 2/12/1 ,        (3.58) 

where 
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Substitute for )',( xx  as given by Eq. 3.58 in Eq. 3.57, and use the limits for both i  and j  as 

shown in Figure 4 : 
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Integrating the first part and third part of the exponent of Eq. 3.59 in 'x gives 
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and 
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respectively. 

Putting back the integration results into the Eq. 3.59 yields 
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Then using the definition of exponential integrals on Eq. 3.62 the expression for evaluating the first 

flight collision probabilities for a slab geometry for ji   is arrived at 
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3.4.5 Boundary Conditions on Evaluating Collision Probabilities 

To do both criticality and fixed source calculations for finite and infinite systems we use the same 

method, but the difference is in the way we calculate the collision probabilities for the different 

boundary conditions. The reasoning for evaluating collision probabilities for void, reflective and 

periodic boundary conditions is shown in the sections that follow.  

3.4.5.1 Void Boundary Condition 

We consider a finite system with void boundary conditions on both sides as shown in Figure 5. 

Void 1 2 3 Void 
Figure 5: Slab with Void Boundary Conditions 

 

To evaluate the first flight collision probabilities in this system we use either Eq. 3.56 or Eq. 3.63 

depending on whether ij   or ij  , because in deriving these equations we assumed that there 

are no contributions from outside.  

 

3.4.5.2 Collision Probabilities for Infinite System 

We need to evaluate the collision probabilities for an infinite system as shown in Figure 6. 

-∞…….. 1 2 3 4 5 …….+∞

 

Figure 6: Infinite Slab System 

 

For this system the first flight collision probabilities can be obtained as follows: 
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All regions i  on all slabs are the same, i.e. we cannot distinguish one from the other so the total 

volume is the sum of all these volumes in all slabs making up the system, 

i
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ii NVVV
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.          (3.65) 

On the other hand, the integral over iV  becomes 
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The number of regions cancel and Eq. 3.64 can be written as 
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This equation is the similar to Eq. 3.36 except that the volume limit of region j  extends from   to 

 . So, in evaluating the first flight collision probabilities for an infinite slab lattice we need to cover 
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the domain over limits  and  , the set of equations we use to evaluate the first flight collision 

probabilities are still Eq. 3.56 and Eq. 3.63. It is interesting to note that the collision probabilities 

expressed as in Eq. 3.67 correspond to the probability from one region i to all regions j. 

 

To model an infinite system, we use reflective or periodic boundary conditions as will be discussed in 

the next two sections. The next section shows the generalization of how we locate the mesh index of 

interest in the extended slabs of the model in order to be able to calculate the collision probabilities for 

an infinite system. For the discussion on collision probabilities for infinite systems that follow we will 

refer to the first flight collision probability as 
*

ijP  to distinguish it from the collision probability for a 

finite system ijP . 

3.4.5.2.1 Evaluation of Collision Probabilities for Infinite Systems Using Reflective 
Boundary Condition 

Figure 7 shows a lattice of slabs we have constructed using reflective boundary conditions to model 

an infinite system to calculate the collision probabilities. Once the collision probabilities have been 

evaluated the same code used to evaluate flux and the multiplication factor effk  for criticality 

calculation is used to calculate group fluxes and the infinite multiplication factor k .To model an 

infinite system as shown in Figure 6, we impose reflective boundary conditions on both ends of the 

system and get a model as shown in Figure 7.  

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

-∞…….. 1 2 3 4 5 5 4 3 2 1 1 2 3 4 5 5 4 3 2 1 1 2 3 4 5 5 4 3 2 1 1 2 3 4 5 5 4 3 2 1 1 2 3 4 5 …….+∞

- + - + + - + -centre

……

….. Index

Index

 

Figure 7: Example Infinite Slab Geometry Model Reflective BC. 

 

To calculate the collision probabilities 
*

ijP  for an infinite system as modelled in Figure 7 we need to 

include contributions to 
*

ijP  due to collisions of a neutron born in mesh i  and having its first collision 

in mesh j  in the slab at the centre on which reflective boundary conditions have been imposed, plus 

all collision probabilities due to collisions by neutrons born in mesh i  in the central slab and colliding 

for the first time in all meshes j  in the extended slabs towards   and  . We keep on adding 

the extensions of slabs towards a direction,   for example, until the contribution to the collision 

probability 
*

ijP  due to the collision in the mesh j  in the extended slab is less than some required 

accuracy.  

We need to distinguish whether a given extended slab is of even order or odd order to be able to 

decide where the mesh of interest j  is located in the extended slab. We refer to a slab which is of 

odd count as odd parity and a slab of even count as even parity. For example, the first slab on the 

right of the central is slab number 1, which is odd, corresponding to +, and the second slab from the 

centre moving towards   is slab number 2 , which is even corresponding to -. The same concept is 

applied in identifying the order of slabs from the centre to  . 

To calculate 
*

11P  for example (based on Figure 7), the collision probabilities due to collisions from 

1i  to meshes j  towards   we have: 

12112011111011

*

11 PPPPPP  . 
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The contributions to 
*

11P  due to collisions from a neutron born in mesh 1i  and having its first 

collision in any of the meshes j  in the extended slabs towards   is 

52451651556

*

11 PPPPP  , 

where we have omitted the collision probability 11P  due to self-collision in the slab at the centre which 

has already been included in the   sweep. We will use the equation for iiP , Eq. 3.56 for the self-

collision probability in the slab at the centre but for all other collisions from 1 to all meshes j  in the 

extended slabs we use the equation for ijP , Eq. 3.63 to calculate the first flight collision probability. 

We can use the foregoing discussion to come up with a general method on how to find the location of 

the mesh j  in the extended slab in order to calculate ijP  to add to 
*

ijP  by using the slab parity 

concept. 

Centre to  Case 

For the iteration of the contribution from j  in the central slab, during the first run j  is in the central 

slab so we just do the equivalence test ( ij   or ij  ) and use the appropriate equation to compute 

the collision probabilities. 

The problem is in finding the location of j  in the extended slabs. We keep track of what j  is in the 

slab we start with at the centre of Figure 7, for example when computing the collision probability 12P , 

2j , and we need to find its index on the extended slabs. 

 If slab extension is of odd parity, j  is at new lattice length minus index of j  location in slab at 

centre, which gives index number 9 for the first extended slab based on the Figure 7. 

 If slab extension is of even parity, j  is at the same mesh index in the extended slab under 

consideration as it is in the central slab, which gives index number 12 on the second extended 

slab on Figure 7. 

Centre to  Case 

The location of j  on the slabs on the left hand side (LHS) of the centre is the opposite of the 

generalization for the RHS case, i.e.: 

 If slab extension is of odd parity, j  is at the same mesh index in the extended slab under 

consideration as it is in the central slab. For example, for 12P  towards  , the index of j  in 

the first extended slab is index number 7. 

 If slab extension is of even parity, j  is at new lattice length minus index of j  location in 

central slab. The location of 2j  on the second extended slab is index number 14. 

When all the contributions have been added to get 
*

ijP  the condition 1
j

ijP  should hold. With the 

collision probabilities calculated the same code used for criticality calculations is used to calculate k  

and group scalar fluxes with such results shown in Section 5.5 of this report. 
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3.4.5.2.2 Evaluation of Collision Probabilities for Infinite System Using Periodic 
Boundary Conditions 

We can use periodic boundary conditions to model an infinite system. We consider an infinite system 
discretized into 3 meshes for which we need to calculate the Collision Probabilities. Such a system can 
be modelled with periodic boundary conditions as shown in Figure 8. 

Index 12 11 10 9 8 7 6 5 4

1 2 3 4 5 6 7 8 9 10 11 12 Index

-∞…….. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 …….+∞

+ - + + - +centre

 

Figure 8: Infinite Periodic System Model 

The slab at the centre represents the system on which we impose reflective boundary conditions on 

both ends. The location of a mesh j  is always at the same location it is in the central slab for the 

periodic slab lattice. 

For example to calculate 
*

11P , we will calculate the first contribution due to self-collision in the central 

slab using the self-collision probability equation Eq. 3.56. Then we calculate the collision probability 

due to collisions in all meshes j  in the extended slab towards  . The index of j  in the extended 

slab is in the same position as j  in the central slab. For the example under consideration it is at mesh 

number 4, which is the first mesh of the extended slab. The same reasoning is applied for all slabs 

extended towards   until the convergence criteria is reached. 

To calculate the contributions to 
*

11P due to collisions occurring in meshes j  located in slabs 

extended on the left of the central slab towards  , we also need to figure out the location of the 

index of the mesh of interest j  in the extended slab. In the extended slab towards the left j  will 

always be located at the length of the central slab plus the length of all extended slabs minus the 

index of the location of j  in the central slab. In our example for calculating 
*

11P  j  is in index number 

6 on the first extended slab, which is the length of the slab at the centre and the first extension minus 

zero, which is the index where 1 is located in the slab at the centre (see Figure 8). 

 

Like we did for infinite systems with reflective boundary conditions on the previous section, we need to 

ensure that we include the contribution to the collision probability 
*

ijP  due to the collisions in meshes 

in the central slab only once as we calculate the contributions to 
*

ijP  due to collisions taking place in 

the extended slabs. 
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4. SOFTWARE FLOW DIAGRAMS AND EQUATIONS 

This section presents the set of equations programmed, the main flow diagram used to design the 

software and the expressions evaluated at each process block of the flow diagram. 

4.1 Set of Equations 

The following sets of equations are programmed in the code to evaluate the first flight collision 

probabilities: 
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With the first flight collision probabilities evaluated the linear system of equations is programmed from 

Eq. 3.37, repeated here: 
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The source density term for the external source problems is given by 
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whilst source density term for the criticality problems is given by 
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.          (4.4) 

Equations 4.0 and 4.1 give the first flight collision probabilities. Equation 4.3 and Eq. 4.4 are used to 

formulate the source per mesh for the energy group being evaluated. The matrices resulting from the 

set of linear equations formulated from Eq. 4.2 are solved using LU decomposition from the open-

source GNU Scientific Library [5].  



 

 

A one- dimensional multi-group collision probability code for neutron transport analysis and criticality calculations  
 

 

Postgraduate School for Nuclear Science and Engineering 

North West University 
 Page 37 of 72 

 

 

   
 

4.2 Flow Diagram Multigroup Iteration 

Figure 9 shows the multigroup iteration scheme for criticality calculations on which the code design 

has been based; the equations solved follow the diagram.  

1.Calculate  Fluxguess and Kguess

2.Calculate Fission 

Source_per_mesh

3.Scattering Source into g

4.Source=Fission + Scattering into g

5. Solve system of equations, flux 

for all meshes in current group( LU 

Decomposition)

6. Calculate Keff for this generation

g==G?

g=g+1

Yes

Keff 

converged?

End Calculation, 

Write Output to 

File

Yes

No

Calculate 

Collision 

Probabilities 

for all 

groups

No

 

 

Figure 9: Flow Diagram Criticality Calculation 
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Each of the iterations starts with the calculation of the guess flux and the fission source from the 

guessed value of the multiplication factor k . Numerically, the division of the fission source in the 

current generation t  by the fission source of the previous generation is just a normalization which 

ensures that the amplitude remains at a fixed value [3]. Therefore, the group fluxes of the subsequent 

generations are normalized to the same fission source level. The amplitude of the fission source can 

be normalized arbitrarily, for example if we normalize it to 1 fission neutron born in the system at time 

1t , the multiplication factor for generation t  is found to be 

 
g

igfig

i

iVk  .                        (4.5) 

The guess flux for the previous generation where the multiplication factor was normalized to 1, is given 

by 

  


i g
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guess
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1

,            (4.6) 

and from this it follows that the fission source per mesh for the first generation is given by  
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guessfigi
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.            (4.7) 

The guess flux is constant for all meshes in all energy groups. At the start of the program we have all 

the variables we need to calculate the guess flux, which are all material dependent. 

Using the source term density Eq. 4.4, we get the expression for fission source per mesh ( iFS ) for 

subsequent generations.  

  
g

igfigi
k

FS 
1

.                                   (4.8) 

The fission source per mesh for subsequent generations is calculated using the multiplication factor 

for the previous generation. The scattering source into the current group excluding self-scattering is 

given by: 
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ScatteringSource
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''_  .                                   (4.9) 

The collision probabilities are calculated using the set of equations Eq. 4.0 and Eq. 4.1 for void, 

periodic and reflective boundary conditions. The collision probabilities are evaluated once and stored 

for all energy groups at the start of the multigroup iteration.  

Equation 4.2 is solved by LU matrix decomposition in step 5 of the flow diagram 

The source iQ into the current group g  is obtained by combining the fission source from step 3 and 

the scattering source from step 4 of the flow diagram.  

The calculation of flux and multiplication factor for the fixed source problem follows the same flow 

diagram shown in Figure 9, but the systems under consideration must be sub-critical with an external 

source introduced. The calculation converges if the differences in the scalar flux between generations 

are smaller than the specified epsilon. 

The expression used to evaluate the convergence of the outer iteration is  1tt kk . 

where the value of the convergence has been set to 1E-06 for all test cases solved in this work. The 

convergence criteria for the outer iteration for fixed source problems is similar to the one for criticality 
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calculation problems but we evaluate the convergence in flux for the current iteration compared with 

the previous one instead of the multiplication factors. 
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5. CODE VERIFICATION RESULTS AND DISCUSSION 

The flow diagram on Figure 10 shows the steps involved in generic computer simulation of a physical 

phenomenon that are applied in developing radiation simulation [9]. The diagram shows the 

relationship between physical phenomena, computational model, verification and validation. 

Physical Phenomena Experimental Data

Mathematical

Representation of 

Phenomena

Numerical Solution

Code Implementation of 

Numerical Model

Conduct Experiment and 

Gather Data

Has Analytical 

Solutions?
Analytical Solution

No

Yes

Transform Numerical Model to a Code 

Design

Simplify Mathematical 

Representation to get 

Numerical Solution

Verify Code against 

Mathematical Model

Validate Code 

Results against 

Experimental 

Results

 

Figure 10: Computer Simulation of Physical Phenomena 

 

The diagram shows a summary of stages involved in developing a computer simulation of radiation 

transport. The first exercise in developing the simulation is to develop a theoretical physics model and 

describe it with mathematical expressions, which corresponds to the derivation of the integral transport 

equation, the multigroup formalism that follows up to the linear systems of equations and the collision 

probabilities approach in this project. The solution to the resulting expressions is computed using the 

developed code Oklo in this project. 

Verification is the connection between the resulting mathematical equations and the code that seeks 

to solve the equation. Through verification we compare the results calculated by the computer code 

with the analytical solutions of the mathematical equations describing the neutron transport 

phenomena. Verification may also be performed against results from other computer codes. 
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Verification is defined as the process of evaluating a system or component to determine whether the 

products of a given development phase satisfy the conditions imposed at the start of the phase [9] in 

other words it is a proof of correctness. 

A closely related concept is validation, which is the process of evaluation of a system at the end of the 

development phase to ascertain whether it satisfies the specific requirements. Validation compares 

the output calculated by the software with experimental results. The diagram shows that there is no 

direct link between a physical phenomenon and a computer code, these two are linked by a 

mathematical model of the physical phenomena under consideration. 

In this work, the collision probabilities have been checked against the reciprocity relation, the condition 

that 1
j

ijP  for void boundary conditions and 1
j

ijP  for reflective boundary conditions, where 

Nj ,,1  and N is the total number of meshes over the domain. The criticality calculations and 

infinite lattice calculations are verified against analytical benchmarks for criticality codes from Los 

Alamos National Laboratory [9] that have been used to verify MCNP amongst other codes. These 

benchmarks have been gathered from peer reviewed journals. 

The flux for all results presented in this work is of arbitrary units because the power has not been fixed 

for all the problems. 

Notation for Test Cases 

The notation for test cases is the same as in [9] but it is reproduced here for clarity reasons. The 

naming convention used for all bare geometry test cases is: Fissile Material- Energy Groups-

Scattering- Geometry according to the nomenclature described in Table 1. The fissile material 

identifiers used are:  

1. PU for Pu-239, 

2. U for U-235, 

3. UAL for a homogeneous mixture of highly enriched uranium and aluminium, 

4. UD2O for low enriched uranium homogenously mixed with D2O, and 

5. URR for 93% enriched uranium used in research reactors. 

The naming convention for multi-media cases is Fissile Material-Reflecting Material (thickness)-Energy 

Groups-Scattering-Geometry. 

The possible entries are given in the nomenclature table: 

 

Table 1: Nomenclature for Test Cases 

Fissile Material Energy Groups Geometry Reflector Material 

PU 1 group INfinite Bare 

U 2 groups SLab H2O 

UD2O 3 groups Infinite Slab 

Lattice Cell 

 

UAL 6 groups   

URR    

 

The following examples show the use of the notation explained before: 
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U-2-0-SL is a test case with fissile material U-235, 2 energy groups, isotropic scattering and slab 

geometry. 

UAL-2-0-IN corresponds to an infinite (no reflector) homogeneous system composed of enriched 

uranium and aluminium, 2 energy groups and isotropic scattering. 

PUa-H2O (1)-1-0-SL is a slab reactor with Pu-239, reflected with water of 1 mean free path thickness, 

one energy group and isotropic scattering. 

URRd-H2O(10-2-0-ISLC is two group infinite slab lattice cell system with a water reflector of 1 mean 

free path.  
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5.1 Verification of Collision Probabilities for systems with void boundary conditions 

At the current stage of the development of the code the collision probabilities are calculated using the 

expressions for self-collision probabilities given by Eq. 4.0 and Eq. 4.1 for all meshes and energy 

groups. The reciprocity relation ijtjjijtii PVPV   has been verified for each mesh and energy group.  

For a finite system composed of N  meshes with void boundary conditions, the sum 
N

j ijP  must be 

less than one for all mesh i  due to leakages from the system. This condition has been verified in the 

cases where it applies. 

In an infinite system modelled as having N  meshes surrounded by reflective boundary conditions 

there are no leakages, then 
N

j ijP  must be equal to one for all mesh i . This relation has been also 

verified in the infinite lattice cases solved. 

As an example, Table 2 and Table 3 show the collision probability matrices calculated for a 

homogeneous slab immersed in void and under reflective boundary conditions respectively with a 4 

mesh uniform discretization. It can be noted that all previously discussed conditions are met. 

 

Table 2: Collision Probabilities for a finite system composed of Pu-239(a) 

Pij 1 2 3 4 

1 0.33513 0.15278 0.07097 0.03995 

2 0.15278 0.33513 0.15278 0.07097 

3 0.07097 0.15278 0.33513 0.15278 

4 0.03995 0.07097 0.15278 0.33513 

Total 0.59883 0.71166 0.71166 0.59883 

 

Table 3: Collision Probabilities for an infinite system composed of U-235(b) 

Pij 1 2 3 4 

1 0.59954 0.23412 0.10163 0.06471 

2 0.23412 0.46707 0.19718 0.10163 

3 0.10163 0.19718 0.46707 0.23412 

4 0.06471 0.10163 0.23412 0.59954 

Total 1.00000 1.00000 1.00000 1.00000 
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5.2 Criticality Calculation Results 

This section shows some criticality calculations performed with the code compared with the 

benchmark test cases. 

Table 4 shows the list of the criticality problems that are solved for finite systems while Table 5 

presents the cases corresponding to infinite systems. Both Table 4 and Table 5 must be interpreted 

using the key in the nomenclature on Table 1. 

 

Table 4: List of Test Cases for Criticality Calculations in Finite Systems 

Test Case Type Test Case Name Section in Report 

One medium one energy group Pub-1-0-SL 5.2.2 

Ua-1-0-SL 5.2.2 

UD2O-1-0-SL 5.2.2 

Two media one energy group PUa-H2O(1)-1-0-SL 5.2.2 

PUa-H2O(0.5)-1-0-SL 5.2.2 

UD2O-H2O(1)-1-0-SL 5.2.2 

UD2O-H2O(10)-1-0-SL 5.2.2 

One medium two energy groups PU-2-0-SL 5.2.2 

U-2-0-SL 5.2.2 

UAL-2-0-SL 5.2.2 

URRa-2-0-SL 5.2.2 

UD2O-2-0-SL 5.2.2 

Two media two energy groups URRb-H2Oa(1)-2-0-SL 5.2.2 

URRb-H2Oa(5)-2-0-SL 5.2.2 

One medium six energy groups U-6-0-SL 5.2.3 

Two media six energy groups U-H2O-6-0-SL 5.2.4 
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Table 5: List of Test Cases for Criticality Calculations in Infinite Slab Lattices 

Test Case Type Test Case Name Section in Report 

One medium one energy group PUa-1-0-IN 5.5.1 

Pub-1-0-IN 5.5.1 

Ua-1-0-IN 5.5.1 

Ub-1-0-IN 5.5.1 

Uc-1-0-IN 5.5.1 

Ud-1-0-IN 5.5.1 

UD2O-1-0-IN 5.5.1 

Ue-1-0-IN 5.5.1 

One medium two energy groups PU-2-0-IN 5.5.2 

U-2-0-IN 5.5.2 

UAL-2-0-IN 5.5.2 

URRa-2-0-IN 5.5.2 

URRb-2-0-IN 5.5.2 

URRc-2-0-IN 5.5.2 

URRd-2-0-IN 5.5.2 

UD2O-2-0-IN 5.5.2 
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5.2.1 Cross section Data for Benchmark Test Cases 

This section presents the cross section data for benchmark test cases which were used in this project 

for verification of the criticality calculations of the Oklo code for both finite and infinite systems. The 

test cases considered here can be categorized into: one medium-one energy group, two media-one 

energy group, one medium-two energy group and two media-two energy group test cases. 

Table 6: Cross Section Data for One Medium One Energy Group Cases 

Material   
f (

1cm ) s (cm
-1

) t (cm
-1

) 

Pu(b)-239 2.84 0.081600 0.225216 0.32640 

U(a)-235 2.70 0.065280 0.248064 0.32640 

UD2O 1.70 0.054628 0.464338 0.54628 

 

Table 7: Cross Section Data for Two Media One Energy Group Cases 

Test Case Name Material 

Name 
  f (cm

-1
) 

s (cm
-1

) t (cm
-1

) 

PU-H20(0.5)-1-0-SL, 

PU-H20(1)-1-0-SL 

Pu-239 3.24 0.081600 0.225216 0.32640 

H2O 0.0 0.0 0.032640 0.293760 

UD2O-H2O(1)-1-0-

SL, UD2O-H2O(10)-

1-0-SL 

UD2O 1.70 0.054628 0.464338 0.54628 

H2O 0.0 0.0 0.491652 0.54628 

 

Table 8: Cross Section Data for One Medium Two Energy Group Test Cases 

Material 

Name 

Energy 

Group 1  1f (cm
-1

) 
11 (cm

-1
) 12 (cm

-1
) 1t (cm

-1
) 

1  

Pu-239 Fast 3.10 0.0936 0.0792 0.0432 0.2208 0.575 

Thermal 2.93 0.08544 0.0 0.23616 0.2208 0.425 

U-235 Fast 2.70 0.06192 0.078240 0.078240 0.2160 0.575 

Thermal 2.50 0.06912 0.0 0.26304 0.3456 0.425 

U-Al Fast 0.0 0.0 0.247516 0.020432 0.268165 1.0 

Thermal 2.830023 0.060706 0.0 1.213127 1.276976 0.0 

URR Fast 2.50 0.0010484 0.62568 0.029227 0.65696 1.0 

Thermal 2.50 0.050632 0.0 2.44383 2.52025 0.0 

UD2O Fast 2.50 0.002817 0.31980 0.0045552 0.33588 1.0 

Thermal 2.50 0.097 0.0 0.42410 0.54628 0.0 
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Table 9: Cross section Data for URRb and H2O Reflector Fast Energy Group 

Material Name 1  1f (cm
-1

) 
11 (cm

-1
) 12 (cm

-1
) 1t (cm

-1
) 

1  

URRb 2.50 0.000836 0.83892 0.4635 0.88721 1.0 

H2O(a)(Reflector) 0.0 0.0 0.83975 0.04749 0.88798 0.0 

 

Table 10: Cross section Data for URRb and H2O Reflector Thermal Energy Group 

Material Name 2  2f (cm
-1

) 
21 (cm

-1
) 22 (cm

-1
) 2t (cm

-1
) 

2  

URRb 2.50 0.029564 0.000767 2.9183 2.9727 0.0 

H2O(a)(Reflector) 0.0 0.0 0.000336 2.9676 2.9865 0.0 
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5.2.2 Criticality Results for Finite Benchmark Test Cases 

In this section we present the results obtained for the criticality calculations corresponding to the finite 

benchmark test cases whose cross section data is presented in the preceding section. 

For all the considered test cases, it can be noted that the calculated effk  approaches 1 as we refine 

the discretization of each system, which is in accordance with the flat flux approximation. Note that the 

benchmark cases are critical, then 1effk  is the exact solution. 

The values of effk  obtained as function of the mesh size are presented in Figure 11 for each test case 

solved. In this figure the mesh size is given by h  which is equal to the minimum mesh width used in 

the discretization of the system. The plots are given with log-log scale in the axis to make it evident the 

behaviour 


 hk 1 . Therefore, the value of   can be obtained from the gradient of the plots 

noting that hk log)1log(  . For all the cases solved   tends to 2 when h  goes to zero. 

The reference benchmark provides the values 
er  of the scalar fluxes normalized to the scalar flux at 

the centre of the system for the positions x  corresponding to 25.0cxx , 5.0 , 75.0  and 0.1 , 

where cx  is the coordinate of the origin of the system. The normalized fluxes we obtained at these 

points,  4,,1, iri  where the index i  denotes one of the four cxx  positions, were used to 

calculate the error 



4

1

2)(
4

1

i

e

ii rr  as an indication of the accuracy of our results. These errors 

as function of the mesh size h  are presented in Figure 12. The behaviour 
 h  is evident again as 

expected and 9.0  is obtained when h tends to zero. 

Figure 13 shows the CPU time needed to solve each problem as function of the mesh size. It can be 

seen that the CPU time increases for all the cases when decreasing h , i.e. when increasing the 

number of meshes in the system. This is expected since a finer discretization leads to a denser 

collision probability matrix to solve. 
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Figure 11: Error in effk  as function of the mesh size 

 

Figure 12: Spatial error   as function of the mesh size 
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Figure 13: CPU Time as function of the mesh size 

 

Figure 14 shows the shape of the flux obtained with the Oklo code as function of the distance to the 

core centre for a one medium, two energy group bare system. The expected cosine distribution is 

obtained in all the other test cases solved for bare cores. 
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For the reflected systems, when the width of the moderator is increased, the required critical 

dimension of the fuel is decreased significantly compared to the fuel dimension that was required 

when a smaller width reflector was used. This is due to the reduced neutron leakage with an increased 

reflector width. There is a limit on the achieved neutron leakage saving due to an increased size of the 

reflector expressed by the reflector saving concept. 

In Figure 15 we show a flux profile for a reflected one medium one energy group case. 

For reflected systems with both thermal and fast energy groups, the thermal flux profile increases in 

the reflector and decreases in the fuel region because the fuel absorbs thermal neutrons whilst the 

reflector makes fast neutrons thermal by slowing them down. This behaviour can be observed on 

Figure 16. In this figure we also show the use of reflective boundary condition at the centre of the 

system and void boundary condition on the right boundary. 
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Figure 15: Flux Profile PUa-H2O(1)-1-0-SL 
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Figure 16: URRb-H2O(5)-2-0-SL Reflected at Fuel Centre 
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5.2.3 One Medium Six-Energy Group Criticality Results 

The test case used for a 6 energy group is not from the benchmark test sets but has typical Material 

Testing Reactor cross section. The cross section data for the six energy groups is presented in Table 

11 and Table 12. 

 

Table 11: Cross Section Data for U-235 6 Energy Group Case 

 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

f (cm-1) 1.91E-003 9.55E-004 1.29E-002 2.08E-002 8.78E-002 2.22E-001 

  7.688380E-01 2.310042E-01 1.581018E-04 0.0 0.0 0.0 

t (cm-1) 1.39E-01 2.83E-01 4.00E-01 4.87E-01 7.82E-01 1.51E+00 

 

Table 12 shows the scattering cross section matrix for this six energy group bare reactor. The unit for 

the scattering cross sections is cm
-1

. 

Table 12: Scattering Cross Section Matrix for U-235 6 Energy Group Case 

gsg '  1 2 3 4 5 6 

1 6.299545E-02 7.47E-002 4.30E-004 2.62E-007 2.79E-008 0.0 

2 0.0 1.893247E-01 9.23E-002 5.51E-005 7.92E-006 2.21E-006 

3 0.0 0.0 2.749369E-01 9.12E-002 1.29E-002 3.72E-003 

4 0.0 0.0 0.0 1.152940E-01 3.00E-001 5.73E-002 

5 0.0 0.0 0.0 2.19E-003 3.220751E-01 4.08E-001 

6 0.0 0.0 0.0 6.94E-009 4.82E-002 1.341007E+00 

 

There was no critical dimension provided, so the first exercise was to get a critical dimension before 

observing the flux behaviour on all energy groups. After a few trials a critical dimension was found to 

be 22 cm. 

Criticality results for different discretization schemes with execution time and the total number of outer 

iterations are shown in Table 13. 

Table 13: Keff for Different Discretization for U-235-6-0-SL 

Total Number of 

Meshes effk  
CPU Time (sec) No. of outer Iterations 

50 0.99712 2.453 13 

70 0.999034 4.859 13 

95 0.999985 9.797 13 

 

The calculated multiplication factor is approaching 1 as we increase the total number of meshes over 

which we discretize the domain due to the realization of the flat source approximation. The flux profile 

for all energy groups over the core distance for this homogenous case is depicted in Figure 17. 
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Figure 17: Flux Profile UH2O-6-0-SL 
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5.2.4 Two Media Six-Energy Group Criticality Results 

The test case is similar to the one in the previous Section but with a reflector added on both ends of 

the slab. The cross section data for the fuel is as provided on Table 11 and Table 12 above for the six 

energy group homogenous case. The cross section data for the reflector is given in Table 14 and  

Table 15. 

Table 14: Cross Section Data for H2O Reflector 6 Energy Group Case 

 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

t (cm
-1
) 1.610185E-01 3.336887E-01 5.317683E-01 6.515953E-01 1.059497E+00 1.984357E+00 

 

The following table shows the scattering cross section matrix for the reflector. The units for all entries 

are cm
-1

. 

Table 15: Scattering Cross Section for H2O Reflector 6 Energy Group Case 

 1 2 3 4 5 6 

1 6.529035E-02 9.619704E-02 5.553896E-04 3.380758E-07 3.608041E-08 0.0 

2 0.0 1.999414E-01 1.336196E-01 7.900423E-05 1.135338E-05 3.170939E-06 

3 0.0 0.0 3.699083E-01 1.369360E-01 1.901924E-02 5.489903E-03 

4 0.0 0.0 0.0 1.751494E-01 3.994077E-01 7.454128E-02 

5 0.0 0.0 0.0 1.374267E-03 3.649394E-01 6.866847E-01 

6 0.0 0.0 0.0 2.352169E-09 4.144961E-02 1.926983E+00 

 

The critical dimension without a reflector is 22 cm, whilst the critical dimension with a reflector in place 

is 17.6 cm due to the reflector savings produced by the 10 cm of reflector surrounding the system 

The flux profile for the 6 energy group reflected reactor with void boundary condition on the right 

boundary of the system and reflective boundary condition at the centre of the fuel is shown on Figure 

18. Note that the thermal flux increases in the reflector region close to the fuel while faster groups 

decreases due to slowing down and lack of thermal absorption in the water. The results obtained with 

void boundary condition on the right boundary of the system and reflective boundary condition at the 

centre of the fuel are the same as the results obtained with void boundary condition at both ends of 

the full domain. 
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Figure 18: U-H2O-6-0-SL Flux Profile 
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5.3 Criticality Results Collision Probabilities vs. Discrete Ordinates 

This section compares the criticality results obtained using the collision probability code Oklo with 

criticality results obtained using a discrete ordinates code. Test Case 1 is a bare Pu-239 reactor, Test 

Case 2 is a reflected one energy group system and Test Case 3 is a reflected 2 energy group system. 

For all three test cases the collision probabilities code gives a multiplication factor that is closer to 1 

than the discrete ordinates code. As we increase the order N of the SN approximation, the results 

obtained with this method tend to the values obtained with the collision probabilities code. This is due 

to the exact treatment of the angular variable performed with collision probabilities for isotropic 

scattering which is approximated by the angular order N of the SN method. The SN code used is a 

three-dimensional multigroup nodal code which is under development in NECSA. There are no 

comparisons in this document on the execution time required for both Oklo and the Discrete Ordinates 

code since the last one is under development and not optimized yet with the standard accelerations of 

a SN code. The results can serve only as a verification of both codes together with a conceptual 

analysis of the accuracy of the methods used. 

Test Case 1: PUa-1-0-SL 

Table 16 shows the cross section data for this system. The system has a critical dimension of 3.707 

cm. Table 17 presents the multiplication factors obtained after running the criticality calculations with 

the collision probabilities code Oklo with different number of meshes of equal size. Table 18 shows the 

multiplication factors obtained for different SN orders using the discrete ordinates code for 10 and 100 

meshes 

It can be observed that the SN results tend to the collision probabilities results when the order of the 

SN approximation increases. The highest order of SN implemented in the Discrete Ordinates code is 

16 and it is expected that the accuracy of the result obtained with this code improves using higher SN 

order. 

Table 16: Cross Section Data for Pu-239(a) 

  
f (

1cm ) s (cm
-1

) t (cm
-1

) 

3.24 0.081600 0.225216 0.32640 

  

Table 17: Keff Results for Different Discretization using Collision Probabilities Code 

Total Number of Meshes effk  

10 0.997589 

100 0.99997 

200 0.99999 

 

Table 18: Keff Results for Different SN Orders using Discrete Ordinates Code 

 effk  

SN m=10 m=100 

4 0.94137 0.94182 

8 0.98459 0.98518 

12 0.99280 0.99342 

16 0.99547 0.99610 
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Test Case 2: PUa-H2O(0.5)-1-0-SL 

The cross section data for this system is shown in Table 7. Figure 19 shows the results obtained with 

the Oklo code for different discretizations of the system. The results shown in Table 20 for different 

orders of SN correspond to a dense mesh such that the multiplication factors are spatially converged. 

As in the previous example, it can be seen that when the order of SN increases, the results obtained 

with the discrete ordinates method tend to the collision probabilities results. 

 

Table 19: Keff Results PUa-H2O(0.5)-1-0-SL Collision Probabilities Code 

Total Number of Meshes 

Per Region effk  

15,26,15 0.999797 

30,52,30 0.999952 

60,104,60 0.999992 

 

Table 20: Keff Results PUa-H2O(0.5)-1-0-SL Discrete Ordinates Code 

SN Order effk  

4 0.9539 

8 0.99053 

16 0.99787 

 

Test Case 3: URRb-H2O(1)-2-0-SL 

The cross section data for this system is shown in Table 9 and Table 10. The resulting multiplication 

factors calculated using the collision probabilities code and the discrete ordinates code are presented 

in Table 21 and Table 22 respectively. Again, we note that the results from the discrete ordinates code 

tend to the collision probabilities results as we increase the order of the SN. 

 

Table 21: Keff Results URRb-H2O(1)-2-0-SL Collision Probabilities Code 

Total Number of Meshes 

Per Region effk  

30,50,30 0.992331 

20,200,20 0.99926 

 

Table 22: Keff Results URRb-H2O(1)-2-0-SL Discrete Ordinates Code 

SN Order effk  

2 0.99055 

4 0.99921 

8 0.99983 
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5.4 Fixed Source Results 

This section presents the results obtained for fixed source problems where neutrons from a time 

independent source are supplied to a sub-critical system. Test Case 1 presents results for a fixed 

source problem with a high gradient obtained using the Oklo code compared with results from a 

discrete ordinates code. Test Case 2 presents results from the two codes for an infinite system. 

Test Case 1: High Gradient System 

The system is made of two materials with material 1 of size 80 cm surrounded by 2 regions of material 

2 of size 40 cm on both ends. The cross section data for both materials making up this system is 

presented in Table 23. 

Table 23: Cross- Section data for High Gradient 

Material Name f (cm
-1

) 
s (cm

-1
) t (cm

-1
) 

External Source 

( n.cm-3.sec-1) 

Material 1 0.0 0.9 1.0 1.00 

Material-2 0.0 0.1 1.0 0.00 

 

The scalar flux profiles for half of this system from the Oklo code and the SN code are plotted in 

Figure 19. The plots from the two codes show a good agreement even at the interface between the 

source free material and the material with a source. The discrete ordinates code results approach the 

collision probabilities results as we increase the order of the SN as shown in Figure 19. 

 

Figure 19: Flux Profiles High Gradient Case SN Results vs. Oklo Results 
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Test Case 2: Infinite System 

This infinite system is made up of a source free region of 0.8 cm surrounded by two regions of 1.4 cm 

with a source on both sides. The cross section data for the system is shown in Table 24. 

Table 24: Cross Section Data Infinite System 

Material Name f (cm
-1

) 
s (cm

-1
) t (cm

-1
) 

External Source 

( n.cm-3.sec-1) 

Material 1 0.0 2.330 2.35 1.00 

Material-2 0.0 0.397 0.717 0.00 

 

The flux profile from the Oklo code for this system is plotted alongside fluxes for different SN orders on 

the histogram in Figure 20 below. Again we note that there is a good agreement between the fixed 

source flux profile from the Oklo code and the discrete ordinates code. The discrete ordinates results 

tend towards the collision probabilities results as we increase the SN order as noted on the criticality 

calculations. 

 

Figure 20: Flux Profile Infinite Fixed Source System Oklo vs. SN Results 
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5.5 Infinite Homogenous Lattice Results 

This section presents the verification results for different sets of test cases from the Los Alamos 

Benchmark test sets. The results are presented in tabular format showing the actual infinite 

multiplication factor k  alongside the reference infinite multiplication k  for each test case and the 

actual and reference flux ratios for test cases with more than one energy group. 

5.5.1 One Medium One-Energy Group Results 

The test cases Pub-1-0-IN and UD20-1-0-IN are based on the cross sections from Table 6. The cross- 

section data for the rest of the infinite systems under this category is shown in Table 25. 

Table 25: Cross section Data for One Medium One Energy Group Test Cases 

Material Name   f (cm
-1

) 
s (cm

-1
) t (cm

-1
) 

Pu-239(a) 3.24 0.081600 0.224216 0.32640 

U-235(a) 2.70 0.65280 0.248064 0.32640 

U-235(b) 2.797101 0.065280 0248064 0.32640 

U-235(c) 2.707308 0.065280 0.248064 0.32640 

U-235(d) 2.679198 0.065280 0.248064 0.32640 

U-235(e) 2.50 0.06922744 0.328042 0.407407 

 

Table 26 shows the results for infinite lattices for one energy group one medium test cases. 

Table 26: Calculated Infinite Multiplication Factors vs. Expected Values 1-Energy Group Cases 

Test Case Identifier 
Reference k from 

Benchmarks 

Actual k from Oklo 

Code 
Error (%) 

PUa-1-0-IN 2.612903 2.612903 0 

Pub-1-0-IN 2.290323 2.290323 0 

Ua-1-0-IN 2.250000 2.250000 0 

Ub-1-0-IN 2.330917 2.330917 0 

Uc-1-0-IN 2.256083 2.256089 2.7E-04 

Ud-1-0-IN 2.232667 2.232665 E-05 

UD2O-1-0-IN 1.133333 1.133333 0 

Ue-1-0-IN 2.1806667 2.1806665 9.1E-06 

 

The calculated values for k  are all in agreement with the reference values from the benchmark test 

sets at least to 5 decimal places. This shows that the Oklo code can be reliably used to calculate 

multiplication factors for infinite slabs. 
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5.5.2 One Medium Two-Energy Group Results 

This section presents the results for the infinite multiplication factor k , fluxes for both groups 1 and 2 

alongside the reference k  and flux ratios between the two groups from the benchmark test sets. The 

cross section data for these test cases has already been given Section 5.2.1 of this report. Table 27 

shows the result for calculated infinite multiplication factors for two energy group test cases. 

 

Table 27: Calculated Infinite Multiplication Factors vs. Reference Values 2- Energy Group 
Cases 

Test Case Identifier 
Reference k from 

Benchmarks 

Actual k from Oklo 

Code 

PU-2-0-IN 2.683767 2.683767 

U-2-0-IN 2.216349 2.216349 

UAL-2-0-IN 2.662437 2.662437 

URRa-2-0-IN 1.631452 1.631452 

URRb-2-0-IN 1.365821 1.365821 

URRc-2-0-IN 1.633380 1.633379 

URRd-2-0-IN 1.034970 1.034970 

UD2O-2-0-IN 1.000221 1.000221 

 

Table 28 shows the flux for both energy group 1 and energy group 2 and ratios between these fluxes 

for all the two energy group infinite slab test cases. 

Table 28: Calculated Flux Ratios vs. Reference Results 2-Energy Group Cases 

Test Case 

Identifier 
Group 1 Flux(n.cm

-2
sec

-1
) Group 2 Flux(n.cm

-2
-sec

-1
) 

Reference 

Flux Ratio 

from 

Benchmarks 

Actual Flux 

Ratio from 

Oklo Code 

PU-2-0-IN 1.130745 1.674608 0.675229 0.675229 

U-2-0-IN 0.694180 1.461531 0.474967 0.474967 

UAL-2-0-IN 3.092190 0.989516 3.124951 3.124951 

URRa-2-0-IN 2.112457 0.807914 2.614706 2.614706 

URRb-2-0-IN 1.766598 1.505180 1.173679 1.173679 

URRc-2-0-IN 1.757613 0.909069 1.933422 1.933422 

URRd-2-0-IN 0.129286 0.063897 2.023344 2.023344 

UD2O-2-0-IN 0.036727 0.001369 26.822093 26.822093 

 

Both k and group 2 to group 1 flux ratios shown in Table 27 and Table 28 match the reference 

values from the benchmark test sets to the last digit of the reference values. These results show that 

the Oklo code can be used with great confidence to evaluate flux and infinite multiplication factors for 

infinite lattices. As expected for all test cases the calculated scalar flux is constant per energy group. 



 

 

A one- dimensional multi-group collision probability code for neutron transport analysis and criticality calculations  
 

 

Postgraduate School for Nuclear Science and Engineering 

North West University 
 Page 63 of 72 

 

 

   
 

6. DISCUSSION OF RESULTS 

The code has been proven to be correct using the verification process, which compares the code 

output against international benchmarks gathered from peer reviewed journals in the nuclear 

engineering field. The collision probabilities calculated by the developed code Oklo have been 

checked if they satisfy the reciprocity relation The calculated collision probabilities have also been 

checked if they satisfy the conditions; that 1
j

ijP  for void boundary conditions and 1
j

ijP  for 

infinite systems. The calculated first flight collision probabilities all adhere to these conditions as 

shown in the results section of the report. 

The code developed in the project also calculates effk  that is very close to unit for given critical 

systems from different materials as demonstrated in the results section. The critical dimensions are 

reduced for reflected reactors as observed in the reflected reactors compared to the bare reactors due 

to the reduced neutron leakage in the presence of a reflector.  

The calculated effk  approaches 1 with a refinement of the meshes i.e. dividing the domain into 

infinitesimal meshes results in effk  which is closer to 1. This is due to the assumption of a flat source 

made in the collision probabilities method. As we refine the mesh we are getting closer to realizing this 

assumption. However, as we increase the meshes per domain of the problem the execution time 

increases, because this has a direct influence on the size of the resulting matrix that is solved for 

collision probabilities. It has been shown the behaviour of effk  approaching 0.1  for critical benchmark 

test cases and the increasing execution time with a refinement in discretization respectively. 

The code results for calculating k  and average scalar fluxes per group for infinite systems matched 

the values given in the benchmark test sets to at least the fifth decimal place. The infinite lattice 

calculations required more execution time because of the increased computation added for the first 

flight collision probabilities by calculating them over the range   to  . 

The criticality results from the collision probabilities code give in general values closer to 0.1  

compared to results from a discrete ordinates code using S16 due to the exact treatment of the 

angular variable by the collision probabilities method, which is approximated by the angular order of N 

in the SN. With an increase in the SN order the results from the discrete ordinates code tend towards 

the collision probabilities code result. 

The fixed source results from the Oklo code show a good agreement with results from the discrete 

ordinates code. Again, as noted for the criticality results, the discrete ordinates results move towards 

the collision probabilities results as we increase the SN order. The disadvantage of the collision 

probability method is the requirement for sizeable computer memory to store the first flight collision 

probability matrices that can become very dense, the more mesh points we consider under a domain. 

The size of the matrix is given by 
2N  if N is the number of equivalent meshes the domain is divided 

into. 
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7. CONCLUSION 

The project has satisfied the objectives that were set at the start i.e. developing a code that solves the 

integral transport equation using the method of Collision Probabilities for both multiplicative and non-

multiplicative systems. The theory section of the report gave an introduction of the integro-differential 

transport equation alongside the integral transport equation. The integral transport equation was then 

transformed to a multigroup form, eliminating the energy variable in the equation leaving the equation 

only dependent on space. The method of Collision Probabilities and its use in solving the integral 

transport equation was then discussed, culminating with a system of equations for which the code had 

to be designed. The multigroup scheme was depicted in a flow diagram with the equations that were 

already transformed to a form that can be programmed. 

 

The solution was implemented using C++, on the Microsoft Visual Studio 2005 platform. The system 

of equations was solved using a LU decomposition library from GNU Scientific Library. Test cases for 

checking the calculated Collision Probabilities were then presented, and the results were shown to be 

correct. 

The test cases for both criticality and fixed source calculations matched the reference results from the 

benchmarks. The results from the code were also compared with results from a discrete ordinates 

code for both criticality and fixed source calculations, and the discrete ordinates results approached 

the Oklo results as we increase the order N, which is due to the exact treatment of the of the angular 

variable performed with collision probabilities for isotropic scattering. As a consequence of this positive 

outcome from the verification of the results from the code developed in the project, the code can be 

used with confidence to perform lattice calculations. 

The project may be improved in the future by implementing the reciprocity relation and compare the 

performance with the current implementation. 
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9. ADDENDUM 

9.1 Setting Up Input File 

The input file must be of comma separated values type. 

 

Table 29: Input File Fields 

Identifier Description 

Oklo Input Settings File, Optional Description of File 

<GenericSettings>, 
Marks the start of setting for the system under 

consideration 

<NGROUPS>, Total number of energy groups 

<NCELL>, Total number of cells making up system 

<NMAT>, 
Gives the total number of distinct materials system is 

made of. 

<MATMAP>, Identifies what type of material each cell is made of 

<NUMMESHES>, 
Gives the total number of meshes each material is 

discretized into 

<Epsilon_Keff> Epsilon for convergence for multigroup calculations 

=======Material 1: PU-

239========, 
Marks the start of properties of named material 

<DELTA>, Size for material 

<CHI>,  for all energy groups under this key 

<XT>, Total Cross section 

<XS>, Marks the start of the scattering cross section matrix 

<NUF>, A product of  and f  

<SOURCE>, 
Marks the start of the external source, applicable for Fixed 

source problems only. 

=====END FILE====, Marks the end of the file 
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This is an example of a one medium one energy group input file: 

Oklo Input Settings File, 

<GenericSettings>, 

<NGROUPS>, 

1, 

<NCELL>, 

1, 

<NMAT>, 

1, 

<MATMAP>, 

1, 

<NUMMESHES>, 

4, 

<Epsilon_Keff>, 

0.000001, 

=======Material 1: PU-239========, 

<DELTA>, 

3.707444, 

<CHI>, 

1, 

<XT>, 

0.32640, 

<XS>, 

0.225216, 

<NUF>, 

0.264384, 

<SOURCE>, 

0.0, 

=====END FILE====, 

 

The following is an example of a two energy group one medium system input file. 

Oklo Input Settings File, 

<GenericSettings>, 

<NGROUPS>, 

2, 

<NCELL>, 

1, 

<NMAT>, 

1, 

<MATMAP>, 

1, 

<NUMMESHES>, 
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500, 

<Epsilon_Keff>, 

0.000001, 

======Material 1: URR============, 

 

<DELTA>, 

15.133706 , 

<CHI>, 

1.0, 0.0  

 <XT>, 

0.65696, 2.52025  

<XS>, 

0.62568,0.029227 

0.0,2.44383 

<NUF>, 

0.002621,0.12658 

<SOURCE>, 

0.0,0.0 

 

========END FILE=================, 

The following is a one energy group two media system input file: 

Oklo Input Settings File, 

<GenericSettings>, 

<NGROUPS>, 

1, 

<NCELL>, 

3, 

<NMAT>, 

2, 

<MATMAP>, 

2,1,2 

<NUMMESHES>, 

144,128,144 

<Epsilon_Keff>, 

0.000001, 

======Material 1: UD2O============, 

<DELTA>, 

16.856192, 
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<CHI>, 

1, 

<XT>, 

0.54628, 

<XS>, 

0.464338, 

<NUF>, 

0.0928676, 

<SOURCE>, 

0.0, 

======Material 2: H2O============, 

<DELTA>, 

18.30563  , 

<CHI>, 

0, 

XT>, 

0.54628, 

<XS>, 

0.491652, 

<NUF>, 

0.0, 

<SOURCE>, 

0.0, 

=======END FILE==================, 

9.2 Running Criticality Calculations 

To run criticality calculations for s system follow the steps: 

i. Set up input file as described in Section 9.1 of this appendix 

ii. Run Oklo executable 

iii. Open input file for system being modelled using the browse button 
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iv. Check Criticality Problem radio button 

v. Check Write PCol Results if you want to get output file for collision probabilities 

vi. If this is an infinite system, check the infinite system check box. 

vii. Click Solve Multigroup Scheme button 

viii. When completed with criticality calculation, the system will display the message “finished 

running case” 

ix. Click OK 

x. View output file on executable folder 

9.3 Running Fixed Source Calculations 

To run fixed source calculations for s system follow the steps: 

i. Set up input file as described in Section 9.1 of this appendix 

ii. Note that you need to specify the external source under <Source>, in input file for Fixed 

Source problems 

iii. Run Oklo executable 

iv. Open input file for system being modelled using the browse button 

v. Check Fixed Source Problem radio button 

vi. If you are modelling an infinite system, check the infinite system checkbox. 

vii. Check Write PCol Results if you want to get output file for collision probabilities 

viii. Click Solve Multigroup Scheme button 

ix. When done with Fixed Source calculation system will display the message “finished running 

case” 
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9.3.1 Running Infinite Lattice Calculations 

To run infinite lattice calculations for system follow the steps: 

i. Set up input file as described in Section 9.1 of this appendix 

ii. Run Oklo executable 

iii. Open input file for system being modelled using the browse button 

iv. Check Criticality problem radio button 

v. Check infinite system checkbox. 

vi. Check Write PCol Results if you want to get output file for collision probabilities 

vii. Click Solve Multigroup Scheme button 

viii. When done with Infinite System calculation system will display the message “finished running 

case” 

ix. Note that the infinite system calculations will take a longer period to complete due to the 

calculation of first flight collision probabilities over the range  and   

9.4 Output File Content and Interpretation 

The output file contains the following Section 

 Material Properties, contains the cross section data for materials making up the system  and 

generic modelling information like convergence epsilon 

 CPU time for calculations: contains the time in seconds the system took to execute the test 

case for the system under consideration 

 Keff per Generation or Kinf per Generation which gives a list of effective multiplication faction 

or infinite multiplication factors for all iterations depending on whether the problem being 

modelled is a criticality calculation or an infinite system. 

 Fluxes Per Mesh Per Generation Per Energy Group: Contains Matrices for average scalar 

neutron flux per mesh per energy group for all generations. Each column represents flux for a 

particular energy group starting with the fast energy group to the thermal energy group. Each 

row per represents the average scalar per mesh index corresponding to the count of that row 
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9.5 Program Functions and Descriptions 

The following table contains a list of the main functions contained in the code and a brief description of 

what each function does. 

Table 30: Code Functions and Descriptions 

Function Name Description 

collisionProbs.cpp Calculates collision probability 

Container.cpp 

Defines the data structure into which we read 

input file. i.e. cross section data for system and 

generic data for system being modeled 

cPsInfiniteLattice.cpp 
Calculates first flight collision probabilities for 

an infinite system 

cPsPeriodicLattice 
Calculates first flight collision probabilities for a 

periodic system 

cPsReflectiveLattice 
Calculates first flight collision probabilities for a 

reflective system 

expInt.cpp Calculates exponential integrals 

fissionSource.cpp Calculates the fission source 

fixedSourceFluxCalc.cpp The main function for fixed source calculations. 

guessFlux.cpp 
Calculates the guess flux at the start of the 

multigroup iteration 

matrixSolver.cpp 

Solves the resulting system of linear equations 

using LU decompositions for average scalar 

flux. 

multiGroupFluxCalc.cpp The main function for criticality calculations 

multiGroupSource.cpp 
Calculates the source by combining scattering 

and fission sources for criticality calculations 

multiplicationFactorCalc.cpp 

Evaluates the multiplication factor for criticality 

calculations or infinite multiplication factor for 

infinite systems 

scatteringSource.cpp 
Calculates the scattering source into the energy 

group under consideration 

sourceExt.cpp 
Calculates the source into a particular group 

from energy groups different of this group 

sourceFixed.cpp Calculates source for fixed source problems 

tau.cpp 
Calculates tau for use in calculating first flight 

collision probabilities 

writeCollision.cpp Writes calculated first flight collision to file 

writeOutput.cpp 
Writes results for system being modeled for all 

three problem types. 

 


