Synthesis, characterisation and potential employment of Pt-modified TiO$_2$ photocatalysts towards laser induced H$_2$ production

Anzel Falch

Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Chemistry at the Potchefstroom Campus of the North-West University

Promoter: Dr. R.J. Kriek

November 2011
Potchefstroom
ACKNOWLEDGEMENTS

So do not fear, for I am with you; do not be dismayed, for I am your God. I will strengthen you and help you; I will uphold you with my righteous right hand.

Isaiah 41:10

I am much obliged to acknowledge and thank the following people:

Dr. R.J. Kriek Prof. C.A. Strydom Dr. T. Arfin

Dr. L. Tiedt Ms. B. Venter

Mr. R. Volsteed Mr. M. Fazakas

Mr. H. van Wyk and Mr. T. du Plooy

Mr. E.L.J Kleynhans

Me. Z. Falch (Graphics)

My parents Lourens and Ester Falch
CONTENTS

LIST OF FIGURES

v

LIST OF TABLES

viii

ABSTRACT

1

OPSOMMING

2

CHAPTER 1: BACKGROUND AND AIMS

3

1.1 Background 3

1.2 Aim of study 6

CHAPTER 2: LITERATURE STUDY

7

2.1 Introduction 7

2.2 Economic interest regarding fossil fuels 8

2.2 Environmental impact of fossil fuels 11

2.3 Hydrogen as an alternative energy carrier 11

2.4 Band gap 14

Band gap determined by absorption spectroscopy 15

Band gap determined by Kubelka and Munk 16

Kubelka-Munk expression for powder samples 16

2.5 Photocatalysis 17

2.6 Photocatalysts 19

2.7 Titanium dioxide 21

2.8 Review and recent developments using TiO₂ 24

2.9 Chemical additives to enhance hydrogen production 25

Addition of electron donors 25

Organic compounds as electron donors 25

Addition of carbonate salt or iodide anion 26
2.10 Enhancement of H₂ production by photocatalyst modification techniques 28
 Noble metal loading 28
 Metal ion doping 29
 Sensitisation 31

2.11 Lasers as an energy source employed for photocatalysis and general principles 32
 Wave properties of light 32
 Nd:YAG Laser 34

CHAPTER 3: EXPERIMENTAL 36

3.1 Materials 36
3.2 Preparation of Pt-TiO₂ catalysts 36
3.3 Unsupported TiO₂ sample 37
3.4 Characterisation of the Pt-TiO₂ catalysts 38
 X-ray Diffraction (XRD) 38
 Transmission Electron Microscopy (TEM) 39
 Diffuse Reflectance Spectroscopy (DRS) 39
 Inductive Coupled Plasma (ICP) 40
 Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) 40
3.5 Hydrogen production and measurements 40
 Reaction vessel 40
 Experimental setup 42
 Gas chromatography 46

CHAPTER 4: RESULTS AND DISCUSSION 47

4.1 Characterisation of the various photocatalysts 47
 Optical characterisation using diffuse reflectance spectroscopy 47
 Determination of crystal size by XRD 49
Contents

Microstructure and morphology of Pt modified catalysts 51
SEM and EDX 52
4.2 Photocatalytic H_2 production 54
Selection of laser energy (40mJ) 54
The change in physical properties of TiO$_2$ following exposure to laser irradiation 55
Effect of Pt on the photocatalytic activity of TiO$_2$ 57
Photocatalytic production of H_2 58

Chapter 5: Conclusion 65
5.1 Project evaluation 65
5.2 Recommendations 66
5.3 Final conclusion 67

Appendix 68
a) Band gaps 68
b) Photonic efficiency 74

Bibliography 75
LIST OF FIGURES

Figure 1.1: Excitation of TiO$_2$. Electrons absorb photons and progress to the conduction band, consequently generating positive holes

Figure 2.1: Direct conversion devices for solar energy utilisation (Clark et al., 1982)

Figure 2.2: Trends of proven world crude oil reserves and consumption from 1980 to 2007. Data collected from Energy Information Administration (EIA) and British Petroleum (BP) (Shafiee & Topal, 2008)

Figure 2.3: Trends of proven world coal reserves and consumption from 1987 to 2005. Data collected from Energy Information Administration (EIA) and British Petroleum (BP) (Shafiee & Topal, 2008)

Figure 2.4: Trends of proven world natural gas reserves and consumption from 1980 to 2007. Data collected from Energy Information Administration (EIA) and British Petroleum (BP) (Shafiee & Topal, 2008)

Figure 2.5: Consumption of fossil fuels worldwide from 1965 to 2030. Data collected from Energy Information Administration (EIA) and British Petroleum (BP) (Shafiee & Topal, 2008)

Figure 2.6: A graph of absorbance versus wavelength

Figure 2.7: A graph that illustrates how the band gap is obtained from the intersection between the linear fit and the photon energy axis

Figure 2.8: Photocatalytic splitting of water to produce hydrogen and oxygen

Figure 2.9: Possible reactions which can take place when TiO$_2$ is irradiated by a light source composed of certain wavelengths
Figure 2.10: Molecular structure of titanium (IV) dioxide (IMS, 2011)
Figure 2.11: Standard potentials for various reduction half reactions compared with the band gap of TiO$_2$ (Atkins & De Paula, 2006)
Figure 2.12: The photocatalytic formation of hydrogen from ethanol on Pt-TiO$_2$ (Yang et al., 2006b)
Figure 2.13: An illustration of how dissociative adsorption occurs on the Pt-TiO$_2$ surface. The presence of Pt stabilizes the excited electrons in the conduction band
Figure 2.14: Movement of the Fermi level in extrinsic semiconductors after doping
Figure 2.15: a) Interstitial and b) substitutional doping of TiO$_2$
Figure 2.16: The basis on which a dye works as sensitizer (Ni et al., 2007)
Figure 2.17: Propagation of an electromagnetic wave
Figure 2.18: Temporal coherence
Figure 2.19: Spatial coherence
Figure 3.1: Borosilicate glass cylinder containing a 0.7 W/m2 UV light
Figure 3.2: Schematic diagram of the photocatalytic reaction system used for loading 0.5–2wt% Pt-TiO$_2$: a) Peristaltic pump, b) Suspended Pt-TiO$_2$ solution and magnetic stirrer, c) UV light reactor
Figure 3.3: Photos of the different Pt loadings. a) pre-treated TiO$_2$, b) 0.5wt% Pt-TiO$_2$, c) 1wt% Pt-TiO$_2$, d) 1.5wt% Pt-TiO$_2$, e) 2wt% Pt-TiO$_2$
Figure 3.4: Integrating sphere used for DRS measurements
Figure 3.5: Specially designed reaction vessel used in the laser studies a) side view b) top view
Figure 3.6: a) Individual components of a specially designed reaction vessel b) Plastic rings used to keep the gas dispenser in place c) A side-front view to show the round indent of the gas dispenser

Figure 3.7: Gas sampling attachment used for H₂ sampling

Figure 3.8: Diameter of laser beam

Figure 3.9: Experimental setup for studying laser induced photocatalytic water splitting

Figure 4.1: Diffuse reflectance spectra of TiO₂ and the various Pt-TiO₂ photocatalyst

Figure 4.2: XRD of TiO₂ and Pt loaded TiO₂ photocatalysts

Figure 4.3: TEM results for the a) 0.5wt%, b) 1.0wt%, c) 1.5wt% and d) 2.0wt% Pt loadings with a scale of 250 nm

Figure 4.4: SEM images a) untreated TiO₂, b) pre-treated TiO₂, c) 0.5wt% Pt-TiO₂, d) 1.0wt% Pt-TiO₂, e) 1.5wt% Pt-TiO₂ and f) 2.0wt% Pt-TiO₂

Figure 4.5: a) Pre-treated TiO₂, b) Pt-TiO₂ photocatalyst c) blue-grey colour of the various photocatalysts after laser irradiation

Figure 4.6: Speculated reaction mechanism for water splitting over Pt-TiO₂ (Sayama & Arakawa, 1997)

Figure 4.7: Schematic representation of the proposed steps for the photocatalytic molecular hydrogen production from an aqueous methanol solution over Pt-TiO₂

Figure 4.8: Time course of the photocatalytic H₂ evolution over different photocatalysts. Conditions: 1g/L photocatalyst, water (50ml): methanol (50ml, 0.0125M), laser energy (40mJ), temperature 25°C (arrows indicating an increase)

Figure 4.9: Amount of H₂ produced over different photocatalysts.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 2.1:</th>
<th>Properties of the three main polymorphs of TiO$_2$ (Carp et al., 2004)</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.2:</td>
<td>Frequently used dyes (Jana, 2000)</td>
<td>31</td>
</tr>
<tr>
<td>Table 2.3:</td>
<td>Operating wavelengths of a Nd:YAG laser</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.1:</td>
<td>Amounts of H$_2$PtCl$_6$.6H$_2$O used for the individual loadings</td>
<td>37</td>
</tr>
<tr>
<td>Table 3.2:</td>
<td>Parameters used for DRS</td>
<td>39</td>
</tr>
<tr>
<td>Table 3.3:</td>
<td>Experimental parameters</td>
<td>44</td>
</tr>
<tr>
<td>Table 3.4:</td>
<td>Gas chromatography settings used for gas analyses</td>
<td>46</td>
</tr>
<tr>
<td>Table 4.1:</td>
<td>Band gap values for the various photocatalysts</td>
<td>48</td>
</tr>
<tr>
<td>Table 4.2:</td>
<td>D and W$_A$ values obtained by XRD for the various photocatalysts</td>
<td>51</td>
</tr>
<tr>
<td>Table 4.3:</td>
<td>Composition of the photocatalysts as determined by EDX</td>
<td>54</td>
</tr>
<tr>
<td>Table 4.4:</td>
<td>Effect of laser light on the rutile:anatase ratio of the various Pt-TiO$_2$ photocatalysts</td>
<td>56</td>
</tr>
</tbody>
</table>
ABSTRACT

The photocatalytic production of H₂ from water as well as from a 1:1 methanol:water solution employing pre-treated TiO₂ and various Pt-TiO₂ photocatalysts was studied by using an Nd:YAG laser as irradiation source. The photocatalysts (0.5-, 1-, 1.5- and 2 wt% Pt-TiO₂) were prepared by utilizing a photocatalytic reduction method after which characterisation by various analytical techniques, i.e. XRD, TEM, ICP, SEM, and EDX, were conducted. XRD clearly indicated that platinum was not present in the crystal structure of TiO₂, but was rather loaded onto the surface of TiO₂. TEM analysis confirmed the presence of Pt on the surface with a particle/cluster size between 11 nm and 22 nm. SEM showed that repeatable results in respect of surface appearance were obtained. ICP and EDX indicated that the loading method was successful with only a slight deviation between the actual amount loaded and the calculated amount loaded. The impact of the loaded Pt on the band gaps of the different photocatalysts was investigated by diffuse reflectance spectroscopy (DRS) and calculated by employing the Kubelka-Munk method. The band gap values shifted sequentially from 3.236eV to 3.100 eV as the loading increased, moving closer to the absorbance region for visible light. The amount of hydrogen produced from the individual photocatalysts dispersed in both pure water and aqueous methanol solutions, was measured manually with a gas chromatograph. As soon as irradiation was initiated, a distinct colour change from shades of grey to dark blue-grey was observed for all the photocatalysts. XRD confirmed that it was due to the anatase phase transforming to produce more rutile phase. No H₂ was detected for the various photocatalysts suspended in water, i.e. in the absence of methanol. The amount of hydrogen produced from the various Pt photocatalysts suspended in the aqueous methanol solution was found to be the highest for the 0.5wt%- and 1.5wt% Pt-TiO₂ photocatalysts and the lowest for the 2wt% Pt-TiO₂. This could be due to loading Pt above the optimum amount to such an extent, preventing sufficient light from reaching the TiO₂ surface. Pt particles can also touch and overlap which will decrease Pt contact with TiO₂ thus decreasing effective charge transfer.

Keywords: Band gap, H₂ production, laser, platinum, titanium dioxide (TiO₂)
Opsomming

Die fotokatalitiese produksie van H$_2$ uit water sowel as uit ‘n 1:1 metanol:water oplossing in die teenwoordigheid van vooraf-behandelde TiO$_2$ en verskeie Pt-TiO$_2$ fotokatalisatore is bestudeer deur die gebruik van ‘n Nd:YAG laser as die bestralingsbron. Die fotokatalisatore (0.5-, 1-, 1.5- and 2 wt% Pt-TiO$_2$) is berei deur ‘n fotokatalitiese reduksiemetode waarna karakterisering gedaan is deur verskeie analitiese tegnieke, soos XRD, TEM, ICP, SEM, en EDX. XRD het aangedui dat Pt nie teenwoordig was in die kristalstruktuur van TiO$_2$, maar eerder gelaai was op die oppervlak van die TiO$_2$. TEM-analise het die teenwoordigheid van Pt op die oppervlak met ‘n spesifieke partikel/trosgrootte tussen 11 nm en 22 nm bevestig. SEM het getoon dat herhalende resultate in terme van oppervlakvoorkoms bereik is. ICP en EDX het aangetoon dat die laaimetode suksesvol was, met net ‘n klein afwyking tussen die werlike hoeveelheid gelaai en die berekende hoeveelheid gelaai. Die impak van die gelaaiete Pt op die bandgaping van die verschillende fotokatalisatore is ondersoek deur diffuse reflektrende spektroskopie (DRS) en bereken deur van die Kubelka-Munk metode. Die bandgaping waardes het sekwensieel geskuif van 3.236 eV to 3.100 eV soos wat die hoeveelheid Pt toegeneem het, en nader beweeg aan die absorbsie-omgewing vir sigbare lig. Monsters van die hoeveelheid H$_2$ wat deur die individuele fotokatalisatore geproduseer is, gesuspendeer in suiker water en ‘n waterige metanol-oplossing, is met die hand geneem en met ‘n gaschromatograaf geanaliseer. So gou as wat bestraling begin het, het sigbare kleurveranderinge voorgekom en veranderinge van grys skakerings tot donker blougrys kon gesien word vir al die fotokatalisatore. XRD het bevestig dat dit die resultaat was van die anatase-fase wat getransformeer is om meer rutiel-fase te produseer. Geen H$_2$ kon opgemerk word vir die verschillende fotokatalisatore gesuspendeer in water nie, dit is, in die afwesigheid van metanol. Die hoeveelheid waterstof wat geproduseer is uit die verschillende fotokatalisatore gesuspendeer in die waterige metanol-oplossing is gevind om die hoogste te wees vir die 0.5wt%- en 1.5wt% Pt-TiO$_2$ fotokatalisatore en die laagste vir die 2wt% Pt-TiO$_2$. Dit kan toegeskryf word aan Pt wat bo die optimale hoeveelheid gelaai word wat voorkom dat genoeg lig die TiO$_2$ oppervlak kan bereik. Pt deeltjies kan ook aanmekaar raak en oormekaar laai, wat die Pt kontak met TiO$_2$ verminder, en dus ook effektiewe elektronoordrag verminder.

Sleutelwoord: Bandgaping, H$_2$ produksie, laser, platinum, titanium dioksied (TiO$_2$)
CHAPTER 1: BACKGROUND AND AIMS

1.1 Background

Most of the world’s energy demand is met by fossil fuels today. Technologies related to fossil fuel extraction, transportation, refining and in particular their combustion, have harmful impacts on the environment and economy. Views concerning world fossil fuel reserves and predictions of exactly when supplies of fossil fuels will be exhausted differ (Shafiee & Topal, 2008). Recently, growing environmental concern and an increasing energy demand have many companies and researchers working hard on the development of technologies and processes which can efficiently exploit the potential of hydrogen as a clean energy carrier. At present only about 5% of commercial hydrogen is produced by making use of renewable energy sources while about 95% of hydrogen is mainly derived from fossil fuels (Ni et al., 2004).

Much attention has been attracted to the photo-assisted stoichiometric production of H\textsubscript{2} and O\textsubscript{2} from water splitting and the potential utilisation of solar energy, a renewable energy source. On the other hand, efficient conversion of solar energy has been a challenging problem and numerous studies have been undertaken in this direction (Galin'ska & Walendziewski, 2005). Significant progress has, however, been made in the use of integrated chemical systems based on semiconductor particulates in gaseous and liquid phase photoredox processes (Bamwenda et al., 1995).

One of the most extensively studied and promising photocatalysts for H\textsubscript{2} production by means of water splitting is TiO\textsubscript{2}. It has been widely used in many photocatalytic reaction systems due to its high activity and high stability (Kandiel et al., 2011). When TiO\textsubscript{2} is excited by photons with energy greater and/or equal to its band gap of 3.26eV (Carp et al., 2004) charge separation occurs (reaction 1.1).

\[TiO_2 \xrightarrow{h^+} e^-_{TiO_2} + h^+_{TiO_2} \] \hspace{1cm} 1.1

Energy is transferred from absorbed photons to electrons and is subsequently excited from the valence band (VB) to the conduction band (CB); consequently generating positive holes (Figure 1.1).
The excited electrons (e^-) and positive holes (h^+) can mainly undergo recombination and/or partake in oxidation and reduction reactions respectively. For a semiconductor to be considered as a potential photocatalyst for the production of H_2 by water splitting (reaction 1.2), the potential of the VB should be more positive than the water oxidation level ($E^0/\text{V} = 1.23$) and the CB should be more negative than the hydrogen production level ($E^0/\text{V} = 0$).

$$2H_2O \xrightarrow{\text{TiO}_2} 2H_2 + O_2$$

Theoretically, all types of semiconductors that satisfy this requirement can be used for hydrogen production, but other physical and chemical properties such as photocorrosion of the semiconductor play a role when selecting a suitable...
photocatalyst for water splitting. TiO$_2$ consists of exceptional resistance to photocorrosion; it is abundant and interacts with water and light simultaneously. The photocatalytic properties of TiO$_2$ can also be altered significantly by various methods affecting the electronic structure and defect chemistry (Nowotny et al., 2006; Nowotny et al., 2005). The most studied modification is the alteration of the TiO$_2$ band gap with loaded (Figure 1.1) or doped Pt metal. The Pt acts as an electron accepting species by creating sinks for the electrons thus inhibiting electron-hole recombination. Many studies conducted on the enhancement of TiO$_2$ by means of loading Pt onto the surface report an enhancement in the photocatalytic activity of the reaction investigated (Li & Li, 2002).

A means of enhancing H$_2$ production is by the use of sacrificial agents. Methanol is frequently used as a sacrificial agent to act as an electron donor for photocatalytic H$_2$ production. According to literature methanol is the most reactive alcohol acting as a sacrificial agent for H$_2$ production (Yang et al., 2006b; Cortright et al., 2002; Sakata & Kawai, 1981). Methanol, however, can also be a direct source of H$_2$ (Yang et al., 2006a; Yang et al., 2006b) when coupled with TiO$_2$ photocatalysis.

In general, most of the research studies reported on photocatalysis are based on the use of conventional lamps in the UV and visible region as energy source. Very little work has been conducted on photocatalysis where a laser acts as the energy source (Gondal et al., 2004a; Gondal et al., 2004b; Hameed & Gondal, 2004; Hameed et al., 2004b; Gondal et al., 2002). Laser light exhibits special properties like monochromaticity, high intensity, low beam divergence, directionality and it is coherent. From literature found regarding the employment of lasers as energy source for H$_2$ production, only WO$_3$, NiO, Fe$_2$O$_3$ and TiO$_2$ (rutile) were studied in the presence of Fe$^{3+}$, Ag$^+$ and Li$^+$ (Gondal et al., 2004a; Hameed & Gondal, 2004). It is therefore of great interest to investigate the employment of lasers as excitation source to study the activity of other photocatalysts for the potential production of H$_2$. This work can then be compared with studies done using conventional lamps and potentially applying this knowledge to future work employing sunlight as the irradiation source (Gondal et al., 2004a). The production of hydrogen through the use of lasers as irradiation source could be much faster (minutes) than conventional lamps (hours and days), but the cost of H$_2$ production would be much higher.
1.2 Aim of study

It is essential to find an alternative, environmentally friendly, economically viable and sustainable energy source to replace fossil fuels.

In working towards this global goal, this study has as main aims the following:

The (i) synthesis of various Pt-TiO\(_2\) photocatalysts by means of a photocatalytic reduction process, (ii) determination of the band gaps of these Pt-TiO\(_2\) photocatalysts, and (iii) evaluation of these photocatalysts for laser induced photocatalytic production of H\(_2\) under mild conditions from an aqueous methanol solution.

To ensure that these aims are met, this study also has as specific aims the following:

- The compilation of a thorough literature survey in which sufficient knowledge regarding the state of fossil fuel reserves, hydrogen as an alternative energy carrier, the role of efficient photocatalysts and lasers as energy source in potential photocatalytic H\(_2\) production, is summarised. The literature study was also conducted to serve as a literature review bases for further studies conducted in this field at the North-West University,

- Designing and manufacturing a specialised reaction vessel to employ in laser induced H\(_2\) production studies.

- The setting up of a suitable nanosecond laser pulse system for H\(_2\) production studies.

- Comparing the results obtained in this study with available results found in literature.

- Since this is the first investigation of this nature, it might not deliver a final and clear result, but it can make recommendations pertaining to future research.
CHAPTER 2: LITERATURE STUDY

2.1 Introduction

Energy is the basis of the economy and modern life. The majority of energy consumed today is obtained from the chemical energy stored in fossil fuels, with coal as the main supplier in the nineteenth century and crude oil and natural gas in the twentieth century (Varin et al., 2009). Other sources of energy are mineral fuels, nuclear and hydroelectric sources. Fossil fuels are considered to be non-renewable sources because they cannot be replenished once they are exhausted. Views concerning world fossil fuel reserves and predictions of exactly when supplies of fossil fuels will be exhausted differ. Consequently, in terms of pollution production and environmental impact, energy production can be considered a harmful industry since the industrial revolution in the 18th century (Serrano et al., 2009). Our dependence on fossil fuels has unfortunately led to a number of other problems (such as global warming), which include undeniable climate changes due to growing amounts of greenhouse gasses in the atmosphere and a decrease in urban air quality to name only a few.

During the 1970s the concept of hydrogen as a clean, efficient and viable remedy for addressing energy problems gained momentum (Varin et al., 2009) and offers a potential solution to satisfy energy and environmental requirements globally. Hydrogen as an alternative energy carrier, incorporating solar energy as a prominent method to produce hydrogen has become a major point of interest over the past few decades (Clark et al., 1982). Systems/devices where solar energy is utilised for energy conversion is illustrated in Figure 2.1, which indicates that solar energy can play a vital role towards the replacement of fossil fuels. The refinement of methods and technologies where solar light is incorporated for hydrogen production is still underway, however, many other studies of hydrogen production (Murphy, 2007; Gondal et al., 2004b; Hameed et al., 2004b; Gondal et al., 2002; Hashimoto et al., 2001; Clark et al., 1982) have been conducted and are still being improved to obtain an economically viable and environmentally favourable method.

The necessity to find another reliable, sustainable and environmentally friendly energy source to substitute fossil fuels is becoming a major priority and research conducted up to this point on hydrogen seems to be very promising.
2.2 Economic interest regarding fossil fuels

Fossil fuels play a crucial role in the world energy market. The World Energy Outlook (WEO) 2007 (Shafiee & Topal, 2008) forecasts that energy generated from fossil fuels will remain the major source and is still expected to meet about 84% of the energy demand in 2030. In Figures 2.2-2.4, a correlation between oil, coal and natural gas consumption with their reserves is illustrated independently. An interesting observation concerning fossil fuels is that although there has been a rise in consumption of oil and gas, the quantities of known reserves are also rising with time. This is due to discoveries of other new reserves (not the case for coal), but even so, fossil fuels reserves are still deteriorating and will eventually be exhausted.

In Figure 2.5 the trend of fossil fuel consumption worldwide from 1965 to 2030 is illustrated and an increase over the next 20 years is forecast. The consumption of fossil fuels has increased over the last 50 years and the same trend is expected for the foreseeable future, simultaneously verifying the depletion of fossil fuels worldwide.
Figure 2.2: Trends of proven world crude oil reserves and consumption from 1980 to 2007. Data collected from Energy Information Administration (EIA) and British Petroleum (BP) (Shafiee & Topal, 2008)

Figure 2.3: Trends of proven world coal reserves and consumption from 1987 to 2005. Data collected from Energy Information Administration (EIA) and British Petroleum (BP) (Shafiee & Topal, 2008)
Figure 2.4: Trends of proven world natural gas reserves and consumption from 1980 to 2007. Data collected from Energy Information Administration (EIA) and British Petroleum (BP) (Shafiee & Topal, 2008)

Figure 2.5: Consumption of fossil fuels worldwide from 1965 to 2030. Data collected from Energy Information Administration (EIA) and British Petroleum (BP) (Shafiee & Topal, 2008)
2.2 Environmental impact of fossil fuels

Energy resources are essential to satisfy human needs and improve the quality of life, but consumption of these energy sources may unfortunately lead to negative environmental impacts. The sources of fossil fuels are rapidly depleting and the ways of extraction, transportation, processing and the greatest influence, their combustion, have significant effects on the environment. Spills and/or leakages do occur during the transportation and storage of oil and gas, causing severe water and air pollution. Air pollution is mainly produced from the combustion of fossil fuels with the introduction of various gases (CO\textsubscript{x}, SO\textsubscript{x}, NO\textsubscript{x}, and CH\textsubscript{x}), toxic organic compounds and traces of soot, ash and tar etc. into the atmosphere, causing damage to human health, crop, and structures as well as reduced visibility to name only a few (Barbir et al., 1990). These compounds just named are known as primary pollutants and once they are introduced into the atmosphere, secondary pollutants may form. These secondary pollutants in turn may react with sunlight forming ozone and aerosols or react with water for instant rain, causing various acids, which in turn cause soil pollution (Record et al., 1982). Fossil fuels react in a chain reaction of negative impacts and emphasises the subsequent development of clean and sustainable energy sources.

2.3 Hydrogen as an alternative energy carrier

Due to the depleting state and diminishing availability of fossil fuels, developing alternative sources for energy production is a necessity. Factors such as climate and environmental impact, reliability, efficiency of use, health and economic interest play important roles in efforts to change the present energy system to a sustainable one. Many possibilities are considered and are currently being investigated.

Hydrogen is one of the considerations as a renewable and sustainable alternative energy solution, for it has the potential to replace fossil fuels (Thomas et al., 1998) and also offers many advantages (Midili & Dincer, 2008). It is a non-toxic clean energy carrier and produces non-toxic exhaust emissions. A stable environment is ensured with regards to the transportation of hydrogen because it can be safely done by making use of pipelines. Hydrogen also offers long-term energy use, for it can be produced by means of various production techniques from non-fossil fuel based sources and stored for long periods of time, compared to electricity. Application wise it can be
advantageously used as a chemical feedstock in the petrochemical, food, ferrous and non-ferrous metal, microelectronics, chemical and polymer synthesis and metallurgical process industries. This in turn ensures social and economic sustainability. Thus, a new pathway emerges for an energy system that is more environmentally friendly and leads to a reduction in the dependence on fossil fuels as energy source.

In this century hydrogen has mainly been produced from fossil-based sources, including coal, natural gas, hydrocarbons etc. by applying different techniques such as reforming, gasification 2.1, pyrolysis etc. (U.S. Department of energy, 2011; Midili & Dincer, 2008). The majority of global hydrogen is produced by the reformation of methane or natural gas by steam (reaction 2.2). The cost of this method is very low and the efficiency of this method is 70-80%. The negative aspect of this process is that CO$_2$ is produced simultaneously with H$_2$ (Serrano et al., 2009) in a second step reaction 2.3 of hydrogen production.

Coal gasification reaction (unbalanced)

\[
CH_{0.8} + O_2 + H_2O \rightarrow CO + CO_2 + H_2 + \text{other species}
\]

Gas reformation

\[
CH_4 + H_2O \rightarrow CO + 3H_2 \quad 191.7 \text{kJ mol}^{-1}
\]

\[
CO + H_2O \rightarrow CO_2 + H_2 \quad -40.4 \text{kJ mol}^{-1}
\]

In order to reduce the utilization of fossil-based fuels and methods that are not environmentally friendly, the development of new catalytic processes must be considered and put into practice. The most ideal catalytic process known to humanity is artificial photosynthesis illustrated in reaction 2.4 where plants allow photon energy to be converted into chemical energy which is stored in the bonds of glucose (Anastas, 2009).

\[
H_2O + CO_2 \rightarrow \frac{1}{6}(C_6H_{12}O_6) + O_2 \quad \Delta G = 502 \text{kJ mol}^{-1}
\]
One of the most promising artificial photosynthetic reactions to produce hydrogen is by the photocatalytic splitting of water to produce hydrogen and oxygen gas under solar light irradiation (Anastas, 2009). This dissociation of water may be achieved by a one-electron (reaction 2.5), a two-electron reaction 2.6 or a four-electron process reaction 2.7 respectively (Anon, 1991).

\[
H_2O \rightarrow H^+ + OH^- \\
2H_2O \rightarrow H_2O_2 + H_2 \\
H_2O \rightarrow H_2 + \frac{1}{2}O_2
\]

248 nm; 5 eV
712 nm; 1.74 eV
1000nm; 1.23 eV

The simplified dissociation of water occurs as follows (Naito & Arashi, 1995):

\[
H_2O \rightarrow HO + O \\
HO \rightarrow H + O \\
2H \rightarrow H_2 \\
2O \rightarrow O_2
\]

Sunlight is composed of a broad range of wavelengths, but few of the wavelengths are smaller or equal to 248 nm, therefore reaction 2.5 is not favourable do be driven by sunlight. From literature it is proven that reaction 2.7 is the most efficient for the decomposition of water using solar energy (Bolton, 1987; Bolton et al., 1985). The production of hydrogen by employing solar energy for photocatalytic water splitting is, however, low, mainly due to the following reasons (Ni et al., 2007):

1. When electrons are excited from the valence band to the conduction band in the photocatalyst, the holes in the valence band can recombine with the excited electrons releasing energy in the form of unproductive heat or photons;

2. Energy is required to decompose water into hydrogen and oxygen, thus the backward reaction (formation of water) is more favourable;
3. UV light occupies 3-4% of the total solar spectrum that reaches the earth with visible light occupying about half (50%) (Rayalu et al., 2007; Yang et al., 2006a) and it should be emphasised that water is transparent to visible light (Ashokkumar, 1998), therefore a photocatalyst which is visibly light-responsive should ideally be used.

As a result, a lot of research has been conducted on systems capable of decomposing water or its component reduction and oxidation reactions, i.e.

\[
2H^+ + 2e^- \rightarrow H_2 \quad 2.12 \\
2H_2O \rightarrow O_2 + 4H^+ + 4e^- \quad 2.13
\]

Water does not absorb sunlight and undergo spontaneous decomposition. In order to utilise solar energy for the decomposition of water and the production of hydrogen, a light absorbing specie which may be a metal complex, organic dye, semiconductor or a chloroplast must be added to the system (Anon, 1991). Success in the direct stoichiometric splitting of pure water was achieved by Abe et al. (2001) using a Z-scheme system (mimicking the photosynthesis of green plants, where water is oxidised into O_2 and the received electrons are utilized to fix CO_2 into carbohydrates) consisting of Pt-loaded TaON (H_2 production), Pt-loaded WO_3 (O_2 production) and an IO_3^-/I^- redox mediator.

2.4 Band gap

To determine whether a semiconductor is capable of a required reaction is it necessary to know the band gap of the semiconductor. One of the most important parameters which is used to characterise the optical properties of a semiconductor is its band gap energy, E_g. The band gap is defined as the energy difference between the valence bands (VB) and conduction bands (CB), a range of energies to which no orbital corresponds (Atkins, 1998). Many different methods for the determination of the band gap of semiconductors exist, all of which are based on different assumptions and theories. Three different methods for the determination of the band gap for semiconductors will briefly be discussed.
Band gap determined by absorption spectroscopy

The band gap can directly be determined by detecting the optical absorbance of a semiconductor by using absorbance (transmission) spectroscopy. A graph as follows is obtained (Figure 2.6).

![Graph of absorbance versus wavelength](https://example.com/graph2_6.png)

Figure 2.6: A graph of absorbance versus wavelength

The band gap can be calculated with the following equation (Atkins, 1998):

\[
E(f) = \frac{hc}{\lambda}
\]

Where,

- \(c \): speed of light, \(2.99793 \times 10^8 \) m.s\(^{-1} \)
- \(h \): Planck’s constant, \(6.62608 \times 10^{-34} \) J.s
- \(\lambda \): wavelength (nm) (centre of the peak)

\(1 \text{eV} = 1.60218 \times 10^{-19} \text{J} \)

(By definition, one eV is equal to the amount of kinetic energy gained by a single unbound electron when it accelerates through an electric potential difference of one volt.)
Unfortunately, due to the large scattering component and inaccurate transition edges, this technique is not applicable for semiconductor powder samples (Gal et al., 1999).

A more accurate approach is to generate the first derivative of absorbance with respect to photon energy and finding the maxima in the derivative spectra at the lower energy sides (Mecerril et al., 2004).

Band gap determined by Kubelka and Munk

Diffuse reflectance spectroscopy (DRS) is the most applicable optical method to study powder samples. It is non-destructive radiation of materials based on the interaction between light and matter. Radiation is reflected in all directions and occurs in samples where the particles are oriented in different directions, e.g. powders. DRS is widely used in industrial applications and in the study of solid-solid reactions, surface phenomenon, absorbed species, etc. (Gal et al., 1999). By applying the Kubelka-Munk treatment (Originated in an article “An Article on Optics of Paints Layers” written by Paul Kubelka and Franz Munk, August 1931 and modified by various scientist over preceding years) to diffuse reflectance spectra of semiconductor powder samples it is possible to extract their \(E_g \) unambiguously (Escobedo Morales et al., 2006). The powder sample should consist of 1-3mm thickness to ensure that all the incident light is absorbed or scattered before reaching the surface of the sample holder and thus having no influence on the value of reflectance (R) (Murphy, 2007).

Kubelka-Munk expression for powder samples

\[
[F(R_\infty)hv]^2 = C_2(hv - E_g)
\]

Where,

\[
F(R_\infty) \equiv \frac{(1-R_\infty)^2}{2R_\infty} : \text{the Kubelka-Munk function with } R_\infty = \frac{R_{\text{sample}}}{R_{\text{standard}}}
\]

\(hv \): photon energy

\(C_2 \): proportionality constant
By plotting \([F(R)h\nu]^2\) against \(h\nu\) (eV), the band gap can be obtained from the intersection between the linear fit and the photon energy axis. A graph as follows is obtained (Figure 2.7).

![Graph](image)

Figure 2.7: A graph that illustrates how the band gap is obtained from the intersection between the linear fit and the photon energy axis

DRS is a more convenient characterisation technique to use than UV-Vis absorption spectroscopy, since the powder does not have to be dissolved in a liquid medium and also because DRS takes into consideration the effect of light scattering (Escobedo Morales et al., 2006).

2.5 Photocatalysis

Photocatalysis implies that for a chemical reaction or an acceleration of a reaction to occur, a light source (energy source) and a photocatalyst need to be present. Most of the studies conducted in this field have been carried out with broadband UV lamps (Ohno et al., 1998; Maruthamuthu et al., 1989). To achieve the splitting of water (Figure 2.8 & Figure 2.9), adsorbed water reacts with the valence band holes to produce hydroxyl radicals (OH\(^-\)) (by donation of electrons) as well as \(O_2\) (oxidation). \(H_2\) is produced by the other portion of dissociated water, i.e. \(H^+\) by means of capturing the electrons (reduction) present in the conduction band (Hameed & Gondal, 2004). In order to achieve photocatalysis and to prevent recombination of the electron (e\(^-\)) with
the positive hole (h\(^{\cdot}\)), either in bulk or on the surface of the semiconductor, the excited electron should have a noticeable lifetime in the conduction band and must be able to reach the surface of the material in order to undergo reaction with the required medium. There are three ways for the excited electron to return to the ground state: (i) recombination with the positive hole, (ii) the excited electron can participate in a reduction reaction if an electron can be obtained from another reductant and (iii) the excited electron reduces an oxidant present and the positive hole can be used for oxidation (Kriek, 1994:5-8).

![Diagram of photocatalytic splitting of water](image)

Figure 2.8: Photocatalytic splitting of water to produce hydrogen and oxygen

Many ways of enhancing the photocatalytic activity of photocatalysts by means of reducing the recombination rate, which have been studied by the scientific community, will be discussed in the following sections.
Figure 2.9: Possible reactions which can take place when TiO$_2$ is irradiated by a light source composed of certain wavelengths

2.6 Photocatalysts

Semiconductors

The potential to apply semiconductor materials in the conversion of solar energy to electrical energy was realised by the scientific community when Fujishima and Honda (Fujishima & Honda, 1972) reported the use of semiconductor electrodes. Semiconductor materials have been used to date as electrodes, colloids, thin films and in powder form. The powder form is of interest in this study for more reactive surface is available, a concept which emerged in 1979 through work done by Bard (Matsuoka et al., 2007). Methods of hydrogen production include the electrochemical, biological,
photo-electrochemical and the photocatalytic. The capability of a semiconductor to decompose water into hydrogen and oxygen depends on the energy levels of the semiconductor’s conduction and valence band for it determines the ability of the semiconductor to transfer electrons to the absorbed particle obtained by the absorbance of light \(h\nu \geq E_g \). Another characteristic of a photocatalyst is to adsorb two reactants simultaneously enabling oxidation and reduction of the reactants simultaneously. For the process of water splitting, an ideal semiconductor should consist of a conduction band level more negative than the hydrogen reduction level, \(H^+/H_2 (0V) \) and a valence band level more positive than the water oxidation level, \(\text{OH}^-/\text{O}_2 (1.23V) \). This enables efficient decomposition of water into hydrogen and oxygen by employing light energy (Ashokkumar, 1998). The electrons receive energy from the photons which enable them to shift from the VB to the CB if the energy gain is higher than the band gap energy. Thus a catalyst with a band gap of more than 1.23eV is necessary to effectively split water photocatalytically into hydrogen and oxygen, but the conduction band must lie beneath 0eV and the valence band above 1.23eV. Theoretically, a potential difference of more than 1.23eV is equivalent to the energy of a photon with a wavelength of about 1010nm, which clearly includes the visible light region, indicating that it is possible to split water utilising visible light.

If the valence band is partially filled with electrons, it is hard to make a distinction between the valence and conduction band and the material is then known as a conductor, thus no band gap will exist. An insulator is a material with a band gap larger than 5eV which makes it difficult to excite electrons to the conduction band, in other words, the electrons are restricted in their motion (Oudenhoven et al., 2004). The material is known as a semiconductor if the valence band is completely filled with electrons and if the band gap lies between 0 and 5eV.

Among the various photocatalysts, TiO\(_2\) is the most attractive to be used for water splitting. This is due to its low cost, abundant reserves, exceptional resistance to photocorrosion as well as corrosion in aqueous environments, stability over a period of many years (Nowotny et al., 2006), and its ability to react with both water and light simultaneously. The properties of TiO\(_2\) can also greatly be altered by various methods affecting the electronic structure and defect chemistry of the crystal lattice (Bak et al., 2003).
2.7 Titanium dioxide

The discovery of titanium dioxide (Figure 2.10) was simultaneous to the discovery of titanium.

Figure 2.10: Molecular structure of titanium (IV) dioxide (IMS, 2011)

Titanium was first discovered by Reverend William Gregor in 1791 in England as an element present in the mineral ilmenite which exists in forms containing 44% to 70% of titanium dioxide (Carp et al., 2004). Titanium is the world’s eighth most abundant metal and the ninth most abundant element in the earth’s crust. The primary minerals in which titanium is present are rutile, ilmenite, leucoxene, anatase, brookite, perovskite, and sphene, but the main forms in which titanium dioxide is mainly present are rutile (96%), anatase (longer vertical axis than rutile) and brookite as can be seen in Table 2.1. Rutile is considered as the most stable phase at all temperatures and pressures up to 60kbar, but the small differences in Gibbs free energies at normal temperatures and pressures between the three phases would indicate that the metastable polymorphs are almost as stable as rutile. For the use of TiO$_2$ as photocatalyst, it is therefore advisable to work at room temperature as the transformation of anatase into rutile occurs at increased temperatures and/or pressures where rutile is basically nonexistent at room temperature.
Table 2.1: Properties of the three main polymorphs of TiO$_2$ (Carp *et al.*, 2004)

<table>
<thead>
<tr>
<th>Types</th>
<th>Anatase</th>
<th>Rutile</th>
<th>Brookite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band gap(eV) (Banerjee et al., 2006)</td>
<td>3.2</td>
<td>3.02</td>
<td>2.96</td>
</tr>
<tr>
<td>Wavelength (nm)</td>
<td>387</td>
<td>410</td>
<td>419</td>
</tr>
<tr>
<td>Colour</td>
<td>White-grey</td>
<td>Mainly reddish brown, but also yellowish, bluish or violet</td>
<td>Dark brown</td>
</tr>
<tr>
<td>Discovery</td>
<td>1801 by R.J. Hauy</td>
<td>Major ore, 1803 by Werner in Spain</td>
<td>1825 by A. Levy in Snowen</td>
</tr>
<tr>
<td>Crystal structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refractive index</td>
<td>n_g</td>
<td>n_p</td>
<td>n_g</td>
</tr>
<tr>
<td></td>
<td>2.5688</td>
<td>2.6584</td>
<td>2.9467</td>
</tr>
</tbody>
</table>
Rutile absorbs light with a wavelength of 410nm or lower and anatase light with a wavelength of 387nm or lower. Both of them absorb light in the ultraviolet region but rutile is somewhat closer to the visible region. This leads to the conclusion that rutile is more suitable for the use as a photocatalyst because of the wider range in which it can absorb light. However, it has been found that anatase exhibits higher photocatalytic activity compared to rutile. A reason for this phenomenon can be ascribed to the difference in their energy structure. In both of the TiO$_2$ types, the valence band lies low compared to the conduction band and sufficient oxidation by positive holes can occur. The conduction band is positioned near the oxidation-reduction potential for hydrogen, with anatase positioned closer to this potential than rutile leading to anatase having a stronger reducing power than that of rutile (Amemiya, 2004).

TiO$_2$ is also noteworthy for its wide range of applications. As can be seen from Table 2.1, TiO$_2$ consists of a high refractive index. Due to this property, it is most widely used as a white pigment, i.e. white food colourant, provides whiteness and opacity to products such as paints, coatings, plastics, papers, inks, toothpastes and is also found in many sunscreens because of its capability to absorb strong UV rays. Other applications include the decontamination and purifying of water and air, used in antifogging coatings for mirrors and glass (Fujishima et al., 1999) and used in anticancer treatments for skin and stomach (Fujishma et al., 2000).

Electronic structure of TiO$_2$

Titanium dioxide exists as Ti$^{4+}$ (3d0) and oxygen atoms organised in a distorted octahedral formation. Elemental Ti and O have the following electron configurations (Banerjee et al., 2006):

\[
\text{Ti: } 1s^22s^22p^63s^23p^64s^23d^2 \\
\text{O: } 1s^22s^22p^4
\]

Hybridisation of the 2p orbitals of oxygen and the 3d orbitals of Ti primarily forms the valence band of TiO$_2$, while the conduction band is made up from the pure 3d orbital of Ti. Other 3d-transition metal oxides in this series have 3d-states in both the VB and CB. The fact that TiO$_2$ consist of dissimilar parity (difference in the nature of the CB and VB), unlike the other 3d-transition metal oxides, reduces the recombination of the...
excited electron and positive holes formed during excitation. Different standard potentials for various reduction half reactions can be seen in Figure 2.11, which clearly indicates why titanium dioxide is the chosen semiconductor for the oxidation of water with subsequent production of hydrogen.

![Figure 2.11: Standard potentials for various reduction half reactions compared with the band gap of TiO$_2$ (Atkins & De Paula, 2006)](image)

2.8 Review and recent developments using TiO$_2$

Only 5% of commercial hydrogen is at present produced through the application of renewable energy, mainly through water electrolysis. The remaining 95% of hydrogen is produced from non-renewable fossil fuels as the costs associated with hydrogen production from fossil fuels are much lower. Hydrogen production through possible photocatalytic water splitting using TiO$_2$ and sunlight is a promising way for green and low-cost production of hydrogen.
2.9 Chemical additives to enhance hydrogen production

Addition of electron donors

The first problem that occurs when an electron is excited from the VB to the CB is the rapid recombination of the photo-generated holes in the VB with the excited electrons in the CB which decreases the efficiency of water splitting. A solution to this problem is obtained by adding electron donors, also known as sacrificial agents or hole scavengers, that limits/prevents the recombination of the positive hole with the photo-generated electron by reacting irreversibly with the positive hole in the VB. The chosen electron donor should be added continuously or in excess for they are consumed during the photocatalytic reaction. Higher quantum efficiency is then obtained due to enhanced electron/hole separation.

Organic compounds as electron donors

In a study conducted by Nada et al. (2005), EDTA, methanol, ethanol, CN⁻ and lactic acid were studied with regards to enhancing hydrogen production. The following was obtained in decreasing order of facilitating H₂ production, EDTA > methanol > ethanol > lactic acid. Other inorganic ions that were used as sacrificial agents include S²⁻/SO₃²⁻ (Koca & Sahim, 2002), Ce⁴⁺/Ce³⁺ (Bamwenda & Arakawa, 2001) and IO₃⁻/I⁻ (Abe et al., 2001). In a study conducted by Yang et al. (2006), it was found that alcohols can act as a direct source of hydrogen (Figure 2.12).

Figure 2.12: The photocatalytic formation of hydrogen from ethanol on Pt-TiO₂ (Yang et al., 2006b)
On the surface of TiO$_2$ in the presence of noble metals, the alcohol forms ethoxide and hydroxyl groups between the metal particles and TiO$_2$ by dissociative adsorption as can be seen in Figure 2.13. The ethoxide species act as effective hole traps and the hydroxyls are reduced by the stabilised electrons from the metal particles. From a selection of alcohols methanol was found to be most effective and active for assisting in hydrogen production (Bamwenda et al., 1995).

![Figure 2.13: An illustration of how dissociative adsorption occurs on the Pt-TiO$_2$ surface. The presence of Pt stabilizes the excited electrons in the conduction band](image)

Addition of carbonate salt or iodide anion

When a photocatalyst is irradiated, hydrogen evolution is observed but not always oxygen. The reason for this observation can be ascribed to peroxo-species that can form on the catalyst during irradiation (Mills & Porter, 1982a) or the presence of Ti$^{3+}$ in the fresh catalyst (Kiwi, 1986). Extensive investigations of promoted semiconductors such as Pt-TiO$_2$ have been conducted and the problem just mentioned occurred in these studies. Addition of carbonate salts, especially Na$_2$CO$_3$, was found to significantly enhance the overall decomposition of water as the photo-generated holes were prevented from reacting with the excited electrons because they were consumed by several carbonate species. Species such as HCO$_3^-$, CO$_3^{2-}$, HCO$_3^-$ and C$_2$O$_6^{2-}$ were found to cover the surface of the Pt-TiO$_2$ catalyst through infrared studies and these carbonate species were formed as a result of the following reactions (Ni et al., 2007):
The backward reaction to form water was also minimized by the decomposition of peroxy-carbonates ($C_2O_6^{2-}$) into O_2 and CO_2, enhancing the desorption of O_2 from the photocatalyst.

\[
CO_2^{2-} + H^+ \rightleftharpoons HCO_3^-
\] \hspace{1cm} 2.14

\[
HCO_3^- + h^+ \rightleftharpoons HCO_3
\] \hspace{1cm} 2.15

\[
HCO_3^- \rightleftharpoons H^+ + CO_3^-
\] \hspace{1cm} 2.16

\[
2CO_3^- \rightarrow C_2O_6^{2-}
\] \hspace{1cm} 2.17

In turn the CO_2 was converted into HCO_3^-, again affecting H_2 production (Ni et al., 2007). It was also found that the concentration of Na_2CO_3 added determined the evolution rates of H_2 and O_2 (Sayama & Arakawa, 1992), but the mechanism of how the Na_2CO_3 affects the reaction rate has not been fully clarified (Matsuoka et al., 2007).

Another study (Abe et al., 2003) concluded that the backward reaction, caused by the Pt loaded onto the TiO$_2$ surface, can effectively be suppressed by the addition of iodide. In the absence of iodide, only a small amount of H_2 but no O_2 was evolved. In the presence of a small amount of NaI in the photocatalyst suspension, a stoichiometric evolution ratio of H_2:$O_2 = 2:1$ was observed. In the presence of high concentrations of NaI, the evolution rate decreased to a stoichiometric ratio of H_2:$O_2 = 0.15$. This phenomenon was speculated to be due to the fact that the oxidation of I^- was more favoured than the oxidation of water. The following reactions occur in acidic and basic solutions (Abe et al., 2001):

\[
2I^- + 2h^+ \rightarrow I_2 (or I_3^-)
\] \hspace{1cm} \text{acidic solution} \hspace{1cm} 2.19

\[
I^- + 6OH^- + 6h^+ \rightarrow IO_3^- + 3H_2O
\] \hspace{1cm} \text{basic solution} \hspace{1cm} 2.20

Compared to the Na_2CO_3 system (pH~11, 2M), the iodide reaction can be carried out under milder conditions due to the small amounts of NaI required (pH~6-7) and
important to note for both the systems is that adding too much of the carbonate salt or iodide anion will reduce the efficiency of the systems as it will decrease light harvesting to the catalyst surface (Sayama & Arakawa, 1996).

2.10 Enhancement of \(H_2 \) production by photocatalyst modification techniques

Noble metal loading

Many studies have been conducted on the enhancement of TiO\(_2\) photocatalysts, some working more efficiently than others. Enhancement includes the deposition of, for example, Pt, Au, Pd, Rh, Ni, Cu and Ag onto the TiO\(_2\) surface. As electrons are excited into the CB they are transferred to the noble metal particles present on the surface of TiO\(_2\), which stabilises these electrons due to the fact that the Fermi levels are now shifted lower than those of TiO\(_2\) (Ni et al., 2007). Photo-generated holes remain in the VB of the TiO\(_2\), thus enhancing electron/hole separation.

In order to determine whether a metal can be considered as a loading agent it should possess at least the following three properties:

a) it should be resistant to oxidation during the catalytic process,

b) as mentioned it should be an efficient electron trap to prevent electron-hole recombination and

c) it must be efficient for H-H recombination (\(H_2 \) production).

Electron transfer from TiO\(_2\) to Pt particles was observed by Anpo and Takeuchi (Anpo & Takeuchi, 2002) after they investigated this electron transfer by employing Electron Spin Resonance (ESR). It was found that with the increase in irradiation time, the signals of Ti\(^{3+}\) present in TiO\(_2\) increased, but that the loading of Pt reduced the amount of Ti\(^{3+}\). The effect of the Pt concentration loaded onto TiO\(_2\) and also the method of loading was investigated by Ikuma and Bessho (Ikuma & Bessho, 2007) and they found that an increase in the concentration of Pt loaded increased the amount of \(H_2 \) evolved but only up to an optimal concentration. Three different loading methods were investigated, i.e. an \(H_2 \) reduction method, a photo-catalytic method and a formaldehyde method which was found to be the most efficient.
Metal ion doping

When a semiconductor consists of the intrinsic property of conductivity in the pure state it is known as an intrinsic semiconductor. The Fermi level \((E_F) \), is an energy level situated near the middle of the band gap. It is the probability where an electron can be present, either near the VB or near the CB (Miessler & Donald, 2004). In contrast to intrinsic semiconductors, extrinsic semiconductors' (Figure 2.14) conductivity is controlled by the process known as doping (Kotz et al., 2006), where a chosen material is added to the crystalline structure of the photocatalyst.

![Figure 2.14: Movement of the Fermi level in extrinsic semiconductors after doping](image-url)

Figure 2.14: Movement of the Fermi level in extrinsic semiconductors after doping
If the dopant that is added consists of more valence electrons than the host material, the catalyst is named an n-type semiconductor and the Fermi level of that semiconductor moves closer to the conduction band. If the dopant consists of fewer valence electrons than the host material it is named a p-type semiconductor and the Fermi level moves closer to the valence band (Miessler & Donald, 2004; Jana, 2000).

The effectiveness of doping works on the basis of creating impurity energy levels into the TiO$_2$ lattice structure either by placing the dopant between the other atoms (interstitial) of the chosen lattice or by replacing atoms of the chosen crystalline structure (substitutional) as can be seen in Figure 2.15 (Miessler & Donald, 2004).

![Figure 2.15: a) Interstitial and b) substitutional doping of TiO$_2$](image)

Choi et al. (1994) studied the effect of enhancing photoreactivity by doping TiO$_2$ with 21 different metal ions and found that among the 21 studied, Fe, Mo, Ru, Os, Re, V and Rh ions increased the photoreactivity and expanded the photo-response of TiO$_2$ into the visible spectrum. A study conducted by Ohno et al. (Atkins et al., 2006) proved that by doping TiO$_2$ powder with Ru in the presence of iron (III) ions shifted the photo-reactivity of the catalyst into the visible region and that effective oxygen evolution occurred. Another method which also modifies the TiO$_2$ lattice structure is metal ion-implantation where the semiconductor is injected with transitional metal ions such as V, Cr, Mn, Fe and Ni, by high energy bombardation. This modifies the electronic structure of the semiconductor and as a consequence shifts the photo-response into the visible region (Ni et al., 2007). It is important to emphasise that the photocatalytic reactivity of the metal ion-implanted TiO$_2$ retained the same photocatalytic efficiency as the original unimplanted TiO$_2$ under UV light irradiation. As a consequence, these results clearly suggest that altering the crystal lattice of TiO$_2$ by means of implantation does not work
as electron-hole recombination centres but only modifies the electronic properties of the TiO$_2$ photo-catalyst (Anastas, 2009).

Sensitisation

The word sensitisation refers to a process where something is made sensitive to certain physical or chemical stimuli and in previous studies dye sensitisation was used to utilise visible light for energy conversion in water splitting. Table 2.2 lists dyes that are frequently used for this purpose. The basis on which a dye works as sensitiser is as follows (Figure 2.16): when a dye is excited by visible light, an excited dye is formed and can inject electrons to the CB of the semiconductor which in turn can migrate to particles loaded onto the semiconductor and so initiate desired catalytic reactions. By adding sacrificial agents such as IO$_3$/I$^-$, as mentioned in section 2.9, the dyes can be regenerated and continuous addition is not necessary. Some dyes, for example, O/EDTA and T/EDTA, are able to absorb visible light in the absence of a semiconductor and produce hydrogen at very low rates by acting as a reducing agent (Bi & Tien, 1984).

<table>
<thead>
<tr>
<th>Dye</th>
<th>λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylene blue (MB)</td>
<td>665</td>
</tr>
<tr>
<td>Acridine orange (AO)</td>
<td>492</td>
</tr>
<tr>
<td>Crystal violet</td>
<td>578</td>
</tr>
<tr>
<td>Malachite green</td>
<td>625</td>
</tr>
<tr>
<td>Methyl violet</td>
<td>580</td>
</tr>
</tbody>
</table>
2.11 Lasers as an energy source employed for photocatalysis and general principles

The word laser is an acronym formed from *Light Amplification by Stimulated Emission of Radiation* and simultaneously describes how the light is produced. After the introduction of the term photon by Albert Einstein in 1905, Theodore Herold Maiman, an American physicist, was the first man to construct a laser in 1960 by the excitation of ruby atoms with a flash light (Bush *et al.*, 2007). The use of lasers increased dramatically due to their unique properties and applications. In the modern world today, lasers are present in various forms ranging from large industrial lasers used for cutting and welding, to smaller lasers used in the medical field, to harmless laser used in the entertainment industry, naming only a few (Anon, 2007).

Wave properties of light

The true nature of light was first predicted by Maxwell’s equations in 1864 when he showed that light can be presented as a travelling electromagnetic wave (Silfvast, 2004). An electromagnetic wave consists of an electric (E) field and a magnetic (B) field which are perpendicular to each other as well as the direction of the propagation of the EM-wave (Halliday *et al.*, 2001). Figure 2.17 illustrates the propagation of an electromagnetic wave.
Electromagnetic waves are characterised by their phase, frequency, direction and the vector property of the transverse field oscillation and can be polarised. From Figure 2.17 it is clear that light consists of planes in which the waves oscillate in a random orientated manner about the direction of propagation. Interference can occur for two sources of electromagnetic waves. Interference can be constructive or destructive depending on the relative phase between them. Only for a coherent light source will one plane of oscillation be dominant. There are two basic properties which describe coherent interference: temporal and spatial coherence. Temporal coherence describes the correlation between signals observed at different moments in time (Figure 2.18) where spatial coherence describes the relation between signals at different points in space (Figure 2.19).
Nd:YAG Laser

YAG is the acronym for yttrium aluminium garnet (Y$_3$Al$_5$O$_{12}$) and the term YAG laser is usually used for solid state lasers (Paschotta, 2008). In one form, YAG lasers can consist of Nd$^{3+}$ ions and is then known as an Nd-YAG laser. Other rare-earth-doped YAG crystals also exist which include ytterbium, erbium, thulium or holmium. An Nd-YAG laser can operate at different wavelengths which are listed in Table 2.3.

Table 2.3: Operating wavelengths of a Nd:YAG laser

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>266, 355, 532</td>
<td>Generated by frequency doubling, frequency tripling, and frequency quadrupling</td>
</tr>
<tr>
<td>946</td>
<td>Functions as a quasi-three level laser</td>
</tr>
<tr>
<td>1064</td>
<td>Most common wavelength</td>
</tr>
<tr>
<td>1123, 1319, 1338, 1444</td>
<td>Other wavelengths</td>
</tr>
</tbody>
</table>
Most of the research studies reporting on photocatalysis are based on the use of conventional lamps in the UV and visible region. Very little work has been conducted on photocatalysis where a laser acts as the energy source (Gondal et al., 2004a; Gondal et al., 2004b; Hameed & Gondal, 2004; Hameed et al., 2004b; Gondal et al., 2002).

Duonghong et al. (1981), conducted laser photolysis experiments with Ru(bpy)$_3^{2+}$/MV$^{2+}$ (methyl viologen) aqueous solution as sensitizer at 602 nm and 470 nm in the presence of Pt/RuO$_2$-TiO$_2$ bifunctional catalysts leading to hydrogen and oxygen production from water.

Fe$_2$O$_3$, WO$_3$, TiO$_2$ (rutile) and NiO catalysts were irradiated under a strong laser beam at 355 nm in the presence and absence of electron capturing agents such as Fe$^{3+}$, Ag$^+$ and Li$^+$ for the first time by Gondal et al. (2004a). Optimization was done for WO$_3$ and NiO and found to be optimum for 400mg WO$_3$ and 300mg NiO at 100mJ. TiO$_2$ (rutile) was only used for comparative reasons with regard to the amount of H$_2$ being produced. The production of hydrogen was observed for all the catalysts investigated in this study (Hameed & Gondal, 2004).

Another study conducted by Hameed et al. (2004a) investigated the pH changes under UV laser illumination for fingerprinting the action of oxygen and metal ions as electron capture agents, and the action of methanol as hole-capture agent.

Following on the above-mentioned literature survey there exists a gap for investigating the effect of laser light and laser energy on the photocatalytic production of H$_2$ employing other catalysts apart from those mentioned above, in different aqueous solutions.
CHAPTER 3: EXPERIMENTAL

3.1 Materials

Commercially available Degussa P-25 TiO₂ powder with an anatase/rutile ratio of 86.3/13.7 was used throughout. Chloroplatinic acid (H₂PtCl₆·6H₂O), methanol (99.5%), hydrochloric acid (HCl, 32%) and ethanol (99.5%) were obtained from MERCK and SIGMA-ALDRICH and used without further purification.

3.2 Preparation of Pt-TiO₂ catalysts

A photocatalytic method was employed to prepare all photocatalysts. A stock solution containing 400ml water, 100ml HCl and 25g H₂PtCl₆·6H₂O was prepared, using all the available salt, due to the hygroscopic nature of H₂PtCl₆·6H₂O. All photo-reaction experiments were carried out in a photocatalytic reactor system, which consisted of a borosilicate glass cylinder containing a 0.7 W/m² UV light. Rubber rings were used at both ends of the lamp to ensure that none of the solution leaks out when pumping it through the glass cylinder. The glass cylinder was covered with foil and black tape on the outside to ensure maximum exposure of the photocatalysts to the UV light (Figure 3.1). 1g of TiO₂ was placed in a 500ml water, H₂PtCl₆·6H₂O (Table 3.1) and ethanol (3g) solution to produce a suspension through magnetic stirring. The suspension was pumped through the continuous flow-through UV light reactor with a flow rate of 400ml/min for 25min at 20°C as shown in Figure 3.2. The solution was subsequently filtered to yield Pt deposited TiO₂ powder (Figure 3.3) and placed in a vacuum oven at 80°C for 30min to dry and to evaporate all the ethanol. Samples of the filtrate were taken for ICP analysis.

Figure 3.1: Borosilicate glass cylinder containing a 0.7 W/m² UV light
Table 3.1: Amounts of $\text{H}_2\text{PtCl}_6\cdot6\text{H}_2\text{O}$ used for the individual loadings

<table>
<thead>
<tr>
<th>Run</th>
<th>wt% Pt</th>
<th>$\text{H}_2\text{PtCl}_6\cdot6\text{H}_2\text{O}$, ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.2659</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.5319</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>0.7978</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1.0638</td>
</tr>
</tbody>
</table>

Figure 3.2: Schematic diagram of the photocatalytic reaction system used for loading 0.5–2wt% Pt-TiO$_2$: a) Peristaltic pump, b) Suspended Pt-TiO$_2$ solution and magnetic stirrer, c) UV light reactor

3.3 Unsupported TiO$_2$ sample

Unsupported TiO$_2$ (Figure 3.3a) was prepared by pre-treating it in identical fashion to the corresponding Pt-TiO$_2$ samples, but without incorporating the metal. The band gap of the pre-treated TiO$_2$ was compared with untreated TiO$_2$.
3.4 Characterisation of the Pt-TiO₂ catalysts

X-ray Diffraction (XRD)

Structural characterisation was performed by X-ray powder diffraction measurements, carried out on a Philips X-ray diffractometer (PW 3040/60 X'Pert Pro) with Cu Kα radiation (λ=1.540598nm). An acceleration voltage of 40kV and an emission current of 45mA were employed. The measurements were performed between 15° and 79° (2θ) and point scanning of 0.02 (2θ) with 17s counting time at each step. The rutile and anatase contents were calculated from the intensity of the most intense diffraction peaks, with rutile (110) at 27.43° and anatase (101) at 25.29°, according to the JCPDS database.
Transmission Electron Microscopy (TEM)

Transmission electron microscopy analyses were conducted employing a Philips CM10 electron microscope (Philips Netherlands) working with a 100kV accelerating voltage. The samples were sonically dispersed in an ethanol solution for 2 min and a drop of the solution was deposited onto a copper grid covered by a porous carbon membrane for observation.

Diffuse Reflectance Spectroscopy (DRS)

The UV-Vis reflectance spectra of the photocatalysts were recorded by making use of a diffuse reflectance spectrophotometer (Figure 3.4), a white Spectralon standard as reference and a Specord S600 (Analytika Jena) UV-VIS spectrophotometer. Settings used in the DRS measurements are tabulated in Table 3.2. The band gaps for the individual photocatalysts were calculated by employing the Kubelka-Munk equation. WinAspect, Excel and SigmaPlot were employed to process the data.

Table 3.2: Parameters used for DRS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamp</td>
<td>Halogen lamp (HL)</td>
</tr>
<tr>
<td>Integration time (ms)</td>
<td>780-822</td>
</tr>
<tr>
<td>Accumulation</td>
<td>5</td>
</tr>
<tr>
<td>Dark current correction</td>
<td>YES</td>
</tr>
</tbody>
</table>

Figure 3.4: Integrating sphere used for DRS measurements
Inductive Coupled Plasma (ICP)

The efficiency of the loading method was evaluated by inductive couple plasma analysis. ICP was conducted employing an iCAP 6000 Series (Thermo Scientific DUO) system incorporated with an Nd-YAG laser, 266nm range. Analyses were done in radial and axial view and processed utilizing iTEVA software.

Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX)

The surface morphology of the catalysts was analysed with a FEI QUANTA 200 ESEM with an integrated OXFORD X-SIGHT EDS system operating at a 15.00 kV voltage. The samples were deposited on a standard aluminium holder and coated with Pt for observation.

3.5 Hydrogen production and measurements

Reaction vessel

Pictures of the reaction vessel used in the laser studies are presented in Figure 3.5. A special glass cell (40 mm diameter, 150 mm length and 3 mm thick), equipped with optical grade N-BK7 (40mm) windows for transmission of UV and visible laser beams, was fabricated. The reaction cell was built into an ultrasonic bath (Jeken PS-10A) to ensure that the catalysts stayed in suspension and also to enable change in temperature when required. The whole vessel can be taken apart for effective cleaning between measurements and can also be assembled very quickly (Figure 3.6). Three outlet/inlet openings were constructed on top of the glass cell (Figure 3.6a). The two openings (Figure 3.6a(1)) next to each other were connected to a gas sampling attachment (Figure 3.7) equipped with a rubber septum (Thermogreen™ LB-2 Septa) at the top (Figure 3.7 (2)) enabling gas sampling. A gas dispenser was fabricated to fit the length of the bottom of the cell to ensure an even dispersion of the carrier gas (Ar) which enters at the bottom of the vessel through the third opening (Figure 3.6a(3)) constructed in the middle of the vessel. The gas dispenser was designed with round indents on the sides to ensure that the Pt-TiO₂ suspension did not block the outlets (Figure 3.6c). Rubber o-rings were used to prevent any leakages.
Figure 3.5: Specially designed reaction vessel used in the laser studies a) side view b) top view

Figure 3.6: a) Individual components of a specially designed reaction vessel b) Plastic rings used to keep the gas dispenser in place c) A side-front view to show the round indent of the gas dispenser
Experimental setup

The laser measurements were conducted by using the third harmonic wavelength (355 nm) from an Nd:YAG pulsed laser (EKSPLA, NT 342B-SH-10-AW) with a pulse width (FWHM-Full Width at Half Maximum) of 3.6 ns and a pulse rate of 180µs. The laser power-fluence was kept at 22.1 MW/cm² and the laser beam width at 8 mm (Figure 3.8). Both the laser and the gas chromatograph (GC) were switched on an hour prior to a run was to be conducted. This enabled the laser to stabilize at 40 mJ (the set value) and the GC equipped with a TCD to stabilize at the chosen settings (Table 3.4). During this time the sample and reaction vessel were prepared for the run. 0.1 g of a chosen catalyst was weighed and suspended with an ultrasonic bath in 100 ml of solution (Table 3.3).
The reaction vessel was put together as shown in Figure 3.5 and the ultrasonic bath was filled with water. It was then placed in line with the laser (Figure 3.9e), 25 cm from the laser, and 10 cm in front of the beam stopper (Figure 3.9b). The incident laser energy was 40 mJ and the laser energy of the exiting beam at the back of the reaction cell, after penetrating through the catalysts solution, was 0.4 mJ. Due to the use of an ultrasonic bath for keeping the catalyst in suspension, exposure of all the catalysts to the incident laser beam was ensured. The gas sampling attachment (Figure 3.9c) was connected to the reaction vessel and kept in place with a retort stand and clamp (Figure 3.9d).

Argon was then connected to the reaction vessel and flowed through the vessel at a constant flow rate of 2 NL/h for 10 min prior to irradiation and maintained for the duration of the experiment (60 min) with the ultrasonic bath set on a constant temperature of 25 °C. The catalyst sample (0.1 g photocatalyst suspended in a 1:1 aqueous methanol solution (100 mL)) was poured into the vessel after which the laser was focused on the vessel window. A gas sample was taken manually every 10 min with a 1 ml gas-tight syringe and the amount of hydrogen present in the sample was measured with the gas chromatograph. An average of 3 repetitions was conducted to construct graphs for the determination of the amount of H₂ produced.

Figure 3.8: Diameter of laser beam
Table 3.3: Experimental parameters

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>MilliQ water (min)</th>
<th>50 ml methanol:50 ml MilliQ water (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treated TiO₂</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>0.5wt % Pt-TiO₂</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>1.0wt% Pt-TiO₂</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>1.5wt% Pt-TiO₂</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>2.0wt% Pt-TiO₂</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>None</td>
<td>60</td>
<td>120</td>
</tr>
</tbody>
</table>

Figure 3.9: Experimental setup for studying laser induced photocatalytic water splitting
Gas chromatography

A gas chromatograph (Clarus 500, Perkin Elmer) equipped with an 8 m, 0.53 mm inner diameter, molecular sieve 5A plot column, a TCD (Thermal Conductivity Detector) and the programme depicted in Table 3.4, was used to analyse the amount of hydrogen which evolved. A 1% hydrogen (balance nitrogen) gas, obtained from Supelco, (Scotty analysed gases), was used as standard to convert the amount of hydrogen being produced to ppm. Processing of the data was conducted with TotalChrom and SigmaPlot software.

<table>
<thead>
<tr>
<th>GC Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injector</td>
<td>90°C</td>
</tr>
<tr>
<td>Oven</td>
<td>75°C</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>Argon</td>
</tr>
<tr>
<td>Carrier control</td>
<td>Programmed velocity; set point 80 for 6min</td>
</tr>
<tr>
<td>Split control</td>
<td>2:1</td>
</tr>
<tr>
<td>TCD temperature</td>
<td>200°C</td>
</tr>
<tr>
<td>Range</td>
<td>1</td>
</tr>
<tr>
<td>Gases</td>
<td>Make up–10 ml/min</td>
</tr>
<tr>
<td></td>
<td>Reference gas–14 ml/min</td>
</tr>
</tbody>
</table>
CHAPTER 4: RESULTS AND DISCUSSION

4.1 Characterisation of the various photocatalysts

Optical characterisation using diffuse reflectance spectroscopy

From the diffuse reflectance spectra of TiO\textsubscript{2} and the various Pt-TiO\textsubscript{2} photocatalysts (Figure 4.1) it is obvious that the untreated TiO\textsubscript{2} powder shows strong photo-absorption only at wavelengths up to 430nm, which is in good agreement with literature (Ohno et al., 1999). On the other hand, the pre-treated TiO\textsubscript{2} shows photo-absorption in the visible region up to 460nm, which then gradually decreases with increasing wavelength. This may be due to defects that were generated within the TiO\textsubscript{2} as a result of prior exposure to light, thus altering the band gap. The reflectance spectra of the various Pt-TiO\textsubscript{2} photocatalysts show almost the same photo-absorption pattern as that of untreated TiO\textsubscript{2}, just at lower percentage reflection and with different gradients. This is due to the change in absorption of light caused by the different amounts of loaded metal (Sakthivel et al., 2004).

![Diffuse reflectance spectra of TiO\textsubscript{2} and the various Pt-TiO\textsubscript{2} photocatalyst](image)

Figure 4.1: Diffuse reflectance spectra of TiO\textsubscript{2} and the various Pt-TiO\textsubscript{2} photocatalyst
Pt loaded onto TiO$_2$ in the powder form forms clusters (Linsebigler et al., 1996). If the Pt clusters formed upon loading are roughly equal in size, constant absorption will be seen in the visible region (Sakthivel et al., 2004). This is ascribed to the fact that Pt clusters give rise to localised energy levels (Sakthivel et al., 2004) and capture the excited electrons in the TiO$_2$ conduction band produced by photo-absorption (Linsebigler et al., 1996). According to various articles, the capture of electrons by the Pt clusters lessens electron-hole recombination and thereby facilitates transfer of holes and electrons to the reactants adsorbed on the TiO$_2$ surface (Ni et al., 2007; Linsebigler et al., 1996). The diffuse reflectance spectra were converted to Kubelka-Munk graphs by plotting $[F(R_{\infty})hv]^2$ against hv(eV) in order to obtain values for the band gaps, so as to estimate where the individual photocatalysts photo-absorb. The band gaps can be obtained from the intersection between the linear fit and the photon energy axis (see Appendix a). Band gap values for Pt-TiO$_2$ photocatalysts synthesised by the photo-reduction loading method and calculated by the Kubelka-Munk method are extremely limited (Chen et al., 2007; Sakthivel et al., 2004; Li & Li, 2002; Sanchez & Lopez, 1995). The values of the band gaps are tabulated in Table 4.1.

Table 4.1: Band gap values for the various photocatalysts

<table>
<thead>
<tr>
<th>Loading (nm)</th>
<th>Band gap (eV)</th>
<th>Band gap ($\times 10^{-19}J\times 10^{21}$)</th>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated TiO$_2$</td>
<td>3.236 ± 0.0286</td>
<td>5.184 ± 4.588</td>
<td>383.210 ± 3.362</td>
</tr>
<tr>
<td>Pre-treated TiO$_2$</td>
<td>3.201 ± 0.0101</td>
<td>5.128 ± 1.629</td>
<td>387.349 ± 1.228</td>
</tr>
<tr>
<td>0.5wt% Pt-TiO$_2$</td>
<td>3.196 ± 0.0236</td>
<td>5.120 ± 3.789</td>
<td>387.978 ± 2.878</td>
</tr>
<tr>
<td>1.0wt% Pt-TiO$_2$</td>
<td>3.165 ± 0.0280</td>
<td>5.071 ± 4.486</td>
<td>391.711 ± 3.481</td>
</tr>
<tr>
<td>1.5wt% Pt-TiO$_2$</td>
<td>3.131 ± 0.0303</td>
<td>5.016 ± 4.866</td>
<td>396.037 ± 3.856</td>
</tr>
<tr>
<td>2.0wt% Pt-TiO$_2$</td>
<td>3.100 ± 0.0279</td>
<td>4.966 ± 4.477</td>
<td>399.972 ± 3.621</td>
</tr>
</tbody>
</table>
The values obtained for both the pre-treated and untreated TiO$_2$ are in excellent agreement with the commonly accepted values of 3.2 eV and 3.22 eV published for TiO$_2$ (anatase), keeping in mind that the anatase:rutile relation and the preparation method have an influence on the value of the band gap (Chung-Chih et al., 2011; Yasuro & Bessho, 2007; Banerjee et al., 2006; Sréthawong & Yoshikawa, 2005; Sanchez & Lopez, 1995; Sclafani et al., 1990). Due to this fact, few articles could be found which could be used to compare the band gap values obtained for the Pt-TiO$_2$ photocatalysts (Huang et al., 2010). Therefore the band gap values obtained for the Pt-TiO$_2$ photocatalysts, subjected to the specific preparation conditions of this study, are unique. The different Pt-TiO$_2$ photocatalysts all exhibited a characteristic band gap which shifted slightly towards higher wavelengths as the amount of loaded metal increased. This is a clear indication that lower-energy transitions are possible as the band gap shifts towards the visible region. Thus for wavelengths (λ) shorter than 370nm, electrons (e$^-$) will be excited from the valence band (mainly from 2p oxygen orbitals hybridized with 3d Ti orbitals) to the conduction band (pure 3d Ti$^{4+}$ orbital) (Sakthivel et al., 2004). Work conducted by Driessen and Grassian entails the deposition of Pt (0.1-, 0.5-, 1.0- and 2.0% onto the surface of TiO$_2$ (Degussa, P25) particles and predicting the absorption properties of photocatalysts by employing the Maxwell-Garnett theory. The UV-Vis spectrum was recorded for each photocatalyst and an increase in the absorption of Pt-TiO$_2$ at longer wavelengths compared to pure TiO$_2$ was observed and correlated with the predictions of the Maxwell-Garnett theory. A possibility for the absorption at longer wavelengths is due to the presence of new electronic states (as a result of added Pt) which lie in the band gap (Driessen & Grassian, 1998). Work conducted by Schierbaum et al also showed the presence of newly derived electronic states below the band gap due to the presence of Pt.

Determination of crystal size by XRD

The TiO$_2$ and Pt-TiO$_2$ samples were examined by XRD to determine their phase conditions (Figure 4.2). The XRD spectra of these samples showed the presence of three main peaks at $2\theta = 25.29$, 38.59 and 48.08 respectively, regarded as an attributive indication of anatase (101). In addition to the characteristic peak of the 101 plane, diffraction peaks corresponding to rutile (110) also appeared on the spectra at $2\theta = 27.43$, 36.98 and 41.28, respectively. No clear Pt peaks could, however, be observed.
Figure 4.2: XRD of TiO$_2$ and Pt loaded TiO$_2$ photocatalysts

For this study the values of D (crystallite size) and W_A (weight percentage anatase) were of interest (Table 4.2). The values obtained for D clearly indicated an increase which correlates with the increased amount of Pt that was loaded. However, the XRD pattern of TiO$_2$ did not change noticeably because the deposition of Pt mainly took place on the surface of TiO$_2$ (Jian-Wei et al, 2011). From the W_A values it is clear that the predominant phase is anatase.
Table 4.2: D and W_A values obtained by XRD for the various photocatalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>D(Å)</th>
<th>W_A (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treated TiO$_2$</td>
<td>142.6</td>
<td>46.12</td>
</tr>
<tr>
<td>Untreated TiO$_2$</td>
<td>177.4</td>
<td>52.95</td>
</tr>
<tr>
<td>0.5wt% Pt-TiO$_2$</td>
<td>181.8</td>
<td>53.10</td>
</tr>
<tr>
<td>1.0wt% Pt-TiO$_2$</td>
<td>185.4</td>
<td>53.17</td>
</tr>
<tr>
<td>1.5wt% Pt-TiO$_2$</td>
<td>186.6</td>
<td>53.70</td>
</tr>
<tr>
<td>2.0wt% Pt-TiO$_2$</td>
<td>187.6</td>
<td>54.62</td>
</tr>
</tbody>
</table>

Microstructure and morphology of Pt modified catalysts

Transmission electron microscopy (TEM) analysis was conducted on the samples in order to find the grain size, structure and shape of the Pt-TiO$_2$ particles. The results obtained are shown in Figure 4.3. The small dark spots on the large TiO$_2$ particles are platinum particles/clusters (Linsebigler et al., 1996). It was, however, difficult to find visible Pt particles for they are too small or too thin (Abe, R. et al., 2001). The TiO$_2$ particle size ranged from 40 to 130nm and the Pt particles/clusters were randomly dispersed on the TiO$_2$ crystal surface with a diameter of 11nm to 22 nm.
RESULTS AND DISCUSSION

Figure 4.3: TEM results for the a) 0.5wt%, b) 1.0wt%, c) 1.5wt% and d) 2.0wt% Pt loadings with a scale of 250 nm

SEM and EDX

Microphotographs of the untreated, pre-treated and various Pt-TiO₂ photocatalysts were obtained by scanning electron microscopy (Figure 4.4). All of the microphotographs were taken at the same magnification to compare the powder appearance of the various photocatalysts. It was found that the untreated TiO₂ differed from the other photocatalysts that were subjected to the photo-deposition method. This indicated that the photo-deposition method resulted in the development of aggregates of tiny crystals (Sakthivel et al., 2004) and that repeatable results in respect of surface appearance were obtained.
RESULTS AND DISCUSSION

Figure 4.4: SEM images a) untreated TiO$_2$, b) pre-treated TiO$_2$, c) 0.5wt% Pt-TiO$_2$, d) 1.0wt% Pt-TiO$_2$, e) 1.5wt% Pt-TiO$_2$ and f) 2.0wt% Pt-TiO$_2$
The composition of the various photocatalysts was determined by energy-dispersive X-ray (EDX) analysis and the quantitative results are summarized in Table 4.3. The results obtained indicate that the actual weight percentage of Pt loaded onto the TiO$_2$ deviate slightly from the calculated amounts loaded. The greatest deviation was seen for the 1wt% Pt-TiO$_2$.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Ti(wt%)</th>
<th>Pt(wt%)</th>
<th>O(wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated TiO$_2$</td>
<td>59.95</td>
<td>40.05</td>
<td></td>
</tr>
<tr>
<td>Pre-treated TiO$_2$</td>
<td>59.95</td>
<td>40.05</td>
<td></td>
</tr>
<tr>
<td>0.5wt% Pt-TiO$_2$</td>
<td>59.55</td>
<td>0.57</td>
<td>39.88</td>
</tr>
<tr>
<td>1.0wt% Pt-TiO$_2$</td>
<td>59.36</td>
<td>0.84</td>
<td>39.79</td>
</tr>
<tr>
<td>1.5wt% Pt-TiO$_2$</td>
<td>58.94</td>
<td>1.45</td>
<td>39.61</td>
</tr>
<tr>
<td>2.0wt% Pt-TiO$_2$</td>
<td>58.55</td>
<td>2.01</td>
<td>39.44</td>
</tr>
</tbody>
</table>

4.2 Photocatalytic H$_2$ production

Selection of laser energy (40mJ)

From the available literature it is evident that lasers were employed as the irradiation source for the splitting of water by incorporating TiO$_2$ (rutile only) at 100mJ laser energy as a minimum. The reason for selecting this energy was that it showed to be optimum for other catalysts, i.e. WO$_3$, NiO, Fe$_2$O$_3$, in terms of H$_2$ production, but not specifically for TiO$_2$ (rutile). As part of this study the laser was operated at 40mJ, not because it is the optimum energy for H$_2$ production, but due to the following reasons.

1. There is no available literature where Pt-TiO$_2$ was studied by laser at any wavelength or laser energy. Higher laser energies result in higher amounts of
H₂ being produced according to literature (Gondal et al., 2004a). By enhancing the photocatalytic properties of TiO₂ by depositing Pt on the surface, will hypothetically result in lower incident laser energy being required to achieve H₂ production.

2. Laser light and sunlight can’t be compared due to the special properties of laser light, therefore to work at the maximum energy of the laser (100mJ) will never be comparable to sunlight. It makes more sense to work at lower laser energy, even though it cannot be compared to sunlight but the knowledge obtained can possibly be applied to future work employing sunlight as the irradiation source (Gondal et al., 2004a). Lower energy input is more economically viable than higher energy input.

3. As will be explained in the following paragraph, the higher the laser energy, the more rapidly conversion from the anatase phase to the rutile phase will occur, which is undesirable for it will change the properties of the photocatalyst too fast.

The change in physical properties of TiO₂ following exposure to laser irradiation

The pre-treated TiO₂ and the Pt-TiO₂ photocatalysts present in both the pure water and methanol:water solution changed colour from white and different shades of grey to a dark blue-grey colour (Figure 4.5) upon irradiation and is confirmed by literature (Zheng & Lim, 2004; Lee et al., 2003). This colour change was observed as soon as the photocatalysts were irradiated with the laser light (40 mJ). At higher pulse powers the colour changes of the photocatalysts were more pronounced and turned darker much faster. Subsequent to irradiation and the resulting colour change, the pre-treated and Pt-TiO₂ photocatalysts were analysed by XRD.

![Figure 4.5](image-url)

Figure 4.5: a) Pre-treated TiO₂, b) Pt-TiO₂ photocatalyst c) blue-grey colour of the various photocatalysts after laser irradiation
Table 4.4 summarises the effect of laser light on the rutile:anatase ratio for the various Pt-TiO₂ photocatalysts and a slight increase in the rutile:anatase ratio is evident. Work conducted by Exarhos also reported a similar change in the transition of anatase to rutile for TiO₂ (Exarhos, 1986). The rutile:anatase ratio shifted from 0.15 to 0.21 for untreated TiO₂ (Lee et al., 2003).

<table>
<thead>
<tr>
<th>Photocatalyst</th>
<th>Rutile:Anatase Ratio Before Laser Irradiation</th>
<th>Rutile:Anatase Ratio After Laser Irradiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5wt% Pt-TiO₂</td>
<td>0.1641</td>
<td>0.1820</td>
</tr>
<tr>
<td>1.0wt% Pt-TiO₂</td>
<td>0.1614</td>
<td>0.1682</td>
</tr>
<tr>
<td>1.5wt% Pt-TiO₂</td>
<td>0.1607</td>
<td>0.1723</td>
</tr>
<tr>
<td>2.0wt% Pt-TiO₂</td>
<td>0.1473</td>
<td>0.1560</td>
</tr>
</tbody>
</table>

A simple logical explanation for the colour changes is that the intense, linear focussing of laser light produces extreme localised energy centres (Ready, 1971), which generates temperatures within the crystal lattice structure of the powders that sufficient to convert anatase to rutile (Lee et al., 2003). Several researchers (Le Mercier et al., 1994; Honig & Zandt, 1975) attribute this colour change to the level of Ti³⁺ species that increase. This may lead to non-stoichiometric forms of TiO₂, such as Ti₂O₃, TiₓO₅ and TiₙO₂n₋₁ (n = 4-60) (Magnéli phases). They have a blue-black appearance and can be metallic. Regarding the band gap of the photocatalysts, it is expected that the band gap value will change due to more rutile phase being formed. According to Lee et al. (Lee et al., 2003) it appears that the band gap energy of the TiO₂ is largely unaffected by the laser irradiation. Work done by Bilmes et al. proposed that the generation of Ti(III) sites creates energy levels in the band gap caused by the presence of oxygen vacancies associated with Ti(III) cations (Bilmes et al., 2000). Le Mercier et al. also proposed this phenomenon of discrete energy levels forming in the band gap of TiO₂ (Le Mercier et
al., 1994). Yet neither of these authors proposed that changes altering the overall band gap of TiO$_2$ took place and this is confirmed by work done by Lee et al. (2003).

Effect of Pt on the photocatalytic activity of TiO$_2$

During the photocatalytic process, TiO$_2$ absorbs a photon consisting of energy equal or larger than the band gap energy. This leads to the excitation of an electron (e$^-$) from the valence band to the conduction band, consequently generating a positive hole (h$^+$). Both the e$^-$ and the h$^+$ can migrate to the TiO$_2$ surface or they can undergo undesired electron-hole recombination. By loading the TiO$_2$ with Pt the electron-hole recombination process can be retarded. Many studies conducted on the enhancement of TiO$_2$ by loading Pt onto the surface report an enhancement in the photocatalytic activity of the reaction investigated when irradiated by conventional light sources (Moon et al., 2003; Li & Li, 2002), although some report the reverse effect (Chen et al., 2007).

The Pt acts as electron-accepting species by creating sinks for the electrons thus facilitating electron-hole separation and in this case promoting the formation of H$_2$ gas (Kandiel et al., 2011; Wang et al., 2004). However, at a higher Pt concentration the Pt clusters/particles act as recombination centres which cause the recombination rate between electrons and holes to increase exponentially with the increase of Pt concentration. This phenomenon is due to the fact that the average distance between trap sites decrease by increasing the number of Pt clusters (Li & Li, 2002). A speculated reaction mechanism was proposed by Sayama and Arakawa (Sayama & Arakawa, 1997) for the splitting of water over Pt-TiO$_2$ (Figure 4.6). Several side reactions can take place over Pt-TiO$_2$ as follows: 1) the formation of H$_2$O through the back reaction of H$_2$ and O$_2$ over Pt, 2) photo-adsorption of O$_2$ and surface peroxide formation over TiO$_2$, and 3) e$^-$-h$^+$ recombination under irradiation. Although Pt-TiO$_2$ exhibits an intrinsic ability to split water into H$_2$ and O$_2$, the backward reaction taking place over Pt is thermodynamically favoured ($\Delta G < 0$) resulting in lower amounts of H$_2$ being produced during photocatalytic water splitting. H$_2$ is not affected by photo-absorption but O$_2$ is photo-absorbed onto the Pt-TiO$_2$ surface forming O$_2$ (a) and O$_2^-$ (a) and some O$_2$ are altered to peroxide species and gradually accumulate on the photocatalyst surface. After an extended irradiation time H$_2$ evolution will stop because the pair reaction (A) becomes the major process (Kaneko & Okura, 2002; Mills & Porter, 1982b).
Photocatalytic production of H_2

Photocatalytic hydrogen production from suspended photocatalysts in water and in an aqueous methanol solution was studied as part of this investigation. No literature is available where they investigated the effect of laser light on the production of H_2 from water and Pt-TiO$_2$ photocatalysts. Methanol is frequently used as a sacrificial agent to act as an electron donor for photocatalytic H_2 production, nonetheless only a few studies have been conducted where the mechanism involved was communicated (Galin'ska & Walendziewski, 2005; Chen et al., 1999a; Chen et al., 1999b). There is furthermore no available literature where the hydrogen is produced photocatalytically from aqueous methanol solutions, employing Pt-TiO$_2$ photocatalysts and a laser as energy source. There are three reasons why methanol was chosen as a sacrificial agent for this study.

1) According to literature methanol is the most reactive alcohol acting as a sacrificial agent for water splitting and can be produced from biomass, a renewable source (Yang et al., 2006b; Cortright et al., 2002; Sakata & Kawai, 1981)

2) Methanol can act as a direct source for H_2 production, but to what extent is not clear (Yang et al., 2006a; Yang et al., 2006b)

3) No literature is available on the irradiation of aqueous methanol solutions by laser although numerous articles were found where it was studied by employing UV lamps (Galin'ska & Walendziewski, 2005; Sreethawong & Yoshikawa, 2005).
Many studies conclude that the photocatalytic production of H₂ from aqueous methanol solutions is due to water splitting. Other studies describe it as the dehydrogenation of methanol to formaldehyde or reformation of methanol to generate carbon dioxide. According to Kandiel and other literature (Kandiel et al., 2009; Wang et al., 2004; Chen et al., 1999b) methanol is photo-oxidized to carbon dioxide via the formation of stable intermediates, i.e. formaldehyde and formic acid (Figure 4.7):

\[
\text{CH}_3\text{OH} \xrightarrow{h^0 \text{Pt-TiO}_2} \text{CH}_2\text{O} + H_2
\]

\[
\text{CH}_2\text{O} + H_2\text{O} \rightarrow \text{CH}_2(\text{OH})_2
\]

\[
\text{CH}_2(\text{OH})_2 \xrightarrow{h^0 \text{Pt-TiO}_2} \text{HCOOH} + H_2
\]

\[
\text{HCOOH} \xrightarrow{h^0 \text{Pt-TiO}_2} \text{CO}_2 + H_2
\]

\[
\text{CH}_3\text{OH} + H_2\text{O} \xrightarrow{h^0 \text{Pt-TiO}_2} \text{CO}_2 + 3H_2 \quad \text{(net reaction)}
\]

Upon irradiation, the following reaction pathways were suggested although no differentiation between these pathways can be made with certainty (Figure 4.7). The e⁻-h' pairs migrate to the surface where redox reactions take place. The excited electron will be trapped at the Pt islands and will participate in the reduction of a proton from water and/or from methanol producing adsorbed H' radicals. At the oxidative side three different pathways are possible for the positive holes: 1) they can react with surface Ti-OH groups, trapping the holes, 2) react with adsorbed water molecules producing adsorbed OH' radicals and H⁺ ions, or 3) they will be transferred directly to adsorbed methanol molecules (Kandiel et al., 2011). Regardless of the reaction pathway, the only products formed by hydrogen abstraction are 'CH₂OH and CH₃O' (Asmus et al., 1973). Methoxy radicals can subsequently react with methanol to produce 'CH₂OH (Sonntag, 2006).
The aim of this study was not to investigate the mechanisms involved when irradiating aqueous methanol solutions incorporating various photocatalysts, but to monitor the amount of hydrogen evolved when the various Pt loaded TiO$_2$ photocatalysts were suspended in pure water and also in an aqueous methanol solution when irradiated with a laser.

No H$_2$ was detected when pure water or the aqueous methanol solution was irradiated in the absence of photocatalysts. There was also no H$_2$ detected for the various Pt-TiO$_2$ photocatalysts suspended in pure Milli-Q water (in good agreement with studies done with lamps (Kandiel et al., 2011)), although the pre-treated TiO$_2$ showed a change in the base line of the gas-chromatograph where H$_2$ is expected but no definite peak was observed. This is an indication that the Pt present on the TiO$_2$ surface facilitates the

Figure 4.7: Schematic representation of the proposed steps for the photocatalytic molecular hydrogen production from an aqueous methanol solution over Pt-TiO$_2$.
backward water forming reaction rather than the forward reaction and even eliminates the small change in the base line that was observed for pre-treated TiO$_2$.

Untreated TiO$_2$ was not investigated because it was not subjected to the same experimental conditions as the Pt-TiO$_2$ photocatalyst. A valuable comparison between the untreated TiO$_2$ and Pt-TiO$_2$ is therefore not possible.

Figure 4.8 shows the time dependence of the photocatalytic H$_2$ evolution from the aqueous methanol solution containing various Pt-TiO$_2$ photocatalysts by employing an Nd:YAG laser. Only trends observed for 60 min are shown in Figure 4.8. It was found unnecessary to do the runs for 120 min because no change in the plateau area was observed. From the graph it is obvious that the lowest concentration of H$_2$ produced was observed for the bare pre-treated TiO$_2$ suspended in the aqueous methanol solution. This can be ascribed to the recombination of the excited electrons with the positive holes and/or the interaction with intermediates present on the surface of the photocatalyst, instead of more excited electrons participating in oxidation and reduction reactions. Comparing this finding with literature it is concluded that more H$_2$ was evolved with the laser compared to studies done with a lamp where almost no H$_2$ was evolved (Kandiel et al., 2011; Huang et al., 2010). The concentration of H$_2$ produced for the various Pt-TiO$_2$ photocatalysts suspended in the 1:1 methanol:water solution was interpreted by dividing the graph into two areas. The first area is the first 20 minutes where a rapid increase in the amount of H$_2$ being produced was observed. The second area of the graph is where the plateaus are reached. Work conducted by Kandiel et al. (Kandiel et al., 2011) investigated the effect of varying the light intensities of the lamp on the rate of H$_2$ being produced and they found that a plateau is quickly reached after turning on the light but why it happens is not clear. All of the Pt-TiO$_2$ photocatalysts exhibited a higher rate of H$_2$ production compared to that of TiO$_2$. This clearly indicates that the Pt present on the TiO$_2$ surface enhances the photocatalytic activity of the Pt-TiO$_2$ photocatalyst for this specific reaction being investigated.

The increase in the concentration of hydrogen being produced for the first 20 minutes is ascribed to the initial conditions of the experimental run and the plateaus due to physical changes taking place in the photocatalysts and are the following reasons put towards to elucidate the observation of an initial rise followed by a plateau after 20 minutes of irradiation:
• The water with methanol as the sacrificial agent is in excess due to the reaction only starting. This indicates that enough methanol is present to act as sacrificial agent and therefore hydrogen production will be efficient. According to literature, the amount of methanol present in the solution will decrease over time (Galinska & Walendziewski, 2005). This implies that the amount of hydrogen being produced will decrease due to either insufficient amounts of methanol acting as sacrificial agent, or as stated earlier insufficient amounts of methanol acting as the source of H₂ production. This phenomenon explains one possible reason for the plateau being reached after 20 minutes.

• The photocatalysts are still in their original state due to the small amount of time that they were subjected to laser irradiation. This implies that the photocatalyst still consist of their high photocatalytic activity. As stated earlier, the photocatalysts are subjected to physical change when irradiated by laser light forming more rutile phase in the photocatalysts. According to literature, rutile is less photocatalytically active, which will result in less H₂ being produced, which can also be a possible reason for the plateau being reached.

• From the methanol and water oxidation mechanisms discussed earlier, it is evident that other species form in solution. After the 20 min irradiation period many different species are present in solution and the excited e⁻ and h⁺ can be reacting with these adsorbed species instead of only participating in die H₂ production reactions which may be a reason for the plateau being reached.

For the individual Pt-TiO₂ photocatalysts it was found that the 0.5wt% Pt-TiO₂ produced H₂ at the steepest incline, the 2wt% the lowest concentration H₂ of all the Pt-TiO₂ photocatalysts and the 1- and 1.5wt% Pt-TiO₂ in between with almost equal inclines. The reason for the 2wt% Pt-TiO₂ producing the lowest concentration of H₂ is possibly due to the Pt blocking active sites on the TiO₂ because of the high amount which is loaded. According to the available literature, the optimum Pt loading lies in the 0.1-1wt% range for work done on lamps (Al-Mazrouï et al., 2007; Sreethawong & Yoshikawa, 2006; Pichat, 1987), which this study, conducted by utilising a laser, partially supports, for the 1.5wt% Pt-TiO₂ also resulted in H₂ concentrations close to this range. An explanation for this optimum Pt loading is a result of a decrease in e⁻-h⁺ recombination at the contact surface of TiO₂ and Pt competing with e⁻-h⁺ recombination taking place on the Pt (Rosseler et al., 2010). In addition, loading the TiO₂ above a
certain metal wt% will 1) cover the light absorbing species (TiO$_2$) too such an extent that prevents sufficient light to reach the TiO$_2$ surface, and 2) result in Pt particles to touch and overlap which will decrease Pt contact with TiO$_2$ thus decreasing effective charge transfer (Rosseler et al., 2010). This also explains why a decrease in the band gap can result in a decrease in the concentration of H$_2$ being produced. As just explained, the above-optimum increase in Pt loading results in increased e$^-$$^\cdot$$^\cdot$$^\cdoth^+^\cdot$ recombination and with the band gap decreasing, recombination can occur more effortlessly due to the distance of separation of the e$^-$ and h$^+$ decreasing. For the first 10 min the increase in the amount of H$_2$ produced from the Pt-TiO$_2$ is in accordance with and increasing band gap. The explanation for the 1.5wt% Pt-TiO$_2$ reaching the highest plateau is not clear and more research on what happens at the plateau area has to be conducted. From Figure 4.9 it is evident that the pre-treated TiO$_2$ is the least photocatalytic active and that the Pt loaded onto TiO$_2$ enhances the photocatalytic significantly with the 0.5- and 1.5wt% Pt-TiO$_2$ giving the highest amounts. A clear trend between the Pt-TiO$_2$ photocatalysts cannot be observed but what is clear is that loading to much Pt (2wt% Pt-TiO$_2$) onto TiO$_2$, decreases the photocatalytic activity of the catalyst. Overall the amounts of H$_2$ produced for the various photocatalysts suspended in an aqueous methanol solution and irradiated by a laser is less than recently published literature on both lasers and lamps. This can be due to the sensitivity of these types of studies, for it must be emphasised that these H$_2$ production reactions are dependent on many factors such as, laser irradiation time, laser energy, laser type, temperature, whether the GC samples are taken manually or online, the way in which the photocatalyst are prepared will influence their photocatalytic activity, amount of photocatalyst (particle density) used, laser beam diameter, stirring rate, amount of solution used for potential H$_2$ production, pH of the solution and the type and amount of sacrificial agent used. A study done by Hameed and Gondal investigated the photocatalytic generation of hydrogen over NiO and TiO$_2$ where optimisation studies for NiO was done and compared toTiO$_2$. It was found that the optimum amount of catalyst is 0.3g and the optimum laser energy 100mJ. Comparing the small amounts of H$_2$ produced in this study with the amounts they obtained, it is clear that working under mild conditions (0.1g catalyst and 40mJ laser energy) influences the amounts of H$_2$ produced significantly (Hameed & Gondal, 2004).
Figure 4.8: Time course of the photocatalytic H₂ evolution over different photocatalysts. Conditions: 1g/L photocatalyst, water (50ml): methanol (50ml, 0.0125M), laser energy (40mJ), temperature 25°C (arrows indicating an increase)

Figure 4.9: Amount of H₂ produced over different photocatalysts
CHAPTER 5: CONCLUSION

5.1 Project evaluation

The success and shortcomings of this study will be discussed in accordance with the aims listed in CHAPTER 1. The points following below therefore correlate with the aims listed in Par 1.2:

- A wide-ranging literature study was conducted (CHAPTER 2). The situation of fossil fuels in the world today was discussed and the role of H\textsubscript{2} as a clean and viable alternative energy carrier was emphasised. The most studied photocatalyst in H\textsubscript{2} production studies is TiO\textsubscript{2} due to its high photocatalytic activity, great abundance and low cost. The wide employment of UV-lamps as well as the modification of TiO\textsubscript{2} with Pt together with the use of methanol as sacrificial agent, to enhance H\textsubscript{2} production, was accentuated. Employment of lasers as an alternative irradiation source for the potential production of H\textsubscript{2} was pointed out.

- The synthesis of various photocatalysts (0.5\textendash, 1\textendash, 1.5\textendash and 2 wt\% Pt-TiO\textsubscript{2}) by means of a photo-reduction method was successful with regards to (i) the time it takes to synthesise the photocatalysts, (ii) the achievement of accurate loadings and (iii) the shifting of the band gap.

- Characterisation of the individual photocatalysts by XRD, TEM, ICP, SEM, and EDX gave insight into some properties of the various photocatalysts. XRD clearly indicated that the platinum was not present in the crystal structure of TiO\textsubscript{2}, but was rather loaded onto the surface of TiO\textsubscript{2}. TEM analysis confirmed the presence of Pt on the surface with a particle/cluster size between 11 nm and 22 nm. ICP and EDX indicated that the loading method was successful with only a slight deviation of the actual amount loaded from the calculated amount loaded. SEM showed that repeatable results in respect of surface appearance were obtained.

- Calculating the band gaps for the different photocatalysts by utilising diffuse reflectance spectroscopy (DRS) and Kubelka-Munk treatment resulted in an unambiguous calculation of the band gaps. A decrease in the band gap values
for the photocatalysts was obtained as the amount of Pt loaded increased. This is a clear indication that lower-energy transitions are possible as the band gap shifts towards the visible region.

- A successful laser setup was built for the production of H\textsubscript{2} and that allowed manual sampling and measurement with a GC. By building a glass cell into an ultrasonic bath, it ensured 1) that the photocatalysts stayed in suspension, 2) efficient mixing of the photocatalyst in such a way that all the catalysts were subjected to the 40 mJ incident laser light at different times during the run, and 3) that the ultrasonic action together with argon bubbling through the solution facilitated the release of produced H\textsubscript{2}.

- The photocatalytic production of H\textsubscript{2} from pure water as well as from a water:methanol solution over Pt-TiO\textsubscript{2} photocatalysts was investigated by employing a laser as irradiation source. The difference in activity between the individual photocatalysts was discussed based on the following, e.g. initial conditions of the experiment, anatase:rutile composition and amount of Pt loaded. Upon irradiation the first observation was that the photocatalyst changed colour from white to dark blue grey. This is due to the incident intensity of the focused laser light transforming anatase to the rutile phase. No H\textsubscript{2} was detected from the suspended photocatalysts in pure water. From the aqueous methanol solution it was found that the 0.5wt% Pt-TiO\textsubscript{2} photocatalyst produced hydrogen at the highest rate where the 2wt% Pt-TiO\textsubscript{2} produced the least amount of hydrogen. By comparing the results obtained to those in literature where conventional lamps were employed, it was found that the laser produced sufficient amounts of H\textsubscript{2} in a much shorter period of time (minutes) compared with the amounts of H\textsubscript{2} produced over very long periods of time (hours, days).

5.2 Recommendations

Based on the literature and the results obtained, the following recommendations are made:

- From the literature survey it would seem that methanol is the most efficient sacrificial agent in facilitating H\textsubscript{2} production from water. From the results obtained it was indeed found that more H\textsubscript{2} was produced from the
photocatalysts suspended in the aqueous methanol solution compared with no hydrogen being detected from the photocatalysts suspended in pure water. Knowing that methanol can also act as a direct source of \(\text{H}_2 \), it was therefore ideal to employ it in \(\text{H}_2 \) studies by laser for the first time. It is, however, not clear how much of the \(\text{H}_2 \) detected was produced by the methanol itself and how much from methanol acting as a sacrificial agent in assisting water splitting. It is therefore recommended to investigate other sacrificial agents, e.g. \(\text{NaI} \) and \(\text{Na}_2\text{CO}_3 \), which do not dispose of the inhibiting property to produce \(\text{H}_2 \). By doing so \(\text{H}_2 \) is produced solely from water, which is the aim for future \(\text{H}_2 \) production, and the formation of \(\text{CO}_2 \) from methanol is eliminated.

- Work done by other researchers demonstrated that \(\text{H}_2 \) can be produced from suspended \(\text{TiO}_2 \) in water without sacrificial agents present at 100mJ laser energy. In this study no hydrogen was detected for any of the photocatalysts suspended in pure water at 40mJ. It is therefore proposed to do this study at higher laser energies for research purposes.

- In this study samples of the \(\text{H}_2 \) produced were measured by manually taking samples and injecting them into the GC consisting of a TCD detector. Doing it in this manner creates space for human error. It is therefore advisable to work with an online GC system incorporated with a PDHID (Pulsed Discharged Helium Ionization Detector) to eliminate human error and to increase the sensitivity of detecting \(\text{H}_2 \) by up to 500 times (Woo et al., 1996) (Hunter et al., 1998).

5.3 Final conclusion

Since this work was the first attempt at the North-West University, and according to available literature the first attempt in the scientific world, it does make a contribution to current work regarding the potential production of \(\text{H}_2 \) by employing different Pt-loaded \(\text{TiO}_2 \) photocatalysts and using methanol as a sacrificial agent with the emphasis on the use of a laser as the irradiation source. It also facilitated the identification of the scope of potential future studies, which could contribute positively to the future of \(\text{H}_2 \) as an alternative energy carrier.
Appendix

a) Band gaps

Determination of the band gaps

An average of six values was taken as the final band gap value for the individual photocatalysts.

Untreated TiO$_2$
Pre-treated TiO$_2$

![Graphs of F(R)h^2 vs. Photon energy (eV) for different conditions.](image-url)
0.5wt% Pt-TiO₂
1.0 wt% Pt-TiO₂

Photon energy (eV)
1.5wt% Pt-TiO$_2$
2.0wt% Pt-TiO$_2$
b) Photonic efficiency

![Photonic efficiency diagram](image-url)

