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Abstract
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spaces. This leads to a formulation and proof of Doob’s optional sampling
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1 Introduction.

An order continuous positive projection E mapping a Riesz space E onto a Riesz
subspace F that has the property that the band generated by F is again E, is
the fundamental notion on which a theory of probability can successfully be
developed within the framework of vector lattices (Riesz spaces). This is due to
the fact that in classical probability theory the stochastic variables are elements
of vector lattices of functions (often the Lp spaces (1 ≤ p ≤ ∞)), and secondly
due to the fact that the conditional expectation in probability theory is an
operator of the kind mentioned above. So in this abstract theory the notion of
conditional expectation rather than that of probability measure, is fundamental.

This paper is a continuation of the paper [5] in which we defined continuous
time stochastic processes in Riesz spaces and proved the fundamental Doob-
Meyer decomposition theorem for submartingales. We study the notion of a
stopping time, that was defined in [5] as an orthomorphism. However, there we
needed only to consider stopping times that were step elements (linear combi-
nations of projections), in which case it is easy to define stopped filtrations and
processes. It is not outright clear how to do this for general stopping times.
We show here that stopped processes that have the expected properties can
be defined and then show that Doob’s theorem mentioned in the title can be
proved. As we remarked in [5], our study exhibits the fundamental role played
by positivity in the theory of stochastic processes.
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For more background on what has been done in this field we refer the reader
to R. DeMarr ([3]) who studied martingales in Banach lattices as early as 1966,
followed by Gh. Stoica ([18],[19] [20], [21]), and V.G. Troitsky ([22]). The
general theory was considered by W.-C. Kuo, C.C.A. Labuschagne and B.A.
Watson (see [8], [9], [10], [11], [12], [13], [14]), who studied countable processes
in this setting.

In the next section we set our notation. We choose the notation to make it
user friendly to probabilists, hoping that it will not offend specialists in Riesz
space theory.

2 Notation and definitions.

As in [5], we recall that a Riesz space E is a real vector space endowed with an
order relation compatible with the algebraic structure. The standard references
for the theory of vector lattices are the textbooks of W.A.J. Luxemburg and
A.C. Zaanen ([15]), H.H. Schaefer ([17]), D.H. Fremlin, ([4]), C.D. Aliprantis
and O. Burkinshaw ([1, 2]), P. Meyer-Nieberg ([16]) and A.C. Zaanen ([25, 26]).
We refer the reader to them for any notion not defined in this paper.

We shall exclusively consider Dedekind complete vector lattices. If E is such
a lattice and if A ⊂ E we denote its disjoint complement in E by Ad. We call the
set A weakly order dense in E if Add = E (this notion should not be confused
with that of quasi-order denseness or order denseness, since the latter notions
are only defined for ideals). Of course, E ∈ E is a weak order unit for E if the
singleton {E} is weakly order dense in E. Note that in our case Add is also the
band generated by the set A ⊂ E in E.

A linear operator T : E → F is called positive if TX ≥ 0 for all X ≥ 0,
i.e., if T maps the positive cone E+ of E into the positive cone F+ of F. It is
called strictly positive if TX > 0 for every X > 0. The positive operator T is
called order continuous whenever the image of every downwards directed net
(Xα) with infimum 0 (write Xα ↓ 0) is again a downwards directed net with
infimum 0, i.e., TXα ↓ 0.

We denote the range of the operator T by R(T) and the set of all order
bounded linear maps from E into F by Lb(E,F). This space is partially ordered
by T ≤ S if TX ≤ SX for all X ∈ E+ and it is again a Dedekind complete
vector lattice. The order bounded operator T is called order continuous if it is
the difference of two order continuous positive operators.

An operator S ∈ L(E) is called band preserving if S leaves all bands in E
invariant, i.e., if SB ⊂ B for all bands B in E. A band preserving order bounded
operator is called and orthomorphism. The set of orthomorphisms is denoted
by Orth(E). It is the band generated by the identity operator I in Lb(E).

If E is a weak order unit of E, if X ∈ E and if t ∈ R, we define E`t to be the
component of E in the band generated by (tE−X)+ = (X−tE)−. The set (E`t )
is an increasing left continuous system of components of E. We call the system
(E`t )t∈R the left continuous spectral system of X. Also, if E

r

t is the component
of E in the band generated by (X − tE)+ = (tE −X)− and Ert := E −Ert , the
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set (Ert ) is an increasing right continuous system of components of E (see [15,
page 262]). We call the system (Ert )t∈R the right continuous spectral system of
X and we have

E`t ≤ Ert ≤ E`s for all t < s.

We shall use the fact that the identity operator I is a weak order unit for Orth(E)
and that the spectral system of an element S ∈ Orth(E) consists therefore of
components of I which means that it consists of order projections in E.

3 Conditional expectations, filtrations and sto-
chastic processes.

As in [5], we use the following definition of conditional expectation that gener-
alizes the one given by Kuo, Labuschagne and Watson [9].

Definition 3.1 The strictly positive order continuous projection F : E → E is
called a conditional expectation if

(a) F := R(F) is a Dedekind complete Riesz subspace of E;

(b) F is weakly dense in E.

An important property that we proved in [5, Theorem 4.4] is that if P is a
projection in E that maps F into itself, then P commutes with F. It follows
easily from this that if S ∈ Orth(F) then S commutes with F. This can be
interpreted as F being an “averaging” operator. We shall denote the set of
all order projections of E that maps F into itself by PF and this set can be
identified with the set of all order projections of the vector lattice F (we say
these projections act on F, see [5]).

The next notion, due to B.A. Watson [24], is now defined in this more general
case.

Definition 3.2 Let E be a Dedekind complete Riesz space and let F be a con-
ditional expectation on E. We say that E is F-universally complete if, whenever
Xα ↑ in E and F(Xα) is bounded in E, we have that Xα ↑ X for some X ∈ E.

In the terminology of [6] this means that the conditional expectation operator
is defined on its natural domain (see also [11]). We need the following existence
theorem and therefore have to prove Watson’s Radon-Nikodym theorem for the
more general case:

Theorem 3.3 Let E be an F-universally complete Riesz space with conditional
expectation operator F. Let F be a Dedekind complete Riesz subspace of E with
R(F) ⊂ F. For each X ∈ E+ there exists a unique Y ∈ F+ such that

FPX = FPY, for all P ∈ PF.
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Proof. The uniqueness part follows exactly as in [24]. We now prove the exis-
tence. Let {Eα} be a maximal disjoint system in R(F) (see [15, Theorem 28.5])
and note that since the band generated by the latter space is equal to E, this is
also a maximal disjoint system in E (and so also in F). Denote the band gener-
ated by Eα in E by Bα. By Lemma 4.3 in [5], F maps Bα into itself and being
a projection, it maps the weak order unit Eα of Bα onto itself. If we therefore
denote the restriction of F to Bα by Fα, we easily see that Fα is a conditional
expectation of Bα and it is also easy to see that Bα is Fα universally complete.
Put Fα := F ∩Bα, then Fα is a closed Riesz subspace of Bα and R(Fα) ⊂ Fα.
We now apply Watson’s result: Let Xα be the component of X in Bα. Then
there exists an element Yα ∈ F+

α such that

FαPXα = FαPYα for all P ∈ PFα .

Let β = (α1, . . . , αn) be an arbitrary multi-index and let Xβ = Xα1 ∨ Xα2 ∨
· · · ∨ Xαn and similarly for Yβ . Then Xβ ↑ X and so FXβ ↑ FX. Also, by the
disjointness of the elements Yα, we get

FYβ = F
n∑
k=1

Yαk =
n∑
k=1

FαkYαk =
n∑
k=1

FαkXαk = FXβ ↑ FX.

So, by our assumption that E is F-universally complete, we have Yβ ↑ Y ∈ E.
But each Yβ ∈ F (which is order complete) and therefore Y ∈ F.

We complete the proof by showing that Y has the required property. Let
Q ∈ PF. Put Qβ := QPβ , with Pβ the projection onto the band Bα1⊕· · ·⊕Bαn .
Then Qβ ↑ Q and

FQX = sup
β

FQβX = sup
β

n∑
k=1

FαkQPαkX =

sup
β

n∑
k=1

FαkQPαkY = sup
β

FQβY = FQY.

This completes the proof. �

Proposition 3.4 Let F be a conditional expectation on the F-universally com-
plete Riesz space E. Let F be a closed Riesz subspace of E with R(F) ⊂ F.
Then there exists a unique conditional expectation FF on E with R(FF) = F and
FFF = FFF = F.

Proof. By Theorem 3.3, the assumptions imply that for every X ∈ E+ there
exists a unique Y ∈ F+ such that

FPX = FPY for all P ∈ PF. (3.1)

Call Y the F-conditional expectation of X given F. Define FFX := Y for X
and Y as above. By the uniqueness part in the Radon-Nikodym theorem, FF
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is well defined and moreover, FF is positive. We show that FF is additive on
E+. If X1, X2 ∈ E+ with F-conditional expectations Y1, Y2 ∈ F, we have that
Y1 + Y2 ∈ F satisfies

FP(X1 +X2) = FPX1 + FPX2 = FPY1 + FPY2 = FP(Y1 + Y2) for all P ∈ PF,

and so Y1 +Y2 is the F-conditional expectation of X1 +X2, i.e., FF(X1 +X2) =
FFX1 + FFX2. We can therefore extend FF to a positive linear operator on E to
F by defining FFX := FFX

+ − FFX
−.

Clearly, FFY = Y for all Y ∈ F which implies that FF is a projection onto F. It
follows then from R(F) ⊂ F that FFF = F. Also, by taking P = I in 3.3 above,
it follows from the definition of FF that for all X ∈ E we have FX = FFFX.
Hence we have FFF = FFF = F. From this it follows that FF is also strictly
positive, for, if X > 0 and FFX = 0, then FX = FFFX = 0 contradicting the
strict positivity of F.

Let now Xα ↓ 0 in E, then FFFXα = FXα ↓ 0. By the positivity of FF we have
that FFXα ↓ and since F is Dedekind complete, FFXα ↓ Y ≥ 0. Hence, FY = 0
and so Y = 0 by the strict positivity of F. It follows that FF is order continuous.

Finally, since the band generated by R(F) in E equals E and since R(F) is
contained in F = R(FF), the band generated in E by the range of FF is also
equal to E. This completes the proof. �

Suppose that the order continuous dual E∼n of E separates the points of E
and that F is a conditional expectation on E. Then, since F is order continuous,
we have that F∼ maps E∼n into itself. We proved in [5, Proposition 4.7] that
the order adjoint F∼ is a conditional expectation on E∼n , that R(F∼) = F∼(E∼n )
separates the points of F = R(F) and that R(F∼) = F∼(E∼n ) = F∼n .

As in [5] we define the following notions that were defined for countable
processes in [9]. We refer the reader to [7] for the classical theory.

Definition 3.5 Let T = [0,∞), let (Ft)t∈T be a family of conditional expecta-
tions on E and let Ft := R(Ft). The family (Ft,Ft)t∈T is called a filtration on
E if FsFt = FtFs = Fs for all s ≤ t.

Remarks: 1. We denote the filtration (Ft,Ft)t∈T often simply by either (Ft)t∈T
or (Ft)t∈T .

2. It follows from Fs = FtFs that Fs ⊂ Ft for all s ≤ t. In fact, an alternative
way to define a filtration would be to assume that there exists a conditional
expectation F0 on E and that E is F0-universally complete. We then define a
filtration as a family (Ft) of weakly dense order closed Riesz subspaces of E with
the property that Fs ⊂ Ft for all s ≤ t, with F0 = R(F0). From Proposition 3.4
we then get a family (Ft) of conditional expectations on E with the property
used in our definition.
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3. We denote the set of all order projections in E that act on Ft by Pt and we
recall that FtP = PFt for all P ∈ Pt. For obvious reasons the projections in Pt

are called the events in the process up to time t.

4. Pt is a complete Boolean algebra and can be considered to play the rôle of
the σ-algebra in the classical case.

5. The family (F∼t )t∈T is a filtration on E∼n and is called the dual filtration of
the filtration Ft.

Definition 3.6 Let (Ft) be a filtration on E. We define

1. Ft+ :=
⋂
s>t

Fs.

2. Ft− is defined to be the order closed Riesz subspace of E generated by
{Fs : s < t} and F0− := F0.

3. A filtration is right-continuous (resp. left-continuous) if for all t ∈ T,
Ft+ = Ft (resp. Ft− = Ft).

The set of projections in E that act on Ft+ will be denoted by Pt+ and those
acting on Ft− by Pt−.

Proposition 3.7 If (Ft) is a filtration on E, we have

1. Ft+ =
∞⋂
n=1

Fsn for any sequence sn ↓ t, sn > t.

2. Ft− is the order closed Riesz subspace generated by
⋃
s<t

Fs =
∞⋃
n=1

Fsn for

any sequence sn ↑ t, sn < t.

Proof. 1. Inclusion clearly holds. If X belongs to the countable intersection,
and s > t choose s > sn > t. Then X ∈ Fs and so equality holds.

2. Since Fs ↑ the union is the Riesz subspace of E generated by {Fs : s < t}
(which need not be order closed). If we denote cl(S) to be the closure of a set

S ⊂ E in the order topology, we have Ft− = cl

(⋃
s<t

Fs

)
= cl

( ∞⋃
n=1

Fsn

)
. �

Proposition 3.8 Let E be a Dedekind complete Riesz space and let (Ft,Ft)t∈T
be a filtration on E. Suppose that E is F0-universally complete. Then there
exists a conditional expectation Ft+ from E onto Ft+. Similarly, there exists a
conditional expectation Ft− onto Ft−.

Proof. We note that every Ft is not merely Dedekind complete, but even order
closed in E for if Xα → X in order in Fs then Fs(Xα) → FsX ∈ Fs, but
Fs(Xα) = Xα → X so X = FsX ∈ Fs. It follows that Ft+ is an order closed
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Riesz subspace of E that contains F0. By Proposition 3.4 there exists a strictly
positive conditional expectation (denote it by Ft+) from E onto Ft+. For Ft− it
follows by definition that it is an order closed Riesz subspace of E and so, for
the same reason as above, there exists a strictly positive conditional expectation
Ft− from E onto Ft−. �

It is also true that for all s < t, FsFt− = Ft−Fs = Fs and for all s > t,
Ft+Fs = FsFt+ = Ft+. We also note that it follows from the theorem above
that if (Ft,Ft) is a filtration on E the same is true for (Ft+,Ft+) and this
filtration is right continuous. Similarly (Ft−,Ft−) is a left continuous filtration
on E.

Let E be a Dedekind complete Riesz space and let T := [0,∞). As defined
in [5], a family X = (Xt)t∈T with Xt ∈ E is called a (continuous time) stochastic
process in E. The stochastic process (Xt)t∈T is right (resp. left) continuous, if

o− lim
s↓t

Xs = Xt (resp. o− lim
s↑t

Xs = Xt).

A stochastic process (Xt)t∈T is adapted to the filtration (Ft,Ft)t∈T if Xt ∈ Ft for
all t ∈ T. We write (Xt,Ft)t∈T to indicate that (Xt) is adapted to (Ft,Ft)t∈T .
The stochastic process (Xt,Ft)t∈T is called a submartingale (respectively, su-
permartingale) whenever we have Fs(Xt) ≥ Xs (respectively, Fs(Xt) ≤ Xs) for
all s < t <∞. If the process is both a sub- and a supermartingale it is called a
martingale (see also [8, 9, 10, 11, 12, 13, 14] for the case where T = N).

We recall from [5] that a right continuous stochastic process (At) is called
increasing if A0 = 0 and As ≤ At whenever s ≤ t and it is called integrable if
supt>0At ∈ E. If (At) is adapted to the filtration (Ft) and if we have that

IA(φt−) := lim
π

n∑
i=1

〈φti−1 , Ati −Ati−1〉, π = {0 = t0 < t1 < · · · < tn = t},

exists for every adapted bounded dual martingale φ = (φt), we call the process
(At) tractable on [0, t] and we call it tractable if it is tractable on every interval
[0, t]. An increasing adapted process is called predictable on [0, t] if it is tractable
on [0, t] and if IA(φt−) = 〈φt, At〉. If this holds for all t is is called predictable.

4 Optional and stopping times.

In [5] we defined an optional time for the filtration (Ft)t∈T as a positive or-
thomorphism S ∈ Orth(E) such that its left continuous spectral system (S`t) of
projections (with reference to the weak order unit I of Orth(E)) satisfies S`t ∈ Pt

for all t ∈ T. We call it a stopping time for the filtration (Ft)t∈T whenever its
right continuous spectral system (Srt ) of projections satisfies Srt ∈ Pt for all
t ∈ T. As was shown in [5, Proposition 5.5] an easy consequence of these defi-
nitions is that every stopping time is optional and the concepts coincide if the
filtration is right continuous. We also have
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Proposition 4.1 Let (Ft)t∈T be a filtration on E. Then S is an optional time
for (Ft)t∈T if and only if S is a stopping time for the filtration (Ft+)t∈T .

Proof. Let ε > 0 and t ∈ T, be given. Choose N ∈ N so that for all n ≥ N
we have 1/n < ε. Then, if S is an optional time, we have S`t+1/n ∈ Pt+ε for all
n ≥ N and S`t+1/n ↓ Srt by the inequality S`t ≤ Srt ≤ S`s for t < s and the right
continuity of (Srt ). Hence, Srt ∈ Pt+ε for all ε > 0 and so Srt ∈ Pt+. It follows
that S is a stopping time for (Ft+)t∈T .

Conversely, if S is a stopping time for Ft+ it is also an optional time for Ft+.
Hence, if 0 < s < t we have S`s ∈ Ps+ ⊂ Pt. But, if s ↑ t, we have by its left
continuity that S`s ↑ St. Since Pt is a complete Boolean algebra, S`t ∈ Pt and so
S is an optional time for Ft. �

It is easy to see that the constant orthomorphism S = aI, a ∈ R+ is both an
optional and a stopping time. For step elements in Orth(E) we proved in [5] that

if S is a stopping time (respectively, optional time) of the form S :=
n∑
k=1

tkPk,

with PiPj = 0 if i 6= j and ti 6= tj if i 6= j, (i.e., if S is written in its canonical
form) we have Pk ∈ Ptk (respectively, Pk ∈ Ptk+) and conversely.

We now prove the following lemma.

Lemma 4.2 Let (Sα) be a set of orthomorphisms on E. Then,

1. (sup Sα)rt = inf [(Sα)rt ];

2. (inf Sα)`t = sup [(Sα)`t].

Proof. 1. In the Riesz space Orth(E) we have

((sup Sα)− tI)+ = [(sup Sα) + (−tI)] ∨ 0 = sup (Sα − tI) ∨ 0

= sup [(Sα − tI) ∨ 0] = sup (Sα − tI)+.

It is an easy exercise to show that {sup (Sα − tI)+}, i.e., the band generated in
Orth(E) by the supremum of the elements (Sα − tI)+, equals the smallest band
containing all the bands {(Sα− tI)+}, i.e., equals the band

∨
{(Sα− tI)+}. But

then the corresponding components of I, i.e., band projections on E, satisfy the
same relation. Thus,

(sup Sα)
r

t =
∨
α

(Sα)rl .

It follows that

(sup Sα)rt = I− (sup Sα)
r

t =
∧
α

(I− (Sα)rt ) =
∧
α

(Sα)rt .

2. In this case the conclusion follows immediately from the identity

(tI− (inf Sα))+ = [tI + sup (−Sα))] ∨ 0 = sup (tI− Sα) ∨ 0

= sup [(tI− Sα) ∨ 0] = sup (tI− Sα)+.
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This completes the proof. �

Remark 1. An orthomorphism T is band preserving and therefore, if B is a
band in E, the restriction of T to B is an operator on B. If this operator has a
property P (T), we shall say that T has the property P (T) on B. If T is strictly
positive, i.e., if TX > 0 for every X > 0, we write T� 0 and if T− S� 0, we
write T� S.

2. Let S ∈ Orth(E) and let P be the component of I in the band generated
by S in Orth(E). We say the projection band B := PE is generated by S in E.

Proposition 4.3 Let (Ft,Ft)t∈T be a filtration on E. Then the following asser-
tions hold with reference to this filtration.

1. If a is as positive constant and S is an optional time then S + aI is a
stopping time.

2. If S,T are stopping times then the same hold for S ∧ T, S ∨ T and S + T.

3. If (Sn) is a sequence of optional times, then

sup
n≥1

Sn, inf
n≥1

Sn, lim sup
n

Sn and lim inf
n

Sn

are optional times. If the Sn are stopping times, then sup
n≥1

Sn is a stopping

time.

Proof. 1. If 0 ≤ t < a we have ((S+aI)−tI)+ = (S+(a−t)I)+ = S+(a−t)I ≥
(a− t)I. Hence, (S + aI)

r

t = I implying that (S+aI)rt = 0 ∈ Ft. If t ≥ a, we have

((S + aI)− tI)+ = (S− (t− a)I)+

and so by Proposition 4.1 that (S + aI)rt ∈ P(t−a)+ ⊂ Pt. This proves 1.

2. The first two assertions follow directly from Lemma 4.2. Assume now
that S and T are stopping times. Since both S and T are orthomorphisms, their
null spaces NS and NT are bands in E that belong to F0 ⊂ Ft for all t ∈ T
since they are stopping times for the filtration. Denote the projections onto
these bands by PS and PT respectively, and the projections I − PS and I − PT
onto their carrier bands by PcS and PcT respectively. Then we have the disjoint
decomposition

(T + S− tI)+ = PT(S− tI)+ + PcT(T + S− tI)+

= PT(S− tI)+ + PSPcT(T− tI)+ + PcSPcT (T + S− tI)+.

From this the components of I in the bands generated by each of the terms are

(T + S)
r

t = PTSrt + PSPcTTrt + PcSPcT (T + S)
r

t

= PTSrt + PSPcTTrt + PcSPcTT`t(T + S)
r

t + PcSPcTT`t(T + S)
r

t . (4.1)
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We note also that PcST`t(T + S− tI)� 0 showing that PcST`t ≤ (S + T)
r

t . Hence,

the last term in 4.1 equals PcSPcTT`t, and so

(T + S)
r

t = PTSrt + PSPcTTrt + PcSPcTT`t + PcSPcTT`t(T + S)
r

t .

The first three terms belong to Pt and so we need only consider the last term,
which we denote by P. Let B := PE. We then have that 0 � T � tI and
T + S� t and S� 0 on B. For each rational number 0 < r < t, let Br be the
intersection of the bands generated by the elements (T − rI)+, (tI − T)+ and
(S− (t− r))+. The restrictions of S and T to Br then satisfy tI� T� rI and
S� (t−r)I which shows that Br ⊂ Ft. On Br we have S+T� (t−r+r)I = tI
which shows that Br ⊂ B for all 0 < r < t. We claim that the band generated
by the Br equals B. If not, there exists a non-zero band B0 ⊂ B such that no
Br has non-trivial intersection with it. Since T is strictly positive on B0, we
can find a sequence of rational step elements Tn ↑ T. But then, for each rational
coefficient r of such a step element, we have by assumption that it is not true
that S + rI � tI on any non-zero band contained in B0. Hence S + rI ≤ tI
on B0. But since Tn ↑ T, we get from this that on B0 we have S + T ≤ tI
which contradicts the fact that B0 ⊂ B. Our conclusion is that B ⊂ Ft and
this completes the proof of 2.

3. Let (Sn) be a sequence of optional times for Ft.

(i) By Proposition 4.1 (Sn) is a sequence of stopping times for the filtration
Ft+. Hence, since Pt+ is a complete Boolean algebra, inf(Sn)rt ∈ Pt+. By
Lemma 4.2, it follows that (sup Sn)rt ∈ Pt+ and so sup Sn is a stopping
time for Ft+. Again by Proposition 4.1, we have that sup Sn is an optional
time for Ft.

(ii) By Lemma 4.2 we have (inf Sn)`t = sup [(S)`t] ∈ Pt. Hence inf Sn is an
optional time.

The proofs that lim sup Sn and lim inf Sn are optional times are now clear.

If all the Sn are stopping times, the fact that sup Sn is a stopping time
follows from the identity (sup Sn)rt = inf[(Sn)rt ] proven in Lemma 4.2. �

5 Stopped filtrations.

If (Ω,F , µ) is a probability space and if (Ft)t∈T is a filtration of sub-σ-algebras of
F , the σ-algebra FS of events determined prior to the stopping time S consists
of those events A ∈ F satisfying A ∩ (S ≤ t) ∈ Ft for every t ∈ T (see [7,
Definition 2.12]). It is easy to see that

FS = {A ∈ F : A ∩ (S ≤ s) ∈ Ft, s ∈ [0, t], t ∈ T}.

This shows that FS is the smallest σ-algebra such that the map ω 7→ (ω,S(ω))
from (Ω,Ft) into (Ω×R,F⊗B(R)) is measurable. This is therefore the smallest
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σ-algebra such that the composite map ω 7→ X(ω,S(ω)) = XS(ω)(ω) is measur-
able. The stopped process is then defined to be the process (XS∧t)t∈T . We
proceed to define these notions in the abstract case. The challenge is to define
the composite function XS in general.

Let S be a stopping time for the filtration (Ft)t∈T and let P = PE be the
Boolean algebra of all band projections on E.

Definition 5.1 The set of all events determined prior to the stopping time S is
defined as the family of projections

PS := {P ∈ P : PSrtFt = FtPSrt for all t}.

It clearly follows from the definition that the following characterization holds.

Proposition 5.2 Let S be a stopping time for the filtration (Ft)t∈T and let PS
be defined as above. Then P ∈ PS if and only if PSrt ∈ Pt for every t ∈ T.

Proposition 5.3 Let S be a stopping time for the filtration (Ft)t∈T and let PS
be defined as above. Then PS is a complete Boolean sub-algebra of P.

Proof. Since S is a stopping time, it follows that I ∈ PS and trivially, 0 ∈ PS.
If P1, P2 ∈ PS, we have P1 ∧ P2 = P1P2 and since band projections commute,
we get

P1P2SrtFt = P1SrtP2SrtFt = P1SrtFtP2Srt = FtP1SrtP2Sr2 = FtP1P2Sr2.

Hence, P1 ∧ P2 = P1P2 ∈ PS. Also,

(P1 + P2)SrtFt = P1SrtFt + P2SrtFt = FtP1Srt + FtP2Srt = Ft(P1 + P2)Srt

and so it follows that P1 ∨ P2 = P1 + P2 − P1P2 ∈ PS. Furthermore, if P ∈ PS

then, since both ISrt and PSrt commute with Ft, so does (I−P)Srt . It follows that
I− P ∈ PS. Hence PS is a Boolean sub-algebra of P.

If Pα ∈ PS and Pα ↑ P, then P ∈ PS because PαSrtFt ↑ PSrtFt by the
definition of the supremum for operators and FtPαSrt ↑ FtPSrt since Ft is order
continuous. Therefore,

PSrtFt = sup PαSrtFt = sup FtPαSrt = FtPSrt .

This shows that PS is an order complete Boolean sub-algebra of P. �

Let {Eα} be a maximal disjoint system in F0. With each projection P ∈ PS
we can associate a set {PEα} of disjoint elements of E. Let

CS := {PEα : P ∈ PS, α ∈ {α}}.

Then CS is a Boolean algebra of elements of E and we denote the order closed
Riesz subspace of E generated by these elements by FS.
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Proposition 5.4 Let (Ft,Ft) be a filtration on E and assume that E is F0-
universally complete. If S is a stopping time for the filtration (Ft,Ft) then
there exists a unique conditional expectation FS mapping E onto FS.

Proof. We have to prove that the conditional expectation of E onto FS exists.
By Proposition 3.4 we need to prove that R(T0) ⊂ FS. Now if P ∈ P0, then
P ∈ Pt for every t. It follows from the commutativity of projections and the
fact that Srt is a stopping time that

PSrtFt = SrtPFt = SrtFtP = FtSrtP = FtPSrt .

It follows that P0 ⊂ PS . This implies that F0 ⊂ FS . �

Definition 5.5 For any stopping time relative to the filtration (Ft,Ft), we de-
fine the stopped filtration to be the pair (FS,FS).

Example 5.6 Let E be a Dedekind complete Riesz space with weak order unit
E and let (Ft) be a filtration on E. Let S =

∑n
k=1 tkPk be a stopping time, with

{Pk} a partition of I. By our remark preceding Lemma 4.2 we have Pk ∈ Ptk .
Let Qk := {P ∈ Ptk : P ≤ Pk}, k = 1, 2 . . . , n and let Q be the Boolean

algebra of projections generated by the Qk. Note that each Qk is a Boolean
complete algebra with largest element Pk. Since they are also disjoint, their
union is a σ-algebra with largest element I. We claim that Q = PS. It is clear
that every element in Q belongs to PS. Conversely, suppose that P ∈ P is such
that PSrt ∈ Pt for all t ≥ 0. Assume without loss of generality that the tk are
increasing. We then have, by assumption that PP1 = PSrt1 ∈ Pt1 , P(P1 + P2) =
PSrt2 ∈ Pt2 and so since Pt1 ⊂ Pt2 , PP2 ∈ Pt2 . By induction, PPk ∈ Ptk for
k = 1, 2, . . . , n. Since the Pk is a partition, it follows that P =

∑n
k=1 PPk belongs

to Q.
It follows that if Ck := PkE, and if Ck = {C ∈ Ctk : C ≤ Ck} then CS is

the Boolean algebra generated by the Ck. Moreover, FS is the order closed Riesz
space generated by these sets of components.

We claim that FS =
∑n
k=1 PkFtk . Clearly, this sum defines a conditional ex-

pectation operator on E. If X ∈ E we have FSX =
∑n
k=1 PkFtkX =

∑n
k=1 PkXtk

where Xtk ∈ Ftk . It is clear that each element in the right continuous spec-
tral system of the latter element is a component of E belonging to CS and so
FSX ∈ FS.

If (Xt) is a stochastic process adapted to the filtration (Ft,Ft) we shall define
in the next section the element XS :=

∑n
k=1 PkXtk . Note then that FSXS = XS

and so XS ∈ FS.

The next separation lemma can be found in [8]. We provide another way to
construct a proof for it using Freudenthal’s theorem.
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Lemma 5.7 Let S, T ∈ E with T > S, and let E be a Riesz space satisfying the
principal projection property and having a weak order unit E. Then there exist
a pair (s, t) ∈ R× R such that s < t and

(T − tE)+ ∧ (sE − S)+ > 0.

Proof. If not then for every pair (s, t) ∈ R×R, we have (T−tE)+∧(sE−S)+ > 0
implies t ≤ s. Freudenthal’s theorem then implies the contradiction that T ≤ S,
as we will show now.

We may assume that T and S are bounded, i.e., contained in the ideal generated
by E. Let (Pα) be a left continuous spectral system for S and let

Σ(S) =
k∑
i=1

αi(Pαi − Pαi−1) ≥ S (5.1)

be an upper sum that approximates S from above. The elements ∆Pi = Pαi −
Pαi−1 then form a partition of E in disjoint components. Similarly, if (Qβ) is a
right continuous spectral system for T (see [15, page 262]) let

σ(T ) =
l∑

j=1

βj−1(Qβj −Qβj−1) ≤ T (5.2)

be a lower sum which approximates T from below. Again the elements ∆Qj =
Qβj−Qβj−1 form a partition of E in disjoint components. Consider the partition
of E consisting of the disjoint components ∆Ri,j := ∆Qi ∧∆Qj

We can then write

Σ(S) =
k∑
i=1

l∑
j=1

γi,j∆Ri,j , γi,j = αi

σ(T ) =
l∑

j=1

k∑
i=1

δi,j∆Ri,j , δi,j = βj−1.

For every non-zero term in these sums, ∆Ri,j > 0. Now,

∆Ri,j ≤ Pi − Pi−1 ≤ Pi
with Pi the projection of E onto the band generated by (αiE − S)+.

Also Qj = E − Rj with Rj equal to the projection of E onto the band
generated by (T − βjE)+. Hence,

∆Ri,j ≤ Qj −Qj−1 = E −Rj − E +Rj−1 = Rj−1 −Rj ≤ Rj−1

with Rj−1 the projection of E onto the band generated by (T −βj−1E)+. Thus,
it follows from ∆Ri,j > 0 that (αiE − S)+ ∧ (T − βj−1E)+ > 0 which implies
by our assumption that δi,j = βj−1 ≤ αi = γi,j . Since this holds for every pair
(i, j) for which the component ∆Ri,j > 0, we have that σ(T ) ≤ Σ(S). It is
then an easy consequence of Freudenthal’s theorem that T ≤ S, and the proof
is complete. �
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Corollary 5.8 Let S and T be stopping times for the filtration (Ft,Ft). Let
P(S−T)+ be the component of I in the band generated by (S− T)+. Then

P(S−T)+ =
∨
τ∈Q

SrτT`τ .

Proof. Consider the restriction of S and T to the projection band B in E
corresponding to the projection P(S−T)+ . As remarked earlier, since S and T are
orthomorphisms, they map B into itself and on B we have S > T. Applying
Lemma 5.7 above, there exists a rational number τ such that SrτT`τ > 0. Consider
the band C generated by the union of all projection bands corresponding to the
projection SrτT`τ > 0, equivalently, the supremum of all projections of the form
SrτT`τ > 0. Since we have on each of these bands that S > τI > T, they are
all contained in B and so C ⊂ B and it is clear that since S > T on the band
B∩Cd, it follows from the lemma that indeed C = B. This proves the corollary.

�

We also use the notation P(T<S) for P(S−T)+ and P(S≤T) for I − P(S−T)+ . It
then follows from Corollary 5.8 above that

P(S≤T) =
∧
τ∈Q

Srτ ∨ T`τ . (5.3)

Proposition 5.9 Let S and T be stopping times for the filtration (Ft,Pt). We
then have for any P ∈ PS that PP(S≤T) ∈ PT. In particular, if S ≤ T we have
PS ⊂ PT and consequently, FS ⊂ FT.

Proof. We observe firstly that if S ≤ λI and T ≤ λI then by (5.3) we have that

P(S≤T) =
∧
τ∈Q
τ≤λ

Srτ ∨ T`τ ∈ Pτ ⊂ Pλ.

So, in particular, for any t ∈ T we have that P(S∧tI≤T∧tI) ∈ Pt. Thus for any
P ∈ PS we have

PP(S≤T)Trt = P(P(S≤tI)P(t≤tI)P(S∧tI≤T∧tI)) = (PP(S≤tI))P(t≤tI)P(S∧tI≤T∧tI) ∈ Pt

because on the projection band corresponding to the projection P(S≤T)Trt we
have T ≤ tI and S ≤ T which is equivalent to S ≤ tI, T ≤ tI and S∧ tI ≤ T∧ tI.
This proves the proposition. �

Following the exposition in [7], we also prove

Proposition 5.10 Let S and T be stopping times for the filtration (Ft,Ft).
Then the following assertions hold:

1. PS∧T = PS ∩PT.
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2. The following projections are in PS ∩PT : P(S<T), P(T<S), P(T≤S), P(S≤T),
P(S=T).

Proof. 1. By Proposition 5.9 we have immediately that PS∧T ⊂ PS ∧PT. For
the converse, take P ∈ PS ∩PT. Then (see the proof of Lemma 4.2)

P ∧ (S ∧ T)rt = P ∧ (Srt ∨ Trt ) = PSrt ∨ PTrt ∈ Pt.

Hence, P ∈ PS∧T.

Since I ∈ PS, it follows from Proposition 5.9 that P(S≤T) ∈ PT. It follows
that P(S>T) ∈ PT . Consider R := S ∧ T which is a stopping time according
to Proposition 4.2, satisfying R ≤ S. By what we have just proved we have
P(T≤R) ∈ PR and again P(T>R) ∈ PR = PS ∩PT. Thus, P(S<T) = P(R<T) ∈ PT,
and consequently we also have P(S≥T) ∈ PT. Interchanging the roles of S and T
in the argument above yields the result that all these projections also belong to
PS . This completes the proof. Finally P(S=T) = P(S≤T)P(T≤S) which therefore
also belongs to PS ∩PT. �

Proposition 5.11 Let (Ft,Ft) be a filtration on E and assume that E is F0-
universally complete. If S and T are stopping times for the filtration (Ft,Ft)
with S ≤ T, then

FS = FSFT = FTFS.

Proof. It follows from Proposition 5.9 that FS ⊂ FT and by Proposition 5.6
there exists a unique conditional expectation FS onto FS. But both FSFT and
FTFS are conditional expectations mapping E onto FS. They are therefore equal
to FS and the proof is complete. �

Thus far in this section all definitions were given for stopping times. We
now turn our attention to optional times for similar results.

Definition 5.12 Let S be an optional time for the filtration (Ft). We define
the Boolean algebra PS+ of events determined immediately after the optional
time S as

PS+ := {P ∈ P : PSrtFt+ = Ft+PSrt for all t}.

Since S is an optional time for (Ft), if and only S is a stopping time for
the right continuous filtration (Ft+), we derive from what has already been
proved that PS+ is indeed an order complete Boolean sub algebra of P and
that P ∈ PS+ if and only if PSrt ∈ Pt+ for every t ∈ T (see 5.1 and 5.2). It is
also clear that if the filtration is right continuous then PS+ = PS. Also, if S is a
stopping time (so that both PS and PS+ are defined) we have PS ⊂ PS+, since
Pt ⊂ Pt+.

Proposition 5.13 Let S be an optional time for (Ft). Then

PS+ = {P ∈ P : PS`tFt = FtPS`t for all t}.
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Proof. We know that S`t =
∞∨
n=1

Srt−1/n. Hence, if P ∈ PS+ we have PS`t =

∞∨
n=1

PSr(t−1/n) ∈
∞∨
n=1

P(t−1/n)+ ⊂ Pt. It follows that PS`tFt = FtPS`t. Conversely,

if the latter relation holds for all t, we have PSrt =
∞∧
n=1

PS`t+1/n ∈
∞⋂
n=1

Pt+1/n =

Pt+. Hence, P ∈ PS+. �

Propositions 5.9 and 5.10 remains true if T and S are assumed to be optional
times and PT, PS and PT∧S are replaced by PT+, PS+ and P(T∧S)+ respectively.

Proposition 5.14 If S is an optional time and T is a stopping time with S� T
then PS+ ⊂ PT.

Proof. Let us first note that since S � T we have that
∨
q∈Q

P(S<qI<T) = I with

Q the set of (positive) rational numbers. It follows that for any P we have
P =

∨
q∈Q

PP(S<qI<T). For any P ∈ PS+ we moreover have, since S is an optional

and T is a stopping time.

PP(S<qI<T) = (PS`q)(I− Trq) ∈ Pq.

Now, let t ∈ T and let P ∈ PS+ then

PTrt =
∨
q∈Q

PP(S<qI<T)P(T≤tI) ∈ Pt,

since the supremum is taken over q ∈ Q such that q < t which implies that
Pq ⊂ Pt. It follows that P ∈ PT and the proof is complete. �

Proposition 5.15 If (Sn) is a sequence of optional times and S = inf Sn, then

PS+ =
∞⋂
n=1

PSn+.

Moreover, if each Sn is a stopping time, and S� Sn, then

PS+ =
∞⋂
n=1

PSn.

If (Sn) is a sequence of optional times, then, for S = sup Sn (which is optional),
we have ⋃

PSn+ ⊂ PS+.
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Proof. It follows from Proposition 4.3(3) that S is an optional time and then
from Proposition 5.10 and our remark preceding Proposition 5.14 that PS+ ⊂

PSn+ for every n. Hence, PS+ ⊂
∞⋂
n=1

PSn+. For the converse inclusion let P ∈

PSn+ for every n, i.e., let P(Sn)`t ∈ Pt for every n and for every t ∈ T. Then

PS`t =
∞∨
n=1

P(Sn)`t ∈ Pt,

and so P ∈ PS+. This proves the first assertion.
For the second assertion we apply Proposition 5.14 to conclude that PS+ ⊂

∞⋂
n=1

PSn . From our remark preceding Proposition 5.13 we have PSn ⊂ PSn+ for

every n. Therefore, by the first part equality follows.

The last assertion follows trivially from Proposition 5.9. �

6 Stopped processes and Doob’s optional sam-
pling theorem.

We will prove Doob’s optional sampling theorem in this section for the class of
submartingales that have a Doob-Meyer decomposition.

Definition 6.1 We say the submartingale (Xt,Ft) has the Doob-Meyer decom-
position property if it can be uniquely decomposed as

Xt = Mt +At

with (At,Ft) an increasing right continuous predictable process.

We refer the reader to [5, Theorem 7.5] where conditions are given on E
and on a submartingale (Xt) in order for the latter to have the Doob-Meyer
decomposition property.

Let (Xt) be a stochastic process in E. We start the discussion by considering
an arbitrary positive orthomorphism S and define XS in several steps. As men-
tioned earlier, in a function space with a stochastic process (Xt(ω)) = (X(ω, t))
and with S represented by a positive real valued measurable function S(ω), we
have that XS(ω) = XS(ω)(ω) = X(ω,S(ω)).

Definition 6.2 Let S :=
n∑
k=1

tkPk be an elementary element of Orth(E). We

define the element XS by

XS :=
n∑
k=1

PkXtk .
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It is a standard exercise to see that XS is well defined and the definition makes
sense for an arbitrary stochastic process (Xt). If T is also elementary, if S ≤ T
and if the process (Xt) is increasing, it follows immediately that XS ≤ XT.

In order to define elements XS for more general orthomorphisms S, we firstly
extend this definition to right continuous increasing processes.

Definition 6.3 Let (At) be a right continuous increasing process, i.e., 0 ≤
As ≤ At if s ≤ t and At ↓ As if t ↓ s. Consider a bounded orthomorphism S,
say S ≤ aI. Let π = {tk}, with 0 = t0 < t1 < · · · < tn = a a partition of the
interval [0, a] with mesh |π| and put ∆Sk := S`tk −S`tk−1.

Consider an upper sum
of S with respect to this partition, i.e., a sum

Sπ =
n∑
k=1

tk∆Sk.

Note that S � Sπ and that, by Freudenthal’s spectral theorem Sπ ↓ S holds
I-uniformly. Now ASπ ↓ since At is an increasing process (this is readily seen
by considering a refinement of π by the addition of one point; induction then
yields the result). We define

AS := inf
π
ASπ .

Again it follows from the remark in (1) that if S ≤ T with T a bounded ortho-
morphism, we have AS ≤ AT.

Let (At) be an integrable right continuous increasing process (i.e.,
A∞ := supt∈T At ∈ E). Then we have that AS∧nI ≤ A∞ and AS∧nI ↑ . We
define

AS := sup
n≥1

AS∧nI.

Due to the analogue with the definition of an integral, and the analogue with
the functional calculus for scalar valued measurable functions (see [23, Chapter
XI]), AS can be written as the (forward) integral of the vector function At with
respect to the spectral measure dSt, i.e.,

AS =
∫ a

0

At dSt.

We have thus defined AS for a right continuous increasing process (At) in
the case that the orthomorphism S is bounded and if it is not bounded, we have
defined it for the case that (At) is integrable.

We now prove the following lemma.

Lemma 6.4 Let (At,Ft)t∈T be a positive increasing right continuous stochastic
process adapted to the filtration (Ft,Ft) and suppose that E is F0 universally
complete. If S is a bounded optional time for the filtration or an integrable
optional time, then AS ∈ FS+.
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Proof. Let S be a bounded optional time for the filtration and let Sπ =∑n
k=1 tk∆Sk with ∆Sk := S`tk −S`tk−1

. Then, since ∆Sk ∈ Ptk+ we have that Sπ
is an optional time (see the remark before Lemma 4.2) and we note that S� Sπ.
Using Freudenthal’s theorem, we can choose a sequence of optional times Sπn ↓ S
uniformly (see [15] Theorem 40.2). It follows as in Example 5.6 that for each Sπn
we have ASπn ∈ FSπn+. Since ASπn ↓ AS by definition, we have that AS ∈ FSπn+

for every n. But that implies that AS ∈ FS+ since PS+ =
⋂∞
n=1 PSπn+ by

Proposition 5.15.
If (At) is integrable we note that since (S ∧ nI) ↑ S is upwards directed,

P(S∧nI)+ ⊂ PS+. Hence, also in this case AS = supAS∧nI ∈ FS+. �

Proposition 6.5 Let S be a bounded optional time for the filtration (Ft) and
suppose (Mt) is a right continuous increasing martingale. If S ≤ tI, then

FS+Mt = MS.

If the filtration (Ft) is right continuous, then

FSMt = MS.

Proof. Let π be a partition of [0, t] and define the step elements Sπ as above,
with Sπ ↓ S uniformly. We then have

FS+Mt = FS+FSπ+Mt (since FS+ ⊂ FSπ+)
= FS+MSπ+ (since (Mt) is a martingale)
↓ FS+MS+ = MS (since MS ∈ FS+ by Lemma 6.4).

Of course, if the filtration is right continuous, then FS+ = FS. �

This result serves as a motivation for the definition of XS in the case that
(Xt) is a martingale.

Definition 6.6 1. Let S be a bounded optional time for the filtration (Ft) and
suppose (Mt) is a right continuous martingale. We then define

MS := FS+Mt where t ∈ T is such that S ≤ tI.

2. If S is an optional time and if (Mt) has a last element M∞ we define

MS := FS+M∞.

If the filtration (Ft) is right continuous, we can replace FS+ by FS.

We note that since (Mt) is a martingale, the choice of t does not play a role,
for if S ≤ tI < sI we have

FS+Ms = FS+FtMs = FS+Mt,
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because FS+ ⊂ Ft ⊂ Fs.

We can now finally define the stopped process for a submartingale that
has the Doob-Meyer decomposition. As mentioned before, conditions on the
submartingale and the space E for this to hold can be found in [5].

Definition 6.7 Let S be an optional time for the filtration (Ft), let (Xt) be a
right continuous submartingale with the Doob-Meyer decomposition property
and let

Xt = Mt +At, t ∈ T

be its unique decomposition with (Mt) a martingale and (At) an increasing right
continuous process. Then

1. if S is bounded or

2. if (Xt) has a last element X∞,

we define
XS := MS +AS

with MS and AS as we defined them above.

We conclude with the optional sampling theorem due to Doob (see [7] for a
discussion of this result in the concrete case).

Theorem 6.8 Let (Xt,Ft) be a right continuous submartingale with the Doob-
Meyer decomposition property and let S ≤ T be two optional times of the filtra-
tion (Ft,Ft). Then, if either

1. T is bounded or

2. (Xt) has a last element X∞,

we have
FS+XT ≥ XS.

Proof. We provide a proof for the second case. The first case follows in exactly
the same manner. Let Xt = Mt+At be the Doob-Meyer decomposition of (Xt).
Since S ≤ T we have PS+ ⊂ PT+ and it follows that FS+ = FS+FT+ = FT+FS+

by the analogue of Proposition 5.11 for optional times. Hence, since Mt is a
martingale with a last element M∞ we have FS+MT = FS+FT+M∞ = FS+M∞ =
MS.

Furthermore, since (At) is an increasing process, we derive from S ≤ T that
AS ≤ AT (this was remarked when defining AS). Hence we have, since FS+ is
positive and since AS ∈ FS+ by Lemma 6.4, that

FS+XT = FS+MT + FS+AT ≥MS + FS+AS = MS +AS = XS.

This completes our proof. �
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We note that the condition that (Xt) should be Doob-Meyer decomposable
is the only condition added to the classical conditions found in [7]. As the
reader observed, this condition is needed in order to define the object XS for
a stochastic process (Xt) and an orthomorphism S. It would be interesting to
know how to remove this extra assumption.
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