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SUMMARY 

Keywords: Coal beneficiation, dense medium separation, data mining, neural network, genetic 

algorithm 

For any coal beneficiation group to reach the full financial potential in coal production, 

optimal coal cleaning processes are of great importance.  The heterogenic nature of 

coal is the main constraint in producing a constant and accurate coal quality, meeting 

the client‟s requirements.  Aside from the heterogenic nature of coal, inefficient quality 

control on coal product lines also contributes to a decrease in potential profit.  

Eliminating causes for inefficient quality control on a semi-soft coking coal production 

line is the focus of the investigation. 

The current quality control strategy applied to a coking coal production line under 

investigation includes an operator using a trial and error method to manage the average 

ash quality on the coking coal stockpile.  In order to reach a predefined ash 

accumulation set point, the operator is responsible for the manual adjustment of 

separation densities in five dense medium cyclones.  The set point along with several 

other stockpile properties are calculated using a stockpile building management system, 

integrating all the appropriate on-line and off-line data from different data repositories.  

This control strategy among other process inconsistencies contributes to a sub-optimal 

quality control. 

The main objective of the project is to investigate the benefits in replacing the manual 

quality control strategy with an optimised decision support solution able accommodate 

the operator with optimised SBS outputs to control the coking coal quality more 

efficiently and with higher throughput.   

The performance of the optimised solution created, is compared to the performance of 

the current quality control system.  The optimisation solution has the ability to control 

the ash accumulation around a set point with a smaller variance compared to the 

current control system.  However, the lower throughput in some instances highlights 

inaccuracies within the optimisation solution.  Measurements that are more 

representative will increase the performance of the optimisation solution. 
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OPSOMMING 

Sleutelwoorde: Steenkool veredeling, digte medium skeiding, data ekstraksie, neural netwerk, 

genetiese algoritme 

Om die volle finansiële potensiaal te verwerklik is optimale steenkool veredelings 

prosesse van uiters belang vir enige steenkool veredelings maatskappy.  Die hoof 

beperking in die produsering van steenkool met konstante en akkurate kwaliteite, is die 

heterogeniese aard van steenkool.  Buiten hierdie heterogeniese eienskap van 

steenkool, dra oneffektiewe prosesbeheer op steenkool kwaliteit ook by tot „n afname in 

potensiële finanasiële opbrengste.  Die oorhoofse fokus van die ondersoek, is die 

uitskakeling van oorsake vir swak kwaliteit beheer op„n kooks steenkool produksie lyn. 

„n Operateur wat „n probeer-en-tref metode volg in die beheer van die gemiddelde as 

kwaliteit op die steenkool bed, maak deel uit van die huidige beheerstrategie wat 

gebruikword op „n kooks steenkool produksie lyn.  Die operateur is verantwoordelik vir 

die verstelling met die hand op vyf digte-medium-skeiding siklone se skeidings 

digthede.  Die verstellings word aangebring om „n gedefineerde stelpunt te bereik.  Die 

stelpunt asook sekere ander steenkool bed eienskappe word in „n bed-bou-program 

bereken.  Geskikte aanlyn en historiese data uit verskillende data banke word 

geïntegreer met die program vir toepaslike berekeninge.  Die huidige beheerstrategie 

asook vele ander afwykings dra by tot die oneffektiewe kwaliteit beheer. 

Die hoof doel van die projek is om die vervanging van die huidige beheerstrategie met 

„n meer optimale strategie te ondersoek, vir resultate wat meer effektiewe kwaliteit 

beheer en hoër opbrengste genereer.   

Die prestasies van die optimaliserings oplossing word met die prestasies van die 

huidige beheersisteem vergelyk.  In vergelyking met die huidige beheersisteem, beheer 

die optimaliserings oplossing die as akkumulasie om „n stelpunt met minder variasies.  

Nietemin, onderstreep laer opbrengste in sommige gevalle afwykings in die 

optimaliserings oplossing.  Meer verteenwoordigende meetings sal die verrigting van 

die optimaliserings oplossing verbeter. 
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NOMENCLATURE 

Variable Description 

Ep Écart probable moyen (EPM) - describes the extent of possible 
misplaced particles in DMC operation. 

D25, D50, D75 Relative density cutpoint; particles have 25%, 50%, 75% chance at 
reporting to either the overflow or the underflow of the DMC 
respectively. 

FB A buoyancy force acting on a single particle. 

FE External forces such as gravity or centrifugal forces acting on a 
particle. 
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CHAPTER 1 

INTRODUCTION 

For the six months ended June 30 2010, Exxaro saw a 10% increase in total revenue.  

For the same period, Exxaro delivered 29% more coking coal to the domestic market.  

According to a mining weekly article published on the 20th of August 2010 “one can 

assume that it (29% more coking coal delivered into local market) was a significant” 

contribution to the 10% revenue increase for the six months ended (Faurie, 2010).  This 

noticeable increase in coking coal supply to the local market was due to some 

complication at the Richards Bay Coal Terminal, responsible for coking coal export.  

Exxaro‟s financial director Wim de Klerk added, “should the situation remain the same, 

this could mean that Exxaro would further increase its revenue generated from coking 

coal supplied to the local market” (Faurie, 2010). 

This is the current position of the coking coal supply section of the JSE listed company 

Exxaro.  An increase in the demand for coking coal introduces a higher coking coal 

supply order.  One of Exxaro‟s open-pit mines, is a world-renowned coal beneficiation 

site, and is responsible for 1.1 Mtpa production of coking coal (Exxaro Coal, 2009).  It is 

at one of this site‟s beneficiation plants, GG1, where a manual quality control on coking 

coal has been implemented.   

As mentioned in the article, Exxaro is now in an agreement with ArcelorMittal South 

Africa (AMSA) to supply coking coal at an increased price.  AMSA is a steel 

manufacturing company utilising coking coal from Exxaro‟s world renowned coal 

beneficiation site, GG, in their production of steel.  Coking coal is used in the coke 

making process, producing nearly pure carbon utilised in a blast furnace for iron 

making.  The coke ovens are responsible for driving off impurities from coking coal in 

the coke making section.  Coal impurities (proportional to the ash content and thus the 

quality of the ash) are unfavourable for the ovens.  Coal impurities also have a negative 
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effect on the coke production rate (Çoban, 1991).  Thus, coking coal quality is an 

important attribute to a client like AMSA.  It is therefore in Exxaro‟s interest to produce 

the stable quality coking coal demanded by the client. 

From the information gathered from multiple sources, including GG1 metallurgists, 

engineers and relevant documentation, the main issue identified was the inefficient 

quality control on the 10.3% ash semi-soft coal product at GG1, leading to some 

stockpiles not achieving an average ash content of 10.3%.  The loss of good quality 

coal due to fluctuations in the average ash accumulation of the coking coal delivery is 

also another disadvantage of this inefficient quality control.  As discussed in chapter 2, 

the SBS is responsible for numerous calculations and visual representation of the 

calculated results.  The SBS gives percentage ash content as an output to the operator 

and the operator is then responsible for the quality control of the semi-soft coking coal 

stockpile (10.3% ash average).  The operator uses manual control to adjust the 

separation RD of the magnetite suspension introduced to the DMCs situated in the five 

modules.   

Section 4.2 discusses the task discovery process for this investigation.  The task 

discovery process is part of the knowledge discovery process that provides the 

necessary structure to the study.  The objectives identified in chapter 4 are discussed in 

this introductory chapter to give context to the study. 

1.1 OBJECTIVES 

The purpose of the research is to investigate the benefits of an optimised manual 

control of the separation relative densities of the dense medium in the five modules 

located in AREA 04.  This is accomplished combining the necessary knowledge gained 

from a KD process and process background studies to simulate the process using an 

accurate process model and effectively optimise the target variable to the operator for 

better quality control.  A neural network (NN) will be used to model the process and a 

genetic algorithm (GA) will be responsible for the optimisation of the set points provided 

to the operator.  The purpose of the solution developed in this investigation is not for 

implementation at GG1 but rather for investigating the possibility of an optimised 
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manual control strategy using the data available from the process.  Furthermore, the 

possible benefits of an optimised control strategy are analysed.  Figure 1 illustrates the 

objective of the optimisation solution investigated.  The aim is to decrease the variance 

in the ash content distribution in the final coal product.  In addition, each stockpile 

stacked should contain predefined average ash content, usually 10.3% ash 

(Rautenbach, 2009a). 

 

Figure 1:  Optimisation objective 

1.2 INVESTIGATION APPROACH 

The optimisation solution approach for the DMC beneficiation area at GG1 is illustrated 

in figure 2.  The knowledge discovery process is a well-suited investigation structure.  

The objectives of the study are incorporated into the KD process.  The structure of the 

study is listed below. 

1. Data and task discovery (chapter 4): Defining the problem statement, project 

objective, and discovering and extraction of the relevant data. 

2. Data pre-processing (chapter 5): At first, data transformation and integration 

entail the construction of a data warehouse from which the preceding steps will 

build on.  The data summarisation and data cleaning involve introducing “clean”, 

representative data with high quality to the data mining stage. 
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3. Data mining (chapter 6): Involves the accurate modelling of the process on data 

representative of the process dynamics.  This stage includes the training and 

evaluation of the model. 

4. Process optimisation (chapter 7): Include generating the benefit estimation 

solution, conducting sensitivity analysis for optimal quality control simulations, 

and discussing the benefits for such an optimal quality control compared to the 

current control strategy. 

 

Figure 2:  Optimisation solution approach for GG1 DMC beneficiation 

1.3 MOTIVATION 

Many characteristics of human activities have been fundamentally altered by the new 

age of the digital computer.  At the same time, growing complexity of, for instance 

industrial manufacturing processes and competition on global markets impose 

increasingly greater demands for computational intelligence.  These factors influence 

the way industries such as in the mining and manufacturing sector approach process 

automation and optimisation.   
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The growing complexity of industrial manufacturing processes and growing rate of the 

amount of data stored in different repositories are two of the main motivations for data 

driven optimisation.  Continual process improvement and optimisation is an integral part 

of increasing revenues generated on production plants.  Even the slightest 

improvements may benefit companies in the end.  Continuous advancements and 

understanding of novel technologies and science could fill the gap between sub-optimal 

process performance and optimal revenue generation.  This study underlines the need 

and value of an intelligent process optimisation approach on a coking coal quality. 
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CHAPTER 2 

COAL PREPARATION 

2.1 INTRODUCTION 

The data generation domain in recent years has expanded at a rate faster than humans 

can absorb it.  Nearly all the sectors of civilisation are generating masses of data.  Yet, 

the full potential of the information discovery within these vast amounts of data has not 

been reached.  In the industrial sector, thousands of data attributes stored in hundreds 

of data repository per industrial site are untouched when it comes to true knowledge 

discovery (Olson & Shi, 2007).  This is the case of data relevant to the manual quality 

control of a coking coal stockpile at one of GG‟s coal beneficiation plants.  A huge 

amount of data relevant to the problem environment is logged, yet the quality control on 

the coking coal stockpile has room for improvement as shown in this study.   

As proven in this background study coal is responsible for more than half of South 

Africa‟s electricity generation.  Not to mention coal exports adding to coal‟s value for 

South Africa.  It is therefore in any coal beneficiation plant‟s best interest to deliver on 

consumer needs as accurately and efficiently as possible.  Cyclone quality control plays 

a central role in achieving these goals.  This investigation focuses on extracting the 

necessary information from the data in order to simulate dense medium cyclone (DMC) 

process behaviour and applying the extracted data knowledge to the optimisation of the 

quality control at GG1.For meaningful investigation, chapter 2 is dedicated to give more 

background on the problem environment at GG1.   

2.2 COAL PREPARATION 

The main objective of a coal preparation (beneficiation) plant is the extraction of 

valuable qualities from run-of-mine (ROM) coal at optimal efficiency, at the lowest cost, 

with the proper consideration for the impact on the environment, and meeting the 
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client‟s product specifications.  The chain of events in extracting the valuable coal 

properties includes the exploration of a colliery site, the mining and extraction of the 

coal from ROM, the handling and stockpiling of treated coal, crushing, screening, and 

beneficiation.  In the process of achieving the objective, mined coal from coal seams in 

the earth‟s crust undergoes different levels of cleaning.  Since no two coals are the 

same due to variability in coalification conditions, the preparation levels parameters 

from ROM coal to valuable coal for the client, differ from site to site.  However, the 

beneficiation principles stay the same, implying the removal of impurities and unwanted 

materials, and coal size reduction for more intense and effective coal “washing” in order 

to increase the quality of the coal (Horsfall, 1993).   

2.2.1 ORIGIN AND FORMATION 

Coal, a non-renewable energy source, is the most abundant fossil fuel on earth. This 

organic rock is a heterogeneous mixture of organic and inorganic material, originating 

from the alteration of peat.  Under suitable conditions, thick layers of plant remains were 

covered with sediment over the years causing the coalification.  The chemical activity of 

bacteria and fungi is responsible for the first stage of coal formation where these layers 

of plant material undergo a biochemical process to form peat.  Due to proper pressure, 

heat, time and other physical phenomena, the second stage of the alteration of the 

original plant material takes place as the coalification stage.  Coal, as a solid fossil fuel, 

is generally found in stratified depositions because of the original layers of peat 

(England et al., 2002). 

The quality of the coal ultimately depends on the degree of peat metamorphoses.  The 

degree of metamorphoses (coalification) in turn depends on the conditions under which 

the coal was formed.  These conditions include pressure, geothermal heat, time, oxygen 

supply and other physical phenomena such as volcanic activities. The conditions where 

coalification takes place vary from area to area.  Thus, no two coals are ever the same 

(Perry, 1997).  

With time, the coalification process brings about several coal formation stages.  Each 

stage holds a certain coal quality range recovered in specific beneficiation processes.  
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Peat is the first stage of the coalification process.  This product has very little value.  

Lignite or brown coal differs from peat in the moisture content.  Lignite is less moist than 

peat as lignite suffers harsher coalification conditions.  Coal, buried deeper in the earth 

experiences more intense geothermal temperatures, pressures and lower oxygen 

supply.  In these conditions the volatile matter (a measurement of the quality of coal) 

decreases producing a higher quality coal.  Bituminous and finally anthracite are the 

higher and highest quality coals respectively, with the lowest volatile matter content 

(England et al., 2001).  

The strata of the South African coalfields are horizontal and hardly ever surpass a slope 

of five degrees.  Any disturbance in the horizontal seam characteristic in coalfields is 

more than often a result of igneous activity or earth movement that disturbed the 

horizontal beds during coalification (England et al., 2002).  

2.2.2 COAL PROPERTY PARAMETERS 

The analysis of coal properties serves as the crucial information for any application or 

area relating to coal.  An example of analysis application is for insight into market 

suitability where the following parameter set is of importance:  ash content; heat value; 

volatile and sulphur content, and elemental components.  Continuous analysis of coal is 

imperative for the proper control of collieries and preparation plants.  Some 

beneficiation complexes make use of their own laboratories for more rapid data 

analysis, while some companies prefer the use of commercial laboratories for more 

intricate analysis (Leonard, 1991). 

The determination of inherent moisture content, ash content, fixed carbon, swelling 

number, calorific value and sulphur content is collectively referred to as general 

analysis.  The most commonly used analysis in identifying specific coals for specific 

utilisation is the proximate analysis where the moisture content, ash content and volatile 

matter with fixed carbon, determined as the difference out of a 100, are determined as 

weight percentages (England et al., 2002).    
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2.2.2.1 MOISTURE CONTENT 

Moisture appears on the surface of the coal as free or surface moisture and in the 

internal pores of the coal as inherent moisture.  The moisture content is an unwanted 

constituent of coal and decreases the coal‟s calorific value, ultimately lowering the coal 

quality.  The vacuum-oven method is a SABS standard for determining the moisture 

content in coal samples (SANS 5924:2009).  Several dewatering techniques are 

available to reduce the free moisture content of the coal. Inherent moisture, however, 

cannot be removed by conventional dewatering methods, but can be removed by 

heating the coal above the moisture‟s boiling point (England et al., 2002). 

2.2.2.2 ASH CONTENT 

The ash content of coal is the weight of the residue after complete incineration of coal 

under certain testing conditions (ISO 1171:1997).  The residue content represents the 

mineral impurities within the coal.  The amount of residue is inversely proportional to the 

heating value of the coal and thus to the quality of the coal.  As the ash content 

increases, the quality of the coal decreases. 

The presence of mineral components in coals is most probably due to inorganic rocks in 

adjacent strata penetrating coal seams during or after coal formation or during coal 

mining.  Mineral impurities include minerals containing elements such as silicon, iron, 

calcium, magnesium, and sulphur.  The mineral content of coals differs from site to site, 

depending on the different conditions of coalification (Liu et al., 2007).   

2.2.2.3 CALORIFIC VALUE 

Calorific value or heating value is the “measure of heat produced from a unit weight of 

coal” (Leonard, 1991:884).  Two bomb calorimeter methods of calculating the heating 

value are available: static isothermal method and adiabatic method.  The static 

isothermal method is not common and makes use of a „thermal jacket‟ surrounding the 

bomb.  The ISO 1928:2009 standard describes the method of determining the calorific 

value in adiabatic conditions.  This property is a crucial indicator in the classification and 

specification of coal (England et al., 2002).   
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2.2.2.4 SPECIFIC GRAVITY (RELATIVE DENSITY)  

The specific gravity of coals is a crucial property to the coal preparation technology in 

use today.  Specific gravity is the density of a substance relative to the density of a 

reference substance at a specific condition, usually water at 4°C (Felder & Rousseau, 

2000).  The definition given for relative density relates to the specific gravity definition 

(England et al., 2002).  Relative density (RD) will be used in the remainder of this 

document.   

The RD range of coals lies between 1.23 and 1.72, depending on three parameters:  the 

rank of the coal, the moisture content of the coal, and the ash content.  In theory, the 

quality of a coal increases with a decrease of the coal RD.  For a specific coal rank, the 

increase in the percentage ash content leads to an increase of the coal‟s RD (Leonard, 

1991).  The cleaning or “washing” of the coal at a particular RD facilitates the control of 

the ash content of the washed coal (England et al., 2002).   

RD is the key component in the evaluation of the washability characteristics of coal.  

The float-and-sink analysis is responsible for generating washability curves used to 

describe the washability of coals, evaluating the efficiency of separators and effective 

plant control (England et al., 2002).  These evaluation methods are described in more 

detail in section 2.3. 

2.2.3 COAL UTILISATION 

As mentioned, the chief objective of a coal preparation plant is to produce a coal 

product in compliance with the consumer utilisation criteria to gain the maximum profit.  

In order to achieve this goal and generate the greatest possible profit, the utilisation of 

the “cleaned” coal must reach its full potential.  The rank of the coal is the determining 

factor in sorting the “cleaned” coal produced at the preparation plant into the proper 

utilisation category.  Great financial loss comes from not sorting the prepared coal into 

the correct utilisation categories.  The origin of this unrealised potential is at the source 

of coal production: the coal seams.  Coal seams are not homogeneous but highly 

heterogeneous.  Effective preparation for heterogeneous coal feeds to be separated 

into multiple coal products is essential.   
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A parameter influencing the sorting of the cleaned coals into the different utilisation 

categories, is the ability to meet the government regulations.  Restrictions such as the 

sulphur content limit and the carbon dioxide emission regulations restrict coal 

preparation to some extent.  These regulations are dependent on the dynamicity of 

political and public demands.  In order to meet the demands of the regulations and to 

deliver the highest quality product, several trade-offs between quality and consumer 

demand are compulsory (Leonard, 1991). 

2.2.3.1 SOUTH AFRICAN COAL CHARACTERISTICS 

South Africa‟s coal industry compares very well to the international coal industry.  South 

Africa is ranked the fifth largest coal producer in the world (Van Wyk et al., 2006).  The 

total ROM coal production in South Africa in 2006 was 312.5 million tonnes, of which 

245 million tonnes were of saleable quality.  Figure 3 and figure 4 clearly indicate the 

South African coal industry as a highly concentrated coal production industry.  The top 

five coal producing companies (including Exxaro) account for almost 90% of the ROM 

coal production in South Africa.  The Waterberg coalfields were responsible for 36 

million tonnes of coal produced in 2006. 

 

Figure 3:  Coalfields ROM production in 2006 (U.S., 2009)  
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Figure 4:  Coal production by mining company in 2006 (U.S., 2009)  

The most commonly used primary fuel in the world is coal.  Coal provides 68% of the 

primary energy needs in South Africa (South Africa, 2009).  Figure 5 indicates the 

dominating nature of coal in the energy sector.  

 

Figure 5:  Primary energy sources for South Africa in 2004 (Van Wyk et al.., 2006) 
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Figure 6:  Coal utilisation in South Africa for 2004 (Van Wyk et al.., 2006) 

Figure 6 is a clear indication of the high coal utilisation in the energy sector.  Coal 

trading abroad accounts for 27% of the coal utilisation.  As the production of coal 

increased, the demand for coal also increased over the years.  Figure 7 illustrates the 

trends of this increase in consumption of coal in its different forms of utilisation.  Eskom 

is responsible for 97.5% of the total coal consumption used to generate electricity.  

Other coal consumption areas illustrated in figure 7 include consumption in town gas, 

merchants and domestic consumption, and industrial consumption.  Coking coal used in 

the iron and steel industry also shows relatively high coal consumption. 
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Figure 7:  Historical consumption of coal in South Africa (Van Wyk et al.., 2006) 

South Africa is a carbon-intensive economy and among the top twenty emitters of 

greenhouse gases (GHG).  This country produces more or less 500 million tons of 

carbon dioxide equivalents per annum, more emissions than all other Sub-Saharan 

African (SSA) countries combined (as depicted in figure 8).  Around 40% of the 

emissions are attributable to the export of carbon-intensive goods (Du Plooy & Jooste, 

2011).  In seeking to reduce domestic GHG emissions, South Africa aims to implement 

carbon tax into the 2012 budget (Creamer, 2011).   

 

Figure 8:  CO2 emissions from energy use per annum (Du Plooy & Jooste, 2011)  
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The purpose for carbon tax in South Africa is to reduce the GHG emissions according to 

a study done on the economic implications of carbon tax (Winkler & Marquard, 2009).  

Two main effects of carbon tax on the economy are the decrease in energy demand 

due to higher prices as well as to less intensive fuels.  In concluding their study, Winkler 

and Jooste proposed that the government‟s main consideration in insuring South Africa 

competes in the climate-friendly and low-carbon world should be carbon tax.  However, 

considering carbon tax in lowering GHG emissions, the government should still meet 

certain socio-economic objectives.  According to Creamer, the National Treasury is also 

drawing attention to job creation, economic competitiveness as well as poverty 

reduction in considering carbon tax in 2012‟s budget.  Carbon tax will have a significant 

influence on the coal mining and processing industry. 

2.3 COAL PREPARATION PROCESS DESCRIPTION 

As mentioned, the main goal of most of the coal beneficiation plants is to separate the 

ash-forming materials from the combustible materials.  Gravity concentration is the core 

unit operation of most coal washing plants (Majumder, Barnwal, Ramakrishnan, 2010).  

For this reason, it is imperative to identify and continuously monitor the efficiency of the 

DMS units as well as the operation performance of the DMS units for accurate quality 

control. 

2.3.1 DENSE MEDIUM SEPARATION 

DMS is the separation of clean coal particles from discard exposing the density 

distribution of the coal feed to a dense medium with a specific separation RD.  Floating 

material will typically contain more coal than the discarded sinks when immersed in the 

dense medium.  The particles with the higher specific gravity will sink and the particles 

with lower specific gravity will float (Perry, 1997).  

The degree of gravity separation depends partially on the liberation of the particle with 

different densities.  The more the particles with differing RDs are detached from each 

other, the higher the yield of the wanted product from the process.  This process is 

illustrated in the liberation of the particles lies in the breaking and grading of the 
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material.  However, with the liberation comes the trade-off between higher separation 

efficiency by liberation or higher capital cost in the separation of fine particles (Perry, 

1997).   

 

Figure 9:  Coal liberation (De Korte, 2009b)  

Several DMS units are available for coal beneficiation and can be categorised into two 

groups: gravitational separators and centrifugal separators.  Gravitational separating 

vessels depend on the removal of floats via paddles or vessel overflow. The feed 

introduced to the vessel contains the separation dense medium as well as the material 

to be separated.  Denser particles separate from lighter particles (also known as the 

floats).  The floats exit the vessel via overflow while the rest of the contents in the vessel 

are slowly agitated in order to keep the medium in suspension.  Centrifugal vessels are 

the more widely used DMS units.  High centrifugal forces in the vessel enable the 

effective separation of lighter particles (good quality particles) from heavier particles 

(Wills &Napier-Munn, 2002).  The DMC operation is the focus of this literature study. 

2.3.1.1 MAGNETITE AS DENSE M EDIUM 

In 1912, T.M. Chance from the USA came to realise that solids suspended in a liquid 

could replace liquid solutions in dense medium washing.  He used sand suspended in 

water to replace expensive and often poisonous liquid solutions.  In the 1950s, 

magnetite was introduced to DMS as solid suspended in water.  Magnetite in water 

suspensions are the most often used dense medium for DMS operations (Horsfall, 

1993).  
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The composition of the dense medium is an important property criterion to which the 

dense medium is evaluated.  A dense medium suspension composition contaminated 

with shale or other unwanted materials should be limited or if possible avoided, since 

the RD of the dense medium is reliant on the density proportion of each component of 

the suspension.  Unwanted constituents lower the RD resulting in the forced addition of 

more medium solids contributing to unwanted expenses, increasing the medium 

viscosity and ultimately decreasing the efficiency of the dense medium.  In the case of a 

high viscosity, the medium becomes too thick for efficient density separation.  Particles 

suspended in a dense medium with high viscosity take longer to separate.  The 

inefficiency results in unwanted heavier particles reporting to the floats. The medium 

particle size also plays a crucial role in the stability of the medium.  Coarser solids tend 

to settle out more readily, consequently destabilising the medium.  Finer medium in a 

dense medium is more stable, but increases the viscosity of the medium (England et al., 

2002). 

Magnetite suspended mediums offer high resistance to attrition, suitable for a wide 

range of separation densities.  Effective separation and high magnetite recovery is 

achieved using magnetic methods (Perry, 1997).  The magnetite solids also do not 

degrade giving this medium the advantage of not altering its properties with time.  Ferro-

silicon is also a solid appropriate for use in DMS.  However, this medium tends to be 

more prone to corrosion than magnetite suspensions (Du Plessis, 2009).  

Fine non-magnetite solids tend to elude screening operations of coal and are 

responsible for the build-up of unwanted contaminants in the dense medium 

suspension.  It is therefore vital for a coal beneficiation plant to have a dense medium 

recovery and concentration system in place to eliminate the build-up of contaminants in 

the suspension.  This recovery and concentration system is also responsible for the 

concentration of a dilute medium produced after washing the coal with water (discussed 

below).  Common to these recovery systems is the integrated tank-level control system 

able to regulate the RD of the dense medium (England et al., 2002). 
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There is not one recovery system able to adhere to all coal beneficiation constraints for 

ideal dense medium recovery and concentration; however, some common principles are 

discussed below (Osborne, 1988).   

Figure 11 is a process flow diagram of a typical magnetite recovery and concentration 

system for a coal beneficiation area using DMC separation units.  Raw coal enters the 

DMC beneficiation area via a conveyor, transporting the raw material to a degradation 

screen.  In the case of each of the five beneficiation modules in AREA 04 at GG1 

(Exxaro), the screens are responsible for separating the -1mm fines (undersize) from 

the oversize coal (+1mm – 25mm).  The oversize is fed to a mixing box responsible for 

mixing the coal and the dense medium1.  The magnetite suspension entering the mixing 

box is at the controlled separation RD and will be referred to as the correct medium, as 

indicated in figure 11.  The correct medium is pumped from a correct medium storage 

tank to the mixing box. 

At GG1‟s AREA 04, two DMCs are responsible for the separation of the floats2, 

designated for the semi-soft coking coal stockpile, and the sinks3, designated for the 

power station coal stockpile.  A splitter box is in charge of dividing the coal and dense 

medium feed stream to the DMCs, equally.  The correct medium is recovered after DMS 

separation, using desliming and drain-screens.  Unrecovered correct medium is rinsed 

with water and drained on the screens (as indicated in figure 11) to a dilute medium.   

The dilute medium resides in the dilute medium tank and the correct medium in the 

correct medium tank.   

Ferromagnetic characteristics of magnetite facilitate high medium recovery and simplify 

the control of the recovery and concentration system (Osborne, 1988).  Rapid magnetic 

drum separators are used in AREA 04 to separate the magnetite from the water and 

from non-magnetic contaminants.  As illustrated in figure 11, pumped dilute medium 

enters a splitter box responsible for dividing the feed into equal streams designated as 

                                            
 

1
The dense medium used at GG1 is a magnetite suspension. 

2
The floats in this area ideally should correspond to a coal ash quality lower than the separation density. 

2
The floats in this area ideally should correspond to a coal ash quality lower than the separation density. 

3
The sinks in this area ideally should correspond to a coal ash quality higher than the separation density. 
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feed streams to the magnetic drum separator.  Figure 10 illustrates the operation of a 

magnetic drum separator.  The dilute medium enters the separator in a trough keeping 

the suspension in contact with the lower point (feed pan gap) of a rotating magnetic 

drum.  Magnets are fixed at the bottom of the drum and do not rotate along with the 

drum.  These magnets create an intense magnetic field drawing the magnetite particles 

out of the suspension to the “discharge zone”.  The drum rotates until the particles leave 

the magnetic field and fall into an exit trough, transporting a high concentration 

magnetite stream called the “overdense medium” stream (indicated as the “magnetite 

concentrate” in figure 10).  The overdense medium stream is sent back to the correct 

medium tank through a demagnetiser.  The purpose of the demagnetising coil is to 

demagnetise the magnetite retaining magnetism when emerging from the magnetic 

drum separator.  Magnetic magnetite particles agglomerate and tend to settle out, 

preventing the particles to disperse in the suspension.  From the magnetic drum 

separator the effluent suspension containing non-magnetic contaminants and water is 

sent to a water clarifying section as tailings (England et al., 2002). 

 

Figure 10:  Magnetic drum separator flow schema (Rayner & Napier -Munn, 2003) 

The RD of the magnetite suspension determines the degree of separation in the DMCs 

located in the secondary beneficiation area at GG1.  Thus, the correct medium density 

is vital to the quality control philosophy of the AREA04 products at GG1.  For the 



An optimisation approach to investigate quality control of a product coal stockpile 

Chapter 2 
Coal Preparation Page 20 
 

accurate control of the level in the medium tanks to prevent tank overflow, a constant 

density of the correct medium and the medium flow to respective destinations are 

imperative. This control should maximise magnetite recovery and optimise density 

control for more ideal separation.   

AREA 04 uses nuclear density gauges to measure the density of the correct medium 

(as indicated in figure 11).  In decreasing the density of the medium for regulatory 

purposes or in case of a RD set point decrease, the medium is simply diluted by the 

addition of water.  This addition of water for medium dilution may take place by either 

adding water directly to the correct medium line4 to the mixing box, or adding the water 

to the correct medium tank.  The density control should compensate for effect the 

overdense medium has on the RD in the correct medium tank, given that the high 

concentration of the stream increases the density within the tank.   

A distribution box situated between the medium tanks and the overflow is responsible 

for the tank level control.  The box bleeds off some of the correct medium to the dilute 

medium tank in order to control the levels in the tanks.  In the case of an increase in the 

set point of the relative density, more correct medium are bled to the dilute medium tank 

in order to produce a higher overdense stream from the magnetic separators.  The 

increase in the overdense medium increases the RD in the correct medium tank.  The 

process in increasing the relative density of the correct medium is responsible for a time 

lag from the time the operator increases the set point to the time the relative density 

reaches the specified value.  The lag in the increase of the density is much longer than 

decreasing the density. 

An analysis study done on the medium losses at a coal beneficiation plant in India, also 

describes the control of the plant with the use of PID (proportional, integral, and 

derivative) controller.  The level of the dilute medium tank is controlled using the 

distribution box as control element (Sripriya, Dutta, Dhall, Narasimha, Kumar, Tiwari, 

2006). 

                                            
 

4
This alternative addition of water is indicated with the red water line in Figure 11. 
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Figure 11:  Magnetite recovery and concentration system (England et al., 2002; Osborne, 1988) 
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A loss in dense medium during DMS operation contributes to high operating costs.  

According to a study done on medium losses at coal washing plants (Sripriya et al,. 

2006), 10% – 20% of operating costs are attributable to magnetite loss during 

operation.  Adhesion to coal material after draining and rinsing screens as well as 

magnetic separation process inefficiency are normally the two main contributors to 

magnetite loss (Sripriya et al,. 2006). 

Adhesion losses after draining and rinsing are mainly due to loading increases on the 

screens.  In the investigation conducted by Sripriya et al., the medium spilt ratio5 had a 

significant effect on magnetite recovery.  If more magnetite reports to the floats, an 

increase in adhesion loss will occur at the floats drain and rinse screens.  The effects 

of a change in RD versus an adjustment in DMC spigot diameter had on the medium 

split ratio were investigated.  A change in medium RD had little influence on the 

medium split ratio and hence negligible effect on medium losses.  On the other hand, 

increasing or decreasing the spigot diameter had a great influence on the medium split 

ratio (Sripriya et al,. 2006). 

As for medium losses through magnetic separators, the investigation led to the 

conclusion that these losses are not a dominant source of medium loss.  Medium 

losses through magnetic separators are more attributable to ineffective operation of the 

separators than to other factors.  Magnetic separators appear to contribute 20% – 40% 

of the medium losses on the coal beneficiation plant, according to Sripriya et al. 

2.3.2 DMS EFFICIENCY 

2.3.2.1 FLOAT AND SINK ANALYSIS 

Heavy liquid laboratory tests, called float and sink analysis (ISO 7936:1992), are 

responsible for determining the economic separating density for a particular coal 

recovery.  Typical heavy liquids used during float and sink analysis is zinc chloride, 

                                            
 

5
 The medium split ratio of a DMC refers to the magnetite fraction included in the floats relative to the 

magnetite fraction included in the sinks. 
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bromoform, tetra bromo ethane (De Korte, 2009b).  As illustrated in the picture below, 

liquids with a range of densities are prepared for incremental test steps. 

At the start of the test, a sample of coal is introduced into the liquid with the highest 

relative density.  Adequate amount of time is needed for the particles with a higher 

density than that of the liquid to settle out to the sinks zone.  After proper separation, 

the floats (particles with a lower RD) are removed, washed and introduced to the 

second liquid with a lower RD than the first.  The floats from the second separation is 

removed after appropriate settling time and introduced to the third step and so on 

(Wills &Napier-Munn, 2006).  The RD range for coal typically ranges from 1.30 to 1.70 

with density intervals of 0.02 (England et al, 2002). 

 

Figure 12:  Float and sink analysis 

The sinks of each step as well as the floats of the final step is drained, washed, and 

dried.  Each incremental product is weighed and the ash content is determined to give 

a density and ash distribution of the coal sample by weight.  This is a steady-state 

analysis because of the time required for the particles to separate sufficiently.   

The assay results can be tabulated as shown in table 1.  The density fractions from the 

incremental step test are shown in column (a).  The fractions of the total sample weight 

for each incremental step are listed in column (b) and the ash content per fraction in 

column (c).  Evident from the table is the ash content increase with the increase in RD.  

The ash product in each density fraction is calculated multiplying weight percentage 

with the ash content (column (b) multiplied with column (c)).  
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Table 1:  Float and sink analysis results (Wills, Napier-Munn, 2006) 

(a) (b) (c) (d = b × c) (e) (f = ∑bi) (g = ∑di) (h = g/f) 

RD 
Fraction 

Wt% Ash% 
Ash 

product 
Separation 

density 

Cumulative Float (Clean Coal) 

Yield% 
Ash 

product 
Ash% 

-1.30 0.77 4.4 3.39 1.30 0.77 3.39 4.4 

1.30 - 1.32 0.73 5.6 4.09 1.32 1.50 7.48 5.0 

1.32 - 1.34 1.26 6.5 8.19 1.34 2.76 15.67 5.7 

1.34 - 1.36 4.01 7.2 28.87 1.36 6.77 44.54 6.6 

1.36 - 1.38 8.92 9.2 82.06 1.38 15.69 126.60 8.1 

1.38 - 1.40 10.33 11.0 113.63 1.40 26.02 240.23 9.2 

1.40 - 1.42 9.28 12.1 112.29 1.42 35.30 352.52 10.0 

1.42 - 1.44 9.00 14.1 126.90 1.44 44.30 479.42 10.8 

1.44 - 1.46 8.58 16.0 137.28 1.46 52.88 616.70 11.7 

1.46 - 1.48 7.79 17.9 139.44 1.48 60.67 756.14 12.5 

1.48 - 1.50 6.42 21.5 138.03 1.50 67.09 894.17 13.3 

+1.50 32.91 40.2 1322.98 - 100.00 2217.15 22.2 
 

From these results, the required separation density and the expected yield of the coal 

at the appropriate ash content can be calculated using washability curves.  Column (f) 

shows the results from the yield calculation: 

      
                             

                 
        

Equation 1 

The cumulative ash (h) is calculated dividing column (g) with the percentage floats 

yield. 

From the float and sink analysis results a washability curve is generated as shown in 

figure 13.  As indicated in the figure, for an accumulated ash percentage of 10% from 

the float product, the heavy liquid (or dense medium) should have a separation RD of 

1.42.  At this RD, a 35% yield is attainable, given that the settling time was sufficient 

during the float sink analysis. 

Coal washability curves are used for the design of coal beneficiation plants.  From 

these curves, the optimum separation densities are identified for techno-economic 
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evaluations in order to design the desired coal washing plant.  Day-to-day plant control 

evaluation also utilise washability curves (De Korte, 2009b). 

 

Figure 13:  Washability Curve 

DMS control performance is highly dependent on the weight percentage of the feed 

with a density close to the separation RD.  The near-dense material is measured by 

the percentage of material with an RD of ± 0.1 from the separation RD.  A coal sample 

with low amount of near-dense material but high amount of material outside of this RD 

range will separate more easily over a wide range of operating densities, than a high 

amount of near dense material.  A small change in the separation density in the 

presence of a high weight percentage near-dense material, will certainly affect the 

operation performance of the DMS (Wills &Napier-Munn, 2006). 

2.3.2.2 EFFICIENCY OF DMS 

A high amount of near-dense material has greater odds of particles reporting to the 

wrong DMC outlet than low amount of near-dense material during normal operation.  

This is the case for continuous DMC production processes in contrast to the near ideal 

float and sinks laboratory analyses.  Very light or very heavy particles tend to separate 

more rapidly than near-dense material.  Because the near-dense material takes longer 

to separate in a DMC, material will end up in the wrong outlet.  Therefore, a 
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quantification of DMS efficiency is needed to investigate the degree of separation 

(Wills &Napier-Munn, 2006).  

In constructing a partition curve (also called a Tromp curve), samples are taken from 

the overflow and the underflow of the DMC in operation.  Heavy liquid tests discussed 

in the previous section are done on the samples in order to generate results as 

portrayed in table 2 (taken from England et al., 2002).  Columns (a) to (d) are results 

gathered from the float and sink analysis for each density fraction analysed.  After 

enough time passed in which the density fraction products are dried, the sinks and 

floats material are weighed to determine the float and sink percentages of the feed 

(column (c) and (d) respectively).  The nominal RD (column (f)) represents the RD 

range in a specific density fraction analysed.  The partition coefficient is calculated as 

the ratio of the total clean coal to the feed.   

Table 2:  Partition curve data and calculations (Wills &Napier-Munn, 2006) 

 
(a) (b) (c) (d) (e = c + d) (f) (g = c/e) 

RD 
fraction 

Floats 
analysis 
(wt%) 

Sinks 
analysis 
(wt%) 

Floats% 
of feed 

Sinks% of 
feed 

Reconstituted 
Feed (%) 

Nominal 
RD 

Partition 
coefficient 

-1.30 43.69 0.79 18.18 0.46 18.64 1.30 97.5 

1.30 - 1.32 25.82 0.71 10.74 0.41 11.15 1.31 96.3 

1.32 - 1.34 14.23 1.29 5.92 0.75 6.67 1.33 88.8 

1.34 - 1.36 11.59 3.93 4.82 2.30 7.12 1.35 67.7 

1.36 - 1.38 3.97 8.93 1.65 5.22 6.87 1.37 24.0 

1.38 - 1.40 0.40 10.36 0.17 6.05 6.22 1.39 2.7 

1.40 - 1.42 0.10 9.29 0.04 5.43 5.47 1.41 0.7 

1.42 – 1.44 0.07 8.58 0.03 5.01 5.04 1.43 0.6 

1.44 – 1.46 0.03 8.58 0.01 5.01 5.02 1.45 0.2 

1.46 – 1.48 0.03 7.86 0.01 4.59 4.60 1.47 0.2 

1.48 – 1.50 0.03 6.43 0.01 3.76 3.77 1.49 0.3 

+ 1.50 0.03 33.24 0.01 19.41 19.42 1.50 0.05 

Totals 100.00 100.00 82.60 17.40 100.00   

 

Figure 14 shows the partition coefficient relative to the RD of the heavy liquid used 

during the float and sink analysis as tabulated in table 2.  The partition factor of 50%, 

or separation cut-point (D50), is regarded as the effective density of separation.  At D50 

particles have an equal chance of reporting to either the overflow or the underflow of 
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the DMC.  The partition curve shows higher separation efficiency (separation of the 

clean coal from the discard) the further away the particles are from the separation cut-

point (Wills & Napier-Munn, 2006).   

 

Figure 14:  Partition curve example (England et al., 2002) 

As indicated in the figure, the partition profile of an ideal separation is a straight vertical 

curve indicating that all particles with a density higher than the separation density 

report to the sinks and the rest report to the floats.  No material is misplaced in this 

scenario.  However, in practice an error area exists when comparing the ideal to the 

real separation curve.  A probable error of separation, also called the écart probable 

moyen (EPM), describes the slope of the curve between D75 and D25 and thus the 

extent of possible misplaced particles. The EPM is given by: 

   
       

 
   

Equation 2 

where D25 is the RD at a partition coefficient of 25% and D75 the RD corresponding to a 

partition coefficient of 75%.  A low EPM indicates that the DMC achieves a good 

separation (Wills &Napier-Munn, 2002). 
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2.3.3 CYCLONE SEPARATION 

In the 1940s, the Dutch State Mines introduced the DMC separation as a dynamic 

efficient separator unit since centrifugal force is applied in this separation process.  

DMCs typically treat a coal particle size range of 0.5mm – 40 mm.  Some of the largest 

DMCs have diameters of one meter and are able to produce 250 tonnes per hour 

(Wills &Napier-Munn, 2002).   

The magnetite medium is fed along with the coal feed at the top tangentially inlet of the 

DMC as illustrated in figure 15.  The feed rate to the DMC is at such a velocity that a 

vortex is formed at the centre of the cone-shaped part of the DMC (figure 16).  The 

particles with higher specific gravity than the separation medium, move to the inner 

cone wall of the unit and discharge at the apex (or spigot) situated at the bottom of the 

DMC (Horsfall, 1993).  The particles with lower RDs move („lifts‟) to the upper flow 

regime of the cyclone slurry in the cone.  A vortex finder prevents short-circuiting within 

the DMC and carries the slow moving lighter particles to the overflow top orifice (Perry, 

1997).  

 

Figure 15:  DMC Separator (Perry, 1997) 
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The efficiency of the DMC separator design depends on the coal particles size in the 

feed, the density of the medium depends on the degree of separation required, the 

cone angle, the sizes of the openings to the DMC (apex, inlet and overflow top orifice) 

and the pressure of the feed to the DMC (Perry, 1997). The feed pressure is achieved 

by either pumping the feed into the DMC at the proper pressure or the feed is first 

introduced into a head tank to obtain the necessary static head pressure.  Pumps have 

the disadvantage of wearing out with time because of corroding nature of the feed 

slurry.  The head tank, on the other hand, takes up much space (Horsfall, 1993).  

 

Figure 16:  DMC Flow Patterns (Du Plessis, 2009) 

The DMC fluid and particle dynamics ensure complex separation phenomena within 

the cyclone.  The multiphase system along with forces acting upon particles and the 

turbulent flow regime in the cyclone adds to the complexity.  Computational fluid 

dynamics (CFD) are used to study and simulate the behaviour of the complex flow 

system in a DMC (Narasimha, Brennan, Holtham, Napier-Munn, 2006). 

To explain the process of separating coal particles in a dense medium while applying 

centripetal forces, the fundamentals of particle behaviour in a fluid is discussed.  A 
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single particle system refers to a single particle in a fluid.  A force is defined as the 

product of a mass and the acceleration of the mass.  Several forces act on a particle 

moving relative to a fluid.  For a spherical particle, these forces include external forces, 

such as gravity or centrifugal forces, 

   
   

 
       

Equation 3 

with d as the diameter of the spherical particle, ρp the density of the particle and ap the 

acceleration of the particle from this force.  For gravitation as the external force, ap is 

replaced by g (gravitational acceleration), or centrifugal forces ap is replaced by Up
2
/rp 

(centripetal acceleration).  Centripetal acceleration has a greater effect on separation 

in a DMC than gravity acceleration. The velocity of the particles is higher than with the 

effect of gravity.  The external centripetal force drives the separation in a DMC.  A coal 

particle with a high mass will have greater force acting on it than on a coal particle with 

a low RD.  Thus, low quality coal (higher RD) will settle out more rapidly than the low 

RD floats (higher quality coal). 

Drag pressure (or inertial) force due to pressure gradients in the fluid also add to 

particle behaviour and is given as, 

         

Equation 4 

and shear drag forces due to fluid viscosity as, 

          

Equation 5 

with U being the relative velocity of the particle.  A buoyancy force plays a role on the 

motion of the single particle.  This force (acting in the same direction of the drag 

forces) is defined as the product of the external force acceleration and the mass of the 

fluid displaced by the particle (Archimedes‟ law), 
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Equation 6 

where ρf is the density of the fluid (Rhodes, 1998).  The acceleration force of a single 

particle in a fluid is described in the following equation, 

                

Equation 7 

These fundamental analytical solutions comply with Stokes‟ law when the particle is 

moving slowly through the fluid.  In this system, the inertial force does not have 

dominant influence on the particle‟s behaviour.  However, in a single particle system 

where the inertial forces do play a more dominant role, these analytical solutions just 

described do not comply.  For example, particle with a high acceleration creates more 

pressure gradients as fluid move „out of the way‟ of the particle.  A Reynolds number 

(Rep) was defined giving the ratio between the inertial forces and the viscous forces on 

the particle (Rhodes, 1998).  High Rep ratio describes turbulent flow.  The Rep of 

particle is defined as, 

    
    

 
  

Equation 8 

A drag coefficient (CD) gives more information on the drag influence.  This property is 

dependent on the Rep as well as the inertial flow.  Stokes‟ law applies for Rep smaller 

than one (Rep<1) where, 

   
  

   
  

Equation 9 

For Rep regime higher than one (Rep>1), a different relationship between CD and Rep 

follows as determined in experimental analysis.   
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Numerous factors come into play when analysing the behaviour of a coal particle and 

coal particles in an operation DMC.  As coal particles are not spherical, sphericity 

needs to come into play in the relationship between Rep and CD properties.  

Furthermore, boundary effects, like for instance a coal particle near a cyclone cone 

wall, also play a role in the flow dynamics.  For a multiple particle system, the influence 

of other particles on a particle opens up another dimension to the study of fluid 

dynamics (Rhodes, 1998). 

In a study conducted on the multiphase flow in a DMC, Narasimha et al. (2006) used 

several complex CFD models to describe the dynamics of the flow in a DMC.  This 

study is one of a few CFD studies done on coal beneficiation DMCs.  The CFD model 

derived included turbulence models, multiphase modelling, medium rheology, medium 

with size distribution models and a coal particle-tracking model.  With these models, 

Narasimha et al. were able to produce results in agreement to results produced from 

experiments. 

2.3.3.1 CYCLONE CONTROL 

High efficiency, relatively low maintenance and large capacity of the DMC enable this 

unit to generate high yields.  Even the slightest change in DMC production efficiency 

can have a remarkable influence on plant economics (Addison, Jones, Addison, 

Stanley, Luttrell, & Bratton, 2011).  For this reason, control on a DMC system is crucial 

to keep coal yield and coal quality at an optimal operating point.  The control 

philosophy on the DMC system is described in section 2.3.1.1. 

Gupta and Mohanty (2006) did a review on existing optimisation methods in coal 

beneficiation plants.  The equalisation of incremental product quality approach was 

highlighted as one of the established optimisation approaches.  This approach entails 

the control of the individual beneficiation areas or circuits to achieve the same product 

qualities as the overall quality target defined for plant product.  With this approach, the 

overall yield of the plant is maximised.  This conclusion is used in a study conducted 

by Addison et al. (2011) on the development of a multi-stream monitoring and control 

system for DMCs.  DMCs are usually installed in two or more parallel units to meet 
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production specifications.  The yield of clean coal is maximised when the units in 

parallel operate to achieve the same yield or operate at the same separation RD. 

This concept is emphasised using the following example taken from the study 

conducted by Addison et al. (2011).  Consider two DMCs operating in parallel, identical 

and both capable of producing coal quality of 8% ash at a RD of 1.55.  In these 

operating conditions, the overall yield of the two DMCs is 69.6%.  The DMCs are also 

capable of producing the same overall quality coal, however one DMC operates at a 

RD of 1.59 producing coal with 8.5% ash and the other DMC operates at a RD of 1.51 

producing coal with an ash quality of 7.5%.  The combined overall ash quality of the 

two DMC in the second scenario is still 8%, however, the overall yield decreases to 

68.2% (a yield decrease of 1.4%).  A lower separation RD ensures a lower yield and 

the loss of good quality coal (e.g. coal with 7.5% to 8% ash quality).  With an increase 

in RD, higher ash quality coal is produced and the second DMC needs to compensate 

for the high ash percentage in producing lower than quality set point coal.  A RD 

difference of 0.08 is the cause for this reduction in overall yield.  Addison et al. (2011) 

calculated a revenue loss of $2.9 million annually due to the separation RD difference 

between two DMCs in operating in parallel. 

The control of a DMC is dependent on the RD separation density.  The quality and 

yield production of coal in DMCs are regulated in adjusting the separation RD as 

explained in section 2.3.1.1.  The control of the DMC‟s separation RD at Exxaro‟s 

open-pit mine, GG, is dependent on an operator adjusting the RD set point for 

optimum coal yield and quality (Van Zyl, 1998).  According to Addison et al. (2011), 

real-time calculation of separation is a vital input into a DMC control system.  

According to a citation on work done by Wood (1990) the D50 cutpoint can be 

calculated using, 

       
           [

    
  

]   

Equation 10 



An optimisation approach to investigate quality control of a product coal stockpile 

Chapter 2 
Coal Preparation Page 34 
 

   
  represents the RD cutpoint of an infinitely large particle separated in a medium 

producing a shear drag force of zero.     represents the medium split designated to 

the DMC underflow, a function of RD of the medium in the underflow, overflow and 

feed to a DMC.  Thus, in calculating the separation RD in real-time the DMC 

underflow, overflow and feed should be readily available.  In most DMC monitoring 

systems, only the feed to the cyclone banks are monitored.  This is the reason for the 

implementation of a multi-stream monitoring system described in the study conducted 

by Addison et al. (2011). 

As mentioned, because of high tonnages the slightest efficiency degrades can have a 

large impact on the plant profitability.  Therefore, it is in the best interest of the plant 

management to reduce fluctuations in the yield.  As confirmed by Meyer & Craig 

(2010), process control can be used to provide process improvement ensuring the 

DMC circuit run closer target, ultimately decrease revenue loss due to DMC process 

deviations. 

2.3.4 SPIRAL CLASSIFICATION 

Spiral classifiers are simple pieces of equipment responsible for complex separating 

actions that include centrifugal force, gravity, friction on the spiral surface and the drag 

of the feed slurry.  The separating process in a spiral classifier is based mainly on the 

gravity differentials between the materials being separated (Perry, 1997).  A spiral coal 

classifier typically consists of six complete turns of spiral shaped channels.  Spirals in 

series ensure more effective separation at lower installation and operational costs 

relative to other separation units.  Figure 17 shows the simplified illustration of a spiral 

including the different design parameters. 
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Figure 17:  Design parameters for a spiral (Das et al., 2007) 

The flow regimes produced on an operational spiral insure the complexity of the spiral 

separation.   Primary and secondary flows display laminar to turbulence flow regimes 

ensuring separation of the coal slurry into different quality flow regions.  Primary flow is 

the flow of the feed slurry down the spiral.  The secondary flow is the radial flow across 

the trough (Das, Godiwalla, Panda, Bhattacharya, Singh, Mehrotra, 2007).  Particles 

with higher density sink to a higher concentrated bottom region radial flow, moving 

toward the centre column due to dominant gravitational forces.  The lower density 

particles float to the upper fluid layer flow (less concentrated) moving away from the 

centre column due to the dominant centrifugal forces (Das et al., 2007).  The flow 

dynamics on a spiral is illustrated in figure 18.  Classification takes place at the end of 

the spiral with dividers put in place to direct the different concentrations to the 

appropriate exit streams.  Higher concentrations are achievable by sending the coal 

stream through a series of spiral classifiers (Perry, 1997).  
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Figure 18:  Sectional view of spiral flow pattern (Das et al., 2007) 

Controlling the concentration of the product in a spiral classifier is not as easy as with 

DMCs, since the dividers set at the bottom end of the spiral are fixed.  The dividers are 

responsible for splitting the feed into discard, middlings and coal flows after sufficient 

rounds on the spirals in series.  Although the dividers are fixed, a considerable amount 

of research and analysis are focused on determining the position of dividers to get the 

optimum separation (Perry, 1997).  

2.4 COAL BENEFICIATION AT GG 

2.4.1 EXXARO 

Exxaro is a JSE listed mining group and the fourth largest coal producer in South 

Africa with a capacity of 45 million tonnes per annum.  This company manages eight 

coalmines across South Africa (Coal Assets, 2009).  For the six months ended 30 June 

2010, Exxaro produced 18.3 million tonnes power station coal and 1.2 million tonnes 

coking coal (Exxaro, 2010).  The total coal production for the year 2005 was 42.632 
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Mtpa6 with sales divided as follows:  Eskom 34.907 Mtpa, other domestic sales 5.579 

Mtpa, and exports 1.908 Mtpa (Morgan, 2006).   

2.4.2 EXXARO‟S WORLD RENOWNED COAL BENEFICATION SITE - GG 

The Exxaro open-pit mine, GG, is regarded as the world‟s largest coal beneficiation 

complex.  Six different plants at GG are responsible for the upgrading of 7 600 tonnes 

per hour of ROM coal.  The open-pit mine uses the conventional truck and shovel 

operation to produce 18.6 Mtpa of thermal and semi-soft coking coal.  This mine had 

an estimated 740 Mt of coal reserves in 2006 (Exxaro Coal, 2009). 

Eighty-two percent of the coal produced at GG is conveyed to Eskom‟s Matimba 

Power Station via a 7km conveyor belt.  1.5 Mtpa of metallurgical coal is sold 

domestically on short-term contracts.  Semi-soft coking coals produced at GG are 

railed directly to ArcelorMittal SA, while approximately 1.1Mtpa of semi-soft coking coal 

and thermal coal is exported or sold domestically (Exxaro Coal, 2009). 

The current infrastructure of the GG mine consists of six coal preparation plants: GG1 

to GG6.  The GG1 preparation plant comprises conventional beneficiation coal circuits 

(to be discussed in detail) to produce semi-soft coking coal and power station coal for 

Matimba power station.  GG2 is responsible for the production of thermal coal also 

using conventional coal preparation circuits, including fine coal beneficiation.  GG3 is 

raw coal crushing facility used for the blending of unwashed coal at Eskom‟s Matimba 

Power Station.  Metallurgical coal is produced at GG4 and GG5, using beneficiation 

methods.  GG6 comprises a beneficiation facility and is, like GG1, responsible for the 

production of semi-soft coking coal and thermal coal (Morgan, 2003). 

 

 

                                            
 

6
Mtpa: Mega tonnes per annum 
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Table 3:  GG beneficiation plant summary 

Beneficiation 
Plant 

Description Products 

GG1 Conventional beneficiation 
Semi-soft coking coal, 
thermal coal 

GG2 Conventional fine coal beneficiation Thermal coal 

GG3 
ROM coal crushing and blending 
facility 

 

GG4 Conventional beneficiation Metallurgical coal 

GG5 Conventional beneficiation Metallurgical coal 

GG6 Conventional beneficiation 
Semi-soft coking coal, 
thermal coal 

 

Exxaro aims to supply a new Eskom power station, Medupi, with 14.6 Mtpa power 

station coal for the next forty years starting from 2012.  The brownfields expansion 

project at GG will cost an estimated R9.5 billion (Exxaro, 2010). 

2.4.3 GG1 PROCESS DESCRIPTION 

Different consumers of coal require different degrees of coal preparation, thus no coal 

preparation plant will be able to comply with all the needs of all the consumers.  Coal 

preparation plants are divided according to levels of coal cleaning achieved.  The 

levels of cleaning indicate the cleaning intensity of the coal.  The number of cleaning 

levels and the intensity of preparation of each level depend on the consumer‟s quality 

requirements (Horsfall, 1993).  GG1 produces two main product lines: the 10% ash 

quality semi-soft coking coal product line and the 35% ash power station coal prepared 

for Eskom‟s Matimba power station.   

A simplified process flow diagram of the GG1 beneficiation plant with its five 

preparation areas is provided in Appendix A.  To start the production of uniform sized 

coal grades, ROM coal is fed to the crushing and screening section (AREA 01) of the 

plant.  GG1 uses Bradford Breakers to reduce the ROM to an acceptable size range.  

The smaller particles are sent to the screening section whilst the unbroken waste is 
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sent to a jaw crusher to be crushed and sent to waste dumps.  The three streams 

transporting broken ROM from the Bradford breakers are graded on sieves, the 

undersize (-18mm) sent to the AREA 02 silos and the oversize (+18mm  -150mm) is 

stored in the AREA 03 silos.  The belt scales situated between the sieves and the 

breakers measure the tonnes per hour coal flow. 

AREA 02, AREA 03 and AREA 04 are divided into five beneficiation modules.  Each 

module undergoes the same beneficiation treatment in the respective areas.  The belt 

scales measuring the mass flow of the coals from each silo to the respective 

beneficiation modules are illustrated in the process flow diagram in Appendix A.  

Individual module silos are responsible for the storage and feed of the respective 

modules.  The levels of the contents in each of these silos are monitored.  The relative 

densities of the dense medium pumped to the DMC in each module are measured by 

their own radioactive RD source. 

AREA 02 and AREA 03 are regarded as the primary beneficiation areas of GG1.  

Further grading takes place on sieves when stored coal in the AREA 02 silos is fed to 

the five modules in the AREA 02 section of the plant.  In each of the modules in AREA 

02 the undersized coal (-1 mm) is sent to the thickeners, situated in the AREA 05 

section for further treatment.  The oversize of the sieve is conveyed to the DMCs for 

beneficiation.  The DMCs are responsible for the gravity separation of the coal 

particles with mixed densities.  This treatment focuses on coal cleaning based on the 

specific gravity quality of the size-reduced coal.  The discard of this beneficiation step 

is destined for the waste dumps while the cleaned coal or floats are stored to the 

AREA 04 silos. 

The AREA 03 silos serve as the coal feeds for the five modules in the Tesca Drum 

beneficiation area.  The coal is graded on sieves and the undersize (-12 mm) is sent to 

further sieves for degradation.  The oversize of the first sieves is sent to a Tesca Drum.  

The Tesca Drum is a low flow DMS bath.  The floats in this beneficiation apparatus are 

moved and discharged by rotating paddles, while the sinks are lifted from the bottom of 

the bath by a wheel elevator.  The floats discharge to roll crushers for grading after 



An optimisation approach to investigate quality control of a product coal stockpile 

Chapter 2 
Coal Preparation Page 40 
 

which the coal is sent to the AREA 04 silos.  The sinks from the Tesca Drum are 

destined for the waste dumps. 

AREA 04 and AREA 05 serve as the secondary beneficiation for the GG1 preparation 

plant.  At AREA 04 the coal fed from the AREA 04 silos is graded on sieves and the 

oversize (+1mm -25mm) sent to DMCs for beneficiation and the undersize (-1 mm) is 

fed to the thickeners in the AREA 05 section.  The DMCs in AREA 04 are of main 

concern for this research project as they serve as the primary control units in the 

control of the quality of the semi-soft coking coal produced in GG1.  The relative 

densities of the magnetite suspensions of the DMCs (situated in the five modules) are 

measured by their own radioactive relative density source (RD source).  The readings 

from the RD sources serve as inputs to the SBS, responsible for calculating relative 

density set points for the module DMCs.  The control of the dense medium density is 

described later.  The floats of the DMCs serve as part of the semi-soft coking coal 

product stacked in the coking coal product stockpile.  A belt scale and an on-line ash 

monitor measures the mass flow as well as the ash content of the coking coal product 

line, respectively.  The sinks of the DMCs together with the coal product from AREA 05 

is ultimately stacked on the power station product stockpile. 

The -1 mm coal from AREA 02, AREA 03 and AREA 04 is treated in the thickeners at 

AREA 05.  The product of the thickener travels through desliming units and the 

underflow of these units (-300 micron) is sent to the GG2 preparation plant for fine coal 

preparation.  The -1 mm +300 micron fraction of the coal is treated in the spiral 

classifier section.  Gravity is used to classify or concentrate heavy and light coals in the 

spirals.  This type of beneficiation is not as effective as the DMC processes but is 

lower in capital cost than other DMS techniques. The coal qualities are stacked either 

on the coking coal product stockpile, the power station product stockpile or the discard 

bunker.  Table 4 introduces a summary of the product streams and the associated 

product qualities for each beneficiation area at GG1. 
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Table 4:  GG1 product and product qualities per area 

GG1 Areas Product and product qualities 

AREA 1 – Breaking and 

Screening 

i. Waste dump discard; +150 mm unbroken ROM 

ii. Screening undersize (-18 mm); to AREA 2 silos 

iii. Screening oversize (+18 mm -150mm); to AREA 3 silos   

AREA 2 – Primary DMC 

Beneficiation 

i. Screening undersize (-1mm); to thickeners 

ii. DMC sinks; to waste dumps 

iii. DMC floats; to AREA 4 silos 

AREA 3 – Tesca Drum 

Beneficiation 

i. Degradation sieve undersize (-1mm); to thickeners 

ii. Degradation DMC sinks; to waste dumps 

iii. Tesca drum sinks; to waste dumps 

iv. Degradation DMC floats and Tesca drum floats; to AREA 

4 silos 

AREA 4 – Secondary DMC 

Beneficiation 

i. Screening section undersize (-1mm); to thickeners 

ii. DMC sinks (35% ash); to power station coal stockpile 

iii. DMC floats (10% ash); to coking coal stockpile  

AREA 5 – Spiral Plant i. Underflow of deslime screen (-300micron); to GG2 

beneficiation plant 

ii. Spiral coal product (10% ash); to coking coal stockpile 

iii. Spiral middlings product (35% ash); to power station 

stockpile 

iv. Spiral discard; to waste dumps 

 

2.4.4 STOCKPILE BUILDING SYSTEM 

At numerous instances in the preparation and production of coal, the bulk material 

needs to be loaded or stored, and stockpiles facilitate this need on a large scale.  

Stockpiles are used for the storage and at times blending of large tonnages of bulk 

material.  For more consistent product deliverance, blending methods are used to 

homogenize the quality of the material.  Blending is achieved through either the 

strategic stacking of the stockpile or the reclaiming of the stockpile.   

The stacking of a coal product on a stockpile to meet specific quality and economic 

requirements is a „high maintenance‟ process.   The main purpose of the SBS at GG1 
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is to fill the complex stockpile management gap.  The SBS provides decision support 

information to the operator and enables the plant to build wet stockpiles with the quality 

within the required specification without any penalties.  The SBS captures real-time 

data of the on-line ash monitor, moisture monitors and belt scales from LIMS7 and 

InSQL8 databases.  Real-time data, delayed laboratory results and the necessary 

operator inputs such as the target tonnages, target ash, stockpile registration and other 

inputs that uniquely define each stockpile, are used as inputs for calculations in the 

SBS (Van Zyl, 1998).   

 

Figure 19:  SBS data flow architecture 

Figure 19 illustrates a simplified data flow architecture explaining the manual quality 

control philosophy of the SBS.  The data flow as well as data destinations and sources 

are depicted in this illustration.  Table 5 lists the dataflow tags as well as each tag‟s 

description.   

 

                                            
 

7
LIMS: Laboratory Information Management System (database). 

8
InSQL: Industrial Structured Query Language (database). 
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Table 5:  SBS dataflow tags description 

Dataflow Tags Description 

Process_1 Data generated from GG1 process sensors are transferred to the 
InSQL data repository for storage. 

DB_1 Data relevant to the SBS are transferredfrom the InSQL database 
to the SBS system. 

DB_2 Results relevant to the SBS from the laboratoryare transferred to 
the SBS system. 

LAB_1 Laboratory results directly introduced to the LIMS repository. 

SBS_1 Results from the SBS calculations are introduced into a SQL 
database containing all SBS relevant data. 

SBS_2 All relevant process, laboratory and calculated SBS data are stored 
in the SQL database. 

SBS_3 Results from SBS calculations are displayed on the SBS interface 
to the operator. 

SBS_4 The operator is responsible for a few inputs in the SBS system.  
The inputs are entered on the SBS interface. 

SBS_5 Inputs from the operator are stored in the SQL repository. 

SBS_6 Inputs from the operator are used during SBS calculations. 

OP_1 Operator uses the information displayed on the SBS interface to 
make knowledgeable decisions on the input to the process.  The 
inputs to the process are in the form of set-point changes to the five 
DMC modules. 

 

Sensors placed in strategic locations on the plant generate process values in real-time.  

The data generated in AREA 04 is sent an InSQL repository for data storage.  Spot 

samples are taken in AREA 04 every hour to monitor the performance of the process.  

Laboratory techniques are used to analyse the samples taken and the results from the 

analyses become available after approximately four hours.  The laboratory results are 

stored into a LIMS database.  The LIMS, InSQL and operator inputs (via the SBS 

interface) serve as inputs for real-time SBS calculations.  The results generated from 

the SBS decision support system are stored in a dedicated SQL database.  From the 
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SQL database, the results and necessary information are presented to the operator via 

a user interface.  The operator interprets the information displayed on the SBS 

interface to make critical set point changes to the DMC controllers in AREA 04.  The 

elimination of the difference between the process variable (overall GG1 coal quality) 

and the overall coal quality target depends on the operator‟s experience and 

knowledge on the process dynamics and controller performance.  The operator is 

responsible for closing the control loop with manual control. 

2.4.4.1 SBS PROCESS 

The SBS process include the operator‟s input responsibilities, the real-time 

calculations, cumulative calculations, hourly processing, shift processing, laboratory 

information integration, and the completion of the stockpiles. 

Operator Input 

Several calculations conducted by the SBS depend on user inputs.  The operator is 

responsible for registering new stockpiles during operation.  A new stockpile number 

following a sequential naming convention is needed to identify the stockpile and 

associate the properties of the stockpile.  The operator is also responsible for defining 

the target characteristics of each stockpile.  These characteristics include the target 

tonnage of the stockpile as well as the target accumulated ash percentage of the final 

stockpile. 

Real-time processing 

The SBS reads real-time data available from the InSQL, and updates the SQL 

database accordingly.  A bias, calculated from the results stored in the LIMS database, 

is determined in the SBS and integrated with the real time ash calculations.  The 

tonnage measurements are also updated in the SQL database. 

Cumulative stockpile calculations 

The mass accumulation of each stockpile is calculated and monitored on the SBS user 

interface.  The cumulative ash calculated using a weighted average with mass flow.  

Target ash content is also determined to assist the operator on controlling the DMC 
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overflow quality.  The cumulative laboratory values are also included in the cumulative 

calculations. 

Hourly calculations 

Hourly values represent the hourly aggregation of the real time results.  With this 

aggregation of real-time values, the laboratory bias is also integrated into the real-time 

processing. 

Laboratory calculations 

For validation and adjustment of the online ash monitor measurements, a bias is 

calculated from the laboratory results to compensate for inaccurate readings.  The bias 

calculation takes place every our when the latest laboratory results are available.  The 

bias for the next hour is the difference between the average percentage ash from the 

online ash monitor over an hour window and the latest laboratory result.  The following 

equation illustrates the calculations: 

Ash Bias for next hour = % Ash from laboratory results – Weighted Average %Ash 

over previous hour. 

2.5 CONCLUSIONS 

Chapter 2 focused on providing extensive background on coal beneficiation, especially 

coal beneficiation at GG1‟s AREA04 DMC operations.  A summarisation of the key 

concepts is listed below: 

1. The most commonly used primary fuel in the world is coal.  Coal is a major and 

vital source of energy in South Africa.  This non-renewable energy source play a 

crucial role in electricity generation, iron and steel manufacturing, mining industries, 

metallurgy, synthetics and many more aspects of live.  Coal beneficiation is thus a 

crucial manufacturing process worth investigating potential optimisation opportunities. 

 

2. Coal preparation processes mainly utilises DMS techniques in the beneficiation 

of coal.  DMS techniques rely on density separation, i.e. a coal feed is introduced to a 
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dense medium with a specific separation density ensuring the separation of good 

quality coal and discard.  DMC separation is the drive horse in the beneficiation of coal 

and the focus of the investigation conducted in this project.  The control performance 

of DMC separation has seen the likes of numerous investigations and theoretical 

studies.  Efficient control of DMCs on a coal beneficiation plant will ensure higher 

revenue generation. 

 

3. The Exxaro mining group‟s open-pit colliery GG is regarded as the world‟s 

largest coal beneficiation complex.  A detailed process description of GG‟s GG1 

beneficiation plant is included in section 2.4.3.  The DMC separation performance is 

monitored and controlled using a SBS system.  Process data from the plant as well as 

laboratory analysis results and operator knowledge serve as input to the SBS.  The 

output of the SBS displays on a user interface.  The results from numerous 

calculations performed by the SBS are display on the interface and the operator is in 

charge of using knowledge gained from the SBS and adjusts set points to five DMC 

banks in AREA 04.  
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CHAPTER 3 

PROCESS OPTIMISATION 

3.1 INTRODUCTION 

Many characteristics of human activities have been fundamentally altered by the new 

age of the digital computer (Parasuraman & Riley, 1997).  At the same time, growing 

complexity of, for instance industrial manufacturing processes and competition on global 

markets impose increasingly greater demands for computational intelligence.  These 

factors influence the way industry such as in the mining and manufacturing sector 

approaches process automation and optimisation.  This study underlines the need and 

value of an intelligent process optimisation approach on a coking coal quality control 

system. 

A common thread in manufacturing processes exists when considering process control.  

A process has a desired operational behaviour and a control strategy is responsible for 

minimising the difference between the desired behaviour and deviation from desired 

behaviour (Wade, 2004).  Optimisation on this control concept would be to find the best 

possible control strategy to control the process on the desired behaviour (Burke & 

Kendall, 2005).  Figure 20 depicts the overall process control and information system 

hierarchy as proposed by Wade (2004).  For proper process control and information 

distribution, each level should depend on the other.  The higher levels will not function 

without the lower control levels, and on the other hand the control information not 

distribute without the higher levels.  For this study, all the necessary levels are in place, 

and the focus will fall on the optimisation level. 

In order to increase the efficiency of decision support in a decision support system, 

knowledge of the process is needed (Adriaans & Zantinge, 1996; Feelders, Daniels, 

Molsheimer, 2000).  This knowledge is available in the form of expert knowledge and 

knowledge gained from the data.  Both forms of knowledge, increases to the accuracy 
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of decision support system.  The knowledge discovery methodology is a tool used for 

gaining knowledge out of large amounts of data.  This data knowledge combined with 

problem environment knowledge (discussed in chapter 2) should generate an accurate 

process model for use in the optimisation.   

 

Figure 20:  Overall process control and information hierarchy (Wade, 2004)  

The purpose of chapter 3 is to provide more background on the optimisation solution 

approach and development.  The role of knowledge discovery in the solution 

development is discussed in section 3.2.  Section 3.3 focuses on process modelling, 

studies conducted on models generated for coal beneficiation, and neural networks 

(NNs) as an alternative for process modelling.  Genetic algorithms (GA) as an 

evolutionary algorithm and optimisation component are discussed in section 3.4.  
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3.2 KNOWLEDGE DISCOVERY 

The growing complexity of industrial manufacturing processes and growing rate of the 

amount of data stored in different repositories are two of the main motivations for 

effective knowledge extraction processes (Brachman et al., 1996).  Users‟ increasing 

need for more sophisticated information calls for a well-defined and effective process for 

obtaining this knowledge (Dunham, 2003).  Because of this growing demand for a 

knowledge extraction methodology, the term knowledge discovery appeared in the 

1980s.  This process is defined as a non-trivial process of identifying valid, useful and 

understandable patterns in data.  Knowledge discovery (KD) is realised as a joint point 

for different research areas including databases, statistics, mathematics and artificial 

intelligence9 (AI) (Mariscal, Marban, Fernandez, 2010).  Luo (2008) confirms KD to be 

very beneficial for the AI research field. 

Literature does not have a fixed definition or term for knowledge discovery (Mariscal et 

al., 2010).  Many terms are available for the definition for the process of obtaining 

knowledge from data.  Terms such as knowledge extraction, knowledge discovery from 

databases (KDD), information discovery, data archaeology and data mining are more 

than often used.  In this literature study, the terms data mining and knowledge discovery 

will be distinguished in the following definitions: 

1. “Knowledge discovery is the process in finding useful patterns and information in 

data.”  This process includes a data mining step.  (Brachman et al.., 1996) 

2.  “Data mining is the use of algorithms to extract the information and patterns 

derived by the KD process.”  (Dunham, 2003) 

The fact that KD is defined as a process implicates that this methodology of extracting 

knowledge involves certain steps.  KD steps designations differ from application to 

application as well as steps designated in literature (Mariscal et al., 2010).  Luo (2008) 

                                            
 

9
 “AI mimics human perception, learning and reasoning to solve complex problems” (Chen, Jakeman, 

Norton, 2008).  Several techniques are available able to conform to the AI criteria such as neural 
networks, fuzzy models, GAs, and hybrid systems. 
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defined five definite steps whereas Mariscal et al. (2010) defined nine steps to extract 

knowledge effectively.  Although the amount of steps and step names differ, the 

principals of the steps defined in literature are in alignment.  The following KD process 

procedure, constructed from literature, is chosen for knowledge extraction in this 

project: 

1. Data (Luo, 2008) and task discovery (Feelders et al., 2000): selection of and 

familiarisation with the data to be analysed and the goals to be achieved with the 

knowledge discovered. 

2. Data pre-processing (Feelders et al., 2000; Luo, 2008; Mariscal et al., 2010) 

which consists of: 

a. integration of data from multiple data repositories and transformation of 

data in forms appropriate for mining, 

b. descriptive data summarisation (study of the general characteristics of the 

data), 

c. data cleaning (removal of data noise and inconsistencies). 

3. Data mining: the use of intelligent algorithms for patterns and information 

extraction. 

4. Interpretation and utilisation of the knowledge gained from the KD process 

(Feelders et al., 2000; Mariscal et al., 2010). 
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Figure 21:  KD process steps (Mariscal et al., 2010) 

Figure 21 summarises the KD process steps and milestones defined for the 

investigation.  Mariscal et al. (2010) includes a “learning the application domain” step, 

highlighting the importance of prior application or process knowledge.  This step is 

regarded as a required subject area expertise in the KD process (Feelders et al., 2000).   

Another important step added by Mariscal et al. (2010) is the “using discovered 

knowledge” step (corresponding to step four of proposed KD process).  This step is 

often neglected as an essential step in the KD process.  Actions based on the 

combination of subject area knowledge and the KD knowledge, should be planned and 

act upon.  Step four of the proposed KD process links to the proposed optimisation 

solution of this investigation. 

Important characteristics of the KD process are the iterative and interactive nature of the 

process.  Many decisions originate at the KD user.  This interaction of the user with the 

KD process determines the iterative degree of the process.   

Data warehousing is a crucial component to the effective execution of the KD process.  

Data warehousing (or data marts) are integrated databases (Feelders et al., 2000) 
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maintaining organisational data from the KD process.  This KD component allows for 

effective data analysis and user access (Luo, 2008). 

3.2.1 STEP 1: DATA AND TASK DISCOVERY 

The process of becoming familiar with the goals set for the specific task must not be 

underestimated.  This introductory stage of the KD identifies the problem environment 

characteristics, as well as the data applicable to the problem environment.  With 

adequate subject area expertise the right questions are asked during the KD; useful 

features could be determine prior to KD initialisation; and interpretation of analysis 

results could produce pre-emptive courses of action (Feelders et al., 2000)  

For the effective extraction of knowledge from data, it is necessary to define the reason 

for KD.   In the production industry, hundreds of thousands of data attributes are 

available from different data repositories.  It is therefore crucial to narrow the data 

attributes or data tags down to the tags applicable to the matter.  In order to accomplish 

this, it is essential to understand the problem environment and define the goals in 

solving the task at hand (Adriaans & Zantinge, 1996). 

The data could be scattered throughout different relational or operational databases 

located in different sections inside and outside the problem environment.  This makes 

the identification of the data needed for KD a daunting task (Feelders et al., 2000).  

Interrelated data sets are stored in database systems and certain software sets are 

used to access and manage the databases.  Relational query languages, such as 

SQL10, are used to write database queries, enabling the user to access the data stored 

in the database.  Attributes (data tags), contained in tables retrieved from the database, 

consist of records of data (Han & Kamber, 2006). 

Data and task discovery also include the physical data acquisition.  Data acquisition 

refers to the transfer of the data from the different repositories into an appropriate 

environment for data analysis, usually the KD data warehouse.  With this data 

                                            
 

10
SQL:  Structured Query Language. 
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acquisition, human error and computational constraints can pose a threat to the data 

integrity (Dasu & Johnson, 2003).  This step in the KD process also calls for a clear 

understanding of the problem environment (Brachman et al.., 1996). 

3.2.2 STEP 2: DATA PREPROCESSING 

Due to the increase in data stored in the industrial manufacturing sector, the data 

retrieved are more susceptible to noise, inconsistencies and missing data that reduce 

data quality.  Low quality knowledge from data is often the result of ineffective data 

acquisition.  Data pre-processing is the process in which data anomaly elimination takes 

place as far as possible in order to retain higher data quality (Dunham, 2003).  

For effective data pre-processing, the user‟s knowledge of the problem environment 

plays an important role.  Unforeseen events on a plant such as equipment maintenance 

schedules or measuring device failures influence the data mining process.  The quality 

of the data transfer and management from a data source to a data management system 

could also be jeopardised by connection failures.  The data pre-processing stage 

includes three sub-categories in which the data is “cleaned” as much as possible before 

any modelling takes place.   

3.2.2.1 DATA INTEGRATION AND TRANSFORMATION 

For effective and rapid KD from data, setting up a working environment for managing 

the large amount of data, is important.  The KD environment consists of a central off-line 

(or in some cases on-line) data warehouse from where data are managed and 

manipulated.  Instead of browsing through a large number of data tables in different 

directories, the data warehouse offers the user the chance to search with less effort for 

the desired data in a central station and extract the data for further data mining 

(Adriaans & Zantinge, 1996).   

Since the data retrieval includes the extraction of data from multiple data sources, 

proper data integration is needed to ensure accurate data quality within the central KD 

station.  This data integration step is most susceptible to the loss of data quality.  Some 

of the major data integration and transformation challenges include the multiple data 
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sources, time synchronisation, unusual data logs, and dissimilar versions of hardware 

and software utilised (Dasu & Johnson, 2003).   

When integrating different data tables numerous inconsistencies may arise.  For 

example, data table (or database) A was generated logging data in a format dissimilar 

from the data table B.  Entity identification problems occur with the matching of multiple 

equivalent entities from the different sources.  If data table A recorded on an hourly 

basis and table B recorded when a value became available, these two tables need 

resampling or transformation in order to synchronize the timestamp without losing the 

credibility of the data.  Data from different hardware and software platforms also pose a 

problem since, for example, computer access and computer connections can be lost 

during data management actions. Huge data transformation will be needed to conform 

to the platform of the data warehouse environment (Dasu & Johnson, 2003).  The 

representation format of the data retrieved from different data repositories through 

queries may differ.  The configuration of the data represented in tables, for example, 

must be similar throughout the KD process (Han & Kamber, 2006).  

Data transformation consolidates all the data into an appropriate data mining framework 

(or format) for more effective and useful data mining.  Smoothing of data noise, data 

aggregation, data normalisation and data reduction are methods used to transform the 

data for more effective KD.  The data transformation is simply the action taken in order 

for the data, integrated from other repositories, to retain its accuracy, consistency and 

significance (Dunham, 2003).   

3.2.2.2 DESCRIPTIVE DATA SUMMARISATION 

The purpose of this stage in data preparation is to use the statistical techniques 

available, to identify the typical characteristics of the data.  Summarisation is also 

referred to as generalisation or characterisation as it obtains representative information 

from the data. Statistical measures are used to determine noise, inconsistencies and 

other anomalies hidden within the data (Dunham, 2003). 

The variability of a dataset is a useful measure in characterizing the different fields 

within the dataset.  The range of a field is a straightforward measure for variability and is 
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highly sensitive to extreme observations.  The difference between the maximum value 

in a field and the minimum value of the same field gives the range of the field (Giudici, 

2003).   

A more descriptive measure for the dispersion of data relevant to a specific field is the 

variance of the field distribution.  The variance of the different data fields is defined as 

the degree to which data tend to spread.  The asymmetry of a field is also a descriptive 

tool used to characterise distribution of the fields.  If the median11 of a data distribution 

is higher or lower than the data mean value (average), the distribution is said to be 

skew.  For a symmetric data distribution, the median should be equal to the average of 

the distribution (Giudici, 2003). 

The classification of observations as outliers is subject to knowledge of the process.  

The observer needs to confirm the observation as an actual outlier before defining the 

observation as a definite outlier.   Eliminating the data outliers increases the quality of 

the data and ultimately increases the effectiveness of the KD (Devore & Farnum, 2005). 

Graphic displays of the data are also excellent descriptive measures for obtaining 

knowledge and identifying data anomalies.  Display techniques such as scatter plots, 

time-series trends, histograms and frequency analysis are graphical methods of 

summarizing the distribution of a specific attribute.  These techniques spot outliers and 

inconsistencies.  Scatter plots are effective in determining the degree of correlation 

between attributes and time-series12 trends of attributes and histograms are effective in 

the process of understanding what the data represents (Brachman et al.., 1996). 

3.2.2.3 DATA CLEANING 

After the detection of the inconsistent data identified in the descriptive data 

summarisation stage, the errors and inconsistencies should be eliminated.  In the case 

of missing data, several methods are available to fill the incomplete data without data 

integrity.  Missing values filled in manually according to the user‟s judgment, or an 

                                            
 

11
The median is the value which halves the data distribution (Giudici, 2003). 

12
Time-series data are sequential values logged with change in time (Han & Kamber, 2001). 
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overall constant used to represent the missing values, or the most probable value 

entered are option available for the handling of missing data.  Missing data does not 

mean erroneous data acquisition, but cases exist where gaps within the data are there 

for a specific reason.  Again, this emphasises the importance of understanding the 

problem environment relevant to the data (Han & Kamber, 2006).  

The removal of noise from the data is called the “cleaning” of the data.  Inconsistent 

data, identified at the descriptive data summarisation stage as outliers, are replaced or 

deleted according to the judgement of the user.  A correlation matrix is a very useful tool 

in discovering the relationships between the different variables contained in a dataset.  

Another important data preparation aspect is the estimation of the variable lags, as 

these time lags play a big role in the accuracy of the time-series modelling.   

Time delays, characterised by transportation lag and measurements delays, place 

rigorous constraints on the performance of a control loop, because the dynamicity of 

about any industrial process is influenced by process time delays.  Thus, eliminating the 

process time delay could significantly improve the performance and accuracy of the 

control loop or process model (Hens & Seborg, 1994).  A time-delay estimation method 

such as the cross-correlation based delay analysis is able to evaluate the time delay 

within a process.  During the cross-correlation analysis, the correlation between two 

variables is calculated: variable A and variable B.  The variable containing readings 

measured prior to the other variable (variable A) is delayed with an appropriate time 

constant.  The next step would be to calculate the correlation of the variable A and 

variable Bt-τ where τ represents the time constant.  The time constant is increased with 

each iteration until the best correlation is found which will indicate the appropriate delay 

between the two variables (Mäyrä et al., 2006).   

Cross-correlation based delay analysis, described above, estimates a constant time 

delay between two variables.  However, in some processes the delay between two 

measurements may vary in time.  A constant time delay refers to the instance where the 

effect of a step change on the first measured variable is measured in the second 

variable after a fixed time delay regardless of the degree of step change or other 

disturbances.  For a time-varying time-delay, the time-delay is not fixed and the time it 
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takes to identify the effect of a step change on the first variable is subjected to 

disturbances.   In this case, time-varying time-delay compensation will improve the 

accuracy of the system modelling and identification (Tan, 2004).  

3.2.3 STEP 3: DATA MINING 

As defined previously, in the data mining stage, the user makes use of intelligent 

algorithms to extract information and patterns from the prepared data.  Data mining is 

the integration of multiple technologies such as data management, statistics, parallel 

processing and visualisation (Thuraisingham, 1999).  Predictive modelling and 

descriptive modelling are the two data mining task categories (Han & Kamber, 2006).  

The general properties of the data are characterised during the descriptive model data 

mining task, while the predictive mining task predicts data values using current data 

tasks such as classification, regression, time series analysis and prediction fall under 

the predictive data mining.  The nature of clustering, summarisation, and sequence 

discovery tasks is more descriptive (Dunham, 2003). 

In a recent study conducted by Shoa (2010), NNs were evaluated as a reliable data 

mining technique.  This technique introduces high accuracy to date mining, as this 

technique is able to approximate complex and non-linear process mappings (Motlaghi, 

2008).  As discussed in previous sections, raw data extracted from process databases 

are polluted with inconsistencies and poor quality data.  The NN has a high tolerance 

with respect to noisy, missing and incomplete data.  Shoa (2010) compared traditional 

approaches to information processing to the NN approach confirming the value of the 

NN as a data mining technique. 

A detailed discussion on the theory behind NNs is included in section 3.3. 

3.2.4 STEP 4: KNOWLEDGE INTERPRETATION AND UTILISATION 

The interpretation of the structures and patterns gained from the data mining step is 

conducted in step 4.  From this step, the user may return to previous steps for iteration.  

With the interpretation stage, redundant or irrelevant patterns may be removed to refine 
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the knowledge gained from the data mining step to a more understandable format 

(Mariscal et al., 2010).  Knowledge on the subject area is necessary to make these 

decisions (Feelders et al., 2000). 

The refined knowledge gained from the KD process can be integrated from simple 

offline reporting to online decision support systems and knowledge-based systems.  

Action steps are important in comparing current knowledge of the system with new 

knowledge gained from the KD process (Mariscal et al., 2010). 

3.3 PROCESS MODELLING 

In today‟s manufacturing industries, production plants have in their possession large 

specialised and integrated data repositories, rich in data capturing the dynamics of the 

processes.  Yet, in numerous facilities the knowledge contained in the databases are 

not fully harnessed.  In addition, the increasing demand in higher quality product at 

lower cost, keeping to environmental and legislative limits calls for continuous process 

optimisation.  Design and deployment of optimised control systems depend on accurate 

process models.  Empirical models do not always have the capacity to simulate the 

dynamics of the process accurately due to model assumptions and lack of knowledge of 

inter-variable relationships (Aldrich, 2002). 

Modelling methods are applied in numerous applications in the production industry.  

These application fields include planning, optimisation and process control 

(Venkatesan, Kannan, Saravan, 2009).  In the field of process control, mathematical or 

fundamental models are generally used in the controller design phase.  This is known 

as the base case identification of the process (Bauer & Craig, 2008) or the system 

identification (Wade, 2004).  The system identification model should be simple enough 

for robust control and sophisticated enough as to describe the dynamics of the process 

accurately, simultaneously (Meyer & Craig, 2010).   

Various difficulties arise when it comes to the model generation of manufacturing 

processes.  Difficulties such as process multidimensionality, nonlinear variable 

relationships, partially understood relationships between variables and lack of reliable 



An optimisation approach to investigate quality control of a product coal stockpile 

Chapter 3 
Process Optimisation Page 59 
 

data (Venkatesan et al., 2009).  Because of the criticality of a process model, it is 

necessary to overcome such difficulties.  The neural network is one option to overcome 

mentioned difficulties as the characteristics of a properly designed NN can handle these 

impediments (Venkatesan et al., 2009).  This section will focus on the status of coal 

beneficiation modelling and the application of NN as process model. 

3.3.1 COAL BENEFICIATION MODELS 

A study conducted by Meyer and Craig (2010) investigates the modelling of a fine coal 

DMC circuit derived from first principals.  A wide range of various models is included in 

the literature study conducted by Meyer & Craig (2010).  From regression models for 

screens to CFD models on DMCs.  Yet it seemed as if none of these models captured 

the complex dynamics of a DMC circuit completely. 

Meyer and Craig (2010) created a novel nonlinear state-space model of a DMS circuit, 

integrating models from individual units within the circuits.  The conservation of overall 

mass and conservation of mass components were used in the developing of the models 

from first principals.  With numerous valid assumptions and complex techniques, Meyer 

& Craig (2010) were able to identify and validate the system parameters for a fine DMC 

circuit.  The only model inputs were the feed rate of the ore introduced to the plant as 

well as the density set point of the dense medium.  With the system parameters and 

model inputs, the model was evaluated using experimental data from an actual fine 

DMC circuit.  The comparison results are summarised in table 6. 

Table 6:  Simulation comparison results summary (Meyer & Craig, 2010)  

Equipment Model Correlation 

Magnetite medium water addition 1.00 

DMC  

Ash 0.72 

Moisture 0.80 

Volatile 0.72 

 

 



An optimisation approach to investigate quality control of a product coal stockpile 

Chapter 3 
Process Optimisation Page 60 
 

The model achieves high accuracy comparing the model output with the actual output.  

These results from Meyer and Craig (2010) are a benchmark to which any other model 

could be evaluated.   

Addison et al. (2011) developed an optimised control system for a DMC circuit.  The 

system includes a multi-stream monitoring system, which monitors the densities of the 

underflow and overflow of the DMC.  Due to most industrial DMC circuits limiting 

process information to feed medium density, the multi-stream monitoring system was 

deployed.  The feed, overflow and underflow medium densities were used as model 

parameters.  Addison‟s model is able to predict medium separation RDs in a DMC. 

A relative simple model able to capture the complex nonlinear dynamics of a DMC 

circuit as well as overcoming the lack of reliable data will add great value in the process 

performance and economic benefits (Meyer & Craig, 2010).  The DMC beneficiation 

process in AREA04 at GG1 combines the operation of five DMC modules to deliver one 

coking coal product line.  Limited information is available from AREA04, regarding the 

performances of the DMCs.  No information is available on the underflows and 

overflows of the DMCs.  In addition, very little information was gathered on the DMC 

specifications.  Thus, an investigation in the AI technique, the NN, as the process is 

conducted in this study to compensate for the missing information. 

3.3.2 NEURAL NETWORK 

As mentioned in section 3.2, AI imitates the human‟s ability to reason and learn to solve 

complex problems.  One of the techniques able to mimic this intelligence is the neural 

network (also called the artificial neural network) (Chen et al., 2008).  The development 

of the NN was inspired by the biological neural mechanisms of the human brain 

(Aldrich, 2002).  A set of elementary units called neurons or nodes, serves as 

autonomous computational units of the NN.  Each of these units interconnects through 

weighted connections.  Through the combined behaviour of the computational units, the 

weighted connections and learning algorithms to adjust the weights, the powerful ability 

of the NN to form generalised representations of complex relationships and data 

structures in datasets, can be realised (Giudici, 2003).   
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As illustrated in figure 22 the computational units are organised in different layers: input 

layer, hidden layers, and output layer.  Each node receives input signals from nodes in 

preceding layers that render the activation of the specific node.   The nodes in the input 

layer are responsible only for the transmitting of the data from the external environment 

to the NN.  Hidden layers are intermediate layers of computational units embedded with 

activation functions to calculate the output signals, and are not in contact with the 

external environment.  Nodes in the output layer correspond to response variables as 

the NN results.  These results are transmitted to the external environment (Giudici, 

2003).   

One of the more common types of NN is a feedforward NN using a supervised back-

propagation training algorithm.  The feedforward attribute of the NN refers to the 

network architecture.  The network is totally interconnected and distinction is made 

between the different layers.  Direction of input flow is only from the input to the output 

(Taylor, 1995).   

Three main classes of learning are the supervised learning, reinforced learning and 

unsupervised learning.  The NN discussed in this literature study uses a supervised 

back-propagation learning algorithm.  In supervised learning of a NN, a desired output 

target is provided for the network.  In other words, the model output is constantly 

compared to the supervisory output values.  The error data generated at the output 

layer is “back-propagated” to the preceding neuron layers, in order for the weights to 

update accordingly.  The objective of the training of the network is adjusting the weights 

to an optimum, consequently minimising the error value using an appropriate 

optimisation algorithm (Taylor, 1995).   
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3.3.2.1 NEURAL NETWORK ARCHITECTURE 

 

Figure 22:  Multilayer Feed-Forward NN (Han & Kamber, 2006)  

Figure 22 is a diagram of the architecture (or topography) of a two layer feedforward NN 

with a single output node.  A set of input units x = [x1, . . . ,xn] with n neurons is defined 

as the input layer.  The hidden layer consists of h neurodes (h = [h1, . . . ,hh]) and output 

layer consists of one output computational unit y1.  Information is sent from the external 

environment through the input layer via the weighted connections wik (i = 1, . . . ,n; k = 1, 

. . . ,h) to the nodes in the hidden layer.  (Giudici, 2003) gives the activation function in 

the computational units within the hidden layer: 

    (    )   (∑     
 

)     

Equation 11 

The activation function is in some cases referred to as the potential of the node (Aldrich, 

2002).  Figure 23 depicts the profiles of two types of activation functions used in a 

neuron (Chen et al., 2008). 
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Figure 23:  a) Step activation function and b) Sigmoid activation function (Chen et al. 2008) 

An additional input, called the bias, can be defined as x0 with its associated w0 weight.  

The bias has a fixed value of -1 offsetting the output of the NN to form accurate 

representation of the process.  The weight of the bias is adaptable (Aldrich, 2002).   

The neurons in the hidden layer transmit output signals to the output neuron in the 

output layer.  These signals are weighted by the connections zkj (k = 1, . . ,h; j = 1, . . . 

,p)between these two layers.  The computational unit y1 produces the final model 

response variable rendered by the following activation function (Giudici, 2003): 

    (    )   (∑     
 

)      

Equation 12 

Equation 11 and equation 12 are activation functions defined on a set of activation 

values, which is the scalar product of the weight and input vectors of the node.  The 

activation function may take on multiple forms such as sigmodial functions, or unipolar 

sigmodial functions depending on the network requirements.  Ultimately, the output of 

the only neuron in the output layer may be defined as (Giudici, 2003): 

    (∑     
 

)   (∑    (∑     
 

)

 

)     

Equation 13 
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3.3.2.2 NEURAL NETWORK TRAIN ING 

In order for the NN to produce the desired output given certain inputs, the connection 

weights require the optimal weighted values.  The process of discovering these optimal 

weights is called the learning or training process of the network.  During the training of 

the network, a dataset acceptably representative of the systems behaviour (called the 

training set), is introduced into the network via the input layer (Bossley et al., 1995).  

The importance of the representative nature of the dataset used for training cannot be 

stressed more than the study conducted by Coit, Jackson and Smith (1998).  To assure 

confidence in the NN, data that adequately and accurately reflects the dynamics and 

operation range of the process should be used for model generation and validation.  A 

trade-off comes onto play when deciding on the size of the dataset used for training the 

NN.  Too much data used for training can become time-consuming.  On the other hand, 

to little data will defect the model performance on uncommon data interactions.  With a 

smaller dataset, the model also runs the risk of overfitting the data (Coit et al., 1998).   

Figure 24 illustrates model overfit and model generalisation, where the solid circles 

represent training data and the empty circles the test data (Aldrich, 2002). 

 

Figure 24:  Model overfit vs. model generalisation (Aldrich, 2002).  

The goal of the training set is not to reproduce the exact similar results than the original 

dataset, but to generate a model able to generalise13 or accurately predict future events 

                                            
 

13
 Generalisation implies that the neural network can interpolate sensibly at points not contained in its 

training set. 



An optimisation approach to investigate quality control of a product coal stockpile 

Chapter 3 
Process Optimisation Page 65 
 

if new data is introduced to the network (Giudici, 2003).  A second validation or test set 

extracted from the main dataset is introduced to the NN after training.  This set is 

responsible to validate the training of the trained model.  The learning procedure is 

terminated as soon as the NN capture the ability to generalise the underlying 

relationships contained in the data (Aldrich, 2002). 

The objective of the training is to relate the output y to a set of functions of y = f(X) 

where X is the input matrix (Aldrich, 2002), 

   [

         
   
         

]           

Equation 14 

The NN has the advantage of not needing any prior assumptions regarding functional 

relationships between the input space and the NN output.  Supervised NN training is 

considered for as part of the scope of this project.  This training methodology considers 

the training of the performance of one neuron at a time, illustrated in figure 25.  The 

adjustment of the weights is given as: 

     [      (  
  )]    

Equation 15 

where β determines the learning rate.  The learning procedure is terminated as soon as 

the NN capture the ability to generalise the underlying relationships contained in the 

data (Aldrich, 2002). 

 

Figure 25:  Model of a single neuron (Aldrich, 2002).  
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The accuracy of the NN after training needs to be evaluated.  The model fit, as well as 

the model generalisation ability defines the model accuracy or efficiency.  A quantitative 

statistical estimator, R
2, describes the model fit.  R2, or the coefficient of determination 

(as defined by Devore & Farnum, 2005), is the proportion of variation of the measured 

records explained by the nonlinear model, given by: 

     
                       

                    
     

Equation 16 

A residual is the vertical deviation of a modelled point from the measured point at a 

given timestamp.  The residual sum of squares explains the amount of variation in the 

measured set not explained by the nonlinear model.  The residual sum of squares is 

defined as follows (Devore & Farnum, 2005):  

                        ∑(    ̂ )
      

Equation 17 

with yi a measured record and ŷi the modelled value of record i.  The total sum of 

squares is the measure of the total variation from the mean of the measured variable.  A 

larger total sum of squares indicates a larger variability in the measured variable values. 

This estimator is given by Devore & Farnum (2005): 

                     ∑(    ̅)
      

Equation 18 

where  ̅ is the sample mean of the output space.   

The closer R
2 is to one, the more accurate the model describes the variability of the 

monitored variable.  In order to acquire a more comprehensive view on the performance 

of trained NN, evaluation of the generalisation ability of the nonlinear model is 

important.  The model fit estimated on the training set compared to the model fit of the 

validation dataset gives an indication of the generalisation capabilities of the trained 

model.  A large difference indicates a poor generalisation of the model, whereas a 
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smaller difference (preferably smaller than 5%) represents a good model generalisation 

(Devore & Farnum, 2005).  

The performance of the training of the NN is evaluated in cross-referencing the training 

data set with a validation data set also consisting of adequate data to represent the 

system‟s behaviour (Giudici, 2003).     

The versatility of the NN enables the prediction of continuous data, as well as 

classification of discrete data.  This multi-variable modelling technique is popular due to 

its ability to detect variable interactions in a complex domain.  The NN is not as 

susceptible to data noise and missing data as other modelling techniques, but the 

accuracy of the NN prediction is susceptible to the number of inputs.  This stresses the 

importance of the reduction of the dimensionality of the NN input space (Berry & Linoff, 

1997).  The NN accommodates multiple nonlinear variables with unknown inter-

relationships (Coit et al. 1998). 

3.4 GENETIC ALGORITHMS 

3.4.1 GENETIC ALGORITHM DESCRIPTION 

The genetic algorithm (GA) is a stochastic, parallel, global search method (Venkatesan 

et al., 2009), categorised under the evolutionary algorithms group along with evolution 

strategies and evolutionary programming.  The motivation behind the design of the 

algorithm was to model the biological processes of natural selection and population 

genetics (Fleming & Purshouse, 2002; Goldberg, Sastry, Kendall, 2005).  This 

optimisation methodology is robust in its search functions, able to locate global optima 

in large and complex spaces (Venkatesan et al., 2009).   

The GA is based on several biological evolution features (Venkatesan et al., 2009).  The 

algorithm searches for the best solution in a population of possible solutions with an 

individual representing a particular possible solution to the problem.  Individuals in the 

population (also referred to as chromosomes) are generally expressed in genetic code 

(Goldberg et al., 2005).  The population is evolved over generations and good solutions 
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are distinguished from bad solutions in each generation.  The evolution of the 

population over generations produce better solutions (individuals) to the problem until 

the best solution is identified (Fleming & Purshouse, 2002). 

A fitness function is responsible for distinguishing between good and bad individuals.  

The fitness function could be an objective function derived from a mathematical model, 

or a subjective function allowing humans to identify the better solutions (Goldberg et al., 

2005).  The fitness function determines how good the individual solves the problem.  A 

fitness value is assigned to each individual in the population.  The higher the fitness 

value the better the individual is at solving the problem (Fleming & Purshouse, 2002). 

The population property of the GA is user-defined.  This property affects the scalability 

and performance of the GA.  A too large population will result in the utilisation of 

unnecessary computational time (Goldberg, 2005).  The GA is a computation intensive 

algorithm.  This is the main reason for GA being infeasible for online control applications 

(Fleming & Purshouse, 2002).  One of the objectives for the design of a GA would be to 

decrease the time until computation termination as far as possible.  On the other hand, 

a small population could lead to premature convergence resulting in the algorithm not 

finding the global optima (Goldberg et al., 2005). 

As soon as the population size has been set, the problem encoded in a chromosomal 

manner and the fitness function identified, the iteration of the evolution process can be 

initiated.  Fleming and Purshouse (2002) proposed a schematic representation, 

depicted in figure 26, of the progress of the GA.  Many modifications to the parameters 

of a GA have been investigated to adapt the specific problems.  Fleming and Purshouse 

(2002) recommend using the GA search computing as a general problem-solving 

procedure and adapt the GA parameters to the specific problem. 
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Figure 26:  Schematic representation of a GA (Fleming & Purshouse, 2002).  

1. Initialisation of population 

As mentioned, the population of the search space is a user-defined GA parameter.  The 

individuals are selected at random; however, expert knowledge on the search space 

can be incorporated for more effective optimum solutions search (Goldberg et al., 

2005).  The initialisation of the population entails the introduction of the selected 

population to the iteration stages of the GA.  Various population topologies have been 

investigated.  An example of a variation in the population approach is the 

implementation of island populations.  The island populations search for the optimal 

solution in parallel (Fleming & Purshouse, 2002). 

2. Evaluation 

The evaluation stage evaluates the fitness of each individual in the initialised population 

or the offspring population based on the fitness function (Goldberg et al., 2005). 

3. Selection 

The selection operator is also a user-defined parameter which either introduced the 

initialisation population to the following stages of the GA or the selection is done on the 



An optimisation approach to investigate quality control of a product coal stockpile 

Chapter 3 
Process Optimisation Page 70 
 

next evolved generation.  The main objective of the selection is to impose a survival-of-

the-fittest strategy where only the fittest individuals are selected for the next evolution 

(Goldberg et al., 2005).  After sufficient amount of generations or as soon as the 

population converges to a global optima, the selection process stops and the GA 

process is terminated. 

Two classes of selection are classified in the selection stage.  The proportionate fitness 

selection relates a selection degree per individual proportional to the fitness of the 

specific individual.  The roulette-wheel and stochastic universal selection strategies are 

part of the selection class.  The ordinal selection class includes strategies such as 

tournament selection and truncation selection.  During a tournament selection n amount 

individuals are entered into a tournament and the fittest individual are selected as the 

parent.  This selection then requires k tournaments to select k amount of parent 

individuals (Goldberg et al., 2005).  

GAs are able to search for the global optima while satisfying hard constraints14 as well 

as soft constraints15.  The fitness function is responsible for directing the search 

algorithm to adhere to the constraints as far as possible (Onnen, Babusika, Kaymak, 

Sousa, Verbruggen, Isermann, 1997). 

4. Recombination 

The recombination (or crossover) parameter is responsible for the creation of new and 

possible better offspring from the selected parent individuals, keeping some parental 

traits with each offspring.  Many crossover methods have been adapted for specific 

performance on the creation of the offspring (Goldberg et al., 2005).  The recombination 

operator has a user-defined crossover probability.  With the selectable crossover 

                                            
 

14
Hard constraint: the constraint defined in particular problems that have to be satisfied.  If not satisfied, 

the solution will lead to an infeasible result (Burke & Kendall, 2005). 
15

Soft constraint: Unlike a hard constraint, it‟s not essential to satisfy a soft constraint.  Multiple soft 
constraints in a problem could lead to the tradeoff situation where one constraint is satisfied in more than 
the other (Burke & Kendall, 2005). 
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schema and user-defined crossover probability, the potential of a GA to perform in a 

manner suitable to the specific problem is realisable.   

Figure 27 illustrates three recombination methods.  The three-point crossover is 

grouped under the k-point crossover.  Two encoded parental individuals are recombined 

at three (or k) places as indicated.  The newly created individuals are called the 

offspring from the parents (Goldberg et al., 2005).  The offspring individuals increase 

the individual search area. 

 

Figure 27:  GA recombination methods (Goldberg et al., 2005) 

The uniform crossover method uses a second parameter to identify probability of the 

crossover called the swapping probability.  An additional parameter adds to the 

complexity of the evolution stages and thus to the calculation intensity.  On the other 

hand, the uniform crossover could enhance the search for global optima during 

optimisation (Goldberg et al., 2005). 

The uniform order crossover method makes use of a template-encoded individual 

responsible for selecting the points of crossover.  With this crossover method, the user 

is able to lay more focus on certain components of the solutions individuals.  Expert 
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knowledge on the system optimised will give more certainty on the structure of such a 

template (Goldberg et al., 2005).   

5. Mutation 

The crossover operator is effective in increasing the search area of the GA and thus 

increases the fitness of the population effectively.  However, because recombination 

includes the altering of two or more parents the chances of offspring keeping the traits 

of their parents exist.  The mutation operator is responsible for the manipulation of a 

single individual‟s traits.  In this way, the chance of a less fit individual to retain its place 

in the population is decreased.  Common practise introduce a lower probability than the 

recombination operator does.  The bit-flip mutation methodology is the most common of 

the mutation methods.  Like all the user-defined GA parameters, the mutation operator 

has numerous variations (Goldberg et al., 2005). 

6. Replacement 

After the population selection, recombination of the parental individuals to produce 

offspring and mutation of individuals, the newly created offspring population need to 

replace the parental population.  Several replacement techniques are available.  With 

the replacement of parental individuals with offspring, the objective of the GA should not 

be forgotten: the average fitness of selected populations should increase with evolution 

to converge to optima (Goldberg et al., 2005). 

The most common techniques include the delete-all, steady state, and elitism 

replacement techniques.  The delete-all technique replaces the full parental population 

with the newly created offspring population.  This technique is less computational 

intensive as it is parameter free.  The steady-state method makes use of a parameter to 

select n individuals and replace them with newly created individuals (Goldberg et al., 

2005).  The elitism technique ensures a portion of the fittest individuals from the parent 

population stays in the new population (Fleming & Purshouse, 2002).   
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7. Iteration and termination 

Steps 2 to 6 are repeated depending on the criteria of the termination function.  This 

function is user-defined and determines the amount of generations before termination, 

or the iterations will terminate if the search found an optima (Goldberg et al., 2005).   

3.4.2 GENETIC ALGORITHMS APPLICATIONS 

As mentioned, GA is a robust search and optimisation methodology able to use 

incremental search mechanisms to find the global optima in complex problem 

environments (Fleming & Purshouse, 2002).  GAs are in many ways more competent in 

finding the global optima for nonlinear problems than traditional search methods (Onnen 

et al., 1997).   

Numerous literature studies are available on the GA‟s contribution to process control.  

Fleming and Purshouse (2002), Renders, Nordvik and Bersini (1992) and Kristinsson 

(1992) contributed to the understanding of GAs‟ performance in process control 

systems.  The GA‟s ability to exhibit properties such as discontinuity, time-variance, 

randomness, and noise handling empower the GA to search optimal solutions for highly 

complex control systems.  However, the GA is not suitable for problems where the 

solution is almost linear.  For these problems, techniques that have a more conservative 

approach are able to produce results that are more competitive (Fleming & Purshouse, 

2002).  Another downside of the GA is the infeasibility in an online control system.  This 

is due to the computation intensity required by the GA to produce results.  Online 

control systems are often mission-critical and safety-critical applications, which requires 

effective and real time solution outputs (Renders et al., 1992). 

Renders et al. (1992) conducted a literature survey discussing different process control 

applications for GAs.  Two groups were identified, off-line control applications and on-

line control applications.  For off-line control applications, GA is said to be a powerful 

tool in estimating optimal set points of process units or realising efficient strategies for 

complex problem environments.  A representative process model will enable numerous 

GA trails for optimisation off-line without endangering the efficiency of online systems.  
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Renders et al., (1992) also explains that the GA can offer accurate results in the system 

with very slow dynamics.  An online GA application for process control must comply with 

certain circumstances for the GA to produce useful results.  This list of circumstances 

includes an accurate process model as well as a large time interval between control 

samples.  Venkatesan et al. (2009) implemented the integrated platform of 

representative process model (artificial neural network) and GA as optimisation tool 

(discussed in Renders et al. (1992)) in the optimisation of machining processes. 

Mohanty, Gupta, Mahajan and Biswal (2007) investigated a multi-objective GA 

application to maximise the revenue generated by a coal beneficiation plant.  A study 

conducted on the GA‟s involvement with the coal manufacturing industry showed that 

the GA is familiar to this industry.  Several studies were done on single unit optimisation 

as well as plant wide optimisation applications.  However, from this paper no study 

seems to be available on DMC set point optimisation using GAs as conducted in this 

project.  

3.5 CONCLUSIONS 

This investigation focuses on extracting the necessary information from the data in 

order to simulate dense medium cyclone (DMC) process behaviour and applying the 

extracted data knowledge to the optimisation of the quality control at GG1.  Chapter 2 

discussed the background of the problem environment for this investigation.  Chapter 3 

provided background on an approach for the optimisation of the process described in 

chapter 2.   The list below provides a summarisation of the crucial concepts derived 

from this chapter. 

1. Apart from the knowledge gained from the process in chapter 2, knowledge 

enclosed within the vast amounts of data attributes at GG1 need to be extracted and 

combined with the process knowledge.  It is for this reason that the KD process was 

investigated in chapter 3.  This process uses different iterative steps in order to extract 

underlying data relationships and patterns from the process data.  The progress of this 

investigation is guided using the process methodology the KD process offers. 
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2. Design and deployment of optimised and control systems depend on accurate 

process models.  Empirical models do not always have the capacity to simulate the 

dynamics of the process accurately due to model assumptions and lack of knowledge of 

inter-variable relationships.  It is for this reason the NN, a multi-variable modelling 

technique, is investigated as a possible DMC process model.  The NN is a popular 

modelling technique due to its ability to detect variable interactions in a complex domain 

and accommodate data noise in the model.  The NN is also a popular data mining 

technique used to discover patterns in process data.   

 

3. GA is a robust search and optimisation methodology able to use incremental 

search mechanisms to find the global optima in complex problem environments.  GAs 

are in many ways more competent in finding the global optima for nonlinear problems 

than traditional search methods.  Various literature studies are available focusing on the 

GA implementation in the manufacturing industry.  Among these studies are literature 

based on the application of GA on coal beneficiation process for process optimisation.  

GA has the advantage of effectively finding the global optima in a search space.  

However, the downside of GA implementations is the computation intensive aspect of 

the GA.  GA is mostly discarded for online control systems.  Due to this constraint 

(among others), the SBS optimisation will not be in the form of automation (replacing 

the responsibilities of the operator with automatic set point implementation) but the 

optimisation of the set point calculation and decision support the optimised SBS will 

offer the operator.  The details on the development of the optimisation solution for the 

SBS at GG1 are discussed in detail in the preceding chapters. 
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CHAPTER 4 

DATA AND TASK DISCOVERY 

The process of becoming familiar with the goals set for the specific task must not be 

underestimated as mentioned in chapter 3.  This introductory stage of the KD identifies 

the purpose and objectives of the study, as well as the identification of data relevant to 

the problem environment. 

An investigation in the quality control on a coking coal production line at Exxaro‟s GG 

plant, GG1, was initiated in 2009.  This investigation discusses the optimisation 

approach used and the results obtained to identify benefits for an optimised decision 

support strategy on the production line at GG1.  Chapter 4 elaborates on the project 

purpose, identifying the problem environment and the constraints accompanying the 

tasks.  The optimisation approach and objectives is also included in this chapter. 

The data acquisition stage produced numerous data sets scattered over three separate 

databases.  Additionally the challenge of identifying the key data tags arose.  This 

chapter includes an extensive description of the data sets and databases present at 

GG1, as well as discussion of the different data sources. 

4.1 TASK DISCOVERY 

From the information gathered from multiple sources, including GG1 metallurgists, 

engineers and relevant documentation, the main issue identified was the inefficient 

quality control on the 10.3% ash semi-soft coal product at GG1, leading to some 

stockpiles not achieving an average ash content of 10.3%.  The loss of good quality 

coal due to fluctuations in the average ash accumulation of the coking coal delivery is 

also another disadvantage of this inefficient quality control.  As described in chapter 2, 

the SBS is responsible for numerous calculations and visual representation of the 

calculated results.  The SBS gives percentage ash content as an output to the operator 
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and the operator is then responsible for the quality control of the semi-soft coking coal 

stockpile (10.3% ash average).  The operator uses manual control to adjust the 

separation RD of the magnetite suspension introduced to the DMCs situated in the five 

modules. 

4.1.1 PROBLEM STATEMENT 

This section summarises the issues relevant to the problem environment.  The issues 

listed need to be addressed in this investigation to ensure an optimised solution. 

1. The output, given by the SBS to the operator, is a calculated ash set point.  

Every five minutes this set point is updated and the operator adjusts the RD of the 

correct medium, as explained in chapter 2.  This implementation is a constraint since 

the operator needs to adjust the separation RD from an ash content set point.  The 

performance of the manual control will depend on the knowledge and experience of the 

operator.  If the operator has little experience and knowledge of the system, adjusting 

the set points of the dense medium RD from an ash percentage value (presented on the 

SBS user interface) will be inferior to that of an experienced operator. 

 

2. The adjustment on the control element takes place in small increments, as to 

view the outcome of the adjustment from the on-line ash monitor (situated on the coking 

coal product line) as an ash percentage.  The effect of an adjustment on the RD in the 

correct medium tank (see figure 11) is visible after an approximate fifteen-minute 

delay16, depending on if the RD is increased or decreased (Rautenbach, 2009a).  In 

effect, the operator controls the quality of the stockpile with the adjustment of the RD in 

the correct medium tank on a trail-and-error method.  Again, the more experienced the 

operator the more efficient the control.  This results in a quality control producing a high 

                                            
 

16
 Villanueva and Lamba (1998) conducted a study on a knowledge-based operator guidance system for 

coal washing plants operated by Broken Hill Proprictary Limited (BHP) at Port Kembla, Australia. This 
operation guidance system consists of several functional components including process models, 
monitoring and optimisation.  The process investigated is a relatively slow process also with an 
approximately fifteen-minute delay before a control action is noticeable.  
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variance in the controlled process variable, which leads to a product containing a 

portion of unwanted power station coal.  Ultimately, this control is responsible for a 

lower quality product and financial loss. 

 

Figure 28:  Ash content probability distribution as measured from the ash monitor  

 

Figure 29:  Ash content probability distribution as calculated in the SBS 

Figure 28 shows the probability distribution of the ash content as measured by the 

online ash monitor.  The variance of this distribution is 1.40 and evident from this figure 

the average ash content, 11.37% ash, in the product line deviates from the target of 

10.30% ash.  The distribution of ash content as calculated in the SBS is depicted in 
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figure 29.  The variance is higher at 1.59 than the ash content distribution measured 

directly from the ash monitor.  However, the average is 10.61% ash, significantly closer 

to the target ash content.  This is because the operator controls the ash content on the 

product line based on the bias-updated ash content.  The difference in the two 

measurements and the effect this difference has on the study is also investigated. 

 

3. The SBS uses the data from the on-line dual gamma ash monitor measuring the 

ash content on the coking coal product line.  This ash monitor is inaccurate 

(Rautenbach, 2009a) and the readings from the monitor are updated every hour using a 

calculated bias.  The bias updates whenever the new laboratory results (usually with a 

three to four hour delay) are available.  This means that the key process indicator (KPI) 

is updated with measurements taken three to four hours prior to the current 

measurement.  As discussed in section 2.4.4, the bias is determined on the lab results 

and the average coal quality over an hour period.  If for instance the coal quality 

deviates from normal operation in the time the spot sample was taken, a negative effect 

will be seen in the hour the bias was updated by that specific spot sample laboratory 

results.  The operator will not be aware of this and will manually adjust the set points to 

accommodate for this erroneous bias. 

 

4. For manual quality control inducing variance to the product-line ash quality, the 

secondary DMCs in AREA04 can produce a coal product with ash content lower than 

the ash content set point.  Thus, the ash content of the coal on the product line is lower 

than it should be.  This means that the sinks in the DMC contain coals with ash content 

of 10% and ultimately a loss of good quality coal. These coals are sent to Matimba 

Power Station along with the accompanying metallurgical coal.  On the other hand, if 

the beneficiation DMCs in AREA 04 produce floats with ash content higher than the set 

point, the poor quality coal ends up on the product stockpile and an increased density is 

necessary in the DMC in order to compensate for the low quality coal on the stockpile.  

In addition, the fluctuations result in a decrease in yield as explained in section 2.3.  The 

control of DMCs producing a coal quality with less fluctuation is a supported control 

strategy as proven from literature in section 2.3. 
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5. Another factor influencing the control of the coal quality on the stockpile is the 

fact that the product delivered by the spiral classifiers cannot be controlled or monitored 

due to no data being logged for this section.  This means that the control of the DMC 

separators needs to compensate for this factor for proper control of the coal quality on 

the stockpile.   

4.1.2 PROJECT OBJECTIVES 

The purpose of the research is to investigate the benefits of an optimised manual 

control17on the relative densities of the correct medium in the five modules located in 

AREA 04.  This is done combining the necessary knowledge gained from a KD process 

and process background studies to simulate the process using an accurate process 

model and effectively optimise the SBS output to the operator for better quality control.  

The NN technique will be used to model the process and a GA will be responsible for 

the optimisation of the set points provided to the operator.  Figure 30 illustrates the 

objective of the optimisation solution investigated.  The aim is to decrease the variance 

in the ash content distribution in the final coal product.  In addition, each stockpile 

stacked should contain predefined average ash content, usually 10.3% ash 

(Rautenbach, 2009a). 

                                            
 

17
The automation of the control strategy currently deployed at GG1 was considered during initial analysis.  

Automation is defined as the replacement of human functions with a computer agent (Parasuraman & 
Riley, 1997).  According to automation study done by Kaber and Endsley (1997), a decision support 
system integrating human decision-making and computer processing have proved to produce inferior 
performance.  More than that, the system awareness also improves with this integration.  The human‟s 
flexibility and adaptability to unforeseen process conditions makes this integration of humans and 
computers processing a more valuable implementation (Parasuraman & Riley, 1997).  To prevent expert 
knowledge loss and system awareness degradation, the responsibilities of the SBS and the operator will 
stay the same for the optimised solution under investigation. 
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Figure 30:  Optimisation objective 

The optimisation solution approach for the DMC beneficiation area at GG1 is illustrated 

in figure 31.  The structure of the investigation follows this approach.   

5. Data and task discovery (chapter 4): Defining the problem statement, project 

objective, and discovering and extraction of the relevant data. 

6. Data pre-processing (chapter 5): At first, data transformation and integration 

entail the construction of a data warehouse from which the preceding steps will 

build on.  The data summarisation and data cleaning involve introducing “clean”, 

representative data with high quality to the data mining stage. 

7. Data mining (chapter 6): Involves the accurate modelling of the process on data 

representative of the process dynamics.  This stage includes the training and 

evaluation of the model. 

8. Benefit estimation (chapter 7): Include generating the benefit estimation solution, 

conducting sensitivity analysis for optimal quality control simulations, and 

discussing the benefits for such an optimal quality control compared to the 

current control strategy. 
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Figure 31:  Optimisation solution approach for GG1 DMC beneficiation  

4.2 DATA DISCOVERY 

After the identification of the problem environment, the data discovery was confined to 

data from the DMC beneficiation area at GG1.  As shown in the process flow diagram 

(Appendix A), the GG1 plant consists of multiple sensors in the different GG1 areas 

from where data was gathered.  The time range chosen for the data acquisition was 

from 2009-02-02 17:56:11 to 2010-02-02 17:56:11.   The selection of the time range 

was for the reason that the more data available for analysis, the higher the retention of 

good quality data and more representative the data, thus increasing efficiency of the 

KD.   

After an extensive data assessment, numerous data attributes (obtained during the 

period mentioned) were found to be inaccurate.  The RD readings measured by the 

nuclear RD sources in the five modules in AREA04 reported a constant value of 1.5 for 

a year.  After confirming the erroneous readings with a senior metallurgist and a system 

specialist at GG, the data period was shifted to 2007-07-01 00:00 to 2008-07-01 00:00.  
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The RD sources records from the time showed accurate measurements for AREA04 

modules. 

The RD set point values for the separation density of the DMCs in the AREA04 showed 

some inaccuracies.  After investigations as to why these readings were inaccurate, the 

tag names were found to be incorrect.  The correct tag names comprising the correct 

set point values were acquired within the adjusted period.   

The KD process is an iterative process in the sense that with additional knowledge 

gained from each step, the user may return to a previous step to alter data for more 

accurate analysis.  This is the case with the period identification.  During the data-

cleaning step, the time range was found to be too large and the analysis became time 

consuming.   

In order to reduce the amount of data whilst keeping the credibility of the data, the data 

were classified into good quality and bad quality stockpiles.  Within a year‟s time (2007-

07-01 00:00 to 2008-07-01 00:00) the GG1 plant managed to stack 145 semi-soft 

coking coal stockpiles. 

In conjunction with the objectives of the investigation, 21 stockpiles (three groups of 

seven sequential stockpiles) were chosen representing the process dynamics the best 

and enabling the accurate evaluation of the investigation results.  This stockpile 

selection depended on two selection boundaries: seven sequential stockpiles with the 

average ash content closest to 10%, and with the greatest cumulative weight.  The 

reason for the three groups of sequential stockpile data is to compare the analysis 

results of the groups for more extensive knowledge extraction, as well as better data 

representation.  Table 7 gives a summary of the groups of stockpiles selected, as well 

as the properties of each of the stockpiles within the respective groups.  The time range 

summarised in the table will serve as the analysis time range.   
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Table 7:  Summary of stockpile selection
18

 

Stockpile Name Stockpile number Average Ash Cumulative Tons 

Group 1 Time Range: 11/19/2007 21:40:00 to 12/6/2007 15:00:00 

2K02692 43 10.41 18007.00 

1K02693 44 10.20 25110.52 

2K02694 45 10.54 27785.65 

3K0695 46 10.30 70.00 

3K02695 47 10.29 14763.38 

4K02696 48 10.42 28349.63 

NK02697(emergency stockpile) 49 10.16 6436.33 

Group 2 Time Range: 12/31/2007  21:45:00  to  1/21/2008  8:00:00 

1K02704 56 10.46 22841.07 

3K02705 57 10.53 23937.55 

2K02706 58 10.31 18779.24 

1K02707 59 10.42 26735.97 

2K02708 60 10.30 23931.70 

3K02709 61 10.50 25733.84 

2K02710 62 10.22 7969.79 

Group 3 Time Range: 5/23/2008  5:36:00 to 6/11/2008  14:40:00 

4K02772 126 10.13 14494.10 

1K02773 127 10.45 20039.02 

3K02774 128 10.48 14809.00 

1K02775 129 10.07 11194.79 

3K02776 130 10.22 20364.84 

1K02777 131 10.44 27348.70 

3K02778 132 10.18 25482.44 

NK02779 (emergency stockpile) 133 9.22 4077.00 

 

 

 

                                            
 

18
20 minutes were added before each group to compensate for the delays that play a major role in the 

accuracy of the data mining step of the knowledge discovery. 
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4.2.1 THE INSQL DATABASE 

The data measured and logged in the InSQL database are categorised under the 

following groups: the feeder runners, the belt scales, the silo level measurements, the 

on-line RD measurements and final product measurements. The database consists of 

three data sets containing data with dissimilar characteristics: the analogue history data, 

the discrete history data, and the LIMS database.  These data groups are logged in an 

InSQL database on a central server.  The data are logged in the respective data fields 

with each field consisting of a unique tag name.   

The analogue data set hosts all the measured tags (recorded from the sensors 

illustrated in the process flow diagram in appendix A) containing the actual values, value 

timestamps, and value qualities.  This time-series data matrix includes: 

 Belt scale readings on module one to five in AREA02 to AREA04 (measured in 

tons per hour). 

 Level measurements of the silos in AREA02 to AREA04 (measured in level 

percentage). 

 On-line RD values from the correct medium feed to each DMC module in 

AREA02 and AREA04. 

 Readings from the on-line ash monitor positioned on the coking coal product line. 

 Belt scales on the coking coal and the power station coal production lines.   

Each measurement attribute includes the value logged at a specific timestamp, the 

quality of the value, as well as the connection quality between the sender of the data 

and the receiver (InSQL database). The sampling time for these data records is one 

minute. 

The LIMS database hosts the input and output data logged from laboratory analysis.  

This discrete data set contains the results from the laboratory data analysis, the 

sampling timestamp, and the timestamp to which the result was logged the analysis 

method, and the quality of each entry.  The sampling timestamps were logged every 

hour, but the timestamp of the registering of the results differed in some cases.  The 
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results from the ash analysis are of importance since these values are used to adjust 

the bias calculated in the SBS.   

4.2.2 THE SBS SQL DATABASE 

The purpose of the SBS is to provide decision support information that enables the user 

to build stockpiles with average coal quality within required specification in order to 

avoid penalties.  The SBS captures real-time data and laboratory data measured by the 

on-line ash monitor, moisture monitors and belt scales from the LIMS and InSQL 

databases.  All the data information gathered and calculated by the SBS are stored in 

SQL database.  The data logging format is the main difference between an InSQL 

database and a SQL database.   

The SBS has an update frequency of five minutes.  Every five minutes the SBS gathers 

the necessary data from the InSQL and LIMS databases, does the required 

calculations, and stores the results in different data tables in the SQL database.   This 

SQL database contains over forty different sequential and time series data sets.  

Through various SQL queries, relevant data are gathered and calculated.  The data sets 

include different reference data attributes with the purpose of integrating multiple data 

sets within the SQL database and simplify the data acquisition and calculations. 

SBS user input data are required for SBS product specifications.  These inputs are also 

stored in the SQL database and include the registration of the stockpiles, the different 

top and lower ash and mass limits, positive and negative deviation, the planned average 

ash content per stockpile, and the planned cumulative weight of each stockpile.   

The SBS is responsible for processing numerous computations, using the data available 

in the InSQL and LIMS databases.  Real time processing, cumulative computations, 

hourly calculations, calculations related to shift obligations, and computations 

incorporating laboratory results are a summarisation of the responsibilities of the SBS.  

The results of these responsibilities are logged in the SQL database. 

The SBS SQL database obtained from GG contains the data from the SBSs managed 

for GG1, GG2, GG4, GG5 and GG6.  For the purpose of this project, only the data 



An optimisation approach to investigate quality control of a product coal stockpile 

Chapter 4 
Data and Task Discovery  Page 87 

 
 
 

relevant to the 10% ash coking coal at GG1 will be utilised.  The data acquisition of the 

SQL data stretches over a timeframe of three years, 2007 to 2010.  A summarisation of 

the required timeframes of the different stockpile groups is included in table 7.  The time 

integration of the InSQL, LIMS, and SQL database, including the data transformations 

needed for accurate data, is discussed in chapter 5.  
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CHAPTER 5 

DATA PRE-PROCESSING 

After defining the problem environment, the project plan, and identifying the data 

needed for the task, the KD becomes more focused.  Due to the large amount of data 

recovered in the timeframes mentioned in chapter 4, the potential for poor quality data is 

high.  This stage of the knowledge discovery focuses on the process in which data 

anomalies are eliminated as far as possible in order to retain higher data quality.   

The preliminary data mining stage includes the transformation and integration of the raw 

data into a user-friendly data platform (off-line data warehouse), the identification of 

statistical data characteristics, and the elimination of remaining bad quality data using 

data cleaning techniques. 

5.1 DATA INTEGRATION AND TRANSFORMATION 

As mentioned in section 3.2 setting up a working environment for managing the huge 

amount of data, is essential for effective and rapid KD from data (Adriaans & Zantinge, 

1996).  This KD environment includes a central off-line data warehouse from where data 

are managed and analysed.  Instead of browsing through a large number of data tables 

in different directories, the data warehouse must make the searching and managing of 

the data in the central station for further data mining easier.   

Microsoft® SQL Server is a relational database management system using T-SQL 

(Transact-SQL) query language for data management.  This management system will 

host the central off-line data warehouse for this project.  Microsoft® also constructed a 

graphical data management tool: Microsoft® SQL Server Management Studio Express.  

The central feature of this tool is the object explorer, enabling the user to browse, select 

and act upon objects configured on the server.  This tool will be used extensively to 

configure, manage and administer the data objects in the data warehouse. 
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For more comprehensive data transformation, the data were exported from the SQL 

data warehouse to a comma-separated values (csv) file, readable in Microsoft® Office 

Excel® 2007.  Microsoft® Office Excel® 2007 is also able to connect to the SQL Server 

directly to view the SQL data tables in Excel.  Another useful function, used in this stage 

of the KD, is the import of data from an Excel worksheet directly into a Microsoft® SQL 

Server database using a linked server. 

Time integration and data transfers are easily managed using CSense® Architect.  

CSense® Architect enables the user to create schematic blueprints, configuring the 

environment of data inputs, data transformation and data output.  Architect is a useful 

platform for importing data from SQL Server, an Excel worksheet, or numerous other 

data sources, transforming or editing the imported data, and exporting the altered data 

to the desired location. 

5.1.1 SQL DATA TRANSFORMATION AND INTEGRATION 

All the data relevant to the SBS at GG are logged in a SQL relational database.  A 

backup file was created containing all the SBS data up to 2010.  From a SQL Server 

backup file, the data was easily restored in the SQL Server hosting the off-line data 

warehouse.  No additional format modifications were needed on the data sets within the 

SBS database. 

The SBS SQL database contains data describing the stockpile management of all six of 

the GG beneficiation plants. Only the data from the GG1 stockpile management is 

applicable to this project.  The other main criterion for the desired data is the specified 

stockpile group timeframes.  The data logged outside of the criteria are excluded from 

the final warehouse architecture.  Numerous datasets are found to be irrelevant to the 

proposed project, and are excluded. 

The datasets contained in the SBS SQL database is divided into five different groups: 

cumulative data information, hourly data information, real-time data information, user 

input loggings and general informative datasets.  The cumulative datasets represents 

the cumulative information logged from the real-time datasets, such as the cumulative 
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ash percentage per stockpile or the cumulative mass of the stockpile sorted by 

timestamp or by sequential data entry.  The datasets contain the aggregated readings 

logged in five-minute intervals.  These datasets contain a reference attribute “Ref_Ptr” 

used to link several datasets.  The five-minute aggregated readings are rolled up to 

hourly intervals and stored in the hourly datasets.  The purpose of the hourly datasets is 

to bring the LIMS results into account, since the laboratory results are available every 

hour.  Table 8 summarises the characteristics of the relevant SBS SQL datasets saved 

in the SBS database on the SQL Server.  The Cumulative_Info, Hourly_Info, and 

Realtime_Info datasets are included in the data warehouse.  

Table 8:  SBS SQL dataset summary 

Dataset Description 

Cumulative_Info 
Time-series dataset: cumulative ash and mass calculations per 
stockpile, as well as target ash for each stockpile updated every 5 
minutes. 

Element_Product_Info 
Time-series dataset: cumulative percentage sulphur content per 
stockpile and the target sulphur value updated every hour (not 
available for the coking coal production line). 

Final_Product Informative dataset: include the upper limit, lower limit, and planned 
ash content of the GG1 stockpiles. 

Hourly_Info 
Time-series dataset: includes the ash bias calculation results, the 
LIMS results, as well as the ash and mass hourly measurements per 
stockpile. 

Input_product 
Informative dataset: contains GG1 stockpile information such as 
upper and lower mass limit and positive and negative ash content 
deviation limits (not available for the coking coal production line). 

Product_element 
Informative dataset: includes the upper limit, lower limit, and target 
sulphur content of the GG1 stockpiles (not applicable to the coking 
coal production line). 

Realtime_Info Time-series dataset: includes5-minute readings from online ash 
monitor, the ash readings adjusted by ash bias, and the mass per 5-
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minute interval for each sequential stockpile. 

Stockpile_Info Informative dataset: summary of each stockpile produced during the 
specified period.     

 

In the more detailed data transformation stages, the relevant time-series datasets were 

saved as csv files and transformed, using Excel.  The transformation of the timestamp 

tags in order to integrate all the datasets using the timestamp attribute as reference 

attribute, was performed in Excel.  The logging of two values at the same timestamp 

occurred in several datasets.  This was the case for when a stockpile stacking finished 

and the build of a new stockpile initiated.  In other cases, erroneous entries were logged 

at the same timestamp.  An investigation into each instance of duplicate entry was 

conducted and the timestamps were transformed or deleted accordingly.  Upon the 

investigation of the “Cumulative_Info” dataset, stockpile 1k02765 was excluded from the 

data used for KD because of inaccurate readings relevant to the stockpile. 

Some of the tag names were altered for confidentiality and accessibility reasons.  The 

transformed SBS SQL datasets were imported into the warehouse database.  During 

the data transfer from the csv files to the database in SQL Server Management Studio, 

the timestamps were integrated and re-sampled19 on a minute interval basis, using a 

CSense® Architect blueprint.  The reason for choosing the minute interval re-sampling 

was that the data from the InSQL database were logged on a minute interval basis.   

5.1.2 INSQL DATA TRANSFORMATION AND INTEGRATION 

The format for data logged in an InSQL relational data repository differs from that of a 

SQL relation database.  Data for an InSQL database are logged as a data grouping per 

timestamp, in other words all the readings from the associated data sources (such as 

belt scale measurements and RD values) are logged as a group when the timestamp 

changes.  In retrieving the data from an InSQL databases via a query, the explained 

                                            
 

19
Re-sampling is the event where the execution rate of the data is altered to universal time intervals. 



An optimisation approach to investigate quality control of a product coal stockpile 

Chapter 5  
Data Pre-processing Page 92 
 

logging format is the typical format in which the data is viewed.  Table 9 illustrates a 

typical data logging format of an InSQL relational repository.  A list of data tag names is 

listed at one timestamp instance and the respective values along with the quality 

attribute at that instance.  The quality of the logging is indicated by an integer value of 0 

or 1.  If the quality is 0, the quality is good.  For a value of 1, the logging was erroneous.  

Table 9:  InSQL data logging format 

Timestamp Tag name Value Quality 

2007/08/02 05:01:00 BeltScale_A04_M1 60.2 0 

2007/08/02 05:01:00 RDpresent_A04_M1 1.35 0 

2007/08/02 05:01:00 Silo_A04_M1 34 0 

2007/08/02 05:01:00 RDsetpoint_A04_M1 1.42 0 

2007/08/02 05:02:00 BeltScale_A04_M1 45.3 0 

2007/08/02 05:02:00 RDpresent_A04_M1 5.00 1 

2007/08/02 05:02:00 Silo_A04_M1 32 0 

2007/08/02 05:02:00 RDsetpoint_A04_M1 1.47 0 

The logging or query format used in the SQL data warehouse is illustrated in table 10.  

In this case, the data is logged per timestamp per data row.  The tag names and the 

quality per tag are organised as dataset headers.  

Table 10:  SQL data logging format 

Timestamp BeltScale_A04_M1 Quality Silo_A04_M1 Quality 

2007/08/02 05:01:00 60.2 0 34 0 

2007/08/02 05:02:00 45.3 0 32 0 

2007/08/02 05:03:00 46.7 0 32 0 

2007/08/02 05:04:00 42.4 0 30 0 

The first step in preparing the InSQL data was to transform the data into SQL format 

using SQL queries.  SQL queries allow the user to write a SQL command using a query 

language and to retrieve the data corresponding to certain criteria set in the query.   

Data satisfying the time period criteria (identified in chapter 4) of each belt scale 

measurement, silo level reading, and RD measurement of the modules in AREA01 to 

AREA04 were retrieved, using SQL queries, and saved as csv files.  The tag names of 
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the data attributes in the analogue dataset were changed20 for confidentiality and 

simplicity purposes.  Each of these data attributes consisted of a timestamp tag, value 

tag, quality tag, detail of the quality tag and an OPC quality tag.  The quality tags are the 

main indicator of good or bad quality. 

The next step was to evaluate the timestamps of each of these tags and the quality of 

the tag values, and delete or transform duplicate and erroneous data entries.  As 

mentioned, after evaluation of the data tags, the data logged for July 2007 were 

inaccurate and all the data for this month were deleted.  After transforming the analogue 

data attributes, the data tags along with the quality of the tag values were integrated 

and grouped into the different areas on the GG1 plant.  The belt scales readings, silo 

level measurements and RD readings of the modules in the different areas were 

integrated and re-sampled into a dataset per area.  These datasets were stored in 

separate databases on SQL Server.  The AREA04 dataset was copied to the data 

warehouse database. 

The data warehouse database contains transformed and integrated datasets in 

universal format for a more efficient data-mining environment.  The data warehouse 

includes a central dataset in which all the necessary data are integrated into one 

dataset: the AREA04 datasets, Cumulative_Info, Hourly_Info, and Realtime_Info 

datasets.  This warehouse database will serve as a central management data source 

where the data could easily be retrieved for analysis.  The rest of the datasets are left in 

their respective databases and will be used for information purposes only.  Table 11 

include the tag names and the description of each tag relevant to the investigation.  

Each tag was renamed for confidentiality and simplicity purposes. 

 

 

                                            
 

20
Table 11 shows four of the altered tag names.  For example: BeltScale_A04_M1 refers to the belt scale 

measurement read from module 1 in AREA 04. 
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Table 11:  List of process variables relevant to the investigation  

Tag name Description 

Cum_SP_Order Stockpile number ordered from 1 to 145 

Mass and mass flow measurements 

BeltScale_A04_M1 – M5 Belt scale on module 1 to module 5 in AREA 04 

CCScale Belt scale on the semi-soft coking coal product line 

PSCScale Belt scale on power station coal product line 

Cum_Tons Mass accumulation of actual coking coal stockpile calculated in the SBS 

Cum_Mass_OPT Mass accumulation of optimised coking coal stockpile 

HR_Tons Accumulated mass per hour interval, calculated in the SBS. 

Opt_Mass Optimised coking coal mass flow 

Target_Mass Target accumulated mass per stockpile 

Ash Content Measurements 

RDPresent_A04_M1 – M5 RD value as measured by RD source on module 1 to module 5 in AREA 04 

RDSetpoint_A04_M1 – M5 RD set point on module 1 to module 5 in AREA 04 

AshMonitor Ash content measured by online ash monitor on the semi-soft coking coal 

product line, sampled in one minute intervals 

Online_Total_Ash The bias updated ash with one-minute sampling rate. 

HR_Ash Accumulated ash content per hour interval, calculated in the SBS. 

Opt_Ash Optimised ash content on semi-soft coking coal product line 

RT_Coalscan_Ash Ash content measured by online ash monitor aggregated in 5 minute 

samples 

RT_Ash Ash content updated with a bias in the SBS, aggregated in 5 minute samples 

HR_Coalscan_ash Ash content updated with a bias in the SBS, aggregated in 1 hour samples 

HR_Lab_Ash Hourly laboratory results on the ash content. 

Target_Ash Target ash content calculated in optimisation solution 

HR_Ash_bias Bias calculated from laboratory results, updated hourly 

Cum_Ash Ash accumulation per stockpile from actual process  

Cum_Ash_OPT Ash accumulation per stockpile from optimised results 

 

5.2 DESCRIPTIVE DATA SUMMARISATION AND DATA CLEANING 

The characterisation of integrated and transformed data focuses more comprehensively 

on the individual attributes exposing the inconsistencies within these attributes.  Using 

statistical techniques along with the process knowledge gained thus far, the data quality 

can be purified up to a point where the results of the data mining stage are accurate 

enough to build a consistent nonlinear model.  Anomalies identified by descriptive data 
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summarisation can lead to further data transformation and integration in the data 

cleaning stage.   

After the detection of the inconsistent data identified in this stage, the errors and 

inconsistencies need to be eliminated.  Data cleaning is the KD step prior to the data 

mining which cleans the data inconsistencies.  For a reliable non-linear model the data 

used need to be cleaned and of good quality.   

One of the outcomes of the descriptive data summarisation and integration step is to 

gain more knowledge on the problem environment.  The extent of the knowledge gained 

in this step is dependent on the data quality and the amount of data.  For this reason the 

timeframe, 2007-08-01 to 2008-06-30, was used for knowledge extraction and stockpile 

validation.   

Prior to the DMC operations, the feeds are graded on the respective sieves.  The 

performances of the sieves are unknown.  No measurements (mass or ash related) are 

logged on the sieves‟ overflows (+1mm; -25mm) sent to the DMC‟s or the underflows  

(-1mm), sent to the thickeners in AREA05.  Information on the AREA05 coal 

beneficiation is also lacking.  Coal added from the spirals to the final coking coal product 

line and the power station coal line, are not measured.  Coal input information to 

AREA05 is also not measured.  This lack of information is illustrated in figure 32.  The 

solid lines represent the coal flow of which the information is available and the broken 

lines represent the coal flow of which measurements are not logged. 
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Figure 32:  Data flow in the DMC and spiral beneficiation areas.  

Table 12 describes the variables illustrated in figure 32.  Insufficient information is 

available to perform a proper mass balance of the process.  A list of assumption is given 

below: 

 The AREA04 gradation sieves are assumed to produce negligible -1mm coal for 

the duration of the analysis period.  This assumption effectively excludes the 

sieves‟ performance from this study. 

 The error produced from the difference between the AREA04 inputs and 

A05_Output1 and A05_Output2 describe outputs.  

 As discussed in chapter 3, typical magnetite losses are attributed to cyclone 

dimension adjustments.  However, a small fraction of magnetite losses are 

attributed to separation RD adjustments.  Magnetite losses are assumed 

negligible in this study. 
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Table 12:  Data flow tags' descriptions. 

Figure 32 variables Description 

A04_Input 
Mass flow of the five modules (coal size -25mm) introduced to the 

gradation sieves. 

A04_Output1 
Mass flow of DMCs‟ floats products and spiral coking coal 

production combined. 

A04_Output2 
Mass flow of DMCs‟ underflow products and spiral power station 

coal production combined. 

Thick_Input1 -1mm coal produced in ARE02 and AREA03. 

Thick_Input2 -1mm coal produced from sieve gradation in ARE04. 

Thick_Output 
Coal (-300µm) produced from the deslimer, destined for GG2 

beneficiation plant 

A05_Input1 
Coal (+300µm) product from the deslimer responsible for the input 

to the spiral beneficiation plant. 

A05_Output1 Coking coal production from the spiral beneficiation. 

A05_Output2 Power station coal production from the spiral beneficiation. 

A05_Output3 Discard from the spiral beneficiation area. 

 

5.2.1 MODULE PERFORMANCE ANALYSIS 

This section is dedicated to the summarisation and characterisation of the data 

variables originating from the five coal modules in AREA04.  Data relevant to the five 

modules are divided up into a mass flow group, dense medium RD measurements and 

RD set point measurements.  The performance of the separation RD control is also 

summarised in this section. 

5.2.1.1 MASS FLOW SUMMERISATION 

Figure 33 depicts the mass flow profiles from belt scale measurements.  These 

conveyor belts are responsible for the coal feeds to the DMCs in the five beneficiation 
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modules.  During normal operation, it is possible for one or more modules to be offline21 

while other modules are still operational.  This operation strategy makes room for 

maintenance on offline modules while still producing coking and power station coal.  

The red box in figure 33 illustrates this strategy where module 4 is online and producing 

coal whilst the rest of the modules are offline and produce small amounts or no coal.  In 

this instance, module 4 will have the highest influence on the final product lines (coking 

coal and power station coal lines).  The DMCs in module 4 will produce higher float 

mass flows than the other DMCs and thus the product line quality will be determined by 

module 4‟s product quality.   

 

Figure 33:  Multiple time-series trends illustrating mass flow profiles to the DMC's.  

Also noticeable from the graph are the performances of the different mass flow 

averages as well as the sudden shift in mass flow averages.  This performance is 

highlighted by the green box in figure 33.  Mass flow modules 2, 3 and 5 have a shift 

from an average of approximately 260 kg/min to 300 kg/min.  Module 4 stays on 

approximately 260 kg/min and module 1 is offline. 

                                            
 

21
 „Offline‟ in this case refers to a module producing negligible coal product relative to other „online‟ 

modules.   
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Figure 34 is a scatter plot of the BeltScale_A04_M1 performance on the x-axis and 

CCScale on the y-axis.  Negative mass flow values identified from this scatter plot as 

well as for the other belt scales were classified as poor quality data and were rejected 

from certain analyses.  The two definite operating clusters, offline and online operations, 

are visible from this plot.  The cluster with mass flows higher than the overall average 

(represented by the blue line) represents normal online mass flow operation whereas 

the cluster to the left of the blue line is designated as the offline operation.  

BeltScale_A04_M1 spent 55.9% of the time in the normal operating region.  Higher 

availability of the module will increase the mass flow to the DMC beneficiation banks.  

This will effectively mean a higher production throughput. 

 

Figure 34:  Scatter plot of variables BeltScale_A04_M1 vs . CCScale. 

Table 13 summarises the performance of the coal mass flow in AREA04 from 

2007/11/19 to 2008/6/11.  The minimum and maximum statistics defines the ranges in 

which the belt scales operate.  The ranges include the online as well as the offline data.  

The average and standard deviation calculations were determined based on online 
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operation only22.The amount of time spent in the normal operating region (i.e. above 

overall average operating region) are also calculated for each belt scale. 

Table 13:  Statistical summarisation of mass flows to the DMCs 

Variable Name Minimum 

(kg/min) 

Maximum 

(kg/min) 

Average 

(kg/min) 

Standard 

Deviation 

Operating time spent 

above overall operating 

average(%) 

BeltScale_A04_M1 0.13 405.02 287.51 20.08 55.9 

BeltScale_A04_M2 0.13 405.77 283.25 18.00 54.5 

BeltScale_A04_M3 0.13 405.14 286.88 23.40 60.0 

BeltScale_A04_M4 0.13 404.05 276.34 62.93 61.8 

BeltScale_A04_M5 3.63 403.27 292.62 53.93 55.8 

 

The mass flow feeds to the different DMC banks produced relatively the same 

performance over the analysis period.  BeltScale_A04_M4 produced a lower average 

feed flow with higher standard deviation during the analysis period.   

5.2.1.2 DENSE MEDIUM DENSITY SUMMARISATION 

As mentioned in chapter 2, the DMC is the workhorse in coal beneficiation plants.  The 

separation RD‟s of the magnetite suspension determine the degree of separation 

among other factors.  Figure 35 shows the profiles of the different magnetite RDs 

measured on each module. The differences in RD measurement variance between the 

modules are noticeable from this multiple trend.  The variance in RDPresent_A04_M1 

and RDPresent_A04_M2 are greater than that of the other three RD measures.  The 

reason for this is unknown; however, high RD variance could indicate instability in the 

magnetite recovery system.  A very important characteristic of the RD measured tags at 

GG1 is the incremental control adjustments brought on by operator set point 

adjustments.  The operator uses a trail-and-error method to control the qualities of the 

DMC floats in order for the accumulated ash on the coking coal stockpile to reach a 

                                            
 

22
The statistical calculations performed in this study are discussed in appendix D. 
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predefined quality.  The incremental changes are highlighted in the green boxes in 

figure 35. 

As highlighted in chapter 2, controlling the DMCs to produce the same quality goal is 

the most optimised strategy to maximise revenue produced by a coal beneficiation 

plant.  This crucial feature is depicted in figure 35.  The RD‟s of the dense medium fed 

to the five DMC banks are controlled on approximately the same RD set points. 

 

Figure 35:  RD measurements for modules on to five.  

 

Table 14:  Statistical summarisation of dense medium RDs to the DMCs 

Variable Name Minimum  Maximum  Average Standard 

Deviation 

RDPresent_A04_M1 1.25 1.45 1.324 0.0493 

RDPresent_A04_M2 1.25 1.45 1.331 0.0624 

RDPresent_A04_M3 1.25 1.45 1.327 0.0512 

RDPresent_A04_M4 1.25 1.45 1.333 0.0552 

RDPresent_A04_M5 1.25 1.45 1.326 0.0511 
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Table 14 summarises the dense medium density performance of the analysis period.  

The five variable summarised are comparable in the average performance and 

variance.  This is due to the control strategy of the operator to adjust the RD set points 

to the same degree. 

5.2.1.3 RD SET POINT SUMMARISATION 

Figure 36 illustrates the performance of the adjustments on the RD set points brought 

on by the operator.  The operator adjusts the RD set points to approximately the same 

degree.  Adjustments to the set points do not occur in a fixed frequency but is 

dependent on the judgement of the operator.  There are periods where the differences 

in RD set points are greater than other regions.  The reason for variance in set points 

differences are unknown and completed dependent on the logic behind the operator‟s 

control strategy. 

 

Figure 36:  RD set point performances for the five GG1 modules  

Table 15 summarises the behaviour of the RD set points on the five modules.  The five 

variables‟ performance similar due to the operator‟s set point adjustment logic.  When 

comparing the set point variable standard deviation with that of the dense medium RDs, 

the dense medium RDs show higher variance.  This could to be ascribed to the noise 

existent in the dense medium RD measurements. 
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Table 15:  Statistical summarisation of dense medium RDs to the DMCs  

Variable Name Minimum  Maximum  Average Standard 

Deviation 

RDSetPoint_A04_M1 1.25 1.42 1.349 0.0177 

RDSetPoint_A04_M2 1.25 1.45 1.357 0.0184 

RDSetPoint_A04_M3 1.25 1.42 1.357 0.0169 

RDSetPoint_A04_M4 1.25 1.45 1.358 0.0176 

RDSetPoint_A04_M5 1.30 1.42 1.355 0.0169 

 

5.2.1.4 DENSE MEDIUM RD CONTROL PERFORMANCE 

The performance of the control implemented on the magnetite recovery circuits can be 

measured through the comparison of the magnetite density set point to the process 

variable, the magnetite RD.  Figure 37 illustrates how good the control performance is 

on the module 3 magnetite recovery circuit.  The magnetite RD measurement is 

compared to the RD set point.  It is important to note the deviation from accurate control 

in some instances.  The green box in figure 37 shows an example of this deviation.  

These deviations are the cause for disturbances in the quality of the DMC float 

products.  If the operator adjusts a RD set point, the magnetite RD is expected to 

operate closely around the set point value.  In the event of a disturbance, the operator 

should react on the RD set points and compensate for magnetite RD deviation.  This 

compensation could lead to inaccurate quality control of the product coal.  For ideal 

control, the difference between the magnetite RD and the set point should be zero.  
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Figure 37:  Control performance on magnetite RD on module 3 

Figure 38 shows the relationship between the dense medium RD and the RD set point 

for the magnetite recovery circuit in module 3.  A linear least squares fit is also included 

in the scatter plot summarising the relationship between the two variables.  Typically, a 

horizontal fit will indicate that no correlation exists between the two variables.  Figure 38 

shows a direct correlation, whereas a negative slope will indicate indirect correlation. 
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Figure 38:  Scatter plot: RDPresent_A04_M3 vs. RDSetPoint_A04_M3.  

Table 16 summarises the RD control performances of each module magnetite circuit.  

The difference between each module‟s magnetite RD and RD set point were calculated 

as the RD error.  The averages as well as the standard deviation of the error 

calculations are included in table 16.  The correlation between the magnetite RD and 

the RD set point is also included in the table.  Module 3 produced the best control 

performance with a lower standard deviation and high actual versus set point 

correlation. 

Table 16:  RD control summarisation 

Module Error Average Error Standard 

Deviation 

RD vs. RD Set 

Point Correlation 

RD control in module 1 -0.00215 0.0149 0.683 

RD control in module 2 -0.00241 0.0176 0.665 

RD control in module 3 -0.00111 0.0091 0.830 

RD control in module 4 -0.00312 0.0140 0.740 

RD control in module 5 -0.00078 0.0131 0.727 

 



An optimisation approach to investigate quality control of a product coal stockpile 

Chapter 5  
Data Pre-processing Page 106 
 

5.2.2 GG1 PRODUCT LINE ANALYSIS 

5.2.2.1 LAG ESTIMATIONS 

An important data preparation aspect is the estimation of the variable lags, as these 

time lags play a big role in the accuracy of the time-series modelling, and place rigorous 

constraints on the performance of an automated control loop.  This vital aspect of data 

preparation is included in the data cleaning stage of the KD process. 

The aim of the time lag compensation is to delay the suitable measured variables up to 

a point where the correlation between the target variable and the process variables is at 

a maximum.  The target fields of the NN models are the supervisory variable needed to 

create the supervised NN explained in chapter 2.  These target fields contain the 

measurements from the online ash monitor as well as the mass flow measurements on 

the coking coal product line.  All the belt scales, RD set point readings and the RD 

present values measured by the RD sources, must be delayed up to the point where 

their correlation to the target variables are at a maximum.   

Cross-correlation based lag estimation was used to determine the different time lags for 

the relevant process variables.  In order to estimate the time lag for a process variable 

the non-target process variable is delayed incrementally with a time constant and the 

correlations between the fixed and delayed variables are determined. 

Figure 39 illustrates the cross-correlation calculation performed on the mass flow 

measurement taken from module 2.  The mass flow measurement was delayed with 

nineteen minutes with a time constant of one minute.  The correlation between the 

coking coal mass flow and the mass flow measured in module 2 is at a high at a two-

minute delay.  This effectively indicates that a step change in mass flow in module 2 will 

be visible on the coking coal product line mass flow measurements after 2 minutes. 
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Figure 39:  Time Delay Estimation of BeltScale_A04_M2 

Table 17 represents the results from the constant time delay estimations for the module 

belt scales measurements and dense medium RD measurements.  Evident from these 

results is that time lag between the module mass flow measurements and the coking 

coal product line mass flow is two minutes with a high degree of probability.  It will be 

safe to keep the time delay as a constant time delay of two minutes without affecting the 

quality of the data. 

As for the constant time delays estimated for the ash content (time lag from magnetite 

RD measurements in each module to the on-line ash monitor), the correlation is very 

low.  In addition, the time delay at maximum correlation for each module differs.  Thus, 

a constant time lag cannot be calculated for the magnetite RD measurements.  As 

indicated in section 4.1.1, experts at GG1 assume the time lag to be a constant fifteen 

minutes (Rautenbach, 2009a).  The time lag for the magnetite RD measurements to the 

ash monitor measurements is assumed fifteen minutes for this study. 
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Table 17:  Constant time delay estimat ions 

 Maximum Correlation (%) Time Delay (seconds) 

 Mass Flow 

BeltScale_A04_M1 75.14% 120 

BeltScale_A04_M2 77.54% 120 

BeltScale_A04_M3 76.83% 120 

BeltScale_A04_M4 64.74% 120 

BeltScale_A04_M5 65.13% 120 

 Ash Content 

RDpresent_A04_M1 2.59% 780 

RDpresent_A04_M2 3.13% 780 

RDpresent_A04_M3 4.58% 780 

RDpresent_A04_M4 3.14% 720 

RDpresent_A04_M5 2.50% 1320 

 

5.2.2.2 COKING COAL PRODUCT LINE ANALYSIS 

Characterisation and summarisation of the product line data were done on cumulative, 

hourly, and real time data (five-minute interval sample rate).  The cumulative data are 

summarised in table 7 in section 5.7.   

The reason for storing hourly data in the SBS SQL database is for the integration of the 

laboratory results.  As discussed in section 2.4.4 spot samples are taken every hour and 

sent to the laboratory for detailed analysis.  The results are delayed with approximately 

four hours.  Figure 40 illustrates the performance of the ash measured directly from the 

ash monitor (HR_Coalscan_ash), the ash updated by the ash bias (HR_Ash), the ash 

bias calculated in the SBS (HR_Ash_bias), and the ash results from the laboratory 

(HR_Lab_Ash).  It is interesting to see the offset of the HR_Coalscan_ash variable from 

the HR_Ash and HR_Lab_Ash variable.  As indicated in chapter 2, from expert 

knowledge on the process at GG1 it is known that the online ash monitor does not 

produce accurate measurements.  This is evident in the offset between the laboratory 

results and the online ash monitor measurements.  The average of the 

HR_Coalscan_ash variable is 11.23% compared to the 10.32% and 10.33% of the 
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HR_Ash and HR_Lab_Ash variables respectively.  The reason for the HR_Ash 

performing in the same range as the HR_Lab_Ash variable is the Ash_bias update. 

 

Figure 40:  Hourly ash content data stored in SBS SQL database 

To determine the accuracy of the bias updated ash measurements, the relationship 

between the variable need to be evaluated.  Table 18 is a correlation matrix containing 

the correlation between the three hourly ash measurements.  The relationship between 

the HR_Lab_Ash (which is the more reliable ash content measurement) and 

HR_Coalscan_ash are comparable to the relationship between HR_Lab_Ash and 

HR_Ash.  From the correlation matrix it can be concluded that the dynamics of the ash 

measurement updated with the bias are relative the same when analysing the system 

with an hour sample rate. 

Table 18:  Hourly ash measurements correlation matrix 

Variable Name HR_Lab_Ash HR_Ash HR_Coalscan_ash 

HR_Lab_Ash 1.000 0.887 0.857 

HR_Ash 0.887 1.000 0.840 

HR_Coalscan_ash 0.857 0.840 1.000 
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Figure 41 compares the bias (HR_Ash_bias) updated ash content measurements 

(RT_Total_Ash) to the online ash monitor measurements (RT_Coalscan_ash) with the 

sampling rate of five minutes.  Again the RT_Coalscan_ash shows an offset relative to 

the RT_Total_Ash) measurements.  However, the correlation between the two variables 

stays high at 0.827. 

 

Figure 41:  Ash content variable comparison - five-minute sampling rate 

Timestamp integration of the datasets is necessary in order to integrate the InSQL data 

(one-minute sampling rate) with the real-time data from the SBS (five-minute sampling 

rate).  Essentially this step requires SBS dataset transformation to produce a dataset 

with a one-minute sample rate, the same as the InSQL dataset.  The difference 

between the hourly ash bias and the one-minute online ash monitor readings was 

calculated to generate the bias updated ash variable with a sampling rate of one-

minute.   

Figure 42 shows the accuracy of the calculations performed to determine the ash 

content updated with the bias on a one-minute sampling rate.  Both RT_Total_Ash and 

Online_Total_Ash are bias updated ash measurements with a correlation of 0.862 

during normal operation.  The correlation between the online ash monitor data and the 
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Online_Total_Ash variable is 0.969.  The AshMonitor and RT_Coalscan_ash variables 

are generated directly from the online ash monitor with different sampling rates.  An 

offset between the online ash values and the bias updated ash values is still visible.  

 

Figure 42:  Ash monitor measurements vs. bias updated measurements 

An important characteristic exists in the relationship between the mass flow on the 

coking coal product line and the ash content of the coking coal.  Figure 43 shows the 

relationship between the two product line variables CCScale and Online_Total_Ash.  

Three distinct data clusters are visible from this scatter plot.  The cluster encircled with 

green represents normal operation.  The two clusters above and below the normal 

operation cluster represents offline operating conditions.  It is important to define the 

offline and online regions when considering the training of the NN model (discussed in 

the next chapter).   

Figure 44 illustrates the online and offline operation of the mass flow and ash content23 

of the coking coal product.  The grey highlighted regions in figure 44 represent the 

                                            
 

23
The Ash_Monitor variable was trended instead of the Online_Total_Ash variable, because the 

Ash_Monitor contain data directly measured from the online ash monitor and will show offline instances 
better than the Online_Total_Ash variable, which is a calculated variable. 
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cluster identified in figure 43 highlighted in green.  Evident from figure 44 is the offline 

instances represented by the white regions.  In some cases, unusually high ash content 

measurements are associated with offline mass flow readings.  In most instances, both 

the mass flow and ash content readings are zero or close to zero indicating the process 

being offline. 

 

Figure 43:  Scatter plot: Coking coal mass flow vs. coking coal ash content  

Notice the operation of the module variables during online process operation illustrated 

in figure 45.  The grey regions on the figure represent online process operation.  While 

the process is online, i.e. while the mass flow and ash content measurements produce 

normal results, a module may be offline.  The NN model would need to account for 

offline modules instances.  
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Figure 44:  Online and offline product variable operation 

 

Figure 45:  Module mass flow and magnetite RD offline performance 
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5.3 CONCLUSIONS 

Chapter 5 focused on the process in which data anomalies were identified and 

eliminated as far as possible in order to retain higher data quality.  Several steps were 

followed during the data pre-processing to produce a dataset containing high quality 

data.  This dataset was populated into the data warehouse defined as the data source 

for the following KD stages. 

The descriptive data summarisation and characterisation section focused on detailed 

data analysis, including analysis on AREA04 module performance as well as analysis 

on measurements taken from the coking coal product line.  A summary of conclusions 

are listed below. 

1. The mass flows measured before coal enters the DMCs on each module show 

relatively the same performance.   

2. The operator uses a trail-and-error method to control the coal quality on the 

product line.  This strategy was visible when comparing the set point 

performances as well as the magnetite RD operation.   

3. Section 2.3 discussed an optimised DMC control strategy indicating this strategy 

should aim to control the DMS quality output to produce the same quality.  The 

operator controlling the magnetite RD set points follows this strategy.  The 

operator in most cases adjusts all five set points to the same degree in order to 

produce similar DMC float qualities. 

4.  The control efficiency of the magnetite recovery circuits on each module shows 

good performance with high correlations between the set points and the process 

variable – the magnetite RDs. 

5. The variable lags in the process were determined for the mass flow in the system 

but not for the coal ash content.  The lag for the ash content is assumed fifteen 

minutes.  The lag for the mass flow was calculated at two min.  The time lags 

were incorporated into the data warehouse dataset. 

6. The ash content updated with a calculated ash bias was integrated with the 

InSQL data with one-minute sampling rate.  High correlations exist between the 

bias updated ash content with a one-minute sampling rate (Online_Total_Ash) 
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and the actual ash monitor measurements (AshMonitor) and the hourly ash 

content updated by the ash bias (RT_Total_Ash).  Better quality control is 

possible when increasing the frequency of set point updates. 
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CHAPTER 6 

DATA MINING 

6.1 INTRODUCTION 

Chapter 4 mentioned the integral role a process model plays in the optimisation of the 

process.  NNs were evaluated as a reliable data mining technique as described in 

chapter 3.  The NN introduces high accuracy to data mining, as this technique is able to 

approximate complex and non-linear process mappings.   The NN will be responsible 

for accurate simulation of the AREA04 beneficiation process. 

The actions taken in the preparation stages leading up to the data mining step gave an 

understanding of several underlying process features.  Chapter 4 contributed to the 

focus to the objectives and relevant data for this study.  Chapter 5 was responsible for 

the characterisation of the relevant data as well as the preservation of reliable data.  

The goal of chapter 6 will be to integrate the gained knowledge mentioned with the non-

linear model prior to the optimisation stage.  Chapter 6 discusses the NN input space 

and results of the trained NNs.  The most accurate model will be used for optimisation 

and benefit estimation.   

CSense® software was used during the training and validation of the models.  The 

software allows for the generation of NNs with two hidden layers in the NN topology.  

The supervised back-propagation training algorithm is used during the training of the 

NNs. 

6.2 NEAURAL NETWORK DATA PREPARATION 

As mentioned in chapter 3, the purpose of the research is to investigate the possibility of 

an optimised control strategy for the DMS separation densities in the five modules 

located in AREA04.  Design and deployment of optimised and control systems depend 

on accurate process models.  Empirical models do not always have the capacity to 
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simulate the dynamics of the process accurately due to model assumptions and lack of 

knowledge of inter-variable relationships.  It is for this reason the NN, a multi-variable 

modelling technique, is investigated as a possible multiple DMCs process model.  The 

NN is a popular modelling technique due to its ability to detect variable interactions in a 

complex domain and accommodate data noise and missing data in the model.  The NN 

is also a popular data mining technique used to discover patterns in process data.   

An important consideration in choosing a training set for generating an efficient model is 

the degree of process representation of the dataset.  The data used for model 

generation should be representative of the process dynamics and characteristics.  

Unfortunately, the data tags obtained from the problem environment give limited 

understanding of the process.  Information such as module sieve efficiencies, relevant 

information from AREA05 as well as how AREA05 operation influences the 

performance of AREA04 are important, though missing information.  Fortunately, a key 

feature of a NN is its ability to accommodate missing information.   

As described in chapter 4, three groups of data were identified as the datasets with the 

highest potential in accurately predicting the target variable.  Thus, the timeframes of 

the training datasets are fixed.  The inputs should describe the process dynamicity of 

the process as best as possible.  Selecting the input space is not an arbitrary process 

but input selection should consider an accurate characterisation of the process.  A high 

dimensional input space could over-complicate the model.  Another issue to account for 

is adding to much noise because of unnecessary inputs in the input space.  On the 

other hand, leaving out valuable information contained within data not included in the 

input space will decrease the accuracy of the model. 

Two groups of data exist when considering a process optimisation approach: dependent 

and independent variables.  Dependent tags represent the tags that depend on the 

operation of the other variables within the optimisation system.  For instance, the 

Online_Total_Ash variable depend on the magnetite separation RDs as well as the 

module belt scales.  Independent data attributes explain the performance of data not 

depending on other data tags in the system.  The module belt scales are examples of 

independent process variables.  The independent tags group consists of adjustable 
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variables as well as state variables.  The adjustable variables are the separation RD 

variables adjusted by the operator via set points.  Variables explaining the operating 

condition of the system are defined as state variables.  The ash bias is an example of a 

state variable as degree of inaccuracy on the online ash monitor is described by the ash 

bias.  However, the ash bias is not an adjustable variable.  The two dependent variables 

relevant the system under investigation is the variables measured on the coking coal 

product line.  The coking coal ash content and mass flow will be the targets of two 

separate models. 

The typical characteristics of the RD set point tags, the actual dense medium RDs, as 

well as the relationship of the set points to the actual process values were discussed in 

section 5.2.1.  Each module‟s actual dense medium RD is dependent on the 

performance of the associated RD set point.  However, the performance of the actual 

dense medium RD contributes to the ash content in the floats product from each DMC, 

irrespective if this RD deviates from the set point value.  The performances of the dense 

medium RDs of each module are independent of each other.  Another characteristic 

regarding the RD control is that in ideal conditions the set point and the process variable 

should be highly correlated.  The actual RD, however, deviates from the RD set point 

from time to time.  The influence of a module‟s set point on the product line ash content 

relies on the actual RD performance.  The set point and actual RD value relationship 

could be simulated using control transfer functions.  However, for this study the set 

points will not be included in the input space.  In excluding the set points, the complexity 

of the NN is decreased as well as the possibility of system noise. 

The more tags explaining valuable information regarding the process the better.  

However, two tags explaining the same information is unnecessary.  Highly correlated 

independent tags explain the same variance in the system and thus including both tags 

would only add noise to the system.  The relationship between the mass flow of the 

coking coal product line and the power station coal product line is an example of this 

redundancy.  The correlation between the coking coal mass flow and power station coal 

mass flow is 0.9164.  Thus, the power station coal performance will not be included in 

the models‟ input spaces.  Because the mass flow of the coking coal is dependent on 
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the rest of the inputs in the input space, it will be necessary to be able simulate the 

mass flow‟s performance.  A second model will be responsible for explaining the mass 

flow. 

The ash bias explains a crucial aspect of the variance in the final ash content of the 

coking coal.  The ash bias variable is a function of laboratory results as well as the error 

on the online ash monitor.  Predicting laboratory results as well as the error on the 

online ash monitor is not possible since these variables are independent from the 

process variables.  Thus, it is assumed that the ash bias as calculated during the data 

period (2007/11/19 – 2008/06/11) is fixed during analysis.  This effectively means that 

no matter what the values are from the online ash monitor or the laboratory spot 

analysis, the error will stay the same. 

The real time information available from the SBS SQL database (with a five-minute 

sampling rate) is calculated from the online data values (with a one-minute sampling 

rate).  During NN testing runs prior to the actual generating of process models, the 

accuracy of a model trained with the real time info (RT_Total_Ash; RT_Total_Tons) and 

a model trained without the real time info were compared.  The model with a higher 

accuracy included the real time info.  The reason for higher accuracy is the valuable 

information this tag adds to the system.  This real time info tag keeps a five-minute 

memory of the ash content performance.  The memory adds necessary information 

about the momentum of the ash content performance.  RT_Total_Tons and 

RT_Total_Ash are included in the input space as calculated values. 

Table 19 is a correlation matrix summarising the relationships between the variables 

included in the input space of the ash model as well as the mass model.  The mass 

measured on the coking coal product line is not included in the ash model input space.  

In turn, the ash calculated for the representation of the ash content on the coking coal 

product line is not included in the mass model input space.  Important to notice for the 

correlation matrix are the relationships between the input variables and the model target 

variables.  Most of the input variables to the ash model are indirectly correlated to the 

target variable.  On the other hand, all the input variables for the mass model are 
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directly correlated to the target mass variable.  The relationships between the variables 

in the nonlinear multivariate system are discussed in section 6.4. 

Table 19:  Model input space correlation matrix 
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BeltScale_A04_M1 100 56.6 51.5 62.6 51.3 51.0 33.7 42.7 41.5 43.9 5.9 53.7 49.5 73.7 -25.8 

BeltScale_A04_M2 56.6 100 57.4 65.4 58.9 32.6 61.0 43.0 44.3 49.7 11.9 60.8 38.5 76.8 -29.7 

BeltScale_A04_M3 51.5 57.4 100 64.9 60.1 30.3 43.7 67.5 45.8 53.7 1.2 59.2 57.7 79.1 -29.9 

BeltScale_A04_M4 62.6 65.4 64.9 100 72.1 40.1 49.6 57.7 56.2 61.9 6.1 67.6 54.6 85.1 -32.9 

BeltScale_A04_M5 51.3 58.9 60.1 72.1 100 29.9 43.1 50.8 48.0 71.7 11.4 61.0 45.0 78.6 -29.8 

RDPresent_A04_M1 51.0 32.6 30.3 40.1 29.9 100 53.1 45.2 64.7 46.5 3.6 58.3 39.1 45.0 -49.1 

RDPresent_A04_M2 33.7 61.0 43.7 49.6 43.1 53.1 100 56.5 70.1 46.5 8.8 68.0 43.8 56.6 -54.5 

RDPresent_A04_M3 42.7 43.0 67.5 57.7 50.8 45.2 56.5 100 64.8 68.7 6.9 68.6 60.0 65.0 -47.5 

RDPresent_A04_M4 41.5 44.3 45.8 56.2 48.0 64.7 70.7 64.8 100 68.0 8.9 73.5 48.6 57.8 -60.6 

RDPresent_A04_M5 43.9 49.7 53.7 61.9 71.7 46.5 59.8 68.7 68.0 100 12.6 72.8 55.0 69.8 -49.2 

Ash_Bias 5.9 11.9 1.2 6.1 11.4 3.6 8.8 6.9 8.9 12.6 100 6.8 3.2 10.3 33.9 

RT_Total_Ash 53.7 60.8 59.2 67.6 61.0 58.3 68.0 68.6 73.5 72.8 6.8 100 57.6 70.5 -71.1 

RT_Total_Tons 49.5 38.5 57.7 54.6 45.0 39.1 43.8 60.0 48.6 55.0 3.2 57.6 100 60.4 -34.6 

CCScale 73.7 76.8 79.1 85.1 78.6 45.0 56.6 65.0 57.8 69.8 10.3 70.5 60.4 100 -32.6 

Online_Total_Ash -25.8 -29.7 -29.9 -32.9 -29.8 -49.1 -54.5 -47.5 -60.6 -49.2 33.9 -71.1 -34.6 -32.6 100 

6.3 NEURAL NETWORK MODEL 

6.3.1 MODEL TRAINING 

The back-propagation training algorithm, explained in section 3.3.2.2, is used to train 

the different NN models.  During training, the dataset is split into a dataset containing 

construction cases and another dataset for validation cases.  The model is trained on 

the construction cases and the validation cases are used to validate how representative 

the model is of the process.   
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Three NN models are trained on the online ash measurement and three models on the 

coking coal mass using the three groups of data.  The purpose of choosing three groups 

is to evaluate the data integrity and model efficiency by comparing the model prediction 

ability of the three groups of datasets.  For the first step in evaluating the data mining 

algorithms, the model statistics of each model trained on its own dataset24 are 

compared in table 20.  

Table 20:  Groups model statistic comparison 

 Group1 Group2 Group3 

Stockpile order number 43 – 49 56 – 62 126 – 133 

On-line Ash model 

Model fit on Construction cases 85% 72% 85% 

Model fit on Validation cases 82% 72% 84% 

Overall Model Fit (R2) 79% 88% 84% 

On-line mass model 

Model fit on Construction cases 79% 81% 85% 

Model fit on Validation cases 78% 81% 83% 

Overall Model Fit (R2) 80% 69% 79% 

 

Table 20 compares the model fit, as well as the generalisation ability of each model.  

The model generated on the ash content from all three data groups shows good 

generalisation since the model fit on the training set is as good as the model fit on the 

validation set.  The same with the model generated on the mass flow of the datasets.  

These statistics show the accuracy and generalisation of the group models trained on 

the respective group datasets.  

According to table 20, the generalisation ability of the models seem acceptable, 

however, the model training is still in danger of biased generalisation validation.  The 

validation and construction cases originate from the same process dataset that could 

                                            
 

24
A separate model was trained for each group of stockpiles 
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limit the simulation of the true dynamics of the system.  For a more intensive evaluation 

on the model accuracy and generalisation ability, the determination of the variance 

explained (R2) from each dataset in the different groups using the different models can 

be evaluated as presented in table 21.  The data representing the three groups are 

introduced to the all three group models.  In this way, the danger of biased validation is 

eliminated. 

Table 21:  Inter-group model evaluation 

 

MODEL  

Group1 Group2 Group3  

On-line Ash model Average 

D
A

T
A

S
E

T
 

Group1 79.02% 92.44% 40.87% 70.78% 

Group2 66.66% 87.98% 56.74% 70.46% 

Group3 53.14% 82.82% 83.60% 73.19% 

 Average 66.27% 87.75% 60.40%  

On-line Mass model Average 

D
A

T
A

S
E

T
 

Group1 80.46% 27.30% 58.26% 42.78% 

Group2 56.86% 69.14% 61.81% 62.60% 

Group3 63.80% 58.08% 78.54% 66.81% 

 Average 60.33% 51.51% 66.20%  

 

Evaluating the generalisation extent of each ash content model, the model generated 

using data from Group2 generalised the best with an average model fit of 87.8% over 

the three data sets.   The Group3 mass flow model generalised the best (66.2%) on all 

three datasets.  The model generated using the Group1 data indicates a model fit of 

80.5%.  However, the ability of this model to generalise over the other data groups is 

not as accurate as the Group3 model.          

As for the accurate representation of the process dynamicity investigated, the Group2 

dataset represents the best.  All three ash content models explain an average of 70.5% 

of the variance in the online ash measurement in the Group1 dataset, whereas the 

variability of the mass flow in Group3 dataset explains an average of 66.8%.  The model 
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fit of the Group2 ash content model, as well as the mass flow model of the Group3 

dataset, explains the variance of the ash content and the mass flow the best.  Group3 

performed the worst. 

Visual representation of the model accuracies is the best filter in deciding the most 

efficient model.  Figure 46 tresses the accurate mass flow modelling graphically.  This 

model explains 78.5% of the variance of the actual mass flow.  The ability of the mass 

model to „follow‟ the actual mass flow measurements indicates the model capturing the 

process dynamicity.  The mass flow model of Group3, as well as the dataset of the 

same group will be used for modelling the mass flow in the optimisation step.   

 

Figure 46:  Group3 modelled mass flow vs. actual coking coal mass flow 

The accuracy of the mass and ash models could further be quantified determining the 

standard deviation of the model errors25 for the specific data group.  The standard 

deviation of the errors between the actual ash content and Group2‟s modelled ash 

content is 0.51%.  This indicates that the average difference between the actual and 

estimated ash content is 0.51%.  Considering the range in which the ash content is 

controlled (between 8% and 14%), a 0.51% error could have an unwanted effect on the 

                                            
 

25
 A model error is the difference between the actual value and the model value for a specific timestamp. 
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accuracy of the optimisation.  As for the mass flow model generated on the Group3 

data, the standard deviation of the errors is 34.7 kg/min.  Comparing this average error 

against the mass flow operating range of 80 kg/min to 500 kg/min, the error will have a 

negligible influence on the process simulated. 

Figure 47 shows the comparison between the actual ash quality measurements and the 

modelled values generated from Group2 data.  Apparent from this graph, the model is 

able to simulate the dynamics of the process.  This is illustrated by the modelled 

variable „following‟ the actual variable.  Even though the Group2 model shows the 

highest generalisation degree in table 21, the objective of this chapter is to identify the 

most efficient model scenario for further accurate benefit estimation.  For this reason, 

Group2 ash and Group3 mass flow models and datasets will serve as the baseline for 

the optimisation. 

 

Figure 47:  Actual ash content vs. Group2 ash model results  

6.4 MODEL DMS VALIDATION 

The behaviour of the independent variables in the nonlinear multivariate model will give 

more insight on the performance of the model.  The CSense® wizard providing the 

environment for nonlinear modelling, include a knowledge extraction platform from 

where inter-variable relationships described by the NN are illustrated.  A comprehensive 
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study on the behaviour of the variables described by the models could lead to the better 

understanding of the process. 

The dense medium RDs per module are the adjustable variables through the 

adjustment of the RD set points.  The correlation between the set points and the actual 

RD measurements per module are assumed to be at a maximum.  This assumption 

effectively excludes the set point variables from the rest of the analysis.  The actual RD 

variables are classified as the adjustable variables.   

Tests were conducted on the influence and the degree of influence the adjustable 

variables has on the mass model output as well as the ash model output.  Several test 

datasets were introduced to both models in order to generate the necessary model 

results.  These datasets contained the model input variables but the performances of 

the variables were fixed on the average performance calculated from the raw process 

data, as discussed in section 5.2.  Only the performances of adjustable variables, 

RDPresent_A04_M1 to RDPresent_A04_M5, were altered in the test datasets.  Five 

datasets were created containing the adjustment of one RD variable while fixing the 

remaining input variables at their average performance.   
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Figure 48:  Dense medium RD vs. coking coal ash content 

Figure 48 depicts the results produced from the test conducted on the influence each 

dense medium RD has on the ash content of the coking coal on the product line.  

Although realistic operation of the coal beneficiation plant at GG1 (as assumed during 

these tests) will not be realised, these tests give some knowledge of how the model 

interprets each module‟s contribution to the plant‟s operation.  An important aspect to 

realise is that the results generated from the models are based on the combined 

performance of the five modules.  Thus, while adjusting one module‟s RD values the 

rest of the modules‟ performances will have an influence on the outcome of the models.   

The performance profiles depicted in figure 48 indicate that the ash content increases 

with the increase of the separation RDs.  The combined ash influence profile represents 

the influence a combined increase or decrease of all five separation RDs has on the 

modelled ash content.  As mentioned in the literature study, the aiming to control the 

DMCs to produce the same quality coal is the optimum control strategy.  The combined 

profile illustrates the performance of the process when integrating the optimum control 

strategy.  
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As the separation RD in a module DMC increases, more floats are produced with a 

higher ash content and higher mass.Module1 results show the greatest individual 

influence on the product ash content ranging between 8.9% and 9.8%.  Module 4 shows 

an indirect correlation between the separation RD and product ash content.  This could 

be attributed to lower average mass flow in that module compared to the other modules.  

Module4 will have the smallest influence on the coking coal ash content compared to 

the rest of the modules.   

Figure 49 and table 22 illustrates the influence mass has on the ash content on the 

product line.  Consider a cross-section view of the coking coal conveyor belt at GG1 on 

a particular timestamp.  The different sections on the conveyor belt represent the 

contribution from the floats from each module.  Table 22 includes the contribution 

specifics.  Module1‟s contribution is the largest with 80% of the total mass on the 

conveyor belt.  The ash content of the module1 contribution is 8%.  The ash content on 

the conveyor belt on the specific timestamp is 8.6%.  The coking coal ash content is 

closer to the ash content contribution from module1 then to the other module 

contributions combined.   

This conclusion highlights the importance of controlling the performances of the DMCs 

to produce the same ash contents.  Deviating from this control strategy will complicate 

the control of the coking coal quality.  On the other hand, the feed to the DMCs in the 

different modules should be constant with equal mass flows, in order to keep the quality 

control as simple as possible. 

 

Figure 49:  Product line conveyor cross-section 



An optimisation approach to investigate quality control of a product coal stockpile 

 

Chapter 6 
Data Mining Page 128 
 

Table 22:  Module contribution 

Module 
Mass 

Contribution 

Ash 

Content 

Module1 80% 8% 

Module2 5% 11% 

Module3 5% 11% 

Module4 5% 11% 

Module5 5% 11% 

 

Figure 50 illustrates the nonlinear relationships between the model mass flow output 

and individual separation RD performances.  The „combined‟ profile illustrates the 

model‟s mass output when increasing and decreasing the separation RD‟s of each 

module simultaneously and to the same degree.  The combined performance adopts 

the optimum coal quality control strategy.   

The graphs on both figure 48 and figure 50 have an intercept point at the same 

separation RD.  Each dataset used for the analysis have variables fixed on their 

individual average performance and one variable that are adjusted.  Thus, the intercept 

point represents the working point where all the input variables are fixed on their 

average performance. 
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Figure 50:  Dense medium RD vs. coking coal mass flow 

The ash bias is an indication on how the online ash monitor values compares with 

laboratory results and to what extent the monitor measures logs inaccurate 

measurements.  The ash bias is included in the input spaces of both NN models.  The 

influence on the performances of both models was evaluated within an ash bias range 

of between -3.0 and 3.0. 

Figure 51 illustrates the influence of the ash bias on the models estimation on the 

coking coal mass flow.  An almost proportion relationship exists between the coking 

coal mass flow and ash bias.  The ash bias could influence the coking coal mass flow 

with a deviation of approximately 48 kg/min. 

Figure 52 illustrates the influence of the ash bias on the coking coal ash content as 

estimated by the ash model.  In contrast to the figure 51, the ash bias has very little 

influence on the coking coal ash content.  The ash content profiles separate at a 
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separation RD of 1.38 and at a separation RD of 1.45 the ash content differs.  However, 

the separation RDs seldom operate at regions above 1.4. 

 

Figure 51:  Ash bias vs. coking coal mass flow 

 

Figure 52:  Ash bias vs. coking coal ash content 
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Because of little information available on the mass balance of the AREA04 coal 

beneficiation process (as pointed out in section 5.2), the actual coking coal yield of the 

process cannot be calculated.  However, assuming the mass spit on the sieve 

operations prior to the DMC operations are negligible26 as well as the influence the 

spiral product has on the product line, an impression of the yield profile can be 

recognised. 

 

Figure 53:  Coking coal production performance 

Figure 53 shows the performance on the coking coal production at GG1 as determined 

by the NN models.  The yield was calculated using equation 1 in section 2.3.2.  This 

profile is realistic considering the mass produced by the DMC will increase with the 

increase of the separation RD and thus the increase in the ash quality produced by the 

floats.  The average ash content target for the stockpiles built at GG1 is 10.3%.  As 

                                            
 

26
 Negligible mass split refers to 100% of the feed mass flow measured by the belt scales are transferred 

to the DMC banks. 
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indicated on the graph, the coking coal yield at this target ash quality should be 

approximately 28.5%. 

6.5 CONCLUSIONS 

Two NN models (two hidden layers trained with the supervised back-propagation 

training method) were generated for each of the three data groups identified in chapter 

4.  One model used the ash content measured on the coking coal product line as the 

target variable and the second model used the mass flow of the same product line as 

target variable.  Each model‟s accuracy and ability to generalise was compared to 

identify the most accurate model.  Data group2‟s ash model and data group3‟s mass 

model were identified as the best models for further investigation. 

Inter-variable relationships within each of the chosen models were evaluated.  Both 

models show realistic performance when compared to process knowledge.  The 

complexity of the system lies within the nonlinearity of the input variables to the coking 

coal mass flow.  The ash bias‟ influence on the system was also evaluated along with 

the production performance of the coking coal beneficiation process as determined by 

the NN models. 
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CHAPTER 7 

PROCESS OPTIMISATION 

7.1 INTRODUCTION 

Results from chapter 6 appointed the model from Group2 as the chosen model for the 

process optimisation and benefit estimation step.  The chosen model explains 88% of 

the variability in Group2.  The model has high generalisation ability and explains an 

average of 87% of the variance in the three data groups.  Group3‟s mass model was the 

most accurate with a model fit of 79%.  With this model, it is possible to evaluate the 

outcome on the modelled variables with a single or multiple adjustments on adjustable 

model inputs.  The focus of chapter 7 is to identify the theoretical benefits of these 

adjustments by optimising the adjustments in such a manner as to meet predefined 

requirements.   

The approach taken in quantifying the theoretical benefits of the optimisation solution is 

discussed in this chapter 7.   The optimisation solution uses the CSense® Architect 

platform for calculations.  This solution compares the calculations from the SBS to the 

optimised process simulation.  For results that are more realistic a sensitivity analysis 

on process delays and RD operating ranges is discussed in this chapter.  The chapter 

concludes with a discussion of the benefits realised from comparing the optimisation 

results with SBS results. 

7.2 OPTIMISATION APPROACH 

The process of estimating the benefits in optimising the quality control on the GG1 

coking coal production line requires a specific optimisation solution for reliable results.  

Several assumptions made over the course of the investigation influences the prospect 

of deploying the solution at GG1.  These assumptions are listed below. 
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1. The optimisation is done on the RD of the dense medium and not on the set point 

as determined by operator control.  In the optimisation approach, it is assumed 

that the correlation between the RD set points and the actual separation RD 

values are at a maximum.  This is not the case for online operation.  The 

separation RD values occasionally deviates from the set point.   

2. The efficiencies of the sieves upstream from the DMC banks are unknown.  

Thus, the mass split at the sieves are assumed negligible and the mass flows 

measured on the belt scales are the same mass flows feeding the DMCs. 

3. The operation performance of AREA05 at GG1 is also unknown.  A product 

stream from the spiral classifiers with unknown mass flow and ash content is 

combined with coking coal product line.  The coking coal line from the spiral 

classifiers will have an influence on the mass flow and the ash content of the final 

coking coal product line. 

Although the solution‟s objective is to estimate theoretical benefits, the results give a 

clear understanding and indication to how beneficial the optimisation of the quality 

control could be.   

The goal of the optimisation solution is to optimise the ash quality of the coal around a 

certain set point through optimally adjusting the relative densities of the dense mediums 

in the five modules.  In optimising the ash quality on the product-line, the cumulative ash 

quality during stockpile stacking will stabilise.  This forms the main objective of this 

investigation: to identify the degree of stabilisation (if any), as well as the benefit from 

such a stable and constant ash quality on the product line. 

Section 3.4 discusses the operation and application of a GA.  Several parameters are 

required for the desired optimisation performance and outcome.  These parameters are 

mainly the fitness function, the selection method, recombination and mutation factors, 

the replacement and termination criteria. 

The CSense® Architect serves as the platform on which the optimisation solution is 

developed.  This platform allows the simulation of plant operation in real time mode.  A 

data source introduces a dataset to the Architect environment and a data sink is 
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responsible for transferring the results to an external data repository.  The data from 

Group2 will serve as the input set.  The ash content model as well as the mass model is 

included on this platform.  An important feature of the CSense® Architect is its ability to 

integrate the GA with the operation of a NN model and to the necessary calculations in 

real time.  The GA is used to search for the optimum set of separation RDs per module 

while complying with a certain fitness function.  Another important functionality of the 

CSense® Architect is its ability to feedback new results.  With this functionality, the 

results from the models could be fed back into the solution for the next optimisation 

execution.  In this way, the process at GG1 is simulated.   

A constraint to the CSense® Architect is the fact that the parameters to the GA are fixed.  

As explained in section 4.1, the purpose of the study is investigating a better quality 

control strategy as well as the benefits of the optimised control strategy (if any).  The 

solution is not a deployable solution since numerous aspects of the optimised control 

strategy still need further investigation.  Table 23 contains the parameters and 

parameter values for the GA optimisation tool in the CSense® Architect.  The 

parameters are explained in section 3.4. 

Table 23:  CSense
®
 Architect GA parameters 

GA Parameter Parameter Value 

Population size 1000 

Number of generations 1000 

Mutation probability 0.1 

Crossover probability 0.7 

Selection strategy Tournament selection 

Termination criteria Either 1000 generations or 

when the whole population 

consists of the same 

individual 
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7.2.1 GENETIC ALGORITHM VALIDATION 

The fixed parameters of the GA incorporated in the CSense® Architect platform limit the 

calculation flexibility of this optimisation technique.  The parameters described in 

chapter 3 are not configurable in the CSense® Architect platform.  The influence of this 

limitation needs to be determined.   

For a first evaluation, the maximisation of a simple equation is used to validate the 

output produced by the GA.  Consider a multivariate equation given by, 

     ( 
    )    

Equation 19 

Using the technical computing software, MATLAB®, a search space is identified to 

visualise the maxima of the space satisfying the multivariate equation.   Figure 54 

shows a wireframe parametric surface graph of the equation given above.  This 

functionality of MATLAB® enables the user to view the performance of the dependent 

variable in a three-dimensional space.  The red region builds up to the maximum point 

for the dependent variable z.  The EXCEL® global optimisation Solver tool was used to 

determine the maximum operating point as indicated in figure 54.   

Table 24:  Multivariable equation parameter optimisation 

Parameter EXCEL Solver GA 

x 0.7071 0.710 ± 0.1% 

y 0.0000 0.001 ± 0.1% 

z 0.4289 0.430 ± 0.1% 

 

The GA implemented in the CSense® platform was evaluated against the same 

multivariate function.  Table 24 summarises the results from the comparison between 

the global optimiser and the GA.  Because the GA is integrated into a real time platform, 

the GA was tested for several sequential executions introducing the same parameters.  

On each execution, the GA produces a new result with an error of ± 0.1% compared to 
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the solver tool results.  Although the GA produces very accurate results overall, the fact 

that the result are not consistent, the GA shows room for improvement. 

 

Figure 54:  Wireframe parametric surface of a multivariate equation 

The coking coal beneficiation process is more complicated than the system tested 

above.  The objective of the second test is to determine how accurate the GA can 

optimise the modelled ash content compared to a manual search optimisation.  For the 

GA validation on the process under investigation, the state variables were kept at 

average performance for the first run.  This implies that the belt scale measurements, 

the ash bias and the ash and mass flow measurements calculated in the SBS were 

fixed on their respective calculated averages.  For the second evaluation run, the belt 

scales values were increased to the average plus one standard deviation (these 

statistics are available in table 13).  In adjusting the state variables, the GA‟s 

performance is tested on different process conditions. 

The objective of the test is to optimise the modelled ash content adjusting the five 

separation RDs between 1.3 and 1.4.  A comprehensive separation RD search space 

was created to evaluate as much as possible unique combinations of the five adjustable 

variables.  The input space consisting of the fixed state variables as well as the 

adjustable variables were introduced to the model to generate an ash content profile 
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over the search space.  The error between the ash content target and ash content as 

model output was logged in order to locate the ash content closest to the target of 

10.3%.   

Table 25:  GA validation results 

Parameter 

State Variables - Average State Variables - Standard Deviation 

Manual Search 
Minimisation 

GA Performance 
Manual Search 

Minimisation 
GA Performance 

RDPresent_A04_M1 1.3943 1.4000 1.3902 1.4000 

RDPresent_A04_M2 1.3891 1.4000 1.3930 1.4000 

RDPresent_A04_M3 1.3923 1.4000 1.3959 1.4000 

RDPresent_A04_M4 1.3610 1.3000 1.3985 1.3000 

RDPresent_A04_M5 1.3987 1.4000 1.4000 1.4000 

Mass Flow 379.20 382.79 396.18 397.51 

Ash Content Error 0.000354 0.016145 ± 1.0% 0.000137 0.026787 ± 1.0% 

 

Table 25 contains the results and comparisons of the second test.  Table 25 shows 

realistic results when comparing the mass flow optimisation between the two runs.  The 

product line mass flow increases with the increase of the belt scale measurements.  The 

optimisation performance also compares well with the GA showing a slight higher final 

mass flow.  The GA‟s optimisation results compared to the manual search optimisation 

is not as accurate.  The manual search optimisation was able to locate optimal ash 

content closer to the target than the GA‟s optimisation.   Figure 55 illustrates the 

performance of the GA optimising the system with a degree of error compared to the 

manual search optimisation.  Although poorer optimum results are produced by the GA, 

this optimisation algorithm could still be used to determine the benefits of an optimised 

control strategy. 
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Figure 55:  GA optimisation performance 

7.2.2 OPTIMISATION SOLUTION ARCHITECTURE 

In this investigation, the absolute value of the difference between a target ash of 10.3% 

and the ash model output is minimised.  This minimisation is done through the 

optimisation of adjustable variables, in this case the relative densities of the dense 

medium on the five modules (RDPressent_A04_M1 to M5).  The RD of the dense 

medium measurements ranges between 1.25 and 1.45 in each module.  However, it is 

only during offline instances that values of 1.25 and 1.45 are logged.  During normal 

operation, the RD measurements range from 1.3 to 1.4.  Thus, the constraints on the 

GA search space for each adjustable variable are a minimum of 1.3 and a maximum of 

1.4. 

 

Figure 56:  Optimisation solution architecture 

Figure 56 illustrates the optimisation solution architecture.  Group2 data is introduced 

into the optimisation environment from the data warehouse.  The data cleaning 

operational block is responsible for the excluding of data outliers.  This block classifies 
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into good quality data or bad quality data based on predefined criteria.  For this solution, 

data falling outside of normal behaviour are classified as bad quality data and the 

solution will exclude the data from further analysis. 

The RD optimisation block contains the ash model as well as the GA.  The GA search 

for the optimum RD values for the minimisation of the ash content error.  The optimised 

separation RD values flow to the “Optimised ash and mass calculations” block to 

calculate the coking coal mass flow using the mass model.  The optimised mass and 

ash content values are transferred to the accumulation block where the stockpile 

properties for Group2 are calculated on the optimised ash and mass values.  The 

results from the operational blocks are transferred to the data warehouse.  A second 

results stream from the “accumulation calculation” block is fed back to combine with the 

data fed to the “RD optimisation” block.  The feedback loop contains the target ash 

calculated after each execution.  One execution refers to measurements taken on a 

specific timestamp is fed to the solution, calculations are performed and results are 

generated. 

The SBS assists the quality control operator in adjusting the set points of the RDs on 

the magnetite recovery system.  This assistance comes in the form of a target ash 

parameter that indicates the ash percentage needed in order to keep the average ash 

content on the stockpile in the region of 10.3%.  If the cumulative ash rises above the 

set point, the target ash will return a value lower than the set point.  This target ash logic 

is implemented into the optimisation solution.  A target ash is calculated at the end of 

the solution execution and the value is fed back to the GA for the minimisation of the 

cost function.  In this way, the logic behind the SBS is simulated and optimised in the 

solution.  The dynamic ash target approach is more efficient than using the fixed ash 

content set point of 10.3% for the cost function minimisation.  The logic is included in 

the solution by means of a script in the “accumulation calculations” block.  The logic 

script is available in appendix C. 

The optimisation solution determines the optimum ash and mass flow values from the 

models generated in the data mining stage.  The optimised separation RD values, as 
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well as the model inputs corresponding to the model training inputs, are introduced to 

the respective models to generate the optimum ash and mass flow values.   

The SBS determines the accumulation of the ash content on an active stockpile 

sequentially based on a weighted average calculation.  This same principal was 

implemented into the blueprint solution in the “accumulation calculations” block, 

calculating the accumulation of the average ash content, as well as the stockpile mass 

accumulation.  This layer of the solution also ignores the instances where the online ash 

analyser and/or the belt scale measuring the mass flow on the coking coal line were 

offline.  

All the original fields introduced to the solution from the SQL warehouse, as well as the 

newly calculated fields are logged in a text file compatible to several data reading 

programs.  The logged data will enable further optimisation evaluation and benefit 

estimation. 

7.2.3 OPTIMISATION EVALUATION 

To evaluate the efficiency of the optimisation, the results need to be compared to ideal 

outcomes.  An effective and simple approach in testing the optimisation accuracy is to 

plot the optimised target value to the actual target measurements in a scatter plot.  

Three possible scatter plot outcomes are illustrated in figure 57.  Plot (a) depicts 

incorrect influence of the optimisation on the target variable.  This plot clearly indicates 

that optimisation occurred on the target variable but the cost function was not minimised 

around the target ash set point.  In case of poor optimisation influence, the optimised 

ash values have a high correlation to the actual ash measurements generating a graph 

illustrated in plot (b).  Low actual values correspond to low optimised values and high 

values correspond to high-optimised values.  Plot (c) illustrates an ideal optimisation 

outcome.  The actual ash values are optimised around the set point.  Results as 

described in plot (c) show a more stable quality control on the coking coal ash content.  

This analysis will be referred to as the aggregation evaluation in the rest of the paper. 
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Figure 57:  Optimisation evaluation from scatter plot analysis  

Figure 58 shows one optimisation run27 at an execution rate28 of 8 seconds.  The 

optimised data falling within a certain region between 10.0% and 10.6% around the set 

point (depicted by the green line), is regarded as good optimised data.  The data falling 

outside of this region are considered as poor optimised data.  The optimisation result as 

presented in figure 58 are indicative of good optimisation during the first optimisation 

run as the plot takes on the form of plot (c) in figure 57.  84% of the optimised values 

aggregate around the set point (between 10% and 10.6% ash content).  The remaining 

16% of the poorly optimised values fall outside of the range, either due to the execution 

rate constraint or due to the inaccuracy of the model.   

                                            
 

27
Optimisation run refers to one execution cycle of the entire dataset through the solution. 

28
The execution rate of the solution is the time from one data record execution to the next data record 

execution. 
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Figure 58:  Optimisation evaluation scatter plot (Actual ash vs. Optimised ash)  

Optimisation efficiency is subjected to several constraints and parameters.  One of the 

constraints is a solution hardware constraint.  During optimisation, the nonlinear 

optimisation operator calculates the optimum RD values for a minimum cost function.  

This process of absolute minimum identification takes time and absorbs computer 

memory.  As mentioned in chapter 3, the computational intensity of a GA is one of its 

drawbacks.  If the execution rate is too short, the nonlinear optimisation will not be able 

to determine the minimum and the data point will not reach closest possible value to the 

set point.  Setting the execution rate too long, the time the solution needs to execute all 

the records in the dataset will be too long.  However, a data record not reaching the 

predefined set point may also be due to the inaccuracy of the GA. 

The next step is to complete several optimisation runs at different execution rates to 

determine at what point model inaccuracy contribute to poorly optimised records.  For 

this sensitivity analysis, three optimisation runs were executed at different execution 

rates.  Figure 59 represents the results from the optimisation runs at different execution 

rates. 
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Figure 59:  Sensitivity on the degree of data aggregation 

For an execution rate of 1 second, an average of 79.92% of the data from the three runs 

falls within the good optimisation region.  Apparent from the graph, the degree of 

aggregation flattens out at 6 seconds.  In other words, at this point model inaccuracy is 

the greater contributor to the optimised data falling outside of the good optimised data 

region. Another observation is the reliability of the optimisation solution, as the results 

from the different optimisation runs are consequent.  A fixed execution rate of 8 seconds 

was chosen from the remainder of the optimisation runs.  This implicates that on 

average 15.02% of the optimised results at an execution rate of 8 seconds are defined 

as poorly optimised data. 

As mentioned in chapter 3, a GA is not often implemented as an online application.  The 

reason for this is the GA being computational intensive.  With the analysis results 

depicted figure 59, the GA is able to reach convergence on within 6 seconds.  Because 

the sampling rate of the solution is one minute, the solution could easily provide the 

operator with the optimised separation RD values before the next execution after one 

minute.  This property enables the implementation of a GA optimisation solution on the 

GG1 quality control system. 
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7.3 BENEFIT ESTIMATION DISCUSSION 

The focus of the investigation is to assess the feasibility of an optimised quality control 

on a coking coal production line.  The investigation is a theoretical introduction to the 

optimised control strategy concept.  To explore the success of the investigation, the 

results from previous stages of KD should be evaluated.  This section is dedicated to 

discussing the results and possible benefits from the optimisation results.   

7.3.1 ACTUAL VS OPTIMISED DATA ASSESSMENT 

7.3.1.1 ONLINE ASH MEASUREMENTS VSOPTIMISED ASH CONTENT 

As explained in the solution architecture section, the cost function of the ash quality was 

minimised, optimising the dense medium RD values.  The aim of the solution was to 

optimise the ash quality around the set point of 10.3%.  Figure 60, figure 61 and  

figure 62 stress the success of the optimisation.  As illustrated in the ash quality trend, 

the actual ash was controlled around the set point but with significant fluctuations, while 

the optimised ash remained relatively stable on the set point.  This stable control of ash 

quality indicates less good quality coking coal is lost to Matimba Power Station or, on 

the other hand, bad quality coal sent to the coking coal stockpile.  The light grey areas 

on the graph indicate periods where the process was offline.  Figure 60 shows 

performance of the optimised ash versus the actual ash.   
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Figure 60:  Actual ash readings vs. optimised ash results  

Figure 61 represents the distribution of the actual ash measurements from the online 

ash analyser.  This distribution is widespread and not as concentrated around the set 

point as figure 62.  The distribution for the optimised ash field shows a clear 

concentration of values around the set point.  The objective defined in section 1.1 is 

achieved with these results.  The variance of the controlled variable is smaller around 

the defined set point of 10.3% ash content. 

 

Figure 61:  Histogram of actual ash readings 
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Figure 62:  Histogram of optimised ash distribution 

Rigorous and rapid changes in the dense medium RD on the five modules were 

necessary for the optimisation success on the stable ash quality.  The actual execution 

rate if simulated in real time is one minute.  For every execution of a data record in the 

solution blueprint, the RD‟s were optimised.  Thus, for the optimised results, every 

minute a fictitious RD change occurred ranging from 1.3 to 1.4.  The magnetite recovery 

system will not be able to comply with such an aggressive control.  Figure 63 and  

figure 64 illustrate the rigorous and rapid RD changes during the optimisation on the RD 

source measurement on Module1.  Figure 64 shows the equal distribution of RD values 

across the distribution histogram, except for instance where the production line was 

offline.   
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Figure 63:  Optimised RD trend for RDPresent_A04_M1 

 

Figure 64:  Optimised RD distribution for RDPresent_A04_M1  

If this solution were to be implemented in GG1, the control of the dense medium RDs 

would have been too strenuous to the control loop managing the magnetite recovery 

system.  The high controller reversals would have caused repeated maintenance on the 

process units.  In addition, the time delay from a RD set point change to viewing the 

effect on the dense medium RD is longer than one minute (depending on an increase or 

decrease and the degree of set point change).   
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7.3.1.2 STOCKPILE ANALYSIS 

Stacking a coking coal stockpile with a constant coal quality is the focus of this 

investigation.  Fluctuations across the set point of 10.3% ash content lead to the loss of 

quality coal as explained, regardless of the final ash content average reaching 10.3%.  

The set point, as well as the cumulative ash and optimised cumulative ash quality is 

trended per stockpile on the multi-trend graph in figure 65.  The actual ash accumulation 

(red) progression shows much more fluctuations than the optimised accumulation (blue) 

progression.   

 

Figure 65:  Cumulative ash vs. Optimised cumulative ash per stockpile  

Figure 66 compares the actual and optimised ash accumulation on each stockpile.  

Comparing the average ash stacked on each stockpile in the optimised and actual 

calculations, five of the seven optimised stockpiles average closer to 10.3%.  Stockpile 

46 may be exempted because of the low accumulated mass of the stockpile.  As for 

stockpile 47, the target accumulated mass for the specific stockpile was 27 000 tons.  

GG1 only stacked 60% of the intended mass accumulation.  The calculated target ash 

values (used in the nonlinear optimisation operation cost function and responsible for 
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the set point of the manual control) were not aggressive enough to force the cumulated 

ash to 10.3% in time.   

Table 26 provides a comparison summary of the measured properties for each 

stockpile.  The average absolute error from the set point to the operation point for each 

stockpile is also included in this summary.  The stability of the optimised ash 

accumulation is apparent from this absolute error summary.  An assessment on the 

mass accumulation is included in the final section of this chapter. 

 

Figure 66:  Stockpile average ash comparison 

Table 26:  Comparison of stockpile properties  

Stockpile 

Name 

Stockpile 

Number 

Average Ash Absolute Error 

Actual Optimised Actual Optimised 

Group 1 11/19/2007 21:40:00 to 12/6/2007 15:00:00  

2K02692 43 10.41 10.27 0.237 0.030 

1K02693 44 10.20 10.27 0.156 0.050 

2K02694 45 10.54 10.33 0.140 0.098 

3K0695 46 10.30 10.55 4.157 1.259 

3K02695 47 10.29 10.39 0.195 0.163 

4K02696 48 10.42 10.29 0.208 0.088 

NK02697 49 10.16 10.34 0.497 0.0129 
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7.3.2 SENSITIVITY ANALYSIS 

Sensitivity analysis studies were conducted on the operation range of the separation 

densities in the five modules, process time lags, as well as the delay on separation 

density adjustments.  These studies increase the knowledge into the extent of potential 

improvement.  The results from this section provide direction for intelligent process 

development, identifying what aspects of the process influence performance of the 

process the most.  Stockpiles 43 (2K02692), 44 (1K02693), and 45 (2K02694) are the 

stockpiles under investigation in this sensitivity analysis section.   

7.3.2.1 RD RANGE SENSITIVITY ANALYSIS 

As mentioned in the previous section, the optimisation of the RD sources values result 

in rigorous adjustments of the separation density.  In practice, this control with these 

rapid and large changes is not realistic.  A sensitivity analysis was conducted to 

investigate the influence the RD operation range had on the ash quality control.  The 

RD ranges were decreased for every optimisation run.  For the first run, the RD 

optimisation range was set from 1.3 to 1.4.  The second run minimised the cost function 

by optimising the RD values within a range from 1.31 to 1.39.  The same principle 

counted for the third and fourth run.  For the last run (fourth run), the optimisation 

ranges were fixed from 1.33 to 1.37. 

 

Figure 67:  Ash accumulation on stockpiles for different RD optimisation ranges 
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The ash quality accumulation on stockpiles 43 to 45 for the different RD ranges shows 

the greater offset for smaller RD ranges as illustrated in figure 67.  The first and second 

optimisation runs were more accurate than the actual stockpile quality for the three 

stockpile builds.  The third and fourth optimisation runs were inaccurate for the three 

stockpile builds.  The ash accumulation progress also shows signs of higher fluctuation 

at smaller RD operation ranges.   

 

Figure 68:  Calculated target ash for RD ranges sensitivity analysis  

The aim of the optimisation is keeping a stable ash quality production, as well as 

produce stockpiles with an average ash content of 10.3%.  As mentioned in the 

previous section, the cost function used for the minimisation contains a calculated target 

ash value.  This calculated ash target indicates what the ash quality production should 

be in order to stack the current stockpile with an average ash content of 10.3% for the 

specified mass target.  Figure 68 shows the target ash profiles of each of the four 

optimisation runs.  Evident from this multiple trend, the performance of the RD control 

decreases exponentially with decreasing RD operation range. Lower target values 

indicate a higher demand for better quality coal with lower ash content.  Coal with lower 

ash content is scarcer than poorer quality ash. 

The optimisation results from optimisation run 4 (RD ranges 1.33 to 1.37) are explained 

in figure 69.  The operation profile of a RD variable from run 1 (red) and run 4 (pink) 
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clearly emphasises the cause for poor performance.  The grey regions in figure 69 

indicate regions of normal operation on the ash content production (blue).  In these 

regions, the optimisation is increasingly restricted to the RD range limits as the RD 

ranges decreases.  For the complete minimisation of the cost function the RD value (in 

the case of figure 69, RDPresent_A04_M1) should be adjusted to values beyond the 

RD range limit of 1.33.  For this reason the RD values from run 4 show constant values 

on the range limits and thus causes poor quality control. 

 

Figure 69:  RD performance comparison for four optimisation runs  

The set point aggregation bar chart shows the influence the RD optimisation range has 

on the accuracy of the ash quality optimisation.  The accuracy of each optimisation run 

is compared in figure 70 using the principle of set point aggregation.  The smaller the 

RD operation ranges (equal quantity subtracted from the upper and the lower 

optimisation limits), the less accurate the minimisation around the set point becomes.  

The aggregation bar chart sums up the influence the RD range has on the optimisation. 
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Figure 70:  RD range sensitivity analysis set point aggregation 

In conclusion, the operation range of the separation density within the DMC has a great 

effect on the quality ash control.  The smaller the operation range the greater the 

decrease in performance.  For the rest of the sensitivity analysis the RD operation range 

will be fixed between 1.3 and 1.4. 

7.3.2.2 OPTIMISATION DELAY SENSITIVITY ANALYSIS 

The GG1 operator responsible for the adjustment of the separation RDs, manages the 

manual control based on the target ash profile calculated in the SBS.  Process time lags 

play a problematic role in the accuracy of the ash control, as an adjustment on the RD 

source is in some instances only visible after fifteen minutes.  As mentioned in  

chapter 2, a trail-and-error method is used to control the ash quality.  Contributing to the 

inefficient control is the fact that the magnetite recovery control loop undergoes the 

same degree of adjustment at the same time.  If the operator detects a need for a set 

point change, a step change is introduced to all five modules. 

The focus of this sensitivity analysis will fall on the influence the delay between each RD 

adjustment has on the ash quality control.  Each optimisation run has a different 

optimisation delay.  For the first run, the delay is zero minutes, implicating that the RD 

variables adjust every execution.  The delay for the second optimisation run is  
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5 minutes, the third run 10 minutes and the last run is 15 minutes.  These delay values 

were chosen to give a more realistic representation of the process the AREA04.  The 

four optimisation runs will give a clear indication of the influence the delay has on the 

control performance. 

 

Figure 71:  Ash accumulation on stockpiles with different optimisation delays 

In contrast to the previous sensitivity analysis, the different optimisation delays have 

little influence on the ash quality on the stockpiles.  Compared to the actual ash 

accumulation profile, little to no fluctuation is present in the first and second optimisation 

runs.  The third optimisation runs have some disturbances at the beginning of the 

stockpile stacking; however, the performance is better than the actual accumulation and 

the different optimisation runs do not differ as much.  This gives a stable ash quality 

production and final stockpile average ash content closer to the set point than the actual 

stockpile stacking process.   



An optimisation approach to investigate quality control of a product coal stockpile 

 

Chapter 7 
Process Optimisation Page 156 
 

 

Figure 72:  Target ash profiles for different optimisation delays  

To support the accurate ash accumulation profiles, the target ash profiles (figure 72) 

also indicate good control.  No extreme difference between the set point (green 

indicator) and the target ash values is present.  In other words, less “effort” is needed to 

optimise the RD values in order to obtain ash quality coal in the region of the set point.  

Lower fluctuation brings forth worse quality coal losses. 

RDPresent_A04_M1 profiles for different optimisation delays are included in the 

multiple-trend graph in figure 73.  The top trend represents the RD profile with an 

optimisation execution rate of zero (red).  The delay differences between the 

optimisation runs are apparent when comparing the first optimisation run (red) with the 

fourth run (pink).  The fourth optimisation run adjusted the RD values every 15 minutes.  

This delay is more realistic to what happens in the manual control on the RD sources at 

GG1.  The configuration of the SBS aggregates the data records into five-minute 

intervals.  Thus, the operator can only see the result of a RD source adjustment five 

(blue trend), ten (orange trend), or fifteen minutes after the set point change.   
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Figure 73:  RD source profiles for different optimisation delays  

 

Figure 74:  Set point aggregation for optimisation with different delays  
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The minimisation of the cost function for the different optimisation runs, over the data 

records of stockpiles 43 to 45, respectively, are accurate.  A difference of 2.7% in data 

aggregation exists between the run without any delays and the run with a fifteen-minute 

delay.  In the fourth optimisation run 82.76% of the optimised ash data fall within the 

10% to 10.6% aggregation band.  The time delay between RD source adjustments has 

little influence on the accuracy of the optimised ash quality control. 

7.3.2.3 RD SET POINT CHANGE SENSITIVITY ANALYSIS  

The control operator responsible for the quality control of the coking coal stockpile uses 

a trail-and-error method for controlling the average ash content on the stockpile.  In 

other words, the operator will typically adjust the RD set points with a small increment 

(depending on the target ash value), wait for a few minutes (usually fifteen minutes) and 

decide on the magnitude of the next set point change.  RD set point change ranges 

from 0.001 to 0.03.  The average RD adjustment increment on the separation density is 

0.002.  Thus, on average the operator will adjust the RD set points by 0.002.   

The aim for this sensitivity analysis is to replicate this concept of small incremental RD 

set point changes.  For every RD value a RD lower and upper limits exist.  The 

magnitude of change (indicated on figure 75 as the maximum RD change) from the 

present RD value to the lower or upper limit, serves as the sensitivity variable for this 

analysis.   The range from the lower to the upper limit for a specific RD value is the 

optimisation range for the next optimisation execution.  The magnitude of change varies 

from 0.001 (first optimisation run) to 0.01 (fourth and final optimisation run) in 0.003 

increments for this sensitivity analysis. 
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Figure 75:  Variable RD Optimisation Limits with Fixed Optimisation Range  

For illustrating the influence this magnitude of RD changes has on the accuracy of the 

control, figure 76 compares the actual ash accumulation on stockpiles 43 to 45 to the 

ash accumulation of the optimisation runs.  The multiple-trend graph shows the more 

accurate quality control and the different RD optimisation ranges have very little 

influence on the accuracy of the control.  The results from the first optimisation run show 

the greatest deviation compared to the rest of the optimisation runs‟ results.  As for the 

target ash profiles for the four optimisation runs, figure 77 shows good quality control 

around the set point.   
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Figure 76:  Ash accumulation on stockpiles for different magnitude of RD changes  

 

Figure 77:  Target ash profiles for different magnitude of RD changes  

The effect of the different RD optimisation ranges on the RD profiles for the different 

optimisation runs is apparent in figure 78.  The RD values measured on the first module 
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DMC for the different optimisation runs are trended in figure 78.  The region encircled in 

green shows the effect of the different ranges more clearly.  The optimisation run with 

the smallest optimisation range (first optimisation run trended in red) shows less 

fluctuations than the rest of the optimisation runs‟ results.   

 

Figure 78:  RD optimisation profiles for different magnitude of RD changes  

 

Figure 79:  Set point aggregation for optimisation with different RD change magnitudes  
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The set point aggregation bar chart in figure 79 confirms the observations made on 

figure 78.  The first optimisation run with a RD change limit of 0.001 produced less 

accurate results than the rest of the runs.  Yet, the first optimisation run is more 

accurate compared to the results from a fixed RD range between 1.33 and 1.37.  In 

conclusion, the size of the RD change does not influence the accuracy of the ash 

content optimisation as much as the altering of the RD range as a whole (RD Range 

Sensitivity Analysis). 

7.4 FEASIBILITY ANALYSIS 

The stage is set to conclude the theoretical benefits of an optimised control on the GG1 

coking coal production line.  The sensitivity analysis done in the previous section gave 

insightful knowledge on the capabilities and limitations of the optimisation solution.  The 

sensitivity analysis also made way for testing the optimisation solution with realistic 

parameters more relevant to the actual manual control at GG1.  The focus of the 

feasibility analysis is to quantify the comparison results between the actual process and 

the optimised (and more realistic) solution.  From the quantified results, conclusion can 

be drawn on the feasibility of such an optimised control. 

For comparing the efficiency and throughput of the current quality control against an 

optimised control, it is important to optimise the quality control integrated with realistic 

characteristics relevant to the actual control at GG1.  In producing such an optimised 

solution, the optimisation run included the parameters as listed in table 27.  From the 

result determined in the sensitivity analysis, the RD operation range was kept at 1.3 to 

1.4.  The execution rate is kept at one minute, the same as the sampling rate of the real 

time measurements.  In reality, this means that the optimised controller will make the 

necessary RD adjustments every minute and not wait fifteen minutes as in the case of 

the current quality control.  The value for the maximum optimisation RD change was 

fixed at 0.002 since the average set point change for the current control is 0.002. 
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Table 27:  Realistic optimisation parameters 

Parameter Value 

RD operation range 1.3 – 1.4 

Optimisation delay 5 minutes 

Maximum optimisation RD set point change 0.002 

Figure 80 illustrates the comparison between the ash accumulation (red) and optimised 

ash accumulation (blue).  The optimised ash accumulation is much more stable than the 

actual ash accumulation.  This indicates good quality coking coal going to waste due to 

fluctuation in ash production brought on by the current manual control.  Table 28 

compares the results from the optimisation solution and actual current data.  On all 

three stockpiles, the optimised results are closer to the set point of 10.3%.  The results 

from the ash accumulation underscore the improvement of the optimised control on the 

current manual control. 

 

Figure 80:  Ash accumulation comparison between corrected and optimised ash 

Figure 81 compares the mass accumulation of the optimised coking coal production 

(blue) to the mass accumulation as determined with the actual mass flow values (red).  

The yield of coking coal from an optimised solution is higher than the current yield.  On 

average, for the three stockpiles investigated, a yield increase of 9.8% was reached.  
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According to a communication with a senior metallurgist at GG, it is safe to assume the 

price for coking coal to be R600/ton (Rautenbach, 2010b).  2.63 million rand was raised 

applying this assumption to the yield increase, the cost for the three stockpiles 

combined.  The results from the cumulative mass per stockpile comparison are listed in 

table 28. 

 

Figure 81:  Mass accumulation comparison between corrected and op timised mass 

Table 28:  Benefit estimation results 

Stockpile 
Cumulative Ash (%) Cumulative Mass (Tonnes) 

Optimised Actual Optimised Actual 

2K02692 (43) 10.265 10.405 15857.6 14270.5 

1K02693 (44) 10.287 10.388 15557.5 14001.0 

2K02694 (45) 10.344 10.530 18003.6 16756.8 

 

In evaluating the generalisation potential of the optimisation solution, the Group2 and 

Group3 data were also optimised and assessed, using the same optimisation 

parameters as with Group1.  The ash accumulation determined from the Group2 data 

shows again good control around the set point (figure 82).  This shows a good 

generalisation of the optimisation solution concerning the Group2 data.  Stockpile 47 
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and stockpile 48 shows some poor performance, deviating from the set point with 

greater fluctuations.  The comparison results on the Group2 and Group3 evaluation are 

sorted in table 29.  In viewing the mass accumulation for the same stockpiles in Group2  

(figure 83), lower throughput is apparent in most stockpiles.  The throughput ultimately 

determines the profit collected per stockpile.  A lower throughput results in a financial 

loss. 

 

Figure 82:  Ash accumulation comparison of corrected ash vs. the optimised ash of Group2  
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Figure 83:  Mass accumulation comparison of corrected mass vs. optimised mass of Group2  

Results from the Group3 data evaluation show poorer optimisation performance.  The 

ash accumulation depicted in figure 84, shows deviation from the set point as well as 

greater fluctuations.  Figure 85 shows the lower throughput produced by the 

optimisation solution.  These results highlight the necessity for improvement on the 

models generated in the data mining, as well as the optimisation solution itself. 

 

Figure 84:  Ash accumulation comparison of corrected ash vs. optimised ash of Group3  
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Figure 85:  Mass accumulation comparison of corrected mass vs. optimised mass of Group3  

Table 29:  Feasibility analysis results for Group2 and Group3 

 
Cumulative Ash (%) Cumulative Mass (Tonnes) 

Stockpile Optimised Corrected Optimised Corrected 

Group2 

1K02704 (56) 10.31 10.42 17423.70 17872.37 

3K02705 (57) 10.29 10.47 20359.17 18076.65 

2K02706 (58) 10.28 10.30 15336.37 16345.61 

1K02707 (59) 10.34 10.34 17935.15 17833.04 

2K02708 (60) 10.50 10.11 12504.69 12631.14 

Group3 

4K02772 (126) 10.12 10.22 7988.77 10536.06 

1K02773 (127) 10.81 10.40 12524.69 16140.25 

3K02774 (128) 10.37 10.40 10623.76 12379.61 

1K02775 (129) 10.87 10.04 8602.50 11019.26 

3K02776 (130) 9.99 10.39 11642.62 13592.02 

1K02777 (131) 10.35 10.33 16270.91 17299.18 

Figure 61 and figure 62 illustrate the efficiency of an optimised control strategy.  The 

optimisation solution was able to control the ash content around the set point with very 

little fluctuations.  Due to this decrease in fluctuations, and increase in optimum 

separation RD control the yield of the process increased implicating an increase in 
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revenue per year.  However, fluctuations visible in the Group3 optimised results indicate 

room for improvement.   

The improvement brought on by the optimisation approach can be measured by 

comparing the average percentage ash and mass flow as well as the variance in 

percentage ash.  Before optimisation the average percentage ash in Group2 was 12.8   

Deviation of the average ash content of a stockpile from client specifications may lead 

to penalties.  As with the optimised control, penalties can be avoided more efficiently.  A 

more stable coking coal quality is favourable to the client.  For GG the client is the steel 

manufacturing industry.  As discussed in chapter 1, coking coal is converted to coke, 

which is essential for the iron-making process.  The conversion of coking coal to coke 

entails driving off coal impurities to produce almost pure carbon.  High impurity content 

in the coal (proportional to high ash content), is damaging and unfavourable to the coke 

ovens.   

Another factor stressing the importance of good and stable coking coal quality is the fact 

that the coke rate is directly dependent on the coal quality.  Decreasing the coking rate 

usually increases product quality.  Higher more stable coal quality control is profitable to 

the client and thus, financially beneficial for the provider, as proven with the higher mass 

accumulation on stockpiles (Çoban, 1991). 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 INTRODUCTION 

The KD process explained in the literature review in chapter 3 functioned as the 

backbone of the quality control investigation.  Chapter 4 introduced the first step in the 

KD process and defined the problem statement, the structure of the investigation based 

on the KD process step, and the data applicable to the problem environment.  Chapter 5 

saw the evaluation of the quality of the data using several techniques and visualisations.  

The number of data records was reduced to several stockpiles worth of sequential data 

records.  This data pre-processing step prepared the data for more accurate and 

representative model generation.  The data mining stage was responsible for the 

intelligent algorithm extracting elemental process knowledge.  NN models were 

generated on the data from the identified stockpiles to simulate the performance of the 

mass flow and ash content on the coking coal product line.  The different models on the 

three data groups were compared in order to decide on a suitable model for further 

analysis.  Interesting behaviour from the process inter-variable relationships were 

identified and discussed.  Chapter 6 produced good results in terms of model 

generation accuracy.   

Chapter 7 used the gained knowledge to realise the theoretical benefits of an optimised 

manual quality control.  The current manual control results were compared to the control 

of the optimisation solution.  The optimisation solution produced stable and more 

accurate results, as illustrated in the previous chapter.  This chapter summarises the 

investigation results and includes several recommendations. 
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8.2 GG1 CURRENT COKING COAL PRODUCTION 

Several key factors were identified that contribute to the inefficient quality control on the 

coking coal production line.   Some recommendations are included in the following 

conclusions: 

 For manual quality control inducing variance to the product-line ash quality, the 

secondary DMCs in AREA 04 can produce a coal product with ash content lower 

than the ash content set point.  Thus, the ash content of the coal on the product 

line is lower than it should be.  This means that the sinks in the DMC contain 

coals with ash content of 10% and ultimately a loss of good quality coal.  These 

coals are sent to Matimba Power Station along with the accompanying 

metallurgical coal.  On the other hand, if the beneficiation DMCs in AREA 04 

produce floats with ash content higher than the set point, the poor quality coal 

ends up on the product stockpile and an increased density is necessary in the 

DMC in order to compensate for the low quality coal on the stockpile.  In addition, 

the fluctuations result in a decrease in yield as explained in section 2.3.  The 

control of DMCs producing a coal quality with less fluctuation is a supported 

control strategy as proven from literature in section 2.3.  Fortunately, results 

generated from section 7.4, indicate that the optimisation solution is able to 

increase the yield with the optimum control of the separation RDs.  Lower 

fluctuations occur due to the optimisation, indicating the less valuable coal is sent 

to the power station.  On the other hand, less poor quality control is introduced to 

the coking coal stockpile. 

 Several assumption were made due to a lack of process information: 

o The optimisation is done on the RD of the dense medium and not on the 

set point as determined by operator control.  In the optimisation approach, 

it is assumed that the correlation between the RD set points and the actual 

separation RD values are at a maximum.  This is not the case for online 

operation.  The separation RD values occasionally deviates from the set 

point.   
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o The efficiencies of the sieves upstream from the DMC banks are 

unknown.  Thus, the mass split at the sieves are assumed negligible and 

the mass flows measured on the belt scales are the same mass flows 

feeding the DMCs. 

o The operation performance of AREA05 at GG1 is also unknown.  A 

product stream from the spiral classifiers with unknown mass flow and ash 

content is combined with coking coal product line.  The coking coal line 

from the spiral classifiers will have an influence on the mass flow and the 

ash content of the final coking coal product line. 

Information relevant to the assumptions made could increase the accuracy of the 

optimisation approach as well as the optimisation solution. 

 The investigation conducted by Addison et al (2010) saw better DMC quality 

control with the implementation of sensors on the floats and the sinks of the 

relevant DMCs.  This implementation is not available at GG1 and may go a long 

way in the increase in DMC control efficiency. 

8.3 SBS EVALUATION 

The SBS plays an integral role in the stockpile management at GG1.  This system is 

responsible for using the mass flow, ash monitor readings and the results from the LIMS 

database in the quality management of the stockpiles.  The SBS produces several 

outputs necessary for manual quality control on the average ash content of the coking 

coal stockpiles.  Numerous factors in the SBS contribute to the reduced integrity of the 

quality control. 

 The SBS aggregates data records to five-minute and hourly samples.  This 

initiative allows for the updating and integrating of the ash bias in the SBS 

outputs.  The operator receives readings every five minutes.  On average 19.09 

tonnes of coking coal is stacked on the stockpile in every five-minute period.  

Adding to the inefficiency is the fact that the operator is able to notice a change 

at five-minute intervals whereas a set point increase could be noticed within one 
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minute.  Altering the sample rate to one-minute as currently logged by the 

measuring instrument, the operator will be able to control quality more rapidly. 

 The operator is responsible for the quality control on a coking coal stockpile.  

This responsibility entails the evaluation of accumulated ash content per 

stockpile in order to adjust the DMC separation RDs.  It is recommended that the 

evaluation strategy be converted to the SBS user interface indicating appropriate 

RD set point values for the specific ash operation point.  This could be achieved 

using process models to relate the separation RDs to the ash content and 

system identification methods to generate transfer functions able to relate the RD 

set points and the separation RDs.   

 A trail-and-error method is used to manage the quality of the stockpile.  The 

operator evaluates the target ash and ash accumulation on the current stockpile 

and adjusts the RD set points on all five modules according to expert knowledge.  

The operator waits several minutes (5 minutes, 10 minutes or 15 minutes) to 

notice the outcome of the adjustment and adjusts the set points again according 

to the new readings.  This is avoided with the optimisation solution.  An optimum 

set of separation RDs set points will be available every minute.  As explained in 

chapter 2, the operator is still in the control loop, as his experience will determine 

the validity of the optimised RD set points. 

 The control on the coking coal stockpile quality is highly dependent on the 

knowledge of the operator.  In case of a shift where the operator is not as 

competent, human error plays a major role in the efficiency of the manual control. 

 The current quality control implemented at GG1 produces ash quality fluctuations 

in the product stream.  These fluctuations lead to the wasting of good quality 

coking coal to the power station stockpile.  In addition, to compensate for the 

good quality coal losses the coking coal stockpile is stacked with ash qualities 

higher than the set point. 
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8.4 OPTIMISATION RESULTS 

Using the KD process as investigation methodology, historical data from the problem 

environment at GG1 were extracted and prepared for data mining.  The data mining 

stage was responsible for the generation and evaluation of nonlinear models built to 

simulate the process.  An appropriate model was chosen to further the investigation.  A 

sensitivity analysis, benefit estimation and feasibility analysis were conducted to realise 

the potential of the optimisation solution.   

 The optimisation performance of the CSense® Architect GA showed a degree of 

error when optimising the ash content.  Thus, other optimisation techniques or 

GA parameter configuration should be investigated for the best possible 

optimisation algorithm. 

 The results from a preliminary optimisation run were compared to the actual 

process data.  The optimisation results showed a great improvement in stable 

ash production and constant average ash accumulation.  83% of the stockpiles 

show improvement on the current manual quality control.   

 Sensitivity analyses were done on three of the stockpiles.  Changes on the 

overall RD operation range have great influence on the performance of the 

optimisation solution.  The delay in optimisation, as well as the magnitude of RD 

set point change has little influence on the optimisation solution results.  These 

sensitivity analyses made way for a solution representing actual quality control 

conditions. 

 An optimisation solution was built on parameters introducing realistic conditions 

to the quality control.  The optimisation results were compared to the actual 

stockpile properties.  The optimisation results showed a yield increase of 9.8% 

over the three stockpile groups analysed.  Assuming a 9.8% yield increase is 

possible over a production year, Exxaro is able to increase revenue by R 250 

million.  The proposed control solution decreases the loss in good quality coking 

coal to the power station coal stockpile, and an increase in profit from the selling 

of the coking coal. A more stable quality production is possible with a decrease in 

standard deviation from 1.11 to 0.20.  In addition to the stable quality production, 
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the average percentage ash is decreased from 11.28% to 10.39% (closer to the 

target of 10.3%) after optimisation. 

 With the proposed control solution, the degree of human error can be decreased 

in providing the operator with the optimised RD set points generated by the 

optimisation solution investigated. 

 It is recommended to investigate the effects of the spiral plant inputs to the 

coking coal stockpiles in order to realise the true environment of the proposed 

control solution.  With knowledge of the spiral plant effects, a detailed mass 

balance will allow for a more accurate KD and control solution.   

 With the success of such a control solution implementation, an improved solution 

may be implemented on all SBS‟s in and around GG beneficiation plants. 

The optimisation solution has the ability to control the ash accumulation around a set 

point with minor fluctuations compared to the current control system.  More information 

on several aspects of the coal beneficiation plant at GG1 will increase the accuracy and 

efficiency of this solution.  More studies need to be conducted on the NN topology as 

well as the GA parameters. 
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APPENDIX B 

STATISTICAL FORMULAS AND THEORY 

The variability of a dataset is a useful measure in characterising the different fields 

within the dataset.  The range of a field is a straightforward measure for variability and is 

highly sensitive to extreme observations.  The difference between the maximum value 

in a field and the minimum value of the same field gives the range of the field (Giudici, 

2003).   

A more descriptive measure for the dispersion of data relevant to a specific field is the 

variance of the field distribution.  The variance of the different data fields is defined as 

the degree to which data tend to spread.  Variance and the standard deviation (the 

positive square root of the variance) are measures for the deviations from the average 

of a specific field (Devore & Farnum, 2005).  If the mean of variable x with observations 

x1,...,xn is given by (Kreyszig, 1999): 
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Equation 20 

then the variance of the variable is given by 
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Equation 21 

and the standard deviation 
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Equation 22 
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The asymmetry of a field is also a descriptive tool used to characterize distribution of 

the fields.  If the median29 of a data distribution is higher or lower than the data mean 

value (average), the distribution is said to be skew.  For a symmetric distribution, the 

data median and the average should be equal.   

A correlation matrix is a very useful tool in discovering the relationship degree between 

the different variables contained in a dataset.  Two measures for the interrelation 

between two variables x and y, are the covariance sxy and the correlation coefficient r, 

given by (Kreyszig, 1999): 

    
 

   
∑(    )(    )  

 

   

 

Equation 23 

and, 

  
   

    
    

Equation 24 

The correlation coefficient is the normalised covariance index.  This relative correlation 

coefficient index indicates the degree of relationship between the two variables.  A 

correlation coefficient value of 1 or -1 corresponds to high correlation or relationship 

between the two variables.  If r takes on a value of zero, the two variables have no 

relationship with each other.   

  

                                            
 

29
The median is the value which halves the data distribution.  (Giudici, 2003) 
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APPENDIX C 

SCRIPTING LOGIC 

The following script is the logic used in the “accumulation calculations” operation layer 

described in the solution architecture section in chapter 7. 

if Quality = 1 then 

 if firstexecute then 

 Cum_Mass_OPT := 0.1 

 Cum_Mass_OPT_prev := 0.0 

 Cum_Ash_OPT := 0.0 

 Cum_Ash_OPT_prev := 0.0  

 Cum_SP_Order_prev := 42 

 Cum_Tons_RT := 0.0 

 Cum_Tons_RT_prev := 0.0 

 Cum_Ash_RT := 0.0 

 Cum_Ash_RT_prev := 0.0 

 CCScale_min := 0.0 

 Opt_Mass_min := 0.0 

 Target_Ash_prev := 0.0 

 Target_Ash_RT_prev := 0.0 

 endif 

 

 

 

 

//Cumulative Mass Calculation 

 CCScale_min := CCScale/60.0 

 Opt_Mass_min := Opt_Mass/60.0 

 Cum_Mass_OPT := Cum_Mass_OPT + Opt_Mass_min 

 Cum_Tons_RT := Cum_Tons_RT + CCScale_min 

 

 if  Cum_Mass_OPT = 0.0 then 

  Cum_Mass_OPT := 0.00001 

 endif 

 if  Cum_Tons_RT = 0.0 then 

  Cum_Tons_RT := 0.00001 

 endif 

//Cumulative Ash Calculation 

 if Ash_per_sec_active = 1 or CCScale_active = 1 then 

  if Cum_SP_Order_I = Cum_SP_Order_prev then 

  Cum_Ash_OPT := ((Opt_Ash * Opt_Mass_min) + 

(Cum_Ash_OPT_prev*Cum_Mass_OPT_prev))/Cum_Mass_OPT 

  Cum_Ash_RT := (( Ash_per_sec * CCScale_min) + (Cum_Ash_RT_prev * 

Cum_Tons_RT_prev))/Cum_Tons_RT 

  else 

  Cum_Ash_OPT := 0.0 

  Cum_Mass_OPT := 0.0 

  Cum_Tons_RT := 0.0 

  Cum_Ash_RT := 0.0 

  endif 

 elseif Cum_SP_Order_I <> Cum_SP_Order_prev then 

  Cum_Ash_OPT := 0.0 

  Cum_Mass_OPT := 0.0 

  Cum_Tons_RT := 0.0 

  Cum_Ash_RT := 0.0 
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 else  

   Cum_Mass_OPT := field(Cum_Mass_OPT_prev.value,qualitygood,now) 

   Cum_Ash_OPT := field(Cum_Ash_OPT_prev.value,qualitygood,now) 

   Cum_Tons_RT := field(Cum_Tons_RT_prev.value,qualitygood,now) 

   Cum_Ash_RT := field(Cum_Ash_RT_prev.value,qualitygood,now) 

 endif 

 

 Cum_Mass_OPT_prev := Cum_Mass_OPT 

 Cum_Tons_RT_prev := Cum_Tons_RT 

 Cum_SP_Order_prev := Cum_SP_Order_I 

 Cum_Ash_OPT_prev := Cum_Ash_OPT 

 Cum_Ash_RT_prev := Cum_Ash_RT 

 Target_Ash_prev := Target_Ash 

 Target_Ash_RT_prev := Target_Ash_RT 

 

 

//Ash Target Calculations 

//Stockpile planned tons 

 if  Cum_SP_Order = 43 then 

 Target_Mass := 25000 

 

 elseif  Cum_SP_Order = 44 then 

 Target_Mass := 25000 

 

 elseif  Cum_SP_Order = 45 then 

 Target_Mass := 35000 

 

 elseif  Cum_SP_Order = 46 then 

 Target_Mass := 25000 

 

 elseif  Cum_SP_Order = 47 then 

 Target_Mass := 25000 

 

 elseif  Cum_SP_Order = 48 then 

 Target_Mass := 30000 

 

 elseif  Cum_SP_Order = 49 then 

 Target_Mass := 10000 

 

 endif 

 

 if Ash_per_sec_active = 1 or CCScale_active = 1 then 

 Target_Ash := ((Target_Mass * Target) - (Cum_Ash_OPT * Cum_Mass_OPT))/(Target_Mass - 

Cum_Mass_OPT) 

 Target_Ash_RT := ((Target_Mass * Target) - (Cum_Ash_RT * Cum_Tons_RT))/(Target_Mass - 

Cum_Tons_RT) 

 else 

 Target_Ash := field(Target_Ash_prev.value,qualitygood,now) 

 Target_Ash_RT := field(Target_Ash_RT_prev.value,qualitygood,now) 

 endif 

 

endif 
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APPENDIX D 

LIST OF PROCESS VARIABLES 

Tag name Description 

Cum_SP_Order Stockpile number ordered from 1 to 145 

Mass measurements 

BeltScale_A04_M1 Belt scale on module 1 in AREA 04 

BeltScale_A04_M2 Belt scale on module 2 in AREA 05 

BeltScale_A04_M3 Belt scale on module 3 in AREA 06 

BeltScale_A04_M4 Belt scale on module 4 in AREA 07 

BeltScale_A04_M5 Belt scale on module 5 in AREA 08 

CCScale Belt scale on coking coal product line 

PSCScale Belt scale on power station coal product line 

Cum_Tons Mass accumulation of actual coking coal stockpile 

Cum_Mass_OPT Mass accumulation of optimised coking coal stockpile 

Opt_Mass Optimised coking coal mass flow 

Target_Mass Target accumulated mass per stockpile 

Ash Measurements 

RDPresent_A04_M1 RD value as measured by RD source on module 1 in AREA 04 

RDPresent_A04_M2 RD value as measured by RD source on module 2 in AREA 04 

RDPresent_A04_M3 RD value as measured by RD source on module 3 in AREA 04 

RDPresent_A04_M4 RD value as measured by RD source on module 4 in AREA 04 

RDPresent_A04_M5 RD value as measured by RD source on module 5 in AREA 04 

RDSetpoint_A04_M1 RD set point on module 1 in AREA 04 

RDSetpoint_A04_M2 RD set point on module 2 in AREA 04 

RDSetpoint_A04_M3 RD set point on module 3 in AREA 04 

RDSetpoint_A04_M4 RD set point on module 4 in AREA 04 

RDSetpoint_A04_M5 RD set point on module 5 in AREA 04 

Ash_per_min Ash content measured by online ash monitor sampled in one minute intervals 
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Opt_Ash Optimised ash content on coking coal product line 

RT_Coalscan_Ash Ash content measured by online ash monitor aggregated in 5 minute samples 

RT_Ash_per_5min Ash content updated by bias in SBS, aggregated in 5 minute samples 

HR_Coalscan_ash Ash content updated by bias in SBS, aggregated in 1 hour samples 

Target_Ash Target ash content calculated in optimisation solution 

HR_Ash_bias Bias calculated from laboratory results, updated hourly 

Cum_Ash Ash accumulation per stockpile from actual process  

Cum_Ash_OPT Ash accumulation per stockpile from optimised results 

 


