BIBLIOGRAPHY

NEL, C. 2007. Design analysis of a rubber mount system for a push-type centrifuge. (Paper delivered at the 4th International Congress on Sound and Vibration in Cairns, Australia)

LIST OF APPENDICES

A. Two DOF model without damping
B. Two DOF model with damping
C. DEG engineering drawing: Panel bank 301EX-2491 A/B
D. Design of vibration model
E. Characterisation of plate pack
F. Characterisation of mounts
Appendix A: Two DOF model without damping

10/18/11 7:27 PM C:s\Users\user\Documents\Magister\Verhadeling\Modelle...\Nuwe.m 1 of 4

%Comparison of of forces in elements for two mounting cases (affecting k1)
%No Damping is assumed
%Pieter Vergeer

clear;
clc;

tel = 330;
uit = 106
kies = 1

m1 = 22.255;
m2 = 24.007;
M = [m1 0; 0 m2];

kmi = 20718;
Nm = 6;
kcl = 36529;
kp = 319997;

k2 = kp;
k3 = kcl;
k1(1) = Nm*kmi+kcl;
k1(2) = 1000*k2;
w = zeros(tel,1);

for j = 1:2
 K = [k1(j)+k2 -k2; -k2 k2+k3];
 [V,D] = eig(K,M);
 run = j
 omegal1 = sqrt(D(1,1));
 f1 = omegal1/(2*pi)
 omegal2 = sqrt(D(2,2));
 f2 = omegal2/(2*pi)

 for i = 1:tel
 w(i) = i;
 F0(:,i) = [0 ; 0.002238244*w(i)^2];
 A = (-M*w(i)^2 + K);
 X = linsolve (A,F0(:,i));
 F1(i,j) = X(1)* k1(j);
 F2(i,j) = (X(2)-X(1)) * k2;
 F3(i,j) = X(2) * k3;
 Xi(i,j) = X(1);
 X2(i,j) = X(2);

A-1
end

% Results
X1RMS = abs(0.707*X1);
X2RMS = abs(0.707*X2);
F1RMS = abs(0.707*F1);
F2RMS = abs(0.707*F2);
F3RMS = abs(0.707*F3);

for i = 1:tel
 RAT1(i,1) = F1RMS(i,1)/F1RMS(i,2);
 RAT2(i,1) = F2RMS(i,1)/F2RMS(i,2);
 RAT3(i,1) = F3RMS(i,1)/F3RMS(i,2);
end

% Plot
figure(1);
clf;
plot (w/(2*pi),abs(X1(:,1)),'-g');
axis ([0 50 0 0.005]);
hold on;
plot (w/(2*pi),abs(X1(:,2)),'-r');
title('Comparison of X1 between Elastic Mounted and Bolted Cases');
xlabel('Frequency of oscillating force [Hz]');
ylabel('Absolute displacement of top (abs(X1) [m])');
grid on;
legend ('Elastic mounted','Bolted');

figure(2);
clf;
plot (w/(2*pi),abs(X2(:,1)),'-g');
axis ([0 50 0 0.005]);
hold on;
plot (w/(2*pi),abs(X2(:,2)),'-r');
title('Comparison of X2 between Elastic Mounted and Bolted Cases');
xlabel('Frequency of oscillating force [Hz]');
ylabel('Absolute displacement of bottom (abs(X2) [m])');
grid on;
legend ('Elastic mounted','Bolted');

figure(3);
clf;
plot (w/(2*pi),abs(F1RMS(:,1)),'-g');
axis ([0 50 0 500]);
hold on;
plot (w/(2*pi),abs(F1RMS(:,2)),'-r');
title('Comparison of F1 between Elastic Mounted and Bolted Cases');
xlabel('Frequency of oscillating force [Hz]');
ylabel('Absolute force in element k1 (abs(F1RMS) [N])');
legend ('Elastic mounted','Bolted');
grid on;

figure(4);
clf;
plot (w/(2*pi),abs(F2RMS(:,1)),'-g');
axis ([0 50 0 500]);
hold on;
plot (w/(2*pi),abs(F2RMS(:,2)),'-r');
title('Comparison of F2 between Elastic Mounted and Bolted Cases');
xlabel('Frequency of oscillating force [Hz]');
ylabel('Absolute force in element k2 (abs(F2RMS)) [N]');
grid on;
legend ('Elastic mounted','Bolted');

figure(5);
clf;
plot (w/(2*pi),abs(F3RMS(:,1)),'-g');
axis ([0 50 0 500]);
hold on;
plot (w/(2*pi),abs(F3RMS(:,2)),'-r');
title('Comparison of F3 between Elastic Mounted and Bolted Cases');
xlabel('Frequency of oscillating force [Hz]');
ylabel('Absolute force in element k3 (abs(F3RMS)) [N]');
grid on;
legend ('Elastic mounted','Bolted');

figure (7);
clf;
plot (w/(2*pi),F0(2,:),'-b');
title('Amplitude of Oscillating Force');
xlabel('Frequency of motor [Hz]');
ylabel('Amplitude of oscillating force [N]')

figure (6);
clf;
axis ([0 50 0 200]);
hold on;
title('Force Ratio between Elastic Mounted and Bolted Cases');
xlabel('Frequency of oscillating force [Hz]');
ylabel(...
('Force in elastically mounted case / Force in Bolted case [%]');
plot (w/(2*pi),abs(RAT1)*100,'-b');
plot (w/(2*pi),abs(RAT2)*100,'-g');
plot (w/(2*pi),abs(RAT3)*100,'-r');
legend ('Force ratio of F1','Force ratio of F2','Force ratio of F3');
plot (w/(2*pi),100,'-k');
plot (w/(2*pi),50,'-k');
for i = 1:200
plot (75/(2*pi),i,'-k');
plot (106/(2*pi),i,'-k');
% plot (uit/(2*pi),i,'.b');
end

k1_u = k1(kies)
k2
k3
m1
m2

F0_u = F0(2,uit)
X1_u = X1(uit,kies)
X2_u = X2(uit,kies)
X1dotdot1_u = -X1_u*uit^2*M(1,1)
X2dotdot2_u = -X2_u*uit^2*M(2,2)
F1_u = F1(uit,kies)
F2_u = F2(uit,kies)
F3_u = F3(uit,kies)
Appendix B: Two DOF model with damping

10/18/11 7:18 PM C:\Users\user\Documents\Magister\Verhadeling\Model...\kragte.m 1 of 2

%Determine forces for 2 DOF system with damping
%Runge Kutta integration

clear;
load K.dat; %stiffness matrix
load C.dat; %damping matrix
load w.dat; %Forcing frequency

dt = 2*pi/(10*w); %Time steps
T = 1000*dt; %Total time

%Solution of Differential Equations
tspan = [0:dt:T];
y0 = [0; 0; 0; 0];
[t,y] = ode23('oplos',tspan,y0); %integration

Fsum = [0,0,0];
Fsk = [0,0,0];
Fsc = [0,0,0];
Xsum = [0,0,0];

for i = round(0.5*(T/dt)):length(t);
 Fk(i,1) = ((K(1,1)+K(1,2))*y(i,1))^2;
 Fk(i,2) = (-K(1,2)*y(i,3)-y(i,1))^2;
 Fk(i,3) = ((K(2,2)+K(1,2))*y(i,3))^2;
 Fc(i,1) = ((C(1,1)+C(1,2))*y(i,2))^2;
 Fc(i,2) = (C(2,2)*y(i,4)-y(i,2))^2;
 Fc(i,3) = ((C(2,2)+C(1,2))*y(i,4))^2;
 X(i,1) = y(i,1)^2;
 X(i,2) = y(i,3)^2;
 for j = 1:2 %iteration for displacements
 Xsum(j) = Xsum(j) + X(i,j)*dt;
 end
 for j = 1:3 %iteration for forces
 Ftot(j) = Fk(i,j) + Fc(i,j);
 Fsum(j) = Fsum(j) + Ftot(i,j)*dt;
 Fsk(j) = Fsk(j) + Fk(i,j)*dt;
 Fsc(j) = Fsc(j) + Fc(i,j)*dt;
 end
end

FRMS(1) = sqrt(Fsum(1)/(0.5*T));
FRMS(2) = sqrt(Fsum(2)/(0.5*T));
FRMS(3) = sqrt(Fsum(3)/(0.5*T));

FKRMS(1) = sqrt(Fsk(1)/(0.5*T));
FKRMS(2) = sqrt(Fsk(2)/(0.5*T));
FKRMS(3) = sqrt(Fsk(3)/(0.5*T))
FcRMS(1) = sqrt(Fsc(1)/(0.5*T));
FcRMS(2) = sqrt(Fsc(2)/(0.5*T));
FcRMS(3) = sqrt(Fsc(3)/(0.5*T))

XRMS(1) = sqrt(Xsum(1)/(0.5*T));
XRMS(2) = sqrt(Xsum(2)/(0.5*T))

%plot
figure (1);
cf;
subplot (211);
plot (t,y(:,1));
xlabel ('t [s]');
ylabel ('x1 [m]');
title ('Startup Response of x1 and x2 at 75 rad/s in the Elastic Mounted Case');
axis([49 50 -0.02 0.02]);
subplot (212);
plot (t,y(:,3));
xlabel ('t [s]');
ylabel ('x2 [m]');
title ('Startup response of x2');
axis([49 50 -0.015 0.015]);

figure (2);
cf;
subplot (311);
plot (t,Ftot(:,1));
title('Resultant force in elements (k1 & c1) used for calculation of RMS');
xlabel ('t [s]');
ylabel ('F1 [N]');
subplot (312);
plot (t,Ftot(:,2));
title('Resultant force in elements (k2 & c2) used for calculation of RMS');
xlabel ('t [s]');
ylabel ('F2 [N]');
subplot (313);
plot (t,Ftot(:,3));
title('Resultant force in elements (k3 & c3) used for calculation of RMS');
xlabel ('t [s]');
ylabel ('F3 [N]');
function f = oplos(t,y)

f = zeros(4,1);

load M.dat; %mass matrix
load C.dat; %Damping matrix
load K.dat; %Stiffness matrix
load F0.dat; %Force matrix
load w.dat; %Forcing frequency

F0 = F0*w^2 %Calculation of unbalanced force

f(1) = y(2);
f(2) = (F0(1)*sin(w(1)*t) + C(1,2)*y(4) - C(1,1)*y(2) + K(1,2)*y(3) - K(1,1)*y(1))/M^2
 (1,1);

f(3) = y(4);
f(4) = (F0(2)*sin(w(1)*t) + C(2,2)*y(4) - C(2,1)*y(2) + K(2,2)*y(3) - K(2,1)*y(1))/M^2
 (2,2);

Appendix C: DEG engineering drawing: Panel bank
301EX-2491 A/B
Appendix D: Design of vibration model
Note: core must be taken that all plates' holes align

0.7mm Plate

Note: To be manufactured by designer.

0.7mm Guide
Appendix E: Characterization of plate pack

Measured Natural Response of the System

Bump test on bolted model, without compensators

Bump Test on Bolted Model, without Compensators
Calculation of Damping Ratio

<table>
<thead>
<tr>
<th>node</th>
<th>Point</th>
<th>Time [s]</th>
<th>Amplitude [m.s(^{-2})]</th>
<th>Period [s]</th>
<th>log. decr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>197</td>
<td>1.53125</td>
<td>0.6241905</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>204</td>
<td>1.585938</td>
<td>0.5909524</td>
<td>0.055</td>
<td>0.055</td>
</tr>
<tr>
<td>3</td>
<td>211</td>
<td>1.640625</td>
<td>0.5596696</td>
<td>0.055</td>
<td>0.054</td>
</tr>
<tr>
<td>4</td>
<td>218</td>
<td>1.695313</td>
<td>0.5303419</td>
<td>0.055</td>
<td>0.054</td>
</tr>
<tr>
<td>5</td>
<td>225</td>
<td>1.75</td>
<td>0.506391</td>
<td>0.055</td>
<td>0.046</td>
</tr>
<tr>
<td>6</td>
<td>232</td>
<td>1.804688</td>
<td>0.4834177</td>
<td>0.055</td>
<td>0.046</td>
</tr>
<tr>
<td>7</td>
<td>239</td>
<td>1.859375</td>
<td>0.4623995</td>
<td>0.055</td>
<td>0.044</td>
</tr>
<tr>
<td>8</td>
<td>246</td>
<td>1.914063</td>
<td>0.4399149</td>
<td>0.055</td>
<td>0.050</td>
</tr>
<tr>
<td>9</td>
<td>253</td>
<td>1.96875</td>
<td>0.4174304</td>
<td>0.055</td>
<td>0.052</td>
</tr>
<tr>
<td>10</td>
<td>260</td>
<td>2.023438</td>
<td>0.3954347</td>
<td>0.055</td>
<td>0.054</td>
</tr>
<tr>
<td>11</td>
<td>267</td>
<td>2.078125</td>
<td>0.3729501</td>
<td>0.055</td>
<td>0.059</td>
</tr>
<tr>
<td>12</td>
<td>274</td>
<td>2.132813</td>
<td>0.3558423</td>
<td>0.055</td>
<td>0.047</td>
</tr>
<tr>
<td>13</td>
<td>281</td>
<td>2.1875</td>
<td>0.3416673</td>
<td>0.055</td>
<td>0.041</td>
</tr>
<tr>
<td>14</td>
<td>288</td>
<td>2.242188</td>
<td>0.3255371</td>
<td>0.055</td>
<td>0.048</td>
</tr>
<tr>
<td>15</td>
<td>295</td>
<td>2.296875</td>
<td>0.3098956</td>
<td>0.055</td>
<td>0.049</td>
</tr>
<tr>
<td>16</td>
<td>302</td>
<td>2.351563</td>
<td>0.294743</td>
<td>0.055</td>
<td>0.050</td>
</tr>
<tr>
<td>17</td>
<td>309</td>
<td>2.40625</td>
<td>0.2771464</td>
<td>0.055</td>
<td>0.062</td>
</tr>
<tr>
<td>18</td>
<td>316</td>
<td>2.460938</td>
<td>0.2668817</td>
<td>0.055</td>
<td>0.038</td>
</tr>
<tr>
<td>19</td>
<td>323</td>
<td>2.515625</td>
<td>0.2531955</td>
<td>0.055</td>
<td>0.053</td>
</tr>
<tr>
<td>20</td>
<td>330</td>
<td>2.570313</td>
<td>0.242442</td>
<td>0.055</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td></td>
<td></td>
<td></td>
<td>0.055</td>
</tr>
</tbody>
</table>

f_d	18.29 Hz
ω_d	114.89 rad/s
m_2	24.007 kg
N_p	1 plate pack
c	43.70 N. s/m
c_p	43.699 N. s/m
ζ_p	0.008

ζ<<1
Appendix F: Characterization of mounts

Measured Natural Response of the System

Calculation of Damping Ratio

<table>
<thead>
<tr>
<th>node</th>
<th>Point</th>
<th>Time [s]</th>
<th>Amplitude [m.s⁻²]</th>
<th>Period [s]</th>
<th>log. decr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>0.140625</td>
<td>0.9448396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>27</td>
<td>0.203125</td>
<td>-0.825085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>0.265625</td>
<td>0.8729868</td>
<td>0.125</td>
<td>0.079</td>
</tr>
<tr>
<td>2.5</td>
<td>43</td>
<td>0.328125</td>
<td>-0.5528265</td>
<td>0.125</td>
<td>0.400</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>0.390625</td>
<td>0.5733558</td>
<td>0.125</td>
<td>0.420</td>
</tr>
<tr>
<td>3.5</td>
<td>59</td>
<td>0.453125</td>
<td>-0.379278</td>
<td>0.125</td>
<td>0.391</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>0.515625</td>
<td>0.3866364</td>
<td>0.125</td>
<td>0.394</td>
</tr>
<tr>
<td>4.5</td>
<td>75</td>
<td>0.578125</td>
<td>-0.230711</td>
<td>0.125</td>
<td>0.483</td>
</tr>
<tr>
<td>5</td>
<td>83</td>
<td>0.640625</td>
<td>0.2561283</td>
<td>0.125</td>
<td>0.412</td>
</tr>
<tr>
<td>5.5</td>
<td>90</td>
<td>0.695313</td>
<td>-0.1471271</td>
<td>0.117</td>
<td>0.450</td>
</tr>
<tr>
<td>6</td>
<td>98</td>
<td>0.757813</td>
<td>0.1867194</td>
<td>0.117</td>
<td>0.316</td>
</tr>
<tr>
<td>6.5</td>
<td>106</td>
<td>0.820313</td>
<td>-0.0992253</td>
<td>0.125</td>
<td>0.394</td>
</tr>
<tr>
<td>7</td>
<td>112</td>
<td>0.867188</td>
<td>0.1490823</td>
<td>0.109</td>
<td>0.225</td>
</tr>
<tr>
<td>7.5</td>
<td>120</td>
<td>0.929688</td>
<td>-0.0645209</td>
<td>0.109</td>
<td>0.430</td>
</tr>
<tr>
<td>8</td>
<td>128</td>
<td>0.992188</td>
<td>0.1138891</td>
<td>0.125</td>
<td>0.269</td>
</tr>
</tbody>
</table>

average 0.121 0.359

<table>
<thead>
<tr>
<th>c₂d</th>
<th>8.24 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>c₁dg</td>
<td>51.76 rad/s</td>
</tr>
<tr>
<td>mₙ</td>
<td>46.26 kg</td>
</tr>
<tr>
<td>Nₘₙ</td>
<td>6 mounts</td>
</tr>
<tr>
<td>c</td>
<td>273.451 N.s/m</td>
</tr>
<tr>
<td>c₁cs</td>
<td>45.575 N.s/m</td>
</tr>
<tr>
<td>ζₘₙ</td>
<td>0.057 ζ<<1</td>
</tr>
</tbody>
</table>