Advanced linear methods for T-tail aeroelasticity

L. H. van Zyl

Thesis submitted for the degree Doctor of Philosophy in Engineering at the Potchefstroom campus of the North-West University

Promoter: Prof. E. H. Mathews

November 2011
Acknowledgement

I wish to express my sincere gratitude to the following persons and institutions:

My employer, the CSIR of South Africa, for financial support and providing time for me to complete this work.
My colleagues at the CSIR for their support and interest in this work.
My promoter, Prof. E.H. Mathews, for his encouragement and constructive advice throughout the process of compiling this thesis.
Mr. Doug Velleman, for proof reading this manuscript and his valuable suggestions.
Dr. W.P. Rodden, for his encouragement to develop the surface panel body model for the DLM.
Mr. Thomas Wilson, for his instigation and advice in developing the T-tail extension to the DLM.
Mr. Mike Coleman of MSC Software, for laying the foundation for implementing the method for calculating quadratic mode shape components from linear finite element analysis in MSC/NASTRAN.
My family for their support and encouragement.
Contents

Abstract ... 4
Uitbreking: Gevorderde lineêre metodes vir T-stert aero-elastisiteit ... 6
Preface .. 8
Glossary of terms .. 9
List of figures ... 12
List of tables ... 12
1 INTRODUCTION .. 13
1.1 Background .. 13
1.2 Motivation for the study ... 14
1.3 Objectives of the study .. 15
1.4 Layout of the thesis ... 15
2 LITERATURE SURVEY .. 16
2.1 The doublet lattice method .. 16
2.2 T-tail flutter analysis ... 17
2.3 Quadratic mode shape components ... 19
2.4 Fluid-structure interaction .. 20
3 CONTRIBUTIONS OF THE STUDY .. 21
3.1 Robustness of the DLM ... 21
3.2 Wing-body modelling using the DLM ... 24
3.3 T-tail aeroelasticity ... 25
3.4 Quadratic mode method ... 32
3.5 Experimental work ... 32
4 CONCLUSION ... 38
4.1 Consolidation of the work done ... 38
4.2 Aspects meriting further investigation ... 39
REFERENCES ... 40
APPENDIX: Copies of Journal Articles .. 43
Article I .. 45
Articles II and III .. 57
Articles IV and V ... 85
Abstract

Flutter is one of the primary aeroelastic phenomena that must be considered in aircraft design. Flutter is a self-sustaining structural vibration in which energy is extracted from the air flow and transferred to the structure. The amplitude of the vibration grows exponentially until structural failure occurs. Flutter stability requirements often influence the design of an aircraft, making accurate flutter prediction capabilities an essential part of the design process. Advances in computational fluid dynamics and computational power make it possible to solve the fluid flow and structural dynamics simultaneously, providing highly accurate solutions especially in the transonic flow regime. This procedure is, however, too time-consuming to be used in the design optimisation process. As a result panel codes, e.g., the doublet lattice method, and modal-based structural analysis methods are still being used extensively and continually improved.

One application that is lagging in terms of accuracy and simplicity (from the user’s perspective) is the flutter analysis of T-tails. The flutter analysis of a T-tail usually involves the calculation of additional aerodynamic loads, apart from the loads calculated by the standard unsteady aerodynamic codes for conventional empennages. The popular implementations of the doublet lattice method do not calculate loads due to the in-plane motion (i.e., lateral or longitudinal motion) of the horizontal stabiliser or the in-plane loads on the stabiliser. In addition, these loads are dependent on the steady-state load distribution on the stabiliser, which is ignored in the doublet lattice method.

The objective of the study was to extend the doublet lattice method to calculate the additional aerodynamic loads that are crucial for T-tail flutter analysis along with the customary unsteady air loads for conventional configurations. This was achieved by employing the Kutta-Joukowski theorem in the calculation of unsteady air loads on lifting surface panels. Calculating the additional unsteady air loads for T-tails within the doublet lattice method significantly reduces the human effort required for T-tail flutter analysis as well as the opportunities for introducing errors into the analysis.

During the course of the study it became apparent that it was necessary to consider the quadratic mode shape components in addition to the linear mode shape components. Otherwise the unsteady loads due to the rotation (“tilting”) of the steady-state load on the stabiliser, one of the additional aerodynamic loads that are crucial for T-tail flutter analysis, would give rise to spurious generalised forces. In order to reduce the additional burden of determining the quadratic mode shape
components, methods for calculating quadratic mode shape components using linear finite element analysis or estimating them from the linear mode shape components were developed.

Wind tunnel tests were performed to validate the proposed computational method. A T-tail flutter model which incorporated a mechanism for changing the incidence angle of the horizontal stabiliser, and consequently the steady-state load distribution on the horizontal stabiliser, was used. The flutter speed of this model as a function of the horizontal stabiliser incidence was determined experimentally and compared to predictions. Satisfactory correlation was found between predicted and experimentally determined flutter speeds.

Keywords: Aeroelasticity, T-tail, Doublet lattice method, Quadratic mode shape components
Uittreksel: Gevorderde lineêre metodes vir T-stert aero-elastisiteit

Fladder is een van die primêre aero-elastiese verskynsels wat in die ontwerp van ‘n vliegtuig in ag geneem moet word. Fladder is ‘n self-onderhoudende strukturele vibrasie waarin energie van die lugstroom na die struktuur oorgedra word. Die amplitude van die vibrasie groei eksponensieel totdat die struktuur faal. Fladdervereistes beïnfluë dikkwels die ontwerp van ‘n vliegtuig, daarom is die vermoë om fladder akkuraat te voorspel ‘n belangrike komponent van vliegtuigontwerp. Vooruitgang in berekeningsvloeimeganika en rekenaarvermoëns maak dit moontlik om die vloei en die struktuur se dynami ska gelyktydig op te los. Dit bied besonder akkurate oplossings, veral in die transsoniese vloeibestek. Hierdie prosedure is egter te tydrowend om in die ontwerp optimeringsproses te gebruik. Gevolglik word paneelmetodes, bv. die doebletteroostermetode, en modale basis struktuuranalise steeds algemeen gebruik en verder ontwikkeld.

Een toepassing wat agterweë gebly het ten opsigte van akkuraatheid en eenvoud (uit die gebruiker se oogpunt) is die fladderanalise van T-sterte. Die fladderanalise van ‘n T-stert behels gewoonlik dat bykomende lugdynamiese kragte bereken moet word, buiten dié wat deur die gewone ongestadigde lugdynamiese programme vir konvensionele stertvlakke bereken word. Die gewilde weergawes van die doebletteroostermetode bereken nie die kragte a.g.v. die in-vlak beweging (m.a.w. laterale en longitudinale beweging) van die horisontale stertvlak of die in-vlak kragte op die stertvlak nie. Verder is hierdie kragte afhanklik van die gestadigde lasverspreiding op die horisontale stertvlak, wat deur die doebletteroostermetode geïgnoreer word.

Die doel van die studie was om die doebletteroostermetode uit te brei om die bykomende ongestadigde ludinamiese kragte wat vir T-stert fladderanalise benodig word, tesame met die kragte vir konvensionele stervlakke, te bereken. Dit is gedoen deur gebruik te maak van die Kutta-Joukowski stelling om die ongestadigde lugdynamiese kragte op hefvlakpanele te bereken. Deur hierdie kragte binne die doebletteroostermetode te bereken word die menslike inspanning wat vir T-stert fladderanalise benodig word, asook die geleenthede om foute te maak, beduidend verminder.

In die loop van die studie het dit geblyk dat dit nodig is om die kwadratiese modale verplasing sowel as die lineêre modale verplasing in ag te neem. Andersins sou die ongestadigde krag a.g.v. die rotasie (“kanteling”) van die gestadigde lasverspreiding op die horisontale stertvlak, een van die bykomende omgestadigde kragte wat vir T-stert fladderanalise in ag geneem moet word, aanleiding gee tot vals veralgemeende kragte. Ten einde die bykomende las om kwadratiese modale verplasings te bereken te verlig, is metodes om die kwadratiese modale verplings d.m.v. lineêre
eindige elementanalyse te bereken, of om dit van die lineêre modale verplaasings te beraam, ontwikkel.

Windtonneltoetse is uitgevoer om die geldigheid van die voorgestelde berekeningsmetode te toets. ’n T-stert fladdermodel met ’n ingeboude mekanisme om die invalshoek van die horisontale stertvlak, en gevolglik die gestadigde lasverspreiding op die horisontale stertvlak, te verander, is vir die doel vervaardig. Die fladderspoed van hierdie model as funksie van die invalshoek van die horisontale stertvlak is eksperimenteel bepaal en met voorspellings vergelyk. Bevredigende korrelasie tussen berekende en eksperimenteel bepaalde fladderspoede is verkry.

Sleuteltermen: Aero-elastisiteit, T-stert, Doebletroostermetode, Kwadratiese modevorms
Preface

The article format has been selected for this thesis. The thesis comprises of the following five articles:

The student was responsible for all the technical content of every article. Articles III to V are submitted as part of the thesis with the permission of the co-author, Prof. E.H. Mathews.

Permission has been obtained from the editors of the respective journals to include copies of the articles in this thesis. The letters of permission are reproduced in the Appendix, together with the relevant articles.
Glossary of terms

The following list defines the most common terms used in this thesis

Aeroelasticity
The study of the interaction of elastic, inertial and aerodynamic forces acting on an object, usually applied to aircraft.

Airplane
A fixed-wing aircraft.

Computational fluid dynamics (CFD)
A numerical procedure for solving the flow around an object by discretizing the flow region into volume elements, from which solutions to the Navier-Stokes, Euler or full potential equations can be obtained.

DMAP Alter
A programming tool allowing users to modify the solution sequences of the MSC/NASTRAN finite element program.

Doublet lattice method (DLM)
A panel method for calculating unsteady air loads on harmonically oscillating lifting surfaces or combinations of lifting surfaces and non-lifting bodies.

Edge code
A fluid-structure interaction code developed by FOI of Sweden.

Empennage
The lifting surfaces attached to the rear of an airplane fuselage to provide stability and a means of control. It usually consists of a vertical stabiliser and two horizontal stabilisers.

Fin
The vertical stabiliser of an empennage, including the rudder.

Fluid-structure interaction (FSI)
The simultaneous solution of the flow around and object, usually using CFD, and the structural dynamic response of the object. The structural dynamic response can either be solved using modal-based methods or a finite element discretization of the structure.
Flutter
A self-sustained vibration in which energy is transferred from the air flow to the structure.

Ground vibration test (GVT)
An experimental procedure for determining the natural mode shapes and corresponding modal parameters of a structure.

Horizontal tailplane (HTP)
The collective name for the left (port) and right (starboard) horizontal stabilisers of an airplane. The term includes the elevators, if fitted.

MSC/NASTRAN
The version of NASTRAN developed and marketed by the McNeal-Schwendler Corporation.

NASA
The National Aeronautics and Space Administration of the United States of America.

NASTRAN
A finite element analysis program originally developed for NASA.

Panel method
A numerical method for solving the flow around an object by discretizing only the boundaries of the flow region into surface elements to obtain solutions to the linearized potential equations.

Pitch
A rotation about the lateral axis of an aircraft.

Roll
A rotation about the longitudinal axis of an aircraft.

Stabiliser
A lifting surface forming part of an airplane’s empennage. The term includes the relevant control surface, i.e., the rudder in the case of the vertical stabiliser and an elevator in the case of a horizontal stabiliser.

T-tail
An empennage consisting of a vertical stabiliser with the horizontal stabilisers mounted at or near the tip.
Trim load
The steady-state load on the horizontal tailplane of an airplane required to maintain balanced flight. The trim load can act either upwards, tending to pitch the aircraft nose down, or downwards, tending to pitch the aircraft nose up.

Yaw
A rotation about the vertical axis of an aircraft.

ZONA
ZONA Technology, a private company that develops and markets a range of unsteady aerodynamic and flutter analysis codes.
List of figures

Figure 1: Steady-state lifting pressure profiles on a 70 degree delta wing at $M = 0.8$, from Chen et al. (2004), reproduced with permission from the Journal of Aircraft ...22
Figure 2: Steady-state lifting pressure profiles on a 70 degree delta wing at $M = 0.8$, calculated using the original and the corrected N5KA codes. ...23
Figure 3: Rear view of the hypothetical T-tail ...26
Figure 4: Edge results for the hypothetical T-tail with three different HTP incidence angles using a linear modal displacement model ..30
Figure 5: Edge results for the hypothetical T-tail with three different HTP incidence angles using the quadratic modal displacement model ..30
Figure 6: DLM frequency results for the hypothetical T-tail with three different HTP incidence angles, with Edge results superimposed ..31
Figure 7: DLM damping results for the hypothetical T-tail with three different HTP incidence angles, with Edge results superimposed ..31
Figure 8: T-tail flutter model mounted on its support system during the GVT34
Figure 9: Internal structure of the T-tail flutter model ..34
Figure 10: T-tail flutter model flutter speed vs. stabiliser lift coefficient35

List of tables

Table 1: T-tail flutter model chord lines ...36
Table 2: Modal properties of the T-tail flutter model ..36
1 INTRODUCTION

1.1 Background

Aeroelasticity is the study of the interaction between aerodynamic, elastic and inertial forces. It applies mostly to aircraft, but also to structures exposed to wind such as bridges and buildings. The primary phenomenon of interest is flutter, an oscillatory instability in which the amplitude of the oscillation grows exponentially until structural failure occurs. Other phenomena include static deflection, loads during manoeuvres and gust response, i.e., the structural dynamic response of an aircraft flying through atmospheric disturbances. Apart from the fact that flutter can have catastrophic consequences, the elimination of a flutter problem in a late stage of development of a new aircraft type can be very expensive. It is therefore important to consider flutter from the early design stages and during design optimisation.

Analytical solutions to aeroelastic problems are rare. However, Lagrange’s equation is applicable to most aeroelastic problems. The degrees of freedom are often chosen to be the natural mode shapes of the structure. It is then relatively simple to express the kinetic and elastic potential energy of the structure in terms of these modal coordinates. The calculation of the generalised aerodynamic forces involves calculating the pressure distributions associated with each mode, and integrating them with the modal displacement of each mode as weighting functions. With the resulting matrix of generalised forces the equations of motion can be solved in the frequency domain.

In cases where the aerodynamic loads are significantly non-linear functions of the structural deformation of the aircraft, e.g., in transonic flow, it is necessary to solve the equation of motion in the time domain. This type of solution is referred to as fluid-structure coupled or fluid-structure interaction (FSI) solutions. FSI methods are presently too slow to be used in design optimisation.

Linear methods have therefore been the primary means of aeroelastic analyses over the past four decades. Of these methods the doublet lattice method and the ZONA family of commercial codes are used extensively. “Linear methods” refers to methods that entail solutions of systems of linear equations, eigenvalue problems and limited iterative solutions, e.g., Newton-Raphson solutions of small matrix equations. This includes panel codes, but excludes computational fluid dynamics (CFD) codes that solve the Euler or Navier-Stokes equations and therefore also FSI solutions.
1.2 Motivation for the study

A number of accidents and incidents in the 1950s and 1960s highlighted the lack of understanding of T-tail flutter. In July 1954 a British Handley Page Victor bomber crashed due to T-tail flutter, and on 11 July 1957 the first XF-104 prototype, a T-tail fighter, crashed due to tail flutter while flying chase for F-104A flight tests. The American Lockheed C-141 cargo aircraft also experienced unexpected unstable oscillation of the horizontal tail. This lack of understanding prompted experimental and analytical investigations into T-tail flutter (Baldock 1958, McCue et al. 1968, Gray & Drane 1974, Jennings & Berry 1977).

At about this time the doublet lattice method (DLM), a panel method for calculating unsteady air loads on oscillating lifting surfaces and wing-body combinations, became a popular tool in flutter analysis (Rodden 1997). However, despite four decades of development, the popular implementations of the DLM are not adequate for the analysis of T-tails, mainly for the following reasons:

1. The horizontal stabiliser of a T-tail is attached to the top of a flexible vertical stabiliser, or fin. Bending and torsion of the fin result in significant in-plane motion, i.e., chordwise and spanwise motion, of the horizontal stabiliser. These in-plane motions as well as in-plane loads are not modelled.

2. The aerodynamic loads on the horizontal stabiliser generated by in-plane motion of the horizontal stabiliser, as well as in-plane loads generated by motion normal to the plane of the horizontal stabiliser, depend strongly on the steady-state load on the horizontal stabiliser. The steady-state load distribution is, however, ignored in the DLM.

3. Quadratic mode shape components, which are routinely used in analyses ranging from buckling of beam-like structures to rotor blade vibration, have hitherto been ignored in T-tail flutter analysis. The steady-state trim load on the horizontal stabiliser can have a significant stiffening or softening effect on the fin bending modes that must be accounted for by considering the quadratic mode shape components.

The deficiencies of the DLM for T-tail flutter analyses are commonly compensated for by the calculation of additional aerodynamic terms, outside of the unsteady DLM calculation (Suciu 1996, Quaranta et al. 2005). These terms are added to the matrix of generalised forces before the equation of motion of the structure is solved.

Apart from the deficiencies of the DLM that add to the tedium of a T-tail flutter analysis, it is also necessary to perform a trim analysis for each flight condition for which a flutter solution is required. In addition to the angle of attack, side slip angle and control surface deflections, it is also
important to determine the steady-state deformation of the structure. In particular, bending of the horizontal stabiliser induces either anhedral or dihedral, which significantly affects T-tail flutter.

1.3 Objectives of the study

The present study aims to make the aeroelastic analysis of T-tails more accurate and less tedious through the following contributions:

- A steady-state solution sequence was added to the DLM, using the same geometric input as for the unsteady solution and accounting for angle of attack and side slip as well as camber of lifting surfaces. The steady-state solution is required for the trim analysis and also affects the calculation of unsteady pressures on body surface panels, as well as having a significant effect on the unsteady loads on the horizontal tail plane (HTP).
- A more advanced surface panel body model, separated wake model, and wing-body interference model for the DLM were developed, making both the steady-state and unsteady analyses more accurate.
- The DLM was extended to calculate the additional unsteady aerodynamic terms, related to the in-plane motion and in-plane loads on the HTP, that are commonly calculated outside of the DLM.
- The steady-state load distribution and the quadratic mode shape components were taken into account in the calculation of generalised forces.
- Since the proposed method for T-tail flutter analysis requires quadratic mode shape components as input, which are not commonly determined in ground vibration testing or finite element normal modes analyses, methods for measuring or calculating quadratic mode shape components for general structures were developed.

1.4 Layout of the thesis

In the following sections an overview of the relevant literature is given, followed by a summary of the contribution of the present study. Recommendations for further improvement are given. The articles on which this thesis is based are presented in the Appendix.
2 LITERATURE SURVEY

2.1 The doublet lattice method

The doublet lattice method (DLM) is the *de facto* standard method for calculating unsteady air loads for aeroelastic analyses. Rodden (1997) gives a comprehensive overview of the development of the DLM, which will not be repeated here. He describes the DLM as a finite element version of the kernel function method of Watkins et al. (1959), as opposed to the earlier “assumed pressure-mode methods”. The application of the assumed pressure-mode methods had to be extended one configuration at a time, e.g., for two lifting surfaces (Davies 1974, Stark 1964a) and for T-tails (Davies 1966, Stark 1964b). The DLM, on the other hand, could be applied to any configuration and was also applied to T-tails (Kalman et al. 1970). All of these T-tail applications were concerned with the calculation of the unsteady downwash matrix and did not consider the effect of steady-state loading on the horizontal tail plane.

Isogai and Ichikawa, however, developed an assumed pressure-mode method for wings oscillating in sideslip and yaw and for T-tail configurations, which takes the steady-state load distribution into account in the calculation of the unsteady loads (Isogai & Ichikawa 1973, Isogai 1974).

Lifting surfaces seldom occur alone – they are usually attached to a fuselage and may in turn have bodies attached to them, e.g., external stores such as fuel tanks, ordnance, or engines. The requirement to model bodies and lifting surface/body interference was addressed in the DLM by slender body theory and either an interference panel method (Giesing et al. 1971) or the method of images (Giesing et al. 1972a). The latter method is restricted to bodies of elliptical cross section and uses an un-tapered elliptical body to form the images of the lifting surfaces. The range of body shapes that can be modelled by this method is therefore limited.

Roos et al. (1977) describe a DLM that uses unsteady source panels on the body surfaces to model the flow about the bodies, along with a method of images to eliminate numerical problems at the attachment of the lifting surfaces to bodies. In their method the unsteady boundary conditions on the body surfaces are coupled to the steady flow solution through the second spatial derivatives of the steady disturbance velocity potential. However, this term resulted in numerical instabilities and was usually neglected (Bennekers et al. 1974). Even without this term they found good correlation with experimental results.

Chen et al. (1993) presented an advanced method for calculating unsteady aerodynamic loads on wing-body configurations. They avoided the numerical problems encountered by Roos et al. by
employing the body-fixed coordinate system of Garcia-Fogeda and Liu (1987). In addition, they modelled the separated wake behind blunt-based bodies. The effect of the separated wake was shown to be significant for pitch damping calculations of blunt-based bodies. The lifting surface model employed by Chen et al. was, however, not a doublet lattice method, but a constant pressure panel method.

Liu et al. (1996) presented numerical results for a number of lifting surface cases comparing the constant pressure panel method results to DLM results. Apart from showing generally improved convergence of the constant pressure panel method compared to the DLM, they showed that the DLM produced erratic pressure distributions for a 70 degree delta wing example. They argued that the erratic behaviour of the DLM was due to its lower order (lifting line) compared to the constant pressure panel method. Van Zyl (1999) presented consistent DLM results for the delta wing case of Liu et al. to demonstrate that the erratic behaviour was not due to the fundamentals of the DLM, but rather to the implementation in the DLM code used by Liu et al. The relative merits of lifting line methods and the constant pressure panel method was the subject of debate between Chen et al. (2004) and Rodden (2005).

2.2 T-tail flutter analysis

The loss of a British Handley Page Victor bomber in 1954 due to T-tail flutter prompted experimental and theoretical investigations into T-tail flutter. The accident occurred at a speed at which the aircraft had been flown before without incident. After the crash, bolts from the fin-tailplane junction were found to have fatigue failures, which may indicate that the fin-tailplane junction stiffness had been reduced (Baldock 1958). Further wind-tunnel tests and calculations performed on the Victor tail unit revealed the dependence of fin flutter speed on tailplane dihedral and static lift. In flutter flight testing of the second prototype and production models, rigging of the ailerons was used to change the trim load on the stabiliser in order to determine the effect of the trim load, and also reduce the actual flutter speed to fall within the aircraft flight envelope.

In the United States of America, T-tail configurations were chosen for cargo aircraft and jet-powered flying boats. The Glenn L. Martin company developed the P6M Seamaster strategic bomber flying boat with a T-tail and invested a significant effort in the flutter clearance of the T-tail (Kachadourian et al. 1958).

Pengelley et al. (1954) conducted a series of wind-tunnel tests to identify the parameters that affect T-tail flutter and to provide data for validating theoretical T-tail flutter predictions. They experimentally investigated the effects of mass and stiffness variations, but not trim load, on flutter.

A series of wind tunnel investigations into T-tail flutter characteristics of the C-141 cargo
aircraft was conducted by Ruhlin, Sandford and Yates from 1964 to 1975. In the first series of tests (Ruhlin et al. 1964) variations in stiffness of various structural elements and mass and inertia of the stabiliser were studied, in addition to seeking confirmation that the nominal design was flutter free within the intended flight envelope. Static load limitations on their model precluded a significant variation in trim load, a major factor in anti-symmetric T-tail flutter.

This aircraft did however encounter T-tail flutter due to non-linear aerodynamic effects (Livne & Weisshaar 2003), in particular symmetric stabiliser flutter was precipitated by substantial elevator deflections. Symmetric flutter of the stabiliser of a T-tail is not substantially different from that of a conventional stabiliser because of the limited in-plane motion. In this case both upward and downward elevator deflections precipitated flutter. The solution to this problem was to increase the elevator balance weights on the real aircraft, and this was also found to be effective on the model (Sandford & Ruhlin 1969).

Transonic effects on T-tail flutter of the C-141, and specifically the extent of the transonic dip for anti-symmetric flutter, were also investigated experimentally by Sandford et al. (1968) using the same model, but with a weakened fin spar. They found a substantial reduction in flutter dynamic pressure of 41% at Mach 0.7 compared to the low-speed value.

A similar study was conducted by Ruhlin and Sandford (1975) for an even larger cargo aircraft, the C-5, which also revealed a significant transonic dip (i.e., reduction in flutter dynamic pressure at transonic Mach numbers) between Mach 0.92 and Mach 0.98. The fin of this aircraft was stiffened as a result of this investigation (Cole et al. 2003).

McCue, Gray and Drane specifically investigated the effect of stabiliser incidence (i.e., trim load) on the flutter behaviour of a T-tail model (McCue et al. 1968, Gray & Drane 1974). They correlated their experimental results with analytical results obtained from Davies’s theory (Davies 1966), augmented by the addition of the following aerodynamic terms:

a) a lateral component of the lift force caused by angular displacement of the tailplane in roll,

b) a rolling moment caused by angular displacement of the swept tailplane in yaw,

c) a rolling moment caused by angular velocity of the tailplane in yaw, and

d) a rolling moment caused by lateral velocity of the tailplane.

In their experimental setup the pitch angle of the whole model was adjusted to achieve the desired tailplane angle of attack. This is not the same as changing the incidence of the tailplane relative to the fin. For nose up pitch angles of the model, the fin would generate a restoring rolling moment if the fin was displaced in roll, whereas for nose down pitch angles the fin would generate a divergent rolling moment. This “weathercock” tendency of the fin was not considered in their analysis.
Jennings and Berry (1977) conducted a series of wind-tunnel tests to investigate the effect of stabiliser dihedral and steady-state lift on T-tail flutter. In this case the tailplane incidence could be changed relative to the fin, thereby eliminating the weathercock tendency of the fin. They adapted strip theory to calculate a similar set of additional aerodynamic forces using the concepts of Queijo (1948, 1968). Queijo used lifting line theory and the interaction between the air flow and spanwise as well as chordwise bound vortices to calculate the forces and moments on wings executing in-plane motions.

Rodden (1978) pointed out that the yawing moment due to roll rate, which was neglected by Jennings and Berry, is of the same order of magnitude as the rolling moment due to yaw rate. Suciu (1996) also used strip theory to calculate additional loads to augment DLM results and also neglected the yawing moment due to roll rate. Suciu’s method allows for modelling of transonic effects by factoring of individual elements of the influence coefficient matrix, based on empirical data.

Wind-tunnel testing of the Tu-154 airliner empennage also revealed a strong dependence of flutter speed on stabiliser deflection. A distinction was made between varying the angle of attack of the entire model and changing the stabiliser incidence angle relative to the fin, while keeping the model incidence fixed. However, the differences between the corresponding flutter speeds were small. Chuban (2005) investigated a procedure for modelling this effect, focusing on induced drag, and achieved good correlation between theoretical and experimental flutter speeds. Results were however only presented for upward trim loads, resulting in reduced flutter speed compared to zero trim load.

The broad approach of augmenting generalized forces calculated using lifting surface theory by additional unsteady aerodynamic loads was also used by Quaranta et al. (2005) in an optimization study of a T-tailed aircraft.

2.3 Quadratic mode shape components

The concept of quadratic mode shape components was introduced by Segalman and Dohrmann (1990) to facilitate the rigorous treatment of vibrations of rotating flexible structures. The method was also applied to buckling problems (Dohrmann & Segalman 1996) and further examples are given by Segalman and Dohrmann (1996) and Segalman et al. (1996).

The method proposed by Segalman et al. for computing quadratic mode shape components requires multiple non-linear, finite element, static deflection analyses. The loadings are derived from the linear mode shapes, multiplied by the mass matrix of the structure.
The method of quadratic mode shape components was applied to T-tail flutter analysis by Van Zyl et al. (2007, 2009). Following the lead of Van Zyl et al., Jung et al. (2008) applied the quadratic mode method to the fluid-structure coupling of a high aspect ratio wing.

No other reference to the application of the quadratic mode method to airplane aeroelasticity could be found.

2.4 Fluid-structure interaction

Computational Fluid Dynamics (CFD) codes generally do not need special treatment to calculate all the unsteady aerodynamic loads required for T-tail flutter analysis. In addition, CFD is the only practical and reliable means of accounting for transonic effects, which have been shown to be significant for T-tail flutter.

Meijer et al. (1998) applied the NLR’s AESIM system to the flutter analysis of a transport-type, T-tail fuselage configuration. The AESIM system encompasses flow solvers of varying fidelity, up to a thin-layer Navier-Stokes (TLNS) solver. The structural dynamics model, however, only allows for linear mode shapes.

Transonic Euler solutions for a T-tail flutter model were presented by Arizono et al. (2007). They also used a modal representation of the structural dynamics of the model. For the wall-mounted T-tail flutter model there was no need to consider the aeroelastic trim problem.

A complete CFD-based T-tail flutter solution of a free-flying aircraft, including solution of the trim load and static deformation, was presented by Attorni et al. (2011). Apart from the flow separation issue, mentioned in relation to the C-141 cargo airplane, this represents the ultimate T-tail flutter solution. The one major deficiency in their method is the use of a linear modal displacement model.

The effect of shock-induced flow separation on T-tail flutter (Ruhlin & Sandford 1975), is still a challenge and Euler solutions, which are popular for aeroelastic analyses, would not be sufficient to capture this effect. At least a TLNS solver, as implemented in the AESIM system of NLR, would be required.
3 CONTRIBUTIONS OF THE STUDY

The original contributions of the present study to the different aspects of T-tail aero-elasticity are summarised in the following sections, with reference to the literature survey and the appended articles. Extracts from the articles as well as additional examples are presented to illustrate the contributions.

3.1 Robustness of the DLM

The DLM has been criticized in the literature for a lack of robustness. Liu et al. (1996) presented erratic unsteady DLM results for a pitching delta wing. This author found that his version of the DLM did not produce erratic results and published results for the same cases showing well-behaved DLM results (Van Zyl 2003). This article is included in the Appendix as Article I.

Chen et al. (2004) also presented erratic DLM results, calculated using the N5KQ code (Rodden et al. 1998), for a 70 degree delta wing at a steady angle of attack. Knowing that the erratic behaviour did not apply to the DLM in general, and that it also appeared for steady flow cases, the error in the DLM code used by Liu et al. was traced to the steady downwash calculation in the DLM code N5KA (Giesing et al. 1972b). The same routine is also used in the N5KQ code. The delta wing results presented by Chen et al. are reproduced in Figure 1. Results for the same case, analysed using the original N5KA code and a corrected version, are shown in Figure 2. The erratic behaviour of the original code reported by Chen et al. is accurately reproduced, and the corrected version eliminates the erratic behaviour. The identification of the programming error and this correction, therefore, resolve the robustness issue.
Figure 1: Steady-state lifting pressure profiles on a 70 degree delta wing at $M = 0.8$, from Chen et al. (2004), reprinted with permission of the American Institute of Aeronautics and Astronautics.
Figure 2: Steady-state lifting pressure profiles on a 70 degree delta wing at $M = 0.8$, calculated using the original and the corrected N5KA codes.
3.2 Wing-body modelling using the DLM

T-tail empennages are always attached to fuselages. Therefore, the modelling of bodies and the aerodynamic interference between bodies and lifting surfaces have a significant effect on the overall accuracy of the aeroelastic analysis of T-tail configurations. A doublet lattice method for modelling wing-body combinations in subsonic unsteady flow was described by Van Zyl (2008). This article is included in the Appendix as Article II.

The body and wing-body interference models in the popular implementations of the DLM are limited in the body shapes that could be modelled. In the case of the N5KA and the improved N5KQ codes (Giesing et al. 1972a, Rodden et al. 1998), the DLM versions implemented in MSC/NASTRAN, the body shape is limited to an elliptical cross section. The body flow field is modelled by axial singularities and the interference flow by the method of images. A body tapering to the rear would also lead to numerical problems because the trailing vortices from the image panels would penetrate the body surface.

In the present study, a surface panel body model, similar to that of Roos et al. (1977), was implemented in a DLM code. The more general boundary condition that is required for the body surface panels was also applied to the lifting surfaces.

Instead of the single strip image used by Roos et al., a two-strip image is used in the present method. The first image strip is intended to form a mirror image of the first actual strip of the lifting surface attached to the body, in order to minimize the induced velocities normal to the body surface. The second image strip is intended to move the trailing vortex to a convenient location to exit the body, thereby eliminating the problem with tapering rear bodies.

A separated wake model, based on the method of Chen et al. (1993), was also added to the DLM. Chen et al. showed that the separated wake flow has a significant effect on the pressure distribution over a blunt-based body. They used a point source in the wake region to model the steady wake flow and an unsteady velocity potential doublet to model the unsteady wake flow. Their method also enforces a constant, optionnally user specified, base pressure. In the present implementation both a steady and an unsteady point source, and a steady and an unsteady doublet, are used to model the base flow. This allows for consistency between quasi-steady pressure distributions (the difference between two steady solutions) and unsteady solutions at zero frequency. In addition, an unsteady base pressure is calculated as part of the solution instead of being forced to be zero.

The steady-state and unsteady flow fields around bodies are coupled through the non-linear expression for the pressures on body surface panels. In order to obtain the correct unsteady
pressure distribution over a body, it is therefore necessary that the steady pressure distribution is known. A steady flow solution sequence was added to the DLM, which uses the same geometry definition as the unsteady solution sequence. For the sake of the steady solution sequence, camber of lifting surfaces and angle of attack and sideslip of the whole configuration can be specified.

In addition to improving the fidelity of the modelling of wing-body combinations, the development of a DLM for wing-body combinations also encompassed two important steps towards a DLM for T-tails, viz. the more general boundary condition and the steady flow solution sequence. The more general boundary condition is required for T-tails as it takes account of the dihedral/yaw coupling and the in-plane motion of the HTP. The steady-state load distribution on the HTP of a T-tail has a significant effect on a T-tail flutter, therefore the steady solution is required for calculating the unsteady air loads on a T-tail.

3.3 T-tail aeroelasticity

The DLM for wing-body configurations of Van Zyl (2008) was extended to calculate generalised forces for T-tail flutter analysis. The method is described by Van Zyl and Mathews (2011) and is included in the Appendix as Article III. The DLM for T-tails implements two further elements necessary for T-tail flutter analysis:

a) the way in which unsteady forces on lifting surface boxes are calculated was changed to incorporate the concepts of Queijo (1968), and
b) the quadratic mode shape components were taken into account in the calculation of the generalised aerodynamic forces.

The method of Queijo is commonly used to calculate most of the aforementioned additional unsteady aerodynamic loads on the HTP of T-tail configurations, viz.

a) a rolling moment caused by angular displacement of the swept tailplane in yaw,
b) a rolling moment caused by angular velocity of the tailplane in yaw, and
c) a rolling moment caused by lateral velocity of the tailplane.

The downwash equation in the DLM is usually cast in a form that relates the induced downwash velocity to the pressure difference over an aerodynamic box (Giesing et al. 1971). In reality, the method calculates the downwash induced by an acceleration potential doublet line located at the box quarter-chord. The aerodynamic force is assumed to act at the centre of the acceleration potential doublet line. In the present method the acceleration potential doublet line is replaced by a corresponding quasi-steady horseshoe vortex and the forces on the aerodynamic box are calculated using the Kutta-Joukowski theorem. In applying the Kutta-Joukowski theorem, the motion of the horseshoe vortex elements are taken into consideration and the forces on the chordwise-bound
vortices are also calculated. All of the aforementioned HTP forces, as well as the lateral component of the trim load due to angular displacement in roll, the incremental normal force due to longitudinal motion of the HTP, and the yawing moment due to angular velocity in roll, are calculated by this procedure.

The essence of the quadratic modal displacement model is that the linear expression for the displacement of a point on a structure,

$$ x(t) = \sum_{i=1}^{n} q_i(t)u_i $$

is replaced by a quadratic expression (Dohrmann & Segalman 1996)

$$ x(t) = \sum_{i=1}^{n} q_i(t)u_i + \sum_{i=1}^{n} \sum_{k=1}^{n} q_i(t)q_k(t)g_{ik} $$

where the q_i are the generalised coordinates, the u_i are the linear mode shape components and the g_{ik} are the quadratic mode shape components.

The need to consider the quadratic mode shape components in T-tail flutter analysis is illustrated by the example of a rigid T-tail with height h, hinged at its base with torsional stiffness K_t about the hinge line, and mass moment of inertia I_{xx} about the hinge line. The hinge line is parallel to the flow. We consider the case of an HTP generating an upward load of constant magnitude F, with the HTP (and the force) rolling with the fin. The load acts at the junction of the fin and the HTP, as illustrated in Figure 3.

![Figure 3: Rear view of the hypothetical T-tail](image-url)
The force will have no effect on the dynamics of the T-tail because the force always acts through the hinge line. However, when we analyze the T-tail using Lagrange’s equation and a linear modal displacement model, we get a different result. Lagrange’s equation applied to the T-tail simplifies to

\[I_{xx} \ddot{\theta} + K_\theta \theta = Q \]

where \(\theta \) is both the angular deflection of the fin in radians and the generalised coordinate, and \(Q \) is the generalized force defined by

\[\delta W = Q \delta \theta \]

\(\delta W \) is the virtual work that would be performed by the applied force if the fin was displaced through a virtual angular deflection \(\delta \theta \). The virtual work is given by the dot product of the force and the virtual displacement vectors, viz.

\[\delta W = \mathbf{f} \cdot \delta \mathbf{x} \]

According to the linear modal displacement model, the displacement and virtual displacement of the top of the fin are given in terms of the generalised coordinate by

\[\mathbf{x} = (0,-h \theta,0) \]
\[\delta \mathbf{x} = (0,-h,0) \delta \theta \]

The force is approximately equal to

\[\mathbf{f} = (0,-\theta F, F) \]

and the virtual work is equal to

\[\delta W = \mathbf{f} \cdot \delta \mathbf{x} = (0,-\theta F, F) \cdot (0,-h,0) \delta \theta = h F \theta \delta \theta \]

Comparing Eqs. (4) and (8) reveals that

\[Q = h F \theta \]

Substituting this expression for the generalised force into Lagrange’s equation, Eq. (3), gives

\[I_{xx} \ddot{\theta} + (K_\theta - h F) \theta = 0 \]
Therefore the T-tail is predicted to diverge if the product of the upward force magnitude, F, and the fin height, h, exceeds the torsional stiffness about the hinge line, K_t, which is incorrect.

According to the quadratic modal displacement model, the displacement and virtual displacement of the top of the fin are given by

$$\mathbf{x} = \left(0, -h\theta, -\frac{1}{2}h\theta^2\right)$$

$$\delta\mathbf{x} = (0, -h\theta, -\delta\theta)$$

The virtual work is equal to zero:

$$\delta W = \mathbf{f} \cdot \delta\mathbf{x} = (0, -\theta F, F) \cdot (0, -h\theta, -\delta\theta) = 0$$

The steady-state load is therefore predicted to have no effect on the dynamics of the T-tail, which is correct. In reality there will, however, be roll damping and a corresponding reduction in frequency with increasing dynamic pressure. The roll damping should be independent of the steady-state load.

This problem was analyzed using the DLM as well as the FSI code Edge (Eliasson 2001, Smith 2005). The latter is a typical FSI code using a linear modal displacement model. The quadratic mode method was implemented in the Edge code in a rudimentary fashion for this comparison.

The model parameters chosen for this study correspond to an existing wind-tunnel model and are as follows: fin height (h) 0.3 m, HTP span 0.5 m, fin and HTP chord 0.1 m, mass moment of inertia about the hinge axis (I_{zz}) 0.052178 kg.m², and modal frequency 5 Hz. We consider three HTP incidences covering a range over which linear aerodynamic behaviour of the wind tunnel model could be expected, viz. zero, -6° and +6°.

Three DLM solutions are considered:

a) The standard DLM, which ignores the steady-state load and calculates only roll damping (which is the correct result in this case).

b) The DLM with additional loads, in particular the lateral component of the steady-state load due to HTP roll. This is essentially equivalent to the method of Suciu (1996), and gives an erroneous result as illustrated above.

c) The T-tail DLM of Van Zyl and Mathews (2011), which includes the customary additional loads as well as accounting for the quadratic mode shape components in the calculation of generalized forces. This method yields the same results as the standard DLM, but for the right reasons.
For the Edge solution, a grid was generated with the base of the fin, i.e., the hinge line, on the axis of a cylindrical domain with a diameter of 2 m. Due to the axial symmetry of the setup, rotation of the T-tail should not change the pressure distribution on the T-tail. The Euler equations were solved using Edge for a free stream Mach number of 0.3. (The Edge code cannot solve for incompressible flow.)

The analyses consisted of a steady-state solution, followed by a prescribed, sine-squared, disturbance of 0.03 radians (corresponding to 9 mm lateral displacement at the fin tip), followed by a coupled time-domain simulation. The Edge results for the linear and quadratic modal displacement models, respectively, are presented in Figures 4 and 5. In the case of the linear modal displacement model, the T-tail response is significantly affected by the HTP incidence. The free vibrations have significantly different frequencies with an upward steady-state load resulting in a much reduced frequency, which is consistent with the result of the analytical study. In the case of the quadratic modal displacement model, the response is much less affected by the angle of incidence of the HTP, with all three responses having practically the same frequency. Due to a degree of asymmetry in the grid, the steady-state load did not act perfectly through the hinge line, resulting in a slight offset of the equilibrium position.

The damping and frequency of each response were extracted from the Edge results and compared to the DLM results in Figures 6 and 7. The lines are labelled according to the results of the DLM with customary additional HTP loads, but without considering the quadratic mode shape components. The 0° line represents the only correct solution for all three incidence angles. The Edge results for the three incidence angles using the linear modal displacement model fall close to the respective erroneous DLM results, whereas the Edge results for the three incidence angles using the quadratic modal displacement model lie on the 0° line.

It has been shown that the quadratic mode method is effective and essential for T-tail flutter analysis. The method has been fully implemented in the DLM and demonstrated in an FSI code.

In addition to the problem of calculating unsteady generalised aerodynamic forces, T-tail flutter analysis also requires the solution of the static aeroelastic trim problem. The present DLM was written in such a way that it can be invoked iteratively from the flutter solver, instead of calculating tables of generalised forces at predetermined conditions (Van Zyl, 2011).
Figure 4: Edge results for the hypothetical T-tail with three different HTP incidence angles using a linear modal displacement model

Figure 5: Edge results for the hypothetical T-tail with three different HTP incidence angles using the quadratic modal displacement model
Figure 6: DLM frequency results for the hypothetical T-tail with three different HTP incidence angles, with Edge results superimposed.

Figure 7: DLM damping results for the hypothetical T-tail with three different HTP incidence angles, with Edge results superimposed.
3.4 Quadratic mode method

The present study introduced T-tail flutter analysis as a new application for the quadratic mode method of Segalman and Dohrman (1990) and also contributed three new ways of determining the quadratic mode shape components: calculating them using linear finite element analysis, the subject of the article included in the Appendix as Article IV, and measuring them in a sine-dwell GVT or estimating them from the linear mode shape components, described in the article included in the Appendix as Article V.

The application of the quadratic mode method to T-tail flutter was fully implemented in a DLM code and also demonstrated in a rudimentary fashion in an FSI code. In both instances the method yielded the expected results.

A method for determining quadratic mode shape components from linear finite element analysis, using energy considerations, was initially developed for truss structures. In addition, a method for calculating residual higher order stiffness terms was developed. Several examples confirmed the validity of the method. The method was subsequently implemented in MSC/NASTRAN for more general structures in the form of a DMAP Alter.

The method for measuring quadratic mode shape components in a sine-dwell ground vibration test is based on a simple expression for the quadratic mode shape component involving the mean offset and second harmonic of the accelerometer output. The method was successfully implemented and tested on a simple test piece, but is expected to have limited applicability due to the low signal levels of the mean offset and the second harmonic of the accelerometer outputs, compared to the first harmonic components. The method is also only capable of measuring the quadratic mode shape components of individual modes.

An approximate method for estimating the quadratic mode shape components from the linear mode shape components was therefore developed. This method treats the connections between measurement nodes, used to visualise mode shapes, as inextensible structural members in order to calculate the quadratic mode shape components.

3.5 Experimental work

An experimental investigation of the effect of the steady-state load on the HTP of a T-tail was undertaken, similar to the many studies mentioned in the literature survey. It was not possible to compare calculated results with these earlier experiments because insufficient data were presented to perform the calculations. Due to editorial restrictions of the specific journal, sufficient information for the model of this study could also not be published in the article included as Article
The model used in this investigation had a stiff horizontal tail plane, thereby eliminating the uncertainty of the static deflection of the HTP. The main focus was on the aerodynamic effects of the trim load. The plan forms of the fin and horizontal tail plane were loosely based on that of the A400M transport aircraft. The torsional flexibility was mainly confined to the fin, while the “bending” flexibility was mainly confined to the support system, which is shown in Figure 8. The base of the support system was bolted to the wind-tunnel floor. The upper beam of the support system, to which the fin of the T-tail was bolted, was supported by four flexible plates. This arrangement provided a stiff support in all translational degrees of freedom and in pitch and yaw, while allowing flexibility in roll. The stiffness in roll could be changed by changing the width and thickness of the flexible plates. The mounting system also contained a brake mechanism which could be used to stop flutter of the model.

The internal structure of the model is shown in Figure 9. The fin structure consisted of Aluminium ribs and spars and was covered with plastic film. The horizontal stabiliser structure consisted of steel tube spars and steel ribs and was covered with Balsa wood. A steel tube pivot connected the stabilisers to each other and to the fin. The fin tip fairing contained an electrically powered linear actuator which was used to change the stabiliser incidence. The stabilisers had non-symmetric NACA 23015 profiles to enable larger lift coefficients to be achieved without stalling, and could be mounted either upright or upside down.

The output of the tests was flutter speed as a function of stabiliser incidence. Flutter speed was expressed as equivalent air speed, which was calculated from the dynamic pressure measured in the wind-tunnel test section. For each HTP incidence angle a flutter speed uncertainty range was determined. The lower end of the range was the highest speed at which the model did not flutter, even with an initial disturbance. The upper end of the range was the lowest speed at which the model fluttered without any initial disturbance apart from the natural wind tunnel turbulence. The range was seldom more than 1 m/s and never more than 2 m/s.

There are two sets of results in the article, one for the stabiliser mounted upright and one for the stabiliser mounted upside down. As a matter of interest, all the data are plotted against stabiliser lift coefficient in Figure 10 and is seen to converge. The correlation between predicted and measured flutter speed was satisfactory, varying between 8% over-prediction and 2% under-prediction of flutter speed over the range of incidence angles tested.
Figure 8: T-tail flutter model mounted on its support system during the GVT

Figure 9: Internal structure of the T-tail flutter model
Figure 10: T-tail flutter model flutter speed vs. stabiliser lift coefficient
The geometry of the T-tail flutter model is defined in terms of chord line leading edge coordinates and chord lengths in Table 1. The $z = 0$ reference plane of the global coordinate system was the tunnel floor and the $y = 0$ reference plane coincided with the vertical tunnel centre plane. The streamwise coordinate, x, was defined as positive downstream, the vertical coordinate, z, as positive upward and the lateral coordinate, y, as positive to the right.

Table 1: T-tail flutter model chord lines

<table>
<thead>
<tr>
<th>Chord line</th>
<th>x [m]</th>
<th>y [m]</th>
<th>z [m]</th>
<th>Chord [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fin root</td>
<td>0.000</td>
<td>0.000</td>
<td>0.217</td>
<td>0.425</td>
</tr>
<tr>
<td>Fin tip</td>
<td>0.324</td>
<td>0.000</td>
<td>0.714</td>
<td>0.425</td>
</tr>
<tr>
<td>Fin tip fairing root</td>
<td>0.324</td>
<td>0.000</td>
<td>0.714</td>
<td>0.528</td>
</tr>
<tr>
<td>Fin tip fairing tip</td>
<td>0.324</td>
<td>0.000</td>
<td>0.812</td>
<td>0.528</td>
</tr>
<tr>
<td>Stabiliser root</td>
<td>0.375</td>
<td>0.000</td>
<td>0.763</td>
<td>0.363</td>
</tr>
<tr>
<td>Stabiliser tip</td>
<td>0.838</td>
<td>± 0.625</td>
<td>0.763</td>
<td>0.100</td>
</tr>
</tbody>
</table>

The first three mode shapes and corresponding modal properties of the model were measured using a sine-dwell test technique. The modal properties are listed in Table 2.

Table 2: Modal properties of the T-tail flutter model

<table>
<thead>
<tr>
<th>Mode no.</th>
<th>Description</th>
<th>Frequency [Hz]</th>
<th>Damping ratio</th>
<th>Modal mass [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First fin bending</td>
<td>2.621</td>
<td>0.0062</td>
<td>3.947</td>
</tr>
<tr>
<td>2</td>
<td>Fin torsion</td>
<td>4.641</td>
<td>0.0211</td>
<td>3.589</td>
</tr>
<tr>
<td>3</td>
<td>Second fin bending</td>
<td>13.695</td>
<td>0.0345</td>
<td>3.366</td>
</tr>
</tbody>
</table>

The mode shapes were approximated by polynomials expressed in a local coordinate system for each element. The origin of each local coordinate system is at the root leading edge of the element; the chordwise coordinate, ζ, is normalized by the root chord, and the spanwise coordinate, η, is normalized by the span of the element. The polynomial approximations to the linear mode shape components are given in Eqs. (13) to (44). The displacements in these expressions are in the global coordinate system and subscripts denote the mode number corresponding to Table 2.
Fin

\[\xi = x / 0.425 \] \hspace{1cm} (13)
\[\eta = (z - 0.217) / 0.497 \] \hspace{1cm} (14)
\[y_1 = -0.106510 - 0.558676\eta + 0.079981\xi\eta - 0.509418\eta^2 \] \hspace{1cm} (15)
\[y_2 = 0.002565 + 0.575753\eta - 1.409752\xi\eta + 1.265927\eta^2 \] \hspace{1cm} (16)
\[y_3 = 0.049624 + 0.856267\eta - 1.075774\xi\eta + 1.267945\eta^2 \] \hspace{1cm} (17)

Fin tip fairing

\[\xi = (x - 0.324) / 0.528 \] \hspace{1cm} (18)
\[\eta = (z - 0.714) / 0.098 \] \hspace{1cm} (19)
\[y_1 = -1.113630 + 0.099365\xi - 0.180162\eta \] \hspace{1cm} (20)
\[y_2 = 0.769517 - 1.751409\xi + 0.227724\eta \] \hspace{1cm} (21)
\[y_3 = 1.353715 - 1.336491\xi - 0.329526\eta \] \hspace{1cm} (22)

Right stabiliser

\[\xi = (x - 0.375) / 0.363 \] \hspace{1cm} (23)
\[\eta = y / 0.625 \] \hspace{1cm} (24)
\[x_1 = -0.117620\eta \] \hspace{1cm} (25)
\[y_1 = -1.194113 + 0.068313\xi \] \hspace{1cm} (26)
\[z_1 = 1.148991\eta \] \hspace{1cm} (27)
\[x_2 = 2.073164\eta \] \hspace{1cm} (28)
\[y_2 = 0.714209 - 1.204094\xi \] \hspace{1cm} (29)
\[z_2 = -1.452323\eta \] \hspace{1cm} (30)
\[x_3 = 1.582021\eta \] \hspace{1cm} (31)
\[y_3 = 1.059859 - 0.918838\xi \] \hspace{1cm} (32)
\[z_3 = 2.101571\eta \] \hspace{1cm} (33)

Left stabiliser

\[\xi = (x - 0.375) / 0.363 \] \hspace{1cm} (34)
\[\eta = -y / 0.625 \] \hspace{1cm} (35)
\[x_1 = 0.117620\eta \] \hspace{1cm} (36)
\[y_1 = -1.194113 + 0.068313\xi \] \hspace{1cm} (37)
\[z_1 = -1.148991\eta \] \hspace{1cm} (38)
\[x_2 = -2.073164\eta \] \hspace{1cm} (39)
\[y_2 = 0.714209 - 1.204094\xi \] \hspace{1cm} (40)
\[z_2 = 1.452323\eta \] \hspace{1cm} (41)
\[x_3 = -1.582021\eta \] \hspace{1cm} (42)
\[y_3 = 1.059859 - 0.918838\xi \] \hspace{1cm} (43)
\[z_3 = -2.101571\eta \] \hspace{1cm} (44)
4 CONCLUSION

4.1 Consolidation of the work done

The aim of the present study was to develop linear methods for the flutter analysis of T-tail configurations that would address the shortcomings of the widely used DLM. The new methods were implemented in a DLM code (Van Zyl & Mathews 2011).

The choice of the DLM as the basis for this development could be questioned in the light of allegations that the DLM lacked robustness (Liu et al. 1996, Chen et al. 2004). The robustness of the DLM was therefore asserted through two journal articles (Van Zyl 1999, Van Zyl 2003). The error in the DLM code that was used to question the robustness of the DLM was identified and corrected.

In recognition of the fact that lifting surfaces in general, and T-tail empennages in particular, usually occur in conjunction with fuselages and possibly other bodies, an improved body model and wing-body interference model for the DLM were developed (Van Zyl 2008). This DLM code was used as the basis for the enhanced DLM for T-tails.

The main drawback of the standard DLM, when applied to T-tail configurations, is that in-plane loads (i.e., loads in the plane of the HTP), loads caused by in-plane motion of the HTP, and the effect of the steady-state load distribution on the HTP are not accounted for. This deficiency is well known and the usual way of compensating for it is to calculate additional unsteady aerodynamic loads outside of the DLM. In the present DLM these loads are accounted for through a more general boundary condition and using the Kutta-Joukowski theorem to calculate the loads on aerodynamic boxes. By eliminating the need to calculate additional aerodynamics forces outside of the DLM, the human effort required for a T-tail flutter analysis as well as the opportunities for introducing errors into the analysis are reduced.

One of the additional loads that are typically added to standard DLM results is the unsteady lateral force resulting from the rotation of the steady-state load (trim load) on the HTP. It has hitherto not been recognised that this force leads to spurious generalised unsteady aerodynamic forces unless the curved path of motion of the horizontal tail plane is taken into account. The spurious generalised forces are of the same order of magnitude as the generalised forces associated with the additional loads that are customarily added to the DLM results. The quadratic mode method (Segalman & Dohrmann 1990) was implemented in the present DLM to account for the curved path of motion of the HTP.

The present DLM for T-tails can analyse T-tail configurations with the same accuracy and for a similar effort as conventional configurations, provided that the quadratic mode shape components
are available. The means for obtaining quadratic mode shape components were hitherto limited to integration of the angular deflection of simple structures such as beams, and using multiple, non-linear, finite element analyses for general structures (Segalman & Dohrmann 1996, Segalman et al. 1996). Alternative means for obtaining quadratic mode shape components were developed, viz. measuring them in a GVT, estimating them from the linear mode shape components, and calculating them using linear finite element analysis.

4.2 Aspects meriting further investigation

The present DLM is still limited in its application by transonic effects and flow separation. In view of the increase in computational power, the appropriate way of performing transonic T-tail flutter analysis is using FSI methods. These methods calculate the correct pressure distribution on the HTP of T-tail configurations without special treatment, but they are subject to the same potential errors as the DLM in calculating the unsteady generalised aerodynamic forces. It would therefore be required to implement the quadratic mode method in an FSI code in order to obtain reliable transonic T-tail flutter analysis results.

The aeroelastic challenges of the joined wing configuration are currently attracting considerable attention. According to Demasi and Livne (2005) the aeroelastic analysis of joined wing configurations requires non-linear analysis due to, amongst others, the compressive stress in the rear (upper) wing. The quadratic mode method should in principle be able to model the effects of this compressive stress without resorting to non-linear analysis. An investigation of the applicability of the quadratic mode method to this configuration seems warranted.
REFERENCES

Segalman, D.J. & Dohrmann, C.R. 1990, Dynamics of Rotating Flexible Structures By a Method of Quadratic Modes, Sandia National Laboratories, Albuquerque, NM.

Stark, V.J.E. 1964a, Calculation of aerodynamic forces on two oscillating finite wings at low supersonic Mach numbers, Svenska Aeroplan Aktiebolaget, Linköping, Sweden.

APPENDIX: Copies of Journal Articles
Intentionally left blank
Article I

Reproduced by kind permission of The Royal Aeronautical Society's *The Aeronautical Journal*.
Permission from the production editor of The Aeronautical Journal

Subject: RE: reprint permission
Created By: Wayne.Davis@aerosociety.com
Scheduled Date:
Creation Date: 11/10/2011 14:21
From: "Wayne Davis" <Wayne.Davis@aerosociety.com>

Dear Mr Van Zyl

Thank you for your enquiry. This email serves as a sufficient request to us to use your paper from 2003.

I am pleased to grant you permission to use the paper ‘Robustness of the subsonic doublet lattice method’ from the May 2003 Aeronautical Journal 107, pp 257-262 on the clear understanding that The Royal Aeronautical Society and its Aeronautical Journal are referenced.
Please also credit us with a line similar to;
Reproduced by kind permission of The Royal Aeronautical Society's Aeronautical Journal.

Kind regards

Wayne

Wayne J Davis
Production Editor

Aeronautical Journal | Aerospace International
Royal Aeronautical Society
4 Hamilton Place
London W1J 7BQ

+44(0)20 7670 4354
+44(0)20 7670 4309
Dear Mr Davis

I apologize if this request is not your responsibility and would appreciate it if you could forward it to the appropriate person.

I would like to include a paper of mine, which appeared in The Aeronautical Journal in May 2003, in my PhD thesis. I expect that there is a standard procedure for obtaining permission to re-use a paper for such purposes, but I have not been able to find it. Does that journal have a standard form for requesting this permission, or do I need to write a letter to someone (some old information indicate a Mr C S Male)?

Thank you in anticipation

Best regards

Louw van Zyl
Guidelines for authors of The Aeronautical Journal

The information on the following page was taken from

http://www.aerosociety.com/Assets/Docs/Publications/Instructions%20for%20authors%20COLOUR.pdf

accessed on 29 September 2011.
THE AERONAUTICAL JOURNAL

Instructions for authors

CORRESPONDING AUTHORS

The author willing to handle correspondence at all stages of refereeing, production and post-production stages should be indicated clearly on the covering letter. Their full name, full postal address, telephone and fax numbers should be included with their e-mail address.

PREPARATION OF PAPERS

General

Initial submissions must comprise a PDF, MS Word or LaTeX file including figures. These must be sent to the Editor either by e-mail or posted disk. E-mail and postal addresses for submissions can be found at the bottom of the cover sheet. The accompanying letter must include a request for publication and state that the work has not been published previously or submitted for publication elsewhere. The author is invited to suggest three appropriate referees and a suitable Associate Editor to handle the submitted manuscript. The receipt of papers will be acknowledged by return, with a copy of these conditions and a reference number which should be used in all correspondence.

The RAeS awards The Young Person’s Written Paper Prize for the best paper published in Journal. If you wish to consider this for the prize, please indicate this when you submit your paper.

Prior to submission, manuscripts should be read critically by a third party who is familiar with the subject area and has a good grasp of the English language, if the paper originates from non-English speaking author(s). Authors must also obtain permission where necessary to use any material in a paper which is copyright or the property of any other person or entity, including their employers. Any facts included are the sole responsibility of the author(s). The paper will also be published on the Internet. The Aeronautical Journal is marketed and sold internationally.

There exists the option of having papers published in colour in the paper version. This can be carried out for a fee agreed and invoiced before publication. All papers appear in colour on the RAeS website.

Figures

All figures must be provided by the author(s) and must be included with the initial manuscript. Hand drawings should be avoided. Drawings considered unsuitable for publication will be returned with a request for them to be restyled electronically. All figures should be numbered and given captions. References to figures in the text should be referred to as: Fig. 1, Figs. 2 and 3, or Figure 4 if the start of a sentence.

Photographs should be provided electronically and scanned at 300dpi. Graphs, tables, charts etc. should be at least 150dpi. Figures and photos are accepted in the following formats: JPEG, TIF and EPS.

STYLE GUIDELINES

Papers must be in English and should comply with the structural guidelines below and should preferably not exceed 10,000 words. The following is the recommended generic format:

Title: The title should be kept short and concise.

Authors names and affiliations: Names should be presented in the order they should appear on the published paper. Each author’s organisation to which they are associated should be included with accompanying address. Please note that this will be published along with authors’ email addresses.

Abstract: An abstract of around 150 words which summarises the paper and contains no references.

Nomenclature: A list of all symbols and abbreviations used in the text and figures, whether familiar or not, should be given in alphabetical order, for example, b before G and all English letters listed before Greek symbols. Subscripts and superscripts should be listed separately where possible. SI units should be used throughout.

Introduction: Discuss the raison d’être of the work, including previous work by others and how the work presented aims to advance or complement this.

Equations: Equations must be numbered in brackets (…) Each equation should be produced electronically in Word preferably using Equation Manager or MathType. Variables should be in italics. Constants should be in plain text. Vectors and matrices should be in plain text but bold. Cos, Sin, Tan should begin in capitals and be in plain text.

Conclusions: This section should be very concise and bullet points are recommended for clarity. The degree to which the aims have been achieved should be portrayed clearly to the reader. Suggestions for future work or comments on work in progress are encouraged.

References: References should be numbered sequentially in the text as they occur and placed at the end of the manuscript. For example, most commonly for papers and reports. They should be presented as follows:

1. Miller, P. and Wilson, M. Wall jets created by single and twin high pressure jet impingement, Aeronaut J, March 1993, 97, (361), pp 87-100.
2. Green, J.E., Wells, D.J. and Strom, J.W.F. Prediction of turbulent boundary layers and wakes in compressible flow, ARC R&N No 3791, 1979, and for books,

Appendices: If no suitable reference is available appendices may be used to clarify certain points, such as a step in the theoretical analysis.

Tables: Tables should have a number and a caption. Each table should be cited in numerical order in the text.

TECHNICAL NOTES

These can be up to 2,000 words in length and have no set form. They can be abstracts, comments upon unpublished papers, notes on interim results or a call for further research. They do not have to contain figures or references and may be in the form of a letter. Manuscripts submitted in this category tend to be reviewed and published more quickly than a full paper.

THE REFEREEING PROCESS

A minimum of two referees are used for a paper and it is requested that authors suggest the names and addresses of three possible independent referees to review their paper although the Editor reserves the right not to use them. One copy of the manuscript is sent to each referee with a request for a thorough review.

Once both referees have replied, their comments are sent to the authors and if changes are recommended they are invited to revise the paper as suggested. It is helpful if all of those changes included by the author is provided with the revised version.

Unless a paper has been accepted as is by both referees, a revised manuscript will be sent once more to the referees. If the Editor feels, having considered the second reviews, that the authors have not responded adequately to the original reviews of the referees, then the paper will be rejected. Thus it is imperative that all comments are addressed properly by authors. A third referee may be appointed if the Editor thinks this is appropriate. The Editor ultimately reserves the right to reject a paper on grounds of quality or lack of co-operation from authors.

Acceptance

Once a paper is accepted, the authors will be invited to send the approved version of the text on CD-ROM or by e-mail. The preferred text format is Microsoft Word with separate individual electronic graphic files (JPEG, EPS or PDF files at 300dpi minimum) for any figures used. LaTeX files are also accepted. The positions of each equation should be indicated in the text.

Following acceptance

Approximately one month before publication, authors are sent page proofs for checking and should keep this in mind if likely to be away during this time. Authors should expect just a single set of proofs to be sent to them for checking. The Editor of The Aeronautical Journal reserves the right to publish a paper after just one set of corrections.

CONDITIONS OF PUBLICATION

Unless specifically attributed, no material in The Aeronautical Journal shall be taken to represent the opinion of the RAeS and its Council. Copyright lies with the publisher on publication.

Papers should be sent to:
The Editor-in-Chief, Royal Aeronautical Society, 4 Hamilton Place, London W1J 7BQ, UK or wayne.davies@raesociety.com

The Aeronautical Journal does not charge authors for publication of papers
Intentionally left blank
Articles II and III

Reproduced by kind permission of AIAA’s *Journal of Aircraft*.
Permission from the editor of Journal of Aircraft

Subject: RE: Permission to include journal papers in PhD thesis
Created By: MikeB@aiaa.org
Scheduled Date: Creation Date: 16/08/2011 21:47
From: Mike Baden-Campbell <MikeB@aiaa.org>

Louw,

The summaries require no permission, but the reprinting in entirety does. AIAA grants you permission to include your Journal of Aircraft articles referenced below in your Ph.D. thesis.

Sincerely,

Michael Baden-Campbell
AIAA Publications

From: Louw Van Zyl [mailto:lvzyl@csir.co.za]
Sent: Tuesday, August 16, 2011 2:47 AM
To: Mike Baden-Campbell
Subject: RE: Permission to include journal papers in PhD thesis

Dear Mike

The papers will be included verbatim in an appendix to the thesis and summarized in the body of the thesis.

Best regards

Louw

>>> Mike Baden-Campbell <MikeB@aiaa.org> 8/12/2011 6:15 PM >>>
Dear Louw van Zyl,

Sorry for the delay in responding. I am prepared to grant permission for you to include these papers in your thesis, but I’d like to know the manner in which you intend to do this before I can do so. Are you going to re-purpose the material, or print them verbatim as an appendix of sorts?

Mike
From: Louw Van Zyl [mailto:lvzyl@csir.co.za]
Sent: Thursday, July 28, 2011 9:22 AM
To: Mike Baden-Campbell
Subject: Permission to include journal papers in PhD thesis

Dear Mr Baden-Campbell,

I would like to include two complete papers of mine, published in Journal of Aircraft, in my PhD thesis. The thesis will be submitted to the North-West University of South Africa in November 2011 and may be published approximately 6 months later. According to the general academic rules of the university,

"A.8.8.3 The University is entitled to duplicate a thesis either physically or electronically, and to distribute or make available such copies."

If this is not acceptable to the journal it may be possible to restrict or delay the publication of the thesis. Alternatively the journal could determine a fee for unrestricted publication. In either case, the copyright notices will be retained.

The papers are:

and

Copies of the first pages of both papers are attached – these are previews obtained from the AIAA website.

Copies of the full papers are also attached, in this case the last page proofs that I have received for the respective papers.

I would appreciate it if you would consider this request and let me know under which conditions it may be possible.

Thank you in anticipation

Best regards

Louw van Zyl
Guidelines for authors of Journal of Aircraft

The information on the following pages were taken from

accessed on 27 July 2011. Note that the Journal of Aircraft is an AIAA journal.
Information for Contributors to Journals of the AIAA

General Requirements
Authors must submit their manuscripts on WriteTrack™, http://www.writetrack.net, AIAA’s Web-based manuscript submittal and tracking system. AIAA has prior publication rights to any paper presented at its meetings, but papers will be considered for journals only if the authors formally submit them. All manuscripts must be as brief and concise as proper presentation of the ideas will allow. The paper should be written in archival editorial style. Manuscripts must be in English (American spelling), double-spaced and single-column, with wide margins to allow for editorial instructions. A template is available on WriteTrack for authors who use Microsoft Word 6.0 or later.

Full-Length Papers
Full-Length Papers contain original, quantitative, detailed technical material, set into perspective relative to prior work and supported by literature references and specific technical accomplishments. A typical double-spaced Full-Length Paper will be approximately 10,000–12,000 words (including equations), where each normal-sized, single-column figure or table counts as 200 words. All manuscripts are expected to be as concise as possible.

Abstract
Each Full-Length Paper must include a 100- to 200-word abstract, written as a single paragraph. It should be a summary (not an introduction!) and complete in itself (no numerical references). Acronyms and abbreviations are not permitted. The abstract should indicate the subjects dealt with in the paper and should state the objectives of the investigation. Newly observed facts and conclusions of the experiment or argument discussed in the paper must be stated in summary form. Readers should not have to read the paper to understand the abstract. Neither the abstract nor the conclusions (see below) should contain equations, symbols, acronyms, or discussions of proposed future research. The abstract should be written using third person instead of first person (i.e., “The experiments were performed” versus “We performed the experiments…”).

Nomenclature
A Nomenclature section is required for papers containing more than a few symbols; nomenclature definitions then should not appear in the text.

Introduction
The paper also must include an Introduction—a brief assessment of prior work by others and an explanation of how the paper contributes to the field.

Conclusions
The Conclusions should stand alone without either references or referrals to the main text for more details. They must be logically drawn from the text but not be just a summary of the paper.

Survey Papers

Survey Papers are comprehensive reviews of the literature on a particular subject, typically 18,000–20,000 words in length. They do not contain abstracts but do contain biographies and photographs of all authors. The biographies are not to exceed 200 words each.

Lectures

Lectures are papers (usually invited) that received “distinguished lecture” status at an AIAA conference, such as the Dryden Lecture and the von Kármán Lecture.

Histories of Key Technologies

Papers covering the history of a particular aspect of aerospace technology (within the scope of each journal) may be published in this category.

Technical or Engineering Notes and Technical Comments

Short manuscripts may qualify for publication in one of these categories. *Notes*, approximately 2500 words, are intended for prompt disclosures of new, significant data or developments of limited scope; they do not have abstracts but do contain introductions and descriptions of results. *Comments* should relate to papers previously published by AIAA; they must not exceed 1200 words. Manuscripts submitted in these categories often are reviewed only by an editor and usually are published sooner than a Full-Length Paper.

Design Forum (Journal of Aircraft only)

Design Forum papers range from design case studies of actual or notional air vehicles, to presentation of new design methodologies, to analysis of emerging trends in the design world. They should be approximately 10,000–12,000 words and should include a 100–200-word abstract. Unlike regular Full-Length Papers, Design Forum papers do not undergo routine peer review, thus reducing the time from submission to publication.

Aerospace Letters (AIAA Journal only)

Aerospace Letters are brief communications (approximately 2000 words) that describe new and potentially important ideas or results, including critical analytical or experimental observations made in emerging research areas that justify rapid publication. The Introduction should contain a clear, concise explanation of what is new and important in the paper. Aerospace Letters will be stringently prescreened; only some will be selected for rapid review by an editor. Any Aerospace Letters requiring more than very minor revision will be declined, with no author rebuttals considered.
Titles and Authors’ Names

The title should be concise (maximum of 12 words), without the use of acronyms or abbreviations. The author’s name should appear below the title; the full name is preferred. The affiliation should follow on the next line, with the author’s official title and complete mailing address (including ZIP code) given in a footnote. This applies to all categories of papers.

Mathematics

Be sure to use correct symbols, including Greek characters. Subscripts and superscripts must be readily apparent. To save space, the solidus (/) must be used for fractions in the text and for simple fractions in displayed equations.

References

References must be limited to readily accessible documents, i.e., those available from libraries, databases, or other public sources. They are to be numbered in the order in which they are cited (not listed alphabetically) and grouped at the end of the manuscript in the following form:

Give inclusive page numbers for references to journal articles and a page or chapter for books. Cite references in numerical order in the text. Classified or export-restricted references, personal/private communications, personal Web sites, and Web sites where there is no commitment to archiving are not to be used as references. They may be cited in the text or in footnotes and the date of citation must be included.

Illustrations

Line drawings must be clear and sharp. Make sure that all lines and graph points are dark and distinct. Lettering should be large enough to be legible. Keep the lettering size and style uniform both within each figure and throughout all of your illustrations. Place captions beneath each figure, and position the figures within the text, close to where they are cited, if possible. Otherwise they may be
grouped at the end of the text. Cite each figure in numerical order in the text. Submit artwork in either EPS (Encapsulated PostScript) or TIFF format; PowerPoint and GIF are not acceptable.

Note: Color photographs may be published if the Editor-in-Chief or Associate Editor deems the use of color necessary for the sake of clarity. The author’s employer must pay the full in-cremental costs of color publication (minimum of $1200 for production costs, plus $75 per photograph for color separations; actual costs may vary).

Tables

Position a double rule at the top and bottom of each table and a single rule under the column headings. Table footnotes should be placed under the final double rule and should be indicated by letters, a, b, c, etc. Do not number table footnotes consecutively with text references. Each table must have a number and a caption. Place tables within the text, and cite each table in numerical order in the text.

Symbols and Units

Use standard symbols whenever possible, preferably those recommended by the American Standards Association. Metric or dual systems of units (metric and English) should be used, whenever possible, in accordance with an endorsement by the AIAA Board of Directors. Such use is mandatory only for AIAA Journal and Journal of Thermophysics and Heat Transfer, but all authors are urged to comply. For information on the International System of Units, see NAS 10001, which is the aerospace version of fundamental SI units, found in documents such as the following: NASA SP-7012, ASTM E 380-76, or IEEE Std 322 1971.

Multimedia

For the Journal of Aerospace Computing, Information, and Communication, multimedia files may be submitted to accompany the online manuscript. Use only the following formats for your multimedia attachments: .wmv, .xls, .html, .doc, .mp3, .gif, and .jpg. This option is not available for AIAA’s other journals.

Numerical and Experimental Accuracy

The AIAA journals will not accept for publication any paper reporting (1) numerical solutions of an engineering problem that fails adequately to address accuracy of the computed results or (2) experimental results unless the accuracy of the data is adequately presented.
Articles IV and V

Reproduced by kind permission of ASME's *Journal of Vibration and Acoustics.*
Permission from the editor of the Journal of Vibration and Acoustics

Subject: RE: REVISED: FW: ASME PUBLICATIONS PERMISSION REQUEST
Created By: DarchiB@asme.org
Scheduled Date:
Creation Date: 17/08/2012 15:55
From: Beth Darchi <DarchiB@asme.org>

Dear Mr. van Zyl:
I apologize for the typo. This permission has been revised to reflect all requests correctly. It is our pleasure to grant you permission to use the following ASME materials:

as cited in your letter for inclusion in a Doctoral Thesis entitled Advanced linear methods for T-tail aeroelasticity to be published by North West University, South Africa.

Permission is granted for the specific use as stated herein and does not permit further use of the materials without proper authorization. Proper attribution must be made to the author(s) of the materials, and no alterations of the materials is permitted in any material manner.

As is customary, we request that you ensure full acknowledgment of this material, the author(s), source and ASME as original publisher. Acknowledgment must be retained on all pages printed and distributed.

Many thanks for your interest in ASME publications.

Sincerely,

Beth Darchi
Permissions & Copyrights
ASME, 3 Park Avenue
New York, NY 10016
T: 212-591-7700
F: 212-591-7841
E: darchib@asme.org
Guidelines for Authors of the Journal of Vibration and Acoustics

The information on the following pages was taken from

http://journaltool.asme.org/Help/AuthorHelp/WebHelp/JournalsHelp.htm#Guidelines/Getting_Started.htm

accessed on 27 July 2011. Note that the Journal of Vibration and Acoustics is an ASME journal.
Writing a Technical Paper or Brief

Length
A research paper should not exceed 9000 words. Beyond this amount, a mandatory excess-page charge will be assigned. (These charges are described further in Publication Charges.) Estimating figures and tables: 1 journal page = 1000 words, half journal page (one column) = 500 words, half column = 250 words, quarter column = 125 words. The Editor reserves the right to send papers that exceed the length limitation back to the author(s) for shortening before initiating the review process.

Elements of a Paper or Brief
The basic elements of a paper or brief are listed below in the order in which they should appear:
- title
- author names and affiliations
- abstract
- body of paper, including figures and tables
- acknowledgments
- nomenclature
- appendices
- references

Title
The title of the paper should be concise and definitive.

Author Names and Affiliations
It is ASME policy that all those who have participated significantly in the technical aspects of a paper be recognized as co-authors or cited in the acknowledgments. Author name should consist of first name (or initial), middle initial, and last name. The author affiliation should consist of the following, as applicable, in the order noted:
- company or college (with department name or company division)
- postal address
- city, state, zip code
- country name (only for countries other than the U.S.)
- telephone, fax, and e-mail

Abstract
An abstract (400 words maximum) should open the paper or brief. The purposes of the abstract are:
1. To give a clear indication of the objective, scope, and results so that readers may determine whether the full text will be of particular interest to them.
2. To provide key words and phrases for indexing, abstracting, and retrieval purposes.

The abstract text should be organized to include the following categories in the order noted:
- Background
- Method of Approach
- Results
- Conclusions

NOTE: The category name or title shown above should be listed in the abstract, followed by the actual descriptive text. See sample below.

Background. This is explanatory text that discusses the background. This text appears first in the abstract.
Method of Approach. This text describes the method of approach. This text describes the method of approach.

Results. Results are provided at this point in the abstract. Results are provided at this point in the abstract.

Conclusions. Concluding remarks are stated at the end of the abstract text.

Keywords: mechanical engineering, mechanical design, engineering technology

Keywords should be included on a separate line at the end of the abstract text.

Body of the Paper

Outline. A proper outline is the framework upon which a good paper is written. In the process of making the outline, ideas are classified and thoughts are ordered into a logical sequence such that by the time the information is ready to be transformed into complete sentences, a good overall mental picture has been formed. In outline form, the sequence of the various items and the progression of thought can easily be adjusted and readjusted until the desired order is obtained; therefore, much writing and rewriting is saved.

Organization. The text should be organized into logical parts or sections. The purpose of the paper, or the author's aim, should be stated at the beginning so that the reader will have a clear concept of the paper's objective. This should be followed by a description of the problem, the means of solution, and any other information necessary to properly qualify the results presented and the conclusions. Finally, the results should be presented in an orderly form, followed by the author's conclusions.

Style. The chief purpose of the work is to convey information to others, many of whom may be less familiar with the general subject than the author. Care should be taken, therefore, to use simple terms and expressions and to make statements as concise as possible. If highly technical terms or phraseology are necessary, they should be adequately explained and defined. The use of the first person and reference to individuals should be made in such a manner as to avoid personal bias. Company names should be mentioned only in the acknowledgments.

All papers should be concise regardless of length. Long quotations should be avoided by referring to sources. Illustrations and tables, where they help clarify the meaning or are necessary to demonstrate results properly, are desirable, but they should be kept to a practicable minimum. Detailed drawings, lengthy test data and calculations, and photographs that may be interesting, but which are not integral to the understanding of the subject, should be omitted. Equations should be kept to a reasonable minimum, and built-up fractions within sentences should be avoided whenever possible to enhance readability. Papers that fail to conform to these requirements may be returned for revision and/or condensation.

Originality. Only original contributions to the engineering literature are accepted for publication. In most cases, this means that the work should incorporate substantial information not previously published. Under certain circumstances, reviews, collations, or analyses of information previously published may be acceptable.

Accuracy. It is of the greatest importance that all technical, scientific, and mathematical information contained in the paper be checked with the utmost care. A slight error may result in a serious error on the part of anyone who may later use that information.

Use of SI Units. It is ASME policy that SI units of measurement be included in all papers, publications, and ASME Codes and Standards. When U.S. customary units are given preference, the SI equivalent should be provided in parentheses or in a supplementary table. And vice versa, when preference is given to SI units, the U.S. customary units should be provided in parentheses or in a supplementary table.

Headings

Headings and subheadings should appear throughout the work to divide the subject matter into logical parts and to emphasize the major elements and considerations. These headings
assist the reader in following the trend of thought and in forming a mental picture of the points of chief importance. Parts or sections may be numbered, if desired, but paragraphs should not be numbered.

Tabulations/Enumerations
Where several considerations, conditions, requirements, or other qualifying items are involved in a presentation, it is often advantageous to put them in tabular or enumerative form, one after the other, rather than to run them into the text. This arrangement, in addition to emphasizing the items, creates a graphic impression that aids the reader in accessing the information and in forming an overall picture. It is customary to identify the individual items as (1), (2), (3), etc., or as (a), (b), (c), etc. Although inclusion of such elements makes the text livelier, care should be taken not to use this scheme too frequently, as it can make the reading choppy and invalidate their purpose and usefulness.

Mathematics
Equations should be numbered consecutively beginning with (1) to the end of the paper, including any appendices. The number should be enclosed in parentheses (as shown above) and set flush right in the column on the same line as the equation. It is this number that should be used when referring to equations within the text. Equations should be referenced within the text as "Eq. (x)." When the reference to an equation begins a sentence, it should be spelled out, e.g., "Equation (x)."

Formulas and equations should be created to clearly distinguish capital letters from lowercase letters. Care should be taken to avoid confusion between the lowercase "l" (el) and the numeral one, or between zero and the lowercase "o." All subscripts, superscripts, Greek letters, and other symbols should be clearly indicated.

In all mathematical expressions and analyses, any symbols (and the units in which they are measured) not previously defined in nomenclature should be explained. If the paper is highly mathematical in nature, it may be advisable to develop equations and formulas in appendices rather than in the body of the paper.

Figures
All figures (graphs, line drawings, photographs, etc.) should be numbered consecutively and have a caption consisting of the figure number and a brief title or description of the figure. This number should be used when referring to the figure in text. Figure references should be included within the text in numerical order according to their order of appearance. Figures should be referenced within the text as "Fig. 1." When the reference to a figure begins a sentence, the abbreviation "Fig." should be spelled out, e.g., "Figure 1." A separate list of figure numbers and their respective captions should be included at the end of the paper (for production purposes only).

Tables
All tables should be numbered consecutively and have a caption consisting of the table number and a brief title. This number should be used when referring to the table in text. Table references should be included within the text in numerical order according to their order of appearance. Tables should be inserted as part of the text as close as possible to its first reference — with the exception of those tables included at the end of the paper as an appendix. A separate list of table numbers and their respective captions should be included at the end of the paper (for production purposes only).

Acknowledgments
Acknowledgments may be made to individuals or institutions not mentioned elsewhere in the work who have made an important contribution.

Nomenclature
Nomenclature should follow customary usage. For reference, consult American National Standards Institute (ANSI) recommendations. The nomenclature list should be in alphabetical order (capital letters first, followed by lowercase letters), followed by any Greek symbols, with subscripts and superscripts last, identified with headings.
References
Within the text, references should be cited in numerical order according to their order of appearance. The numbered reference citation within text should be enclosed in brackets.

Example: It was shown by Prusa [1] that the width of the plume decreases under these conditions.

In the case of two citations, the numbers should be separated by a comma [1,2]. In the case of more than two references, the numbers should be separated by a dash [5-7].

List of References. References to original sources for cited material should be listed together at the end of the paper; footnotes should not be used for this purpose. References should be arranged in numerical order according to the sequence of citations within the text. Each reference should include the last name of each author followed by his initials.

(1) Reference to journal articles and papers in serial publications should include:
- last name of each author followed by their initials
- year of publication
- full title of the cited article in quotes, title capitalization
- full name of the publication in which it appears
- volume number (if any) in boldface (Do not include the abbreviation, "Vol.")
- issue number (if any) in parentheses (Do not include the abbreviation, “No.”)
- inclusive page numbers of the cited article (include “pp.”)

(2) Reference to textbooks and monographs should include:
- last name of each author followed by their initials
- year of publication
- full title of the publication in italics
- publisher
- city of publication
- inclusive page numbers of the work being cited (include “pp.”)
- chapter number (if any) at the end of the citation following the abbreviation, “Chap.”

(3) Reference to individual conference papers, papers in compiled conference proceedings, or any other collection of works by numerous authors should include:
- last name of each author followed by their initials
- year of publication
- full title of the cited paper in quotes, title capitalization
- individual paper number (if any)
- full title of the publication in italics
- initials followed by last name of editors (if any), followed by the abbreviation, “eds.”
- publisher
- city of publication
- volume number (if any) in boldface if a single number, include, “Vol.” if part of larger identifier (e.g., “PVP-Vol. 254”)
- inclusive page numbers of the work being cited (include “pp.”)

(4) Reference to theses and technical reports should include:
- last name of each author followed by their initials
- year of publication
- full title in quotes, title capitalization
- report number (if any)
- publisher or institution name, city
Sample References

Headers and Footers
Each submission should be provided with page numbers and footers on each page. The footer should contain the current date, the corresponding author’s last name, and the page number. The header should contain the paper title.