ARTICLE 1- INHIBITION OF MONOAMINE OXIDASE BY SELECTED C5- AND C6-SUBSTITUTED ISATIN ANALOGUES

Clarina I. Manley-King, a Jacobus J. Bergh, a and Jacobus P. Petzer a,*

a Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.

*Corresponding author: J.P. Petzer:

Present address:
a Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
Tel.: +27 18 2992206
fax: +27 18 2994243
E-mail address: jacques.petzer@nwu.ac.za
AUTHOR INFORMATION - ARTICLE 1 AND ARTICLE 2
BIOORGANIC & MEDICINAL CHEMISTRY

The Tetrahedron Journal for Research at the Interface of Chemistry and Biology

AUTHOR INFORMATION PACK 29 Jan 2011 www.elsevier.com/locate/bmc 1

AUTHOR INFORMATION PACK

GUIDE FOR AUTHORS

INTRODUCTION

Bioorganic & Medicinal Chemistry seeks to publish research results of outstanding significance and timeliness and review articles in the fields of medicinal chemistry, chemical biology, bioorganic chemistry, bioinorganic chemistry, and related disciplines.

Articles should describe original research of high quality and timeliness. Reviews of topical importance and current relevance are specially commissioned in appropriate fields.

Authors wishing to submit a non-solicited review article are requested to first contact the Editor-in-Chief, Professor C.-H. Wong.

Perspectives briefly review (in 1-4 printed pages) specific subjects that already have or are likely to have major impact in areas related to chemical biology and drug discovery. Authors of perspectives are those who have made the original contribution or have extended the original research to new breakthroughs. Perspectives are generally specially commissioned by the editors; however, suggestions for topics and authors are welcomed. Individuals interested in contributing should contact the Editor-in-Chief, Professor C.-H. Wong.

Symposia-in-Print comprise collections of original research papers (including experimental sections) covering specific topics. Topics for forthcoming symposia are announced in the journal from time to time. A guest editor will invite authors active in the field to submit papers, which are then reviewed and processed for publication by the guest editor under the usual refereeing system. Opportunity is also provided for other active investigators to submit contributions.

Page charges
This journal has no page charges.

BEFORE YOU BEGIN

Ethics in Publishing
For information on Ethics in Publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/ethicalguidelines.
Conflict of interest

All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. See also http://www.elsevier.com/conflictsofinterest.

Submission declaration and verification

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection software iThenticate. See also http://www.elsevier.com/editors/plagdetect.

Changes to authorship

This policy concerns the addition, deletion, or rearrangement of author names in the authorship of accepted manuscripts:

Before the accepted manuscript is published in an online issue: Requests to add or remove an author, or to rearrange the author names, must be sent to the Journal Manager from the corresponding author of the accepted manuscript and must include: (a) the reason the name should be added or removed, or the author names rearranged and (b) written confirmation (e-mail, fax, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Requests that are not sent by the corresponding author will be forwarded by the Journal Manager to the corresponding author, who must follow the procedure as described above. Note that: (1) Journal Managers will inform the Journal Editors of any such requests and (2) publication of the accepted manuscript in an online issue is suspended until authorship has been agreed.

After the accepted manuscript is published in an online issue: Any requests to add, delete, or rearrange author names in an article published in an online issue will follow the same policies as noted above and result in a corrigendum.

Copyright

Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright see http://www.elsevier.com/copyright). Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the
corresponding author confirming receipt of the manuscript together with a ‘Journal Publishing Agreement’ form or a link to the online version of this agreement. Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult http://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article.
Elsevier has preprinted forms for use by authors in these cases: please consult http://www.elsevier.com/permissions.

Retained author rights
As an author you (or your employer or institution) retain certain rights; for details you are referred to: http://www.elsevier.com/authorsrights.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. If the funding source(s) had no such involvement then this should be stated. Please see http://www.elsevier.com/funding.

Funding body agreements and policies
Elsevier has established agreements and developed policies to allow authors whose articles appear in journals published by Elsevier, to comply with potential manuscript archiving requirements as specified as conditions of their grant awards. To learn more about existing agreements and policies please visit http://www.elsevier.com/fundingbodies.

Language and language services
Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who require information about language editing and copyediting services pre- and post-submission please visit http://webshop.elsevier.com/languageediting or our customer support site at http://support.elsevier.com for more information.

Submission
Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts source files to a single PDF file of the article, which is used in the peer-review process. Please note that even though manuscript source files are converted to PDF files at submission for the review process, these source files are needed for further...
processing after acceptance. All correspondence, including notification of the Editor's decision and requests for revision, takes place by e-mail removing the need for a paper trail. Manuscripts should be addressed to the appropriate regional editor:

Submissions from Japan and other Asian countries:
Professor Yuichi Hashimoto, Institute of Molecular & Cellular Biosciences, The University of Tokyo, Japan

Submissions from Europe:
Professor H. Waldmann, Department of Chemical Biology, Max-Planck-Institut fur Molekulare Physiologie, Dortmund, Germany

Submissions from USA, Canada, and all others:
Professor K. Janda, Department of Chemistry, The Scripps Research Institute, Maildrop: BCC 582, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.

All manuscripts will be centrally handled by the journal editorial office, which will forward manuscripts to the regional editors:
Editorial Office
Bioorganic & Medicinal Chemistry
525 B Street, Suite 1900
San Diego, CA 92101-4495, USA
Fax: (1) 619-699-6801
E-mail: bmc-eo@elsevier.com
Authors who are unable to submit their paper online should contact the editorial office prior to submission at the above address.

Submit your article
Please submit your article via http://ees.elsevier.com/bmc

Compound characterization checklist
Characterization of new compounds: All new compounds should be fully characterized with relevant spectroscopic data. Microanalyses should be included whenever possible. Under appropriate circumstances, mass spectra may serve in lieu of microanalysis, if accompanied by suitable NMR criteria for sample homogeneity.

CHARACTERIZATION OF ALL NEW COMPOUNDS HAS TO BE SPECIFIED (GIVEN) IN A COMPOUND CHARACTERIZATION CHECKLIST.
Mol files (optional)

Elsevier would like to enrich online articles by visualising and providing details of chemical structures you define as the main chemical compounds described in your article. For this purpose, mol files of the key compounds can be uploaded in EES. Please use your preferred drawing tool to export chemical structures as mol files and ensure that they are well defined and do not contain aromatic bonds, RGroups or other variables. More information.

PREPARATION

Use of wordprocessing software

It is important that the file be saved in the native format of the wordprocessor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the wordprocessor’s options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic illustrations. To avoid unnecessary errors you are strongly advised to use the "spell-check" and "grammar-check" functions of your wordprocessor.

Templates

Templates are provided to allow authors to view their paper in a style close to the final printed form. Their use is optional. All manuscripts will be fully typeset from the author’s electronic files. It should be noted that due to defined typesetting standards and the complex requirements of electronic publishing, the publisher will not always be able to exactly match the layout the author has submitted. In particular, in the finished journal article, figures and tables are usually placed at the top or bottom of pages. The template is only intended to be used in assisting with the preparation and submission of manuscripts. It should be noted that use of the journal templates is not a requirement and their adoption will neither speed nor delay publication. Elsevier can handle most major word processing packages and in general most formatting applied by authors for style and layout is replaced when the article is being typeset.

These templates contain a large number of macros. To ensure successful PDF conversion during online submission, it is important that the author save a new document based on the template, rather than saving the template itself. To use the template, the author should save the final document as a Word file with a ‘.doc’ extension (rather than the ‘.dot’ extension). The templates can be found at http://www.elsevier.com/wps/find/P04_116.cws_home/authors_guide.
Article structure

Subdivision - numbered sections
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, …), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to "the text". Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction
State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and methods
Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.

Theory/calculation
A Theory section should extend, not repeat, the background to the article already dealt with in the Introduction and lay the foundation for further work. In contrast, a Calculation section represents a practical development from a theoretical basis.

Results
Results should be clear and concise.

Discussion
This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions
The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices
If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.
Vitae

When submitting a review article, authors should include biographical information for each author as well as a black-and-white photograph. Each biography should be one paragraph (approximately 150-200 words) and should include date and place of birth, universities attended, degrees obtained, principal professional posts held, present title, a line or two about the major research interests, and anything else professionally relevant that is of special interest.

Essential title page information

• Title. Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.

• Author names and affiliations. Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors’ affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name, and, if available, the e-mail address of each author.

• Corresponding author. Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that telephone and fax numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author.

• Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a "Present address" (or "Permanent address") may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract

A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

Graphical abstract

A Graphical abstract is mandatory for this journal. It should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership online. Authors must provide images that clearly represent the work described in the article. Graphical abstracts should be submitted
as a separate file in the online submission system. Image size: please provide an image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. Preferred file types: TIFF, EPS, PDF or MS Office files. See http://www.elsevier.com/graphicalabstracts for examples.

Abbreviations
Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the article, using superscript Arabic numbers. Many wordprocessors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Table footnotes
Indicate each footnote in a table with a superscript lowercase letter.

Electronic artwork

General points
- Make sure you use uniform lettering and sizing of your original artwork.
- Save text in illustrations as "graphics" or enclose the font.
- Only use the following fonts in your illustrations: Arial, Courier, Times, Symbol.
- Number the illustrations according to their sequence in the text.
- Use a logical naming convention for your artwork files.
- Provide captions to illustrations separately.
- Produce images near to the desired size of the printed version.
- Submit each figure as a separate file.

A detailed guide on electronic artwork is available on our website: http://www.elsevier.com/artworkinstructions

You are urged to visit this site; some excerpts from the detailed information are given here.
Formats
Regardless of the application used, when your electronic artwork is finalised, please "save as" or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):
EPS: Vector drawings. Embed the font or save the text as "graphics".
TIFF: color or grayscale photographs (halftones): always use a minimum of 300 dpi.
TIFF: Bitmapped line drawings: use a minimum of 1000 dpi.
TIFF: Combinations bitmapped line/halftone (color or grayscale): a minimum of 500 dpi is required.
DOC, XLS or PPT: If your electronic artwork is created in any of these Microsoft Office applications please supply "as is".

Please do not:
• Supply files that are optimised for screen use (like GIF, BMP, PICT, WPG); the resolution is too low;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.

Color artwork
Please make sure that artwork files are in an acceptable format (TIFF, EPS or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color on the Web (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color in print or on the Web only. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions.
Please note: Because of technical complications which can arise by converting color figures to "gray scale" (for the printed version should you not opt for color in print) please submit in addition usable black and white versions of all the color illustrations.

Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Number tables consecutively in accordance with their appearance in the text. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing
in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article.

References

Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either "Unpublished results" or "Personal communication" Citation of a reference as "in press" implies that the item has been accepted for publication.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference style

Text: Indicate references by number(s) in square brackets in line with the text. The actual authors can be referred to, but the reference number(s) must always be given.
Example: "..... as demonstrated [3,6]. Barnaby and Jones [8] obtained a different result"

List: Number the references (numbers in square brackets) in the list in the order in which they appear in the text.

Examples:
Reference to a journal publication:

Reference to a book:

Reference to a chapter in an edited book:

In the text, references should be indicated by superscript Arabic numerals which run consecutively through the paper and appear after any punctuation. Please ensure that all references are cited in the text and vice versa. The reference list should preferably contain only literature references though other information (e.g., experimental details) can be placed in this section. Preferably, each reference should contain only one literature citation. Authors are expected to check the original source reference for accuracy. Journal titles should be abbreviated according to American Chemical Society guidelines (The ACS Style Guide; Dodd, J. S., Ed.; American Chemical Society: Washington, DC, 1997). A list of currently accepted journal abbreviations may be found at http://elsevier.com/locate/bmcl. Formatting for common references is shown below.

Scientific articles:
Books with editor:
Books without editor:
Theses:
Abstract of meeting papers:
Material presented orally:

Journal abbreviations source
Journal names should be abbreviated according to
List of serial title word abbreviations: http://www.issn.org/2-22661-LTWA-online.php;

Supplementary data
Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high resolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including
ScienceDirect: http://www.sciencedirect.com. In order to ensure that your submitted material is directly usable, please provide the data in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions.

Submission checklist
The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item.

Ensure that the following items are present:
One Author designated as corresponding Author:
• E-mail address
• Full postal address
• Telephone and fax numbers
All necessary files have been uploaded
• Keywords
• All figure captions
• All tables (including title, description, footnotes)

Further considerations
• Manuscript has been "spellchecked" and "grammar-checked"
• References are in the correct format for this journal
• All references mentioned in the Reference list are cited in the text, and vice versa
• Permission has been obtained for use of copyrighted material from other sources (including the Web)
• Color figures are clearly marked as being intended for color reproduction on the Web (free of charge) and in print or to be reproduced in color on the Web (free of charge) and in black-and-white in print
• If only color on the Web is required, black and white versions of the figures are also supplied for printing purposes

For any further information please visit our customer support site at http://support.elsevier.com.

AFTER ACCEPTANCE
Use of the Digital Object Identifier
The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly 'Articles in press' because they have not yet received their full bibliographic information. The correct format for citing a DOI is shown as follows (example taken from a document in the journal Physics Letters B): doi:10.1016/j.physletb.2010.09.059
When you use the DOI to create URL hyperlinks to documents on the web, they are guaranteed never to change.

Proofs

One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (if we do not have an e-mail address then paper proofs will be sent by post) or, a link will be provided in the e-mail so that authors can download the files themselves. Elsevier now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 7 (or higher) available free from http://get.adobe.com/reader. Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site: http://www.adobe.com/products/reader/systemreqs.

If you do not wish to use the PDF annotations function, you may list the corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting line number. If, for any reason, this is not possible, then mark the corrections and any other comments (including replies to the Query Form) on a printout of your proof and return by fax, or scan the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. We will do everything possible to get your article published quickly and accurately. Therefore, it is important to ensure that all of your corrections are sent back to us in one communication: please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility. Note that Elsevier may proceed with the publication of your article if no response is received.

Offprints

The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. The PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use.

AUTHOR INQUIRIES

For inquiries relating to the submission of articles (including electronic submission where available) please visit this journal's homepage. You can track accepted articles at http://www.elsevier.com/trackarticle and set up e-mail alerts to inform you of when an article's status has changed. Also accessible from here is information on copyright, frequently asked questions and more. Contact details for questions arising after acceptance of an article, especially those relating to proofs, will be provided by the publisher.
Graphical Abstract: INHIBITION OF MONOAMINE OXIDASE BY SELECTED C5- AND C6-SUBSTITUTED ISATIN ANALOGUES

Clarina I. Manley-King, Jacobus J. Bergh, and Jacobus P. Petzer
Inhibition of monoamine oxidase by selected C5- and C6-substituted isatin analogues

Clarina I. Manley-King, a Jacobus J. Bergh, b and Jacobus P. Petzer a, *

Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa

Abstract—Previous studies have shown that (E)-5-styrylisatin and (E)-6-styrylisatin are reversible inhibitors of human monoamine oxidase (MAO) A and B. Both homologues are reported to exhibit selective binding to the MAO-B isoform with (E)-5-styrylisatin being the most potent inhibitor. To further investigate these structure-activity relationships (SAR), in the present study, additional C5- and C6-substituted isatin analogues were synthesized and evaluated as inhibitors of recombinant human MAO-A and MAO-B. With the exception of 5-phenylisatin, all of the analogues examined were selective MAO-B inhibitors. The C5 substituted isatins exhibited higher binding affinities to MAO-B than the corresponding C6 substituted homologues. The most potent MAO-B inhibitor, 5-(4-phenylbutyl)isatin, exhibited an IC_{50} value of 0.66 nM, approximately 13 fold more potent than (E)-5-styrylisatin and 18500 fold more potent than isatin. The most potent MAO-A inhibitor was found to be 5-phenylisatin with an IC_{50} value of 562 nM. The results document that substitution at C5 with a variety of substituents is a general strategy for enhancing the MAO-B inhibition potency of isatin. Possible binding orientations of selected isatin analogues within the active site cavities of MAO-A and MAO-B are proposed.

Keywords: Monoamine oxidase; Reversible inhibition; Selectivity; Competitive inhibition; Isatin; Molecular docking.

*Corresponding author. Tel.: +27 18 2992206; fax: +27 18 2994243; e-mail: jacques.petzer@nwu.ac.za.
1. Introduction

Monoamine oxidase (MAO) A and B are flavin adenine dinucleotide (FAD) containing enzymes which are tightly anchored to the mitochondrial outer membrane. Although MAO-A and MAO-B are encoded by separate genes, they share approximately 70% amino acid sequence identity. The X-ray crystal structures of recombinant human MAO-A and MAO-B have shown that the active site amino acid residues and their relative geometries are also highly conserved between the two enzymes and only six of the sixteen active site residues differ between the two isozymes. Despite these similarities, the enzymes have unique substrate and inhibitor specificities. For example, MAO-A catalyzes the oxidation of serotonin and norepinephrine and is irreversibly inhibited by clorgyline while MAO-B preferentially utilizes benzylamine as substrate and is irreversibly inhibited by (R)-deprenyl. Both isoforms utilize dopamine as substrate.

In addition, literature reports a variety of small molecule inhibitors with selectivities towards the two enzymes ranging from negligible to several orders of a magnitude.

Because MAO-A and MAO-B catalyzes the catabolism of neurotransmitter amines, they are considered attractive drug targets in the therapy of neurological disorders. Both reversible and irreversible inhibitors of MAO-A are used to treat depressive illness and anxiety disorder. The antidepressant effect of MAO-A inhibitors are dependent on the inhibition of the catabolism of serotonin, norepinephrine and dopamine in the brain which leads to increased levels of these neurotransmitters.

MAO-B inhibitors are particularly effective in the treatment of depression in elderly patients. Inhibitors of MAO-B are employed in the treatment of neurodegenerative disorders such as Parkinson’s disease (PD). MAO-B appears to be the major dopamine metabolizing enzyme in the basal ganglia, and inhibitors of this enzyme may conserve the depleted dopamine stores in the PD brain. This may lead to enhanced dopaminergic neurotransmission and consequently symptomatic relief of the symptoms of PD. MAO-B inhibitors may also increase the elevation of dopamine levels in the basal ganglia following levodopa treatment and are therefore used as adjuvant to levodopa therapy in PD. Besides providing symptomatic relief, MAO-B inhibitors may also protect against further neurodegeneration in PD by reducing the levels of potentially toxic byproducts such as H$_2$O$_2$ and dopaldehyde which form as a result of the oxidative metabolism of dopamine.

The endogenous small molecule inhibitor isatin (I) (Fig. 1) is reported to be a reversible inhibitor of both human MAO-A and MAO-B with enzyme-inhibitor dissociation constants (K_i values) of 15 µM and 3 µM for the two isozymes, respectively. The three-dimensional structure of recombinant human MAO-B with isatin bound to the active site shows that isatin is located in the substrate cavity in close proximity to
the FAD cofactor where it is involved in hydrogen bonding with conserved water molecules.17 Since isatin binds within the substrate cavity, the entrance cavity of the enzyme is unoccupied. Based on this observation we have recently synthesized (\textit{E})-5-styrylisatin (2) and (\textit{E})-6-styrylisatin (3) in an attempt to enhance the binding affinity of isatin to MAO-B.18 The results documented that both (\textit{E})-styrylisatin analogues exhibited significantly higher binding affinities than isatin with the C5-substituted isomer being the more potent inhibitor of the two isomers. Modeling studies suggested that the (\textit{E})-styrylisatin analogues binds to the MAO-B active site with the isatin dioxoindolyl ring bound to the substrate cavity while the styryl side chain extends into the entrance cavity. The interaction of the styryl side chain with the entrance cavity amino acid residues may allow for more productive binding with the enzyme compared to isatin and hence more potent inhibition.18 In accordance with this analysis the small molecule caffeine (4) (Fig. 2), which is expected to bind to either the substrate or entrance cavity, is a weak MAO-B inhibitor with a K_i value of 3.6 mM.19 The C8 chlorostyryl substituted analogue, (\textit{E})-8-(3-chlorostyryl)caffeine [CSC, (5)], however was found to be a potent reversible inhibitor with a K_i value of 0.086 µM.19,20 The higher affinity of CSC for the MAO-B active site may be explained by the additional productive interactions of the chlorostyryl side chain within the entrance cavity.

We have recently shown that the MAO-B binding affinity of caffeine may also be enhanced by substitution with a variety of benzyloxy side chains at C8 of the caffeine ring.21 For example, 8-(3-chlorobenzyloxy)caffeine (6) (Fig. 3) inhibits recombinant human MAO-B with a K_i value of 0.036 µM, approximately 10^5 fold more potently than caffeine. Modeling studies have shown that the caffeine ring is located within the substrate cavity of the enzyme while the benzyloxy side chain binds within the entrance cavity. Again, the improved inhibition of the 8-benzyloxycaffeine analogues compared to caffeine may be explained by binding interactions between the benzyloxy side chain and the entrance cavity of MAO-B. The view that the benzyloxy side chain binds within the entrance cavity is supported by the three-dimensional structure of a complex between safinamide (7) and recombinant human MAO-B which shows that the 3-fluorobenzyloxy side chain of safinamide occupies the entrance cavity while the propanamidyl moiety is located within the substrate cavity.22 Similarly, the structure of a complex between 7-(3-chlorobenzyloxy)-4-formylcoumarin (8) and human MAO-B shows that the 3-chlorobenzyloxy side chain binds in the entrance cavity of the enzyme with the coumarin ring occupying the substrate cavity.22

While the three-dimensional complex between isatin and MAO-A has not yet been determined, modeling studies have been performed with (\textit{E})-5-styrylisatin (2) and (\textit{E})-6-styrylisatin (3).18 These suggest that, similar to its binding mode within MAO-B, the dioxoindolyl rings of both isomers occupy the space in
close proximity to the FAD cofactor with their respective styryl side chains extending towards the entrance of the active site. Notably, \((E)\)-5-styrylisatin exhibited a 19 fold higher binding affinity to MAO-A than isatin while the C6 substituted isomer (3) had a similar binding affinity to that of isatin.\(^{18}\) The lack of enhancement of the MAO-A binding affinity by C6 styryl substitution is not well understood.

To further investigate these structure-activity relationships (SAR), in the present study, we have synthesized additional C5- and C6-substituted isatin analogues and evaluated them as inhibitors of recombinant human MAO-A and MAO-B. One of the goals of this study was to determine if C5-substituted isatin analogues are in general better MAO-B inhibitors than the corresponding C6 isomers as observed with the \((E)\)-styrylisatin analogues. Furthermore, this study also aimed to determine the effect of C5- and C6-substitution of isatin on MAO-A inhibition activity. As discussed above, compared to isatin, \((E)\)-5-styrylisatin (2) was found to be a better MAO-A inhibitor while the C6 substituted isomer (3) had a similar inhibition potency to that of isatin.\(^{18}\) Among the C5- and C6-substituents chosen for this study was the benzyloxy side chain which has been shown to enhance the binding affinity of caffeine to the active site of both MAO-A and MAO-B.\(^{21}\) Other substituents considered in this study include the phenoxy, 2-phenylethyl, 4-phenylbutyl, phenyl and 4-chlorophenoxy groups. We have also examined the importance of the isatin moiety for binding to MAO-A and MAO-B by comparing the inhibition potencies of the C5- and C6-substituted isatins with those of the corresponding aniline analogues. With this comparison the importance of the carbonyl functional groups of the dioxoindolyl ring for binding to the MAO isozymes may be determined. Literature reports that the NH and the C2 carbonyl oxygen of isatin are hydrogen bonded to water molecules in the substrate cavity of MAO-B.\(^{17}\) Similar interactions may also be possible between the aniline NH\(_2\) and the active sites of the MAO enzymes.

2. Results

2.1. Chemistry

In the present study a series of ten C5- and C6-substituted isatin analogues (9a–j) were synthesized with the aim of examining their MAO inhibitory properties. The C5-substituted isatin analogues (9a, c, e, g, i–j) were synthesized by treating the appropriately C4-substituted aniline (10a, c, e, g, i–j) with diethyl ketomalonate in the presence of acetic acid according to the literature description (Scheme 1).\(^{23}\) The C6-substituted isatin analogues (9b, d, f, h) were similarly synthesized, from the C3-substituted aniline derivatives (10b, d, f, h) and diethyl ketomalonate. While the latter reaction may also give the corresponding C4-substituted isatin analogues, only a single product was isolated from the reaction mixtures. \(^1\)H NMR indicated that in each instance these were the C6-substituted analogues as evidenced by the singlet corresponding to the C4 proton (9b, 6.46 ppm; 9d, 6.61 ppm; 6f, 6.28 ppm; 9h, 7.09 ppm).
This is in accordance to the literature report that the reaction between C3-substituted aniline derivatives and diethyl ketomalonate yields the corresponding C6-substituted isatins. Furthermore, the molecular structure of 9d was elucidated by X-ray crystallography and confirms substitution at the C6 position (Fig. 4). Although the target compounds were obtained in low yields (1.2–9.3%) the crystalline products were of a high degree of purity as judged by HPLC (see Experimental). These low yields may be due to resinification and the formation of side products. Fortunately, the desired isatins could be obtained via a combination of filtration steps, adjusting the pH of the filtrates to 3 and then <1 and column chromatography (see Experimental). While the Sandmeyer methodology is more frequently used for the synthesis of isatin analogues, the low solubility of the starting anilines in the aqueous reaction medium made this procedure unsuitable for the synthesis of the target isatin analogues. The successful formation of the isatin ring system of the target compounds were verified by the presence of a 13C NMR signal at 181–185 ppm which corresponds to carbonyl C3 and a signal at 159–161 ppm which corresponds to carbonyl C2 (Table 1).

With the exception of 4-(2-phenylethyl)aniline (10c), 3-(2-phenylethyl)aniline (10d) and 4-(4-phenylbutyl)aniline (10i) all of the anilines required for the synthesis of the isatin analogues were commercially available. Anilines 10c and 10d were synthesized by reacting diethyl 4- or diethyl 3-nitrobenzylphosphonate (11a–b)26 with benzaldehyde (12) to yield the 4- or 3-nitrostilbenes (13a–b), respectively (Scheme 2). Catalytic hydrogenation of the nitrostilbenes in the presence of Pd/C yielded the corresponding anilines (10c–d). Aniline 10i was similarly synthesized by reacting diethyl 4-nitrobenzylphosphonate (11a) with cinnamaldehyde (14) to obtain 1-nitro-4-[(1E,3E)-4-phenylbuta-1,3-dien-1-yl]benzene (15). Again, hydrogenation of 15 afforded the corresponding aniline 10i.

2.2. MAO inhibition studies – isatin analogues

To determine the MAO-A and MAO-B inhibition potencies of the test inhibitors, the extent by which different concentrations of a test inhibitor reduces the rate of the MAO catalyzed oxidation of kynuramine, a mixed MAO-A/B substrate, was measured. For this purpose the recombinant human MAO-A and MAO-B enzymes were employed. Kynuramine is non-fluorescent until undergoing MAO-catalyzed oxidative deamination and subsequent ring closure to yield 4-hydroxyquinoline, a fluorescent metabolite. The concentrations of the MAO-generated 4-hydroxyquinoline in the incubation mixtures was determined by comparing the fluorescence emitted by the samples to that of known amounts of authentic 4-hydroxyquinoline. At the excitation (310 nm) and emission (400 nm) wavelengths and inhibitor concentrations used in this study, none of the test inhibitors fluoresced or quenched the fluorescence of 4-hydroxyquinoline. The inhibition potencies of the test inhibitors were expressed as the IC50 values (Fig.
5). To allow for the calculation of the selectivity index \[\text{SI} = \frac{K_i(\text{MAO-A})}{K_i(\text{MAO-B})} \], the experimentally determined IC$_{50}$ values were converted to the corresponding K_i values for the inhibition of MAO-A and MAO-B according to the Cheng-Prusoff equation.20,29

The IC$_{50}$ values for the inhibition of MAO-A and –B by isatin analogues $9a$–j are presented in table 2. For comparison, the inhibition potencies of isatin (1), \((E)\)-5-styrylisatin (2) and \((E)\)-6-styrylisatin (3) were also measured and are given in table 2. The MAO-A and –B inhibition potencies of compounds 1–3 have been previously reported using the purified recombinant human enzymes which were expressed in \textit{Pichia pastoris}.16,18 The present account reports the inhibition data using membrane bound recombinant human MAO-A and –B from insect cells. In accordance with the literature, isatin was found to be a moderately potent inhibitor of MAO-A and –B with IC$_{50}$ values of 31.8 µM and 12.4 µM, respectively. Based on the selectivity index (Table 2) isatin is approximately 1.57 fold more selective for MAO-B than for the A isoform. Also in agreement with the literature18 was the finding that \((E)\)-5-styrylisatin (2) is a potent inhibitor of both MAO-A and –B with IC$_{50}$ values of 0.233 µM and 0.009 µM, respectively. In fact, \((E)\)-5-styrylisatin was the second most potent MAO-B inhibitor examined in this study and approximately 1300 fold more potent than was isatin. Also in agreement with literature,18 \((E)\)-6-styrylisatin was a relatively potent MAO-B inhibitor, while exhibiting moderately potent MAO-A inhibitory activity. Compared to the C5-substituted isomer 2, \((E)\)-6-styrylisatin was approximately 68 fold less potent as an MAO-B inhibitor.

The most potent MAO-B inhibitor among the examined compounds was 5-(4-phenylbutyl)isatin (9i) with an IC$_{50}$ value of 0.66 nM, approximately 13 fold more potent than \((E)\)-5-styrylisatin and 18500 fold more potent than isatin. The observation that the 4-phenylbutyl group is the longest side chain considered in this study indicates that longer side chains enhance the MAO-B inhibition potency of isatin to a larger extent compared to relatively shorter side chains. In contrast to its effect on the MAO-B inhibition potency, the 4-phenylbutyl side chain did not enhance the MAO-A inhibition potency of isatin to a great extent. Compound 9i only moderately inhibited MAO-A with an IC$_{50}$ value of 2.19 µM, approximately 14 fold more potent than the MAO-A inhibition potency of isatin. The only isatin analogues examined in this study which potently inhibited MAO-A were \((E)\)-5-styrylisatin (2) and \((E)\)-5-phenylisatin (9g) with IC$_{50}$ values of 0.233 µM and 0.562 µM, respectively. The other homologues examined all exhibited IC$_{50}$ values towards MAO-A in the µM range. Interestingly, compounds 2 and 9g are the only C5 substituted isatin analogues with a side chain phenyl ring that is conjugated to the isatin ring system. Also noteworthy is the observation that the majority (seven) of the isatin analogues examined displayed selectivity for the MAO-B isoform (Table 2).
The C5- and C6-benzyloxy substituted isatin analogues (9a–b) were also found to be potent MAO-B inhibitors with IC$_{50}$ values of 0.103 µM and 0.138 µM, respectively. As stated in the Introduction, this finding is in agreement with literature reports that the benzyloxy side chain enhances the binding affinity of small molecules such as caffeine to the active site of MAO-B. Interestingly, the C6-benzyloxy substituted analogue 9b was the weakest MAO-A inhibitor among the isatin analogues.

Compared to the benzyloxy substituted isatin analogues (9a–b), 5-(2-phenylethyl)isatin (9c) and 6-(2-phenylethyl)isatin (9d) were relatively weaker MAO-B inhibitors with IC$_{50}$ values of 1.40 µM and 9.93 µM, respectively. Compounds 9c was approximately 13 fold less potent that the corresponding C5-benzyloxy substituted isatin analogues (9a) while 9d was approximately 71 fold less potent than the corresponding C6-benzyloxy substituted isatin analogue 9b. Similarly, 5-phenoxyisatin (9e), 6-phenoxyisatin (9f), 5-phenylisatin (9g) and 6-phenylisatin (9h) were also found to be relatively weaker MAO-B inhibitors than the benzyloxy substituted analogues (9a–b). It can therefore be concluded that the 2-phenylethyl, phenoxy and phenyl side chains do not increase the MAO-B binding affinity of isatin to the same extent observed for the (E)-styryl and benzyloxy side chains.

While 5-phenoxyisatin (9e) was found to be moderately potent MAO-B inhibitor (IC$_{50}$ = 1.54 µM), the C5 substituted 4-chlorophenoxy analogue 9j proved to be a potent MAO-B inhibitor with an IC$_{50}$ value of 0.066 µM. This result demonstrates the ability of halogen substitution at a side chain phenyl ring to enhance binding affinity of reversible inhibitors to MAO-B. This effect is similar to that observed for 8-benzyloxycaffeiny1, (E)-8-stryrylcaffeiny1 and (E)-2-stryrylbenzimidazolyl analogues. For example, 8-(3-chlorobenzyloxy)caffeine is reported to inhibit human MAO-B with an IC$_{50}$ value of 0.107 µM, approximately 16 fold more potently than the unsubstituted analogue, 8-benzyloxycaffeine, with an IC$_{50}$ value of 1.77 µM.

2.3. MAO inhibition studies – aniline analogues

As mentioned in the introduction, the importance of the isatin moiety for binding to MAO-A and MAO-B was also examined by comparing the inhibition potencies of the C5- and C6-substituted isatins with those of the corresponding para- and meta-substituted anilines. Inspection of the X-ray crystal structure of isatin in complex with human MAO-B suggests that the dioxoindolyl NH and the C2 carbonyl oxygen are involved in stabilizing hydrogen bond interactions with water molecules in the substrate cavity of MAO-B. Since similar interactions may also be possible between the aniline NH$_2$ and the active sites of the MAO enzymes, the anilines may also possess MAO inhibitory properties. By comparing the MAO inhibition activities of the aniline analogues with those of the corresponding isatin analogues, it was found that the anilines were generally weaker inhibitors than the isatins. For example, 5-(2-phenylethyl)aniline (10a) was found to be a weak MAO-B inhibitor with an IC$_{50}$ value of 14.4 µM, while its corresponding isatin analogue 9c was a potent inhibitor with an IC$_{50}$ value of 1.40 µM. Similarly, 5-phenoxyaniline (10b) was found to be a weak MAO-B inhibitor with an IC$_{50}$ value of 12.6 µM, while its corresponding isatin analogue 9e was a moderately potent inhibitor with an IC$_{50}$ value of 1.54 µM. These results suggest that the isatin moiety is more effective than the aniline moiety in enhancing the binding affinity of small molecules to the active site of MAO-B.
inhibition potencies of the isatins with those of the anilines, the importance of the lactam and C2 carbonyl functional groups of the dioxoindolyl ring for binding to the MAO isozymes may be evaluated.

The IC$_{50}$ values for the inhibition of recombinant human MAO-A and –B by the aniline analogues (10a–l) are presented in table 3. All of the anilines evaluated were found to be relatively weak MAO-A inhibitors with the most potent compound (10k) exhibiting an IC$_{50}$ value of 25.3 µM. The anilines were also relatively weak MAO-B inhibitors with the most potent inhibitor, the 4-phenylbutyl substituted aniline (10i), exhibiting an IC$_{50}$ value of 5.55 µM. With the exception of 10c, 10e and 10h, all of the anilines examined displayed selectivity for the MAO-B isoform (Table 3). This isoform selectivity is similar to that observed for the isatin analogues.

Interestingly, the 4-phenylbutyl substituted isatin analogue was also the most potent MAO-B inhibitor among the isatin analogues. Inspection of the inhibition data in table 2 and table 3 shows that the order of the MAO-B inhibition potencies of the aniline analogues is similar to that of the isatin analogues. For example, the aniline analogues substituted with styryl, benzyloxy and 4-chlorophenoxy side chains at the para- and meta-positions were more potent MAO-B inhibitors than the corresponding 2-phenylethyl, phenoxy and phenyl substituted anilines. Similarly, the C5- and C6-substituted styryl, benzyloxy and 4-chlorophenoxy isatin analogues were more potent MAO-B inhibitors than the corresponding 2-phenylethyl, phenoxy and phenyl substituted isatins. These data suggests that the isatin and aniline analogues exhibit similar binding modes to the active site of MAO-B. Previous modeling studies18 have suggested that (E)-5-styrylisatin (2) and (E)-6-styrylisatin (3) bind to the MAO-B active site with the dioxoindolyl rings of both isomers occupying the substrate cavity space in close proximity to the FAD cofactor while their respective styryl side chains extends towards the entrance cavity of the enzyme. Should the aniline analogues exhibit as similar binding mode, the aniline moiety is expected to also occupy the relatively polar substrate cavity31 where the NH$_2$ may be involved in hydrogen bond interactions. The para- and meta-substituted side chains are expected to extend towards the entrance cavity of the enzyme. By employing molecular docking studies, possible binding modes and interactions of selected aniline and isatin analogues within an MAO-B active site model will be proposed below.

The finding that the aniline analogues are weaker MAO-A and –B inhibitors than the corresponding isatin analogues indicates that the lactam and C2 carbonyl functional groups of the dioxoindolyl ring are important structural features for binding to the MAO active sites. A possible explanation may be that the dioxoindolyl carbonyl oxygens act as hydrogen bond acceptors within the substrate cavities of MAO-A and –B thereby providing additional stabilization of the inhibitor–enzyme complex. In accordance with
this proposal, the three-dimensional structure of isatin bound to human MAO-B has shown the C2 carbonyl oxygen to be hydrogen bonded to ordered water molecules in the substrate cavity. While the structure of isatin bound to MAO-A has not yet been determined the architectures of the MAO-A and –B active sites are similar, especially in the vicinity of the FAD cofactor where hydrogen bonding between isatin and MAO-B occur. It is therefore reasonable to propose that the carbonyl oxygen of isatin and C5- and C-6-substituted isatin analogues also may act as hydrogen bond acceptors in the MAO-A active site. Since the aniline analogues examined here do not possess carbonyl functional groups they lack the additional stabilizing interactions with the MAO active sites that these functional groups provide and are hence weaker inhibitors than the isatins. Another factor that may contribute to stabilizing isatins, and not anilines, within the active sites of MAO-A and –B are possible π–π stacking interactions between the dioxoindolyl ring and the amide of an active site Gln residue. In MAO-A, Gln-215 is reported to undergo stacking interactions with harmine while in MAO-B Gln-206 may similarly interact with bound ligands. Since both aniline and isatin are expected to be uncharged in the buffer used for the inhibition studies (pH 7.4), differing ionization states of the aniline NH₂ and isatin lactam NH do not explain the difference in binding affinities to the MAO enzymes. Also, since aminyl substrates of MAO are reported to bind as the deprotonated amines to the active sites of these enzymes, it may be expected that the uncharged aniline and isatin species are the active inhibitors.

2.4. Reversibility studies

With the finding that a several C5- and C-6-substituted isatin analogues are potent MAO-A and –B inhibitors, this study further aimed to investigate whether the observed enzyme inhibition is reversible or irreversible. For this purpose the time dependence of MAO-A and –B inhibition by one representative inhibitor, compound 9c, was evaluated. The MAO-A and –B inhibition potencies of compound 9c are relatively lower compared to other isatin analogues evaluated in this study. Since these studies are conducted at concentrations equal to the IC₅₀ values of the test compound, this would allow for the use of relatively higher inhibitor concentrations compared to the concentrations that would be needed for more potent compounds. A possible hydrolysis event (see below) is expected to have a smaller effect (over the 60 min experimental time) on higher concentrations of an inhibitor and would yield results that are better interpretable. Recombinant human MAO-B was preincubated with 9c for periods of 0, 15, 30 and 60 min and the residual rates of the MAO-A and –B catalyzed oxidation of kynuramine were measured. For this purpose, the concentrations of 9c chosen were 9.76 µM for the incubations with MAO-A and 2.80 µM for the incubations with MAO-B. These concentrations are approximately 2 fold the measured IC₅₀ values for the inhibition of the respective enzymes by 9c.
As shown in figure 6A and 6B, there is no time-dependent reduction in the rates of MAO-A and –B catalysed oxidation of kynuramine when compound 9c is preincubated with the enzyme for various periods of time. From this result it may be concluded that the inhibition of MAO-A and –B is reversible, at least for the time period (60 min) and at the inhibitor concentrations (2 × IC₅₀) evaluated. Interestingly, marked increases of both the MAO-A and –B catalytic rate with increased preincubation time of 9c with the enzymes are observed. One possible explanation for this observation is that 9c, and probably the other isatin analogues, undergo slow hydrolysis in the aqueous buffer (pH 7.4) used for the inhibition studies. Isatins are known to undergo C-N bond fission to yield the ring-opened amino acid. This process is reversible and acidification reforms the isatin. Considering that an incubation time of 20 min was chosen for determining the inhibition potencies of the isatin analogues, the recorded IC₅₀ values (Table 2) may be an underestimation of the MAO-A and –B inhibition potencies. Since relatively little loss of inhibition potency of the isatin analogues is observed between the 15 min and 30 min time points, the effect of hydrolysis on the measured IC₅₀ values is expected to be relatively small. Time-dependent inhibition studies with other isatin analogues yielded similar results (data not shown).

To further examine the modes of MAO-A and –B inhibition, sets of Lineweaver–Burk plots were constructed for the inhibition of both enzymes by 9c, the selected representative inhibitor (Fig. 7A and 7B). Inspection of the Lineweaver–Burk plots suggests that 9c inhibits both MAO-A and –B competitively since the plots are linear and intersect at the y-axis. These findings lend further support for the finding that 9c interacts reversibly with the active sites of human MAO-A and –B and is in accordance with literature which reports that both isatin and (E)-styrylisatin analogues are competitive inhibitors of recombinant human MAO-A and –B.

2.5. Molecular modeling studies

The findings of this study show that while the isatin analogues are in general good MAO-A and –B inhibitors, the corresponding aniline analogues act as weak inhibitors. As discussed above, one possible reason for this observation is that, in addition to the potential hydrogen bonding interactions provided by the lactam nitrogen, the isatin carbonyl oxygens may interact via hydrogen bonding with MAO-A and –B active site residues and water molecules in the vicinity of the FAD cofactor. This would in turn lead to additional stabilization of the inhibitor–enzyme complex. Since the aniline analogues do not possess carbonyl functional groups similar stabilizing interactions between the anilines and the MAO-A and –B active sites are absent. For the anilines, the anilinic nitrogen is the only functional group that could undergo hydrogen bonding in the vicinity of the FAD cofactor. To provide additional insight, the binding
modes of 5-benzyloxyisatin (9a) and its corresponding aniline, 4-benzyloxyaniline (10a), in MAO-A and –B were examined using molecular docking.

The structures of human MAO-A co-crystallized with harmine (PDB entry: 2Z5X) and human MAO-B co-crystallized with safinamide (PDB entry: 2V5Z) were selected and molecular docking was carried out according to a modification of a previously reported protocol with the LigandFit application of the Discovery Studio 1.7 modeling software (Accelrys). These models were selected based on the high resolution of the crystallographic structures. Furthermore, in the complex between MAO-B and safinamide, the side chain of Ile-199 is rotated out of the normal conformation. This allows for the fusion of the entrance and substrate cavities which is a necessity for the binding of relatively large inhibitors which span both the entrance and substrate cavities. The active site of MAO-A on the other hand consists of a single cavity. The valences of the FAD co-factor and the co-crystallised ligands were corrected, hydrogen atoms were added to the MAO-A and –B models and the models were subjected to a three-step energy minimization procedure with the protein backbone constrained (see Experimental). After the energy minimization procedure, the backbone constraint was removed and the co-crystallised ligands were deleted from the models. The structures of 9a and 10a were constructed and geometry optimised within Discovery Studio and subsequently docked into the protein models with the LigandFit application of Discovery Studio. The docked inhibitor orientations and conformations were further refined with the Smart Minimizer algorithm in Discovery Studio and ten possible binding solutions were computed for each inhibitor. The accuracy of this procedure was evaluated by redocking the co-crystallized ligands, harmine and safinamide, into the active sites of MAO-A and –B, respectively. After each inhibitor was docked three times the best ranked orientations of harmine and safinamide exhibited RMSD values of 0.64 Å and 1.54 Å, respectively from the position of the co-crystallized ligand. This protocol was therefore deemed to be suitable for the docking of inhibitors into the active site of MAO-B.

The best-ranked docking solution of isatin derivative 9a within the active site of MAO-B shows that the dioxoindolyl ring binds within the substrate cavity in close proximity of the FAD co-factor (Fig. 8A). This binding orientation of the dioxoindolyl ring is similar to that observed for isatin co-crystallized within the active site of recombinant human MAO-B and for (E)-5-styrylisatin previously docked into an MAO-B model. The C5 benzyloxy side chain of 9a extends beyond the boundary defined by the side chain of Ile-199 into the entrance cavity of the enzyme. This binding orientation is similar to that observed for the co-crystallized inhibitor, safinamide, which also spans both active site cavities. A variety of relatively large inhibitors such as trans,trans-farnesol and 1,4-diphenyl-2-butene are also reported to traverse both MAO-B active site cavities. Within the hydrophobic environment of the entrance
cavity, the benzyloxy side chain is most likely stabilized by Van der Waals interactions. These interactions may, in part, explain the enhanced MAO-B inhibition potencies of C5 and C6 substituted isatin analogues compared to isatin (Table 2). In contrast to the substituted isatin analogues, isatin binds only within the substrate cavity and does not interact with the entrance cavity residues. Of importance is the observation that the 2-oxo and NH functional groups of 9a interact via hydrogen bonding with water molecules present in the active site. In the three-dimensional structure of isatin bound to human MAO-B, the C2 carbonyl oxygen of isatin is also hydrogen bonded to an ordered water molecule in the substrate cavity. The NH functional group may also undergo hydrogen bonding with the phenolic OH of Tyr-435. Another significant interaction between 9a and the MAO-B active site is a possible π–π interaction between the isatin ring and the amide functional group of the Gln-206 side chain with an interplane distance of approximately 3.5 Å. As discussed above, this interaction may also, in part, explain the enhanced binding affinity of the isatin analogues to MAO-B compared to the aniline analogues.

In the best-ranked docking solution of aniline derivative 10a within the active site of MAO-B, the NH₂ functional group binds in the polar region of the substrate cavity in the vicinity of the FAD co-factor and the “aromatic sandwich” defined by Tyr-398 and Tyr-435 (Fig. 8B). This is consistent with the proposal that the NH₂ moiety of aminyl substrates of MAO-B is recognized by the same aromatic residues. Within the substrate cavity, the NH₂ functional group possibly forms hydrogen bonds with a water molecule and the C4 carbonyl oxygen of the flavin. Similar to what has been observed for the MAO-B–9a complex, the benzyloxy side chain of 10a also extends towards the entrance cavity of the enzyme where it is possibly stabilized via Van der Waals interactions. One of the most notable differences between the binding modes of 9a and 10a within the MAO-B active site is the presence of the additional hydrogen bond interaction between the 2-oxo group of 9a and a water molecule. In accordance with the analysis above, this interaction may, in part, explain the enhanced MAO-B inhibition potencies of the isatin analogues compared to the corresponding aniline analogues.

Examination of the binding modes of 9a (Fig. 9A) and 10a (Fig. 9B) within the MAO-A active site, reveals that these inhibitors adopt similar orientations to those observed in the MAO-B active site. The isatin ring of 9a is located in close proximity to the FAD co-factor and both the C2 and C3 carbonyl oxygens are hydrogen bonded to active site water molecules. Interestingly, in contrast to the binding orientations of isatin and 9a in the human MAO-B active site, in the MAO-A active site, the dioxoindolyl ring of 9a is rotated through ~180º. The dioxoindolyl ring of 9a possibly forms a π–π interaction with the amide functional group of the Gln-215 side chain with an interplane distance of approximately 3.6 Å. Inhibitor 10a, on the other hand, is only hydrogen bonded via its anilinic NH₂ to a
water molecule and possibly the C4 carbonyl oxygen of the flavin. The observation that the MAO-A–9a complex is stabilized by hydrogen bonding to both the 2- and 3-oxo groups while the MAO-A–10a complex is by hydrogen bonding to only the NH2 may, in part, explain the enhanced MAO-A inhibition potencies of the isatin analogues compared to the corresponding aniline analogues.

3. Discussion
In the present study a series of ten C5- and C6-substituted isatin analogues (9a–j) were synthesized and evaluated as MAO inhibitors. The results document that the isatin analogues are reversible competitive inhibitors of both MAO isoforms and in most instances exhibit selectivity for MAO-B (Table 2). Of the ten analogues, only three compounds (9d, 9g and 9h) were selective for MAO-A. It can therefore be concluded that, similar to isatin (1), C5- and C6-substituted isatin analogues act in general as MAO-B selective inhibitors. Also noteworthy is the finding that C5- and C6-substitution of isatin in general leads to a considerable enhancement of the MAO-B inhibition potencies of the test compounds while having, with the exception of 9g, a smaller effect on the MAO-A inhibition potencies. The results also document that, without exception, the C5-substituted isatin analogues are more potent inhibitors of MAO-A and –B than the corresponding C6-substituted isatin homologues. This finding is similar to the observation that (E)-5-styrylisatin (2) is a better MAO-A and -B inhibitor than the C6-substituted analogue (E)-6-styrylisatin (3). It can therefore be concluded that C5-substitution of isatin is more optimal than C6-substitution for improving the MAO inhibition potencies of isatin. The finding that C5- and C6-substitution considerably enhances the MAO-B inhibition potency of isatin is in agreement with the view that the C5- and C6-side chains interact with the entrance cavity amino acid residues in order to allow for more productive interactions with the enzyme compared to isatin and hence more potent inhibition.

A possible explanation for the higher binding affinities of the C5-substituted isatin analogues towards MAO-B compared to MAO-A may be found by examining the docked binding modes of 9a in the active sites of human MAO-A and –B. While the dioxoindolyl ring of 9a adopts a similar binding orientation in MAO-B to that observed for isatin in an MAO-B–isatin X-ray crystal structure model,17 in the MAO-A active site the dioxoindolyl ring of 9a is rotated through approximately 180º (Fig. 10). This alternative binding orientation in the MAO-A active site may be less optimal for the formation of stabilizing interactions with the active site residues and water molecules. These results is in agreement with previous docking studies which showed that the isatin ring of (E)-5-styrylisatin also occupies the alternative binding orientation in the MAO-A active site18 and suggests that other C6-substituted isatin analogues also adopts the alternative orientation in MAO-A.
A similar analysis may explain the higher binding affinities of the C5-substituted isatin analogues towards MAO-B compared to the binding affinities of the corresponding C6-substituted isatin analogues. In the docked binding mode of 9b in the active site of human MAO-B, the dioxoindolyl ring of 9b is also rotated through ~180º compared to the orientation of 9a (Fig. 11). Compound 9b therefore occupies a less optimal binding orientation in MAO-B than 9a, and hence exhibits a lower MAO-B inhibition potency than inhibitor 9a. This alternative binding orientation of the dioxoindolyl ring of 9b in the MAO-B active site is similar to that observed for (E)-6-styrylisatin previously docked into an MAO-B model and is most probably shared by other C6-substituted isatin analogues.

In this study we have also examined the importance of the isatin moiety for binding to MAO-A and MAO-B by comparing the inhibition potencies of the C5- and C6-substituted isatins with those of the corresponding aniline analogues. The results showed that the aniline analogues are weaker MAO-A and –B inhibitors than the corresponding isatin analogues and suggests that the lactam and C2 carbonyl functional groups of the dioxoindolyl ring are important structural features for binding to the MAO active sites. Molecular docking studies suggest that in both MAO-A and –B, the isatin ring forms one additional hydrogen bond interaction with the active site residues and waters of MAO-A and –B than the corresponding aniline analogues. This may, in part, explain the enhanced MAO inhibition potencies of the isatin analogues compared to the corresponding aniline analogues. Another factor that may contribute to stabilizing the complexes between the isatin analogues and the MAO isozymes are possible π–π stacking interactions between the isatin ring and the amide π-face of an active site Gln residue. In MAO-A, Gln-215 undergo stacking interactions with isatin 9a while in MAO-B Gln-206 form stacking interactions with 9a.

4. Experimental section

4.1. Chemicals and instrumentation

Unless otherwise noted, all starting materials were obtained from Sigma-Aldrich and were used without purification. Proton (1H) and carbon (13C) NMR spectra were recorded on a Varian Gemini 300 spectrometer at frequencies of 300 MHz and 75 MHz, respectively, and on a Bruker Avance III 600 spectrometer at frequencies of 600 MHz and 150 MHz, respectively. All NMR measurements were conducted in DMSO-d6 and the chemical shifts are reported in parts per million (δ) downfield from the signal of tetramethylsilane added to the deuterated solvent. Spin multiplicities are given as s (singlet), brs (broad singlet), d (doublet), dd (doublet of doublets), t (triplet) or m (multiplet). Direct insertion electron impact ionization (EIMS) and high resolution mass spectra (HRMS) were obtained on a DFS high resolution magnetic sector mass spectrometer (Thermo Electron Corporation). Melting points (mp) were
determined on a Stuart SMP10 melting point apparatus and are uncorrected. Column chromatography was carried out with Silica gel 60 (Fluka; 0.063–0.2 mm) while thin layer chromatography (TLC) was carried out using silica gel 60 (Merck) with UV254 fluorescent indicator. To determine the purity of the synthesized compounds, HPLC analyses were conducted with an Agilent 1100 HPLC system equipped with a quaternary pump and an Agilent 1100 series diode array detector (see Supplementary Material). HPLC grade acetonitrile (Merck) and Milli-Q water (Millipore) was used for the chromatography. For fluorescence spectrophotometry, a Varian Cary Eclipse fluorescence spectrophotometer was employed. Microsomes from insect cells containing recombinant human MAO-A and –B (5 mg/mL), kynuramine.2HBr and isatin were obtained from Sigma-Aldrich. (E)-5-styrylisatin (2), (E)-6-styrylisatin (3), aniline 10k and aniline 10l were synthesized as described previously. Single-crystal X-ray diffraction analysis was carried out with a Bruker Smart X2S diffractometer.

4.2. Synthesis of C5- and C6-substituted isatin analogues (9a–j)

The C5- and C6-substituted isatin analogues (9a–j) investigated in this study were synthesized according to a modification of the literature description. A mixture of the appropriate C4- or C5-substituted aniline (10, 20 mmol) and acetic acid (35 mL) was heated at 110–120 ºC to yield a clear solution. For this purpose either the free base or hydrochloride salt of the aniline may be used. Diethyl ketomalonate (20 mmol) was added to the reaction and the resulting solution was heated under reflux at 110–120 ºC for 8 hours. The residual acetic acid was removed by steam distillation and the pH of the reaction mixture was adjusted to 11 with potassium hydroxide (10%). The reaction was again heated under reflux at 120 ºC for a period of 18 hours while a stream of air was passed continuously through the reaction mixture. The reaction was cooled to room temperature and gravity filtered to yield a clear filtrate. The pH of the filtrate was adjusted to 3 with hydrochloric acid (20%) and the resulting precipitate was removed by vacuum filtration. The pH of the filtrate was adjusted to <1 with hydrochloric acid (20%) and the resulting orange to red precipitate was collected by vacuum filtration. The precipitate (dissolved in ethyl acetate) was applied to a short silica gel column (35 × 80 mm) and eluted with ethyl acetate as mobile phase. Elution of the target isatin analogues were monitored by silica gel TLC using ethyl acetate/petroleum ether (50:50) as mobile phase and the plates were visualized under UV light (254 nm). The products thus obtained were recrystallized from ethyl acetate. For previously described 9g and 9h the melting points were found to be 208–211 ºC and 231–233 ºC while the reported melting points are 208–210 ºC and 235 ºC, respectively.
4.2.1. 5-Benzyloxyisatin (9a)
The title compound (bright red crystals) was prepared from 4-benzyloxyaniline hydrochloride (10a, Merck) and diethyl ketomalonate in a yield of 2.7%: mp 184–185 °C (ethyl acetate). 1H NMR (Varian Gemini 300, DMSO-d$_6$) δ 5.09 (s, 2H), 6.83 (d, 1H, J = 8.5 Hz), 7.14 (d, 1H, J = 2.6 Hz), 7.23–7.44 (m, 6H), 10.8 (s, 1H); 13C NMR (Varian Gemini 300, DMSO-d$_6$) δ 69.9, 109.9, 113.2, 118.1, 125.8, 127.7, 127.9, 128.4, 136.8, 144.8, 154.2, 159.5, 184.6; EIMS 253; HRMS m/z: calcd 253.0739, found 253.0736; Purity (HPLC): 99.6%; UV (CH$_3$CN) λ_{max} 253 nm (ε 25900 M$^{-1}$), 298 nm (ε 2400 M$^{-1}$), 466 nm (ε 957 M$^{-1}$).

4.2.2. 6-Benzyloxyisatin (9b)
The title compound (bright orange crystals) was prepared from 3-benzyloxyaniline (free base) (10b, Merck) and diethyl ketomalonate in a yield of 1.2%: mp 243–255 °C (decomp., ethyl acetate). 1H NMR (Varian Gemini 300, DMSO-d$_6$) δ 5.24 (s, 2H), 6.46 (d, 1H, J = 2.2 Hz), 6.64–6.67 (m, 1H), 7.32–7.49 (m, 6H), 10.96 (brs, 1H); 13C NMR (Varian Gemini 300, DMSO-d$_6$) δ 70.0, 98.5, 109.5, 111.3, 127.3, 127.8, 128.2, 128.5, 136.0, 153.5, 160.5, 166.7, 181.5; EIMS 253; HRMS m/z: calcd 253.0739, found 253.0733; Purity (HPLC): 99.5%; UV (CH$_3$CN) λ_{max} 261 nm (ε 26500 M$^{-1}$), 318 nm (ε 12200 M$^{-1}$), 395 nm (ε 1746 M$^{-1}$).

4.2.3. 5-(2-Phenylethyl)isatin (9c)
The title compound (bright red crystals) was prepared from 4-(2-phenylethyl)aniline hydrochloride (10c) and diethyl ketomalonate in a yield of 5.3%: mp 165–167 °C (ethyl acetate). 1H NMR (Varian Gemini 300, DMSO-d$_6$) δ 2.82 (s, 4H), 6.80, (d, 1H, J = 8.0 Hz), 7.15–7.28 (m, 5H), 7.36–7.43 (m, 2H), 10.95 (s, 1H); 13C NMR (Varian Gemini 300, DMSO-d$_6$) δ 36.0, 36.9, 112.0, 117.8, 124.4, 125.9, 128.2, 128.4, 136.2, 138.4, 141.1, 148.9, 159.5, 184.5; EIMS 251; HRMS m/z: calcd 251.0946, found 251.0941; Purity (HPLC): 99.5%; UV (CH$_3$CN) λ_{max} 247 nm (ε 30100 M$^{-1}$), 298 nm (ε 26500 M$^{-1}$), 423 nm (ε 935 M$^{-1}$).

4.2.4. 6-(2-Phenylethyl)isatin (9d)
The title compound (bright orange crystals) was prepared from 3-(2-phenylethyl)aniline hydrochloride (10d) and diethyl ketomalonate in a yield of 4.6%: mp 203–205 °C (ethyl acetate). 1H NMR (Bruker Avance III 600, DMSO-d$_6$) δ 2.85–2.92 (m, 4H), 6.75 (s, 1H). 6.91 (d, 1H, J = 7.5 Hz), 7.17 (t, 1H, J = 7.2 Hz); 7.22–7.28 (m, 4H), 7.39 (d, 1H, J = 7.5 Hz), 11.00 (brs, 1H); 13C NMR (Bruker Avance III 600, DMSO-d$_6$) δ 36.2, 37.7, 112.2, 115.9, 123.0, 124.7, 126.0, 128.3, 128.4, 140.9, 151.1, 153.8, 159.9, 183.7; EIMS 251; HRMS m/z: calcd 251.0946, found 251.0941; Purity (HPLC): 99.8%; UV (CH$_3$CN) λ_{max} 249 nm (ε 29000 M$^{-1}$), 298 nm (ε 3700 M$^{-1}$), 412 nm (ε 1031 M$^{-1}$).
4.2.5. 5-Phenoxyisatin (9e)
The title compound (bright red crystals) was prepared from 4-phenoxyaniline (free base) (10e) and diethyl ketomalonate in a yield of 9.3%: mp 185–190 °C (decomp., ethyl acetate). 1H NMR (Bruker Avance III 600, DMSO-d$_6$) δ 6.93 (d, 1H, $J = 8.7$ Hz), 6.98 (d, 2H, $J = 7.9$ Hz), 7.10 (m, 1H), 7.12 (t, 1H, $J = 7.2$ Hz), 7.29 (m, 1H), 7.37 (t, 2H, $J = 7.9$ Hz), 11.00 (s, 1H); 13C NMR (Bruker Avance III 600, DMSO-d$_6$) δ 113.6, 115.0, 118.0, 118.6, 123.5, 129.1, 130.1, 146.7, 151.9, 157.0, 159.6, 184.1; EIMS 239; HRMS m/z: calcd 239.0582, found 239.0574; Purity (HPLC): 99.7%; UV (CH$_3$CN) λ_{max} 249 nm (ϵ 30100 M$^{-1}$), 294 nm (ϵ 2530 M$^{-1}$), 433 nm (ϵ 925 M$^{-1}$).

4.2.6. 6-Phenoxyisatin (9f)
The title compound (bright yellow crystals) was prepared from 3-phenoxyaniline (free base) (10f) and diethyl ketomalonate in a yield of 3.0%: mp 146–150 °C (decomp., ethyl acetate/ n-hexane, 1:1). 1H NMR (Bruker Avance III 600, DMSO-d$_6$) δ 6.28 (s, 1H), 6.55 (d, 1H, $J = 8.7$ Hz), 7.20 (d, 2H, $J = 8.3$ Hz), 7.31 (t, 1H, $J = 7.15$ Hz), 7.51 (m, 3H), 10.89 (brs, 1H); 13C NMR (Bruker Avance III 600, DMSO-d$_6$) δ 99.9, 110.9, 112.5, 120.9, 125.8, 127.5, 130.5, 153.4, 153.8, 160.1, 166.0, 181.8; EIMS 239; HRMS m/z: calcd 239.0582, found 239.0582; Purity (HPLC): 99.4%; UV (CH$_3$CN) λ_{max} 256 nm (ϵ 22100 M$^{-1}$), 316 nm (ϵ 11300 M$^{-1}$), 394 nm (ϵ 1667 M$^{-1}$).

4.2.7. 5-Phenylisatin (9g)
The title compound (bright red crystals) was prepared from 4-aminobiphenyl (free base) (10g) and diethyl ketomalonate in a yield of 8.5%: mp 208–211 °C (ethyl acetate), lit. mp 208–210 °C.21 1H NMR (Bruker Avance III 600, DMSO-d$_6$) δ 6.97 (d, 1H, $J = 8.3$ Hz), 7.34 (t, 1H, $J = 7.5$ Hz), 7.43 (t, 2H, $J = 7.5$ Hz), 7.61 (d, 2H, $J = 7.5$ Hz), 7.72 (d, 1H, $J = 1.5$ Hz), 7.86 (dd, 1H, $J = 1.9$, 8.3 Hz), 11.13 (brs, 1H); 13C NMR (Bruker Avance III 600, DMSO-d$_6$) δ 112.7, 118.4, 122.5, 126.2, 127.5, 129.0, 134.9, 136.5, 138.7, 150.0, 159.6, 184.4; EIMS 223; HRMS m/z: calcd 223.0633, found 223.0632; Purity (HPLC): 99.8%; UV (CH$_3$CN) λ_{max} 256 nm (ϵ 22100 M$^{-1}$), 316 nm (ϵ 11300 M$^{-1}$), 394 nm (ϵ 1667 M$^{-1}$).

4.2.8. 6-Phenylisatin (9h)
The title compound (orange-red crystals) was prepared from 3-aminobiphenyl (free base) (10h) and diethyl ketomalonate in a yield of 3.7%: mp 231–233 °C (ethyl acetate), lit. mp 235 °C.21 1H NMR (Bruker Avance III 600, DMSO-d$_6$) δ 7.09 (s, 1H), 7.34 (d, 1H, $J = 7.5$ Hz), 7.46 (t, 1H, $J = 7.2$ Hz), 7.51 (t, 2H, $J = 7.2$ Hz), 7.57 (d, 1H, $J = 7.5$ Hz), 7.69 (d, 2H, $J = 7.5$ Hz), 11.14 (s, 1H); 13C NMR (Bruker Avance III 600, DMSO-d$_6$) δ 110.1, 116.8, 121.3, 125.3, 127.1, 129.1, 129.2, 138.9, 149.9, 151.4, 159.8,
183.7; EIMS 223; HRMS \(m/z \): calcd 223.0633, found 223.0628; Purity (HPLC): 98.3%; UV (CH\(_3\)CN) \(\lambda_{\text{max}} \) 266 nm (\(\varepsilon \) 15360 M\(^{-1}\) cm\(^{-1}\)), 326 nm (\(\varepsilon \) 15860 M\(^{-1}\) cm\(^{-1}\)), 408 nm (\(\varepsilon \) 1578 M\(^{-1}\) cm\(^{-1}\)).

4.2.9. 5-(4-Phenylbutyl)isatin (9i)
The title compound (dark red crystals) was prepared from 4-(4-phenylbutyl)aniline hydrochloride (10i) and diethyl ketomalonate in a yield of 5.0%: mp 116–121 °C (ethyl acetate). \(^1\)H NMR (Bruker Avance III 600, DMSO-d\(_6\)) \(\delta \) 1.52 (m, 4H), 3.41 (m, 4H), 6.80 (d, 1H, \(J = 7.9 \) Hz), 7.14 (d, 3H, \(J = 7.5 \) Hz), 7.23 (t, 2H, \(J = 7.5 \) Hz), 7.28 (s, 1H), 7.37 (d, 1H, \(J = 7.9 \) Hz), 10.95 (s, 1H); \(^{13}\)C NMR (Bruker Avance III 600, DMSO-d\(_6\)) \(\delta \) 30.4, 30.5, 34.0, 34.9, 112.1, 117.8, 124.2, 125.7, 128.26, 128.28, 136.9, 138.3, 142.1, 148.8, 159.5, 184.6; EIMS 279; HRMS \(m/z \): calcd 279.1259, found 279.1253; Purity (HPLC): 99.7%; UV (CH\(_3\)CN) \(\lambda_{\text{max}} \) 247 nm (\(\varepsilon \) 27300 M\(^{-1}\) cm\(^{-1}\)), 298 nm (\(\varepsilon \) 34400 M\(^{-1}\) cm\(^{-1}\)), 423 nm (\(\varepsilon \) 980 M\(^{-1}\) cm\(^{-1}\)).

4.2.10. 5-(4-Chlorophenoxy)isatin (9j)
The title compound (bright red crystals) was prepared from 4-(4-chlorophenoxy)aniline (free base) (10j) and diethyl ketomalonate in a yield of 5.2%: mp 255–257 °C. \(^1\)H NMR (Bruker Avance III 600, DMSO-d\(_6\)) \(\delta \) 6.93 (d, 1H, \(J = 8.3 \) Hz), 6.99 (d, 2H, \(J = 9.0 \) Hz), 7.16 (d, 1H, \(J = 2.6 \) Hz), 7.31 (dd, 1H, \(J = 2.6, 8.7 \) Hz), 7.40 (d, 2H, \(J = 8.7 \) Hz), 11.05 (s, 1H); \(^{13}\)C NMR (Bruker Avance III 600, DMSO-d\(_6\)) \(\delta \) 113.7, 115.5, 118.7, 119.5, 127.1, 129.4, 129.9, 147.0, 151.4, 156.1, 159.5, 184.0; EIMS 273; HRMS \(m/z \): calcd 273.0193, found 273.0192; Purity (HPLC): 99.4%; UV (CH\(_3\)CN) \(\lambda_{\text{max}} \) 249 nm (\(\varepsilon \) 34400 M\(^{-1}\) cm\(^{-1}\)), 430 nm (\(\varepsilon \) 980 M\(^{-1}\) cm\(^{-1}\)).

4.3. Synthesis of aniline analogues
With the exception of 10c, 10d and 10i all the anilines required for the synthesis of the isatin analogues were commercially available. Sodium (105 mmol) was allowed to react with ethanol (109 mL) in small portions over a period of 2 hours. The resulting mixture was added at room temperature to diethyl 4- or diethyl 3-nitrobenzylphosphonate (11a–b, 100 mmol)\(^{26}\) and benzaldehyde (12, 100 mmol) or cinnamaldehyde (14, 100 mmol) dissolved in ethanol (164 mL) over a period of 1.5 hours. Stirring was continued for 20 hours and the thick yellow precipitate was collected by vacuum filtration and washed with 40 mL ethanol followed by 40 mL petroleum ether.\(^{27}\) The nitro-functionalized intermediates 13a, 13b and 15 thus obtained (yield 69–71%) were used without further purification in the following reaction. The nitro derivatives (25 mmol) were suspended in 400 mL methanol and the reaction flask was purged with argon. A quantity of 3% (of the weight of the nitro derivative) of Pd/C (10%) was pretet with 2 mL water and added to 10 mL methanol. This mixture was carefully added to the reaction. The atmosphere was replaced by hydrogen and the reaction was stirred at room temperature for 24 hours during which the
reaction became a clear solution. The catalyst was removed by filtration through a bed of celite and the methanol solvent was evaporated under reduced pressure. The resulting aniline derivative was converted to the corresponding hydrochloride salt in CH$_2$Cl$_2$ (70 mL). A volume of 150 mL diethyl ether may be added to the acidic CH$_2$Cl$_2$ solution to facilitate precipitation of the salt (yield 41–95%). The melting points of the hydrochloride salts of 10c, 10d and 10i were found to be 203–210 °C (decomp.), 164–181 °C and 174–180 °C, respectively.

4.3.1. Hydrochloride salt of 4-(2-phenylethyl)aniline (10c)
The title compound was prepared from 4-nitrostilbene (13a) in a yield of 94.9%: mp 203–210 °C (decomp.), lit. mp 210 °C.35,36 1H NMR (Varian Gemini 300, DMSO-d$_6$) δ 2.87 (m, 4H), 7.13–7.33 (m, 9H), 10.39 (brs, 3H); 13C NMR (Varian Gemini 300, DMSO-d$_6$) δ 36.4, 36.8, 123.0, 125.9, 128.2, 128.4, 129.56, 129.62, 141.1, 141.4; EIMS 197.

4.3.2. Hydrochloride salt of 3-(2-phenylethyl)aniline (10d)
The title compound was prepared from 3-nitrostilbene (13b) in a yield of 65.1%: mp 164–181 °C (methanol/ethyl acetate, 1:2).36 1H NMR (Bruker Avance III 600, DMSO-d$_6$) δ 2.84–2.91 (m, 4H), 7.16 (t, 1H, J = 7.2 Hz), 7.21–7.27 (m, 7 H), 7.36 (t, 1H, J = 7.5 Hz), 10.50 (brs, 3H); 13C NMR (Bruker Avance III 600, DMSO-d$_6$) δ 36.6, 36.7, 120.8, 123.0, 126.0, 128.1, 128.3, 128.4, 129.5, 131.9, 141.1, 143.4; EIMS 197.

4.3.3. Hydrochloride salt of 4-(4-phenylbutyl)aniline (10i)
The title compound was prepared from 1-nitro-4-[(1E,3E)-4-phenylbuta-1,3-dien-1-yl]benzene (15) in a yield of 40.9%: mp 174–180 °C (methanol/ethyl acetate, 1:1).37 1H NMR (Varian Gemini 300, DMSO-d$_6$) δ 1.55 (m, 4H), 2.57 (m, 4H), 7.11–7.31 (m, 9H), 10.41 (brs, 3H); 13C NMR (Varian Gemini 300, DMSO-d$_6$) δ 30.5, 30.6, 34.3, 34.9, 123.1, 125.6, 128.3, 129.42, 129.45, 142.1, 142.2; EIMS 225.

4.4. Recombinant human MAO-A and –B inhibition studies
Microsomes prepared from insect cells expressing recombinant human MAO-A and –B (5 mg/mL) were obtained from Sigma-Aldrich and were pre-aliquoted and stored at –70 °C. All enzymatic reactions were carried out to a final volume of 500 µL in potassium phosphate buffer (100 mM, pH 7.4, made isotonic with KCl, 20.2 mM) and contained kynuramine as substrate, MAO-A or MAO-B (0.0075 mg/mL) and various concentrations of the test inhibitor (0–100 µM). The final concentrations of kynuramine in the reactions were 45 µM and 30 µM where MAO-A and –B, respectively, were used as enzymes. Stock solutions of the test inhibitors were prepared in DMSO and added to the reactions to yield a final
concentration of 4% (v/v) DMSO. The reactions were carried out for 20 minutes at 37 °C and were terminated with the addition of 200 µL NaOH (2 N). After the addition of distilled water (1200 µL) to each reaction, the reactions were centrifuged for 10 minutes at 16,000 g. To determine the concentrations of the MAO generated 4-hydroxyquinoline in the reactions, the fluorescence of the supranatant at an excitation wavelength of 310 nm and an emission wavelength of 400 nm were measured. Quantitative estimations of 4-hydroxyquinoline were made with the aid of a linear calibration curve ranging from 0.047–1.56 µM of the reference standard dissolved in potassium phosphate buffer (100 mM, pH 7.4). Each calibration standard was prepared to a final volume of 500 µL in potassium phosphate buffer (100 mM, pH 7.4) and contained 4% DMSO. To each standard was also added 200 µL NaOH (2 N) and 1200 µL distilled water. IC₅₀ values were determined by plotting the initial rate of oxidation versus the logarithm of the inhibitor concentration to obtain a sigmoidal dose–response curve. For this purpose, 9 different inhibitor concentrations spanning at least 3 orders of a magnitude were used for each sigmoidal curve. This kinetic data were fitted to the one site competition model incorporated into the Prism software package (GraphPad) and the IC₅₀ values were determined in duplicate and are expressed as mean ± standard deviation (SD). The IC₅₀ values were converted to the corresponding Kᵢ values according to the equation by Cheng and Prusoff:

\[K_i = \frac{IC_{50}}{1 + [S]/K_m} \]

4.5. Time-dependant inhibition studies

To investigate whether the observed enzyme inhibition is reversible or irreversible, time-dependant inhibition studies were carried with a selected inhibitor, 9c. Recombinant human MAO-A or human MAO-B (0.03 mg/mL) were preincubated for periods of 0, 15, 30, 60 min at 37 °C with compound 9c. The concentrations of inhibitor 9c in these incubations were 9.76 µM and 2.80 µM for the incubations with MAO-A and MAO-B, respectively. These concentrations are 2 fold the measured IC₅₀ values for the inhibition of the respective MAO preparations by 9c and the incubations were carried out in potassium phosphate buffer (100 mM, pH 7.4, made isotonic with KCl). A final concentration of 45 µM kynuramine for MAO-A and 30 µM kynuramine for MAO-B were then added to the preincubated enzyme preparations and the resulting reactions were incubated at 37 °C for 15 minutes. The final volumes of these incubations were 500 µL and the final concentrations of 9c were 4.88 µM and 1.40 µM for MAO-A and MAO-B, respectively. These concentrations of the inhibitor are approximately equal to the IC₅₀ values for the inhibition of the respective enzyme preparations by 9c. The final enzyme concentrations of the MAO preparations were 0.015 mg/mL. The reactions were terminated with 200 µL NaOH (2 N) and a volume of 1200 µL distilled water was added to each reaction. The rates of formation of 4-hydroxyquinoline were measured and quantified as described above. All measurements were carried out in triplicate and are expressed as mean ± SD.
4.6. Mode of inhibition

To examine the modes of MAO-A and –B inhibition, sets of Lineweaver–Burk plots were constructed for the inhibition of both enzymes by a selected representative inhibitor, compound 9c. For this purpose the initial rates of oxidation of kynuramine at four different substrate concentrations (15–90 µM) in the absence and presence of three different concentrations of the inhibitor were measured. The concentrations of inhibitor 9c were 2.5–10 µM and 0.125–0.5 µM for the inhibition studies with MAO-A and –B, respectively, while the concentration of the MAO preparation in the incubations were 0.015 mg/mL. The enzymatic reactions and measurements were carried out as described above. Linear regression analysis was performed using the Prism software package.21

4.7. Molecular modeling studies

The molecular docking studies were carried out in the Windows based Discovery Studio 1.7 molecular modeling software.40 The ligands to be docked (9a, 9b and 10) were constructed Discovery Studio and the hydrogen atoms were added according to the appropriate protonation states at pH 7. The geometries were briefly optimized in Discovery Studio using a fast Dreiding-like forcefield (1000 iterations) and atom potential types and partial charges were subsequently automatically assigned with the Momany and Rone CHARMM forcefield. The X-ray crystallographic structures of MAO-A co-crystallized with harmine (PDB code: 2Z5X)3 and MAO-B co-crystallized with safinamide (PDB code: 2V5Z)22 were retrieved from the Brookhaven Protein Data Bank (www.rcsb.org/pdb). Hydrogen atoms were added to the receptor models according to the appropriate protonation states of the ionizable amino acids at pH 7. The valences of the FAD cofactors (oxidized state) and co-crystallized ligands were also corrected and hydrogen atoms were added according to the appropriate protonation states at pH 7. The resulting models were automatically typed with the Momany and Rone CHARMM forcefield, the protein backbone was constrained and the models were subjected to a three step energy minimization cascade. The first step was a steepest descent minimization which was followed by conjugate gradient minimization. For both protocols the termination criteria was set to a maximum of 2500 steps or a minimum value of 0.1 for the root mean square of the energy gradient. The third step was an adopted basis Newton-Raphson minimization with the termination criteria set to a maximum of 5000 steps or a minimum value for the root mean square of the energy gradient of 0.01. For this minimization cascade the implicit generalized Born solvation model with simple switching was used with the dielectric constant set to 4. The models were subsequently deprived of the co-crystallized ligands and the backbone constraints and the binding site was identified by a flood-filling algorithm. All crystal waters were retained for the modeling studies and include the water molecules which are involved in hydrogen bonding with the C2 carbonyl oxygen of isatin as shown by the crystal structure of isatin in complex with MAO-B.17 Automated docking was
subsequently carried out with the LigandFit application of Discovery Studio and 10 docking solutions were allowed for each ligand. The docking protocol uses total ligand flexibility whereby the final ligand conformations are determined by the Monte Carlo conformation search method set to a variable number of trial runs. The docked ligands were further refined using in situ ligand minimization with the Smart Minimizer algorithm. Unless otherwise specified (see above), all the application modules within Discovery Studio were set to their default values. The illustrations were generated in PyMOL.

4.8. Single-crystal X-ray diffraction analysis

X-ray diffraction data were collected on a Bruker Smart X2S diffractometer using monochromated (doubly curved silicon crystal) Mo-Kα-radiation (0.71073 Å) and employing ω scan mode. For this purpose, orange coloured crystals of compound 9d was mounted on a Mitegen Micromount with a small amount of epoxy. Bruker APEX2 software was used for preliminary determination of the unit cell and the determination of integrated intensities and unit cell refinement were performed with Bruker SAINT system. The data were corrected for absorption effects with SADABS using the multiscan technique. The structure was solved with XS and subsequent structure refinements were performed with XL. The structure was refined by anisotropic full-matrix least-squares refinement on \(F^2 \): C\(_{16}\)H\(_{13}\)NO\(_2\), \(M=251.28 \) g.mol\(^{-1}\), crystal size: 0.05 × 0.5 × 0.5 mm\(^3\), orthorhombic, space group \(P2_1 \ 2_1 \ 2_1 \), \(a=4.7763(10) \) Å, \(b=9.835(3) \) Å, \(c=27.125(7) \) Å, \(\alpha=\beta=\gamma=90^\circ \), \(V=1274.2(5) \) Å\(^3\), \(Z=4 \), \(\rho_{\text{calc}}=1.310 \) g.cm\(^{-3}\), \(\mu=0.087 \) mm\(^{-1}\), \(\lambda=0.71073 \) Å, \(T=300(2) \) K, \(\theta_{\text{range}}=1.50–20.19^\circ \), reflections collected: 5430, independent: 1234 (\(R_{\text{int}}=0.0371 \)), 172 parameters, final \(R \) indices \([I>2\sigma(I)]\): \(R_1=0.0417 \); \(wR_2=0.1142 \), max/min residual electron density: 0.168/–0.211 e/Å\(^3\), goodness-of-fit on \(F^2 \) 1.105, \(F(000)=528 \). CCDC 794009 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk.

Acknowledgements

The NMR and MS spectra and X-ray diffraction data were recorded by André Joubert and Johan Jordaan of the SASOL Centre for Chemistry, North-West University. This work was supported by grants from the National Research Foundation and the Medical Research Council, South Africa.
References

42. Sheldrick, G. M. *Acta Cryst.* 2008, A64, 112.
Table 1. 13C NMR chemical shifts for carbonyl C2 and C3 of isatin derivatives 9a–j

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9a</td>
<td>C$_6$H$_5$CH$_2$O</td>
<td>H</td>
<td>159.5</td>
<td>184.6</td>
</tr>
<tr>
<td>9b</td>
<td>H</td>
<td>C$_6$H$_5$CH$_2$O</td>
<td>160.5</td>
<td>181.5</td>
</tr>
<tr>
<td>9c</td>
<td>C$_6$H$_5$CH$_2$CH$_3$</td>
<td>H</td>
<td>159.5</td>
<td>184.5</td>
</tr>
<tr>
<td>9d</td>
<td>H</td>
<td>C$_6$H$_5$CH$_2$CH$_2$</td>
<td>159.9</td>
<td>183.7</td>
</tr>
<tr>
<td>9e</td>
<td>C$_6$H$_5$O</td>
<td>H</td>
<td>159.6</td>
<td>184.1</td>
</tr>
<tr>
<td>9f</td>
<td>H</td>
<td>C$_6$H$_5$O</td>
<td>160.1</td>
<td>181.8</td>
</tr>
<tr>
<td>9g</td>
<td>C$_6$H$_5$</td>
<td>H</td>
<td>159.6</td>
<td>184.4</td>
</tr>
<tr>
<td>9h</td>
<td>H</td>
<td>C$_6$H$_5$</td>
<td>159.8</td>
<td>183.7</td>
</tr>
<tr>
<td>9i</td>
<td>C$_6$H$_5$(CH$_2$)$_4$</td>
<td>H</td>
<td>159.5</td>
<td>184.6</td>
</tr>
<tr>
<td>9j</td>
<td>4-ClC$_6$H$_4$O</td>
<td>H</td>
<td>159.5</td>
<td>184.0</td>
</tr>
</tbody>
</table>

*The NMR experiments were conducted in DMSO-d$_6$ (see Experimental section).

Table 2. The IC$_{50}$ values and calculated K_i values for the inhibition of recombinant human MAO-A and –B by isatin derivatives 9a–j

<table>
<thead>
<tr>
<th></th>
<th>IC$_{50}$ (µM)</th>
<th>MAO-A</th>
<th>MAO-B</th>
<th>K_i (µM)b</th>
<th>MAO-A</th>
<th>MAO-B</th>
<th>SIc</th>
</tr>
</thead>
<tbody>
<tr>
<td>9a</td>
<td>4.62 ± 0.148</td>
<td>0.103 ± 0.011</td>
<td>1.22</td>
<td>0.044</td>
<td>27.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9b</td>
<td>72.4 ± 26.3</td>
<td>0.138 ± 0.005</td>
<td>19.1</td>
<td>0.059</td>
<td>321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>4.88 ± 0.03</td>
<td>1.40 ± 0.124</td>
<td>1.29</td>
<td>0.603</td>
<td>2.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9d</td>
<td>6.93 ± 0.842</td>
<td>9.93 ± 4.54</td>
<td>1.83</td>
<td>4.28</td>
<td>0.427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9e</td>
<td>9.44 ± 0.356</td>
<td>1.54 ± 0.575</td>
<td>2.49</td>
<td>0.663</td>
<td>3.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9f</td>
<td>62.2 ± 8.25</td>
<td>9.91 ± 0.752</td>
<td>16.4</td>
<td>4.27</td>
<td>3.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9g</td>
<td>0.562 ± 0.026</td>
<td>1.19 ± 0.173</td>
<td>0.148</td>
<td>0.513</td>
<td>0.289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9h</td>
<td>4.64 ± 0.556</td>
<td>8.52 ± 0.260</td>
<td>1.22</td>
<td>3.67</td>
<td>0.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9i</td>
<td>2.19 ± 0.218</td>
<td>0.00066 ± 0.00001</td>
<td>0.577</td>
<td>0.00028</td>
<td>2030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9j</td>
<td>12.2 ± 1.22</td>
<td>0.066 ± 0.008</td>
<td>3.21</td>
<td>0.028</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isatin</td>
<td>31.8 ± 4.30</td>
<td>12.4 ± 0.693</td>
<td>8.38</td>
<td>5.34</td>
<td>1.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(E)-C$_6$H$_5$=CH</td>
<td>0.233 ± 0.006</td>
<td>0.009 ± 0.001</td>
<td>0.061</td>
<td>0.004</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(E)-C$_6$H$_5$=CH</td>
<td>2.72 ± 0.082</td>
<td>0.617 ± 0.011</td>
<td>0.717</td>
<td>0.266</td>
<td>2.70</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. The IC₅₀ values and calculated Kᵢ values for the inhibition of recombinant human MAO-A and –B by aniline derivatives 10a–l

<table>
<thead>
<tr>
<th></th>
<th>IC₅₀ (µM)</th>
<th>Kᵢ (µM)</th>
<th>MAO-A</th>
<th>MAO-B</th>
<th>MAO-A</th>
<th>MAO-B</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>10a</td>
<td>C₆H₅CH₂O H</td>
<td>191 ± 53.5</td>
<td>12.8 ± 4.47</td>
<td>50.3</td>
<td>5.51</td>
<td>9.13</td>
<td></td>
</tr>
<tr>
<td>10b</td>
<td>H</td>
<td>466 ± 75.2</td>
<td>23.4 ± 5.65</td>
<td>123</td>
<td>10.1</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>10c</td>
<td>C₆H₅CH₂CH₂ H</td>
<td>131 ± 6.22</td>
<td>135 ± 0.011</td>
<td>34.5</td>
<td>58.1</td>
<td>0.594</td>
<td></td>
</tr>
<tr>
<td>10d</td>
<td>H</td>
<td>355 ± 38.8</td>
<td>115 ± 7.85</td>
<td>93.5</td>
<td>49.5</td>
<td>1.89</td>
<td></td>
</tr>
<tr>
<td>10e</td>
<td>C₆H₅O H</td>
<td>914 ± 21.1</td>
<td>303 ± 8.77</td>
<td>24.1</td>
<td>131</td>
<td>0.185</td>
<td></td>
</tr>
<tr>
<td>10f</td>
<td>H</td>
<td>C₆H₅O</td>
<td>No inhibitiond</td>
<td>140 ± 42.1</td>
<td>–</td>
<td>60.3</td>
<td>–</td>
</tr>
<tr>
<td>10g</td>
<td>H</td>
<td>C₆H₅</td>
<td>No inhibitiond</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>10h</td>
<td>H</td>
<td>C₆H₅H</td>
<td>No inhibitiond</td>
<td>18.1</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>10i</td>
<td>C₆H₅(CH₂)₄</td>
<td>H</td>
<td>No inhibitiond</td>
<td>5.55 ± 0.492</td>
<td>–</td>
<td>2.39</td>
<td>–</td>
</tr>
<tr>
<td>10j</td>
<td>4-CIC₆H₅O H</td>
<td>29.3 ± 1.33</td>
<td>16.8 ± 1.74</td>
<td>7.72</td>
<td>7.24</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>10k</td>
<td>(E)-C₆H₅CH=CH</td>
<td>H</td>
<td>25.3 ± 2.01</td>
<td>6.34 ± 3.41</td>
<td>6.67</td>
<td>2.73</td>
<td>2.44</td>
</tr>
<tr>
<td>10l</td>
<td>H</td>
<td>(E)-C₆H₅CH=CH</td>
<td>30.4 ± 4.70</td>
<td>5.74 ± 1.05</td>
<td>8.01</td>
<td>2.47</td>
<td>3.24</td>
</tr>
</tbody>
</table>

Notes:

- All values are expressed as the mean ± SD of duplicate determinations.
- The Kᵢ values were calculated from the experimentally measured IC₅₀ values according to the equation by Cheng and Prusoff: $K_i = IC_{50}/(1 + [S]/K_m)$ with [S] = 45 µM and K_m (kynuramine) = 16.1 µM for human MAO-A and [S] = 30 µM and K_m (kynuramine) = 22.7 µM for human MAO-B.²¹,²⁹
- The selectivity index is the selectivity for the MAO-B isoform and is given as the ratio of K_i(MAO-A)/K_i(MAO-B).
- No inhibition observed at a maximum tested concentration of 100 µM.
Figure and Scheme Legends

Figure 1. The structures of isatin (1), (E)-5-styrylisatin (2) and (E)-6-styrylisatin (3).

Figure 2. The structures of caffeine (4) and (E)-8-(3-chlorostyryl)caffeine [CSC, (5)].

Figure 3. The structures of 8-(3-chlorobenzyloxy)caffeine (6), safinamide (7) and 7-(3-chlorobenzyloxy)-4-formylcoumarin (8).

Figure 4. The X-ray crystallographic structure of 9d shown with displacement ellipsoids.

Figure 5. The sigmoidal dose-response curve of the initial rates of oxidation of kynuramine by recombinant human MAO-A (Panel A) and recombinant human MAO-B (Panel B) vs. the logarithm of concentration of inhibitor 9g (expressed in nM). The determinations were carried out in duplicate and the values are expressed as the mean ± SD. The concentrations of kynuramine used were 45 and 30 µM for the studies with MAO-A and MAO-B, respectively, and the rate data are expressed as nmoles 4-hydroxyquinoline formed/min/mg protein.

Figure 6. Time-dependant inhibition of the recombinant human MAO-A (Panel A) and recombinant human MAO-B (Panel B) catalyzed oxidation of kynuramine by compound 9c. The enzymes were preincubated for various periods of time (0–60 min) with 9c at concentrations of 9.76 µM and 2.80 µM for MAO-A and MAO-B, respectively. The concentrations of kynuramine used were 45 and 30 µM for the studies with MAO-A and MAO-B, respectively, and the rate data are expressed as nmoles 4-hydroxyquinoline formed/min/mg protein. The catalytic rates recorded in the absence of the inhibitors are 12.6 ± 1.05 and 6.94 ± 0.02 nmoles/min/mg for MAO-A and –B, respectively.

Figure 7. Lineweaver-Burk plots of the recombinant human MAO-A (Panel A) and recombinant human MAO-B (Panel B) catalyzed oxidation of kynuramine in the absence (filled squares) and presence of various concentrations of 9c. For the studies with MAO-A (Panel A) the concentrations of 9c were: 2.5 µM (open squares), 5 µM (filled circles), 10 µM (open circles). For the studies with MAO-B (Panel B) the concentrations of 9c were: 0.125 µM (open squares), 0.25 µM (filled circles), 0.5 µM (open circles). The rates (V) are expressed as nmol product formed/min/mg protein.
Figure 8. Representation of the best ranked docking solution for the binding of isatin analogue 9a (orange colored, Panel A) and aniline analogue 10 (cyan colored, Panel B) in the active site of MAO-B (2V5Z.pdb).22 The illustrations were generated with PyMOL.41

Figure 9. Representation of the best ranked docking solution for the binding of isatin analogue 9a (orange colored, Panel A) and aniline analogue 10 (cyan colored, Panel B) in the active site of MAO-A (2Z5X.pdb).3 The illustrations were generated with PyMOL.41

Figure 10. Representation of the binding orientation of isatin (Panel A) in an MAO-B–isatin X-ray crystal structure model,17 the docked orientations of 9a in the active sites of MAO-B (Panel B) and MAO-A (Panel C) and the docked orientation of 9b in the MAO-B active site (Panel D).

Figure 11. Representation of the best ranked docking solution for the binding of isatin analogue 9b (orange colored) in the active site of MAO-B (2V5Z.pdb).22 The illustration was generated with PyMOL.41

Scheme 1. Synthetic route to C5- and C6-substituted isatin analogues (9a–j). Reagents and conditions: (a) diethyl ketomalonate, CH3CO2H, 120 °C (b) air, 120 °C.

Scheme 2. Synthetic route to aniline derivatives 10c, 10d and 10i. Reagents and conditions: (a) NaOEt (b) H2 (atm), Pd/C (10%), rt.

Figure 1.
Figure 2.

Caffeine (4)

(E)-8-(3-Chlorostyryl)caffeine (CSC) (5)

Figure 3.

8-(3-Chlorobenzyloxy)caffeine (6)

Safinamide (7)

7-(3-Chlorobenzyloxy)-4-formylcoumarin (8)

Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Scheme 1.

\[
\begin{align*}
\text{R}^1 & \quad \text{R}^2 \\
\text{a} & \quad \text{C}_6\text{H}_5\text{CH}_2\text{O} & \quad \text{H} \\
\text{b} & \quad \text{H} & \quad \text{C}_6\text{H}_5\text{CH}_2\text{O} \\
\text{c} & \quad \text{C}_6\text{H}_5\text{CH}_2\text{CH}_2 & \quad \text{H} \\
\text{d} & \quad \text{H} & \quad \text{C}_6\text{H}_5\text{CH}_2\text{CH}_2 \\
\text{e} & \quad \text{C}_6\text{H}_5\text{O} & \quad \text{H} \\
\text{f} & \quad \text{H} & \quad \text{C}_6\text{H}_5\text{O} \\
\text{g} & \quad \text{C}_6\text{H}_5 & \quad \text{H} \\
\text{h} & \quad \text{H} & \quad \text{C}_6\text{H}_5 \\
\text{i} & \quad \text{C}_6\text{H}_5(\text{CH}_3)_4 & \quad \text{H} \\
\text{j} & \quad 4\text{-ClC}_6\text{H}_4\text{O} & \quad \text{H}
\end{align*}
\]

Scheme 2.

\[
\begin{align*}
\text{a} & \quad \text{b} \\
\text{11a, b} & \quad \text{12} \\
\text{13a, b} & \quad \text{14} \\
\text{15} & \quad \text{16}
\end{align*}
\]

10a-j

10a: \(R^1 = \text{C}_6\text{H}_5\text{CH}_2\text{O} \)

10b: \(R^2 = \text{H} \)

10c: \(R^1 = \text{C}_6\text{H}_5\text{CH}_2\text{CH}_2 \)

10d: \(R^2 = \text{C}_6\text{H}_5\text{CH}_2\text{CH}_2 \)

10e: \(R^1 = \text{H} \)

10f: \(R^2 = \text{C}_6\text{H}_5 \)

10g: \(R^1 = \text{C}_6\text{H}_5(\text{CH}_3)_4 \)

10h: \(R^2 = \text{H} \)

158